Sample records for light source booster

  1. Nsls-II Boster

    NASA Astrophysics Data System (ADS)

    Gurov, S. M.; Akimov, A. V.; Akimov, V. E.; Anashin, V. V.; Anchugov, O. V.; Baranov, G. N.; Batrakov, A. M.; Belikov, O. V.; Bekhtenev, E. A.; Blum, E.; Bulatov, A. V.; Burenkov, D. B.; Cheblakov, P. B.; Chernyakin, A. D.; Cheskidov, V. G.; Churkin, I. N.; Davidsavier, M.; Derbenev, A. A.; Erokhin, A. I.; Fliller, R. P.; Fulkerson, M.; Gorchakov, K. M.; Ganetis, G.; Gao, F.; Gurov, D. S.; Hseuh, H.; Hu, Y.; Johanson, M.; Kadyrov, R. A.; Karnaev, S. E.; Karpov, G. V.; Kiselev, V. A.; Kobets, V. V.; Konstantinov, V. M.; Kolmogorov, V. V.; Korepanov, A. A.; Kramer, S.; Krasnov, A. A.; Kremnev, A. A.; Kuper, E. A.; Kuzminykh, V. S.; Levichev, E. B.; Li, Y.; Long, J. De; Makeev, A. V.; Mamkin, V. R.; Medvedko, A. S.; Meshkov, O. I.; Nefedov, N. B.; Neyfeld, V. V.; Okunev, I. N.; Ozaki, S.; Padrazo, D.; Petrov, V. V.; Petrichenkov, M. V.; Philipchenko, A. V.; Polyansky, A. V.; Pureskin, D. N.; Rakhimov, A. R.; Rose, J.; Ruvinskiy, S. I.; Rybitskaya, T. V.; Sazonov, N. V.; Schegolev, L. M.; Semenov, A. M.; Semenov, E. P.; Senkov, D. V.; Serdakov, L. E.; Serednyakov, S. S.; Shaftan, T. V.; Sharma, S.; Shichkov, D. S.; Shiyankov, S. V.; Shvedov, D. A.; Simonov, E. A.; Singh, O.; Sinyatkin, S. V.; Smaluk, V. V.; Sukhanov, A. V.; Tian, Y.; Tsukanova, L. A.; Vakhrushev, R. V.; Vobly, P. D.; Utkin, A. V.; Wang, G.; Wahl, W.; Willeke, F.; Yaminov, K. R.; Yong, H.; Zhuravlev, A.; Zuhoski, P.

    The National Synchrotron Light Source II is a third generation light source, which was constructed at Brookhaven National Laboratory. This project includes a highly-optimized 3 GeV electron storage ring, linac preinjector, and full-energy synchrotron injector. Budker Institute of Nuclear Physics built and delivered the booster for NSLS-II. The commissioning of the booster was successfully completed. This paper reviews fulfilled work by participants.

  2. Commissioning and Early Operation for the NSLS-II Booster RF System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marques, C.; Cupolo, J.; Davila, P.

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL) is a third generation 3GeV, 500mA synchrotron light source. We discuss the booster synchrotron RF system responsible for providing power to accelerate an electron beam from 200MeV to 3GeV. The RF system design and construction are complete and is currently in the operational phase of the NSLS-II project. Preliminary operational data is also discussed.

  3. SIMULATIONS OF TRANSVERSE STACKING IN THE NSLS-II BOOSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fliller III, R.; Shaftan, T.

    2011-03-28

    The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The linac needs to deliver 15 nC in 80 - 150 bunches to the booster every minute to achieve current stability goals in the storage ring. This is a very stringent requirement that has not been demonstrated at an operating light source. We have developed a scheme to transversely stack two bunch trains in the NSLS-II booster in order to alleviate the charge requirements on the linac. This scheme has been outlined previously. In this paper we show particle tracking simulations of the tracking scheme.more » We show simulations of the booster ramp with a stacked beam for a variety of lattice errors and injected beam parameters. In all cases the performance of the proposed stacking method is sufficient to reduce the required charge from the linac. For this reason the injection system of the NSLS-II booster is being designed to include this feature. The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The injectors must provide 7.5nC in bunch trains 80-150 bunches long every minute for top off operation of the storage ring. Top off then requires that the linac deliver 15nC of charge once losses in the injector chain are taken into consideration. This is a very stringent requirement that has not been demonstrated at an operating light source. For this reason we have developed a method to transversely stack two bunch trains in the booster while maintaining the charge transport efficiency. This stacking scheme has been discussed previously. In this paper we show the simulations of the booster ramp with a single bunch train in the booster. Then we give a brief overview of the stacking scheme. Following, we show the results of stacking two bunch trains in the booster with varying beam emittances and train separations. The behavior of the beam through the ramp is examined showing that it is possible to stack two bunch trains in the booster.« less

  4. Diagnostic Systems Plan for the Advanced Light Source Top-OffUpgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, Walter; Chin, Mike; Robin, David

    2005-05-10

    The Advanced Light Source (ALS) will soon be upgraded to enable top-off operations [1], in which electrons are quasi-continuously injected to produce constant stored beam current. The upgrade is structured in two phases. First, we will upgrade our injector from 1.5 GeV to 1.9 GeV to allow full energy injection and will start top-off operations. In the second phase, we will upgrade the Booster Ring (BR) with a bunch cleaning system to allow high bunch purity top-off injection. A diagnostics upgrade will be crucial for success in both phases of the top-off project, and our plan for it is describedmore » in this paper. New booster ring diagnostics will include updated beam position monitor (BPM) electronics, a tune monitoring system, and a new scraper. Two new synchrotron light monitors and a beam stop will be added to the booster-to-storage ring transfer line (BTS), and all the existing beam current monitors along the accelerator chain will be integrated into a single injection efficiency monitoring application. A dedicated bunch purity monitor will be installed in the storage ring (SR). Together, these diagnostic upgrades will enable smooth commissioning of the full energy injector and a quick transition to high quality top-off operation at the ALS.« less

  5. Fermilab Booster Transition Crossing Simulations and Beam Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, C. M.; Tan, C. Y.

    2016-01-01

    The Fermilab Booster accelerates beam from 400 MeV to 8 GeV at 15 Hz. In the PIP (Proton Improvement Plan) era, it is required that Booster deliver 4.2 xmore » $$10^{12}$$ protons per pulse to extraction. One of the obstacles for providing quality beam to the users is the longitudinal quadrupole oscillation that the beam suffers from right after transition. Although this oscillation is well taken care of with quadrupole dampers, it is important to understand the source of these oscillations in light of the PIP II requirements that require 6.5 x $$10^{12}$$ protons per pulse at extraction. This paper explores the results from machine studies, computer simulations and solutions to prevent the quadrupole oscillations after transition.« less

  6. RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan

    2015-09-01

    JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reducemore » the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.« less

  7. Planar concentrators near the étendue limit.

    PubMed

    Winston, Roland; Gordon, Jeffrey M

    2005-10-01

    Recently proposed aplanatic imaging designs are integrally combined with nonimaging flux boosters to produce an ultracompact planar glass-filled concentrator that performs near the étendue limit. Such optical devices are attractive for high-efficiency multijunction photovoltaics at high flux, with realistic power generation of 1 W from a 1 mm2 cell. When deployed in reverse, our designs provide collimation even for high-numerical-aperture light sources.

  8. Planar concentrators near the étendue limit

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Gordon, Jeffrey M.

    2005-10-01

    Recently proposed aplanatic imaging designs are integrally combined with nonimaging flux boosters to produce an ultracompact planar glass-filled concentrator that performs near the étendue limit. Such optical devices are attractive for high-efficiency multijunction photovoltaics at high flux, with realistic power generation of 1 W from a 1 mm² cell. When deployed in reverse, our designs provide collimation even for high-numerical-aperture light sources.

  9. Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light.

    PubMed

    Saito, Koichiro; Tatsuma, Tetsu

    2018-05-09

    The chirality of materials results in a wide variety of advanced technologies including image display, data storage, light management including negative refraction, and enantioselective catalysis and sensing. Here, we introduce chirality to plasmonic nanostructures by using circularly polarized light as the sole chiral source for the first time. Gold nanocuboids as precursors on a semiconductor were irradiated with circularly polarized light to localize electric fields at specific corners of the cuboids depending on the handedness of light and deposited dielectric moieties as electron oscillation boosters by the localized electric field. Thus, plasmonic nanostructures with high chirality were developed. The present bottom-up method would allow the large-scale and cost-effective fabrication of chiral materials and further applications to functional materials and devices.

  10. Two Amazing Rocket Launches That Began My Career

    NASA Astrophysics Data System (ADS)

    Rothschild, Richard E.

    2013-01-01

    I began my X-ray astronomy career by being given the responsibility for the Goddard rocket program by Frank MacDonald in the early 70's. I am forever grateful to him and Elihu Boldt for the opportunity. The rocket's observing program was three compact binary X-ray sources that could not have been more different: Cyg X-1, Cyg X-3, and Her X-1. A sounding rocket launch is nothing like a satellite launch with its large booster, Cape Canaveral experience, and lots of procedures and no touching of the hardware. First of all, one can walk up to the sounding rocket tower (at least you used to be able to) and go up in it to fix or adjust something with the yet-to-be-fueled rocket, booster, and payload just sitting there. At launch, you can see it up close 100 m) and personal, and it is spectacular. There is an explosion (the Nike booster igniting), a bright flash of light, and it is gone in a second or two. And back in the block house, I watched Her X-1 pulse in real time, after Chuck Glasser calmed me down and explained that the detectors were not arcing but it was Her X-1. The Cyg X-1 observations resulted in the discovery of millisecond temporal structure in the flux from a cosmic source -- 13 1-ms bursts over a total of two minutes of observing in the 2 flights. Cyg X-3 was seen in a high state in the first flight and in a lower harder state in the second, where we detected the iron line for the first time in a Galactic source. The Her X-1 observation clearly showed the high energy roll-over of the spectrum for the first time. The light curves of the first flight found their way into many presentations, including Ricardo Giacconi's Nobel lecture. The Goddard rocket program was an amazing beginning to my career.

  11. Shuttle Boosters stacked in the VAB

    NASA Image and Video Library

    2007-01-04

    Lighting inside Kennedy Space Center's Vehicle Assembly Building seems to bathe the highbay 1 area in a golden hue as workers continue stacking the twin solid rocket boosters. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.

  12. Launch Architecture Impact on Ascent Abort and Crew Survival

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Lawrence, Scott L.

    2006-01-01

    A study was performed to assess the effect of booster configuration on the ascent abort process. A generic abort event sequence was created and booster related risk drivers were identified. Three model boosters were considered in light of the risk drivers: a solid rocket motor configuration, a side mount combination solid and liquid configuration, and a stacked liquid configuration. The primary risk drivers included explosive fireball, overpressure, and fragment effects and booster-crew module re-contact. Risk drivers that were not specifically booster dependent were not addressed. The solid rocket configuration had the most benign influence on an abort while the side mount architecture provided the most challenging abort environment.

  13. External amplification of OCT swept-sources for challenging applications: from 10 mW to more than 120 mW

    NASA Astrophysics Data System (ADS)

    Rivard, Maxime; Villeneuve, Alain; Lamouche, Guy

    2017-02-01

    For bioimaging applications, commercial swept-sources currently provide enough power (tens of milliwatts) insuring good imaging condition without damaging the tissues. For industrial applications, more power is needed since the amount of light collected can be very low due to challenging measurement conditions or due to poor sample reflectivity. To address this challenge, we explore three different setups to externally amplify the output of a commercial swept-source: a booster semiconductor optical amplifier (BOA), an erbium-doped fiber amplifier (EDFA) and a combination of both. These external amplification setups allow the exploration of emerging OCT applications without the need to develop new hardware.

  14. Factors Affecting Booster Seat Use.

    PubMed

    Aita-Levy, Jerussa; Henderson, Lauren

    2016-10-01

    Objective To identify general awareness of booster seats as well as reasons for use and nonuse in an urban pediatric emergency room. Methods A total of 100 questionnaires were completed consisting of 24 questions each. Questions included knowledge of booster seat guidelines, source of knowledge, awareness of risks, and confidence in booster seats. Afterward, participants were provided an educational handout. Results Majority of parents reported currently using or having used a booster seat. The most popular reason was to protect from injury (78%), and reason for nonuse was size (44%). Majority of parents agreed that motor vehicle crashes were the leading cause of death in children. However, 56% of parents prematurely transitioned child out of a booster seat. Only 20% reported learning about booster seats from their pediatrician. Conclusion Parents continue to transition their children prematurely from booster seats. Current state laws need revision as well as further education using simplified illustrated guidelines. © The Author(s) 2015.

  15. KSC-07pd0011

    NASA Image and Video Library

    2007-01-05

    KENNEDY SPACE CENTER, FLA. -- Lighting inside Kennedy Space Center's Vehicle Assembly Building seems to bathe the highbay 1 area in a golden hue as workers continue stacking the twin solid rocket boosters. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007. Photo credit: NASA/George Shelton

  16. Scattering and the Point Spread Function of the New Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Schreur, Julian J.

    1996-01-01

    Preliminary design work on the New Generation Space Telescope (NGST) is currently under way. This telescope is envisioned as a lightweight, deployable Cassegrain reflector with an aperture of 8 meters, and an effective focal length of 80 meters. It is to be folded into a small-diameter package for launch by an Atlas booster, and unfolded in orbit. The primary is to consist of an octagon with a hole at the center, and with eight segments arranged in a flower petal configuration about the octagon. The comers of the petal-shaped segments are to be trimmed so that the package will fit atop the Atlas booster. This mirror, along with its secondary will focus the light from a point source into an image which is spread from a point by diffraction effects, figure errors, and scattering of light from the surface. The distribution of light in the image of a point source is called a point spread function (PSF). The obstruction of the incident light by the secondary mirror and its support structure, the trimmed corners of the petals, and the grooves between the segments all cause the diffraction pattern characterizing an ideal point spread function to be changed, with the trimmed comers causing the rings of the Airy pattern to become broken up, and the linear grooves causing diffraction spikes running radially away from the central spot, or Airy disk. Any figure errors the mirror segments may have, or any errors in aligning the petals with the central octagon will also spread the light out from the ideal point spread function. A point spread function for a mirror the size of the NGST and having an incident wavelength of 900 nm is considered. Most of the light is confined in a circle with a diameter of 0.05 arc seconds. The ring pattern ranges in intensity from 10(exp -2) near the center to 10(exp -6) near the edge of the plotted field, and can be clearly discerned in a log plot of the intensity. The total fraction of the light scattered from this point spread function is called the total integrated scattering (TIS), and the fraction remaining is called the Strehl ratio. The angular distribution of the scattered light is called the angle resolved scattering (ARS), and it shows a strong spike centered on a scattering angle of zero, and a broad , less intense distribution at larger angles. It is this scattered light, and its effect on the point spread function which is the focus of this study.

  17. Optically-powered Voltage-supply-device for Effective Utilization of Optical Energy in the Fiber-To-The-Home Network

    NASA Astrophysics Data System (ADS)

    Fukano, Hideki; Shinagawa, Takeshi; Tsuruta, Kenji

    An optically powered device with using InGaAs-Photodiode has been developed. This study aims to harvest light energy (2.8∼500μW) from the FTTH (Fiber To The Home) network and to utilize it for operating remote sensors without external energy sources. First, we designed and evaluated the characteristics of the booster circuit and confirmed that it could boost an input voltage of 0.3 V to 3.0 V. Next, we also evaluated the characteristics of InGaAs photodiode and confirmed that it can output a voltage over 0.3 V at 10-μW input light. We demonstrate that a ready-made sensor can be operated with an input optical power as low as 10 μW.

  18. KSC-2011-1810

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- Chief Mate Jamie Harris works at the chart table on the bridge at night under a red light so as not to compromise night vision on Freedom Star, one of NASA's solid rocket booster retrieval ships plotting a course in the direction of the left spent booster that splashed down into the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  19. Study of solid rocket motors for a space shuttle booster. Volume 4: Mass properties report

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    Mass properties data for the 156 inch diameter, parallel burn, solid propellant rocket engine for the space shuttle booster are presented. Design ground rules and assumptions applicable to generation of the mass properties data are described, together with pertinent data sources.

  20. Child posture and shoulder belt fit during extended night-time traveling: an in-transit observational study.

    PubMed

    Forman, Jason L; Segui-Gomez, Maria; Ash, Joseph H; Lopez-Valdes, Francisco J

    2011-01-01

    Understanding pediatric occupant postures can help researchers indentify injury risk factors, and provide information for prospective injury prediction. This study sought to observe lateral head positions and shoulder belt fit among older child automobile occupants during a scenario likely to result in sleeping - extended travel during the night. An observational, volunteer, in-transit study was performed with 30 pediatric rear-seat passengers, ages 7 to 14. Each was restrained by a three-point seatbelt and was driven for seventy-five minutes at night. Ten subjects used a high-back booster seat, ten used a low-back booster seat, and ten used none (based on the subject height and weight). The subjects were recorded with a low-light video camera, and one frame was analyzed per each minute of video. The high-back booster group exhibited a statistically significant (p<0.05) decrease in the mean frequency of poor shoulder belt fit compared to the no-booster and low-back booster groups. The high-back booster group also exhibited statistically significant decreases in the 90(th) percentile of the absolute value of the relative lateral motion of the head. The low-back booster group did not result in statistically significant decreases in poor shoulder belt fit or lateral head motion compared to the no-booster group. These results are consistent with the presence of large lateral supports of the high-back booster which provided support to the head while sleeping, reducing voluntary lateral occupant motion and improving shoulder belt fit. Future work includes examining lap belt fit in-transit, and examining the effects of these observations on predicted injury risk.

  1. Child Posture and Shoulder Belt Fit During Extended Night-Time Traveling: An In-Transit Observational Study.

    PubMed Central

    Forman, Jason L.; Segui-Gomez, Maria; Ash, Joseph H.; Lopez-Valdes, Francisco J.

    2011-01-01

    Understanding pediatric occupant postures can help researchers indentify injury risk factors, and provide information for prospective injury prediction. This study sought to observe lateral head positions and shoulder belt fit among older child automobile occupants during a scenario likely to result in sleeping - extended travel during the night. An observational, volunteer, in-transit study was performed with 30 pediatric rear-seat passengers, ages 7 to 14. Each was restrained by a three-point seatbelt and was driven for seventy-five minutes at night. Ten subjects used a high-back booster seat, ten used a low-back booster seat, and ten used none (based on the subject height and weight). The subjects were recorded with a low-light video camera, and one frame was analyzed per each minute of video. The high-back booster group exhibited a statistically significant (p<0.05) decrease in the mean frequency of poor shoulder belt fit compared to the no-booster and low-back booster groups. The high-back booster group also exhibited statistically significant decreases in the 90th percentile of the absolute value of the relative lateral motion of the head. The low-back booster group did not result in statistically significant decreases in poor shoulder belt fit or lateral head motion compared to the no-booster group. These results are consistent with the presence of large lateral supports of the high-back booster which provided support to the head while sleeping, reducing voluntary lateral occupant motion and improving shoulder belt fit. Future work includes examining lap belt fit in-transit, and examining the effects of these observations on predicted injury risk. PMID:22105378

  2. Design criteria and candidate electrical power systems for a reusable Space Shuttle booster.

    NASA Technical Reports Server (NTRS)

    Merrifield, D. V.

    1972-01-01

    This paper presents the results of a preliminary study to establish electrical power requirements, investigate candidate power sources, and select a representative power generation concept for the NASA Space Shuttle booster stage. Design guidelines and system performance requirements are established. Candidate power sources and combinations thereof are defined and weight estimates made. The selected power source concept utilizes secondary silver-zinc batteries, engine-driven alternators with constant speed drive, and an airbreathing gas turbine. The need for cost optimization, within safety, reliability, and performance constraints, is emphasized as being the most important criteria in design of the final system.

  3. Optimal design and operation of booster chlorination stations layout in water distribution systems.

    PubMed

    Ohar, Ziv; Ostfeld, Avi

    2014-07-01

    This study describes a new methodology for the disinfection booster design, placement, and operation problem in water distribution systems. Disinfectant residuals, which are in most cases chlorine residuals, are assumed to be sufficient to prevent growth of pathogenic bacteria, yet low enough to avoid taste and odor problems. Commonly, large quantities of disinfectants are released at the sources outlets for preserving minimum residual disinfectant concentrations throughout the network. Such an approach can cause taste and odor problems near the disinfectant injection locations, but more important hazardous excessive disinfectant by-product formations (DBPs) at the far network ends, of which some may be carcinogenic. To cope with these deficiencies booster chlorination stations were suggested to be placed at the distribution system itself and not just at the sources, motivating considerable research in recent years on placement, design, and operation of booster chlorination stations in water distribution systems. The model formulated and solved herein is aimed at setting the required chlorination dose of the boosters for delivering water at acceptable residual chlorine and TTHM concentrations for minimizing the overall cost of booster placement, construction, and operation under extended period hydraulic simulation conditions through utilizing a multi-species approach. The developed methodology links a genetic algorithm with EPANET-MSX, and is demonstrated through base runs and sensitivity analyses on a network example application. Two approaches are suggested for dealing with water quality initial conditions and species periodicity: (1) repetitive cyclical simulation (RCS), and (2) cyclical constrained species (CCS). RCS was found to be more robust but with longer computational time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Study of solid rocket motors for a space shuttle booster. Appendix E: Environmental impact statement, solid rocket motor, space shuttle booster

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the combustion products resulting from the solid propellant rocket engines of the space shuttle booster is presented. Calculation of the degree of pollution indicates that the only potentially harmful pollutants, carbon monoxide and hydrochloric acid, will be too diluted to constitute a hazard. The mass of products ejected during a launch within the troposphere is insignificant in terms of similar materials that enter the atmosphere from other sources. Noise pollution will not exceed that obtained from the Saturn 5 launch vehicle.

  5. The Status of the Taiwan Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. C.; Wang, J. P.; Chen, J. R.

    2010-06-23

    NSRRC has been operating a 1.5 GeV synchrotron light source, the Taiwan Light Source (TLS), for over 15 years and has established a large user community. For the future development of synchrotron radiation research in Taiwan, a feasibility study report to construct a 3.0 GeV low-emittance storage ring, the Taiwan Photon Source (TPS), was issued in July 2005. The government approval of the TPS project was obtained in December 2007 and the machine will be built at current site of NSRRC. The project has progressed steadily since and reached several major milestones now: the architect firm has finished the sitemore » plan and civil design, the accelerator design has been fixed, and purchase of long-lead items begins its course. The TPS storage ring has a circumference of 518.4 meters with a concentric booster of 496.8 meters. The storage ring adopted a 24-cell double-bend structure with a 1.6 nm-rad natural emittance. There are six 12-m and eighteen 7-m ID straights. For user research, five new beamlines have been selected for the Phase I operations: the micro protein crystallography, the materials sub-micron diffraction, the inelastic soft x-ray scattering, the coherent x-ray scattering, and the nano probe beamlines. The civil construction is getting ready to start. The commissioning of the TPS storage ring is targeted for 2013.« less

  6. KSC-08pd0863

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, a worker attaches the crane to a solid rocket booster. The crane will raise the booster to a vertical position. When it has been raised, the booster will be lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  7. KSC-08pd0865

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the solid rocket booster is raised from its transporter toward a vertical position. When it has been raised, the booster will be lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. Two other boosters are already in place. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  8. KSC-08pd0864

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the solid rocket booster is raised from its transporter toward a vertical position. When it has been raised, the booster will be lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. Two other boosters are already in place. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  9. System and process for detecting and monitoring surface defects

    NASA Technical Reports Server (NTRS)

    Mueller, Mark K. (Inventor)

    1994-01-01

    A system and process for detecting and monitoring defects in large surfaces such as the field joints of the container segments of a space shuttle booster motor. Beams of semi-collimated light from three non-parallel fiber optic light panels are directed at a region of the surface at non-normal angles of expected incidence. A video camera gathers some portion of the light that is reflected at an angle other than the angle of expected reflectance, and generates signals which are analyzed to discern defects in the surface. The analysis may be performed by visual inspection of an image on a video monitor, or by inspection of filtered or otherwise processed images. In one alternative embodiment, successive predetermined regions of the surface are aligned with the light source before illumination, thereby permitting efficient detection of defects in a large surface. Such alignment is performed by using a line scan gauge to sense the light which passes through an aperture in the surface. In another embodiment a digital map of the surface is created, thereby permitting the maintenance of records detailing changes in the location or size of defects as the container segment is refurbished and re-used. The defect detection apparatus may also be advantageously mounted on a fixture which engages the edge of a container segment.

  10. Inviscid and Viscous CFD Analysis of Booster Separation for the Space Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Dalle, Derek J.; Rogers, Stuart E.; Chan, William M.; Lee, Henry C.

    2016-01-01

    This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid and Overflow viscous CFD codes. The discussion addresses the use of multiple data sources of computational aerodynamics, experimental aerodynamics, and trajectory simulations for this critical phase of flight. Comparisons are shown between Cart3D simulations and a wind tunnel test performed at NASA Langley Research Center's Unitary Plan Wind Tunnel, and further comparisons are shown between Cart3D and viscous Overflow solutions for the flight vehicle. The Space Launch System (SLS) is a new exploration-class launch vehicle currently in development that includes two Solid Rocket Boosters (SRBs) modified from Space Shuttle hardware. These SRBs must separate from the SLS core during a phase of flight where aerodynamic loads are nontrivial. The main challenges for creating a separation aerodynamic database are the large number of independent variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by exhaust plumes of the booster separation motors (BSMs), which are small rockets designed to push the boosters away from the core by firing partially in the direction opposite to the motion of the vehicle.

  11. KSC-08pd0856

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a second solid rocket booster is raised from its transporter. The booster will join the first booster lifted into the mobile service tower for mating with the Delta II rocket to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis

  12. Survey and Alighment for the ALS Project at LBL Berkeley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, R.; Lauritzen, T.; /LBL, Berkeley

    2005-08-12

    The Advanced Light Source (ALS), now under construction at Lawrence Berkeley Laboratory, is a synchrotron radiation source of the third generation designed to produce extremely bright photon beams in the UV and soft X-ray regions. Its main accelerator components are a 1-1.9 GeV electron storage ring with 196.8 m circumference and 12 super-periods, a 1.5 GeV booster synchrotron with 75.0 m circumference and 4 super-periods, and a 50 MeV linac, as shown in Fig. 1. The storage ring has particularly tight positioning tolerances for lattice magnets and other components to assure the required operational characteristics. The general survey and alignmentmore » concept for the ALS is based on a network of fixed monuments installed in the building floor, to which all component positions are referred. Measurements include electronic distance measurements and separate sightings for horizontal and vertical directions, partially with automated electronic data capture. Most of the data processing is accomplished by running a customized version of PC-GEONET. It provides raw data storage, data reduction, and the calculation of adjusted coordinates, as well as an option for error analysis. PC-GEONET has also been used to establish an observation plan for the monuments and calculate their expected position accuracies, based on approximate coordinates. Additionally, for local survey tasks, the commercial software package ECDS is used. In this paper, the ALS survey and alignment strategy and techniques are presented and critically discussed. First experiences with the alignment of the linac and booster components are described.« less

  13. Estimation of neutron dose equivalent at the mezzanine of the Advanced Light Source and the laboratory boundary using the ORNL program MORSE.

    PubMed

    Sun, R K

    1990-12-01

    To investigate the radiation effect of neutrons near the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory (LBL) with respect to the neutron dose equivalents in nearby occupied areas and at the site boundary, the neutron transport code MORSE, from Oak Ridge National Laboratory (ORNL), was used. These dose equivalents result from both skyshine neutrons transported by air scattering and direct neutrons penetrating the shielding. The ALS neutron sources are a 50-MeV linear accelerator and its transfer line, a 1.5-GeV booster, a beam extraction line, and a 1.9-GeV storage ring. The most conservative total occupational-dose-equivalent rate in the center of the ALS mezzanine, 39 m from the ALS center, was found to be 1.14 X 10(-3) Sv y-1 per 2000-h "occupational" year, and the total environmental-dose-equivalent rate at the ALS boundary, 125 m from the ALS center, was found to be 3.02 X 10(-4) Sv y-1 per 8760-h calendar year. More realistic dose-equivalent rates, using the nominal (expected) storage-ring current, were calculated to be 1.0 X 10(-4) Sv y-1 and 2.65 X 10(-5) Sv y-1 occupational year and calendar year, respectively, which are much lower than the DOE reporting levels.

  14. The TIL commissioning and performance

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zheng, W.; Wei, X.; Jing, F.; Sui, Z.; Zheng, K.; Xu, Q.; Yuan, X.; Jiang, X.; Yang, L.; Ma, P.; Li, M.; Wang, J.; Hu, D.; He, S.; Li, F.; Peng, Z.; Feng, B.; Zhou, H.; Guo, L.; Li, X.; Zhang, X.; Su, J.; Zhu, Q.; Yu, H.; Zhao, R.; Ma, C.; He, H.; Fan, D.; Zhang, W.

    2008-05-01

    The TIL serves for both technological platforms for SG-III construction and physical experiments to study and understand target physics toward ignition and plasma burning [2]. The TIL has been designed to produce 10kJ blue light. Its eight-beam are stacked 4 high by 2 wide, The clear optical aperture is 30cm×30cm The cavity and booster amplifiers have 9 and 6 glass slabs respectively, with thickness of 3.8cm. The cavity is a four-pass amplification stage with the seed pulse injected through its cavity spatial filter, while the booster a single pass amplification stage. The commissioning experiments have successfully been conducted to test the output and control abilities of the system. A single beam line of TIL produced 3-ns pulse of 1645 Joule blue light at the target, which demonstrated that the TIL can deliver ten-thousand-joule blue light to the target. Beam qualities have been investigated jointly with the laser chain simulations using the SG-99 code. The wavefront distortions of the beams will be improved by deformable mirrors.

  15. An overview of Booster and AGS polarized proton operation during Run 15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeno, K.

    2015-10-20

    This note is an overview of the Booster and AGS for the 2015 Polarized Proton RHIC run from an operations perspective. There are some notable differences between this and previous runs. In particular, the polarized source intensity was expected to be, and was, higher this year than in previous RHIC runs. The hope was to make use of this higher input intensity by allowing the beam to be scraped down more in the Booster to provide a brighter and smaller beam for the AGS and RHIC. The RHIC intensity requirements were also higher this run than in previous runs, whichmore » caused additional challenges because the AGS polarization and emittance are normally intensity dependent.« less

  16. An analysis of booster tone noise using a time-linearized Navier-Stokes solver

    NASA Astrophysics Data System (ADS)

    Wukie, Nathan A.

    This thesis details a computational investigation of tone noise generated from a booster(low-pressure compressor) in a fan test rig. The computational study consisted of sets of time-linearized Navier-Stokes simulations in the booster region to investigate the blade-wake interactions that act as the primary noise-generating mechanism for the booster blade-passing frequency and harmonics. An acoustic test database existed with data at several operating points for the fan test rig that was used to compare against the predicted noise data from the computational study. It is shown that the computational methodology is able to capture trends in sound power for the 1st and 2nd booster tones along the operating line for the rig. It is also shown that the computational study underpredicts one of the tones at low power and is not able to capture a peak in the data at the Cutback condition. Further investigation of this type is warranted to quantify the source of discrepancies between the computational and experimental data as the reflected transmisison of sound off the fan through the bypass duct was not accounted for in this study.

  17. Palynological Investigation of Post-Flight Solid Rocket Booster Foreign Material

    NASA Technical Reports Server (NTRS)

    Nelson, Linda; Jarzen, David

    2008-01-01

    Investigations of foreign material in a drain tube, from the Solid Rocket Booster (SRB) of a recent Space Shuttle mission, was identified as pollen. The source of the pollen is from deposits made by bees, collecting pollen from plants found at the Kennedy Space Center, Cape Canaveral, Florida. The pollen is determined to have been present in the frustum drain tubes before the shuttle flight. During the flight the pollen did not undergo thermal maturation.

  18. The Present Status of Siam Photon Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pairsuwan, Weerapong; Ishii, Takehiko; Isoyama, Goro

    We report the technical problems encountered in commissioning and improving the performance of the accelerator complex which consists of a 1 GeV light source storage ring, a 1 GeV booster synchrotron, and a 40 MeV injector linac. Regulation work for an attached beam line with an experimental station for photoemission studies is also described. Beam instability and low injection efficiency are the major issues for the accelerator complex. In the beam line, the accurate optical alignment of the monochromator system and the modification of the measurement control software supplied by a marker are the work having been performed. The resultsmore » of the work on the accelerator complex will be helpful to the commissioning of the machine obtained secondhand and reformed to some extent.« less

  19. Engine protection system for recoverable rocket booster

    NASA Technical Reports Server (NTRS)

    Shelby, Jr., Jerry A. (Inventor)

    1994-01-01

    A rocket engine protection system for a recoverable rocket booster which is arranged to land in a salt water body in substantially a nose down attitude. The system includes an inflatable bag which is stowed on a portion of a flat annular rim of the aft skirt of the booster. The bag is hinged at opposing sides and is provided with springs that urge the bag open. The bag is latched in a stowed position during launch and prior to landing for recovery is unlatched to permit the bag to be urged open and into sealing engagement with the rim. A source of pressurized gas further inflates the bag and urges it into sealing engagement with the rim of the skirt where it is locked into position. The gas provides a positive pressure upon the interior of the bag to preclude entry of salt water into the skirt and into contact with the engine. A flotation arrangement may assist in precluding the skirt of the booster from becoming submerged.

  20. KSC-00pp0858

    NASA Image and Video Library

    2000-06-29

    Inside the Vehicle Assembly Building, the forward section of a solid rocket booster (SRB) sits on top of the rest of the stack for mating. The forward section of each booster, from nose cap to forward skirt contains avionics, a sequencer, forward separation motors, a nose cone separation system, drogue and main parachutes, a recovery beacon, a recovery light, a parachute camera on selected flights and a range safety system. Each SRB weighs approximately 1.3 million pounds at launch. The SRB is part of the stack for Space Shuttle Discovery and the STS-92 mission, scheduled for launch Oct. 5, from Launch Pad 39A, on the fifth flight to the International Space Station

  1. KSC00pp0858

    NASA Image and Video Library

    2000-06-29

    Inside the Vehicle Assembly Building, the forward section of a solid rocket booster (SRB) sits on top of the rest of the stack for mating. The forward section of each booster, from nose cap to forward skirt contains avionics, a sequencer, forward separation motors, a nose cone separation system, drogue and main parachutes, a recovery beacon, a recovery light, a parachute camera on selected flights and a range safety system. Each SRB weighs approximately 1.3 million pounds at launch. The SRB is part of the stack for Space Shuttle Discovery and the STS-92 mission, scheduled for launch Oct. 5, from Launch Pad 39A, on the fifth flight to the International Space Station

  2. Space Shuttle Projects

    NASA Image and Video Library

    1982-04-01

    The towing ship, Liberty, towed a recovered solid rocket booster (SRB) for the STS-3 mission to Port Canaveral, Florida. The recovered SRB would be inspected and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. The requirement for reusability dictated durable materials and construction to preclude corrosion of the hardware exposed to the harsh seawater environment. The SRB contains a complete recovery subsystem that includes parachutes, beacons, lights, and tow fixture.

  3. Space Shuttle Projects

    NASA Image and Video Library

    1982-11-01

    The towing ship, Liberty, towed a recovered solid rocket booster (SRB) for the STS-5 mission to Port Canaveral, Florida. The recovered SRB would be inspected and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. The requirement for reusability dictated durable materials and construction to preclude corrosion of the hardware exposed to the harsh seawater environment. The SRB contains a complete recovery subsystem that includes parachutes, beacons, lights, and tow fixture.

  4. Propellant grain dynamics in aft attach ring of shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1979-01-01

    An analytical technique for implementing simultaneously the temperature, dynamic strain, real modulus, and frequency properties of solid propellant in an unsymmetrical vibrating ring mode is presented. All dynamic parameters and sources are defined for a free vibrating ring-grain structure with initial displacement and related to a forced vibrating system to determine the change in real modulus. Propellant test data application is discussed. The technique was developed to determine the aft attach ring stiffness of the shuttle booster at lift-off.

  5. TVDG Organization Page

    Science.gov Websites

    -Booster-AGS Coordinator John Benjamin Accelerator Development, Maintenance and Operation Chuck Carlson Hans Abendroth Ion Source Develoment and Maintenance John Benjamin Dannie Steski Electrical and

  6. KSC-08pd0860

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a second solid rocket booster joins the first booster lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  7. X-ray fluorescence surface contaminant analyzer: A feasibility study

    NASA Technical Reports Server (NTRS)

    Eldridge, Hudson B.

    1988-01-01

    The bonding of liner material to the inner metal surfaces of solid rocket booster cases is adversely affected by minute amounts of impurities on the metal surface. Suitable non-destructive methods currently used for detecting these surface contaminants do not provide the means of identifying their elemental composition. The feasibility of using isotopic source excited energy dispersive X-ray fluorescence as a possible technique for elemental analysis of such contaminants is investigated. A survey is made of the elemental compositions of both D-6ac steel, a common construction material for the booster cases, and Conoco HD-2 grease, a common surface contamination. Source and detector choices that maximize signal to noise ratio in a Recessed Source Geometry are made. A Monte Carlo simulation is then made of the optimized device incorporating the latest available X-ray constants at the energy of the chosen source to determine the device's response to a D-6ac steel surface contained with Conoco HD-2 grease.

  8. Installation and Commissioning of the Super Conducting RF Linac Cryomodules for the Erlp

    NASA Astrophysics Data System (ADS)

    Goulden, A. R.; Bate, R.; Buckley, R. K.; Pattalwar, S. M.

    2008-03-01

    An Energy Recovery Linac Prototype (ERLP) is currently being constructed at Daresbury Laboratory, (UK) to promote the necessary skills in science & technology, particularly in photocathode electron gun and Superconducting RF (SRF), to enable the construction of a fourth generation light source, based on energy recovery linacs-4GLS [1]. The ERLP uses two identical cryomodules, one as a booster Linac used to accelerate the beam to 8.5 MeV, the other as an Energy Recovery Linac (ERL) module with an energy gain of 26.5 MeV. Each module consists of two 9- cell cavities operating at a frequency of 1.3 GHz and a temperature of 2 K. As there is no energy recovery in the booster it requires a peak power of 53 kW; whereas the linac module only requires 8 kW. The RF power is supplied by Inductive Output Tube (IOT) amplifiers. The maximum heat load (or the cooling power) required in the SRF system is 180 W at 2 K and is achieved in two stages: a LN2 pre-cooled Linde TCF50 liquefier produces liquid helium at 4.5 K, followed by a 2 K cold box consisting of a JT valve, recuperator and an external room temperature vacuum pumping system. This presentation reports the experience gained during, installation, commissioning and the initial operation of the cryomodules.

  9. The Effect of Booster Seat Use on Pediatric Injuries in Motor Vehicle Frontal Crashes.

    PubMed

    Caskey, Sean; Hammond, Joshua; Peck, Jeffery; Sardelli, Matthew; Atkinson, Theresa

    2018-04-20

    Motor vehicle crashes are a significant source of pediatric mortality and morbidity. Studies indicate that booster seats significantly improve seat belt fit for children who have not attained a height of 145 cm (4' 9"). This study examined injuries occurring in booster age children up to age 12, as the majority of children do not attain 145 cm until this age. The purpose of the study was to identify differences in injuries due to the type of restraint used, with attention to musculoskeletal injuries. Vehicle and occupant data were obtained from a publically available statistical sample of tow-away crashes. Frontal crashes over an 8-year period were examined. A data set of cases was created involving children ages 5 to 12 years who were unrestrained, restrained using the vehicle's lap and shoulder belt, and restrained using a booster seat with the vehicle's lap and shoulder seat belt. Injury severity, frequency, and patterns of distribution were compared. Unrestrained children experienced moderate to severe injuries 3.8 to 19 times more frequently than children using restraints. There were more injuries to the head and face in unrestrained versus restrained children, but the head and face was the most frequently injured region for all groups. There were no serious cervical spine injuries reported for any group. Lower extremity fractures were not observed in booster seat users but occurred at similar rates in both unrestrained and seat belt restrained children. These fractures occurred in older children who were involved in more severe crashes. Unrestrained children were more likely to experience moderate and severe injuries than restrained children. The data sample suggests that booster use may reduce the risk of extremity fracture, as there were no extremity fractures in children restrained with booster seats. This work provides evidence for the efficacy of booster use for preventing orthopaedic injury in children. This evidence can be used to inform parents and establish recommendations for best practices in transporting children.

  10. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    NASA Technical Reports Server (NTRS)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  11. Postbooster Antibodies from Humans as Source of Diphtheria Antitoxin

    PubMed Central

    Avila-Alonso, Ana; González-Rivera, Milagros; Tamayo, Eduardo; Eiros, Jose María; Almansa, Raquel

    2016-01-01

    Diphtheria antitoxin for therapeutic use is in limited supply. A potential source might be affinity-purified antibodies originally derived from plasma of adults who received a booster dose of a vaccine containing diphtheria toxoid. These antibodies might be useful for treating even severe cases of diphtheria. PMID:27314309

  12. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    U˝Lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ~133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries. Additional funds to purchase components of the new ring and beamlines are being sought from the EU, the US, and other sources. SESAME has benefited greatly from offers by other light source facilities of equipment and training fellowships in both accelerator technology and applications of synchrotron radiation. Details of this, and other aspects of the training program, are given below. It is hoped that in the future fellowship offers will continue to be made by many light source laboratories to further increase the level of experience with accelerator technology and synchrotron light science in preparation for the start of operation of SESAME.

  13. SESAME — A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Űlkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ˜133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries. Additional funds to purchase components of the new ring and beamlines are being sought from the EU, the US, and other sources. SESAME has benefited greatly from offers by other light source facilities of equipment and training fellowships in both accelerator technology and applications of synchrotron radiation. Details of this, and other aspects of the training program, are given below. It is hoped that in the future fellowship offers will continue to be made by many light source laboratories to further increase the level of experience with accelerator technology and synchrotron light science in preparation for the start of operation of SESAME.

  14. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulkue, Dincer; Rahighi, Javad; Winick, Herman

    2007-01-19

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK,more » and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference {approx}133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries. Additional funds to purchase components of the new ring and beamlines are being sought from the EU, the US, and other sources. SESAME has benefited greatly from offers by other light source facilities of equipment and training fellowships in both accelerator technology and applications of synchrotron radiation. Details of this, and other aspects of the training program, are given below. It is hoped that in the future fellowship offers will continue to be made by many light source laboratories to further increase the level of experience with accelerator technology and synchrotron light science in preparation for the start of operation of SESAME.« less

  15. Radiological considerations for bulk shielding calculations of national synchrotron light source-II

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2011-12-01

    Brookhaven National Laboratory is designing a new electron synchrotron for scientific research using synchrotron radiation. This facility, called the “National Synchrotron Light Source II” (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. The project scope includes the design, construction, installation, and commissioning of the following accelerators: a 200 MeV linac, a booster synchrotron operating from 200 MeV to 3.0 GeV, and the storage ring which stores a maximum of 500 mA current of electrons at an energy of 3.0 GeV. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in stored beam current to <1%. Because of the very demanding requirements for beam emittance and synchrotron radiation brilliance, the beam life-time is expected to be quite low, on the order of 2 h. Analysis of the bulk shielding for operating this facility and the input parameters used for this analysis have been discussed in this paper. The characteristics of each of the accelerators and their operating modes have been summarized with the input assumptions for the bulk shielding analysis.

  16. 3 GeV Booster Synchrotron Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedemann, Helmut

    2009-06-02

    Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

  17. KSC-08pd0866

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the third solid rocket booster is lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. It joins the first two boosters already in place. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  18. KSC-08pd0862

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, workers prepare to raise the solid rocket booster to a vertical position. When it has been raised, the booster will be lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  19. High-speed multi-frame laser Schlieren for visualization of explosive events

    NASA Astrophysics Data System (ADS)

    Clarke, S. A.; Murphy, M. J.; Landon, C. D.; Mason, T. A.; Adrian, R. J.; Akinci, A. A.; Martinez, M. E.; Thomas, K. A.

    2007-09-01

    High-Speed Multi-Frame Laser Schlieren is used for visualization of a range of explosive and non-explosive events. Schlieren is a well-known technique for visualizing shock phenomena in transparent media. Laser backlighting and a framing camera allow for Schlieren images with very short (down to 5 ns) exposure times, band pass filtering to block out explosive self-light, and 14 frames of a single explosive event. This diagnostic has been applied to several explosive initiation events, such as exploding bridgewires (EBW), Exploding Foil Initiators (EFI) (or slappers), Direct Optical Initiation (DOI), and ElectroStatic Discharge (ESD). Additionally, a series of tests have been performed on "cut-back" detonators with varying initial pressing (IP) heights. We have also used this Diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. The setup has also been used to visualize a range of other explosive events, such as explosively driven metal shock experiments and explosively driven microjets. Future applications to other explosive events such as boosters and IHE booster evaluation will be discussed. Finite element codes (EPIC, CTH) have been used to analyze the schlieren images to determine likely boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator. These experiments are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation to full detonation to transition to booster and booster detonation.

  20. Large-eddy simulations of a solid-rocket booster jet

    NASA Astrophysics Data System (ADS)

    Paoli, Roberto; Poubeau, Adele; Cariolle, Daniel

    2014-11-01

    Emissions from solid-rocket boosters are responsible for a severe decrease in ozone concentration in the rocket plume during the first hours after a launch. The main source of ozone depletion is due to hydrogen chloride that is converted into chlorine in the high temperature regions of the jet (afterburning). The objective of this study is to evaluate the active chlorine concentration in the plume of a solid-rocket booster using large-eddy simulations. The gas is injected through the entire nozzle of the booster and a local time-stepping method based on coupling multi-instances of a fluid solver is used to extend the computational domain up to 600 nozzle exit diameters. The methodology is validated for a non-reactive case by analyzing the flow characteristics of supersonic co-flowing under expanded jets. Then, the chemistry of chlorine is studied offline using a complex chemistry solver and the LES data extracted from the mean trajectories of sample fluid particles. Finally, the online chemistry is analyzed by means of the multispecies version of the LES solver using a reduced chemistry scheme. The LES are able to capture the mixing of the exhaust with ambient air and the species concentrations, which is also useful to initialize atmospheric simulations on larger domains.

  1. A comparison of self-report and direct observation of booster seat use in Latino families.

    PubMed

    Quistberg, D Alex; Lozano, Paula; Mack, Christopher D; Schwartz, Rachel; Ebel, Beth E

    2010-08-01

    To develop a reliable self-report tool for measuring child booster seat use among Latino families. Cross-sectional and observational survey of a convenience sample. Five retail stores in King County, Washington. 50 parents of children 4-8 years old that self-identified as Latino or Hispanic. Parent-reported measures of how often the child uses a booster seat, if the child used a booster seat on the last trip, how often the child complains about using a booster seat, how often the child asks to not use a booster seat, and how often other families they know use a booster seat. Observed booster seat use by child. 26 children (52%) were observed using a booster seat. Parent-reported booster seat use was a poor predictor of observed booster seat use. Although 34 parents reported that their child 'always' uses a booster seat, 8 (24%) of these children were not using a booster seat. A logistic model to predict booster seat use had a sensitivity of 81% and a specificity of 71%, and misclassified 24% of the participants' observed use. Reliance on parent-reported booster seat use significantly overstated observed booster seat use in the study. Among this study population, accurate determination of booster seat use required direct observation.

  2. Influence of the external and internal parameters on the characteristics of generator PV

    NASA Astrophysics Data System (ADS)

    Zouli, Mounir; Ghoudelbourk, Sihem; Ouari, Ahmed; Dib, Djallel

    2017-02-01

    The growing demand for electric power and inevitable future depletion of conventional sources require major research on the alternative sources, like renewable energies. Among which, solar energy is the most largely used because of its many applications. And as Algeria comprises an exceptional solar layer thanks to its large surfaces, therefore it represents an important source of photovoltaic energy. The objective of this work is to be ensured that the energy produced by the photovoltaic plant supplies the electrical distribution network. The configuration of this system comprises a photovoltaic generator, connected to a chopper booster. For an optimal operation of the system, one must connect in cascades partial generators each one connected to a chopper booster adapted by an order MPPT by the method of Disturbance and Observation (P&O) to ensure the operation of their maximum powers whatever the climatic conditions, and also allows to raise the output voltage of these photovoltaic generators. The adaptation between the photovoltaic generator and the load was carried out with the help of converter DC/DC.

  3. Sensitive screening of abused drugs in dried blood samples using ultra-high-performance liquid chromatography-ion booster-quadrupole time-of-flight mass spectrometry.

    PubMed

    Chepyala, Divyabharathi; Tsai, I-Lin; Liao, Hsiao-Wei; Chen, Guan-Yuan; Chao, Hsi-Chun; Kuo, Ching-Hua

    2017-03-31

    An increased rate of drug abuse is a major social problem worldwide. The dried blood spot (DBS) sampling technique offers many advantages over using urine or whole blood sampling techniques. This study developed a simple and efficient ultra-high-performance liquid chromatography-ion booster-quadrupole time-of-flight mass spectrometry (UHPLC-IB-QTOF-MS) method for the analysis of abused drugs and their metabolites using DBS. Fifty-seven compounds covering the most commonly abused drugs, including amphetamines, opioids, cocaine, benzodiazepines, barbiturates, and many other new and emerging abused drugs, were selected as the target analytes of this study. An 80% acetonitrile solvent with a 5-min extraction by Geno grinder was used for sample extraction. A Poroshell column was used to provide efficient separation, and under optimal conditions, the analytical times were 15 and 5min in positive and negative ionization modes, respectively. Ionization parameters of both electrospray ionization source and ion booster (IB) source containing an extra heated zone were optimized to achieve the best ionization efficiency of the investigated abused drugs. In spite of their structural diversity, most of the abused drugs showed an enhanced mass response with the high temperature ionization from an extra heated zone of IB source. Compared to electrospray ionization, the ion booster (IB) greatly improved the detection sensitivity for 86% of the analytes by 1.5-14-fold and allowed the developed method to detect trace amounts of compounds on the DBS cards. The validation results showed that the coefficients of variation of intra-day and inter-day precision in terms of the signal intensity were lower than 19.65%. The extraction recovery of all analytes was between 67.21 and 115.14%. The limits of detection of all analytes were between 0.2 and 35.7ngmL -1 . The stability study indicated that 7% of compounds showed poor stability (below 50%) on the DBS cards after 6 months of storage at room temperature and -80°C. The reported method provides a new direction for abused drug screening using DBS. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Comparison of Amplitudes and Frequencies of Explosive vs. Hammer Seismic Sources for a 1-km Seismic Line in West Texas

    NASA Astrophysics Data System (ADS)

    Kaip, G.; Harder, S. H.; Karplus, M. S.; Vennemann, A.

    2016-12-01

    In May 2016, the National Seismic Source Facility (NSSF) located at the University of Texas at El Paso (UTEP) Department of Geological Sciences collected seismic data at the Indio Ranch located 30 km southwest of Van Horn, Texas. Both hammer on an aluminum plate and explosive sources were used. The project objective was to image subsurface structures at the ranch, owned by UTEP. Selecting the appropriate seismic source is important to reach project objectives. We compare seismic sources between explosions and hammer on plate, focusing on amplitude and frequency. The seismic line was 1 km long, trending WSW to ENE, with 200 4.5 Hz geophones at 5m spacing and shot locations at 10m spacing. Clay slurry was used in shot holes to increase shot coupling around booster. Trojan Spartan cast boosters (150g) were used in explosive sources in each shot hole (1 hole per station). The end of line shots had 5 shot holes instead of 1 (750g total). The hammer source utilized a 5.5 kg hammer and an aluminum plate. Five hammer blows were stacked at each location to improve signal-to-noise ratio. Explosive sources yield higher amplitude, but lower frequency content. The explosions exhibit a higher signal-to-noise ratio, allowing us to recognize seismic energy deeper and farther from the source. Hammer sources yield higher frequencies, allowing better resolution at shallower depths but have a lower signal-to-noise ratio and lower amplitudes, even with source stacking. We analyze the details of the shot spectra from the different types of sources. A combination of source types can improve data resolution and amplitude, thereby improving imaging potential. However, cost, logistics, and complexities also have a large influence on source selection.

  5. Cabling design of booster and storage ring construction progress of TPS

    NASA Astrophysics Data System (ADS)

    Wong, Y.-S.; Liu, K.-B.; Liu, C.-Y.; Wang, b.-S.

    2017-06-01

    The 2012 Taiwan Photon Source (TPS) cable construction project started after 10 months to complete the cable laying and installation of power supply. The circumference of the booster ring (BR) is 496.8 m, whereas that of the storage ring (SR) is 518.4 m. Beam current is set to 500 mA at 3.3 GeV. The paper on grounding systems discusses the design of the ground wire (< 0.2 Ω) with low impedance, power supply of the accelerator and cabling tray. The flow and size of the ground current are carefully evaluated to avoid grounded current from flowing everywhere, which causes interference problems. In the design of the TPS, special shielding will be established to isolate the effects of electromagnetic interference on the magnet and ground current. Booster ring dipoles are connected by a series of 54-magnet bending dipole; the cable size of its stranded wire measures 250 mm2, with a total length of 5000 m. Booster ring and storage ring quadrupoles have 150 magnets; the cable size of their stranded wire is 250 mm2, with a total length of 17000 m. Storage ring dipole consists of 48 magnets; the cable size of its stranded wire is 325 mm2, with a total length of 6000 m. This study discusses the power supply cabling design of the storage ring and booster ring construction progress of TPS. The sections of this paper are divided into discussions of the construction of the control and instrument area, cabling layout of booster ring and storage ring, as well as the installation and commission machine. This study also discusses the use of a high-impedance meter to determine the effect of cabling insulation and TPS power supply machine on energy transfer to ensure the use of safe and correct magnet.

  6. Humoral (immunological) responses in female albino rats during rotating magnetic field exposures

    NASA Astrophysics Data System (ADS)

    Reid, K.; Falter, H.; Persinger, M. A.

    1991-12-01

    Experiments were designed to evaluate the primary and secondary humoral responses to a rotating magnetic field configuration, which is known to evoke significant biobehavioral changes. Ten days after inoculation with human serum albumin and 10 days before a booster, female rats were exposed to eigher a 0.5 Hz rotating magnetic field (RMF) or to room conditions (control). The lighting schedule was either continuous or involved a light-dark cycle (LD) of 12:12h. A third group of rats served as colony room controls. Group differences of low statistical significance were found when females were exposed to continuous lighting rather than the LD 12:12 light-dark cycle. However, the effects were considered trivial and not sufficient to explain the previously reported biobehavioral changes evoked by this field configuration.

  7. Developing LAr Scintillation Light Collection Ideas in the Short Baseline Neutrino Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szelc, A. M.

    2016-02-08

    Scintillation light is becoming the most rapidly developing feature of Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors due to its capability to enhance and expand their physics reach traditionally based on charge readout. The SBND detector, set to be built on the Booster Neutrino Beam Line at Fermilab, is in a unique position to test novel liquid argon scintillation light readout systems in a detector with physics neutrino events. The different ideas under consideration by the collaboration are described, including an array of PMTs detecting direct light, SiPM coupled lightguide bars and a setup which uses PMTs/SiPMS and wavelengthmore » shifter covered reflector foils, as well as their respective strengths and physics foci and the benchmarks used to compare them.« less

  8. Role of amplified spontaneous emission in optical free-space communication links with optical amplification: impact on isolation and data transmission and utilization for pointing, acquisition, and

    NASA Astrophysics Data System (ADS)

    Winzer, Peter J.; Kalmar, Andras; Leeb, Walter R.

    1999-04-01

    We investigate the role of amplified spontaneous emission (ASE) produced by an optical booster amplifier at the transmitter of free-space optical communication links. In a communication terminal with a single telescope for both transmission and reception, this ASE power has to be taken into account in connection with transmit-to-receive channel isolation, especially since it partly occupies the same state of polarization and the same frequency band as the receive signal. We show that the booster ASE intercepted by the receiver can represent a non-negligible source of background radiation: In a typical optical intersatellite link scenario, the ASE power spectral density generated by the booster amplifier at the transmitter and coupled to the receiver will be on the order of 10-20 W/Hz, which equals the background radiation of the sun. Exploiting these findings for pointing, acquisition, and tracking (PAT) purposes, we describe a patent-pending PAT system doing without beacon lasers and without the need for diverting a part of the data signal for PAT. Utilizing the transmit booster ASE over a bandwidth of e.g. 20 nm at the receiver, a total power of about -46 dBm is available for PAT purposes without extra power consumption at the transmitter and without the need for beacon lAser alignment.

  9. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, amore » series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.« less

  10. Precise charge measurement for laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; van Tilborg, Jeroen; Smith, Alan; Rodgers, Dave; Donahue, Rick; Byrne, Warren; Leemans, Wim

    2011-10-01

    A comprehensive study of charge diagnostics was conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. Using an integrating current transformer as a calibration reference, the sensitivity of the Lanex Fast was found to decrease by 1% per 100 MeV increase of the energy. By using electron beams from LPA, cross calibrations of the charge were carried out with an integrating current transformer, scintillating screen (Lanex from Kodak), and activation based measurement. The diagnostics agreed within ~8%, showing that they all can provide accurate charge measurements for LPAs provided necessary cares. Work supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  11. Primary and booster vaccination in Latin American children with a DTPw-HBV/Hib combination: a randomized controlled trial.

    PubMed

    Espinoza, Felix; Tregnaghi, Miguel; Gentile, Angela; Abarca, Katia; Casellas, Javier; Collard, Alix; Lefevre, Inge; Jacquet, Jeanne-Marie

    2010-10-15

    Diphtheria-tetanus-whole-cell pertussis (DTPw)-based combination vaccines are an attractive option to rapidly achieve high coverage and protection against other important pathogens, such as hepatitis B virus (HBV) and Haemophilus influenzae type B (Hib). To ensure adequate antigen supply, GlaxoSmithKline Biologicals has introduced a new DTPw antigen source and developed a new DTPw-HBV/Hib combination vaccine containing a reduced amount of Hib polyribosylribitol phosphate (PRP). This study was undertaken to compare the immunogenicity and reactogenicity of this new DTPw-HBV/Hib vaccine with a licensed DTPw-HBV/Hib vaccine (Tritanrix™-HBV/Hib). This was a randomized, partially-blind, multicenter study in three countries in Latin America (Argentina, Chile and Nicaragua). Healthy children received either the new DTPw-HBV/Hib vaccine (1 of 3 lots; n = 439; double-blind) or Tritanrix™-HBV/Hib (n = 146; single-blind) co-administered with oral poliovirus vaccine (OPV) at 2, 4 and 6 months, with a booster dose at 18-24 months. One month after the end of the 3-dose primary vaccination course, the new DTPw-HBV/Hib vaccine was non-inferior to Tritanrix™-HBV/Hib in terms of seroprotection/vaccine response rates for all component antigens; ≥97.3% and ≥93.9% of subjects in the two groups, respectively, had seroprotective levels of antibodies against diphtheria, tetanus, hepatitis B and Hib and a vaccine response to the pertussis component. Persistence of antibodies against all vaccine antigens was comparable between groups, with marked increases in all antibody concentrations after booster administration in both groups. Both vaccines were generally well-tolerated as primary and booster doses. Results confirm the suitability of this new DTPw-HBV/Hib vaccine comprising antigens from a new source and a reduced PRP content for inclusion into routine childhood vaccination programs. http://www.clinicaltrials.gov NCT00332566.

  12. KSC-08pd0859

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a second solid rocket booster joins the first booster lifted into the mobile service tower for mating with the Delta II rocket (background) that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis

  13. KSC-08pd0858

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a second solid rocket booster joins the first booster lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-08pd0852

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a solid rocket booster is raised from its transporter. The booster will be lifted into the mobile service tower for mating with the Delta II rocket to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis

  15. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix B: Liquid rocket booster acoustic and thermal environments

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The ascent thermal environment and propulsion acoustic sources for the Martin-Marietta Corporation designed Liquid Rocket Boosters (LRB) to be used with the Space Shuttle Orbiter and External Tank are described. Two designs were proposed: one using a pump-fed propulsion system and the other using a pressure-fed propulsion system. Both designs use LOX/RP-1 propellants, but differences in performance of the two propulsion systems produce significant differences in the proposed stage geometries, exhaust plumes, and resulting environments. The general characteristics of the two designs which are significant for environmental predictions are described. The methods of analysis and predictions for environments in acoustics, aerodynamic heating, and base heating (from exhaust plume effects) are also described. The acoustic section will compare the proposed exhaust plumes with the current SRB from the standpoint of acoustics and ignition overpressure. The sections on thermal environments will provide details of the LRB heating rates and indications of possible changes in the Orbiter and ET environments as a result of the change from SRBs to LRBs.

  16. Design study of the CEPC booster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chuang

    2014-12-10

    Design study of the CEPC booster is reported. The booster provides 120 GeV beams for the collider with topup injection frequency of 0.1 Hz. To save cost, energy of the linac injector for the booster is chosen as 6GeV, corresponding to the magnetic field of 30 Gs. In this paper, lattice of the booster is described; the low injection energy issues are studied; beam transfer from linac to booster and from booster to collider are discussed.

  17. A comprehensive library-based, automated screening procedure for 46 synthetic cannabinoids in serum employing liquid chromatography-quadrupole ion trap mass spectrometry with high-temperature electrospray ionization.

    PubMed

    Huppertz, Laura M; Kneisel, Stefan; Auwärter, Volker; Kempf, Jürgen

    2014-02-01

    Considering the vast variety of synthetic cannabinoids and herbal mixtures - commonly known as 'Spice' or 'K2' - on the market and the resulting increase of severe intoxications related to their consumption, there is a need in clinical and forensic toxicology for comprehensive up-to-date screening methods. The focus of this project aimed at developing and implementing an automated screening procedure for the detection of synthetic cannabinoids in serum using a liquid chromatography-ion trap-MS (LC-MS(n)) system and a spectra library-based approach, currently including 46 synthetic cannabinoids and 8 isotope labelled analogues. In the process of method development, a high-temperature ESI source (IonBooster(TM), Bruker Daltonik) and its effects on the ionization efficiency of the investigated synthetic cannabinoids were evaluated and compared to a conventional ESI source. Despite their structural diversity, all investigated synthetic cannabinoids benefitted from high-temperature ionization by showing remarkably higher MS intensities compared to conventional ESI. The employed search algorithm matches retention time, MS and MS(2)/MS(3) spectra. With the utilization of the ionBooster source, limits for the automated detection comparable to cut-off values of routine MRM methods were achieved for the majority of analytes. Even compounds not identified when using a conventional ESI source were detected using the ionBooster-source. LODs in serum range from 0.1 ng/ml to 0.5 ng/ml. The use of parent compounds as analytical targets offers the possibility of instantly adding new emerging compounds to the library and immediately applying the updated method to serum samples, allowing the rapid adaptation of the screening method to ongoing forensic or clinical requirements. The presented approach can also be applied to other specimens, such as oral fluid or hair, and herbal mixtures and was successfully applied to authentic serum samples. Quantitative MRM results of samples with analyte concentrations above the determined LOD were confirmed as positive findings by the presented method. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andy; Greene, William D.

    2017-01-01

    Goals of NASA's Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS. (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. SLS Block 1 vehicle is being designed to carry 70 mT to LEO: (1) Uses two five-segment solid rocket boosters (SRBs) similar to the boosters that helped power the space shuttle to orbit. Evolved 130 mT payload class rocket requires an advanced booster with more thrust than any existing U.S. liquid-or solid-fueled boosters

  19. 47 CFR 27.9 - Operation of certificated signal boosters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Operation of certificated signal boosters. 27.9... boosters. Individuals and non-individuals may operate certificated Consumer Signal Boosters on frequencies... operate a signal booster. [78 FR 21564, Apr. 11, 2013] ...

  20. 47 CFR 27.9 - Operation of certificated signal boosters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Operation of certificated signal boosters. 27.9... boosters. Individuals and non-individuals may operate certificated Consumer Signal Boosters on frequencies... operate a signal booster. [78 FR 21564, Apr. 11, 2013] ...

  1. Alternative School Revenue Sources: There Are Many Fish in the Sea.

    ERIC Educational Resources Information Center

    Pijanowski, John C.; Monk, David H.

    1996-01-01

    To ease fiscal strain, many school districts employ alternative fund-raising initiatives. They are forming local foundations or booster clubs, soliciting businesses or volunteers for in-kind donations, selling and leasing services and facilities, generating investment income, collecting user fees, cooperating with social service providers,…

  2. Feasibility demonstration of booster cross-over system for 3 1/2 inch SRB/MLP frangible nut system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Recent testing of the SRB/MLP Frangible Nut System (SOS Part Number 114850-9/Boosters P/N 114848-3) at NASA indicated a need to reduce the function time between boosters (2) within a single frangible nut. These boosters are initiated separately by electrical impulse(s). Coupling the output of each detonator with an explosive cross-over would reduce the function time between boosters (independent of electrical impulse) while providing additional redundancy to the system. The objectives of this program were to: provide an explosive cross-over between boosters, reduce function time between boosters to less than one (1) millisecond within a given nut, reduce cost of boosters, be compatible with the existing frangible nut system, and meet requirements of USBI Spec's (nut 10SPC-0030, booster 10SPC-0031).

  3. Compatibility of booster seats and vehicles in the U.S. market.

    PubMed

    Bing, Julie A; Agnew, Amanda M; Bolte, John H

    2018-05-19

    The objective of this study was to analyze booster and rear vehicle seat dimensions to identify the most frequent compatibility problems. Measurements were collected from 40 high-back and backless boosters and 95 left rear and center rear row seating positions in 50 modern vehicles. Dimensions were compared for 3,800 booster/vehicle seat combinations. For validation and estimation of tolerance and correction factors, 72 booster installations were physically completed and compared with measurement-based compatibility predictions. Dimensions were also compared to the International Organization for Standardization (ISO) volumetric envelopes of forward-facing child restraints and boosters. Seat belt buckles in outboard positions accommodated the width of boosters better than center positions (success rates of 85.4 and 34.7%, respectively). Adequate head restraint clearance occurred in 71.9 to 77.2% of combinations, depending on the booster's head support setting. Booster recline angles aligned properly with vehicle seat cushion angles in 71.5% of combinations. In cases of poor angle alignment, booster angles were more obtuse than the vehicle seat angles 97.7% of the time. Head restraint interference exacerbated angle alignment issues. Data indicate success rates above 90% for boosters being fully supported by the length of the seat cushion and for adequate height clearance with the vehicle roofline. Comparison to ISO envelopes indicates that most boosters on the U.S. market are taller and angled more obtusely than ISO target envelopes. This study quantifies some of the common interferences between boosters and vehicles that may complicate booster usage. Data are useful for design and to prioritize specific problem areas.

  4. 47 CFR 74.1203 - Interference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FM Broadcast Booster Stations § 74.1203 Interference. (a) An authorized FM translator or booster..., TV booster, FM translator or FM booster station; or (3) The direct reception by the public of the off... FM booster stations. Interference will be considered to occur whenever reception of a regularly used...

  5. 47 CFR 74.1203 - Interference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FM Broadcast Booster Stations § 74.1203 Interference. (a) An authorized FM translator or booster..., TV booster, FM translator or FM booster station; or (3) The direct reception by the public of the off... FM booster stations. Interference will be considered to occur whenever reception of a regularly used...

  6. 47 CFR 74.1203 - Interference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FM Broadcast Booster Stations § 74.1203 Interference. (a) An authorized FM translator or booster..., TV booster, FM translator or FM booster station; or (3) The direct reception by the public of the off... FM booster stations. Interference will be considered to occur whenever reception of a regularly used...

  7. 47 CFR 74.1203 - Interference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FM Broadcast Booster Stations § 74.1203 Interference. (a) An authorized FM translator or booster..., TV booster, FM translator or FM booster station; or (3) The direct reception by the public of the off... FM booster stations. Interference will be considered to occur whenever reception of a regularly used...

  8. 47 CFR 74.1233 - Processing FM translator and booster station applications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Processing FM translator and booster station... SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1233 Processing FM translator and booster station applications. (a) Applications for FM translator and booster stations are...

  9. 47 CFR 74.1233 - Processing FM translator and booster station applications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Processing FM translator and booster station... SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1233 Processing FM translator and booster station applications. (a) Applications for FM translator and booster stations are...

  10. 47 CFR 74.733 - UHF translator signal boosters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false UHF translator signal boosters. 74.733 Section... Translator, and TV Booster Stations § 74.733 UHF translator signal boosters. (a) The licensee of a UHF television broadcast translator station may be authorized to operate one or more signal boosters for the...

  11. 47 CFR 74.1233 - Processing FM translator and booster station applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Processing FM translator and booster station... SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1233 Processing FM translator and booster station applications. (a) Applications for FM translator and booster stations are...

  12. 47 CFR 74.733 - UHF translator signal boosters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false UHF translator signal boosters. 74.733 Section... Translator, and TV Booster Stations § 74.733 UHF translator signal boosters. (a) The licensee of a UHF television broadcast translator station may be authorized to operate one or more signal boosters for the...

  13. 47 CFR 74.1233 - Processing FM translator and booster station applications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Processing FM translator and booster station... SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1233 Processing FM translator and booster station applications. (a) Applications for FM translator and booster stations are...

  14. 47 CFR 74.1233 - Processing FM translator and booster station applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Processing FM translator and booster station... SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1233 Processing FM translator and booster station applications. (a) Applications for FM translator and booster stations are...

  15. 47 CFR 74.733 - UHF translator signal boosters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false UHF translator signal boosters. 74.733 Section... Translator, and TV Booster Stations § 74.733 UHF translator signal boosters. (a) The licensee of a UHF television broadcast translator station may be authorized to operate one or more signal boosters for the...

  16. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    NASA Technical Reports Server (NTRS)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  17. Initiation Capacity of a Specially Shaped Booster Pellet and Numerical Simulation of Its Initiation Process

    NASA Astrophysics Data System (ADS)

    Hu, Li-Shuang; Hu, Shuang-Qi; Cao, Xiong; Zhang, Jian-Ren

    2014-01-01

    The insensitive main charge explosive is creating new requirements for the booster pellet of detonation trains. The traditional cylindrical booster pellet has insufficient energy output to reliably initiate the insensitive main charge explosive. In this research, a concave spherical booster pellet was designed. The initiation capacity of the concave spherical booster pellet was studied using varied composition and axial steel dent methods. The initiation process of the concave spherical booster pellet was also simulated by ANSYS/LS-DYNA. The results showed that using a concave spherical booster allows a 42% reduction in the amount of explosive needed to match the initiation capacity of a conventional cylindrical booster of the same dimensions. With the other parameters kept constant, the initiation capacity of the concave spherical booster pellet increases with decreased cone angle and concave radius. The numerical simulation results are in good agreement with the experimental data.

  18. Tailored interventions for screening mammography among a sample of initially non-adherent women: when is a booster dose important?

    PubMed

    Skinner, Celette Sugg; Kobrin, Sarah C; Monahan, Patrick O; Daggy, Joanne; Menon, Usha; Todora, Helen Smith; Champion, Victoria L

    2007-01-01

    To assess added value of a booster dose of a tailored mammography intervention. Participants, non-adherent at baseline, were randomly assigned to usual care or one of three tailored interventions. Intervention group members (n=657) were further randomly assigned to receive/not receive a booster intervention dose. Electronic record mammography data were collected following initial intervention and at 6 and 15 months post-booster. Booster had no effect among women not screened after first intervention dose (n=337). Among women screened after initial dose (n=320), booster predicted re-screening at 6 but not 15 months. A boosterxrace interaction showed a booster effect at 6 months for African Americans (OR=4.66, p=.0005) but not Caucasians (OR=0.74, p=.44). Findings suggest if a first-dose intervention does not facilitate screening, neither will a booster dose. However, among women for whom a first dose is effective, boosters can facilitate timely repeat adherence, especially among African Americans. At 6 months booster recipients were less likely to be off-schedule but, by 15 months, the groups were similar. Boosters may effect when, but not whether, women continue screening.

  19. Space shuttle phase B. Volume 2: Technical summary, addendum A

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A study was conducted to analyze the characteristics and performance data for the booster vehicles to be used with the space shuttle operations. It was determined that the single pressure-fed booster offered the lowest program cost per flight of the pressure-fed booster arrangements studied. The fly back booster required the highest peak annual funding and highest program cost. It was recommended that the pressure-fed booster, series burn with liquid oxygen phase, be continued for further study. The flyback booster study was discontinued. Both solid and liquid propelled booster vehicles with 14 by 45 foot and 15 by 60 foot payload orbiters were considered.

  20. Five-Segment Reusable Solid Rocket Booster Upgrade

    NASA Technical Reports Server (NTRS)

    Sauvageau, Don

    1999-01-01

    The Five Segment Reusable Solid Rocket Booster (RSRB) feasibility status is presented in viewgraph form. The Five Segment Booster (FSB) objective is to provide a low cost, low risk approach to increase reliability and safety of the Shuttle system. Topics include: booster upgrade requirements; design summary; reliability issues; booster trajectories; launch site assessment; and enhanced abort modes.

  1. 30 CFR 57.8518 - Main and booster fans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used..., or adjustments. (b) In the event of main or booster fan failure due to a malfunction, accident, power...

  2. 30 CFR 57.8518 - Main and booster fans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used..., or adjustments. (b) In the event of main or booster fan failure due to a malfunction, accident, power...

  3. 30 CFR 57.8518 - Main and booster fans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used..., or adjustments. (b) In the event of main or booster fan failure due to a malfunction, accident, power...

  4. 30 CFR 57.8518 - Main and booster fans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used..., or adjustments. (b) In the event of main or booster fan failure due to a malfunction, accident, power...

  5. 30 CFR 57.8518 - Main and booster fans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used..., or adjustments. (b) In the event of main or booster fan failure due to a malfunction, accident, power...

  6. Analysis of child passenger safety restraint use at a pediatric emergency department.

    PubMed

    Cease, Alan T; King, William D; Monroe, Kathy W

    2011-02-01

    The objectives of the study were to determine the number of children properly restrained during transit to a pediatric emergency department for care and to ascertain parental knowledge of Alabama laws and American Academy of Pediatrics (AAP) guidelines and where they obtain this information. An emergency department (patient care rooms) waiting area, convenience sample of Alabama parents who have children younger than or 13 years of age were surveyed over a 5-week period. Appropriate use of child passenger safety (CPS) restraints was determined using Alabama law and AAP recommendations. Use of Car Seat Checks provided by Children's Hospital and Safe Kids, knowledge of Alabama laws and CPS guidelines, and the source of information used by parents were ascertained. Among 525 patients identified, 520 (99.0%) participated. Appropriate use per Alabama law and AAP guidelines was 72.3% and 60.6%, respectively; 5.0% were unrestrained. Booster seats were the most commonly misused restraint. Car seats were reportedly used correctly by 81.9%. Parents who had used the Car Seat Checks program had correct booster seat and car seat use rates of 95.8% and 61.5%, respectively. Unfortunately, only 31.2% of patients had knowledge of the Car Seat Checks program, and only 40.6% knew the current law. Most often, parents stated that the hospital where their child was born was the primary (and sometimes only) source of CPS information. This study illustrates the need for improving parental knowledge of appropriate child passenger restraint use (especially booster seats) and Car Seat Checks programs. Car seat program assistance is associated with high levels of appropriate use.

  7. Emulsion based cast booster - a priming system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, R.N.; Mishra, A.K.

    2005-07-01

    This paper explores the potential of emulsion based cast booster to be used as primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made for comparative study between conventional cast booster and emulsion based cast booster in terms of the initiation process developed and their capability to develop and maintain the stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument. During this study three blasts have been monitored. In each blast two holes have been selected for study, the first hole being initiatedmore » with conventional cast booster while the other one with emulsion based cast booster. The findings of the study advocates that emulsion based cast booster is capable of efficient priming of bulk delivered column explosive with stable detonation process in the column. Further, the booster had advantages over the conventional PETN/TNT based cast booster. 5 refs., 2 figs., 1 tab., 1 photo.« less

  8. 47 CFR 74.15 - Station license period.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... broadcast booster station or a TV broadcast booster station will be issued for a period running concurrently... broadcast station, FM translator or FM broadcast booster, TV translator or TV broadcast booster, or low...

  9. 47 CFR 74.15 - Station license period.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... broadcast booster station or a TV broadcast booster station will be issued for a period running concurrently... broadcast station, FM translator or FM broadcast booster, TV translator or TV broadcast booster, or low...

  10. Simulation of Turbulent Combustion Fields of Shock-Dispersed Aluminum Using the AMR Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Bell, J B; Beckner, V E

    2006-11-02

    We present a Model for simulating experiments of combustion in Shock-Dispersed-Fuel (SDF) explosions. The SDF charge consisted of a 0.5-g spherical PETN booster, surrounded by 1-g of fuel powder (flake Aluminum). Detonation of the booster charge creates a high-temperature, high-pressure source (PETN detonation products gases) that both disperses the fuel and heats it. Combustion ensues when the fuel mixes with air. The gas phase is governed by the gas-dynamic conservation laws, while the particle phase obeys the continuum mechanics laws for heterogeneous media. The two phases exchange mass, momentum and energy according to inter-phase interaction terms. The kinetics model usedmore » an empirical particle burn relation. The thermodynamic model considers the air, fuel and booster products to be of frozen composition, while the Al combustion products are assumed to be in equilibrium. The thermodynamic states were calculated by the Cheetah code; resulting state points were fit with analytic functions suitable for numerical simulations. Numerical simulations of combustion of an Aluminum SDF charge in a 6.4-liter chamber were performed. Computed pressure histories agree with measurements.« less

  11. Investigation of Post-Flight Solid Rocket Booster Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Nelson, Linda A.

    2006-01-01

    After every Shuttle mission, the Solid Rocket Boosters (SRBs) are recovered and observed for missing material. Most of the SRB is covered with a cork-based thermal protection material (MCC-l). After the most recent shuttle mission, STS-114, the forward section of the booster appeared to have been impacted during flight. The darkened fracture surfaces indicated that this might have occurred early in flight. The scope of the analysis included microscopic observations to assess the degree of heat effects and locate evidence of the impact source as well as chemical analysis of the fracture surfaces and recovered foreign material using Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy/Energy Dispersive Spectroscopy. The amount of heat effects and presence of soot products on the fracture surface indicated that the material was impacted prior to SRB re-entry into the atmosphere. Fragments of graphite fibers found on these fracture surfaces were traced to slag inside the Solid Rocket Motor (SRM) that forms during flight as the propellant is spent and is ejected throughout the descent of the SRB after separation. The direction of the impact mark matches with the likely trajectory of SRBs tumbling prior to re-entry.

  12. Hybrid propulsion technology program. Volume 2: Technology definition package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). The demonstration plan would culminate with test firings of a 3.05 m (120 inch) diameter hybrid booster.

  13. 47 CFR 73.3500 - Application and report forms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., TV Translator or TV Booster Station. 347 Application for a Low Power TV, TV Translator or TV Booster... Booster Station. 350 Application for an FM Translator or FM Booster Station License. 395-B Annual...

  14. 47 CFR 73.3500 - Application and report forms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., TV Translator or TV Booster Station. 347 Application for a Low Power TV, TV Translator or TV Booster... Booster Station. 350 Application for an FM Translator or FM Booster Station License. 395-B Annual...

  15. 47 CFR 73.3500 - Application and report forms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., TV Translator or TV Booster Station. 347 Application for a Low Power TV, TV Translator or TV Booster... Booster Station. 350 Application for an FM Translator or FM Booster Station License. 395-B Annual...

  16. 47 CFR 73.3500 - Application and report forms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., TV Translator or TV Booster Station. 347 Application for a Low Power TV, TV Translator or TV Booster... Booster Station. 350 Application for an FM Translator or FM Booster Station License. 395-B Annual...

  17. KSC-2009-2144

    NASA Image and Video Library

    2009-03-18

    CAPE CANAVERAL, Fla. – The Solid Rocket Booster Retrieval Ship Liberty Star tows a booster to the dock at Hangar AF at Cape Canaveral Air Force Station in Florida. The booster was used during space shuttle Discovery's launch from NASA's Kennedy Space Center in Florida March 15 on mission STS-119. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea after a launch. The spent rockets were recovered by NASA's Solid Rocket Booster Retrieval Ships Freedom Star and Liberty Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  18. KSC-2009-2141

    NASA Image and Video Library

    2009-03-18

    CAPE CANAVERAL, Fla. – The Solid Rocket Booster Retrieval Ship Liberty Star tows a booster to the dock at Hangar AF at Cape Canaveral Air Force Station in Florida. The booster was used during space shuttle Discovery's launch from NASA's Kennedy Space Center in Florida March 15 on mission STS-119. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea after a launch. The spent rockets were recovered by NASA's Solid Rocket Booster Retrieval Ships Freedom Star and Liberty Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  19. Pressure-Equalizing Cradle for Booster Rocket Mounting

    NASA Technical Reports Server (NTRS)

    Rutan, Elbert L. (Inventor)

    2015-01-01

    A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.

  20. Cost-Effectiveness of Adolescent Pertussis Vaccination for The Netherlands: Using an Individual-Based Dynamic Model

    PubMed Central

    de Vries, Robin; Kretzschmar, Mirjam; Schellekens, Joop F. P.; Versteegh, Florens G. A.; Westra, Tjalke A.; Roord, John J.; Postma, Maarten J.

    2010-01-01

    Background Despite widespread immunization programs, a clear increase in pertussis incidence is apparent in many developed countries during the last decades. Consequently, additional immunization strategies are considered to reduce the burden of disease. The aim of this study is to design an individual-based stochastic dynamic framework to model pertussis transmission in the population in order to predict the epidemiologic and economic consequences of the implementation of universal booster vaccination programs. Using this framework, we estimate the cost-effectiveness of universal adolescent pertussis booster vaccination at the age of 12 years in the Netherlands. Methods/Principal Findings We designed a discrete event simulation (DES) model to predict the epidemiological and economic consequences of implementing universal adolescent booster vaccination. We used national age-specific notification data over the period 1996–2000—corrected for underreporting—to calibrate the model assuming a steady state situation. Subsequently, booster vaccination was introduced. Input parameters of the model were derived from literature, national data sources (e.g. costing data, incidence and hospitalization data) and expert opinions. As there is no consensus on the duration of immunity acquired by natural infection, we considered two scenarios for this duration of protection (i.e. 8 and 15 years). In both scenarios, total pertussis incidence decreased as a result of adolescent vaccination. From a societal perspective, the cost-effectiveness was estimated at €4418/QALY (range: 3205–6364 € per QALY) and €6371/QALY (range: 4139–9549 € per QALY) for the 8- and 15-year protection scenarios, respectively. Sensitivity analyses revealed that the outcomes are most sensitive to the quality of life weights used for pertussis disease. Conclusions/Significance To our knowledge we designed the first individual-based dynamic framework to model pertussis transmission in the population. This study indicates that adolescent pertussis vaccination is likely to be a cost-effective intervention for The Netherlands. The model is suited to investigate further pertussis booster vaccination strategies. PMID:20976213

  1. Misuse of booster cushions among children and adults in Shanghai-an observational and attitude study during buckling up.

    PubMed

    Bohman, Katarina; Jorlöv, Sofia; Zhou, Shengqi; Zhao, Cloud; Sui, Bo; Ding, Chengkai

    2016-10-02

    Traffic crashes are one of the leading causes of fatalities among Chinese children. Booster cushion usage in China is low, and there are no studies showing how a population with limited experience handles booster cushions during buckling up. The purpose of this study was to evaluate the handling of and explore the attitudes toward booster cushions among children, parents, and grandparents in Shanghai. An observational study including a convenience sample of 254 children aged 4-12 years was conducted in 2 passenger cars at a shopping center in Shanghai. Parents, grandparents, or the children themselves buckled up the child on 2 types of booster cushions, a 2-stage integrated booster cushion (IBC) and an aftermarket booster cushion (BC). The test participants were observed during buckling up, first without and then with instructions. The test leaders conducted structured interviews. Ninety-eight percent of the uninstructed participants failed to buckle up without identified misuse on the aftermarket booster cushion and 31% of those uninstructed on the integrated booster cushion. The majority of misuse was severe, including placing the belt behind the arm and the lap belt routing above the guiding loops. Instruction reduced misuse to 58% (BC) and 12% (IBC), respectively, and, in particular, severe misuse. Some misuse was related to limited knowledge of how to buckle up on the booster cushion, and some misuse was intentional in order to reduce discomfort. The participants, both children and adults, reported that they preferred the IBC due to good comfort and convenience. Safety was reported as the main reason for adults using booster cushions in general, whereas children reported comfort as the most important motivation. Education is needed to ensure frequent and correct use of booster cushions in China and to raise safety awareness among children and adults. Furthermore, it is important that the booster cushions offer intuitively correct usage to a population with limited experience of booster cushions. This is the first study published on the handling of and attitude toward booster cushions after child restraints laws were introduced in Shanghai 2014.

  2. Parenting self-efficacy beliefs in parents of children with autism: Perspectives from Singapore.

    PubMed

    Chong, Wan Har; Kua, Shu Mei

    2017-01-01

    Substantial empirical evidence has highlighted the psychological stress and negative well-being of parents whose children are diagnosed with autism. It has further indicated a need for understanding the mechanisms through which these parents come to successfully meet the challenges of caregiving for these children whose condition are often characterized by persistent behavioral, social, and communication problems. This qualitative study aims to bridge the research gap in 3 ways. First, we sought to understand the ways in which mothers of children having autism foster their parenting self-efficacy (PSE) when caring for their child. Second, we sought to identify additional PSE sources. Third, we attempted to understand how these mothers successfully manage negative experiences that were often in the way of their parenting efforts. Ten mothers with children between 7 and 9 years of age were interviewed. Bandura's social-cognitive framework guided the analyses of the sources of PSE (Bandura, 1997). Mastery experiences were identified as the most critical PSE source, and the physiological and affective states of the mothers were second most important in shaping their PSE. Vicarious experiences and verbal persuasion did not emerge as salient sources. "Support in parenting" was also found to be significant in fostering the mothers' perceived capability. Furthermore, we noted that while multiple negative experiences were encountered, these mothers tended to frame their experiences in adaptive ways to allow them to use these as feedback for subsequent parenting endeavors to booster their perceived capability. Implications for future research were discussed in the light of these findings. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. NASA's Space Launch System Advanced Booster Engineering Demonstration and/or Risk Reduction Efforts

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Dumbacher, Daniel L.; May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, with a stated intent to reduce risks leading to an affordable advanced booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the advanced boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the advanced boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit (BEO), opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable advanced booster that meets the SLS performance requirements. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss, for the first time publicly, the contract awards and how NASA intends to use the data from these efforts to prepare for the planned advanced booster DDT&E acquisition as the SLS Program moves forward with competitively procured affordable performance enhancements.

  4. NASA's Space Launch System Advanced Booster Engineering Demonstration and Risk Reduction Efforts

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; May, Todd; Dumbacher, Daniel

    2012-01-01

    The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, and its stated intent was to reduce risks leading to an affordable Advanced Booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the Advanced Boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the Advanced Boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit, opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable Advanced Booster that meets the SLS performance requirements. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an Advanced Booster. This paper will discuss, for the first time publicly, the contract awards and how NASA intends to use the data from these efforts to prepare for the planned Advanced Booster DDT&E acquisition as the SLS Program moves forward with competitively procured affordable performance enhancements.

  5. Long-term immunogenicity of an initial booster dose of an inactivated, Vero cell culture-derived Japanese encephalitis vaccine (JE-VC) and the safety and immunogenicity of a second JE-VC booster dose in children previously vaccinated with an inactivated, mouse brain-derived Japanese encephalitis vaccine.

    PubMed

    Yun, Ki Wook; Lee, Hoan Jong; Park, Ji Young; Cho, Hye-Kyung; Kim, Yae-Jean; Kim, Kyung-Hyo; Kim, Nam Hee; Hong, Young Jin; Kim, Dong Ho; Kim, Hwang Min; Cha, Sung-Ho

    2018-03-07

    This study was performed with the aim of determining the long-term immunogenicity of an inactivated, Vero cell culture-derived Japanese encephalitis (JE) vaccine (JE-VC) and an inactivated, mouse brain-derived JE vaccine (JE-MB) after the 1st booster dose at 2 years of age, as well as the safety and immunogenicity of the 2nd booster dose of JE-VC at 6 years of age, in children primed and given a 1st booster dose of either JE-VC or JE-MB. In this multicenter, open-label clinical trial, the study population consisted of healthy Korean children (aged 6 years) who participated in the previous JE vaccine trial. All subjects were subcutaneously vaccinated once for the booster immunization with Boryung Cell Culture Japanese Encephalitis Vaccine® (JE-VC). Approximately 4 years after the 1st booster dose of JE-VC, the seroprotection rate (SPR) and geometric mean titer (GMT) of the neutralizing antibody were 100% and 1113.8, respectively. In children primed and given a 1st booster dose of JE-MB, the SPR and GMT were 88.5% and 56.3, respectively. After the 2nd booster dose of JE-VC, all participants primed and given a 1st booster dose of either JE-MB or JE-VC were seroprotective against JE virus. The GMT of the neutralizing antibody was higher in children primed and given a 1st booster dose of JE-VC (8144.1) than in those primed and given a 1st booster dose of JE-MB (942.5) after the vaccination (p < 0.001). In addition, the 2nd booster dose of JE-VC showed a good safety profile with no serious vaccine-related adverse events. The 1st booster dose of JE-VC and JE-MB showed long-term immunogenicity of at least 4 years, and the 2nd booster dose of JE-VC showed a good safety and immunogenicity profile in children primed and given a 1st booster dose of either JE-VC or JE-MB. ClinicalTtrials.gov Identifier: NCT02532569. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. KSC-08pd0736

    NASA Image and Video Library

    2008-03-12

    KENNEDY SPACE CENTER, FLA. -- The Freedom Star, one of NASA's solid rocket booster retrieval ships, motors through Port Canaveral with a solid rocket booster alongside. The booster is from space shuttle Endeavour, which launched the STS-123 mission on March 11. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters, which they tow back to port. After transfer to a position alongside the ship, the booster will be towed to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  7. KSC-08pd0741

    NASA Image and Video Library

    2008-03-12

    KENNEDY SPACE CENTER, FLA. -- The Freedom Star, one of NASA's solid rocket booster retrieval ships, nears Hangar AF at Cape Canaveral Air Force Station with a solid rocket booster alongside. The booster is from space shuttle Endeavour, which launched the STS-123 mission on March 11. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters, which they tow back to port. After transfer to a position alongside the ship, the booster will be towed to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  8. KSC-08pd0738

    NASA Image and Video Library

    2008-03-12

    KENNEDY SPACE CENTER, FLA. -- The Freedom Star, one of NASA's solid rocket booster retrieval ships, crosses through the drawbridge over the Haulover Canal into the Banana River. The ship is towing a solid rocket booster alongside. The booster is from space shuttle Endeavour, which launched the STS-123 mission on March 11. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters, which they tow back to port. After transfer to a position alongside the ship, the booster will be towed to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  9. KSC-08pd0740

    NASA Image and Video Library

    2008-03-12

    KENNEDY SPACE CENTER, FLA. -- The Freedom Star, one of NASA's solid rocket booster retrieval ships, tows a solid rocket booster alongside, heading for Hangar AF at Cape Canaveral Air Force Station. The booster is from space shuttle Endeavour, which launched the STS-123 mission on March 11. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters, which they tow back to port. After transfer to a position alongside the ship, the booster will be towed to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  10. KSC-08pd0737

    NASA Image and Video Library

    2008-03-12

    KENNEDY SPACE CENTER, FLA. -- The Freedom Star, one of NASA's solid rocket booster retrieval ships, motors through Port Canaveral with a solid rocket booster alongside. The booster is from space shuttle Endeavour, which launched the STS-123 mission on March 11. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters, which they tow back to port. After transfer to a position alongside the ship, the booster will be towed to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  11. KSC-08pd0871

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the Delta II rocket, at right, that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft is poised to receive the solid rocket boosters in the mobile service tower, at left. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  12. KSC-08pd0869

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, three solid rocket boosters are in the mobile service tower. They will be mated with the Delta II rocket, at left, that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  13. KSC-08pd0868

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, three solid rocket boosters are in the mobile service tower. They will be mated with the Delta II rocket, at left, that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  14. KSC-08pd0861

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- A third solid rocket booster arrives on Pad 17-B on Cape Canaveral Air Force Station for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  15. KSC-08pd0867

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the third solid rocket booster joins two others in the mobile service tower. They will be mated with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  16. KSC-08pd0870

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the third solid rocket booster joins two others in the mobile service tower. They will be mated with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  17. Space Launch System NASA Research Announcement Advanced Booster Engineering Demonstration and/or Risk Reduction

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Craig, Kellie D.

    2011-01-01

    The intent of the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort is to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Key Concepts (1) Offerors must propose an Advanced Booster concept that meets SLS Program requirements (2) Engineering Demonstration and/or Risk Reduction must relate to the Offeror s Advanced Booster concept (3) NASA Research Announcement (NRA) will not be prescriptive in defining Engineering Demonstration and/or Risk Reduction

  18. StarBooster Demonstrator Cluster Configuration Analysis/Verification Program

    NASA Technical Reports Server (NTRS)

    DeTurris, Dianne J.

    2003-01-01

    In order to study the flight dynamics of the cluster configuration of two first stage boosters and upper-stage, flight-testing of subsonic sub-scale models has been undertaken using two glideback boosters launched on a center upper-stage. Three high power rockets clustered together were built and flown to demonstrate vertical launch, separation and horizontal recovery of the boosters. Although the boosters fly to conventional aircraft landing, the centerstage comes down separately under its own parachute. The goal of the project has been to collect data during separation and flight for comparison with a six degree of freedom simulation. The configuration for the delta wing canard boosters comes from a design by Starcraft Boosters, Inc. The subscale rockets were constructed of foam covered in carbon or fiberglass and were launched with commercially available solid rocket motors. The first set of boosters built were 3-ft tall with a 4-ft tall centerstage, and two additional sets of boosters were made that were each over 5-ft tall with a 7.5 ft centerstage. The rocket cluster is launched vertically, then after motor bum out the boosters are separated and flown to a horizontal landing under radio-control. An on-board data acquisition system recorded data during both the launch and glide phases of flight.

  19. KSC-08pd3731

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – NASA's Solid Rocket Booster Retrieval Ship Freedom Star arrives at the dock at Hangar AF, Cape Canaveral Air Force Station in Florida, with a spent solid rocket booster alongside. The booster is from space shuttle Endeavour's launch Nov. 14 on mission STS-126. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  20. KSC-08pd0263

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- The solid rocket booster retrieval ship Freedom Star is temporarily docked at Port Canaveral while the booster it was towing is moved alongside for the remainder of the trip upriver to Cape Canaveral Air Force Station. Freedom Star retrieved the booster after the launch of space shuttle Atlantis' STS-122 mission. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  1. KSC-08pd0262

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- The solid rocket booster retrieval ship Freedom Star is temporarily docked at Port Canaveral while the booster it was towing is moved alongside for the remainder of the trip upriver to Cape Canaveral Air Force Station. Freedom Star retrieved the booster after the launch of space shuttle Atlantis' STS-122 mission. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  2. Long-term efficacy of Internet-based cognitive behavior therapy for obsessive-compulsive disorder with or without booster: a randomized controlled trial.

    PubMed

    Andersson, E; Steneby, S; Karlsson, K; Ljótsson, B; Hedman, E; Enander, J; Kaldo, V; Andersson, G; Lindefors, N; Rück, C

    2014-10-01

    As relapse after completed cognitive behavior therapy (CBT) for obsessive-compulsive disorder (OCD) is common, many treatment protocols include booster programs to improve the long-term effects. However, the effects of booster programs are not well studied. In this study, we investigated the long-term efficacy of Internet-based CBT (ICBT) with therapist support for OCD with or without an Internet-based booster program. A total of 101 participants were included in the long-term follow-up analysis of ICBT. Of these, 93 were randomized to a booster program or no booster program. Outcome assessments were collected at 4, 7, 12 and 24 months after receiving ICBT. The entire sample had sustained long-term effects from pre-treatment to all follow-up assessments, with large within-group effect sizes (Cohen's d = 1.58-2.09). The booster group had a significant mean reduction in OCD symptoms compared to the control condition from booster baseline (4 months) to 7 months, but not at 12 or 24 months. Participants in the booster group improved significantly in terms of general functioning at 7, 12 and 24 months, and had fewer relapses. Kaplan-Meier analysis also indicated a significantly slower relapse rate in the booster group. The results suggest that ICBT has sustained long-term effects and that adding an Internet-based booster program can further improve long-term outcome and prevent relapse for some OCD patients.

  3. Design of the transfer line from booster to storage ring at 3 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayar, C., E-mail: cafer.bayar@cern.ch; Ciftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch

    The Synchrotron Booster Ring accelerates the e-beam up to 3 GeV and particles are transported from booster to storage ring by transfer line. In this study, two options are considered, the first one is a long booster which shares the same tunnel with storage ring and the second one is a compact booster. As a result, two transfer line are designed based on booster options. The optical design is constrained by the e-beam Twiss parameters entering and leaving the transfer line. Twiss parameters in the extraction point of booster are used for the entrance of transfer line and are matchedmore » in the exit of transfer line to the injection point of the storage ring.« less

  4. Exercise, manual therapy, and use of booster sessions in physical therapy for knee osteoarthritis: a multi-center, factorial randomized clinical trial.

    PubMed

    Fitzgerald, G K; Fritz, J M; Childs, J D; Brennan, G P; Talisa, V; Gil, A B; Neilson, B D; Abbott, J H

    2016-08-01

    (1) Do treatment effects differ between participants receiving manual therapy (MT) with exercise compared to subjects who don't, (2) are treatment effects sustained better when participants receive booster sessions compared to those who don't over a one year period in subjects with knee osteoarthritis (KOA)? Multi-center, 2 × 2 factorial randomized clinical trial. 300 participants with knee OA were randomized to four groups: exercise-no boosters (Ex), exercise-with boosters (Ex+B), manual therapy+exercise-no boosters (MT+Ex), manual therapy+exercise-with boosters (MT+Ex+B). The primary outcome was the Western Ontario and McMaster osteoarthritis index (WOMAC) at 1 year. Secondary outcomes included knee pain, physical performance tests, and proportions of participants meeting treatment responder criteria. There were no differences between groups on the WOMAC at 1 year or on any performance-based measures. Secondary analyses indicated a) better scores on the WOMAC and greater odds of being a treatment responder at 9 weeks for participants receiving MT, b) greater odds of being a treatment responder at 1 year for participants receiving boosters. Exploratory interaction analysis suggested knee pain decreases for participants receiving boosters and increases for participants not receiving boosters from 9 weeks to 1 year. MT or use of boosters with exercise did not result in additive improvement in the primary outcome at 1 year. Secondary outcomes suggest MT may have some short term benefit, and booster sessions may improve responder status and knee pain at 1 year. However, the role of booster sessions remains unclear in sustaining treatment effects and warrants further study. gov (NCT01314183). Copyright © 2016 Osteoarthritis Research Society International. All rights reserved.

  5. 46 CFR 108.421 - Location of fire pumps and associated equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Location of fire pumps and associated equipment. 108.421... pumps and associated equipment. Each fire pump required by § 108.415, and the source of power, controls, sea connections for the fire pump, and booster pumps, if installed, must be installed in locations...

  6. Expendable second stage reusable space shuttle booster. Volume 2: Technical summary. Book 3: Booster vehicle modifications and ground systems definition

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A definition of the expendable second stage and space shuttle booster separation system is presented. Modifications required on the reusable booster for expendable second stage/payload flight and the ground systems needed to operate the expendable second stage in conjuction with the space shuttle booster are described. The safety, reliability, and quality assurance program is explained. Launch complex operations and services are analyzed.

  7. Maintaining the potential of a psycho-educational program: efficacy of a booster session after an intervention offered family caregivers at disclosure of a relative's dementia diagnosis.

    PubMed

    Ducharme, Francine; Lachance, Lise; Lévesque, Louise; Zarit, Steven Howard; Kergoat, Marie-Jeanne

    2015-01-01

    Booster sessions as a means of maintaining the benefits of psycho-educational programs have received little attention in caregiving research. Caregivers were offered a booster session following participation in a program entitled Learning to Become a Family Caregiver (LBFC) intended to facilitate transition to the caregiver role after diagnostic disclosure of dementia in a relative. The 90-minute booster session served to review program content and afforded the opportunity to discuss and practice learned skills. This study sought to test the efficacy of the booster session in maintaining or recovering program effects at six months post-program. Participants in the program were randomly assigned to a group that received the booster session (n = 31) or a group that did not (n = 29). A third control group was also formed, which continued to receive only the usual care provided in memory clinics. Eligible participants - French-speaking primary caregivers of a relative diagnosed with Alzheimer's in the past nine months - were recruited in memory clinics in Quebec (Canada). Participants were blindly assessed before randomization and six months after the booster session on outcomes associated with a healthy role transition. Prediction analyses revealed one significant positive effect of the booster session: emergence of preparedness to provide care. Moreover, with or without the booster session, the program continued to have a positive effect on psychological distress and contributed to the emergence of self-efficacy in dealing with caregiving situations. The booster session had no significant effect on knowledge of services, planning for future care needs, use of reframing as a coping strategy, perceived informal support, and family conflicts. The limited effect observed is discussed in terms of the booster session's content and intensity. Recommendations are made for designing future research on the effect of booster sessions, including the importance of including a placebo booster group.

  8. 47 CFR 22.527 - Signal boosters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Signal boosters. 22.527 Section 22.527... Paging and Radiotelephone Service § 22.527 Signal boosters. Licensees may install and operate signal... additional transmitters for existing systems. Licensees must not allow any signal booster that they operate...

  9. 47 CFR 22.527 - Signal boosters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Signal boosters. 22.527 Section 22.527... Paging and Radiotelephone Service § 22.527 Signal boosters. Licensees may install and operate signal... additional transmitters for existing systems. Licensees must not allow any signal booster that they operate...

  10. 47 CFR Alphabetical Index - Part 74

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FM Broadcast Booster Stations FM translator and booster station information available on the Internet..., Directional (Aural STL/Relays) 74.536 Antenna location— LPTV/TV Translator 74.737 FM Translators/Boosters 74....902 FM Translators/Boosters 74.1202 Authorization of equipment— Aural Auxiliary 74.550 Remote Pickup...

  11. 47 CFR Alphabetical Index - Part 74

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FM Broadcast Booster Stations FM translator and booster station information available on the Internet..., Directional (Aural STL/Relays) 74.536 Antenna location— LPTV/TV Translator 74.737 FM Translators/Boosters 74....902 FM Translators/Boosters 74.1202 Authorization of equipment— Aural Auxiliary 74.550 Remote Pickup...

  12. 47 CFR 24.9 - Operation of certificated signal boosters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Operation of certificated signal boosters. 24.9... PERSONAL COMMUNICATIONS SERVICES General Information § 24.9 Operation of certificated signal boosters. Individuals and non-individuals may operate certificated Consumer Signal Boosters on frequencies regulated...

  13. 47 CFR 24.9 - Operation of certificated signal boosters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Operation of certificated signal boosters. 24.9... PERSONAL COMMUNICATIONS SERVICES General Information § 24.9 Operation of certificated signal boosters. Individuals and non-individuals may operate certificated Consumer Signal Boosters on frequencies regulated...

  14. 47 CFR Alphabetical Index - Part 74

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FM Broadcast Booster Stations FM translator and booster station information available on the Internet..., Directional (Aural STL/Relays) 74.536 Antenna location— LPTV/TV Translator 74.737 FM Translators/Boosters 74....902 FM Translators/Boosters 74.1202 Authorization of equipment— Aural Auxiliary 74.550 Remote Pickup...

  15. Do parental decision-making patterns predict compliance with use of child booster seats?

    PubMed

    Shimony-Kanat, Sarit; Gofin, Rosa; Kienski Woloski Wruble, Anna C; Mann, Leon

    2018-03-01

    Booster seat use for 4-9 year olds remains the lowest of all age groups in many countries. The objective of this study is to examine whether parents' decision-making patterns, as measured by the Melbourne Decision Making Questionnaire, relate to car booster seat use. Israeli parents of 4-7 years old children (n = 398) answered a questionnaire about car safety and decision-making habits. Ninety per cent of parents reported having a booster seat; 70.5% reported consistent booster seat use in general and on short drives during the last month (booster seat use compliance index). Greater compliance index was positively related to a vigilant decision-making pattern, passenger compliance with rear seat belts and families with fewer children. Lower booster seat use compliance index was associated with buck-passing decision-making pattern. Health professionals and policy-makers should take into account parents' habitual decision-making patterns when designing interventions for car booster seat compliance.

  16. Effects of booster interventions on factory workers' use of hearing protection.

    PubMed

    Lusk, Sally L; Eakin, Brenda L; Kazanis, Anamaria S; McCullagh, Marjorie C

    2004-01-01

    The provision of reinforcements or boosters to interventions is seen as a logical approach to enhancing or maintaining desired behavior. Empirical studies, however, have not confirmed the effectiveness of boosters nor assessed the optimum number of boosters or the timing for their delivery. This randomized controlled trial contrasted the effect of four booster conditions (a). 30 days; (b). 90 days; (c). 30 and at 90 days; and (d). no boosters of the intervention to increase the use of hearing protection devices (HPDs). A total of 1325 factory workers completed a computerized questionnaire and were randomly assigned to one of three computer-based (tailored, nontailored predictor-based, or control) multimedia interventions designed to increase the use of hearing protection devices. After the intervention, colorful boosters specific to the type of training received were mailed to workers' homes. Posttest measures of use were administered at the time of their next annual audiogram 6 to 18 months after the intervention. RESULTS Repeated measures of analysis of variance (ANOVA) showed a significant main effect for the booster (after 30 days) in the group that received tailored training (F[3442] = 2.722; p =.04). However, in the assessment of the interaction between time (pretest and posttest) and boosters (four groups), the ANOVA did not find significant differences in hearing protection device use for any of the training groups. To assess for significant differences between groups, post hoc comparisons were conducted at the pretest and posttest for the total sample and for the subsample of workers who reported using hearing protection devices less than 100% of the time needed. Sheffé contrasts by intervention group, gender, ethnicity, and hearing ability found no significant changes in the mean use of hearing protection devices for the booster groups. Although the provision of boosters represented a considerable commitment of resources, their use was not effective in this study. However, it would be premature to eliminate boosters of interventions. Further study is needed to explore the effects of different booster types for increasing the use of hearing protection devices, and to assess carefully the effects of boosters on other health behaviors in studies with controlled designs.

  17. Aerodynamic characteristics of a 142-inch diameter solid rocket booster, configuration 139 (SA2FA/SA2FB)

    NASA Technical Reports Server (NTRS)

    Radford, W. D.; Johnson, J. D.

    1974-01-01

    Tests of a 2.112 percent scale model of the space shuttle solid rocket booster model were conducted in a transonic pressure tunnel. Tests were conducted at Mach numbers ranging from 0.4 to 1.2, angles of attack from minus one degree to plus 181 degrees, and Reynolds numbers from 0.6 million to 6.1 million per foot. The model configurations investigated were as follows: (1) solid rocket booster without external protuberances, (2) solid rocket booster with an electrical tunnel and a solid rocket booster/external tank thrust attachment structure, and (3) solid rocket booster with two body strakes.

  18. Hypersonic aerothermal characteristics of a manned low finenes ratio shuttle booster

    NASA Technical Reports Server (NTRS)

    Bernot, P. T.; Throckmorton, D. A.

    1972-01-01

    An investigation of a winged booster model having canards and an ascent configuration comprised of the booster mounted in tandem with an orbiter model has been conducted at Mach 10.2 in the continuous flow hypersonic tunnel. Longitudinal and lateral directional force characteristics were obtained over angle of attack ranges of -12 deg to 60 deg for the booster and -11 deg to 11 deg for the ascent configuration. Interference heating effects on the booster using the phase-change coating technique were determined at 0 deg angle of attack. Some oil flow photographs of the isolated booster and orbiter and ascent configuration are also presented.

  19. Analysis of the staging maneuver and booster glideback guidance for a two-stage, winged, fully reusable launch vehicle. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Naftel, J. Christopher; Powell, Richard W.

    1993-01-01

    One of the promising launch concepts that could replace the current space shuttle launch system is a two-stage, winged, vertical-takeoff, fully reusable launch vehicle. During the boost phase of ascent, the booster provides propellant for the orbiter engines through a cross-feed system. When the vehicle reaches a Mach number of 3, the booster propellants are depleted and the booster is staged and glides unpowered to a horizontal landing at a launch site runway. Two major design issues for this class of vehicle are the staging maneuver and the booster glideback. For the staging maneuver analysis, a technique was developed that provides for a successful separation of the booster from the orbiter over a wide range of staging angles of attack. A longitudinal flight control system was developed for control of the booster during the staging maneuver. For the booster glide back analysis, a guidance algorithm was developed that successfully guides the booster from the completion of the staging maneuver to a launch site runway while encountering many off-nominal atmospheric, aerodynamic, and staging conditions.

  20. Theoretical Analysis and Bench Tests of a Control-Surface Booster Employing a Variable Displacement Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W.; Kleckner, Harold F.

    1947-01-01

    The NACA is conducting a general investigation of servo-mechanisms for use in powering aircraft control surfaces. This paper presents a theoretical analysis and the results of bench tests of a control-booster system which employs a variable displacement hydraulic pump. The booster is intended for use in a flight investigation to determine the effects of various booster parameters on the handling qualities of airplanes. Such a flight investigation would aid in formulating specific requirements concerning the design of control boosters in general. Results of the theoretical analysis and the bench tests indicate that the subject booster is representative of types which show promise of satisfactory performance. The bench tests showed that the following desirable features were inherent in this booster system: (1) No lost motion or play in any part of the system; (2) no detectable lag between motion of the contra1 stick and control surface; and (3) Good agreement between control displacements and stick-force variations with no hysteresis in the stick-force characteristics. The final design configuration of this booster system showed no tendency to oscillate, overshoot, or have other undesirable transient characteristics common to boosters.

  1. KSC-06pd1492

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star tows a spent solid rocket booster toward Port Canaveral. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  2. KSC-06pd1497

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star heads up the Banana River to Cape Canaveral Air Force Station with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  3. KSC-06pd1491

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star tows a spent solid rocket booster back to Port Canaveral. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  4. KSC-08pd0258

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- The solid rocket booster retrieval ship Freedom Star tows one of the boosters retrieved after the launch of space shuttle Atlantis' STS-122 mission. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  5. KSC-08pd0260

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- The solid rocket booster retrieval ship Freedom Star tows one of the boosters, retrieved after the launch of space shuttle Atlantis' STS-122 mission, toward Port Canaveral. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  6. KSC-08pd0259

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- Spectators watch as the solid rocket booster retrieval ship Freedom Star tows one of the boosters, retrieved after the launch of space shuttle Atlantis' STS-122 mission, toward Port Canaveral. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  7. KSC-08pd3735

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, the straddle crane lowers a spent solid rocket booster onto a transporter. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The booster is from space shuttle Endeavour, which launched Nov. 14 on the STS-126 mission. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  8. KSC-08pd3738

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – At Hangar AF at Cape Canaveral Air Force Station in Florida, two spent solid rocket boosters move into the washing bay for a cleaning and rinsing. The boosters are from space shuttle Endeavour, which launched Nov. 14 on the STS-126 mission. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  9. KSC-08pd0739

    NASA Image and Video Library

    2008-03-12

    KENNEDY SPACE CENTER, FLA. -- The Freedom Star, one of NASA's solid rocket booster retrieval ships, tows a solid rocket booster alongside, heading for Hangar AF at Cape Canaveral Air Force Station. Barely visible in the background at right is the Vehicle Assembly Building at NASA's Kennedy Space Center. The booster is from space shuttle Endeavour, which launched the STS-123 mission on March 11. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters, which they tow back to port. After transfer to a position alongside the ship, the booster will be towed to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  10. KSC-08pd0261

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- The solid rocket booster retrieval ship Freedom Star tows toward Port Canaveral one of the boosters, retrieved after the launch of space shuttle Atlantis' STS-122 mission, toward Port Canaveral. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  11. Randomized, Open-Label Study of the Impact of Age on Booster Responses to the 10-Valent Pneumococcal Nontypeable Haemophilus influenzae Protein D Conjugate Vaccine in Children in India

    PubMed Central

    Chatterjee, Sukanta; Chhatwal, Jugesh; Simon, Anna; Ravula, Sudheer; Francois, Nancy; Mehta, Shailesh; Strezova, Ana; Borys, Dorota

    2014-01-01

    In this phase III, open-label, multicenter, and descriptive study in India, children primed with 3 doses (at ages 6, 10, and 14 weeks) of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) were randomized (1:1) to receive a booster dose at 9 to 12 (early booster) or 15 to 18 months old (late booster) in order to evaluate impact of age at booster. We also evaluated a 2-dose catch-up vaccination plus an experimental booster dose in unprimed children age 12 to 18 months. The early booster, late booster, and catch-up vaccinations were administered to 74, 95, and 87 children, respectively; 66, 71, and 81 children, respectively, were included in the immunogenicity according-to-protocol cohort. One month postbooster, for each PHiD-CV serotype, ≥95.2% (early booster) and ≥93.8% (late booster) of the children had antibody concentrations of ≥0.2 μg/ml; ≥96.7% and ≥93.0%, respectively, had opsonophagocytic activity (OPA) titers of ≥8. The postbooster antibody geometric mean concentrations (GMCs) were in similar ranges for early and late boosters; the OPA titers appeared to be lower for most PHiD-CV serotypes (except 6B and 19F) after the early booster. After dose 2 and postbooster, for each PHiD-CV serotype, ≥88.6% and ≥96.3%, respectively, of the catch-up immunogenicity according-to-protocol cohort had antibody concentrations of ≥0.2 μg/ml; ≥71.4% and ≥90.6%, respectively, had OPA titers of ≥8. At least 1 serious adverse event was reported by 2 children in the early booster (skin infection and gastroenteritis) and 1 child in the catch-up group (febrile convulsion and urinary tract infection); all were resolved, and none were considered by the investigators to be vaccine related. PHiD-CV induced robust immune responses regardless of age at booster. Booster vaccination following 2 catch-up doses induced robust immune responses indicative of effective priming and immunological memory. (These studies have been registered at www.clinicaltrials.gov under registration no. NCT01030822 and NCT00814710; a protocol summary is available at www.gsk-clinicalstudyregister.com [study ID 112909]). PMID:25008901

  12. NASA's Space Launch System Advanced Booster Development

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the advanced boosters. These new boosters will enable the flexible path approach to deep space exploration, opening up vast opportunities for human missions to near-Earth asteroids and Mars. This evolved capability will offer large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements.

  13. 47 CFR 22.9 - Operation of certificated signal boosters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Operation of certificated signal boosters. 22.9... PUBLIC MOBILE SERVICES Scope and Authority § 22.9 Operation of certificated signal boosters. Individuals and non-individuals may operate certificated Consumer Signal Boosters on frequencies regulated under...

  14. 47 CFR 22.9 - Operation of certificated signal boosters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Operation of certificated signal boosters. 22.9... PUBLIC MOBILE SERVICES Scope and Authority § 22.9 Operation of certificated signal boosters. Individuals and non-individuals may operate certificated Consumer Signal Boosters on frequencies regulated under...

  15. Closeup view of the Solid Rocket Booster Frustum and Nose ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster Frustum and Nose Cap assembly undergoing preparations and close-out procedures in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center. The Nose Cap contains the Pilot and Drogue Chutes and the Frustum contains the three Main Parachutes, Altitude Switches and forward booster Separation Motors. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  16. KSC-2009-2142

    NASA Image and Video Library

    2009-03-18

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, the solid rocket booster is lifted out of the water by the straddle crane. The booster, used during space shuttle Discovery's launch from NASA's Kennedy Space Center in Florida March 15 on mission STS-119, will be placed on a transporter. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea after a launch. The spent rockets were recovered by NASA's Solid Rocket Booster Retrieval Ships Freedom Star and Liberty Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  17. KSC-2009-2143

    NASA Image and Video Library

    2009-03-18

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, the straddle crane lowers a solid rocket booster onto a transporter. The booster was used during space shuttle Discovery's launch from NASA's Kennedy Space Center in Florida March 15 on mission STS-119. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea after a launch. The spent rockets were recovered by NASA's Solid Rocket Booster Retrieval Ships Freedom Star and Liberty Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  18. KSC-2009-2140

    NASA Image and Video Library

    2009-03-18

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, the frustum of a solid rocket booster is moved onto a transporter. The booster was used during space shuttle Discovery's launch on mission STS-119 from NASA's Kennedy Space Center in Florida March 15. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea after a launch. The spent rockets were recovered by NASA's Solid Rocket Booster Retrieval Ships Freedom Star and Liberty Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  19. KSC-08pd3733

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, workers move the spent solid rocket booster to an area beneath the straddle crane that will lift it out of the water. The booster is from space shuttle Endeavour, which launched Nov. 14 on the STS-126 mission. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The spent rocket was recovered by NASA's Solid Rocket Booster Retrieval Ship Freedom Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  20. KSC-08pd3734

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, the straddle crane lifts a spent solid rocket booster to allow saltwater contamination to be rinsed off. The booster is from space shuttle Endeavour, which launched Nov. 14 on the STS-126 mission. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The spent rocket was recovered by NASA's Solid Rocket Booster Retrieval Ship Freedom Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  1. Orbital Payload Reductions Resulting from Booster and Trajectory Modifications for Recovery of a Large Rocket Booster

    NASA Technical Reports Server (NTRS)

    Levin, Alan D.; Hopkins, Edward J.

    1961-01-01

    An analysis was made to determine the reduction in payload for a 300 nautical mile orbit resulting from the addition of inert weight, representing recovery gear, to the first-stage booster of a three-stage rocket vehicle. The values of added inert weight investigated ranged from 0 to 18 percent of gross weight at lift off. The study also included the effects on the payload in orbit and the distance from the launch site at burnout and at impact caused by variation in the vertical rise time before the programmed tilt. The vertical rise times investigated ranged from 16-7 to 100 percent of booster burning time. For a vertical rise of 16.7 percent of booster burning time it was found that a 50-percent increase in the weight of the empty booster resulted in only a 10-percent reduction of the payload in orbit. For no added booster weight, increasing vertical rise time from 16-7 to 100 percent of booster burning time (so that the spent booster would impact in the launch area) reduced the payload by 37 percent. Increasing the vertical rise time from 16-7 to 50 percent of booster burning time resulted in about a 15-percent reduction in the impact distance, and for vertical rise times greater than 50-percent the impact distance decreased rapidly.

  2. 47 CFR 73.810 - Third adjacent channel interference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... reception of the input signal of any TV translator, TV booster, FM translator or FM booster station; or (iii... authorized and operating LPFM stations, FM translators and FM booster stations. Interference will be... power FM, FM translator or FM booster station to such affected station and to the Commission. (ii) A...

  3. 47 CFR 95.1311 - Repeater operations and signal boosters prohibited.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Repeater operations and signal boosters... § 95.1311 Repeater operations and signal boosters prohibited. MURS stations are prohibited from operating as a repeater station or as a signal booster. This prohibition includes store-and-forward packet...

  4. 47 CFR 22.527 - Signal boosters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Signal boosters. 22.527 Section 22.527... Paging and Radiotelephone Service § 22.527 Signal boosters. Licensees may install and operate signal boosters on channels listed in § 22.531 only in accordance with the provisions of § 22.165 governing...

  5. 47 CFR 95.1311 - Repeater operations and signal boosters prohibited.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Repeater operations and signal boosters... § 95.1311 Repeater operations and signal boosters prohibited. MURS stations are prohibited from operating as a repeater station or as a signal booster. This prohibition includes store-and-forward packet...

  6. 47 CFR 74.1290 - FM translator and booster station information available on the Internet.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false FM translator and booster station information... DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1290 FM translator and booster station information available on the Internet. The Media Bureau's Audio Division...

  7. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., low power, and booster stations. 74.780 Section 74.780 Telecommunication FEDERAL COMMUNICATIONS... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast regulations applicable to translators, low power, and booster stations. The following rules are applicable to...

  8. 47 CFR 22.527 - Signal boosters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Signal boosters. 22.527 Section 22.527... Paging and Radiotelephone Service § 22.527 Signal boosters. Licensees may install and operate signal boosters on channels listed in § 22.531 only in accordance with the provisions of § 22.165 governing...

  9. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., low power, and booster stations. 74.780 Section 74.780 Telecommunication FEDERAL COMMUNICATIONS... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast regulations applicable to translators, low power, and booster stations. The following rules are applicable to...

  10. 47 CFR 95.1311 - Repeater operations and signal boosters prohibited.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Repeater operations and signal boosters... § 95.1311 Repeater operations and signal boosters prohibited. MURS stations are prohibited from operating as a repeater station or as a signal booster. This prohibition includes store-and-forward packet...

  11. 47 CFR 74.1290 - FM translator and booster station information available on the Internet.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false FM translator and booster station information... DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1290 FM translator and booster station information available on the Internet. The Media Bureau's Audio Division...

  12. 47 CFR 74.1290 - FM translator and booster station information available on the Internet.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false FM translator and booster station information... DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1290 FM translator and booster station information available on the Internet. The Media Bureau's Audio Division...

  13. 47 CFR 95.1311 - Repeater operations and signal boosters prohibited.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Repeater operations and signal boosters... § 95.1311 Repeater operations and signal boosters prohibited. MURS stations are prohibited from operating as a repeater station or as a signal booster. This prohibition includes store-and-forward packet...

  14. 47 CFR 73.810 - Third adjacent channel interference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... reception of the input signal of any TV translator, TV booster, FM translator or FM booster station; or (iii... authorized and operating LPFM stations, FM translators and FM booster stations. Interference will be... power FM, FM translator or FM booster station to such affected station and to the Commission. (ii) A...

  15. 47 CFR 22.527 - Signal boosters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Signal boosters. 22.527 Section 22.527... Paging and Radiotelephone Service § 22.527 Signal boosters. Licensees may install and operate signal boosters on channels listed in § 22.531 only in accordance with the provisions of § 22.165 governing...

  16. 47 CFR 95.1311 - Repeater operations and signal boosters prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Repeater operations and signal boosters... § 95.1311 Repeater operations and signal boosters prohibited. MURS stations are prohibited from operating as a repeater station or as a signal booster. This prohibition includes store-and-forward packet...

  17. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., low power, and booster stations. 74.780 Section 74.780 Telecommunication FEDERAL COMMUNICATIONS... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast regulations applicable to translators, low power, and booster stations. The following rules are applicable to...

  18. 47 CFR 101.151 - Use of signal boosters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., or portable station(s). The booster will fill in only weak signal areas and cannot extend the system... 47 Telecommunication 5 2012-10-01 2012-10-01 false Use of signal boosters. 101.151 Section 101.151... SERVICES Technical Standards § 101.151 Use of signal boosters. Private operational-fixed licensees...

  19. 47 CFR 101.151 - Use of signal boosters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., or portable station(s). The booster will fill in only weak signal areas and cannot extend the system... 47 Telecommunication 5 2013-10-01 2013-10-01 false Use of signal boosters. 101.151 Section 101.151... SERVICES Technical Standards § 101.151 Use of signal boosters. Private operational-fixed licensees...

  20. 47 CFR 101.151 - Use of signal boosters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., or portable station(s). The booster will fill in only weak signal areas and cannot extend the system... 47 Telecommunication 5 2010-10-01 2010-10-01 false Use of signal boosters. 101.151 Section 101.151... SERVICES Technical Standards § 101.151 Use of signal boosters. Private operational-fixed licensees...

  1. 47 CFR 101.151 - Use of signal boosters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., or portable station(s). The booster will fill in only weak signal areas and cannot extend the system... 47 Telecommunication 5 2014-10-01 2014-10-01 false Use of signal boosters. 101.151 Section 101.151... SERVICES Technical Standards § 101.151 Use of signal boosters. Private operational-fixed licensees...

  2. 47 CFR 101.151 - Use of signal boosters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., or portable station(s). The booster will fill in only weak signal areas and cannot extend the system... 47 Telecommunication 5 2011-10-01 2011-10-01 false Use of signal boosters. 101.151 Section 101.151... SERVICES Technical Standards § 101.151 Use of signal boosters. Private operational-fixed licensees...

  3. 76 FR 11680 - Digital Low Power Television, Television Translator, and Television Booster Stations and Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and Digital Class A... Commission's Rules to Establish Rules for Digital Low Power, Television Translator, and Television Booster... Digital Low Power Television Translator, Television Booster Stations, and to Amend Rules for Digital Class...

  4. Magnetic field errors tolerances of Nuclotron booster

    NASA Astrophysics Data System (ADS)

    Butenko, Andrey; Kazinova, Olha; Kostromin, Sergey; Mikhaylov, Vladimir; Tuzikov, Alexey; Khodzhibagiyan, Hamlet

    2018-04-01

    Generation of magnetic field in units of booster synchrotron for the NICA project is one of the most important conditions for getting the required parameters and qualitative accelerator operation. Research of linear and nonlinear dynamics of ion beam 197Au31+ in the booster have carried out with MADX program. Analytical estimation of magnetic field errors tolerance and numerical computation of dynamic aperture of booster DFO-magnetic lattice are presented. Closed orbit distortion with random errors of magnetic fields and errors in layout of booster units was evaluated.

  5. Space shuttle phase B extension, volume 2

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Space shuttle systems are defined using a low technology orbiter combined with either an F-1 flyback booster or a pressure-fed booster. The mission and system requirements are given, and orbiter and booster configuration concepts are evaluated. Systems analyses and trades are discussed for LO2-RP propellent, F-1 engine main propulsion system, winged flyback recovery booster and for the pressure-fed, ocean recoverable, refurbishable booster system. Trade studies are also made for aluminum versus titanium orbiter and for crew location and compartment size.

  6. Hybrid propulsion technology program. Volume 1: Conceptional design package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). As part of the design study critical technology issues were identified and a technology acquisition and demonstration plan was formulated.

  7. Performance evaluation of DAAF as a booster material using the onionskin test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, John S; Francois, Elizabeth G; Hooks, Daniel E

    Initiation of insensitive high explosive (IHE) formulations requires the use of a booster explosive in the initiation train. Booster material selection is crucial, as the initiation must reliably function across some spectrum of physical parameters. The interest in Diaminoazoxyfurazan (DAAF) for this application stems from the fact that it possesses many traits of an IHE but is shock sensitive enough to serve as an explosive booster. A hemispherical wave breakout test, termed the onionskin test, is one of the methods used to evaluate the performance of a booster material. The wave breakout time-position history at the surface of a hemisphericalmore » IHE charge is recorded and the relative uniformity of the breakout can be quantitatively compared between booster materials. A series of onionskin tests were performed to investigate breakout and propagation diaminoazoxyfurazan (DAAF) at low temperatures to evaluate ignition and detonation spreading in comparison to other explosives commonly used in booster applications. Some wave perturbation was observed with the DAAF booster in the onionskin tests presented. The results of these tests will be presented and discussed.« less

  8. Investigation of the McDonnell-Douglas orbiter and booster shuttle models in proximity at Mach numbers 2.0 to 6.0. Volume 7: Proximity data at Mach 4 and 6, interference free and launch vehicle data

    NASA Technical Reports Server (NTRS)

    Trimmer, L. L.; Love, D. A.; Decker, J. P.; Blackwell, K. L.; Strike, W. T.; Rampy, J. M.

    1972-01-01

    Aerodynamic data obtained from a space shuttle abort stage separation wind tunnel test are presented. The .00556 scale models of the orbiter and booster configuration were tested in close proximity using dual balances during the time period of April 21 to April 27 1971. Data were obtained for both booster and orbiter over an angle of attack range from -10 to 10 deg for zero degree sideslip angle. The models were tested at several relative incidence angles and separation distances and power conditions. Plug nozzles utilizing air were used to simulate booster and orbiter plumes at various altitudes along a nominal ascent trajectory. Powered conditions were 100, 50, 25 and 0 percent of full power for the orbiter and 100, 50 and 0 percent of full power for the booster. Pitch control effectiveness data were obtained for both booster and orbiter with power on and off. In addition, launch vehicle data with and without booster power were obtained utilizing a single balance in the booster model. Data were also obtained with the booster canard off in close proximity and for the launch configuration.

  9. Promoting booster seat use for young children: A school-based intervention pilot study.

    PubMed

    Bruce, Beth S; Mundle, Kim; Cramm, Camille F; Williams, Devon P

    2017-05-01

    Misuse and/or lack of booster seat use are often associated with high rates of injury and death among school-aged children. This pilot study examined the efficacy and the potential effectiveness of a booster seat intervention in the classroom. Two elementary schools participated (randomly assigned as one intervention school and one control school). At the intervention school, a certified car seat specialist and a police officer held an interactive booster seat session. The height and age for each child were recorded. Children received a certificate indicating whether they met the requirements for booster seat use and a postcard with car seat restraint specifications. Children in the control school received a brochure on car seat safety. Pre- and post-intervention self-reports were collected and booster seat use was observed. Observational findings showed a decline in booster seat use at the control school and an increase in use at the intervention school. Self-reports of booster seat use indicated a decline at both schools; however, cell sizes were too small to permit statistical analyses. Anecdotally researchers found the sessions were easy to conduct and were well received by the children and could be easily integrated into programming in schools. Classroom sessions may have the potential to positively influence booster seat use among 6- to 8-year-olds.

  10. KSC-06pd1494

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - At a dock in Port Canaveral, the SRB Retrieval Ship Liberty Star has successfully transferred its tow cargo, a spent solid rocket booster, to a starboard position for the balance of its journey to Cape Canaveral Air Force Station. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  11. KSC-06pd1498

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - With the Vehicle Assembly Building in the background, the SRB Retrieval Ship Liberty Star nears Cape Canaveral Air Force Station with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  12. KSC-06pd1500

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star closes in on the dock at Hangar AF, Cape Canaveral Air Force Station, with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  13. KSC-06pd1502

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star arrives at the dock at Hangar AF, Cape Canaveral Air Force Station, with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  14. KSC-06pd1499

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star closes in on the dock at Hangar AF, Cape Canaveral Air Force Station, with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  15. KSC-06pd1503

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - At the dock at Hangar AF, Cape Canaveral Air Force Station, the SRB Retrieval Ship Liberty Star gets ready to transfer the spent solid rocket booster to a straddle crane that will lift it out of the water. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  16. KSC-06pd1493

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - At a dock in Port Canaveral, the SRB Retrieval Ship Liberty Star transfers its tow cargo, a spent solid rocket booster, to a starboard position for the balance of its journey to Cape Canaveral Air Force Station. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  17. KSC-06pd1495

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star begins the rest of its journey to Cape Canaveral Air Force Station with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  18. KSC-06pd1501

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star closes in on the dock at Hangar AF, Cape Canaveral Air Force Station, with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  19. KSC-06pd1506

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - At the dock at Hangar AF, Cape Canaveral Air Force Station, workers move the spent solid rocket booster underneath the straddle crane that will lift it out of the water. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  20. KSC-06pd1496

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star begins the rest of its journey to Cape Canaveral Air Force Station with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  1. KSC-08pd3737

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, two spent solid rocket boosters begin moving to the hangar for the safing process. They will be driven through the washing bay for a cleaning and rinsing. The boosters are from space shuttle Endeavour, which launched Nov. 14 on the STS-126 mission. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  2. KSC-08pd3730

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – NASA's Solid Rocket Booster Retrieval Ship Freedom Star tows along its side one of the spent booster rockets from the space shuttle Endeavour launch Nov. 14 on the STS-126 mission. The ship is returning the spent rocket to Hangar AF at Cape Canaveral Air Force Station in Florida. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  3. Evaluation of Safe Kids Week 2004: age 4 to 9? It's booster seat time!

    PubMed

    Howard, A; Beben, N; Rothman, L; Fiissel, D; MacArthur, C

    2006-10-01

    To assess the effectiveness of a national one week media campaign promoting booster seat use. Pre-test, post-test design based on nationally representative random digit dialing telephone survey, with control for exposure to campaign. Canada. Parents of children aged 4-9 years. During a one week campaign in May 2004, information on booster seat use was distributed via a national media campaign, retail stores, medical clinics, and community events. Information included pamphlets with guidelines for booster seat use, as well as a growth chart (designed by Safe Kids Canada) to assist parents in determining if their child should be using a booster seat. Assessing seat belt fit was described in detail on the growth chart. Knowledge, attitudes, and self-reported behaviors regarding booster seat use. Respondents in the group exposed to the campaign were twice as likely to report using a booster seat with lap and shoulder belt for their child (47%), compared to those in the pre-test (24%) and the unexposed (23%) groups (p<0.001). However, only small differences in general knowledge regarding booster seat use were found between the groups. A one week national media campaign substantially increased self-reported use of booster seats. Parents did not remember details of the campaign content, but did remember implications for their own child.

  4. Carpooling and booster seats: a national survey of parents.

    PubMed

    Macy, Michelle L; Clark, Sarah J; Freed, Gary L; Butchart, Amy T; Singer, Dianne C; Sasson, Comilla; Meurer, William J; Davis, Matthew M

    2012-02-01

    Booster seat use among school-aged children has been consistently lower than national goals. In this study, we sought to explore associations between parental experiences with booster seats and carpooling. We conducted a cross-sectional Web-based survey of a nationally representative panel of US parents in January 2010. As part of a larger survey, parents of 4- to 8-year-old children responded to 12 questions related to booster seats and carpooling. Of 1612 parents responding to the full survey (response rate = 71%), 706 had a 4- to 8-year-old child and 681 met inclusion rules. Most parents (76%) reported their child used a safety seat when riding in the family car. Of children reported to use seat belts, 74% did so in accordance with their state law. Parent report of child safety seat use was associated with younger child age and with the presence of state booster seat laws. Sixty-four percent of parents carpool. Among parents who carpool and whose children use a child safety seat: 79% indicated they would always ask another driver to use a booster seat for their child and 55% reported they always have their child use their booster seat when driving friends who do not have boosters. Carpooling is a common driving situation during which booster seat use is inconsistent. Social norms and self-efficacy are associated with booster seat use. Clinicians who care for children should increase efforts to convey the importance of using the size-appropriate restraint for every child on every trip.

  5. Cellular and humoral immune responses to a tetanus toxoid booster in perinatally HIV-1-infected children and adolescents receiving highly active antiretroviral therapy (HAART).

    PubMed

    Ching, Natascha; Deville, Jaime G; Nielsen, Karin A; Ank, Bonnie; Wei, Lian S; Sim, Myung Shin; Wolinsky, Steven M; Bryson, Yvonne J

    2007-01-01

    Human immunodeficiency virus type 1 (HIV-1) infected children treated with highly active antiretroviral therapy (HAART) may develop a significant reduction of plasma viremia associated with an increase in CD4+ T-cell counts. Functional capacity of this reconstituted immune system in response to recall antigens is important to maintain protective immunity to vaccine-preventable diseases. We therefore determined cellular and humoral immune responses to tetanus toxoid (TT) booster in perinatally HIV-1-infected children and adolescents receiving HAART. Immune responses were prospectively evaluated pre- and post-tetanus booster using lymphocyte proliferation assay (LPA) stimulation index (SI > or = 3.0) and tetanus antibody (TAb > or = 0.15) in 15 patients. The median interval from primary tetanus immunization series was 6 years (range 2-12 years). We compared patients by their virological response to HAART (complete responders, CR, n=7; incomplete responders, ICR, n=8). There were no significant differences in median age 12.6 years (CR: 12.9; ICR: 10.6) or median CD4 T-cell pre-booster (CR: 35%/819; ICR: 26%/429) between groups. Tetanus LPA responses were observed in one patient prior to booster and in seven patients post-booster. In contrast, 38% of patients had protective TAb pre-booster, but 92% developed protective TAb post-booster. All of the CR and 5/6 ICR patients developed protective TAb. HIV-1-infected children and adolescents had modest LPA responses to tetanus following booster, similar to HIV-1-infected adults. However, the majority of patients developed protective TAb levels after booster and maintained the response. Shorter intervals may need to be considered for TT immunization boosters in HIV-1-infected pediatric patients, as only 38% had protective TAb at baseline.

  6. Five year follow-up after a first booster vaccination against tick-borne encephalitis following different primary vaccination schedules demonstrates long-term antibody persistence and safety.

    PubMed

    Beran, Jiří; Xie, Fang; Zent, Olaf

    2014-07-23

    Long-term vaccination programs are recommended for individuals living in regions endemic for tick-borne encephalitis (TBE). Current recommendations suggest a first booster vaccine be administered 3 years after a conventional regimen or 12-18 months after a rapid regimen. However, the research supporting subsequent booster intervals is limited. The aim of this study was thus to evaluate the long-term persistence of TBE antibodies in adults and adolescents after a first booster dose with Encepur(®). A total of 323 subjects aged 15 years and over, who had received one of four different primary TBE vaccination series in a parent study, participated in this follow-up Phase IV trial. Immunogenicity and safety were assessed for up to five years after a first booster dose, which was administered three years after completion of the primary series. One subset of subjects was excluded from the booster vaccination since they had already received their booster prior to enrollment. For comparison, immune responses were still recorded for these subjects on Day 0 and on an annual basis until Year 5, but safety information was not collected. Following a booster vaccination, high antibody titers were recorded in all groups throughout the study. Neutralization test (NT) titers of ≥ 10 were noted in at least 94% of subjects at every time point post-booster (on Day 21 and through Years 1-5). These results demonstrated that a first booster vaccination following any primary immunization schedule results in high and long-lasting (>5 years) immune responses. These data lend support to the current belief that subsequent TBE booster intervals could be extended from the current recommendation. NCT00387634. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Robust Humoral and Cellular Immune Responses to Pertussis in Adults After a First Acellular Booster Vaccination.

    PubMed

    van der Lee, Saskia; van Rooijen, Debbie M; de Zeeuw-Brouwer, Mary-Lène; Bogaard, Marjan J M; van Gageldonk, Pieter G M; Marinovic, Axel Bonacic; Sanders, Elisabeth A M; Berbers, Guy A M; Buisman, Anne-Marie

    2018-01-01

    To reduce the pertussis disease burden, nowadays several countries recommend acellular pertussis (aP) booster vaccinations for adults. We aimed to evaluate the immunogenicity of a first adult aP booster vaccination at childbearing age. In 2014, healthy adults aged 25-29 years ( n  = 105), vaccinated during infancy with four doses of whole-cell pertussis (wP) vaccine, received a Tdap (tetanus, diphtheria, and aP) booster vaccination. Blood samples were collected longitudinally pre-booster, 2 and 4 weeks, and 1 year and 2 years post-booster. Tdap vaccine antigen-specific antibody levels and memory B- and T-cell responses were determined at all time points. Antibody persistence was calculated using a bi-exponential decay model. Upon booster vaccination, the IgG levels specific to all Tdap vaccine antigens were significantly increased. After an initial rapid decline in the first year, PT-IgG antibody decay was limited (15%) in the second year post-booster. The duration of a median level of PT-IgG ≥20 IU/mL was estimated to be approximately 9 years. Vaccine antigen-specific memory B- and T-cell numbers increased and remained at high levels although a significant decline was observed after 4 weeks post-booster. However, Th1, Th2, and Th17 cytokine production remained above pre-booster levels for 2 years. The Tdap booster vaccination in wP-primed Dutch adults induced robust long-term humoral and cellular immune responses to pertussis antigens. Furthermore, PT-IgG levels are predicted to remain above the presumed protective cut-off for at least 9 years which might deserves further attention in evaluating the current recommendation to revaccinate women during every new pregnancy.

  8. Modelling the effects of booster dose vaccination schedules and recommendations for public health immunization programs: the case of Haemophilus influenzae serotype b.

    PubMed

    Charania, Nadia A; Moghadas, Seyed M

    2017-09-13

    Haemophilus influenzae serotype b (Hib) has yet to be eliminated despite the implementation of routine infant immunization programs. There is no consensus regarding the number of primary vaccine doses and an optimal schedule for the booster dose. We sought to evaluate the effect of a booster dose after receiving the primary series on the long-term disease incidence. A stochastic model of Hib transmission dynamics was constructed to compare the long-term impact of a booster vaccination and different booster schedules after receiving the primary series on the incidence of carriage and symptomatic disease. We parameterized the model with available estimates for the efficacy of Hib conjugate vaccine and durations of both vaccine-induced and naturally acquired immunity. We found that administering a booster dose substantially reduced the population burden of Hib disease compared to the scenario of only receiving the primary series. Comparing the schedules, the incidence of carriage for a 2-year delay (on average) in booster vaccination was comparable or lower than that observed for the scenario of booster dose within 1 year after primary series. The temporal reduction of symptomatic disease was similar in the two booster schedules, suggesting no superiority of one schedule over the other in terms of reducing the incidence of symptomatic disease. The findings underscore the importance of a booster vaccination for continued decline of Hib incidence. When the primary series provides a high level of protection temporarily, delaying the booster dose (still within the average duration of protection conferred by the primary series) may be beneficial to maintain longer-term protection levels and decelerate the decline of herd immunity in the population.

  9. The effectiveness of booster sessions in CBT treatment for child and adolescent mood and anxiety disorders.

    PubMed

    Gearing, Robin E; Schwalbe, Craig S J; Lee, RaeHyuck; Hoagwood, Kimberly E

    2013-09-01

    To investigate the effects of booster sessions in cognitive behavioral therapy (CBT) for children and adolescents with mood or anxiety disorders, whereas controlling for youth demographics (e.g., gender, age), primary diagnosis, and intervention characteristics (e.g., treatment modality, number of sessions). Electronic databases were searched for CBT interventions for youth with mood and anxiety disorders. Fifty-three (k = 53) studies investigating 1,937 youth met criteria for inclusion. Booster sessions were examined using two case-controlled effect sizes: pre-post and pre-follow-up (6 months) effect sizes and employing weighted least squares (WLSs) regressions. Meta-analyses found pre-post studies with booster sessions had a larger effect size r = .58 (k = 15; 95% CI = 0.52-0.65; P < .01) than those without booster sessions r = .45 (k = 38; 95% CI = 0.41-0.49; P < .001). In the WLS regression analyses, controlling for demographic factors, primary diagnosis, and intervention characteristics, studies with booster sessions showed larger pre-post effect sizes than those without booster sessions (B = 0.13, P < .10). Similarly, pre-follow-up studies with booster sessions showed a larger effect size r = .64 (k = 10; 95% CI = 0.57-0.70; P < .10) than those without booster sessions r = .48 (k = 20; 95% CI = 0.42-0.53; P < .01). Also, in the WLS regression analyses, pre-follow-up studies showed larger effect sizes than those without booster sessions (B = 0.08, P < .01) after accounting for all control variables. Result suggests that CBT interventions with booster sessions are more effective and the effect is more sustainable for youth managing mood or anxiety disorders than CBT interventions without booster sessions. © 2013 Wiley Periodicals, Inc.

  10. Randomized, open-label study of the impact of age on booster responses to the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine in children in India.

    PubMed

    Lalwani, Sanjay; Chatterjee, Sukanta; Chhatwal, Jugesh; Simon, Anna; Ravula, Sudheer; Francois, Nancy; Mehta, Shailesh; Strezova, Ana; Borys, Dorota

    2014-09-01

    In this phase III, open-label, multicenter, and descriptive study in India, children primed with 3 doses (at ages 6, 10, and 14 weeks) of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) were randomized (1:1) to receive a booster dose at 9 to 12 (early booster) or 15 to 18 months old (late booster) in order to evaluate impact of age at booster. We also evaluated a 2-dose catch-up vaccination plus an experimental booster dose in unprimed children age 12 to 18 months. The early booster, late booster, and catch-up vaccinations were administered to 74, 95, and 87 children, respectively; 66, 71, and 81 children, respectively, were included in the immunogenicity according-to-protocol cohort. One month postbooster, for each PHiD-CV serotype, ≥95.2% (early booster) and ≥93.8% (late booster) of the children had antibody concentrations of ≥0.2 μg/ml; ≥96.7% and ≥93.0%, respectively, had opsonophagocytic activity (OPA) titers of ≥8. The postbooster antibody geometric mean concentrations (GMCs) were in similar ranges for early and late boosters; the OPA titers appeared to be lower for most PHiD-CV serotypes (except 6B and 19F) after the early booster. After dose 2 and postbooster, for each PHiD-CV serotype, ≥88.6% and ≥96.3%, respectively, of the catch-up immunogenicity according-to-protocol cohort had antibody concentrations of ≥0.2 μg/ml; ≥71.4% and ≥90.6%, respectively, had OPA titers of ≥8. At least 1 serious adverse event was reported by 2 children in the early booster (skin infection and gastroenteritis) and 1 child in the catch-up group (febrile convulsion and urinary tract infection); all were resolved, and none were considered by the investigators to be vaccine related. PHiD-CV induced robust immune responses regardless of age at booster. Booster vaccination following 2 catch-up doses induced robust immune responses indicative of effective priming and immunological memory. (These studies have been registered at www.clinicaltrials.gov under registration no. NCT01030822 and NCT00814710; a protocol summary is available at www.gsk-clinicalstudyregister.com [study ID 112909]). Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Evaluation of actuator energy storage and power sources for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Young, Fred M.

    1993-01-01

    The objective of this evaluation is to determine an optimum energy storage/power source combination for electrical actuation systems for existing (Solid Rocket Booster (SRB), Shuttle) and future (Advanced Launch System (ALS), Shuttle Derivative) vehicles. Characteristic of these applications is the requirement for high power pulses (50-200 kW) for short times (milliseconds to seconds), coupled with longer-term base or 'housekeeping' requirements (5-16 kW). Specific study parameters (e.g., weight, volume, etc.) as stated in the proposal and specified in the Statement of Work (SOW) are included.

  12. 47 CFR 74.763 - Time of operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Booster Stations § 74.763 Time of operation. (a) A low power TV, TV translator, or TV booster station is... or TV booster station is expected to provide service to the extent that such is within its control... necessary. (c) Failure of a low power TV, TV translator, or TV booster station to operate for a period of 30...

  13. Competence in Lexical Boosters and Nativeness in Academic Writing of English: The Possible Relation

    ERIC Educational Resources Information Center

    Demir, Cüneyt

    2017-01-01

    Boosters are an important metadiscourse device for writers because it creates an emphatic impression in the reader. In addition, the competence of metadiscourse devices such as boosters is crucial in having native-fluency in academic writing. Therefore, this avoidance of using boosters may spawn foreignness in non-native writers' academic texts.…

  14. 47 CFR 74.763 - Time of operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Booster Stations § 74.763 Time of operation. (a) A low power TV, TV translator, or TV booster station is... or TV booster station is expected to provide service to the extent that such is within its control... necessary. (c) Failure of a low power TV, TV translator, or TV booster station to operate for a period of 30...

  15. 47 CFR 73.827 - Interference to the input signals of FM translator or FM booster stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... translator or FM booster stations. 73.827 Section 73.827 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Interference to the input signals of FM translator or FM booster stations. (a) An authorized LPFM station will not be permitted to continue to operate if an FM translator or FM booster station demonstrates that...

  16. 47 CFR 74.763 - Time of operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Booster Stations § 74.763 Time of operation. (a) A low power TV, TV translator, or TV booster station is... or TV booster station is expected to provide service to the extent that such is within its control... necessary. (c) Failure of a low power TV, TV translator, or TV booster station to operate for a period of 30...

  17. 47 CFR 73.827 - Interference to the input signals of FM translator or FM booster stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... translator or FM booster stations. 73.827 Section 73.827 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Interference to the input signals of FM translator or FM booster stations. (a) Interference to the direct... continue to operate if an FM translator or FM booster station demonstrates that the LPFM station is causing...

  18. 47 CFR 73.827 - Interference to the input signals of FM translator or FM booster stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... translator or FM booster stations. 73.827 Section 73.827 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Interference to the input signals of FM translator or FM booster stations. (a) An authorized LPFM station will not be permitted to continue to operate if an FM translator or FM booster station demonstrates that...

  19. 47 CFR 74.763 - Time of operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Booster Stations § 74.763 Time of operation. (a) A low power TV, TV translator, or TV booster station is... or TV booster station is expected to provide service to the extent that such is within its control... necessary. (c) Failure of a low power TV, TV translator, or TV booster station to operate for a period of 30...

  20. 47 CFR 73.827 - Interference to the input signals of FM translator or FM booster stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... translator or FM booster stations. 73.827 Section 73.827 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Interference to the input signals of FM translator or FM booster stations. (a) Interference to the direct... authorized LPFM station will not be permitted to continue to operate if an FM translator or FM booster...

  1. 47 CFR 73.3572 - Processing of TV broadcast, Class A TV broadcast, low power TV, TV translators, and TV booster...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... broadcast, low power TV, TV translators, and TV booster applications. 73.3572 Section 73.3572..., low power TV, TV translators, and TV booster applications. (a) Applications for TV stations are..., TV translator, and TV booster stations authorized under part 74 of this chapter, a major change is...

  2. 47 CFR 73.827 - Interference to the input signals of FM translator or FM booster stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... translator or FM booster stations. 73.827 Section 73.827 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Interference to the input signals of FM translator or FM booster stations. (a) An authorized LPFM station will not be permitted to continue to operate if an FM translator or FM booster station demonstrates that...

  3. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii.

    PubMed

    Pateraki, Irini; Andersen-Ranberg, Johan; Jensen, Niels Bjerg; Wubshet, Sileshi Gizachew; Heskes, Allison Maree; Forman, Victor; Hallström, Björn; Hamberger, Britta; Motawia, Mohammed Saddik; Olsen, Carl Erik; Staerk, Dan; Hansen, Jørgen; Møller, Birger Lindberg; Hamberger, Björn

    2017-03-14

    Forskolin is a unique structurally complex labdane-type diterpenoid used in the treatment of glaucoma and heart failure based on its activity as a cyclic AMP booster. Commercial production of forskolin relies exclusively on extraction from its only known natural source, the plant Coleus forskohlii , in which forskolin accumulates in the root cork. Here, we report the discovery of five cytochrome P450s and two acetyltransferases which catalyze a cascade of reactions converting the forskolin precursor 13 R -manoyl oxide into forskolin and a diverse array of additional labdane-type diterpenoids. A minimal set of three P450s in combination with a single acetyl transferase was identified that catalyzes the conversion of 13 R -manoyl oxide into forskolin as demonstrated by transient expression in Nicotiana benthamiana . The entire pathway for forskolin production from glucose encompassing expression of nine genes was stably integrated into Saccharomyces cerevisiae and afforded forskolin titers of 40 mg/L.

  4. Booster and higher antigen doses of inactivated influenza vaccine in HIV-infected patients.

    PubMed

    Johnston, Jessica A; Tincher, Lindsey B; Lowe, Denise K

    2013-12-01

    To review the literature regarding booster or higher doses of influenza antigen for increasing immunogenicity of inactivated influenza vaccine (IIV) in HIV-infected patients. MEDLINE (1966 to September 2013) was searched using the terms immunize, influenza, vaccine, and HIV or AIDS in combination with two-dose, booster-dose, increased antigen, or high-dose. One trial of booster dosing with standard doses (SDs) of IIV, trivalent (IIV3); 2 trials of booster dosing with intermediate doses (ID) of H1N1 IIV or IIV3; and 1 trial of high-dose (HD) IIV3 were identified. Trials administering 2-dose, booster-dose, or increased antigen of influenza vaccine to patients with HIV were reviewed. Because adjuvanted IIV is not available and IIV, quadrivalent was recently approved in the United States, studies evaluating these vaccines were excluded. HIV-infected individuals are at high risk for influenza-related complications; however, vaccination with SD IIV may not confer optimal protection. It has been postulated that booster or higher doses of influenza antigen may lead to increased immunogenicity. When ID and SD or ID with boosters were evaluated in HIV-infected patients, significant increases in surrogate markers for influenza protection were not achieved. However, HD IIV3 did result in significant increases in seroprotective antibody levels, though 'clinical' influenza was not evaluated. Currently, evidence is insufficient to reach conclusions about the efficacy of booster dosing, ID, or HD influenza vaccine in HIV-infected patients. Trials evaluating booster or higher-antigen doses of IIV for 'clinical' influenza are necessary before routinely recommending for HIV-infected patients.

  5. Safety and immunogenicity of a booster dose of a 3-antigen Staphylococcus aureus vaccine (SA3Ag) in healthy adults: A randomized phase 1 study.

    PubMed

    Marshall, Helen; Nissen, Michael; Richmond, Peter; Shakib, Sepehr; Jiang, Qin; Cooper, David; Rill, Denise; Baber, James; Eiden, Joseph; Gruber, William C; Jansen, Kathrin U; Anderson, Annaliesa S; Zito, Edward T; Girgenti, Douglas

    2016-11-01

    A 2-stage, phase 1, randomized, placebo-controlled study in healthy adults to assess immunogenicity and safety of a booster dose at three dose levels of a 3-antigen Staphylococcus aureus vaccine (SA3Ag) containing recombinant clumping factor A (ClfA) and capsular polysaccharides 5 and 8 (CP5 and CP8) conjugated to a diphtheria toxoid. Six months after initial single vaccination, in Stage 2, SA3Ag recipients were randomized (1:1) to booster vaccination or placebo, while Stage 1 placebo recipients received placebo again. Pre- and post-vaccination blood samples were analyzed. In Stage 2 (n = 345), pre-booster CP5 and CP8 titers remained high with no increase post-booster. ClfA titers remained high after initial vaccination and increased post-booster, approaching the peak response to the initial dose. Post-booster local reactions were more frequent and of greater severity than reported after the initial vaccination, particularly for the high-dose level recipients. Post hoc analysis showed no dose-response pattern and no obvious association between diphtheria toxoid titers and local reactions after initial or booster vaccination. Immune responses after the initial vaccination persisted for the 12 months studied, with little additional response after the booster dose at 6 months. Post-booster injection site reactions were more frequent and more severe but self-limiting. CLINICALTRIALS. NCT01018641. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  6. Pertussis Circulation Has Increased T-Cell Immunity during Childhood More than a Second Acellular Booster Vaccination in Dutch Children 9 Years of Age

    PubMed Central

    Schure, Rose-Minke; de Rond, Lia; Öztürk, Kemal; Hendrikx, Lotte; Sanders, Elisabeth; Berbers, Guy; Buisman, Anne-Marie

    2012-01-01

    Here we report the first evaluation of T-cell responses upon a second acellular pertussis booster vaccination in Dutch children at 9 years of age, 5 years after a preschool booster vaccination. Blood samples of children 9 years of age were studied longitudinally until 1 year after the second aP booster and compared with those after the first aP booster in children 4 and 6 years of age from a cross-sectional study. After stimulation with pertussis-vaccine antigens, Th1, Th2 and Th17 cytokine responses were measured and effector memory cells (CCR7-CD45RA-) were characterized by 8-colour FACS analysis. The second aP booster vaccination at pre-adolescent age in wP primed individuals did increase pertussis-specific Th1 and Th2 cytokine responses. Noticeably, almost all T-cell responses had increased with age and were already high before the booster vaccination at 9 years of age. The enhancement of T-cell immunity during the 5 year following the booster at 4 years of age is probably caused by natural boosting due to the a high circulation of pertussis. However, the incidence of pertussis is high in adolescents and adults who have only received the Dutch wP vaccine during infancy and no booster at 4 years of age. Therefore, an aP booster vaccination at adolescence or later in these populations might improve long-term immunity against pertussis and reduce the transmission to the vulnerable newborns. Trial Registration Controlled-Trials.com ISRCTN64117538 PMID:22860033

  7. Evaluation of Safe Kids Week 2004: Age 4 to 9? It's Booster Seat Time!

    PubMed Central

    Howard, A; Beben, N; Rothman, L; Fiissel, D; MacArthur, C

    2006-01-01

    Objective To assess the effectiveness of a national one week media campaign promoting booster seat use. Design Pre‐test, post‐test design based on nationally representative random digit dialing telephone survey, with control for exposure to campaign. Setting Canada. Subjects Parents of children aged 4–9 years. Interventions During a one week campaign in May 2004, information on booster seat use was distributed via a national media campaign, retail stores, medical clinics, and community events. Information included pamphlets with guidelines for booster seat use, as well as a growth chart (designed by Safe Kids Canada) to assist parents in determining if their child should be using a booster seat. Assessing seat belt fit was described in detail on the growth chart. Main outcome measures Knowledge, attitudes, and self‐reported behaviors regarding booster seat use. Results Respondents in the group exposed to the campaign were twice as likely to report using a booster seat with lap and shoulder belt for their child (47%), compared to those in the pre‐test (24%) and the unexposed (23%) groups (p<0.001). However, only small differences in general knowledge regarding booster seat use were found between the groups. Conclusions A one week national media campaign substantially increased self‐reported use of booster seats. Parents did not remember details of the campaign content, but did remember implications for their own child. PMID:17018673

  8. Promoting booster seat use for young children: A school-based intervention pilot study

    PubMed Central

    Mundle, Kim; Cramm, Camille F.; Williams, Devon P.

    2017-01-01

    Abstract Purpose: Misuse and/or lack of booster seat use are often associated with high rates of injury and death among school-aged children. This pilot study examined the efficacy and the potential effectiveness of a booster seat intervention in the classroom. Methods: Two elementary schools participated (randomly assigned as one intervention school and one control school). At the intervention school, a certified car seat specialist and a police officer held an interactive booster seat session. The height and age for each child were recorded. Children received a certificate indicating whether they met the requirements for booster seat use and a postcard with car seat restraint specifications. Children in the control school received a brochure on car seat safety. Pre- and post-intervention self-reports were collected and booster seat use was observed. Results: Observational findings showed a decline in booster seat use at the control school and an increase in use at the intervention school. Self-reports of booster seat use indicated a decline at both schools; however, cell sizes were too small to permit statistical analyses. Conclusion: Anecdotally researchers found the sessions were easy to conduct and were well received by the children and could be easily integrated into programming in schools. Classroom sessions may have the potential to positively influence booster seat use among 6- to 8-year-olds. PMID:29479188

  9. KSC-06pd1505

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - At the dock at Hangar AF, Cape Canaveral Air Force Station, workers move the spent solid rocket booster away from the SRB Retrieval Ship Liberty Star to an area beneath the straddle crane that will lift it out of the water. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  10. KSC-06pd1504

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - At the dock at Hangar AF, Cape Canaveral Air Force Station, workers move the spent solid rocket booster away from the SRB Retrieval Ship Liberty Star to an area beneath the straddle crane that will lift it out of the water. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  11. KSC-2009-2139

    NASA Image and Video Library

    2009-03-18

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, one of the solid rocket boosters used during space shuttle Discovery's launch March 15 on mission STS-119 is moved to an area beneath the straddle crane that will lift it out of the water. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea after a launch. The spent rockets were recovered by NASA's Solid Rocket Booster Retrieval Ships Freedom Star and Liberty Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  12. KSC-2009-2145

    NASA Image and Video Library

    2009-03-18

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, a solid rocket boosters used during space shuttle Discovery's launch from NASA's Kennedy Space Center in Florida March 15 on mission STS-119 waits in an area beneath the straddle crane that will lift it out of the water. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea after a launch. The spent rockets were recovered by NASA's Solid Rocket Booster Retrieval Ships Freedom Star and Liberty Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  13. KSC-08pd3736

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, workers prepare to move the spent solid rocket booster to the hangar for the safing process. It will be driven through the washing bay for a cleaning and rinsing. The booster is from space shuttle Endeavour, which launched Nov. 14 on the STS-126 mission. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  14. KSC-08pd3732

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, the spent solid rocket booster from space shuttle Endeavour's launch Nov. 14 on mission STS-126 is moved to an area beneath the straddle crane that will lift it out of the water. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The spent rocket was recovered by NASA's Solid Rocket Booster Retrieval Ship Freedom Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  15. [Safety and immunogenicity of a 7-valent pneumococcal conjugate vaccine (Prevenar) booster dose in healthy Chinese toddlers].

    PubMed

    Li, Rong-cheng; Li, Feng-xiang; Li, Yan-ping

    2009-06-01

    To evaluate the safety and immunogenicity of the booster dose of 7 valent pneumococcal conjugate vaccine (PCV7) to the healthy Chinese toddlers who had received 3 primary doses. Four hundred and eighty-eight Chinese toddlers received a booster dose of PCV7 at age of 12-15 months following a primary series of the vaccine given at ages 3, 4, 5 months separately with Diphtheria Tetanus Acellular Pertussis Combined Vaccine (DTaP) in Group 1 or concurrently with DTaP in Group 2. Following the booster dose immunization, each subject was followed up for 30 days to observe the safety of the vaccine. Blood samples were taken from a subset of subjects prior and post 30 days the booster dose immunization to evaluate immunogenicity. A high proportion of subjects in Group 1 (89%) and Group 2 (91%) remained afebrile after the booster dose. Local reactions to the PCV7 booster dose were generally mild. For each serotype, the rise in GMC (post-/pre-vaccination) showed a statistically significant difference (P<0.0001) between both groups. PCV7 administered as a booster dose is generally safe, well tolerate, and immunogenic in healthy Chinese toddlers.

  16. NASA's Space Launch System Booster Passes Major Milestone on Journey to Mars (QM-2)

    NASA Image and Video Library

    2016-06-28

    A booster for the most powerful rocket in the world, NASA’s Space Launch System (SLS), was fired up Tuesday, June 28 at 11:05 a.m. EDT for a second qualification ground test at Orbital ATK's test facilities in Promontory, Utah. This was the last full-scale test for the booster before SLS is ready in 2018 for the first uncrewed test flight with NASA’s Orion spacecraft, marking a key milestone on the agency’s Journey to Mars. The booster was tested at a cold motor conditioning target of 40 degrees Fahrenheit –the colder end of its accepted propellant temperature range. When ignited, temperatures inside the booster reached nearly 6,000 degrees. The two-minute, full-duration ground qualification test provided NASA with critical data on 82 qualification objectives that will support certification of the booster for flight. Engineers now will evaluate test data captured by more than 530 instrumentation channels on the booster.

  17. Analysis of delayed TBE-vaccine booster after primary vaccination.

    PubMed

    Aerssens, Annelies; Cochez, Christel; Niedrig, Matthias; Heyman, Paul; Kühlmann-Rabens, Ilona; Soentjens, Patrick

    2016-02-01

    An open, uncontrolled single centre study was conducted in the Travel Clinic at the Military Hospital, Brussels. Eighty-eight subjects were recruited who had a primary series of tick-borne encephalitis (TBE) vaccine more than 5 years ago and who never received a booster dose afterwards. Response rate after booster vaccination was very high: 84 out of 88 subjects (95.5%) had neutralizing antibodies on plaque reduction neutralization test and all (100%) had IgG antibodies on ELISA, on Day 21-28 after booster vaccination. This study adds valuable information to the common situation of delayed booster interval. The results of our study indicate that in young healthy travellers (<50 years), one booster vaccination after a primary series of TBE vaccine in the past is sufficient to obtain protective antibodies, even if primary vaccination is much longer than the recommended booster interval of 5 years. © International Society of Travel Medicine, 2016. All rights reserved.For permissions, please e-mail: journals.permissions@oup.com.

  18. Design of 3 GeV booster ring lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etisken, O., E-mail: ozgur.etisken@cern.ch; Ciftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch

    2016-03-25

    The aim of this study is to design of a 3 GeV booster ring for the 3 GeV storage ring. Electrons are needed to be accelerated to 3.0 GeV from 0.15 GeV energy. In this frame, we studied on two options for booster ring; a compact booster and the booster that shares the same tunnel with the storage ring. The lattice type has been chosen FODO for both options, lattice parameters are calculated, sextupole magnets are used to decrease dynamic aperture problem and dynamic aperture calculations are also made with considering of the necessary conditions. After designing and calculating ofmore » the parameters, these designs have been compared with each other. In addition to this comparison, these booster design parameters have been compared with some world centers design parameters and the reliability of the booster design is seen. Beam optics, OPA and Elegant simulation programs have been used in the study calculations.« less

  19. A study of two statistical methods as applied to shuttle solid rocket booster expenditures

    NASA Technical Reports Server (NTRS)

    Perlmutter, M.; Huang, Y.; Graves, M.

    1974-01-01

    The state probability technique and the Monte Carlo technique are applied to finding shuttle solid rocket booster expenditure statistics. For a given attrition rate per launch, the probable number of boosters needed for a given mission of 440 launches is calculated. Several cases are considered, including the elimination of the booster after a maximum of 20 consecutive launches. Also considered is the case where the booster is composed of replaceable components with independent attrition rates. A simple cost analysis is carried out to indicate the number of boosters to build initially, depending on booster costs. Two statistical methods were applied in the analysis: (1) state probability method which consists of defining an appropriate state space for the outcome of the random trials, and (2) model simulation method or the Monte Carlo technique. It was found that the model simulation method was easier to formulate while the state probability method required less computing time and was more accurate.

  20. Aerodynamic characterisation and trajectory simulations for the Ariane-5 booster recovery system

    NASA Astrophysics Data System (ADS)

    Meiboom, F. P.

    One of the most critical aspects of the early phases of the development of the Ariane-5 booster recovery system was the determination of the behavior of the booster during its atmospheric reentry, since this behavior determines the start conditions for the parachute system elements. A combination of wind-tunnel tests (subsonic and supersonic) and analytical methods was applied to define the aerodynamic characteristics of the booster. This aerodynamic characterization in combination with information of the ascent trajectory, atmospheric properties and booster mass and inertia were used as input for the 6-DOF trajectory simulations of the vehicle. Uncertainties in aerodynamic properties and deviations in atmospheric and booster properties were incorporated to define the range of initial conditions for the parachute system, utilizing stochastic (Monte-Carlo) methods.

  1. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media view forward booster segments (painted green) for NASA’s Space Launch System rocket boosters inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS rocket boosters. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  2. Closeup view of the Solid Rocket Booster Frustum and Nose ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster Frustum and Nose Cap assembly undergoing preparations and assembly procedures in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center. The Nose Cap contains the Pilot and Drogue Chutes and the Frustum contains the three Main Parachutes, Altitude Switches and forward booster Separation Motors. In this view the assembly is rotated so that the four Separation Motors are in view and aligned with the approximate centerline of the image. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. 30 CFR 57.22207 - Booster fans (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Booster fans (I-A, II-A, III, and V-A mines... NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22207 Booster fans (I-A, II-A, III, and V-A mines). (a) Booster fans shall be approved by MSHA under the applicable...

  4. 30 CFR 57.22207 - Booster fans (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Booster fans (I-A, II-A, III, and V-A mines... NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22207 Booster fans (I-A, II-A, III, and V-A mines). (a) Booster fans shall be approved by MSHA under the applicable...

  5. 30 CFR 57.22207 - Booster fans (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Booster fans (I-A, II-A, III, and V-A mines... NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22207 Booster fans (I-A, II-A, III, and V-A mines). (a) Booster fans shall be approved by MSHA under the applicable...

  6. 30 CFR 57.22207 - Booster fans (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Booster fans (I-A, II-A, III, and V-A mines... NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22207 Booster fans (I-A, II-A, III, and V-A mines). (a) Booster fans shall be approved by MSHA under the applicable...

  7. Anti-pertussis antibody kinetics following DTaP-IPV booster vaccination in Norwegian children 7-8 years of age.

    PubMed

    Aase, Audun; Herstad, Tove Karin; Jørgensen, Silje Bakken; Leegaard, Truls Michael; Berbers, Guy; Steinbakk, Martin; Aaberge, Ingeborg

    2014-10-14

    At the age of 7-8 years a booster of diphtheria, tetanus, acellular pertussis and polio vaccine is recommended for children in Norway. In this cross-sectional study we have analysed the antibody levels against pertussis vaccine antigens in sera from 498 children aged 6-12 years. The purposes of this study were to investigate the duration of the booster response against the pertussis vaccine antigens pertussis toxin (PT) and filamentous haemagglutinin (FHA); to determine the presence of high levels of pertussis antibodies in absence of recent vaccination; and to analyse how booster immunisation may interfere with the serological pertussis diagnostics. Prior to the booster the IgG antibody levels against PT revealed a geometric mean of 7.3IU/ml. After the booster the geometric mean peak anti-PT IgG response reached to 45.6IU/ml, followed by a steady decline in antibody levels over the next few years. The IgG anti-FHA levels followed the anti-PT IgG profiles. Three years after the booster the geometric mean IgG levels were only slightly above pre-booster levels. Prior to the booster 44% of the sera contained ≤5IU/ml of anti-PT IgG compared to18% 3 years after and 30% 4 years after the booster. When recently vaccinated children were excluded, 6.2% of the children had anti-PT IgG levels above 50IU/ml which may indicate pertussis infection within the last 2 years. This study indicates that the currently used acellular pertussis vaccines induce moderate immune responses to the pertussis antigens and that the antibodies wane within few years after the booster. This lack of sustained immune response may partly be responsible for the increased number of pertussis cases observed in this age group during the last years. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Prevalence and predictors of booster seat use in Alberta, Canada.

    PubMed

    Golonka, Richard P; Dobbs, Bonnie M; Rowe, Brian H; Voaklander, Don

    2016-08-15

    To determine the prevalence of booster seat misuse in a Canadian province and identify determinants of non-use. A cross-sectional study using parking lot interviews and in-vehicle restraint inspections by trained staff was conducted at 67 randomly selected childcare centres across Alberta. Only booster-eligible children were included in this analysis. Odds ratios (OR) and 95% confidence intervals (CI) are reported using unadjusted and adjusted logistic regression. Overall, 23% of children were not in a booster seat, and in 31.8% of cases there was evidence of at least one misuse. Non-use increased significantly by age, from 22.2% for children 2 years of age to 47.8% for children 7 years of age (p = 0.02). Children who were at significantly increased risk of booster seat non-use were those in vehicles with drivers who could not recall the booster seat to seatbelt transition point (OR: 4.54; 95% CI: 2.05-10.06) or drivers who were under the age of 30 (OR: 3.54; 95% CI: 1.45-8.62). A front row seating position was also associated with significantly higher risk of nonuse (OR: 18.00; 95% CI: 2.78-116.56). Children in vehicles with grandparent drivers exhibited significantly decreased risk of booster seat non-use (OR: 0.21; 95% CI: 0.05-0.85). Messaging should continue to stress that the front seat is not a safe place for any child under the age of 9 as well as remind drivers of the booster seat to seatbelt transition point, with additional emphasis placed on appealing to parents under the age of 30. Future research should focus on the most effective means of communicating booster seat information to this group. Enacting mandatory booster seat legislation would be an important step to increase both awareness and proper use of booster seats in Alberta.

  9. Different Dynamics for IgG and IgA Memory B Cells in Adolescents following a Meningococcal Serogroup C Tetanus Toxoid Conjugate Booster Vaccination Nine Years after Priming: A Role for Priming Age?

    PubMed Central

    Stoof, Susanne P.; Buisman, Anne-Marie; van Rooijen, Debbie M.; Boonacker, Rianne; van der Klis, Fiona R. M.; Sanders, Elisabeth A. M.; Berbers, Guy A. M.

    2015-01-01

    Background Antibody levels wane rapidly after Meningococcal serogroup C conjugate (MenCC) vaccination in young children, rendering the need for an adolescent booster dose. It is not clear whether circulating memory B cells are associated with persistence of MenC-specific antibody levels. Methods Measurement of MenC-specific IgG and IgA memory B cells and levels of serum and salivary MenC-specific IgG and IgA in healthy 10-, 12- and 15-year-olds prior to and one month and one year after a MenCC booster vaccination. All participants had received a primary MenCC vaccination nine years earlier. Results The number of circulating MenC-specific IgG memory B cells prior to booster was low and not predictive for MenC-specific IgG responses in serum or saliva post-booster, whereas the number of MenC-specific IgA memory B cells pre-booster positively correlated with MenC-specific IgA levels in saliva post-booster (R = 0.5, P<0.05). The booster induced a clear increase in the number of MenC-specific IgG and IgA memory B cells. The number of MenC-PS-specific IgG memory B cells at 1 month post-booster was highest in the 12-year-olds. The number of MenC-specific memory B cells at one month post-booster showed no correlation with the rate of MenC-specific antibody decay throughout the first year post-booster. Conclusions Circulating MenC-specific IgA memory B cells correlate with IgA responses in saliva, whereas circulating MenC-specific IgG memory B cells are not predictive for MenC-specific IgG responses in serum or saliva. Our results are suggestive for age-dependent differences in pre-existing memory against MenC. PMID:26458006

  10. Different Dynamics for IgG and IgA Memory B Cells in Adolescents following a Meningococcal Serogroup C Tetanus Toxoid Conjugate Booster Vaccination Nine Years after Priming: A Role for Priming Age?

    PubMed

    Stoof, Susanne P; Buisman, Anne-Marie; van Rooijen, Debbie M; Boonacker, Rianne; van der Klis, Fiona R M; Sanders, Elisabeth A M; Berbers, Guy A M

    2015-01-01

    Antibody levels wane rapidly after Meningococcal serogroup C conjugate (MenCC) vaccination in young children, rendering the need for an adolescent booster dose. It is not clear whether circulating memory B cells are associated with persistence of MenC-specific antibody levels. Measurement of MenC-specific IgG and IgA memory B cells and levels of serum and salivary MenC-specific IgG and IgA in healthy 10-, 12- and 15-year-olds prior to and one month and one year after a MenCC booster vaccination. All participants had received a primary MenCC vaccination nine years earlier. The number of circulating MenC-specific IgG memory B cells prior to booster was low and not predictive for MenC-specific IgG responses in serum or saliva post-booster, whereas the number of MenC-specific IgA memory B cells pre-booster positively correlated with MenC-specific IgA levels in saliva post-booster (R = 0.5, P<0.05). The booster induced a clear increase in the number of MenC-specific IgG and IgA memory B cells. The number of MenC-PS-specific IgG memory B cells at 1 month post-booster was highest in the 12-year-olds. The number of MenC-specific memory B cells at one month post-booster showed no correlation with the rate of MenC-specific antibody decay throughout the first year post-booster. Circulating MenC-specific IgA memory B cells correlate with IgA responses in saliva, whereas circulating MenC-specific IgG memory B cells are not predictive for MenC-specific IgG responses in serum or saliva. Our results are suggestive for age-dependent differences in pre-existing memory against MenC.

  11. KSC-08pd0872

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the mobile service tower at left approaches the Delta II rocket at right. The solid rocket boosters in the tower will be mated with the rocket, which will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will be mated with the rocket to help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  12. KSC-08pd0873

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the mobile service tower at left approaches the Delta II rocket at right. The solid rocket boosters in the tower will be mated with the rocket, which will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will be mated with the rocket to help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  13. 47 CFR 74.1281 - Station records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FM Broadcast Booster Stations § 74.1281 Station records. (a) The licensee of a station authorized... booster, except that the station records of a booster or translator licensed to the licensee of the...

  14. 47 CFR 74.1281 - Station records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FM Broadcast Booster Stations § 74.1281 Station records. (a) The licensee of a station authorized... booster, except that the station records of a booster or translator licensed to the licensee of the...

  15. 47 CFR 74.1281 - Station records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FM Broadcast Booster Stations § 74.1281 Station records. (a) The licensee of a station authorized... booster, except that the station records of a booster or translator licensed to the licensee of the...

  16. 47 CFR 74.1281 - Station records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FM Broadcast Booster Stations § 74.1281 Station records. (a) The licensee of a station authorized... booster, except that the station records of a booster or translator licensed to the licensee of the...

  17. Advanced Integrated Multi-sensor Surveillance (AIMS). Mission, Function, Task Analysis

    DTIC Science & Technology

    2007-06-01

    flaps, elevators and rudder control surfaces are based on conventional mechanical systems, using dual hydraulic boosters. Trim tabs are provided for... dumping the solid waste overboard it is difficult to determine its source. When an oil slick has been detected, the crew attempts to discover the...NAVCOM advises helicopter of on-scene weather, elevation, flight conditions and salient terrain features which may impact hoisting requirements

  18. Booster Seat Effectiveness Among Older Children: Evidence From Washington State.

    PubMed

    Anderson, D Mark; Carlson, Lindsay L; Rees, Daniel I

    2017-08-01

    The American Academy of Pediatrics has recommended that children as old as 12 years use a booster seat when riding in motor vehicles, yet little is known about booster seat effectiveness when used by older children. This study estimated the association between booster use and injuries among children aged 8-12 years who were involved in motor vehicle crashes. Researchers analyzed data on all motor vehicle crashes involving children aged 8-12 years reported to the Washington State Department of Transportation from 2002 to 2015. Data were collected in 2015 and analyzed in 2016. Children who were in a booster seat were compared with children restrained by a seat belt alone. Logistic regression was used to adjust for potential confounders. In unadjusted models, booster use was associated with a 29% reduction in the odds of experiencing any injury versus riding in a seat belt alone (OR=0.709, 95% CI=0.675, 0.745). In models adjusted for potential confounders, booster use was associated with a 19% reduction in the odds of any injury relative to riding in a seat belt alone (OR=0.814, 95% CI=0.749, 0.884). The risk of experiencing an incapacitating/fatal injury was not associated with booster use. Children aged 8-12 years involved in a motor vehicle crash are less likely to be injured if in a booster than if restrained by a seat belt alone. Because only 10% of U.S. children aged 8-12 years use booster seats, policies encouraging their use could lead to fewer injuries. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Lessons learned for follow-up phone booster counseling calls with substance abusing emergency department patients.

    PubMed

    Donovan, Dennis M; Hatch-Maillette, Mary A; Phares, Melissa M; McGarry, Ernest; Peavy, K Michelle; Taborsky, Julie

    2015-03-01

    Post-visit "booster" sessions have been recommended to augment the impact of brief interventions delivered in the emergency department (ED). This paper, which focuses on implementation issues, presents descriptive information and interventionists' qualitative perspectives on providing brief interventions over the phone, challenges, "lessons learned", and recommendations for others attempting to implement adjunctive booster calls. Attempts were made to complete two 20-minute telephone "booster" calls within a week following a patient's ED discharge with 425 patients who screened positive for and had recent problematic substance use other than alcohol or nicotine. Over half (56.2%) of participants completed the initial call; 66.9% of those who received the initial call also completed the second call. Median number of attempts to successfully contact participants for the first and second calls were 4 and 3, respectively. Each completed call lasted an average of about 22 minutes. Common challenges/barriers identified by booster callers included unstable housing, limited phone access, unavailability due to additional treatment, lack of compensation for booster calls, and booster calls coming from an area code different than the participants' locale and from someone other than ED staff. Specific recommendations are presented with respect to implementing a successful centralized adjunctive booster call system. Future use of booster calls might be informed by research on contingency management (e.g., incentivizing call completions), smoking cessation quitlines, and phone-based continuing care for substance abuse patients. Future research needs to evaluate the incremental benefit of adjunctive booster calls on outcomes over and above that of brief motivational interventions delivered in the ED setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Shuttle Upgrade Using 5-Segment Booster (FSB)

    NASA Technical Reports Server (NTRS)

    Sauvageau, Donald R.; Huppi, Hal D.; McCool, A. A. (Technical Monitor)

    2000-01-01

    In support of NASA's continuing effort to improve the over-all safety and reliability of the Shuttle system- a 5-segment booster (FSB) has been identified as an approach to satisfy that overall objective. To assess the feasibility of a 5-segment booster approach, NASA issued a feasibility study contract to evaluate the potential of a 5-segment booster to improve the overall capability of the Shuttle system, especially evaluating the potential to increase the system reliability and safety. In order to effectively evaluate the feasibility of the 5-segment concept, a four-member contractor team was established under the direction of NASA Marshall Space Flight Center (MSFC). MSFC provided the overall program oversight and integration as well as program contractual management. The contractor team consisted of Thiokol, Boeing North American Huntington Beach (BNA), Lockheed Martin Michoud Space Systems (LMMSS) and United Space Alliance (USA) and their subcontractor bd Systems (Control Dynamics Division, Huntsville, AL). United Space Alliance included the former members of United Space Booster Incorporated (USBI) who managed the booster element portion of the current Shuttle solid rocket boosters. Thiokol was responsible for the overall integration and coordination of the contractor team across all of the booster elements. They were also responsible for all of the motor modification evaluations. Boeing North American (BNA) was responsible for all systems integration analyses, generation of loads and environments. and performance and abort mode capabilities. Lockheed Martin Michoud Space Systems (LMMSS) was responsible for evaluating the impacts of any changes to the booster on the external tank (ET), and evaluating any design changes on the external tank necessary to accommodate the FSB. USA. including the former USBI contingent. was responsible for evaluating any modifications to facilities at the launch site as well as any booster component design modifications.

  1. Superconducting racetrack booster for the ion complex of MEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filatov, Yu; Kondratenko, A. M.; Kondratenko, M. A.

    2016-02-01

    The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c.more » The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex.« less

  2. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    The right-hand aft skirt, one part of the aft booster assembly for NASA’s Space Launch System solid rocket boosters, is in view in a processing cell inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS rocket boosters. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  3. Viscoelastic propellant effects on Space Shuttle Dynamics

    NASA Technical Reports Server (NTRS)

    Bugg, F.

    1981-01-01

    The program of solid propellant research performed in support of the space shuttle dynamics modeling effort is described. Stiffness, damping, and compressibility of the propellant and the effects of many variables on these properties are discussed. The relationship between the propellant and solid rocket booster dynamics during liftoff and boost flight conditions and the effects of booster vibration and propellant stiffness on free free solid rocket booster modes are described. Coupled modes of the shuttle system and the effect of propellant stiffness on the interfaces of the booster and the external tank are described. A finite shell model of the solid rocket booster was developed.

  4. Space shuttle phase B wind tunnel model and test information. Volume 1: Booster configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. This is Volume 1 (Part 2) of the report -- Booster Configuration.

  5. Space shuttle phase B wind tunnel model and test information. Volume 1: Booster configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. This is Volume 1 (Part 1) of the report -- Booster Configuration.

  6. Did two booster doses for schoolchildren change the epidemiology of pertussis in Israel?

    PubMed

    Anis, Emilia; Moerman, Larisa; Ginsberg, Gary; Karakis, Isabella; Slater, Paul E; Warshavsky, Bruce; Gosinov, Ruslan; Grotto, Itamar; Marva, Esther

    2018-05-28

    Pertussis is the only vaccine-preventable disease that has re-emerged in Israel. In the last two decades, despite high primary immunization coverage, crude incidence increased over tenfold, with especially high morbidity among infants and adolescents and with 19 infant deaths. Two pertussis vaccine boosters were added, in 2005 for 7-year-olds and in 2011 for 13-year-olds. We reviewed age group incidence from 1999 to 2016, before and after the booster program introduction. We compared three groups of 13-15 year-olds with identical primary immunization but different booster immunization histories. Vaccine effectiveness was calculated before and after adjustment for specific incidence in those aged 65 and over. Two years after one booster, adjusted vaccine effectiveness was 74.5%. Two years after two boosters, adjusted vaccine effectiveness was 91.8%. However, crude morbidity rates were not reduced. The booster program has been effective only among recipient groups. The program will be continued. Israel is now encouraging pregnant women to be vaccinated against pertussis to improve protection of infants.

  7. Perpendicular Biased Ferrite Tuned Cavities for the Fermilab Booster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, Gennady; Awida, Mohamed; Khabiboulline, Timergali

    2014-07-01

    The aging Fermilab Booster RF system needs an upgrade to support future experimental program. The important feature of the upgrade is substantial enhancement of the requirements for the accelerating cavities. The new requirements include enlargement of the cavity beam pipe aperture, increase of the cavity voltage and increase in the repetition rate. The modification of the present traditional parallel biased ferrite cavities is rather challenging. An alternative to rebuilding the present Fermilab Booster RF cavities is to design and construct new perpendicular biased RF cavities, which potentially offer a number of advantages. An evaluation and a preliminary design of themore » perpendicular biased ferrite tuned cavities for the Fermilab Booster upgrade is described in the paper. Also it is desirable for better Booster performance to improve the capture of beam in the Booster during injection and at the start of the ramp. One possible way to do that is to flatten the bucket by introducing second harmonic cavities into the Booster. This paper also looks into the option of using perpendicularly biased ferrite tuners for the second harmonic cavities.« less

  8. Counterrotatable booster compressor assembly for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Moniz, Thomas Ory (Inventor); Orlando, Robert Joseph (Inventor)

    2004-01-01

    A counterrotatable booster compressor assembly for a gas turbine engine having a counterrotatable fan section with a first fan blade row connected to a first drive shaft and a second fan blade row axially spaced from the first fan blade row and connected to a second drive shaft, the counterrotatable booster compressor assembly including a first compressor blade row connected to the first drive shaft and a second compressor blade row interdigitated with the first compressor blade row and connected to the second drive shaft. A portion of each fan blade of the second fan blade row extends through a flowpath of the counterrotatable booster compressor so as to function as a compressor blade in the second compressor blade row. The counterrotatable booster compressor further includes a first platform member integral with each fan blade of the second fan blade row at a first location so as to form an inner flowpath for the counterrotatable booster compressor and a second platform member integral with each fan blade of the second fan blade row at a second location so as to form an outer flowpath for the counterrotatable booster compressor.

  9. 7. VIEW OF BOOSTER STATION 3, FACING NORTHWEST Nevada ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF BOOSTER STATION 3, FACING NORTHWEST - Nevada Test Site, Frenchman Flat Test Facility, Well Five Booster Stations, Intersection of 5-03 Road & Short Pole Line Road, Area 5, Frenchman Flat, Mercury, Nye County, NV

  10. 2. VIEW OF BOOSTER STATION 1, FACING NORTHEAST Nevada ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF BOOSTER STATION 1, FACING NORTHEAST - Nevada Test Site, Frenchman Flat Test Facility, Well Five Booster Stations, Intersection of 5-03 Road & Short Pole Line Road, Area 5, Frenchman Flat, Mercury, Nye County, NV

  11. 11. VIEW OF BOOSTER STATION 4, FACING SOUTHEAST Nevada ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF BOOSTER STATION 4, FACING SOUTHEAST - Nevada Test Site, Frenchman Flat Test Facility, Well Five Booster Stations, Intersection of 5-03 Road & Short Pole Line Road, Area 5, Frenchman Flat, Mercury, Nye County, NV

  12. 10. VIEW OF BOOSTER STATION 4, FACING NORTHWEST Nevada ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF BOOSTER STATION 4, FACING NORTHWEST - Nevada Test Site, Frenchman Flat Test Facility, Well Five Booster Stations, Intersection of 5-03 Road & Short Pole Line Road, Area 5, Frenchman Flat, Mercury, Nye County, NV

  13. 1. VIEW OF BOOSTER STATION 1, FACING SOUTHWEST Nevada ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF BOOSTER STATION 1, FACING SOUTHWEST - Nevada Test Site, Frenchman Flat Test Facility, Well Five Booster Stations, Intersection of 5-03 Road & Short Pole Line Road, Area 5, Frenchman Flat, Mercury, Nye County, NV

  14. 8. VIEW OF BOOSTER STATION 3, FACING SOUTHEAST Nevada ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF BOOSTER STATION 3, FACING SOUTHEAST - Nevada Test Site, Frenchman Flat Test Facility, Well Five Booster Stations, Intersection of 5-03 Road & Short Pole Line Road, Area 5, Frenchman Flat, Mercury, Nye County, NV

  15. 4. VIEW OF BOOSTER STATION 2, FACING NORTHWEST Nevada ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF BOOSTER STATION 2, FACING NORTHWEST - Nevada Test Site, Frenchman Flat Test Facility, Well Five Booster Stations, Intersection of 5-03 Road & Short Pole Line Road, Area 5, Frenchman Flat, Mercury, Nye County, NV

  16. 5. VIEW OF BOOSTER STATION 2, FACING SOUTHEAST Nevada ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF BOOSTER STATION 2, FACING SOUTHEAST - Nevada Test Site, Frenchman Flat Test Facility, Well Five Booster Stations, Intersection of 5-03 Road & Short Pole Line Road, Area 5, Frenchman Flat, Mercury, Nye County, NV

  17. Space Shuttle Five-Segment Booster (Short Course)

    NASA Technical Reports Server (NTRS)

    Graves, Stanley R.; Rudolphi, Michael (Technical Monitor)

    2002-01-01

    NASA is considering upgrading the Space Shuttle by adding a fifth segment (FSB) to the current four-segment solid rocket booster. Course materials cover design and engineering issues related to the Reusable Solid Rocket Motor (RSRM) raised by the addition of a fifth segment to the rocket booster. Topics cover include: four segment vs. five segment booster, abort modes, FSB grain design, erosive burning, enhanced propellant burn rate, FSB erosive burning model development and hardware configuration.

  18. KSC-2011-1836

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, and its crew are preparing to recover the left spent booster from the Atlantic Ocean. The round objects on deck are large pumping machines that will be attached to the booster by a hose that will blow out debris and water and then pump in air so the booster can float horizontally on the water's surface for towing back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  19. Clinical and economic assessment of different general population strategies of pertussis vaccine booster regarding number of doses and age of application for reducing whooping cough disease burden: a systematic review.

    PubMed

    Rodríguez-Cobo, Iria; Chen, Yen-Fu; Olowokure, Babatunde; Litchfield, Ian

    2008-12-09

    Pertussis continues to be an important cause of morbidity and mortality in children too young to be fully protected despite high vaccination coverage. This has been attributed to waning immunity in older people, leading to the development of strategies to increase levels of immunity. A systematic review was conducted to assess the clinical and cost effectiveness of four population-based strategies for pertussis booster vaccination: single booster at 12-24 months old, single pre-school booster, single adolescent booster and multiple boosters in adulthood every 10 years. Electronic databases and Internet resources were searched to June 2006. Nine observational studies, four mathematical models and eight economic evaluations were included, evaluating four different strategies. Strong evidence to recommend any of these strategies was not found.

  20. Long-term booster schedules with AS03A-adjuvanted heterologous H5N1 vaccines induces rapid and broad immune responses in Asian adults.

    PubMed

    Gillard, Paul; Chu, Daniel Wai Sing; Hwang, Shinn-Jang; Yang, Pan-Chyr; Thongcharoen, Prasert; Lim, Fong Seng; Dramé, Mamadou; Walravens, Karl; Roman, François

    2014-03-15

    The pandemic potential of avian influenza A/H5N1 should not be overlooked, and the continued development of vaccines against these highly pathogenic viruses is a public health priority. This open-label extension booster study followed a Phase III study of 1206 adults who had received two 3.75 μg doses of primary AS03A-adjuvanted or non-adjuvanted H5N1 split-virus vaccine (A/Vietnam/1194/2004; clade 1) (NCT00449670). The aim of the extension study was to evaluate different timings for heterologous AS03A-adjuvanted booster vaccination (A/Indonesia/5/2005; clade 2.1) given at Month 6, 12, or 36 post-primary vaccination. Immunogenicity was assessed 21 days after each booster vaccination and the persistence of immune responses against the primary vaccine strain (A/Vietnam) and the booster strain (A/Indonesia) was evaluated up to Month 48 post-primary vaccination. Reactogenicity and safety were also assessed. After booster vaccination given at Month 6, HI antibody responses to primary vaccine, and booster vaccine strains were markedly higher with one dose of AS03A-H5N1 booster vaccine in the AS03A-adjuvanted primary vaccine group compared with two doses of booster vaccine in the non-adjuvanted primary vaccine group. HI antibody responses were robust against the primary and booster vaccine strains 21 days after boosting at Month 12 or 36. At Month 48, in subjects boosted at Month 6, 12, or 36, HI antibody titers of ≥1:40 against the booster strain persisted in 39.2%, 61.2%, and 95.6% of subjects, respectively. Neutralizing antibody responses and cell-mediated immune responses also showed that AS03A-H5N1 heterologous booster vaccination elicited robust immune responses within 21 days of boosting at Month 6, 12, or 36 post-primary vaccination. The booster vaccine was well tolerated, and no safety concerns were raised. In Asian adults primed with two doses of AS03A-adjuvanted H5N1 pandemic influenza vaccine, strong cross-clade anamnestic antibody responses were observed after one dose of AS03A-H5N1 heterologous booster vaccine given at Month 6, 12, or 36 after priming, suggesting that AS03A-adjuvanted H5N1 vaccines may provide highly flexible prime-boost schedules. Although immunogenicity decreased with time, vaccinated populations could potentially be protected for up to three years after vaccination, which is likely to far exceed the peak of the a pandemic.

  1. Long-term booster schedules with AS03A-adjuvanted heterologous H5N1 vaccines induces rapid and broad immune responses in Asian adults

    PubMed Central

    2014-01-01

    Background The pandemic potential of avian influenza A/H5N1 should not be overlooked, and the continued development of vaccines against these highly pathogenic viruses is a public health priority. Methods This open-label extension booster study followed a Phase III study of 1206 adults who had received two 3.75 μg doses of primary AS03A-adjuvanted or non-adjuvanted H5N1 split-virus vaccine (A/Vietnam/1194/2004; clade 1) (NCT00449670). The aim of the extension study was to evaluate different timings for heterologous AS03A-adjuvanted booster vaccination (A/Indonesia/5/2005; clade 2.1) given at Month 6, 12, or 36 post-primary vaccination. Immunogenicity was assessed 21 days after each booster vaccination and the persistence of immune responses against the primary vaccine strain (A/Vietnam) and the booster strain (A/Indonesia) was evaluated up to Month 48 post-primary vaccination. Reactogenicity and safety were also assessed. Results After booster vaccination given at Month 6, HI antibody responses to primary vaccine, and booster vaccine strains were markedly higher with one dose of AS03A-H5N1 booster vaccine in the AS03A-adjuvanted primary vaccine group compared with two doses of booster vaccine in the non-adjuvanted primary vaccine group. HI antibody responses were robust against the primary and booster vaccine strains 21 days after boosting at Month 12 or 36. At Month 48, in subjects boosted at Month 6, 12, or 36, HI antibody titers of ≥1:40 against the booster strain persisted in 39.2%, 61.2%, and 95.6% of subjects, respectively. Neutralizing antibody responses and cell-mediated immune responses also showed that AS03A-H5N1 heterologous booster vaccination elicited robust immune responses within 21 days of boosting at Month 6, 12, or 36 post-primary vaccination. The booster vaccine was well tolerated, and no safety concerns were raised. Conclusions In Asian adults primed with two doses of AS03A-adjuvanted H5N1 pandemic influenza vaccine, strong cross-clade anamnestic antibody responses were observed after one dose of AS03A-H5N1 heterologous booster vaccine given at Month 6, 12, or 36 after priming, suggesting that AS03A-adjuvanted H5N1 vaccines may provide highly flexible prime–boost schedules. Although immunogenicity decreased with time, vaccinated populations could potentially be protected for up to three years after vaccination, which is likely to far exceed the peak of the a pandemic. PMID:24628789

  2. Verification of surface preparation for adhesive bonding

    NASA Technical Reports Server (NTRS)

    Myers, Rodney S.

    1995-01-01

    A survey of solid rocket booster (SRB) production operations identified potential contaminants which might adversely affect bonding operations. Lap shear tests quantified these contaminants' effects on adhesive strength. The most potent contaminants were selected for additional studies on SRB thermal protection system (TPS) bonding processes. Test panels were prepared with predetermined levels of contamination, visually inspected using white and black light, then bonded with three different TPS materials over the unremoved contamination. Bond test data showed that white and black light inspections are adequate inspection methods for TPS bonding operations. Extreme levels of contamination (higher than expected on flight hardware) had an insignificant effect on TPS bond strengths because of the apparent insensitivity of the adhesive system to contamination effects, and the comparatively weak cohesive strength of the TPS materials.

  3. BOOSTER CHLORINATION FOR MANAGING DISINFECTANT RESIDUALS

    EPA Science Inventory

    Booster chlorination is an approach to residual maintenance in which chlorine is applied at strategic locations within the distribution system. Situations in which booster chlorination may be most effective for maintaining a residual are explained informally in the context of a ...

  4. Identifying information that promotes belt-positioning booster use. Volume 2, Appendices

    DOT National Transportation Integrated Search

    2008-07-01

    Many parents with low educational attainment prematurely graduate their children to seat belt restraint rather than use belt-positioning booster seats. This study aimed to identify interventions that promoted booster seat use among this population. F...

  5. 9. VIEW OF BOOSTER STATION 3 INTERIOR, FACING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF BOOSTER STATION 3 INTERIOR, FACING NORTHEAST - Nevada Test Site, Frenchman Flat Test Facility, Well Five Booster Stations, Intersection of 5-03 Road & Short Pole Line Road, Area 5, Frenchman Flat, Mercury, Nye County, NV

  6. 6. VIEW OF BOOSTER STATION 2 INTERIOR, FACING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF BOOSTER STATION 2 INTERIOR, FACING WEST - Nevada Test Site, Frenchman Flat Test Facility, Well Five Booster Stations, Intersection of 5-03 Road & Short Pole Line Road, Area 5, Frenchman Flat, Mercury, Nye County, NV

  7. 12. VIEW OF BOOSTER STATION 4 INTERIOR, FACING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF BOOSTER STATION 4 INTERIOR, FACING SOUTHWEST - Nevada Test Site, Frenchman Flat Test Facility, Well Five Booster Stations, Intersection of 5-03 Road & Short Pole Line Road, Area 5, Frenchman Flat, Mercury, Nye County, NV

  8. 3. VIEW OF BOOSTER STATION 1 INTERIOR, FACING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF BOOSTER STATION 1 INTERIOR, FACING EAST - Nevada Test Site, Frenchman Flat Test Facility, Well Five Booster Stations, Intersection of 5-03 Road & Short Pole Line Road, Area 5, Frenchman Flat, Mercury, Nye County, NV

  9. Credit BG. Interior of Deluge Water Booster Station displaying highcapacity ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Interior of Deluge Water Booster Station displaying high-capacity electrically driven water pumps for fire fighting service - Edwards Air Force Base, North Base, Deluge Water Booster Station, Northeast of A Street, Boron, Kern County, CA

  10. Space shuttle system program definition. Volume 4: Cost and schedule report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The supporting cost and schedule data for the second half of the Space Shuttle System Phase B Extension Study is summarized. The major objective for this period was to address the cost/schedule differences affecting final selection of the HO orbiter space shuttle system. The contending options under study included the following booster launch configurations: (1) series burn ballistic recoverable booster (BRB), (2) parallel burn ballistic recoverable booster (BRB), (3) series burn solid rocket motors (SRM's), and (4) parallel burn solid rocket motors (SRM's). The implications of varying payload bay sizes for the orbiter, engine type for the ballistics recoverable booster, and SRM motors for the solid booster were examined.

  11. Closeup view of the Solid Rocket Booster (SRB) Forward Skirt, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster (SRB) Forward Skirt, Frustum and Nose Cap mated assembly undergoing final preparations in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center. In this view the access panel on the Forward Skirt is removed and you can see a small portion of the interior of the Forward Skirt. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. STS-26 solid rocket booster post flight structural assessment

    NASA Technical Reports Server (NTRS)

    Herda, David A.; Finnegan, Charles J.

    1988-01-01

    A post flight assessment of the Space Shuttle's Solid Rocket Boosters was conducted at the John F. Kennedy Space Center in Florida after the launch of STS-26. The two boosters were inspected for structural damage and the results of this inspection are presented. Overall, the boosters were in good condition. However, there was some minor damage attributed to splash down. Some of this damage is a recurring problem. Explanations of these problems are provided.

  13. NASA SLS Booster Nozzle Plug Pieces Fly During Test

    NASA Image and Video Library

    2016-06-28

    On June 28, a test version of the booster that will help power NASA's new rocket, the Space Launch System, fired up at nearly 6,000 degrees Fahrenheit for a successful, two-minute qualification test at Orbital ATK's test facilities in Promontory, Utah. This video shows the booster's nozzle plug intentionally breaking apart. The smoky ring coming off the booster is condensed water vapor created by a pressure difference between the motor gas and normal air. The nozzle plug is an environmental barrier to prevent heat, dust and moisture from getting inside the booster before it ignites. The plug isn't always part of a static test but was included on this one due to changes made to the hardware. The foam on the plug is denser than previous NASA launch vehicles, as the engines are now in the same plane as the boosters. A numbered grid was placed on the exterior of the plug before the test so the pieces retrieved could support plug breakup assessment and reconstruction. Along with video, collecting the pieces helps determine the size and speed of them when they break apart. Nozzle plug pieces were found as far as 1,500 to 2,000 feet away from the booster. This is the last full-scale qualification test for the booster before the first, uncrewed flight of SLS with the Orion spacecraft in 2018.

  14. Evaluation of a Booster Intervention Three Years after Acute Treatment for Early-Onset Disruptive Behavior Disorders

    PubMed Central

    Lindhiem, Oliver; Hart, Jonathan; Bukstein, Oscar G.

    2013-01-01

    This study examines the impact of a brief booster treatment administered three years after the delivery of an acute treatment in a group (N = 118) of clinically referred boys and girls (ages 6 to 11) originally diagnosed with Oppositional Defiant Disorder (ODD) or Conduct Disorder (CD). At the conclusion of the acute treatment and three-year follow-up period (i.e., study month 42), the sample was re-randomized into Booster treatment or Enhanced Usual Care and then assessed at four later timepoints (i.e., post-booster, and 6-, 12- and 24-month booster follow-up). Booster treatment was directed towards addressing individualized problems and some unique developmental issues of adolescence based on the same original protocol content and treatment setting, whereas the no-booster condition involved providing clinical recommendations based on the assessment and an outside referral for services. HLM analyses identified no significant group differences and few time effects across child, parent, and teacher reports on a broad range of child functioning and impairment outcomes. Analyses examining the role of putative moderators or mediators (e.g., severity of externalizing behavior, dose of treatment) were likewise non-significant. We discuss the nature and implications of these novel findings regarding the role and timing of booster treatment to address the continuity of DBD over time. PMID:23494526

  15. Antibody persistence of two pentavalent DTwP-HB-Hib vaccines to the age of 15-18 months, and response to the booster dose of quadrivalent DTwP-Hib vaccine.

    PubMed

    Sharma, Hitt; Yadav, Sangeeta; Lalwani, Sanjay; Kapre, Subhash; Jadhav, Suresh; Parekh, Sameer; Palkar, Sonali; Ravetkar, Satish; Bahl, Sunil; Kumar, Rakesh; Shewale, Sunil

    2013-01-07

    Antibody persistence in children following three doses of primary vaccination with diphtheria, tetanus, whole-cell-pertussis (DTwP), hepatitis B, and Haemophilus influenzae type b (Hib) vaccines (SIIL Pentavac vaccine vs. Easyfive(®) of Panacea Biotec), and response to the booster dose of DTwP-Hib (Quadrovax(®)) vaccine. Children who completed their primary immunization were assessed for antibodies at 15-18 months of age, and then given a booster dose of DTwP-Hib vaccine. Reactogenicity and safety of the booster dose was evaluated. Both pentavalent vaccines demonstrated a good immune response at 15-18 months. Following the booster dose, all vaccinated subjects achieved protective titers against diphtheria, tetanus and Hib, whereas the response to pertussis antigen was ~78%. Fever and irritability was noted in 24%, local pain in 51%, and swelling in 36% of the children following booster dose. Primary immunization with either pentavalent vaccine induced an excellent immunity lasting till the second year of life. A booster dose with DTwP-Hib (Quadrovax(®)) vaccine effectuated a good anamnestic response to all vaccine components, being specially strong for Hib in children previously vaccinated with SIIL liquid pentavalent vaccine (Pentavac(®)). Also, the safety profile of SIIL quadrivalent vaccine (Quadrovax(®)) administered as booster dose was acceptable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Advanced Photon Source accelerator ultrahigh vacuum guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Noonan, J.

    1994-03-01

    In this document the authors summarize the following: (1) an overview of basic concepts of ultrahigh vacuum needed for the APS project, (2) a description of vacuum design and calculations for major parts of APS, including linac, linac waveguide, low energy undulator test line, positron accumulator ring (PAR), booster synchrotron ring, storage ring, and insertion devices, and (3) cleaning procedures of ultrahigh vacuum (UHV) components presently used at APS.

  17. Identifying information that promotes belt-positioning booster use. Volume 1, Summary and findings

    DOT National Transportation Integrated Search

    2008-07-01

    Many parents with low educational attainment prematurely graduate their children to seat belt restraint rather than use belt-positioning booster seats. This study aimed to identify interventions that promoted booster seat use among this population. F...

  18. 13. VIEW OF BOOSTER STATION 4 CHLORINATOR INTERIOR, FACING NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF BOOSTER STATION 4 CHLORINATOR INTERIOR, FACING NORTH - Nevada Test Site, Frenchman Flat Test Facility, Well Five Booster Stations, Intersection of 5-03 Road & Short Pole Line Road, Area 5, Frenchman Flat, Mercury, Nye County, NV

  19. Predictors of Booster Response to Hepatitis B Vaccine at 15 years of age: A Cross-Sectional School-Based Study.

    PubMed

    Chen, Yu-Sheng; Chu, Chia-Hsiang; Wang, Jen-Hung; Lin, Jun-Song; Chang, Yung-Chieh

    2016-08-01

    The current consensus does not support the use of booster dose because of its anamnestic response in almost all children 15 years after universal infant hepatitis B virus (HBV) vaccination. However, in our clinical setting, numerous concerned parents request a booster administration for their children. We aimed to provide the possible predictors of booster response in adolescents before this booster administration. This study comprised a series of cross-sectional serological surveys of HBV markers in 15-year-old individuals between 2008 and 2012. Data on serum hepatitis B surface antigen, hepatitis B surface antibody (anti-HBs), and liver-function biomarkers in a total of 887 senior high-school students were collected. There were two parts to this study: HBV seroepidemiology and booster-response analysis to identify the possible response predictors and decay factors after the HBV booster administration. The overall anti-HBs and hepatitis B surface antigen seropositivity rates were 34.7% and 0.7%, respectively, and the median anti-HBs titer was 3.3 mIU/mL. Six weeks after one dose of recombinant HBV vaccine, the overall booster-response rate in the double-seronegative recipients was 94% (471/501). Among the participants whose initial anti-HBs titers were undetectable or low, 72.4% (247/341) and 95.6% (153/160), respectively, reactivated their anti-HBs titers ≥ 100 mIU/mL about 6 weeks after the booster administration. The likelihood of postbooster anti-HBs titer reaching an adequate protective level increased with the prebooster titer. The female participants had stronger anamnestic responses compared to the male participants. We found that the female participants and prebooster anti-HBs titers above the detection limit of the immunoassay were good predictors of HBV booster response. Copyright © 2015. Published by Elsevier B.V.

  20. HLA-DPB1 and anti-HBs titer kinetics in hepatitis B booster recipients who completed primary hepatitis B vaccination during infancy.

    PubMed

    Wu, T-W; Chu, C-C; Liao, H-W Chang; Lin, S-K; Ho, T-Y; Lin, M; Lin, H H; Wang, L-Y

    2014-01-01

    Previously we reported significant associations of the human leukocyte antigen (HLA)-DPB1 05:01 with memory against hepatitis B (HB) vaccination. However, the effects of HLA-DPB1 on antibodies to hepatitis B surface antigen (anti-HBs) kinetics were not explored. We followed up a cohort of 1974 HB booster recipients and quantified their 1-month and 1-year post-booster anti-HBs titers. A total of 681 subjects were randomly selected and typed for HLA-DPB1. We found that male subjects, undetectable pre-booster titers, and 05:01 homozygotes led to significantly lower post-booster anti-HBs titers. The geometric means (95% confidence interval (CI)) of 1-month post-booster anti-HBs titers were 4.68 (2.69-8.12), 23.01 (14.96-35.40) and 50.06 (27.20-92.13) mIU ml(-1) for subjects carrying two, one and no HLA-DPB1 05:01 allele. The corresponding figures for 1-year post-booster anti-HBs titers were 1.26 (0.73-2.18), 4.72 (3.08-7.25) and 7.32 (3.75-13.56) mIU ml(-1). There were significant associations of post-booster anti-HBs titers with the number of HLA-DPB1 risk and protective alleles. Among booster responders, anti-HBs decay rates were significantly reduced in subjects who had detectable pre-booster anti-HBs titers and the HLA-DPB1 05:01 allele. Our results indicated that HLA-DPB1 influences the kinetics of anti-HBs. The long-term memory against hepatitis B surface antigen (HBsAg) and the residual serum titers of anti-HBs after HB vaccination may be influenced by different mechanisms as evidenced by their inverse trend of associations with the 05:01 allele.

  1. Persistence of antibodies six years after booster vaccination with inactivated vaccine against Japanese encephalitis.

    PubMed

    Paulke-Korinek, Maria; Kollaritsch, Herwig; Kundi, Michael; Zwazl, Ines; Seidl-Friedrich, Claudia; Jelinek, Tomas

    2015-07-09

    Japanese Encephalitis (JE) virus occurs in wide regions of Asia with over 3 billion people living in areas at risk for JE. An estimated 68,000 clinical cases of JE occur every year, and vaccination is the most effective prophylactic measure. One internationally licensed vaccine containing the inactivated JE virus strain SA14-14-2 is Ixiaro (Valneva, Austria). According to recommendations, basic immunization consists of vaccinations on day 0, day 28, and a booster dose 12-24 months later. Protection in terms of neutralizing antibody titers has been assessed up to 12 months after the third dose of the vaccine. The current investigation was designed to evaluate antibody decline over time and to predict long-term duration of seroprotection after a booster dose. In a preceding trial, volunteers received basic immunization (day 0, day 28) and one booster dose against JE 15 months later. A follow up blood draw 6 years following their booster dose was carried out in 67 subjects. For antibody testing, a 50% plaque reduction neutralization test (PRNT50-test) was used. PRNT50 values of 10 and above are surrogate levels of protection according to WHO standards. Seventy-six months following the booster dose, 96% of the tested subjects had PRNT50 titers of 10 or higher. Geometric mean titer (GMT) was 148 (95% CI confidence interval: 107-207). Antibody titers were lower in volunteers 50 years of age and older. Vaccination history against other flaviviruses (yellow fever or tick borne encephalitis) did not significantly influence PRNT50 titers. A two-step log-linear decline model predicted protection against JE of approximately 14 years after the booster dose. Six years after a booster dose against JE, long-term protection could be demonstrated. According to our results, further booster doses should be scheduled 10 years following the first booster dose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Antibody persistence and the effect of a booster dose given 5, 10 or 15 years after vaccinating preadolescents with a recombinant hepatitis B vaccine.

    PubMed

    Gilca, Vladimir; De Serres, Gaston; Boulianne, Nicole; Murphy, Donald; De Wals, Philippe; Ouakki, Manale; Trudeau, Gisele; Massé, Richard; Dionne, Marc

    2013-01-07

    The persistence of antibody obtained post-vaccination of preadolescents with three doses of Engerix-B and the effect of a booster administered 5, 10 or 15 years later were monitored in 663 vaccinees. Five, 10 and 15 years post-vaccination >94% of subjects had detectable antibodies and 88.2%, 86.4% and 76.7% had a titre ≥10 IU/L; GMTs were 269 IU/L, 169 IU/L and 51 IU/L, respectively; 99.1-100% vaccinees reached a titre ≥10 IU/l post-booster. GMTs were 118012 IU/L, 32477 IU/L, and 13946 IU/L when the booster was administered 5, 10 or 15 years post-vaccination, respectively. We conclude that vaccination induces immunity in the great majority of vaccinees for at least 15 years. The response to a booster dose suggests persistence of immune memory in almost all vaccinees. Although a booster dose increases substantially anti-HBs titres, the clinical relevance of such an increase remains unknown. These results do not support the need of a booster for at least 15 years when vaccinating preadolescents with Engerix-B. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Identifying strategies to improve the effectiveness of booster seat laws

    DOT National Transportation Integrated Search

    2008-05-01

    The objective of this project was to identify strategies to improve the effectiveness of booster seat laws. The project explored the possible factors that relate to the use and nonuse of booster seats, and examined the attitudes of law enforcement of...

  4. Booster seat law enforcement : examples from Delaware, New Jersey, Pennsylvania, and Washington.

    DOT National Transportation Integrated Search

    2010-02-01

    The objective of this study was to evaluate the implementation of State booster seat laws : (enhanced child restraint laws) and examine the most effective strategies that law enforcement agencies can : use to enforce booster seat laws. The research i...

  5. Space transportation booster engine configuration study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and to explore innovative approaches to the follow-on full-scale development (FSD) phase for the STBE.

  6. Impact of Booster Breaks and Computer Prompts on Physical Activity and Sedentary Behavior Among Desk-Based Workers: A Cluster-Randomized Controlled Trial.

    PubMed

    Taylor, Wendell C; Paxton, Raheem J; Shegog, Ross; Coan, Sharon P; Dubin, Allison; Page, Timothy F; Rempel, David M

    2016-11-17

    The 15-minute work break provides an opportunity to promote health, yet few studies have examined this part of the workday. We studied physical activity and sedentary behavior among office workers and compared the results of the Booster Break program with those of a second intervention and a control group to determine whether the Booster Break program improved physical and behavioral health outcomes. We conducted a 3-arm, cluster-randomized controlled trial at 4 worksites in Texas from 2010 through 2013 to compare a group-based, structured Booster Break program to an individual-based computer-prompt intervention and a usual-break control group; we analyzed physiologic, behavioral, and employee measures such as work social support, quality of life, and perceived stress. We also identified consistent and inconsistent attendees of the Booster Break sessions. We obtained data from 175 participants (mean age, 43 y; 67% racial/ethnic minority). Compared with the other groups, the consistent Booster Break attendees had greater weekly pedometer counts (P < .001), significant decreases in sedentary behavior and self-reported leisure-time physical activity (P < .001), and a significant increase in triglyceride concentrations (P = .02) (levels remained within the normal range). Usual-break participants significantly increased their body mass index, whereas Booster Break participants maintained body mass index status during the 6 months. Overall, Booster Break participants were 6.8 and 4.3 times more likely to have decreases in BMI and weekend sedentary time, respectively, than usual-break participants. Findings varied among the 3 study groups; however, results indicate the potential for consistent attendees of the Booster Break intervention to achieve significant, positive changes related to physical activity, sedentary behavior, and body mass index.

  7. Cost Effectiveness of a Shingles Vaccine Booster for Currently Vaccinated Adults in the U.S.

    PubMed

    Le, Phuc; Rothberg, Michael B

    2017-12-01

    The Advisory Committee on Immunization Practices recommends a single dose of the live attenuated herpes zoster vaccine in people aged ≥60 years. Because vaccine-induced protection decreases to zero after 10 years, many vaccinated people will soon be subject to an increased risk of the disease. The study objective was to determine the cost effectiveness of a herpes zoster vaccine booster and its optimal timing among immunocompetent adults first vaccinated at aged ≥60 years. A Markov model was built to follow vaccinated individuals for a lifetime. From the societal perspective, costs and quality-adjusted life years were compared between no booster versus booster options. A booster was given any time between 1 and 20 years after the first dose, and for those who had the first dose at different ages: 60, 70, and 80 years. Because people entered the model already vaccinated, costs and side effects of the first dose were not included. The booster was assumed to have the same efficacy and waning rate as the initial vaccination. Model inputs were based on published literature. A cost effectiveness threshold of $100,000/quality-adjusted life year was used. The analysis was conducted in 2016. Cost effectiveness of a booster varied by age and time since vaccination. The booster cost <$100,000/quality-adjusted life year if given >5 years after the initial dose, but was most cost effective at around 10 years. The finding was robust to wide variations in model inputs. Under current assumptions, a booster dose of herpes zoster vaccine would be cost effective for all vaccinated people 10 years after initial vaccination. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Impact of Booster Breaks and Computer Prompts on Physical Activity and Sedentary Behavior Among Desk-Based Workers: A Cluster-Randomized Controlled Trial

    PubMed Central

    Paxton, Raheem J.; Shegog, Ross; Coan, Sharon P.; Dubin, Allison; Page, Timothy F.; Rempel, David M.

    2016-01-01

    Introduction The 15-minute work break provides an opportunity to promote health, yet few studies have examined this part of the workday. We studied physical activity and sedentary behavior among office workers and compared the results of the Booster Break program with those of a second intervention and a control group to determine whether the Booster Break program improved physical and behavioral health outcomes. Methods We conducted a 3-arm, cluster-randomized controlled trial at 4 worksites in Texas from 2010 through 2013 to compare a group-based, structured Booster Break program to an individual-based computer-prompt intervention and a usual-break control group; we analyzed physiologic, behavioral, and employee measures such as work social support, quality of life, and perceived stress. We also identified consistent and inconsistent attendees of the Booster Break sessions. Results We obtained data from 175 participants (mean age, 43 y; 67% racial/ethnic minority). Compared with the other groups, the consistent Booster Break attendees had greater weekly pedometer counts (P < .001), significant decreases in sedentary behavior and self-reported leisure-time physical activity (P < .001), and a significant increase in triglyceride concentrations (P = .02) (levels remained within the normal range). Usual-break participants significantly increased their body mass index, whereas Booster Break participants maintained body mass index status during the 6 months. Overall, Booster Break participants were 6.8 and 4.3 times more likely to have decreases in BMI and weekend sedentary time, respectively, than usual-break participants. Conclusion Findings varied among the 3 study groups; however, results indicate the potential for consistent attendees of the Booster Break intervention to achieve significant, positive changes related to physical activity, sedentary behavior, and body mass index. PMID:27854422

  9. Response to booster doses of hepatitis B vaccine among young adults who had received neonatal vaccination.

    PubMed

    Chan, Paul K S; Ngai, Karry L K; Lao, Terence T; Wong, Martin C S; Cheung, Theresa; Yeung, Apple C M; Chan, Martin C W; Luk, Scotty W C

    2014-01-01

    Newborns who have received hepatitis B immunization in 1980s are now young adults joining healthcare disciplines. The need for booster, pre- and post-booster checks becomes a practical question. The aim of this study is to refine the HBV vaccination policy for newly admitted students in the future. A prospective study on medical and nursing school entrants to evaluate hepatitis B serostatus and the response to booster doses among young adults. Among 212 students, 17-23-year-old, born after adoption of neonatal immunization, 2 (0.9%) were HBsAg positive, 40 (18.9%) were anti-HBs positive. At 1 month after a single-dose booster for anti-HBs-negative students, 14.5% had anti-HBs <10 mIU/mL, 29.0% and 56.5% were 10-100 and >100 mIU/mL, respectively. The anti-HBs levels were significantly higher for females than males (mean [SD]: 431 [418] vs. 246 [339] mIU/mL, P = 0.047). At 2-4 month after the third booster dose, 97.1% had anti-HBs >100 mIU/mL and 2.9% had 10-100 mIU/mL. Pre-booster check is still worthwhile to identify carriers among newly recruited healthcare workers born after adoption of neonatal immunization. A 3-dose booster, rather than a single dose, is required for the majority to achieve an anti-HBs level >100 mIU/mL, as memory immunity has declined in a substantial proportion of individuals. Cost-effectiveness of post-booster check for anti-HBs is low and should be further evaluated based on contextual specific utilization of results.

  10. The association between booster seat use and risk of death among motor vehicle occupants aged 4-8: a matched cohort study.

    PubMed

    Rice, T M; Anderson, C L; Lee, A S

    2009-12-01

    To estimate the effectiveness of booster seats and of seatbelts in reducing the risk of child death during traffic collisions and to examine possible effect modification by various collision and vehicle characteristics. A matched cohort study was conducted using data from the Fatality Analysis Reporting System. Death risk ratios were estimated with conditional Poisson regression, bootstrapped coefficient standard errors, and multiply imputed missing values using chained equations. Estimated death risk ratios for booster seats used with seatbelts were 0.33 (95% CI 0.28 to 0.40) for children age 4-5 years and 0.45 (0.31 to 0.63) for children aged 6-8 years (Wald test of homogeneity p<0.005). The estimated risk ratios for seatbelt used alone were similar for the two age groups, 0.37 (0.32 to 0.43) and 0.39 (0.34 to 0.44) for ages 4-5 and 6-8, respectively (Wald p = 0.61). Estimated booster seat effectiveness was significantly greater for inbound seating positions (Wald p = 0.05) and during rollovers collisions (Wald p = 0.01). Significant variability in risk ratio estimates was not observed across levels of calendar year, vehicle model year, vehicle type, or land use. Seatbelts, used with or without booster seats, are highly effective in preventing death among motor vehicle occupants aged 4-8 years. Booster seats do not appear to improve the performance of seatbelts with respect to preventing death (risk ratio 0.92, 95% CI 0.79 to 1.08, comparing seatbelts with boosters to seatbelts alone), but because several studies have found that booster seats reduce non-fatal injury severity, clinicians and injury prevention specialists should continue to recommend the use of boosters to parents of young children.

  11. The qualification of the shuttle booster separation motors

    NASA Technical Reports Server (NTRS)

    Chase, C. A.; Fisher, K. M.; Eoff, W.

    1978-01-01

    Four booster separation motors (BSM) located at each end of every solid rocket booster (SRB) provide the needed side force to separate the boosters from the external tank at booster burnout. Four BSMs at the top of the SRB are located in a box pattern in the nose cone frustum. The four BSMs at the aft end of the SRB are arranged side-by-side on the SRB aft skirt. Aspects of BSM design and performance are considered, taking into account a motor design/performance summary, the case design, the insulation, the grain design, the nozzle/aft closure design, the ignition system, the propellant, and the motor assembly. Details of motor testing are also discussed, giving attention to development testing, qualification testing, and flight testing.

  12. Longitudinal emittance measurements in the Booster and AGS during the 2014 RHIC gold run

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeno, K.

    2014-08-18

    This note describes longitudinal emittance measurements that were made in the Booster and AGS during the 2014 RHIC Gold run. It also contains an overview of the longitudinal aspects of their setup during this run. Each bunch intended for RHIC is composed of beam from 4 Booster cycles, and there are two of them per AGS cycle. For each of the 8 Booster cycles required to produce the 2 bunches in the AGS, a beam pulse from EVIS is injected into the Booster and captured in four h=4 buckets. Then those bunches are accelerated to a porch where they aremore » merged into 2 bunches and then into 1 bunch.« less

  13. Study on the Structures of Two Booster Pellets Having High Initiation Capacity

    NASA Astrophysics Data System (ADS)

    Shuang-Qi, Hu; Hong-Rong, Liu; Li-shuang, Hu; Xiong, Cao; Xiang-Chao, Mi; Hai-Xia, Zhao

    2014-05-01

    Insensitive munitions (IM) improve the survivability of both weapons and their associated platforms, which can lead to a reduction in casualties, mission losses, and whole life costs. All weapon systems contain an explosive train that needs to meet IM criteria but reliably initiate a main charge explosive. To ensure that these diametrically opposed requirements can be achieved, new highly effective booster charge structures were designed. The initiation capacity of the two booster pellets was studied using varied composition and axial-steel-dent methods. The results showed that the two new booster pellets can initiate standard main charge pellets with less explosive mass than the ordinary cylindrical booster pellet. The numerical simulation results were in good agreement with the experiment results.

  14. KSC-2011-1886

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The Solid Rocket Booster Retrieval Ship Freedom Star tows a booster to the dock at Hangar AF on Cape Canaveral Air Force Station in Florida. The booster was used during space shuttle Discovery's STS-133 launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  15. KSC-2011-1859

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- The right spent booster from shuttle Discovery's final launch is seen bobbing in the Atlantic Ocean. Crew members from Liberty Star, one of NASA's solid rocket booster retrieval ships, will recover the parachute and tow the booster back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  16. Closeup view of the Solid Rocket Booster (SRB) Frustum mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster (SRB) Frustum mounted on ground support equipment in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center as it is being prepared to be mated with the Nose Cap and Forward Skirt. The Frustum contains the three Main Parachutes, Altitude Switches and forward booster Separation Motors. The Separation Motors burn for one second to ensure the SRBs drift away from the External Tank and Orbiter at separation. The three main parachutes are deployed to reduce speed as the SRBs descend to a splashdown in the Atlantic Ocean where they are recovered refurbished and reused. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  17. High-speed velocity measurements on an EFI-system

    NASA Astrophysics Data System (ADS)

    Prinse, W. C.; van't Hof, P. G.; Cheng, L. K.; Scholtes, J. H. G.

    2007-01-01

    For the development of an Exploding Foil Initiator for Insensitive Munitions applications the following topics are of interest: the electrical circuit, the exploding foil, the velocity of the flyer, the driver explosive, the secondary flyer and the acceptor explosive. Several parameters of the EFI have influences on the velocity of the flyer. To investigate these parameters a Fabry-Perot Velocity Interferometer System (F-PVIS) has been used. The light to and from the flyer is transported by a multimode fibre terminated with a GRIN-lens. By this method the velocity of very tiny objects (0.1 mm), can be measured. The velocity of flyer can be recorded with nanosecond resolution, depending on the Fabry-Perot etalon and the streak camera. With this equipment the influence of the dimensions of the exploding foil and the flyer on the velocity and the acceleration of the flyer are investigated. Also the integrity of the flyer during flight can be analyzed. To characterize the explosive material, to be used as driver explosive in EFI's, the initiation behaviour of the explosive has been investigated by taking pictures of the explosion with a high speed framing and streak camera. From these pictures the initiation distance and the detonation behaviour of the explosive has been analyzed. Normally, the driver explosive initiates the acceptor explosive (booster) by direct contact. This booster explosive is embedded in the main charge of the munitions. The combination of initiator, booster explosive and main charge explosive is called the detonation train. In this research the possibility of initiation of the booster by an intermediate flyer is investigated. This secondary flyer can be made of different materials, like aluminium, steel and polyester with different sizes. With the aid of the F-PVIS the acceleration of the secondary flyer is investigated. This reveals the influence of the thickness and density of the flyer on the acceleration and final velocity. Under certain circumstances the flyer breaks up in several parts and several velocities at the same time have been recorded. Several flyer materials and dimensions exist that are able to initiate very insensitive explosives like TATB.

  18. Safety for Your Child: 6 Years

    MedlinePlus

    ... the street without a grown-up. And Remember Car Safety Your child must now use a booster seat in the car. Always check to be sure that he or ... in the booster seat before you start the car. Your child should use a booster seat until ...

  19. General view of a fully assembled Solid Rocket Booster sitting ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a fully assembled Solid Rocket Booster sitting atop the Mobile Launch Platform in the Vehicle Assembly Building at Kennedy Space Center - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. 47 CFR 74.1232 - Eligibility and licensing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1232 Eligibility and licensing requirements. (a... incurred by installing, repairing, or making adjustments to equipment. (f) An FM broadcast booster station... the booster station will retransmit, to serve areas within the protected contour of the primary...

  1. 47 CFR 74.635 - Unattended operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stations, and TV microwave booster stations may be operated unattended under the following conditions: (1... persons; (3) TV relay stations, TV STL stations, TV translator relay stations, and TV microwave booster..., an STL station (and any TV microwave booster station) associated with a TV broadcast station operated...

  2. 47 CFR 74.635 - Unattended operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... stations, and TV microwave booster stations may be operated unattended under the following conditions: (1... persons; (3) TV relay stations, TV STL stations, TV translator relay stations, and TV microwave booster..., an STL station (and any TV microwave booster station) associated with a TV broadcast station operated...

  3. Shuttle Boosters stacked in the VAB

    NASA Image and Video Library

    2007-01-04

    Workers continue stacking the solid rocket boosters in highbay 1 inside Kennedy Space Center's Vehicle Assembly Building. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.

  4. 47 CFR 74.1232 - Eligibility and licensing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1232 Eligibility and licensing requirements. (a... incurred by installing, repairing, or making adjustments to equipment. (f) An FM broadcast booster station... the booster station will retransmit, to serve areas within the protected contour of the primary...

  5. 47 CFR 74.635 - Unattended operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stations, and TV microwave booster stations may be operated unattended under the following conditions: (1... persons; (3) TV relay stations, TV STL stations, TV translator relay stations, and TV microwave booster..., an STL station (and any TV microwave booster station) associated with a TV broadcast station operated...

  6. 47 CFR 74.635 - Unattended operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... stations, and TV microwave booster stations may be operated unattended under the following conditions: (1... persons; (3) TV relay stations, TV STL stations, TV translator relay stations, and TV microwave booster..., an STL station (and any TV microwave booster station) associated with a TV broadcast station operated...

  7. 47 CFR 74.1232 - Eligibility and licensing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1232 Eligibility and licensing requirements. (a... incurred by installing, repairing, or making adjustments to equipment. (f) An FM broadcast booster station... the booster station will retransmit, to serve areas within the protected contour of the primary...

  8. 47 CFR 74.1250 - Transmitters and associated equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1250 Transmitters and associated equipment. (a) FM translator and booster transmitting apparatus, and exciters employed to provide a locally generated and modulated input signal to translator and booster equipment, used by stations authorized under the provisions...

  9. 47 CFR 74.1250 - Transmitters and associated equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1250 Transmitters and associated equipment. (a) FM translator and booster transmitting apparatus, and exciters employed to provide a locally generated and modulated input signal to translator and booster equipment, used by stations authorized under the provisions...

  10. 47 CFR 74.1250 - Transmitters and associated equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1250 Transmitters and associated equipment. (a) FM translator and booster transmitting apparatus, and exciters employed to provide a locally generated and modulated input signal to translator and booster equipment, used by stations authorized under the provisions...

  11. 47 CFR 74.1250 - Transmitters and associated equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1250 Transmitters and associated equipment. (a) FM translator and booster transmitting apparatus, and exciters employed to provide a locally generated and modulated input signal to translator and booster equipment, used by stations authorized under the provisions...

  12. Design and prototype tests of a large-aperture 37-53 MHz ferrite-tuned booster synchrotron cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark S. Champion et al.

    The Booster synchrotron at Fermilab employs eighteen 37-53 MHz ferrite-tuned double-gap coaxial radiofrequency cavities for acceleration of protons from 400 MeV to 8 GeV. The cavities have an aperture of 2.25 inches and operate at 55 kV per cavity. Future high duty factor operation of the Booster will be problematic due to unavoidable beam loss at the cavities resulting in excessive activation. The power amplifiers, high maintenance items, are mounted directly to the cavities in the tunnel. A proposed replacement for the Booster, the Proton Driver, will utilize the Booster radiofrequency cavities and requires not only a larger aperture, butmore » also higher voltage. A research and development program is underway at Fermilab to modify the Booster cavities to provide a 5-inch aperture and a 20% voltage increase. A prototype has been constructed and high power tests have bee completed. The cavity design and test results is presented.« less

  13. A randomized clinical trial on the effectiveness of a reintegration training program versus booster sessions after short-term inpatient psychotherapy.

    PubMed

    Thunnissen, Moniek; Duivenvoorden, Hugo; Busschbach, Jan; Hakkaart-van Roijen, Leona; van Tilburg, Willem; Verheul, Roel; Trijsburg, Wim

    2008-10-01

    Although several studies show symptomatic improvements in patients with personality disorders after short-term inpatient psychotherapy, reintegration remains difficult. In this study the effectiveness of a specifically designed reintegration training program is investigated. One hundred twenty-eight patients were randomized to either a reintegration training program aimed at improving general functioning and work resumption, or booster sessions. Outcome measures used were symptom level, work status, absence from and impediments at work. The results showed that compliance in the booster session group was significantly better than in the reintegration training program. The percentage of persons with a paid job increased during the booster sessions from 64 to 87%, but not during the reintegration training (76%). There were no differences in the other outcome measures. We concluded that reintegration training was not more (cost)-effective than booster sessions. Our hypothesis is that continuity of care (same therapists and program) explains the favorable results of the booster sessions.

  14. ION BEAM POLARIZATION DYNAMICS IN THE 8 GEV BOOSTER OF THE JLEIC PROJECT AT JLAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratenko, A. M.; Kondratenko, M. A.; Morozov, Vasiliy

    2016-05-01

    In the Jefferson Lab’s Electron-Ion Collider (JLEIC) project, an injector of polarized ions into the collider ring is a superconducting 8 GeV booster. Both figure-8 and racetrack booster versions were considered. Our analysis showed that the figure-8 ring configuration allows one to preserve the polarization of any ion species during beam acceleration using only small longitudinal field with an integral less than 0.5 Tm. In the racetrack booster, to pre-serve the polarization of ions with the exception of deu-terons, it suffices to use a solenoidal Siberian snake with a maximum field integral of 30 Tm. To preserve deuteron polarization, wemore » propose to use arc magnets for the race-track booster structure with a field ramp rate of the order of 1 T/s. We calculate deuteron and proton beam polari-zations in both the figure-8 and racetrack boosters includ-ing alignment errors of their magnetic elements using the Zgoubi code.« less

  15. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2000-04-03

    This is a computer generated image of a Shuttle launch utilizing 2nd generation Reusable Launch Vehicle (RLV) flyback boosters, a futuristic concept that is currently undergoing study by NASA's Space Launch Initiative (SLI) Propulsion Office, managed by the Marshall Space Fight Center in Huntsville, Alabama, working in conjunction with the Agency's Glenn Research Center in Cleveland, Ohio. Currently, after providing thrust to the Space Shuttle, the solid rocket boosters are parachuted into the sea and are retrieved for reuse. The SLI is considering vehicle concepts that would fly first-stage boosters back to a designated landing site after separation from the orbital vehicle. These flyback boosters would be powered by several jet engines integrated into the booster capable of providing over 100,000 pounds of thrust. The study will determine the requirements for the engines, identify risk mitigation activities, and identify costs associated with risk mitigation and jet engine development and production, as well as determine candidate jet engine options to pursue for the flyback booster.

  16. Combating pertussis resurgence: One booster vaccination schedule does not fit all.

    PubMed

    Riolo, Maria A; Rohani, Pejman

    2015-02-03

    Pertussis has reemerged as a major public health concern in many countries where it was once considered well controlled. Although the mechanisms responsible for continued pertussis circulation and resurgence remain elusive and contentious, many countries have nevertheless recommended booster vaccinations, the timing and number of which vary widely. Here, using a stochastic, age-stratified transmission model, we searched for cost-effective booster vaccination strategies using a genetic algorithm. We did so assuming four hypothesized mechanisms underpinning contemporary pertussis epidemiology: (I) insufficient coverage, (II) frequent primary vaccine failure, (III) waning of vaccine-derived protection, and (IV) vaccine "leakiness." For scenarios I-IV, successful booster strategies were identified and varied considerably by mechanism. Especially notable is the inability of booster schedules to alleviate resurgence when vaccines are leaky. Critically, our findings argue that the ultimate effectiveness of vaccine booster schedules will likely depend on correctly pinpointing the causes of resurgence, with misdiagnosis of the problem epidemiologically ineffective and economically costly.

  17. Space Launch System Booster Separation Aerodynamic Database Development and Uncertainty Quantification

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Pinier, Jeremy T.; Wilcox, Floyd J., Jr.; Dalle, Derek J.; Rogers, Stuart E.; Gomez, Reynaldo J.

    2016-01-01

    The development of the aerodynamic database for the Space Launch System (SLS) booster separation environment has presented many challenges because of the complex physics of the ow around three independent bodies due to proximity e ects and jet inter- actions from the booster separation motors and the core stage engines. This aerodynamic environment is dicult to simulate in a wind tunnel experiment and also dicult to simu- late with computational uid dynamics. The database is further complicated by the high dimensionality of the independent variable space, which includes the orientation of the core stage, the relative positions and orientations of the solid rocket boosters, and the thrust lev- els of the various engines. Moreover, the clearance between the core stage and the boosters during the separation event is sensitive to the aerodynamic uncertainties of the database. This paper will present the development process for Version 3 of the SLS booster separa- tion aerodynamic database and the statistics-based uncertainty quanti cation process for the database.

  18. Fuze for explosive magnetohydrodynamic generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, G.

    1976-12-23

    An apparatus is examined by which high explosive charges are propelled into and detonated at the center of an MHD-X generator. The high explosive charge units are engaged and propelled by a reciprocating ram device. Detonating in each instance is achieved by striking with a firing pin a detonator charge that is in register with a booster charge, the booster charge being in detonating communication with the high explosive charge. Various safety requirements are satisfied by a spring loaded slider operating in a channel transverse and adjacent to the booster charge. The slide retains the detonator charge out of registermore » with the booster charge until a safety pin that holds the slider in place is pulled by a lanyard attached between the reciprocating ram and the safety pin. Removal of the safety pin permits the detonator charge to slide into alignment with the booster charge. Firing pin actuation is initiated by the slider at the instant the detonator charge and the booster charge come into register.« less

  19. Pain Assessment and Management After a Knowledge Translation Booster Intervention.

    PubMed

    Stevens, Bonnie J; Yamada, Janet; Promislow, Sara; Barwick, Melanie; Pinard, Marie

    2016-10-01

    Inadequate pain treatment leaves hospitalized children vulnerable to immediate and long-term sequelae. A multidimensional knowledge translation intervention (ie, the Evidence-based Practice for Improving Quality [EPIQ]) improved pain assessment, management, and intensity outcomes in 16 units at 8 Canadian pediatric hospitals. The sustained effectiveness of EPIQ over time is unknown, however. The goals of this study were to determine the following: (1) sustainability of the impact of EPIQ on pain assessment, management, and intensity outcomes 12, 24, and 36 months after EPIQ; (2) effectiveness of a pain practice change booster (Booster) intervention to sustain EPIQ outcomes over time; and (3) influence of context on sustainability. A prospective, repeated measures, cluster randomized controlled trial was undertaken in the 16 EPIQ units, 12 months after EPIQ completion, to determine the effectiveness of a practice change booster (Booster) to sustain EPIQ outcomes. Generalized estimating equation models examined outcomes controlling for child and unit contextual factors. Outcomes achieved during EPIQ were sustained in the use of any pain assessment measure (P = .01) and a validated pain assessment measure in the EPIQ units (P = .02) up to 36 months after EPIQ. Statistically significant improvements in pain management practices persisted in EPIQ units; results varied across time. There were no significant differences in outcomes after implementation of the Booster between the Booster and Nonbooster groups. Improved pain assessment and management practices were sustained after EPIQ; however, the Booster did not seem to provide additional impact. Copyright © 2016 by the American Academy of Pediatrics.

  20. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix F: Performance and trajectory for ALS/LRB launch vehicles

    NASA Technical Reports Server (NTRS)

    1989-01-01

    By simply combining two baseline pump-fed LOX/RP-1 Liquid Rocket Boosters (LRBs) with the Denver core, a launch vehicle (Option 1 Advanced Launch System (ALS)) is obtained that can perform both the 28.5 deg (ALS) mission and the polar orbit ALS mission. The Option 2 LRB was obtained by finding the optimum LOX/LH2 engine for the STS/LRB reference mission (70.5 K lb payload). Then this engine and booster were used to estimate ALS payload for the 28.5 deg inclination ALS mission. Previous studies indicated that the optimum number of STS/LRB engines is four. When the engine/booster sizing was performed, each engine had 478 K lb sea level thrust and the booster carried 625,000 lb of useable propellant. Two of these LRBs combined with the Denver core provided a launch vehicle that meets the payload requirements for both the ALS and STS reference missions. The Option 3 LRB uses common engines for the cores and boosters. The booster engines do not have the nozzle extension. These engines were sized as common ALS engines. An ALS launch vehicle that has six core engines and five engines per booster provides 109,100 lb payload for the 28.5 deg mission. Each of these LOX/LH2 LRBs carries 714,100 lb of useable propellant. It is estimated that the STS/LRB reference mission payload would be 75,900 lb.

  1. 47 CFR 74.750 - Transmission system facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Translator, and TV Booster Stations § 74.750 Transmission system facilities. (a) A low power TV, TV translator, or TV booster station shall operate with a transmitter that is either certificated for licensing... rebroadcasting TV booster transmitting equipment using a modulation process must meet the following requirements...

  2. 47 CFR 74.750 - Transmission system facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Translator, and TV Booster Stations § 74.750 Transmission system facilities. (a) A low power TV, TV translator, or TV booster station shall operate with a transmitter that is either certificated for licensing... rebroadcasting TV booster transmitting equipment using a modulation process must meet the following requirements...

  3. Shuttle Boosters stacked in the VAB

    NASA Image and Video Library

    2007-01-04

    Workers continue stacking the twin solid rocket boosters in highbay 1 inside Kennedy Space Center's Vehicle Assembly Building. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.

  4. 47 CFR 74.1201 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FM Broadcast Booster Stations § 74.1201 Definitions. (a) FM translator. A station in the broadcasting... retransmitted by an FM broadcast translator station or an FM broadcast booster station. (e) AM or FM radio... indicates otherwise. (f) FM broadcast booster station. A station in the broadcasting service operated for...

  5. 47 CFR 74.1201 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FM Broadcast Booster Stations § 74.1201 Definitions. (a) FM translator. A station in the broadcasting... retransmitted by an FM broadcast translator station or an FM broadcast booster station. (e) AM or FM radio... indicates otherwise. (f) FM broadcast booster station. A station in the broadcasting service operated for...

  6. 47 CFR 74.750 - Transmission system facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Translator, and TV Booster Stations § 74.750 Transmission system facilities. (a) A low power TV, TV translator, or TV booster station shall operate with a transmitter that is either certificated for licensing... rebroadcasting TV booster transmitting equipment using a modulation process must meet the following requirements...

  7. 47 CFR 74.1201 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FM Broadcast Booster Stations § 74.1201 Definitions. (a) FM translator. A station in the broadcasting... retransmitted by an FM broadcast translator station or an FM broadcast booster station. (e) AM or FM radio... indicates otherwise. (f) FM broadcast booster station. A station in the broadcasting service operated for...

  8. 47 CFR 74.1201 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FM Broadcast Booster Stations § 74.1201 Definitions. (a) FM translator. A station in the broadcasting... retransmitted by an FM broadcast translator station or an FM broadcast booster station. (e) AM or FM radio... indicates otherwise. (f) FM broadcast booster station. A station in the broadcasting service operated for...

  9. Interventions for promoting booster seat use in four to eight year olds traveling in motor vehicles.

    PubMed

    Ehiri, J E; Ejere, H O D; Magnussen, L; Emusu, D; King, W; Osberg, J S

    2006-01-25

    Public health and traffic safety agencies recommend use of booster seats in motor vehicles for children aged four to eight years, and various interventions have been implemented to increase their use by individuals who transport children in motor vehicles. There is little evidence regarding the effectiveness of these interventions, hence the need to examine what works and what does not. To assess the effectiveness of interventions intended to increase acquisition and use of booster seats in motor vehicles among four to eight year olds. We searched the Cochrane Injuries Group's Specialized Register, the Cochrane Central Register of Controlled Trials, MEDLINE (January 1966 to April 2005), EMBASE (1980 to April 2005), LILACS, Transport Research Databases (1988 to April 2005), Australian Transport Index (1976 to April 2005), additional databases and reference lists of relevant articles. We also contacted experts in the field. We included randomized and controlled before-and-after trials that investigated the effects of interventions to promote booster seat use. Two authors independently assessed trial quality and extracted data. Study authors were contacted for additional information. Five studies involving 3,070 individuals met the criteria for inclusion in the meta-analysis. All interventions for promoting use of booster seats among 4 to 8 year olds demonstrated a positive effect (relative risk (RR) 1.43; 95% confidence intervals (CI) 1.05 to 1.96). Incentives combined with education demonstrated a beneficial effect (RR 1.32, 95% CI 1.12 to 1.55; n = 1,898). Distribution of free booster seats combined with education also had a beneficial effect (RR 2.34; 95% CI 1.50 to 3.63; n = 380) as did education-only interventions (RR 1.32; 95% CI 1.16 to 1.49; n = 563). One study which evaluated enforcement of booster seat law met the criteria for inclusion in the meta-analysis, but demonstrated no marked beneficial effect. Available evidence suggests that interventions to increase use of booster seats among children age four to eight years are effective. Combining incentives (booster seat discount coupons or gift certificates) or distribution of free booster seats with education demonstrated marked beneficial outcomes for acquisition and use of booster seats for four to eight year olds. There is some evidence of beneficial effect of legislation on acquisition and use of booster seats but this was mainly from uncontrolled before-and-after studies, which did not meet the criteria for inclusion in the meta-analysis.

  10. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii

    PubMed Central

    Pateraki, Irini; Andersen-Ranberg, Johan; Jensen, Niels Bjerg; Wubshet, Sileshi Gizachew; Heskes, Allison Maree; Forman, Victor; Hallström, Björn; Hamberger, Britta; Motawia, Mohammed Saddik; Olsen, Carl Erik; Staerk, Dan; Hansen, Jørgen; Møller, Birger Lindberg; Hamberger, Björn

    2017-01-01

    Forskolin is a unique structurally complex labdane-type diterpenoid used in the treatment of glaucoma and heart failure based on its activity as a cyclic AMP booster. Commercial production of forskolin relies exclusively on extraction from its only known natural source, the plant Coleus forskohlii, in which forskolin accumulates in the root cork. Here, we report the discovery of five cytochrome P450s and two acetyltransferases which catalyze a cascade of reactions converting the forskolin precursor 13R-manoyl oxide into forskolin and a diverse array of additional labdane-type diterpenoids. A minimal set of three P450s in combination with a single acetyl transferase was identified that catalyzes the conversion of 13R-manoyl oxide into forskolin as demonstrated by transient expression in Nicotiana benthamiana. The entire pathway for forskolin production from glucose encompassing expression of nine genes was stably integrated into Saccharomyces cerevisiae and afforded forskolin titers of 40 mg/L. DOI: http://dx.doi.org/10.7554/eLife.23001.001 PMID:28290983

  11. Diatoms and diatomaceous earth as novel poultry vaccine adjuvants.

    PubMed

    Nazmi, A; Hauck, R; Davis, A; Hildebrand, M; Corbeil, L B; Gallardo, R A

    2017-02-01

    Diatoms are single cell eukaryotic microalgae; their surface possesses a porous nanostructured silica cell wall or frustule. Diatomaceous earth (DE) or diatomite is a natural siliceous sediment of diatoms. Since silica has been proved to have adjuvant capabilities, we propose that diatoms and DE may provide an inexpensive and abundant source of adjuvant readily available to use in livestock vaccines.In a first experiment, the safety of diatoms used as an adjuvant for in-ovo vaccination was investigated. In a second experiment, we assessed the humoral immune response after one in-ovo vaccination with inactivated Newcastle Disease Virus (NDV) and DE as adjuvant followed by 2 subcutaneous boosters on d 21 and 29 of age. In both experiments, results were compared to Freund's incomplete adjuvant and aluminum hydroxide.No detrimental effects on hatchability and chick quality were detected after in-ovo inoculation of diatoms and DE in experiments 1 and 2 respectively. In experiment 2 no humoral responses were detected after the in-ovo vaccination until 29 d of age. Seven d after the second subcutaneous booster an antibody response against NDV was detected in chickens that had received vaccines adjuvanted with Freund's incomplete adjuvant, aluminum hydroxide, and DE. These responses became significantly higher 10 d after the second booster. Finally, 15 d after the second booster, the humoral responses induced by the vaccine with Freund's incomplete adjuvant were statistically higher, followed by comparable responses induced by vaccines containing DE or aluminum hydroxide that were significantly higher than DE+PBS, PBS+INDV and PBS alone. From an applied perspective, we can propose that DE can serve as a potential adjuvant for vaccines against poultry diseases. Published by Oxford University Press on behalf of Poultry Science Association 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Study of solid rocket motor for a space shuttle booster

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The study of solid rocket motors for a space shuttle booster was directed toward definition of a parallel-burn shuttle booster using two 156-in.-dia solid rocket motors. The study effort was organized into the following major task areas: system studies, preliminary design, program planning, and program costing.

  13. 47 CFR 74.761 - Frequency tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Booster Stations § 74.761 Frequency tolerance. The licensee of a low power TV, TV translator, or TV booster station shall maintain the transmitter output frequencies as set forth below. The frequency... channel carrier frequency if the low power TV, TV translator, or TV booster station is authorized with a...

  14. 47 CFR 74.1261 - Frequency tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FM Broadcast Booster Stations § 74.1261 Frequency tolerance. (a) The licensee of an FM translator or booster station with an authorized transmitter power output of 10 watts or less shall maintain the center... an FM translator or booster station with an authorized transmitter power output greater than 10 watts...

  15. 47 CFR 74.761 - Frequency tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Booster Stations § 74.761 Frequency tolerance. The licensee of a low power TV, TV translator, or TV booster station shall maintain the transmitter output frequencies as set forth below. The frequency... channel carrier frequency if the low power TV, TV translator, or TV booster station is authorized with a...

  16. 47 CFR 74.1231 - Purpose and permissible service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1231 Purpose and permissible service. (a) FM... facilities to receive the signal that is being rebroadcast. An FM booster station or a noncommercial... used to deliver signals to FM translator and booster stations on a secondary basis only. Such use shall...

  17. 47 CFR 27.1236 - Self-transitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... station or booster serving each EBS receive site entitled to protection, including: (i) The make and model of the antenna for that main station or booster, along with the radiation pattern if it is not... building or antenna supporting structure on which the main station or booster transmission antenna is...

  18. 47 CFR 74.1263 - Time of operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FM Broadcast Booster Stations § 74.1263 Time of operation. (a) The licensee of an FM translator or booster station is not required to adhere to any regular schedule of operation. However, the licensee of an FM translator or booster station is expected to provide a dependable service to the extent that...

  19. 47 CFR 73.3521 - Mutually exclusive applications for low power television, television translators and television...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... television, television translators and television booster stations. 73.3521 Section 73.3521 Telecommunication..., television translators and television booster stations. When there is a pending application for a new low power television, television translator, or television booster station, or for major changes in an...

  20. Meningococcal Vaccine (For Parents)

    MedlinePlus

    ... are 11 or 12 years old, with a booster given at age 16 for teens 13–18 ... the ages of 13–15 should get a booster dose between the ages of 16–18. Teens ... those entering the military) won't need a booster dose. A full series of the meningococcal conjugate ...

  1. 47 CFR 74.1263 - Time of operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FM Broadcast Booster Stations § 74.1263 Time of operation. (a) The licensee of an FM translator or booster station is not required to adhere to any regular schedule of operation. However, the licensee of an FM translator or booster station is expected to provide a dependable service to the extent that...

  2. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or TV booster station shall maintain adequate station records, including the current instrument of authorization... other suitable place, in one of the communities of license of the translator or booster, except that the...

  3. 47 CFR 74.1231 - Purpose and permissible service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1231 Purpose and permissible service. (a) FM... facilities to receive the signal that is being rebroadcast. An FM booster station or a noncommercial... used to deliver signals to FM translator and booster stations on a secondary basis only. Such use shall...

  4. 47 CFR 74.1232 - Eligibility and licensing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1232 Eligibility and licensing requirements. (a... adjustments to equipment. (f) An FM broadcast booster station will be authorized only to the licensee or permittee of the FM radio broadcast station whose signals the booster station will retransmit, to serve...

  5. 47 CFR 74.1231 - Purpose and permissible service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1231 Purpose and permissible service. (a) FM... facilities to receive the signal that is being rebroadcast. An FM booster station or a noncommercial... used to deliver signals to FM translator and booster stations on a secondary basis only. Such use shall...

  6. 47 CFR 27.1236 - Self-transitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... station or booster serving each EBS receive site entitled to protection, including: (i) The make and model of the antenna for that main station or booster, along with the radiation pattern if it is not... building or antenna supporting structure on which the main station or booster transmission antenna is...

  7. 47 CFR 74.1251 - Technical and equipment modifications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1251 Technical and equipment modifications. (a) No... translator or booster apparatus which has been certificated by the Commission without prior authority of the... identical power rating which has been certificated by the FCC for use by FM translator or FM booster...

  8. 47 CFR 74.1263 - Time of operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FM Broadcast Booster Stations § 74.1263 Time of operation. (a) The licensee of an FM translator or booster station is not required to adhere to any regular schedule of operation. However, the licensee of an FM translator or booster station is expected to provide a dependable service to the extent that...

  9. 47 CFR 74.761 - Frequency tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Booster Stations § 74.761 Frequency tolerance. The licensee of a low power TV, TV translator, or TV booster station shall maintain the transmitter output frequencies as set forth below. The frequency... channel carrier frequency if the low power TV, TV translator, or TV booster station is authorized with a...

  10. 47 CFR 73.3521 - Mutually exclusive applications for low power television, television translators and television...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... television, television translators and television booster stations. 73.3521 Section 73.3521 Telecommunication..., television translators and television booster stations. When there is a pending application for a new low power television, television translator, or television booster station, or for major changes in an...

  11. 47 CFR 27.1236 - Self-transitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... station or booster serving each EBS receive site entitled to protection, including: (i) The make and model of the antenna for that main station or booster, along with the radiation pattern if it is not... building or antenna supporting structure on which the main station or booster transmission antenna is...

  12. 47 CFR 27.1236 - Self-transitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... station or booster serving each EBS receive site entitled to protection, including: (i) The make and model of the antenna for that main station or booster, along with the radiation pattern if it is not... building or antenna supporting structure on which the main station or booster transmission antenna is...

  13. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or TV booster station shall maintain adequate station records, including the current instrument of authorization... other suitable place, in one of the communities of license of the translator or booster, except that the...

  14. 47 CFR 73.3521 - Mutually exclusive applications for low power television, television translators and television...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... television, television translators and television booster stations. 73.3521 Section 73.3521 Telecommunication..., television translators and television booster stations. When there is a pending application for a new low power television, television translator, or television booster station, or for major changes in an...

  15. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or TV booster station shall maintain adequate station records, including the current instrument of authorization... other suitable place, in one of the communities of license of the translator or booster, except that the...

  16. 47 CFR 74.1261 - Frequency tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FM Broadcast Booster Stations § 74.1261 Frequency tolerance. (a) The licensee of an FM translator or booster station with an authorized transmitter power output of 10 watts or less shall maintain the center... an FM translator or booster station with an authorized transmitter power output greater than 10 watts...

  17. 47 CFR 74.1251 - Technical and equipment modifications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1251 Technical and equipment modifications. (a) No... translator or booster apparatus which has been certificated by the Commission without prior authority of the... identical power rating which has been certificated by the FCC for use by FM translator or FM booster...

  18. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or TV booster station shall maintain adequate station records, including the current instrument of authorization... other suitable place, in one of the communities of license of the translator or booster, except that the...

  19. 47 CFR 74.1251 - Technical and equipment modifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1251 Technical and equipment modifications. (a) No... translator or booster apparatus which has been certificated by the Commission without prior authority of the... identical power rating which has been certificated by the FCC for use by FM translator or FM booster...

  20. 47 CFR 74.761 - Frequency tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Booster Stations § 74.761 Frequency tolerance. The licensee of a low power TV, TV translator, or TV booster station shall maintain the transmitter output frequencies as set forth below. The frequency... channel carrier frequency if the low power TV, TV translator, or TV booster station is authorized with a...

  1. 47 CFR 74.1261 - Frequency tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FM Broadcast Booster Stations § 74.1261 Frequency tolerance. (a) The licensee of an FM translator or booster station with an authorized transmitter power output of 10 watts or less shall maintain the center... an FM translator or booster station with an authorized transmitter power output greater than 10 watts...

  2. 47 CFR 74.1263 - Time of operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FM Broadcast Booster Stations § 74.1263 Time of operation. (a) The licensee of an FM translator or booster station is not required to adhere to any regular schedule of operation. However, the licensee of an FM translator or booster station is expected to provide a dependable service to the extent that...

  3. 47 CFR 74.1251 - Technical and equipment modifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1251 Technical and equipment modifications. (a) No... translator or booster apparatus which has been certificated by the Commission without prior authority of the... identical power rating which has been certificated by the FCC for use by FM translator or FM booster...

  4. 47 CFR 73.3521 - Mutually exclusive applications for low power television, television translators and television...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... television, television translators and television booster stations. 73.3521 Section 73.3521 Telecommunication..., television translators and television booster stations. When there is a pending application for a new low power television, television translator, or television booster station, or for major changes in an...

  5. 47 CFR 74.1261 - Frequency tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FM Broadcast Booster Stations § 74.1261 Frequency tolerance. (a) The licensee of an FM translator or booster station with an authorized transmitter power output of 10 watts or less shall maintain the center... an FM translator or booster station with an authorized transmitter power output greater than 10 watts...

  6. 47 CFR 27.1236 - Self-transitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... station or booster serving each EBS receive site entitled to protection, including: (i) The make and model of the antenna for that main station or booster, along with the radiation pattern if it is not... building or antenna supporting structure on which the main station or booster transmission antenna is...

  7. 47 CFR 74.1231 - Purpose and permissible service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1231 Purpose and permissible service. (a) FM... facilities to receive the signal that is being rebroadcast. An FM booster station or a noncommercial... used to deliver signals to FM translator and booster stations on a secondary basis only. Such use shall...

  8. Solid rocket booster thermal protection system materials development. [space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    1978-01-01

    A complete run log of all tests conducted in the NASA-MSFC hot gas test facility during the development of materials for the space shuttle solid rocket booster thermal protection system are presented. Lists of technical reports and drawings generated under the contract are included.

  9. 47 CFR 20.21 - Signal boosters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operation to ensure compliance with applicable noise and gain limits and either self-correct or shut down... provide equivalent uplink and downlink gain and conducted uplink power output that is at least 0.05 watts... referenced to the booster's input port for each band of operation. (C) Booster Gain Limits. (1) The uplink...

  10. 47 CFR 20.21 - Signal boosters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operation to ensure compliance with applicable noise and gain limits and either self-correct or shut down... provide equivalent uplink and downlink gain and conducted uplink power output that is at least 0.05 watts... referenced to the booster's input port for each band of operation. (C) Booster Gain Limits. (1) The uplink...

  11. 76 FR 72849 - Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend Rules... for Digital Low Power Television, Television Translator, and Television Booster Stations and to Amend... television, TV translator, and Class A television station DTV licensees''). The Commission has also revised...

  12. 47 CFR 73.3521 - Mutually exclusive applications for low power television, television translators and television...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... television, television translators and television booster stations. 73.3521 Section 73.3521 Telecommunication..., television translators and television booster stations. When there is a pending application for a new low power television, television translator, or television booster station, or for major changes in an...

  13. 47 CFR 74.1251 - Technical and equipment modifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1251 Technical and equipment modifications. (a) No... translator or booster apparatus which has been certificated by the Commission without prior authority of the... identical power rating which has been certificated by the FCC for use by FM translator or FM booster...

  14. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design, development, production, and launch support analysis for determining the solid propellant rocket engine to be used with the space shuttle are discussed. Specific program objectives considered were: (1) definition of engine designs to satisfy the performance and configuration requirements of the various vehicle/booster concepts, (2) definition of requirements to produce booster stages at rates of 60, 40, 20, and 10 launches per year in a man-rated system, and (3) estimation of costs for the defined SRM booster stages.

  15. Space Transportation Booster Engine Configuration Study. Volume 3: Program Cost estimates and work breakdown structure and WBS dictionary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine Configuration Study is to contribute to the ALS development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine development configurations which enhance vehicle performance and provide operational flexibility at low cost; and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.

  16. Effects on Longitudinal Stability and Control Characteristics of a B-29 Airplane of Variations in Stick-force and Control-rate Characteristics Obtained Through Use of a Booster in the Elevator-control System

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W; Talmage, Donald B; Whitten, James B

    1951-01-01

    The longitudinal stability and control characteristics of a B-29 airplane have been measured with a control surface booster incorporated in the elevator-control system. The measurements were obtained with the booster operating to provide various control-force gradients and various maximum rates of control motion. Results are presented which show the effect of these booster parameters on the handling qualities of the test airplane.

  17. Solid Rocket Booster Separation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This Quick Time movie shows the Space Shuttle Solid Rocket Booster (SRB) separation from the external tank (ET). After separation, the boosters fall to the ocean from which they are retrieved and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. That is equivalent to 44 million horsepower, or the combined power of 400,000 subcompact cars.

  18. Qualitative investigation of booster recovery in open sea

    NASA Technical Reports Server (NTRS)

    Beck, P. E.

    1973-01-01

    Limited tests were conducted using 1/27 scale model of a Titan 3C booster plus 1/32.9 and 1/15.6 scale models of a solid rocket booster case to establish some of the characteristics that will effect recovery operations in open seas. This preliminary effort was designed to provide additional background information for conceptual development of a waterborne recovery system for space shuttle boosters, pending initiation of comprehensive studies. The models were not instrumented; therefore, all data are qualitative (approximations) and are based on observations plus photographic coverage.

  19. KENNEDY SPACE CENTER, FLA. - Seen from below and through a solid rocket booster segment mockup, Jeff Thon, an SRB mechanic with United Space Alliance, tests the feasibility of a vertical solid rocket booster propellant grain inspection technique. The inspection of segments is required as part of safety analysis.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - Seen from below and through a solid rocket booster segment mockup, Jeff Thon, an SRB mechanic with United Space Alliance, tests the feasibility of a vertical solid rocket booster propellant grain inspection technique. The inspection of segments is required as part of safety analysis.

  20. Space transportation booster engine configuration study. Volume 2: Design definition document and environmental analysis

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.

  1. Closeup view of the Solid Rocket Booster (SRB) Forward Skirt, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster (SRB) Forward Skirt, Frustum and Nose Cap mated assembly undergoing final preparations in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center. The prominent feature in this view is the Forward Thrust Attach Fitting which mates up with the Forward Thrust Attach Fitting of the External Tank (ET) at the ends of the SRB Beam that runs through the ET's Inter Tank Assembly. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  2. Closeup view of the Solid Rocket Booster (SRB) Nose Caps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster (SRB) Nose Caps mounted on ground support equipment in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center as they are being prepared for attachment to the SRB Frustum. The Nose Cap contains the Pilot and Drogue Chutes that are deployed prior to the main chutes as the SRBs descend to a splashdown in the Atlantic Ocean where they are recovered refurbished and reused. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. Analysis of quasi-hybrid solid rocket booster concepts for advanced earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Rapp, Douglas C.

    1987-01-01

    A study was conducted to assess the feasibility of quasi-hybrid solid rocket boosters for advanced Earth-to-orbit vehicles. Thermochemical calculations were conducted to determine the effect of liquid hydrogen addition, solids composition change plus liquid hydrogen addition, and the addition of an aluminum/liquid hydrogen slurry on the theoretical performance of a PBAN solid propellant rocket. The space shuttle solid rocket booster was used as a reference point. All three quasi-hybrid systems theoretically offer higher specific impulse when compared with the space shuttle solid rocket boosters. However, based on operational and safety considerations, the quasi-hybrid rocket is not a practical choice for near-term Earth-to-orbit booster applications. Safety and technology issues pertinent to quasi-hybrid rocket systems are discussed.

  4. Space shuttle: High angle of attack transition and low angle of attack launch phase aerodynamic stability and control of GD/C B-18E-2, B-18E-3 delta wing booster, and launch configuration of MSC-040A orbiter and twin pressure fed boosters

    NASA Technical Reports Server (NTRS)

    Debevoise, J. M.; Mcginnis, R. F.

    1972-01-01

    The test was a conventional stability and control test except for two aspects. One was the very high angles of attack at which the delta wing configurations were tested (up to 60 degrees) at Mach numbers of 3 and 4.96. The other was the installation of the orbiter and twin boosters in a manner that caused the support system to induce normal forces and side forces on the aft portion of the boosters at all Mach numbers; i.e., the support and the booster bodies were close together, side by side.

  5. SIMULATIONS OF BOOSTER INJECTION EFFICIENCY FOR THE APS-UPGRADE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvey, J.; Borland, M.; Harkay, K.

    2017-06-25

    The APS-Upgrade will require the injector chain to provide high single bunch charge for swap-out injection. One possible limiting factor to achieving this is an observed reduction of injection efficiency into the booster synchrotron at high charge. We have simulated booster injection using the particle tracking code elegant, including a model for the booster impedance and beam loading in the RF cavities. The simulations point to two possible causes for reduced efficiency: energy oscillations leading to losses at high dispersion locations, and a vertical beam size blowup caused by ions in the Particle Accumulator Ring. We also show that themore » efficiency is much higher in an alternate booster lattice with smaller vertical beta function and zero dispersion in the straight sections.« less

  6. KSC-2011-1894

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- One of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is unloaded onto a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  7. KSC-2011-1891

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- One of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is unloaded onto a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  8. KSC-2011-1845

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- The left spent booster from space shuttle Discovery's final launch is seen floating on the water's surface while pumps on Freedom Star, one of NASA's solid rocket booster retrieval ships, push debris and water out of the booster, replacing with air to facilitate floating for its return to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  9. KSC-2011-1898

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- At the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida, one of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is moved to a tracked dolly for processing. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  10. KSC-2011-1882

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The Solid Rocket Booster Retrieval Ship Freedom Star, with a booster in tow, passes through Port Canaveral on its journey to Hangar AF at Cape Canaveral Air Force Station in Florida. The booster was used during space shuttle Discovery's STS-133 launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  11. KSC-2011-1892

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- One of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is unloaded onto a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  12. Hybrid Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Jensen, G. E.; Holzman, A. L.

    1990-01-01

    Future launch systems of the United States will require improvements in booster safety, reliability, and cost. In order to increase payload capabilities, performance improvements are also desirable. The hybrid rocket motor (HRM) offers the potential for improvements in all of these areas. The designs are presented for two sizes of hybrid boosters, a large 4.57 m (180 in.) diameter booster duplicating the Advanced Solid Rocket Motor (ASRM) vacuum thrust-time profile and smaller 2.44 m (96 in.), one-quater thrust level booster. The large booster would be used in tandem, while eight small boosters would be used to achieve the same total thrust. These preliminary designs were generated as part of the NASA Hybrid Propulsion Technology Program. This program is the first phase of an eventual three-phaes program culminating in the demonstration of a large subscale engine. The initial trade and sizing studies resulted in preferred motor diameters, operating pressures, nozzle geometry, and fuel grain systems for both the large and small boosters. The data were then used for specific performance predictions in terms of payload and the definition and selection of the requirements for the major components: the oxidizer feed system, nozzle, and thrust vector system. All of the parametric studies were performed using realistic fuel regression models based upon specific experimental data.

  13. Early Beam Injection Scheme for the Fermilab Booster: A Path for Intensity Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, C. M.

    Over the past decade, Fermilab has focused efforts on the intensity frontier physics and is committed to increase the average beam power delivered to the neutrino and muon programs substantially. Many upgrades to the existing injector accelerators, namely, the current 400 MeV LINAC and the Booster, are in progress under the Proton Improvement Plan (PIP). Proton Improvement Plan-II (PIP-II) proposes to replace the existing 400 MeV LINAC by a new 800 MeV LINAC, as an injector to the Booster which will increase Booster output power by nearly a factor of two from the PIP design value by the end ofmore » its completion. In any case, the Fermilab Booster is going to play a very significant role for nearly next two decades. In this context, I have developed and investigated a new beam injection scheme called "early injection scheme" (EIS) for the Booster with the goal to significantly increase the beam intensity output from the Booster thereby increasing the beam power to the HEP experiments even before PIP-II era. The scheme, if implemented, will also help improve the slip-stacking efficiency in the MI/RR. Here I present results from recent simulations, beam studies, current status and future plans for the new scheme.« less

  14. Immunogenicity and reactogenicity of a decennial booster dose of a combined reduced-antigen-content diphtheria-tetanus-acellular pertussis and inactivated poliovirus booster vaccine (dTpa-IPV) in healthy adults.

    PubMed

    Kovac, Martina; Rathi, Niraj; Kuriyakose, Sherine; Hardt, Karin; Schwarz, Tino F

    2015-05-21

    Pertussis in adults and adolescents could be reduced by replacing traditional tetanus and diphtheria (Td) boosters with reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) vaccines. This study evaluated the administration of dTpa-IPV (dTpa-inactivated poliovirus) in adults ten years after they received a booster dose of either dTpa-IPV, dTpa+IPV or Td-IPV in trial NCT01277705. Open multicentre, phase IV study (www.clinicaltrials.govNCT01323959) in which healthy adults, who had received a previous dose of dTpa-IPV, dTpa+IPV or Td-IPV ten years earlier, received a single decennial booster dose of dTpa-IPV (Boostrix-polio, GlaxoSmithKline Vaccines). Blood samples were collected before and one month after booster vaccination. Antibody concentrations against all vaccine antigens were measured and reactogenicity and safety were assessed. A total of 211 subjects (mean age 50.3 years) received vaccination of whom 201 were included in the according-to-protocol cohort for immunogenicity. Before the decennial dTpa-IPV booster, ≥71.0% subjects were seroprotected/seropositive against all vaccine antigens. One month after the booster dose, all subjects were seroprotected against tetanus and poliovirus types 2 and 3; ≥95.7% subjects were seroprotected against diphtheria and ≥98.3% against poliovirus type 1. Anti-pertussis booster responses for the various antigens were observed in ≥76.5% (pertussis toxoid; PT), ≥85.1% (filamentous haemagglutinin; FHA) and ≥63.2% (pertactin; PRN) of subjects. During the 4-day follow-up, the overall incidence of local AEs was 71.6%, 75.0% and 72.2% in dTpa-IPV, dTpa+IPV and Td-IPV groups, respectively. Pain was the most frequent solicited local adverse event (AE; ≥62.7% subjects) and fatigue the most frequent solicited general AE (≥18.5%). No serious AEs were reported during the study. A booster dose of dTpa-IPV was immunogenic and well tolerated in adults who had received a booster dose of either dTpa-IPV, dTpa+IPV or Td-IPV, ten years previously and supports the repeated administration of dTpa-IPV. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Parametric trade studies on a Shuttle 2 launch system architecture

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Talay, Theodore A.; Lepsch, Roger A.; Morris, W. Douglas; Naftel, J. Christopher; Cruz, Christopher I.

    1991-01-01

    A series of trade studies are presented on a complementary architecture of launch vehicles as a part of a study often referred to as Shuttle-2. The results of the trade studies performed on the vehicles of a reference Shuttle-2 mixed fleet architecture have provided an increased understanding of the relative importance of each of the major vehicle parameters. As a result of trades on the reference booster-orbiter configuration with a methane booster, the study showed that 60 percent of the total liftoff thrust should be on the booster and 40 percent on the orbiter. It was also found that the liftoff thrust to weight ratio (T/W) on the booster-orbiter should be 1.3. This leads to a low dry weight and still provides enough thrust to allow the design of a heavy lift architecture. As a result of another trade study, the dry weight of the reference booster-orbiter was chosen for a variety of operational considerations. Other trade studies on the booster-orbiter demonstrate that the cross feeding of propellant during boost phase is desirable and that engine-out capability from launch to orbit is worth the performance penalty. Technology assumptions made during the Shuttle-2 design were shown to be approx. equivalent to a 25 percent across the board weight reduction over the Space Shuttle technology. The vehicles of the Shuttle-2 architecture were also sized for a wide variety of payloads and missions to different orbits. Many of these same parametric trades were also performed on completely liquid hydrogen fueled fully reusable concepts. If a booster-orbiter is designed using liquid hydrogen engines on both the booster and orbiter, the total vehicle dry weight is only 3.0 percent higher than the reference dual-fuel booster-orbiter, and the gross weight is 3.8 percent less. For this booster-orbiter vehicle, a liftoff T/W of 1.3, a thrust of about 60 percent on the booster, and a Mach staging number of 3 all proved to be desirable. This modest dry weight increase for a liquid hydrogen fueled Shuttle-2 system should be more than offset by the elimination of the entire hydrocarbon engine development program and the savings in operation cost realized by the elimination of an entire fuel type.

  16. Voltage-Boosting Driver For Switching Regulator

    NASA Technical Reports Server (NTRS)

    Trump, Ronald C.

    1990-01-01

    Driver circuit assures availability of 10- to 15-V gate-to-source voltage needed to turn on n-channel metal oxide/semiconductor field-effect transistor (MOSFET) acting as switch in switching voltage regulator. Includes voltage-boosting circuit efficiently providing gate voltage 10 to 15 V above supply voltage. Contains no exotic parts and does not require additional power supply. Consists of NAND gate and dual voltage booster operating in conjunction with pulse-width modulator part of regulator.

  17. Advanced Integrated Multi-Sensor Surveillance (AIMS): Mission, Function, Task Analysis

    DTIC Science & Technology

    2007-06-01

    hydraulic boosters. Trim tabs are provided for the ailerons, elevators, and rudder surfaces. The wing flap is a high lift flowler type, and the flap...crew is able to observe and record a vessel dumping the solid waste overboard it is difficult to determine its source. When an oil slick has been...features which may impact hoisting requirements, as well as closest hospital facilities with helicopter access (North Battleford, SK). NAVCOM also

  18. Calibrating the MicroBooNE Photomultiplier Tube (PMT) Array with Michel Electrons from Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Greene, Amy

    2013-04-01

    MicroBooNE is a neutrino experiment at Fermilab designed to investigate the 3σ low-energy electron candidate events measured by the MiniBooNE experiment. Neutrinos from the Booster Neutrino Beam are detected by a 89-ton liquid argon time projection chamber, which is expected to start taking data in 2014. MicroBooNE measures both the ionization electrons and scintillation light produced by neutrino interactions in the liquid argon. The scintillation light is collected by an array of 30 PMTs located at one side of the detector. This array can be calibrated using Michel electrons from stopping cosmic ray muons, by fitting the measured PMT response with the theoretical expectation. I will report on the progress of the PMT calibration software that has been developed using the MicroBooNE Monte Carlo.

  19. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--preliminary study on TATP and PETN.

    PubMed

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    The application of isotopic techniques to investigations requiring the provision of evidence to a Court is limited. The objective of this research was to investigate the application of light stable isotopes and isotope ratio mass spectrometry (IRMS) to solve complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. Due to the current threat of organic peroxide explosives, such as triacetone triperoxide (TATP), research was undertaken to determine the potential of IRMS to differentiate samples of TATP that had been manufactured utilising different starting materials and/or manufacturing processes. In addition, due to the prevalence of pentaerythritoltetranitrate (PETN) in detonators, detonating cord, and boosters, the potential of the IRMS technique to differentiate PETN samples from different sources was also investigated. Carbon isotope values were measured in fourteen TATP samples, with three definite groups appearing in the initial sample set based on the carbon data alone. Four additional TATP samples (in a second set of samples) were distinguishable utilising the carbon and hydrogen isotopic compositions individually, and also in combination with the oxygen isotope values. The 3D plot of the carbon, oxygen and hydrogen data demonstrated the clear discrimination of the four samples of TATP. The carbon and nitrogen isotope values measured from fifteen PETN samples, allowed samples from different sources to be readily discriminated. This paper demonstrates the successful application of IRMS to the analysis of explosives of forensic interest to assist in discriminating samples from different sources. This research represents a preliminary evaluation of the IRMS technique for the measurement of stable isotope values in TATP and PETN samples, and supports the dedication of resources for a full evaluation of this application in order to achieve Court reportable IRMS results.

  20. Immunogenicity of a Booster Dose of Quadrivalent Meningococcal Conjugate Vaccine in Previously Immunized HIV-Infected Children and Youth.

    PubMed

    Warshaw, Meredith G; Siberry, George K; Williams, Paige; Decker, Michael D; Jean-Philippe, Patrick; Lujan-Zilbermann, Jorge

    2017-09-01

    The US Advisory Committee on Immunization Practices recommends a booster dose of quadrivalent meningococcal conjugate vaccine (MCV4) after initial immunization for patients at high risk for meningococcal infection. The International Maternal Pediatric Adolescents AIDS Clinical Trials (IMPAACT) P1065 trial evaluated the use of MCV4 in human immunodeficiency virus (HIV)-infected children and youth. The final step of this trial was an open-label study of an MCV4 booster dose 3.5 years after primary MCV4 immunization. Antibody titers were evaluated at the time of the booster vaccine and 1, 4, and 24 weeks after the booster. Immunogenicity was measured by rabbit serum bactericidal antibody (rSBA) against each meningococcal serogroup. Immunologic memory was defined as either seroprotection (rSBA titer ≥1:128) or a ≥4-fold increase 1 week after the booster dose. Primary response was defined as either a ≥4-fold response or seropositivity 4 weeks after the booster in the absence of immunologic memory. Adverse events were assessed for 4 weeks after the booster dose. Of 174 participants with serology results at entry and 1 and 4 weeks later, the percentage with protective antibody levels at entry varied according to serogroup, ranging from a low of 26% for serogroup C to a high of 68% for serogroup A. A memory response to at least 1 serogroup occurred in 98% of the participants: 93% each for serogroups A and Y, 88% for serogroup C, and 94% for serogroup W-135; 83% had a memory response to all 4 serogroups. Overall, rates of any memory or primary response were ≥90% for all serogroups. No serious adverse events were encountered. A booster dose of MCV4 elicited a memory response in 88% to 94% of previously immunized HIV-infected participants depending on serogroup, including those who lacked a protective titer level for that serogroup before booster vaccination. © The Author 2017. Published by the Oxford University Press on behalf of The Journal of the Pediatric Infectious Diseases Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. [Influence of three booster doses hepatitis B vaccine on the persistence of immune-protection among infants with normal and high antibody response to primary vaccination: a matched case-control study].

    PubMed

    Feng, Yi; Lyu, Jingjing; Liu, Jiaye; Yan, Bingyu; Song, Lizhi; Liang, Xiaofeng; Li, Li; Zhang, Guomin; Wang, Fuzhen; Zhang, Li; Xu, Aiqiang

    2016-04-01

    To examine the influence of three-booster-doses hepatitis B vaccines on children with normal and high antibody response to primary vaccination. Antibody against hepatitis B surface antigen (anti-HBs) were detected after primary vaccination and children with normal or high response to hepatitis B primary vaccination at infancy, were identified. Children who were given three booster doses were selected to form the booster group and who were given no booster dose were 1∶1 matched with the same gender and residence to form the control group. Blood samples were obtained from all the participants and tested for anti-HBs and anti-HBc, 5 years after the primary vaccination. The positive rates of anti-HBs response to primary vaccination were 97.39% (224/230, 95% CI: 94.41%-99.04%) in the booster group and 53.91% (124/230, 95% CI: 47.24%-60.48%) in the control group (P<0.05), 5 years after the primary vaccination. Geometric mean concentration (GMC) of anti-HBs were 1 140.02 (887.46-1 464.46) mIU/ml in the booster group and 11.53 (8.73-15.23) mIU/ml in the control group (P<0.05). The prevalence rates of breakthrough HBV infection were 0.87% (2/230) in the booster group and 2.17%(5/230) in the control group (P>0.05). RESULTS from the multivariable analysis showed that the booster doses (OR=38.75, 95%CI: 16.23-92.54) and the level of anti-HBs after the primary vaccination (OR =3.06, 95%CI:1.51-6.17) were independently associated with the positive rates of anti-HBs, 5 years after the primary vaccination (P<0.05). Programs with three booster doses to children that showing normal and high antibody response to primary vaccination could improve the persistence of anti-HBs but possibly would not be able to prevent the HBV infection.

  2. The Incremental Effects of Manual Therapy or Booster Sessions in Addition to Exercise Therapy for Knee Osteoarthritis: A Randomized Clinical Trial.

    PubMed

    Abbott, J Haxby; Chapple, Catherine M; Fitzgerald, G Kelley; Fritz, Julie M; Childs, John D; Harcombe, Helen; Stout, Kirsten

    2015-12-01

    A factorial randomized controlled trial. To investigate the addition of manual therapy to exercise therapy for the reduction of pain and increase of physical function in people with knee osteoarthritis (OA), and whether "booster sessions" compared to consecutive sessions may improve outcomes. The benefits of providing manual therapy in addition to exercise therapy, or of distributing treatment sessions over time using periodic booster sessions, in people with knee OA are not well established. All participants had knee OA and were provided 12 sessions of multimodal exercise therapy supervised by a physical therapist. Participants were randomly allocated to 1 of 4 groups: exercise therapy in consecutive sessions, exercise therapy distributed over a year using booster sessions, exercise therapy plus manual therapy without booster sessions, and exercise therapy plus manual therapy with booster sessions. The primary outcome measure was the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC score; 0-240 scale) at 1-year follow-up. Secondary outcome measures were the numeric pain-rating scale and physical performance tests. Of 75 participants recruited, 66 (88%) were retained at 1-year follow-up. Factorial analysis of covariance of the main effects showed significant benefit from booster sessions (P = .009) and manual therapy (P = .023) over exercise therapy alone. Group analysis showed that exercise therapy with booster sessions (WOMAC score, -46.0 points; 95% confidence interval [CI]: -80.0, -12.0) and exercise therapy plus manual therapy (WOMAC score, -37.5 points; 95% CI: -69.7, -5.5) had superior effects compared with exercise therapy alone. The combined strategy of exercise therapy plus manual therapy with booster sessions was not superior to exercise therapy alone. Distributing 12 sessions of exercise therapy over a year in the form of booster sessions was more effective than providing 12 consecutive exercise therapy sessions. Providing manual therapy in addition to exercise therapy improved treatment effectiveness compared to providing 12 consecutive exercise therapy sessions alone. Trial registered with the Australian New Zealand Clinical Trials Registry (ACTRN12612000460808).

  3. Effect of Booster Seat Design on Children’s Choice of Seating Positions During Naturalistic Riding

    PubMed Central

    Andersson, Marianne; Bohman, Katarina; Osvalder, Anna-Lisa

    2010-01-01

    The purpose of this naturalistic study was to investigate the effect of booster seat design on the choice of children’s seating positions during naturalistic riding. Data was collected through observations of children during in-vehicle riding by means of a film camera. The children were positioned in high back boosters in the rear seat while a parent drove the car. The study included two different booster designs: one with large head and torso side supports, and one with small head side supports and no torso side supports. Six children between three and six years of age participated in the study. Each child was observed in both boosters. The duration of the seating positions that each child assumed was quantified. The design with large side head supports resulted more often in seating positions without head and shoulder contact with the booster’s back. There was shoulder-to-booster back contact during an average of 45% of riding time in the seat with the large head side supports compared to 75% in the seat with the small head supports. The children in the study were seated with the head in front of the front edge of the head side supports more than half the time, in both boosters. Laterally, the children were almost constantly positioned between the side supports of the booster in both seats. The observed seating positions probably reduce the desired protective effect by the side supports in side impact, and may increase the probability of head impact with the vehicle interior in frontal impact. PMID:21050601

  4. Determining the Optimal Vaccination Schedule for Herpes Zoster: a Cost-Effectiveness Analysis.

    PubMed

    Le, Phuc; Rothberg, Michael B

    2017-02-01

    The Advisory Committee on Immunization Practices recommends a single dose of herpes zoster (HZ) vaccine in persons aged 60 years or older, but the efficacy decreases to zero after approximately 10 years. A booster dose administered after 10 years might extend protection, but the cost-effectiveness of a booster strategy has not been examined. We aimed to determine the optimal schedule for HZ vaccine DESIGN: We built a Markov model to follow patients over their lifetime. From the societal perspective, we compared costs and quality-adjusted life years (QALYs) saved of 11 strategies to start and repeat HZ vaccine at different ages. Adults aged 60 years. HZ vaccine. Costs, quality-adjusted life years (QALYs), and incremental costs per QALY saved. At a $100,000/QALY threshold, "vaccination at 70 plus one booster" was the most cost-effective strategy, with an incremental cost-effectiveness ratio (ICER) of $36,648/QALY. "Vaccination at 60 plus two boosters" was more effective, but had an ICER of $153,734/QALY. In deterministic sensitivity analysis, "vaccination at 60 plus two boosters" cost < $100,000/QALY if compliance rate was > 67 % or vaccine cost was < $156 per dose. In probabilistic sensitivity analysis, "vaccination at 70 plus one booster" was preferred at a willingness-to-pay of up to $135,000/QALY. Under current assumptions, initiating HZ vaccine at age 70 years with one booster dose 10 years later appears optimal. Future data regarding compliance with or efficacy of a booster could affect these conclusions.

  5. Summary of Booster Development and Qualification Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francois, Elizabeth G.; Harry, Herbert H.; Hartline, Ernest L.

    2012-06-21

    This report outlines booster development work done at Los Alamos National Laboratory from 2007 to present. The booster is a critical link in the initiation train of explosive assemblies, from complex devices like nuclear weapons to conventional munitions. The booster bridges the gap from a small, relatively sensitive detonator to an insensitive, but massive, main charge. The movement throughout the explosives development community is to use more and more insensitive explosive components. With that, more energy is needed out of the booster. It has to initiate reliably, promptly, powerfully and safely. This report is divided into four sections. The firstmore » provides a summary of a collaborative effort between LANL, LLNL, and AWE to identify candidate materials and uniformly develop a testing plan for new boosters. Important parameters and the tests required to measure them were defined. The nature of the collaboration and the specific goals of the participating partners has changed over time, but the booster development plan stands on its own merit as a complete description of the test protocol necessary to compare and qualify booster materials, and is discussed in its entirety in this report. The second section describes a project, which began in 2009 with the Department of Defense to develop replacement booster formulations for PBXN-7. Replacement of PBXN-7 was necessary because it contained Triaminotrinitrobenzene (TATB), which was becoming unavailable to the DoD and because it contained Cyclotrimethylenetrinitramine (RDX), which was sensitive and toxic. A LANL-developed explosive, Diaminoazoxyfurazan (DAAF), was an important candidate. This project required any replacement formulation be a drop-in replacement in existing munitions. This project was timely, in that it made use of the collaborative booster development project, and had the additional constraint of matching shock sensitivity. Additionally it needed to be a safety improvement, and a performance improvement, especially at cold temperatures. The requirements of this project necessitated novel test development and a different approach to ranking booster qualities. Results of this project have been documented to the DoD and the relevant portions are included within. The third section of this booster report outlines testing related to main charge initiation merit. Initiability can be evaluated by looking at critical diameter, run distance, and shock sensitivity. Once a booster is initiated, it needs to be powerful enough to initiate the main charge symmetrically and evenly. Main charge initiability is evaluated directly by observing detonation wave symmetry, curvature, and first break out over the surface of a charge. Furthermore it must be insensitive to accidents and insults, and safe and reliable across a range of temperatures. These effects, tests, and results will be discussed individually in the context of DAAF and other explosives similarly tested. The last section provides a conclusion and summary of our experimental work and recommendations for the path forward. References and additional supporting documentation and results are provided in the appendices at the end of this report.« less

  6. 77 FR 58824 - Gulf Shore Energy Partners, LP; Notice of Intent To Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ... Booster Station Project and Request for Comments on Environmental Issues The staff of the Federal Energy... the environmental impacts of the Markham Booster Station Project involving construction and operation... operate a booster compressor station. The pipeline segment currently interconnects with the systems of...

  7. Atlas Centaur Rocket With Reusable Booster Engines

    NASA Technical Reports Server (NTRS)

    Martin, James A.

    1993-01-01

    Proposed modification of Atlas Centaur enables reuse of booster engines. Includes replacement of current booster engines with engine of new design in which hydrogen used for both cooling and generation of power. Use of hydrogen in new engine eliminates coking and clogging and improves performance significantly. Primary advantages: reduction of cost; increased reliability; and increased payload.

  8. 47 CFR 74.1265 - Posting of station license.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station...) The call sign of the translator or booster together with the name, address, and telephone number of... served by the translator or booster, and the name and address of a person and place where station records...

  9. 47 CFR 74.1283 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FM Broadcast Booster Stations § 74.1283 Station identification. (a) The call sign of an FM broadcast... of an FM booster station will consist of the call sign of the primary station followed by the letters “FM” and the number of the booster station being authorized, e.g., WFCCFM-1. (c) A translator station...

  10. 47 CFR 74.762 - Frequency measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Booster Stations § 74.762 Frequency measurements. (a) The licensee of a low power TV station, a TV translator, or a TV booster station must measure the carrier frequencies of its output channel as often as... intervals not exceeding 14 months. (b) In the event that a low power TV, TV translator, or TV booster...

  11. 47 CFR 74.1283 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FM Broadcast Booster Stations § 74.1283 Station identification. (a) The call sign of an FM broadcast... of an FM booster station will consist of the call sign of the primary station followed by the letters “FM” and the number of the booster station being authorized, e.g., WFCCFM-1. (c) A translator station...

  12. 47 CFR 74.703 - Interference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Booster Stations § 74.703 Interference. (a) An application for a new low power TV, TV translator, or TV booster station or for a change in the facilities of such an authorized station will not be granted when... new low power TV, TV translator, or TV booster shall protect existing low power TV and TV translator...

  13. 47 CFR 74.762 - Frequency measurements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Booster Stations § 74.762 Frequency measurements. (a) The licensee of a low power TV station, a TV translator, or a TV booster station must measure the carrier frequencies of its output channel as often as... intervals not exceeding 14 months. (b) In the event that a low power TV, TV translator, or TV booster...

  14. 47 CFR 74.1283 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FM Broadcast Booster Stations § 74.1283 Station identification. (a) The call sign of an FM broadcast... of an FM booster station will consist of the call sign of the primary station followed by the letters “FM” and the number of the booster station being authorized, e.g., WFCCFM-1. (c) A translator station...

  15. 47 CFR 74.1262 - Frequency monitors and measurements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1262 Frequency monitors and measurements. (a) The... approved for use by an FM translator or booster. (b) In the event that a station authorized under this... translator or booster shall be made by a qualified person in accordance with § 74.1250(g). ...

  16. 47 CFR 74.1262 - Frequency monitors and measurements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1262 Frequency monitors and measurements. (a) The... approved for use by an FM translator or booster. (b) In the event that a station authorized under this... translator or booster shall be made by a qualified person in accordance with § 74.1250(g). ...

  17. 47 CFR 74.1265 - Posting of station license.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station...) The call sign of the translator or booster together with the name, address, and telephone number of... served by the translator or booster, and the name and address of a person and place where station records...

  18. 47 CFR 74.1265 - Posting of station license.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station...) The call sign of the translator or booster together with the name, address, and telephone number of... served by the translator or booster, and the name and address of a person and place where station records...

  19. 47 CFR 74.1262 - Frequency monitors and measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1262 Frequency monitors and measurements. (a) The... approved for use by an FM translator or booster. (b) In the event that a station authorized under this... translator or booster shall be made by a qualified person in accordance with § 74.1250(g). ...

  20. 47 CFR 74.762 - Frequency measurements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Booster Stations § 74.762 Frequency measurements. (a) The licensee of a low power TV station, a TV translator, or a TV booster station must measure the carrier frequencies of its output channel as often as... intervals not exceeding 14 months. (b) In the event that a low power TV, TV translator, or TV booster...

  1. 47 CFR 74.703 - Interference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Booster Stations § 74.703 Interference. (a) An application for a new low power TV, TV translator, or TV booster station or for a change in the facilities of such an authorized station will not be granted when... new low power TV, TV translator, or TV booster shall protect existing low power TV and TV translator...

  2. 47 CFR 74.703 - Interference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Booster Stations § 74.703 Interference. (a) An application for a new low power TV, TV translator, or TV booster station or for a change in the facilities of such an authorized station will not be granted when... new low power TV, TV translator, or TV booster shall protect existing low power TV and TV translator...

  3. 47 CFR 74.1283 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FM Broadcast Booster Stations § 74.1283 Station identification. (a) The call sign of an FM broadcast... of an FM booster station will consist of the call sign of the primary station followed by the letters “FM” and the number of the booster station being authorized, e.g., WFCCFM-1. (c) A translator station...

  4. 47 CFR 74.703 - Interference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Booster Stations § 74.703 Interference. (a) An application for a new low power TV, TV translator, or TV booster station or for a change in the facilities of such an authorized station will not be granted when... new low power TV, TV translator, or TV booster shall protect existing low power TV and TV translator...

  5. 47 CFR 74.1262 - Frequency monitors and measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1262 Frequency monitors and measurements. (a) The... approved for use by an FM translator or booster. (b) In the event that a station authorized under this... translator or booster shall be made by a qualified person in accordance with § 74.1250(g). ...

  6. 47 CFR 74.1265 - Posting of station license.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station...) The call sign of the translator or booster together with the name, address, and telephone number of... served by the translator or booster, and the name and address of a person and place where station records...

  7. 47 CFR 74.762 - Frequency measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Booster Stations § 74.762 Frequency measurements. (a) The licensee of a low power TV station, a TV translator, or a TV booster station must measure the carrier frequencies of its output channel as often as... intervals not exceeding 14 months. (b) In the event that a low power TV, TV translator, or TV booster...

  8. 47 CFR 90.219 - Use of signal boosters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., tunnels, shielded outdoor areas and other locations where these signals would otherwise be too weak for... with the rules in this paragraph. (1) Signal boosters may be used to improve coverage in weak signal... 47 Telecommunication 5 2013-10-01 2013-10-01 false Use of signal boosters. 90.219 Section 90.219...

  9. 47 CFR 90.219 - Use of signal boosters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fill in only weak signal areas and cannot extend the system's normal signal coverage area. (b) Class A... 47 Telecommunication 5 2010-10-01 2010-10-01 false Use of signal boosters. 90.219 Section 90.219... MOBILE RADIO SERVICES General Technical Standards § 90.219 Use of signal boosters. Licensees authorized...

  10. 47 CFR 90.219 - Use of signal boosters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., tunnels, shielded outdoor areas and other locations where these signals would otherwise be too weak for... with the rules in this paragraph. (1) Signal boosters may be used to improve coverage in weak signal... 47 Telecommunication 5 2014-10-01 2014-10-01 false Use of signal boosters. 90.219 Section 90.219...

  11. 47 CFR 90.219 - Use of signal boosters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fill in only weak signal areas and cannot extend the system's normal signal coverage area. (b) Class A... 47 Telecommunication 5 2011-10-01 2011-10-01 false Use of signal boosters. 90.219 Section 90.219... MOBILE RADIO SERVICES General Technical Standards § 90.219 Use of signal boosters. Licensees authorized...

  12. 47 CFR 90.219 - Use of signal boosters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fill in only weak signal areas and cannot extend the system's normal signal coverage area. (b) Class A... 47 Telecommunication 5 2012-10-01 2012-10-01 false Use of signal boosters. 90.219 Section 90.219... MOBILE RADIO SERVICES General Technical Standards § 90.219 Use of signal boosters. Licensees authorized...

  13. 47 CFR 74.1262 - Frequency monitors and measurements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1262 Frequency monitors and measurements. (a) The... approved for use by an FM translator or booster. (b) In the event that a station authorized under this... translator or booster shall be made by a qualified person in accordance with § 74.1250(g). ...

  14. 47 CFR 74.1265 - Posting of station license.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station...) The call sign of the translator or booster together with the name, address, and telephone number of... served by the translator or booster, and the name and address of a person and place where station records...

  15. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Broadcast regulations applicable to translators... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast regulations applicable to translators, low power, and booster stations. The following rules are applicable to...

  16. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A mockup of a solid rocket booster nozzle is lowered into the waters of the Atlantic during a test of a new booster retrieval method. A one-man submarine known as DeepWorker 2000 is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  17. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – The core booster for the United Launch Alliance Delta IV heavy for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, was transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The core booster and starboard booster arrived by barge at the U.S. Army Outpost wharf at Port Canaveral. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  18. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – A barge arrives at the U.S. Army Outpost wharf at Port Canaveral in Florida, carrying two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft. The core booster and starboard booster will be offloaded and then transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  19. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, have arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster and starboard booster will be offloaded and then transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  20. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster and starboard booster were offloaded and are being transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  1. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster and starboard booster have been offloaded and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  2. STS-29 Discovery, Orbiter Vehicle (OV) 103, roll out to KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In the early morning hours, STS-29 Discovery, Orbiter Vehicle (OV) 103, mated to the external tank (ET) and solid rocket boosters (SRBs) is rolled out to Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B atop the mobile launcher platform. Trees, shrubs, and a light mist surround the mobile launcher platform as it makes its way to LC Pad 39B. OV-103 will fly on Mission STS-29 scheduled for launch in mid-March. View provided by KSC with alternate KSC number KSC-89PC-50.

  3. Space Shuttle: Static pressure distribution on Chrysler Corporation Space Division SERV booster configuration

    NASA Technical Reports Server (NTRS)

    Price, E. A.; Hull, J. J.; Rawls, E. A.

    1971-01-01

    A dual purpose test was conducted in the propulsion wind tunnel (PWT) to evaluate the performance of an aerospike engine, in the presence of a booster, and obtain forebody and base pressure distributions on the booster in which it is installed. The test item was a 2.5 percent scaled replica of the SERV booster employing a 5 percent spike length aerospike engine installed in the base region of the model. Cold flow air was used to simulate engine jet operation. Two booster configurations were investigated, one on which reentry aerospike engine thermal protection doors were installed, and another where the doors were removed. The data presented are representative of the latter configuration for a Mach number range of 0 to 1.25 at angles of attack of 0 and 8 degrees and 0 degrees angle of sideslip.

  4. KSC-2011-1838

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, waits for crew members near the left spent booster bobbing in the Atlantic Ocean to attach a hose between it and the vessel that will facilitate debris and water clearing and the pumping in of air so the booster can float horizontally on the water's surface for towing back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  5. KSC-2011-1880

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The Solid Rocket Booster Retrieval Ship Freedom Star, with a booster in tow, is docked in Port Canaveral in Florida before continuing on to Hangar AF at Cape Canaveral Air Force Station. A cruise ship is seen in the background. The booster was used during space shuttle Discovery's STS-133 launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  6. KSC-2011-1837

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, approach the left spent booster bobbing in the Atlantic Ocean to attach a hose that will facilitate debris and water clearing and the pumping in of air so the booster can float horizontally on the water's surface for towing back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  7. KSC-2011-1881

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The Solid Rocket Booster Retrieval Ship Freedom Star, with a booster in tow, is docked in Port Canaveral in Florida before continuing on to Hangar AF at Cape Canaveral Air Force Station. A cruise ship is seen in the background. The booster was used during space shuttle Discovery's STS-133 launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  8. Immune Responses of Bison and Efficacy after Booster Vaccination with Brucella abortus Strain RB51

    PubMed Central

    McGill, J. L.; Sacco, R. E.; Hennager, S. G.

    2015-01-01

    Thirty-one bison heifers were randomly assigned to receive saline or a single vaccination with 1010 CFU of Brucella abortus strain RB51. Some vaccinated bison were randomly selected for booster vaccination with RB51 at 11 months after the initial vaccination. Mean antibody responses to RB51 were greater (P < 0.05) in vaccinated bison after initial and booster vaccination than in nonvaccinated bison. The proliferative responses by peripheral blood mononuclear cells (PBMC) from the vaccinated bison were greater (P < 0.05) than those in the nonvaccinated bison at 16 and 24 weeks after the initial vaccination but not after the booster vaccination. The relative gene expression of gamma interferon (IFN-γ) was increased (P < 0.05) in the RB51-vaccinated bison at 8, 16, and 24 weeks after the initial vaccination and at 8 weeks after the booster vaccination. The vaccinated bison had greater (P < 0.05) in vitro production of IFN-γ at all sampling times, greater interleukin-1β (IL-1β) production in various samplings after the initial and booster vaccinations, and greater IL-6 production at one sampling time after the booster vaccination. Between 170 and 180 days of gestation, the bison were intraconjunctivally challenged with approximately 1 × 107 CFU of B. abortus strain 2308. The incidences of abortion and infection were greater (P < 0.05) in the nonvaccinated bison after experimental challenge than in the bison receiving either vaccination treatment. Booster-vaccinated, but not single-vaccinated bison, had a reduced (P < 0.05) incidence of infection in fetal tissues and maternal tissues compared to that in the controls. Compared to the nonvaccinated bison, both vaccination treatments lowered the colonization (measured as the CFU/g of tissue) of Brucella organisms in all tissues, except in retropharyngeal and supramammary lymph nodes. Our study suggests that RB51 booster vaccination is an effective vaccination strategy for enhancing herd immunity against brucellosis in bison. PMID:25673305

  9. Blood Pressure Directed Booster Trainings Improve Intensive Care Unit Provider Retention of Excellent Cardiopulmonary Resuscitation Skills.

    PubMed

    Wolfe, Heather; Maltese, Matthew R; Niles, Dana E; Fischman, Elizabeth; Legkobitova, Veronika; Leffelman, Jessica; Berg, Robert A; Nadkarni, Vinay M; Sutton, Robert M

    2015-11-01

    Brief, intermittent cardiopulmonary resuscitation (CPR) training sessions, "Booster Trainings," improve CPR skill acquisition and short-term retention. The objective of this study was to incorporate arterial blood pressure (ABP) tracings into Booster Trainings to improve CPR skill retention. We hypothesized that ABP-directed CPR "Booster Trainings" would improve intensive care unit (ICU) provider 3-month retention of excellent CPR skills without need for interval retraining. A CPR manikin creating a realistic relationship between chest compression depth and ABP was used for training/testing. Thirty-six ICU providers were randomized to brief, bedside ABP-directed CPR manikin skill retrainings: (1) Booster Plus (ABP visible during training and testing) versus (2) Booster Alone (ABP visible only during training, not testing) versus (3) control (testing, no intervention). Subjects completed skill tests pretraining (baseline), immediately after training (acquisition), and then retention was assessed at 12 hours, 3 and 6 months. The primary outcome was retention of excellent CPR skills at 3 months. Excellent CPR was defined as systolic blood pressure of 100 mm Hg or higher and compression rate 100 to 120 per minute. Overall, 14 of 24 (58%) participants acquired excellent CPR skills after their initial training (Booster Plus 75% vs 50% Booster Alone, P = 0.21). Adjusted for age, ABP-trained providers were 5.2× more likely to perform excellent CPR after the initial training (95% confidence interval [95% CI], 1.3-21.2; P = 0.02), and to retain these skills at 12 hours (adjusted odds ratio, 4.4; 95% CI, 1.3-14.9; P = 0.018) and 3 months (adjusted odds ratio, 4.1; 95% CI, 1.2-13.9; P = 0.023) when compared to baseline performance. The ABP-directed CPR booster trainings improved ICU provider 3-month retention of excellent CPR skills without the need for interval retraining.

  10. Distinct Mechanisms Underlie Boosted Polysaccharide-Specific IgG Responses Following Secondary Challenge with Intact Gram-Negative versus Gram-Positive Extracellular Bacteria.

    PubMed

    Kar, Swagata; Arjunaraja, Swadhinya; Akkoyunlu, Mustafa; Pier, Gerald B; Snapper, Clifford M

    2016-06-01

    Priming of mice with intact, heat-killed cells of Gram-negative Neisseria meningitidis, capsular serogroup C (MenC) or Gram-positive group B Streptococcus, capsular type III (GBS-III) bacteria resulted in augmented serum polysaccharide (PS)-specific IgG titers following booster immunization. Induction of memory required CD4(+) T cells during primary immunization. We determined whether PS-specific memory for IgG production was contained within the B cell and/or T cell populations, and whether augmented IgG responses following booster immunization were also dependent on CD4(+) T cells. Adoptive transfer of purified B cells from MenC- or GBS-III-primed, but not naive mice resulted in augmented PS-specific IgG responses following booster immunization. Similar responses were observed when cotransferred CD4(+) T cells were from primed or naive mice. Similarly, primary immunization with unencapsulated MenC or GBS-III, to potentially prime CD4(+) T cells, failed to enhance PS-specific IgG responses following booster immunization with their encapsulated isogenic partners. Furthermore, in contrast to GBS-III, depletion of CD4(+) T cells during secondary immunization with MenC or another Gram-negative bacteria, Acinetobacter baumannii, did not inhibit augmented PS-specific IgG booster responses of mice primed with heat-killed cells. Also, in contrast with GBS-III, booster immunization of MenC-primed mice with isolated MenC-PS, a TI Ag, or a conjugate of MenC-PS and tetanus toxoid elicited an augmented PS-specific IgG response similar to booster immunization with intact MenC. These data demonstrate that memory for augmented PS-specific IgG booster responses to Gram-negative and Gram-positive bacteria is contained solely within the B cell compartment, with a differential requirement for CD4(+) T cells for augmented IgG responses following booster immunization. Copyright © 2016 by The American Association of Immunologists, Inc.

  11. Humoral and Cell-Mediated Immune Responses to Alternate Booster Schedules of Anthrax Vaccine Adsorbed in Humans

    PubMed Central

    Sabourin, Carol L.; Schiffer, Jarad M.; Niemuth, Nancy A.; Semenova, Vera A.; Li, Han; Rudge, Thomas L.; Brys, April M.; Mittler, Robert S.; Ibegbu, Chris C.; Wrammert, Jens; Ahmed, Rafi; Parker, Scott D.; Babcock, Janiine; Keitel, Wendy; Poland, Gregory A.; Keyserling, Harry L.; El Sahly, Hana; Jacobson, Robert M.; Marano, Nina; Plikaytis, Brian D.; Wright, Jennifer G.

    2016-01-01

    Protective antigen (PA)-specific antibody and cell-mediated immune (CMI) responses to annual and alternate booster schedules of anthrax vaccine adsorbed (AVA; BioThrax) were characterized in humans over 43 months. Study participants received 1 of 6 vaccination schedules: a 3-dose intramuscular (IM) priming series (0, 1, and 6 months) with a single booster at 42 months (4-IM); 3-dose IM priming with boosters at 18 and 42 months (5-IM); 3-dose IM priming with boosters at 12, 18, 30, and 42 months (7-IM); the 1970 licensed priming series of 6 doses (0, 0.5, 1, 6, 12, and 18 months) and two annual boosters (30 and 42 months) administered either subcutaneously (SQ) (8-SQ) or IM (8-IM); or saline placebo control at all eight time points. Antibody response profiles included serum anti-PA IgG levels, subclass distributions, avidity, and lethal toxin neutralization activity (TNA). CMI profiles included frequencies of gamma interferon (IFN-γ)- and interleukin 4 (IL-4)-secreting cells and memory B cells (MBCs), lymphocyte stimulation indices (SI), and induction of IFN-γ, IL-2, IL-4, IL-6, IL-1β, and tumor necrosis factor alpha (TNF-α) mRNA. All active schedules elicited high-avidity PA-specific IgG, TNA, MBCs, and T cell responses with a mixed Th1-Th2 profile and Th2 dominance. Anti-PA IgG and TNA were highly correlated (e.g., month 7, r2 = 0.86, P < 0.0001, log10 transformed) and declined in the absence of boosters. Boosters administered IM generated the highest antibody responses. Increasing time intervals between boosters generated antibody responses that were faster than and superior to those obtained with the final month 42 vaccination. CMI responses to the 3-dose IM priming remained elevated up to 43 months. (This study has been registered at ClinicalTrials.gov under registration no. NCT00119067.) PMID:26865594

  12. Rocket stage - Trans-orbit booster Fregat

    NASA Astrophysics Data System (ADS)

    Asyushkin, V. A.; Papkov, O. V.

    1993-10-01

    This paper discusses a proposal for increasing the payload-carrying capability of a launch vehicle by using the Fregat booster stage (as the fourth stage for the R-7A launcher and as the fifth stage for the Proton launch vehicle). Particular attention is given to the tasks which the Fregat booster stage is designed to fulfill, the systems which are part of the Fregat, and the launch vehicles which will use Fregat as the upper stage. The main performance parameters of the Fregat stage are presented, as well as diagrams illustrating the performance of the Fregat booster stage.

  13. The StarBooster System: A Cargo Aircraft for Space

    NASA Technical Reports Server (NTRS)

    Davis, Hubert P.; Dula, Arthur M.; McLaughlin, Don; Frassanito, John; Andrews, Jason (Editor)

    1999-01-01

    Starcraft Boosters has developed a different approach for lowering the cost of access to space. We propose developing a new aircraft that will house an existing expendable rocket stage. This vehicle, termed StarBooster, will be the first stage of a family of launch vehicles. By combining these elements, we believe we can reduce the cost and risk of fielding a new partially reusable launch system. This report summarizes the work performed on the StarBooster concept since the company's inception in 1996. Detailed analyses are on-going and future reports will focus on the maturation of the vehicle and system design.

  14. 39. VIEW OF CHRYSLER WORKERS LOADING A SATURN IB BOOSTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. VIEW OF CHRYSLER WORKERS LOADING A SATURN IB BOOSTER INTO THE EAST POSITION ON THE STATIC TEST TOWER. AS THE MAIN CONTRACTOR OF THE SATURN IB BOOSTER, CHRYSLER TOOK OVER OPERATIONS OF THE EAST POSITION OF THE STATIC TEST TOWER IN 1963. THAT SAME YEAR, THE WEST POSITION OF THE TEST TOWER WAS MODIFIED (AS SEEN IN THE PHOTO) FOR RESEARCH AND DEVELOPMENT TESTS OF THE SATURN V BOOSTER'S ENGINE, THE F-1. MARCH 1963, MSFC PHOTO LAB. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  15. Closeup view of the Solid Rocket Booster (SRB) Forward Skirt ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster (SRB) Forward Skirt sitting on ground support equipment in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center while being prepared for mating with the Frustum-Nose Cap Assembly and the Forward Rocket Motor Segment. The prominent feature in this view is the electrical, data, telemetry and safety systems terminal which connects to the Aft Skirt Assembly systems via the Systems Tunnel that runs the length of the Rocket Motor. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  16. Evaluation of give kids a boost: A school-based program to increase booster seat use among urban children in economically disadvantaged areas.

    PubMed

    Yellman, Merissa A; Rodriguez, Marissa A; Colunga, Maria Isabel; McCoy, Mary A; Stephens-Stidham, Shelli; Brown, L Steven; Istre, Gregory R

    2018-05-19

    This study evaluated the effectiveness of a series of 1-year multifaceted school-based programs aimed at increasing booster seat use among urban children 4-7 years of age in economically disadvantaged areas. During 4 consecutive school years, 2011-2015, the Give Kids a Boost (GKB) program was implemented in a total of 8 schools with similar demographics in Dallas County. Observational surveys were conducted at project schools before project implementation (P 0 ), 1-4 weeks after the completion of project implementation (P 1 ), and 4-5 months later (P 2 ). Changes in booster seat use for the 3 time periods were compared for the 8 project and 14 comparison schools that received no intervention using a nonrandomized trial process. The intervention included (1) train-the-trainer sessions with teachers and parents; (2) presentations about booster seat safety; (3) tailored communication to parents; (4) distribution of fact sheets/resources; (5) walk-around education; and (6) booster seat inspections. The association between the GKB intervention and proper booster seat use was determined initially using univariate analysis. The association was also estimated using a generalized linear mixed model predicting a binomial outcome (booster seat use) for those aged 4 to 7 years, adjusted for child-level variables (age, sex, race/ethnicity) and car-level variables (vehicle type). The model incorporated the effects of clustering by site and by collection date to account for the possibility of repeated sampling. In the 8 project schools, booster seat use for children 4-7 years of age increased an average of 20.9 percentage points between P 0 and P 1 (P 0 = 4.8%, P 1 = 25.7%; odds ratio [OR] = 6.9; 95% confidence interval [CI], 5.5, 8.7; P < .001) and remained at that level in the P 2 time period (P 2 = 25.7%; P < .001, for P 0 vs. P 2 ) in the univariate analysis. The 14 comparison schools had minimal change in booster seat use. The multivariable model showed that children at the project schools were significantly more likely to be properly restrained in a booster seat after the intervention (OR = 2.7; 95% CI, 2.2, 3.3) compared to the P 0 time period and compared to the comparison schools. Despite study limitations, the GKB program was positively associated with an increase in proper booster seat use for children 4-7 years of age in school settings among diverse populations in economically disadvantaged areas. These increases persisted into the following school year in a majority of the project schools. The GKB model may be a replicable strategy to increase booster seat use among school-age children in similar urban settings.

  17. Long-Term Safety and Immunogenicity of a Tetravalent Live-Attenuated Dengue Vaccine and Evaluation of a Booster Dose Administered to Healthy Thai Children

    PubMed Central

    Watanaveeradej, Veerachai; Simasathien, Sriluck; Mammen, Mammen P.; Nisalak, Ananda; Tournay, Elodie; Kerdpanich, Phirangkul; Samakoses, Rudiwilai; Putnak, Robert J.; Gibbons, Robert V.; Yoon, In-Kyu; Jarman, Richard G.; De La Barrera, Rafael; Moris, Philippe; Eckels, Kenneth H.; Thomas, Stephen J.; Innis, Bruce L.

    2016-01-01

    We evaluated the safety and immunogenicity of two doses of a live-attenuated, tetravalent dengue virus vaccine (F17/Pre formulation) and a booster dose in a dengue endemic setting in two studies. Seven children (7- to 8-year-olds) were followed for 1 year after dose 2 and then given a booster dose (F17/Pre formulation), and followed for four more years (Child study). In the Infant study, 49 2-year-olds, vaccinated as infants, were followed for approximately 3.5 years after dose 2 and then given a booster dose (F17) and followed for one additional year. Two clinically notable events were observed, both in dengue vaccine recipients in the Infant study: 1 case of dengue approximately 2.7 years after dose 2 and 1 case of suspected dengue after booster vaccinations. The booster vaccinations had a favorable safety profile in terms of reactogenicity and adverse events reported during the 1-month follow-up periods. No vaccine-related serious adverse events were reported during the studies. Neutralizing antibodies against dengue viruses 1–4 waned during the 1–3 years before boosting, which elicited a short-lived booster response but did not provide a long-lived, multivalent antibody response in most subjects. Overall, this candidate vaccine did not elicit a durable humoral immune response. PMID:27022153

  18. Next generation solid boosters

    NASA Technical Reports Server (NTRS)

    Lund, R. K.

    1991-01-01

    Space transportation solid rocket motor systems; Shuttle derived heavy lift launch vehicles; advanced launch system (ALS) derived heavy lift launch vehicles; large launch solid booster vehicles are outlined. Performance capabilities and concept objectives are presented. Small launch vehicle concepts; enabling technologies; reusable flyback booster system; and high-performance solid motors for space are briefly described. This presentation is represented by viewgraphs.

  19. Study of solid rocket motors for a space shuttle booster. Volume 3: Program acquisition planning

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    Plans for conducting Phase C/D for a solid rocket motor booster vehicle are presented. Methods for conducting this program with details of scheduling, testing, and program management and control are included. The requirements of the space shuttle program to deliver a minimum cost/maximum reliability booster vehicle are examined.

  20. 75 FR 68664 - Federal Motor Vehicle Safety Standards; Child Restraint Systems; Booster Seat Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... early graduation from booster seats to lap and shoulder belts. Estimates are computed by double-pair... 3-4-year-olds there is evidence of increased risk of injury when restrained in booster seats rather.... Among 4-8-year-olds there is strong evidence of increased risk of injury when restrained by lap and...

Top