Sample records for light source capable

  1. Luminescent light source for laser pumping and laser system containing same

    DOEpatents

    Hamil, Roy A.; Ashley, Carol S.; Brinker, C. Jeffrey; Reed, Scott; Walko, Robert J.

    1994-01-01

    The invention relates to a pumping lamp for use with lasers comprising a porous substrate loaded with a component capable of emitting light upon interaction of the component with exciting radiation and a source of exciting radiation. Preferably, the pumping lamp comprises a source of exciting radiation, such as an electron beam, and an aerogel or xerogel substrate loaded with a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce light, e.g., visible light, of a suitable band width and of a sufficient intensity to generate a laser beam from a laser material.

  2. X ray sensitive area detection device

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Witherow, William K. (Inventor); Pusey, Marc L. (Inventor); Yost, Vaughn H. (Inventor)

    1990-01-01

    A radiation sensitive area detection device is disclosed which comprises a phosphor-containing film capable of receiving and storing an image formed by a pattern of incoming x rays, UV, or other radiation falling on the film. The device is capable of fluorescing in response to stimulation by a light source in a manner directly proportional to the stored radiation pattern. The device includes: (1) a light source capable of projecting light or other appropriate electromagnetic wave on the film so as to cause it to fluoresce; (2) a means to focus the fluoresced light coming from the phosphor-containing film after light stimulation; and (3) at least one charged coupled detector or other detecting element capable of receiving and digitizing the pattern of fluoresced light coming from the phosphor-containing film. The device will be able to generate superior x ray images of high resolution from a crystal or other sample and will be particularly advantageous in that instantaneous near-real-time images of rapidly deteriorating samples can be obtained. Furthermore, the device can be made compact and sturdy, thus capable of carrying out x ray or other radiation imaging under a variety of conditions, including those experienced in space.

  3. Programmable LED-based integrating sphere light source for wide-field fluorescence microscopy.

    PubMed

    Rehman, Aziz Ul; Anwer, Ayad G; Goldys, Ewa M

    2017-12-01

    Wide-field fluorescence microscopy commonly uses a mercury lamp, which has limited spectral capabilities. We designed and built a programmable integrating sphere light (PISL) source which consists of nine LEDs, light-collecting optics, a commercially available integrating sphere and a baffle. The PISL source is tuneable in the range 365-490nm with a uniform spatial profile and a sufficient power at the objective to carry out spectral imaging. We retrofitted a standard fluorescence inverted microscope DM IRB (Leica) with a PISL source by mounting it together with a highly sensitive low- noise CMOS camera. The capabilities of the setup have been demonstrated by carrying out multispectral autofluorescence imaging of live BV2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. 46 CFR 161.013-9 - Independent power source.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Independent power source. 161.013-9 Section 161.013-9...: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Electric Distress Light for Boats § 161.013-9 Independent power source. (a) Each independent power source must be capable of powering the light so that it meets the...

  5. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, Scott; Walko, Robert J.; Ashley, Carol S.; Brinker, C. Jeffrey

    1994-01-01

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

  6. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  7. Honeybee navigation: following routes using polarized-light cues

    PubMed Central

    Kraft, P.; Evangelista, C.; Dacke, M.; Labhart, T.; Srinivasan, M. V.

    2011-01-01

    While it is generally accepted that honeybees (Apis mellifera) are capable of using the pattern of polarized light in the sky to navigate to a food source, there is little or no direct behavioural evidence that they actually do so. We have examined whether bees can be trained to find their way through a maze composed of four interconnected tunnels, by using directional information provided by polarized light illumination from the ceilings of the tunnels. The results show that bees can learn this task, thus demonstrating directly, and for the first time, that bees are indeed capable of using the polarized-light information in the sky as a compass to steer their way to a food source. PMID:21282174

  8. Design of Synchrotron Light Source in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. C.; Chang, H. P.; Chou, P. J.

    2007-01-19

    An intermediate energy synchrotron light source has been proposed. The goal is to construct a high performance light source in complementary to the existing 1.5 GeV synchrotron ring in Taiwan to boost the research capabilities. A 3 GeV machine with 518.4 m and 24-cell DBA lattice structure is considered and other options are also investigated. We report the 24-cell design considerations and its performances.

  9. Design and evaluation of excitation light source device for fluorescence endoscope

    NASA Astrophysics Data System (ADS)

    Lim, Hyun Soo

    2009-06-01

    This study aims at designing and evaluating light source devices that can stably generate light with various wavelengths in order to make possible PDD using a photosensitizer and diagnosis using auto-fluorescence. The light source was a Xenon lamp and filter wheel, composed of an optical output control through Iris and filters with several wavelength bands. It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-420nm, 430-480nm, and 480-560nm. The transmission part of the light source was developed to enhance the efficiency of light transmission. To evaluate this light source, the characteristics of light output and wavelength band were verified. To validate the capability of this device as PDD, the detection of auto-fluorescence using mouse models was performed.

  10. 600 eV falcon-linac thomson x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, J K; LeSage, G P; Ditmire, T

    2000-12-15

    The advent of 3rd generation light sources such as the Advanced Light Source (ALS) at LBL, and the Advanced Photon Source at Argonne, have produced a revolution in x-ray probing of dense matter during the past decade. These machines use electron-synchrotrons in conjunction with undulator stages to produce 100 psec x-ray pulses with photon energies of several kiloelectronvolts (keV). The applications for x-ray probing of matter are numerous and diverse with experiments in medicine and biology, semiconductors and materials science, and plasma and solid state physics. In spite of the success of the 3rd generation light sources there is strongmore » motivation to push the capabilities of x-ray probing into new realms, requiring shorter pulses, higher brightness and harder x-rays. A 4th generation light source, the Linac Coherent Light Source (LCLS), is being considered at the Stanford Linear Accelerator [1]. The LCLS will produce multi-kilovolt x-rays of subpicosecond duration that are 10 orders of magnitude brighter than today's 3rd generation light sources.[1] Although the LCLS will provide unprecedented capability for performing time-resolved x-ray probing of ultrafast phenomena at solid densities, this machine will not be completed for many years. In the meantime there is a serious need for an ultrashort-pulse, high-brightness, hard x-ray source that is capable of probing deep into high-Z solid materials to measure dynamic effects that occur on picosecond time scales. Such an instrument would be ideal for probing the effects of shock propagation in solids using Bragg and Laue diffraction. These techniques can be used to look at phase transitions, melting and recrystallization, and the propagation of defects and dislocations well below the surface in solid materials. [2] These types of dynamic phenomena undermine the mechanical properties of metals and are of general interest in solid state physics, materials science, metallurgy, and have specific relevance to stockpile stewardship. Another x-ray diagnostic technique, extended x-ray absorption fine structure (EXAFS) spectroscopy, can be used to measure small-scale structural changes to understand the underlying atomic physics associated with the formation of defects. [2]« less

  11. High brightness electrodeless Z-Pinch EUV source for mask inspection tools

    NASA Astrophysics Data System (ADS)

    Horne, Stephen F.; Partlow, Matthew J.; Gustafson, Deborah S.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2012-03-01

    Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 1995. The source is currently being used for metrology, mask inspection, and resist development. Energetiq's higher brightness source has been selected as the source for pre-production actinic mask inspection tools. This improved source enables the mask inspection tool suppliers to build prototype tools with capabilities of defect detection and review down to 16nm design rules. In this presentation we will present new source technology being developed at Energetiq to address the critical source brightness issue. The new technology will be shown to be capable of delivering brightness levels sufficient to meet the HVM requirements of AIMS and ABI and potentially API tools. The basis of the source technology is to use the stable pinch of the electrodeless light source and have a brightness of up to 100W/mm(carat)2-sr. We will explain the source design concepts, discuss the expected performance and present the modeling results for the new design.

  12. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  13. Radiation sensitive area detection device and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)

    1991-01-01

    A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.

  14. Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source

    NASA Astrophysics Data System (ADS)

    Martínez-Verdú, Francisco; Perales, Esther; Chorro, Elisabet; de Fez, Dolores; Viqueira, Valentín; Gilabert, Eduardo

    2007-06-01

    We present a systematic algorithm capable of searching for optimal colors for any lightness L* (between 0 and 100), any illuminant (D65, F2, F7, F11, etc.), and any light source reported by CIE. Color solids are graphed in some color spaces (CIELAB, SVF, DIN99d, and CIECAM02) by horizontal (constant lightness) and transversal (constant hue angle) sections. Color solids plotted in DIN99d and CIECAM02 color spaces look more spherical or homogeneous than the ones plotted in CIELAB and SVF color spaces. Depending on the spectrum of the light source or illuminant, the shape of its color solid and its content (variety of distinguishable colors, with or without color correspondence) change drastically, particularly with sources whose spectrum is discontinuous and/or very peaked, with correlated color temperature lower than 5500 K. This could be used to propose an absolute colorimetric quality index for light sources comparing the volumes of their gamuts, in a uniform color space.

  15. SPIM-fluid: open source light-sheet based platform for high-throughput imaging

    PubMed Central

    Gualda, Emilio J.; Pereira, Hugo; Vale, Tiago; Estrada, Marta Falcão; Brito, Catarina; Moreno, Nuno

    2015-01-01

    Light sheet fluorescence microscopy has recently emerged as the technique of choice for obtaining high quality 3D images of whole organisms/embryos with low photodamage and fast acquisition rates. Here we present an open source unified implementation based on Arduino and Micromanager, which is capable of operating Light Sheet Microscopes for automatized 3D high-throughput imaging on three-dimensional cell cultures and model organisms like zebrafish, oriented to massive drug screening. PMID:26601007

  16. A light-driven artificial flytrap

    PubMed Central

    Wani, Owies M.; Zeng, Hao; Priimagi, Arri

    2017-01-01

    The sophistication, complexity and intelligence of biological systems is a continuous source of inspiration for mankind. Mimicking the natural intelligence to devise tiny systems that are capable of self-regulated, autonomous action to, for example, distinguish different targets, remains among the grand challenges in biomimetic micro-robotics. Herein, we demonstrate an autonomous soft device, a light-driven flytrap, that uses optical feedback to trigger photomechanical actuation. The design is based on light-responsive liquid-crystal elastomer, fabricated onto the tip of an optical fibre, which acts as a power source and serves as a contactless probe that senses the environment. Mimicking natural flytraps, this artificial flytrap is capable of autonomous closure and object recognition. It enables self-regulated actuation within the fibre-sized architecture, thus opening up avenues towards soft, autonomous small-scale devices. PMID:28534872

  17. Broadband near-field infrared spectroscopy with a high temperature plasma light source.

    PubMed

    Lahneman, D J; Huffman, T J; Xu, Peng; Wang, S L; Grogan, T; Qazilbash, M M

    2017-08-21

    Scattering-type scanning near-field optical microscopy (S-SNOM) has enormous potential as a spectroscopy tool in the infrared spectral range where it can probe phonon resonances and carrier dynamics at the nanometer lengths scales. However, its applicability is limited by the lack of practical and affordable table-top light sources emitting intense broadband infrared radiation in the 100 cm -1 to 2,500 cm -1 spectral range. This paper introduces a high temperature plasma light source that is both ultra-broadband and has much more radiant power in the infrared spectral range than conventional, table-top thermal light sources such as the globar. We implement this plasma lamp in our near-field optical spectroscopy set up and demonstrate its capability as a broadband infrared nano-spectroscopy light source by obtaining near-field infrared amplitude and phase spectra of the phonon resonances of SiO 2 and SrTiO 3 .

  18. Atomic physics research with second and third generation synchrotron light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B.M.

    1990-10-01

    This contribution to these proceedings is intended to provide an introduction and overview for other contributions on atomic (and related) physics research at existing and planned synchrotron light sources. The emphasis will be on research accomplishments and future opportunities, but a comparison will be given of operating characteristics for first, second, and third generation machines. First generation light sources were built to do research with the primary electron and positron beams, rather than with the synchrotron radiation itself. Second generation machines were specifically designed to be dedicated synchrotron-radiation facilities, with an emphasis on the use of bending-magnet radiation. The newmore » third generation light sources are being designed to optimize radiation from insertion devices, such as undulators and wigglers. Each generation of synchrotron light source offers useful capabilities for forefront research in atomic physics and many other disciplines. 27 refs., 1 fig., 3 tabs.« less

  19. Tunable light source for use in photoacoustic spectrometers

    DOEpatents

    Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.

    2005-12-13

    The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.

  20. Method and system for fiber optic determination of gas concentrations in liquid receptacles

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor)

    2008-01-01

    A system for determining gas compositions includes a probe, inserted into a source of gaseous material, the probe having a gas permeable sensor tip and being capable of sending and receiving light to and from the gaseous material, a sensor body, connected to the probe, situated outside of the source and a fiber bundle, connected to the sensor body and communicating light to and from the probe. The system also includes a laser source, connected to one portion of the fiber bundle and providing laser light to the fiber bundle and the probe a Raman spectrograph, connected to another portion of the fiber bundle, receiving light from the probe and filtering the received light into specific channels and a data processing unit, receiving and analyzing the received light in the specific channels and outputting concentration of specific gas species in the gaseous material based on the analyzed received light.

  1. Synchrotron X-ray micro-tomography at the Advanced Light Source: Developments in high-temperature in-situ mechanical testing

    NASA Astrophysics Data System (ADS)

    Barnard, Harold S.; MacDowell, A. A.; Parkinson, D. Y.; Mandal, P.; Czabaj, M.; Gao, Y.; Maillet, E.; Blank, B.; Larson, N. M.; Ritchie, R. O.; Gludovatz, B.; Acevedo, C.; Liu, D.

    2017-06-01

    At the Advanced Light Source (ALS), Beamline 8.3.2 performs hard X-ray micro-tomography under conditions of high temperature, pressure, mechanical loading, and other realistic conditions using environmental test cells. With scan times of 10s-100s of seconds, the microstructural evolution of materials can be directly observed over multiple time steps spanning prescribed changes in the sample environment. This capability enables in-situ quasi-static mechanical testing of materials. We present an overview of our in-situ mechanical testing capabilities and recent hardware developments that enable flexural testing at high temperature and in combination with acoustic emission analysis.

  2. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppens, Philip

    2003-06-22

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellentmore » training for students and postdoctoral scientists in the field.« less

  3. Open-source products for a lighting experiment device.

    PubMed

    Gildea, Kevin M; Milburn, Nelda

    2014-12-01

    The capabilities of open-source software and microcontrollers were used to construct a device for controlled lighting experiments. The device was designed to ascertain whether individuals with certain color vision deficiencies were able to discriminate between the red and white lights in fielded systems on the basis of luminous intensity. The device provided the ability to control the timing and duration of light-emitting diode (LED) and incandescent light stimulus presentations, to present the experimental sequence and verbal instructions automatically, to adjust LED and incandescent luminous intensity, and to display LED and incandescent lights with various spectral emissions. The lighting device could easily be adapted for experiments involving flashing or timed presentations of colored lights, or the components could be expanded to study areas such as threshold light perception and visual alerting systems.

  4. Noncritical generation of nonclassical frequency combs via spontaneous rotational symmetry breaking

    NASA Astrophysics Data System (ADS)

    Navarrete-Benlloch, Carlos; Patera, Giuseppe; de Valcárcel, Germán J.

    2017-10-01

    Synchronously pumped optical parametric oscillators (SPOPOs) are optical cavities driven by mode-locked lasers, and containing a nonlinear crystal capable of down-converting a frequency comb to lower frequencies. SPOPOs have received a lot of attention lately because their intrinsic multimode nature makes them compact sources of quantum correlated light with promising applications in modern quantum information technologies. In this work we show that SPOPOs are also capable of accessing the challenging and interesting regime where spontaneous symmetry breaking confers strong nonclassical properties to the emitted light, which has eluded experimental observation so far. Apart from opening the possibility of studying experimentally this elusive regime of dissipative phase transitions, our predictions will have a practical impact, since we show that spontaneous symmetry breaking provides a specific spatiotemporal mode with large quadrature squeezing for any value of the system parameters, turning SPOPOs into robust sources of highly nonclassical light above threshold.

  5. Optical sedimentation recorder

    DOEpatents

    Bishop, James K.B.

    2014-05-06

    A robotic optical sedimentation recorder is described for the recordation of carbon flux in the oceans wherein both POC and PIC particles are captured at the open end of a submersible sampling platform, the captured particles allowed to drift down onto a collection plate where they can be imaged over time. The particles are imaged using three separate light sources, activated in sequence, one source being a back light, a second source being a side light to provide dark field illumination, and a third source comprising a cross polarized light source to illuminate birefringent particles. The recorder in one embodiment is attached to a buoyancy unit which is capable upon command for bringing the sedimentation recorder to a programmed depth below the ocean surface during recordation mode, and on command returning the unit to the ocean surface for transmission of recorded data and receipt of new instructions. The combined unit is provided with its own power source and is designed to operate autonomously in the ocean for extended periods of time.

  6. 46 CFR 199.110 - Survival craft muster and embarkation arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... be adequately illuminated by lighting with power supplied from the vessel's emergency source of electrical power. (d) Each alleyway, stairway, and exit giving access to a muster and embarkation station must be adequately illuminated by lighting that is capable of having its power supplied by the vessel's...

  7. 46 CFR 199.110 - Survival craft muster and embarkation arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... be adequately illuminated by lighting with power supplied from the vessel's emergency source of electrical power. (d) Each alleyway, stairway, and exit giving access to a muster and embarkation station must be adequately illuminated by lighting that is capable of having its power supplied by the vessel's...

  8. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  9. White-Light Optical Information Processing and Holography.

    DTIC Science & Technology

    1983-05-03

    Processing, White-Light Holography, Image Subtraction, Image Deblurring , Coherence Requirement, Apparent Transfer Function, Source Encoding, Signal...in this period, also demonstrated several color image processing capabilities. Among those are broadband color image deblurring and color image...Broadband Image Deblurring ..... ......... 6 2.5 Color Image Subtraction ............... 7 2.6 Rainbow Holographic Aberrations . . ..... 7 2.7

  10. What would Edison do with solid state lighting?

    NASA Astrophysics Data System (ADS)

    Ferguson, Ian T.; Melton, Andrew; Xu, Tianming; Jamil, Muhammad; Fenwick, Will

    2010-08-01

    Thomas Edison is widely regarded as the greatest inventor in history and the most prominent individual behind the invention of the electric light. His impressive characteristics as an individual that led to his amazing success as an innovator continue to be an inspiration for researchers today. This paper considers how Edison might proceed in developing solid state lighting into a technology capable of displacing incumbent light sources, including his own incandescent lamps, then reviews some of the "Edison-like" contributions made to solid state lighting by the Next Generation Lighting research program at Georgia Tech.

  11. Convenient determination of luminescence quantum yield using a combined electronic absorption and emission spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, John; Mishra, Ashok Kumar

    2016-01-15

    It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.

  12. Optical laser systems at the Linac Coherent Light Source

    DOE PAGES

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; ...

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  13. OLED area illumination source

    DOEpatents

    Foust, Donald Franklin [Scotia, NY; Duggal, Anil Raj [Niskayuna, NY; Shiang, Joseph John [Niskayuna, NY; Nealon, William Francis [Gloversville, NY; Bortscheller, Jacob Charles [Clifton Park, NY

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  14. 46 CFR 28.870 - Emergency source of electrical power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (a) The following electrical loads must be connected to an independent emergency source of power capable of supplying all connected loads continuously for at least three hours: (1) Navigation lights; (2... ventilated compartment. The batteries must be protected from falling objects; (4) Each battery tray must be...

  15. Rf capacitively-coupled electrodeless light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2000-01-01

    An rf capacitively-coupled electrodeless light source is provided. The light source comprises a hollow, elongated chamber and at least one center conductor disposed within the hollow, elongated chamber. A portion of each center conductor extends beyond the hollow, elongated chamber. At least one gas capable of forming an electronically excited molecular state is contained within each center conductor. An electrical coupler is positioned concentric to the hollow, elongated chamber and the electrical coupler surrounds the portion of each center conductor that extends beyond the hollow, elongated chamber. A rf-power supply is positioned in an operable relationship to the electrical couplermore » and an impedance matching network is positioned in an operable relationship to the rf power supply and the electrical coupler.« less

  16. Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Shaughnessy Brennan; Hashim, Akel; Gleason, Arianna

    In this paper, we measure the shock drive capabilities of a 30 J, nanosecond, 527 nm laser system at the matter in extreme conditions hutch of the Linac Coherent Light Source. Using a velocity interferometer system for any reflector, we ascertain the maximum instantaneous ablation pressure and characterize its dependence on a drive laser spot size, spatial profile, and temporal profile. We also examine the effects of these parameters on shock spatial and temporal uniformity. Our analysis shows the drive laser capable of generating instantaneous ablation pressures exceeding 160 GPa while maintaining a 1D shock profile. We find that slopemore » pulses provide higher instantaneous ablation pressures than plateau pulses. Our results show instantaneous ablation pressures comparable to those measured at the Omega Laser Facility in Rochester, NY under similar optical drive parameters. In conclusion, we analyze how optical laser ablation pressures are compare with known scaling relations, accounting for variable laser wavelengths.« less

  17. Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source

    DOE PAGES

    Brown, Shaughnessy Brennan; Hashim, Akel; Gleason, Arianna; ...

    2017-10-23

    In this paper, we measure the shock drive capabilities of a 30 J, nanosecond, 527 nm laser system at the matter in extreme conditions hutch of the Linac Coherent Light Source. Using a velocity interferometer system for any reflector, we ascertain the maximum instantaneous ablation pressure and characterize its dependence on a drive laser spot size, spatial profile, and temporal profile. We also examine the effects of these parameters on shock spatial and temporal uniformity. Our analysis shows the drive laser capable of generating instantaneous ablation pressures exceeding 160 GPa while maintaining a 1D shock profile. We find that slopemore » pulses provide higher instantaneous ablation pressures than plateau pulses. Our results show instantaneous ablation pressures comparable to those measured at the Omega Laser Facility in Rochester, NY under similar optical drive parameters. In conclusion, we analyze how optical laser ablation pressures are compare with known scaling relations, accounting for variable laser wavelengths.« less

  18. Kimzeyite garnet phosphors

    DOEpatents

    Lyons, Robert Joseph

    2013-05-14

    A phosphor of formula I is included in a phosphor composition in a lighting apparatus capable of emitting white light, Ca.sub.3-x-zSr.sub.xCe.sub.zM.sup.1.sub.2M.sup.2AlSiO.sub.12 (I) wherein M.sup.1 is Hf, Zr, or a combination thereof; M.sup.2 is Al, or a combination of Al and Ga; z<3-x; and 0.2>x.gtoreq.0. The lighting apparatus includes a semiconductor light source in addition to the phosphor composition.

  19. Measurement and Validation of Bidirectional Reflectance of Space Shuttle and Space Station Materials for Computerized Lighting Models

    NASA Technical Reports Server (NTRS)

    Fletcher, Lauren E.; Aldridge, Ann M.; Wheelwright, Charles; Maida, James

    1997-01-01

    Task illumination has a major impact on human performance: What a person can perceive in his environment significantly affects his ability to perform tasks, especially in space's harsh environment. Training for lighting conditions in space has long depended on physical models and simulations to emulate the effect of lighting, but such tests are expensive and time-consuming. To evaluate lighting conditions not easily simulated on Earth, personnel at NASA Johnson Space Center's (JSC) Graphics Research and Analysis Facility (GRAF) have been developing computerized simulations of various illumination conditions using the ray-tracing program, Radiance, developed by Greg Ward at Lawrence Berkeley Laboratory. Because these computer simulations are only as accurate as the data used, accurate information about the reflectance properties of materials and light distributions is needed. JSC's Lighting Environment Test Facility (LETF) personnel gathered material reflectance properties for a large number of paints, metals, and cloths used in the Space Shuttle and Space Station programs, and processed these data into reflectance parameters needed for the computer simulations. They also gathered lamp distribution data for most of the light sources used, and validated the ability to accurately simulate lighting levels by comparing predictions with measurements for several ground-based tests. The result of this study is a database of material reflectance properties for a wide variety of materials, and lighting information for most of the standard light sources used in the Shuttle/Station programs. The combination of the Radiance program and GRAF's graphics capability form a validated computerized lighting simulation capability for NASA.

  20. Beam position monitoring system at CESR

    NASA Astrophysics Data System (ADS)

    Billing, M. G.; Bergan, W. F.; Forster, M. J.; Meller, R. E.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Palmer, M. A.; Holtzapple, R. L.

    2017-09-01

    The Cornell Electron-positron Storage Ring (CESR) has been converted from a High Energy Physics electron-positron collider to operate as a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS) and to conduct accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Some of the specific topics that were targeted for the initial phase of operation of the storage ring in this mode, labeled CESRTA (CESR as a Test Accelerator), included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CESRTA occurred over a several year period and is described elsewhere. As a part of this conversion the CESR beam position monitoring (CBPM) system was completely upgraded to provide the needed instrumental capabilities for these studies. This paper describes the new CBPM system hardware, its function and representative measurements performed by the upgraded system.

  1. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Vasily; Hall, Gregory

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  2. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE PAGES

    Goncharov, Vasily; Hall, Gregory

    2016-08-25

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  3. Advanced light source master oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, C.C.; Taylor, B.; Baptiste, K.

    1989-03-01

    The Master Oscillator of the Advanced Light Source operates at a frequency of 499.654 MHz which is the 328th harmonic of the storage ring. The oscillator is capable of providing up to a maximum of {plus minus} 500 KHz frequency deviation for various experimental purposes. Provisions for external signal injection as well as using an external signal source have been designed into the unit. A power distribution system has also been included to provide signals for various parts of the ALS machine and user requirements. The Master Oscillator is made up with modules housed in a Euro chassis. 4 refs.,more » 7 figs.« less

  4. CORONA-INDUCED PHOTOXIDATION OF ALCOHOLS AND HYDROCARBONS OVER TIO2 IN THE ABSENCE OF A UV LIGHT SOURCE - A NOVEL AND ENVIRONMENTALLY FRIENDLY METHOD FOR OXIDATION

    EPA Science Inventory

    Corona-induced photooxidation is a novel oxidation methodology for the efficient oxidation of alcohols and hydrocarbons utilizing the advantage of both the high oxidizing power of ozone formed in the reactor as well as the photooxidation capability of the UV light generated durin...

  5. The use of near-infrared photography to image fired bullets and cartridge cases.

    PubMed

    Stein, Darrell; Yu, Jorn Chi Chung

    2013-09-01

    An imaging technique that is capable of reducing glare, reflection, and shadows can greatly assist the process of toolmarks comparison. In this work, a camera with near-infrared (near-IR) photographic capabilities was fitted with an IR filter, mounted to a stereomicroscope, and used to capture images of toolmarks on fired bullets and cartridge cases. Fluorescent, white light-emitting diode (LED), and halogen light sources were compared for use with the camera. Test-fired bullets and cartridge cases from different makes and models of firearms were photographed under either near-IR or visible light. With visual comparisons, near-IR images and visible light images were comparable. The use of near-IR photography did not reveal more details and could not effectively eliminate reflections and glare associated with visible light photography. Near-IR photography showed little advantages in manual examination of fired evidence when it was compared with visible light (regular) photography. © 2013 American Academy of Forensic Sciences.

  6. Non-imaging Optics of multi-LED light source for hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Islam, Kashif; Gosnell, Martin E.; Ploschner, Martin; Anwer, Ayad G.; Goldys, Ewa M.

    2016-12-01

    The main objective of our work was to design a light source which should be capable to collect and illuminate light of LEDs at the smaller aperture of cone (9mm) which could be either coupled with secondary optics of a microscope or utilized independently for hyperspectral studies. Optimized performance of cone was assessed for different substrates (diffused glass silica, Alumina, Zerodur glass, acrylic plastic) and coating surfaces (white diffused, flat white paint, standard mirror) using a simulation software. The parameters optimized for truncated cone include slanting length and Top Major R (Larger diameter of cone) which were also varied from 10 to 350 mm and 10 to 80 mm respectively. In order to see affect of LED positions on cone efficiency, the positions of LED were varied from central axis to off-axis. Similarly, interLED distance was varied from 2 mm to 6 mm to reckon its effect on the performance of cone. The optimized Slant length (80 mm) and Top Major R (50 mm) were determined for substrates (glass zerodur or acrylic plastic) and coating surface (standard mirror). The output profile of truncated source was found non uniform, which is a typical presentation of non imaging optics problem. The maximum efficiency of cone has been found for LED at the centre and it was found decreasing as LED moves away from the central axis. Moreover, shorter the interLED distance, better is the performance of cone. The primary optics of cone shaped light source is capable to lit visible and UV LEDs in practical design. The optimum parameters obtained through simulations could be implemented in the fabrication procedure if the reflectance of source would have been maintained upto finish level of a standard mirror.

  7. Two-photon or higher-order absorbing optical materials and methods of use

    NASA Technical Reports Server (NTRS)

    Marder, Seth (Inventor); Perry, Joseph (Inventor)

    2012-01-01

    Compositions capable of simultaneous two-photon absorption and higher order absorptivities are provided. Compounds having a donor-pi-donor or acceptor-pi-acceptor structure are of particular interest, where the donor is an electron donating group, acceptor is an electron accepting group, and pi is a pi bridge linking the donor and/or acceptor groups. The pi bridge may additionally be substituted with electron donating or withdrawing groups to alter the absorptive wavelength of the structure. Also disclosed are methods of generating an excited state of such compounds through optical stimulation with light using simultaneous absorption of photons of energies individually insufficient to achieve an excited state of the compound, but capable of doing so upon simultaneous absorption of two or more such photons. Applications employing such methods are also provided, including controlled polymerization achieved through focusing of the light source(s) used.

  8. Characterization and imaging of nanostructured materials using tabletop extreme ultraviolet light sources

    NASA Astrophysics Data System (ADS)

    Karl, Robert; Knobloch, Joshua; Frazer, Travis; Tanksalvala, Michael; Porter, Christina; Bevis, Charles; Chao, Weilun; Abad Mayor, Begoña.; Adams, Daniel; Mancini, Giulia F.; Hernandez-Charpak, Jorge N.; Kapteyn, Henry; Murnane, Margaret

    2018-03-01

    Using a tabletop coherent extreme ultraviolet source, we extend current nanoscale metrology capabilities with applications spanning from new models of nanoscale transport and materials, to nanoscale device fabrication. We measure the ultrafast dynamics of acoustic waves in materials; by analyzing the material's response, we can extract elastic properties of films as thin as 11nm. We extend this capability to a spatially resolved imaging modality by using coherent diffractive imaging to image the acoustic waves in nanostructures as they propagate. This will allow for spatially resolved characterization of the elastic properties of non-isotropic materials.

  9. Laser Wakefield Accelerators: Next-Generation Light Sources

    DOE PAGES

    Albert, Felicie

    2018-01-01

    Here, a new breed of compact particle accelerators, capable of producing electron-beam energies in the GeV range, could soon bring some of the experimental power of synchrotrons and X-ray free-electron lasers to a tabletop near you.

  10. Laser Wakefield Accelerators: Next-Generation Light Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Felicie

    Here, a new breed of compact particle accelerators, capable of producing electron-beam energies in the GeV range, could soon bring some of the experimental power of synchrotrons and X-ray free-electron lasers to a tabletop near you.

  11. Radiation-Induced Processing of Hydrocarbons in Environments Relevant to Pluto

    DTIC Science & Technology

    2001-05-07

    energetic’ (characterized by high levels of electrical and geothermal activity) liquid water environment, are capable of generating significant prebiotic ...synthesis of biogenic molecules (Chyba & Sagan 1992). In this light, a potential cometary source of prebiotic organics (the precursors of biological...precursors for prebiotic molecules. This exogenous source of prebiotic organics on early Earth could provide an alternative method of accounting for

  12. Tests of monolithic active pixel sensors at national synchrotron light source

    NASA Astrophysics Data System (ADS)

    Deptuch, G.; Besson, A.; Carini, G. A.; Siddons, D. P.; Szelezniak, M.; Winter, M.

    2007-01-01

    The paper discusses basic characterization of Monolithic Active Pixel Sensors (MAPS) carried out at the X12A beam-line at National Synchrotron Light Source (NSLS), Upton, NY, USA. The tested device was a MIMOSA V (MV) chip, back-thinned down to the epitaxial layer. This 1M pixels device features a pixel size of 17×17 μm2 and was designed in a 0.6 μm CMOS process. The X-ray beam energies used range from 5 to 12 keV. Examples of direct X-ray imaging capabilities are presented.

  13. The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source

    DOE PAGES

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; ...

    2015-03-03

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. In addition, a description of the instrument capabilities and recent achievements is presented.

  14. Bone optical spectroscopy for the measurement of hemoglobin content

    NASA Astrophysics Data System (ADS)

    Hollmann, Joseph L.; Arambel, Paula; Piet, Judith; Shefelbine, Sandra; Markovic, Stacey; Niedre, Mark; DiMarzio, Charles A.

    2014-05-01

    Osteoporosis is a common side effect of spinal cord injuries. Blood perfusion in the bone provides an indication of bone health and may help to evaluate therapies addressing bone loss. Current methods for measuring blood perfusion of bone use dyes and ionizing radiation, and yield qualitative results. We present a device capable of measuring blood oxygenation in the tibia. The device illuminates the skin directly over the tibia with a white light source and measures the diffusely reflected light in the near infrared spectrum. Multiple source-detector distances are utilized so that the blood perfusion in skin and bone may be differentiated.

  15. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    DOE PAGES

    Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.; ...

    2015-05-01

    The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  16. Optical Distance Measurement Device And Method Thereof

    DOEpatents

    Bowers, Mark W.

    2004-06-15

    A system and method of efficiently obtaining distance measurements of a target by scanning the target. An optical beam is provided by a light source and modulated by a frequency source. The modulated optical beam is transmitted to an acousto-optical deflector capable of changing the angle of the optical beam in a predetermined manner to produce an output for scanning the target. In operation, reflected or diffused light from the target may be received by a detector and transmitted to a controller configured to calculate the distance to the target as well as the measurement uncertainty in calculating the distance to the target.

  17. Acute effects of different light spectra on simulated night-shift work without circadian alignment.

    PubMed

    Canazei, Markus; Pohl, Wilfried; Bliem, Harald R; Weiss, Elisabeth M

    2017-01-01

    Short-wavelength and short-wavelength-enhanced light have a strong impact on night-time working performance, subjective feelings of alertness and circadian physiology. In the present study, we investigated acute effects of white light sources with varied reduced portions of short wavelengths on cognitive and visual performance, mood and cardiac output.Thirty-one healthy subjects were investigated in a balanced cross-over design under three light spectra in a simulated night-shift paradigm without circadian adaptation.Exposure to the light spectrum with the largest attenuation of short wavelengths reduced heart rate and increased vagal cardiac parameters during the night compared to the other two light spectra without deleterious effects on sustained attention, working memory and subjective alertness. In addition, colour discrimination capability was significantly decreased under this light source.To our knowledge, the present study for the first time demonstrates that polychromatic white light with reduced short wavelengths, fulfilling current lighting standards for indoor illumination, may have a positive impact on cardiac physiology of night-shift workers without detrimental consequences for cognitive performance and alertness.

  18. Near-Infrared Free-Radical and Free-Radical-Promoted Cationic Photopolymerizations by In-Source Lighting Using Upconverting Glass.

    PubMed

    Kocaarslan, Azra; Tabanli, Sevcan; Eryurek, Gonul; Yagci, Yusuf

    2017-11-13

    A method is presented for the initiation of free-radical and free-radical-promoted cationic photopolymerizations by in-source lighting in the near-infrared (NIR) region using upconverting glass (UCG). This approach utilizes laser irradiation of UCG at 975 nm in the presence of fluorescein (FL) and pentamethyldiethylene triamine (PMDETA). FL excited by light emitted from the UCG undergoes electron-transfer reactions with PMDETA to form free radicals capable of initiating polymerization of methyl methacrylate. To execute the corresponding free-radical-promoted cationic polymerization of cyclohexene oxide, isobutyl vinyl ether, and N-vinyl carbazole, it was necessary to use FL, dimethyl aniline (DMA), and diphenyliodonium hexafluorophosphate as sensitizer, coinitiator, and oxidant, respectively. Iodonium ions promptly oxidize DMA radicals formed to the corresponding cations. Thus, cationic polymerization with efficiency comparable to the conventional irradiation source was achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fly Ear Inspired Miniature Acoustic Sensors for Detection and Localization

    DTIC Science & Technology

    2011-07-31

    Micro-Opto-Electro-Mechnical-System ( MOEMS ) sensor platform that is capable of integrating multiplexed Fabry-Perot (FP) interferometer based sensors. A...on a single MOEMS chip is shown in Figure 8. Light from a low coherence light source with a coherence length Lc is first sent to the reference...towards developing a low coherence interferometer based MOEMS detection system. An optical Micro-Electro-Mechanical-System (MEMS) sensor platform was

  20. Development of excitation light source for photodynamic diagnosis

    NASA Astrophysics Data System (ADS)

    Lim, Hyun Soo

    2008-02-01

    Photodynamic diagnosis (PDD) is a method to diagnose the possibility of cancer, both by the principle that if a photosensitizer is injected into an organic tissue, it is accumulated in the tissue of a malignant tumor selectively after a specific period, and by a comparison of the intensity of the fluorescence of normal tissue with abnormal tissue after investigating the excitation light of a tissue with accumulated photosensitizer. Currently, there are two methods of PDD: The first is a way to acquire incitement fluorescence by using a photosensitizer, and the second is a way to use auto-fluorescence by green fluorescence protein (GFP) and red fluorescence protein (RFP) such as NADH+ active factors within the organic body. Since the selection of the wavelength band of excitation light has an interrelation with fluorescence generation according to the selection of a photosensitizer, it plays an important role in PDD. This study aims at designing and evaluating light source devices that can stably generate light with various kinds of wavelengths in order to make possible PDD using a photosensitizer and diagnosis using auto-fluorescence. The light source was a Xenon lamp and filter wheel, composed of an optical output control through Iris and filters with several wavelength bands. It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-420nm, 430-480nm, 480-560nm. The transmission part of the light source was developed to enhance the efficiency of light transmission. To evaluate this light source, the characteristics of light output and wavelength band were verified. To validate the capability of this device as PDD, the detection of auto-fluorescence using mouse models was performed.

  1. From dark to bright: novel daylighting applications in solid state lighting

    NASA Astrophysics Data System (ADS)

    Adler, Helmar G.

    2011-10-01

    The term "daylighting" is used in various ways, on one hand in a more architectural sense, i.e. using existing daylight to illuminate spaces, and on the other, more recently, for using light sources to replicate daylight. The emergence of solid state lighting (SSL) opens up a large number of new avenues for daylighting. SSL allows innovative controllability of intensity and color for artificial light sources that can be advantageously applied to daylighting. With the assistance of these new technologies the combination of natural and artificial lighting could lead to improvements in energy savings and comfort of living beings. Thus it is imperative to revisit or even improve daylighting research so that building networks of the future with their sensor, energy (e.g. HVAC) and lighting requirements can benefit from the emerging capabilities. This paper will briefly review existing daylighting concepts and technology and discuss new ideas. An example of a tunable multi-color SSL system will be shown.

  2. The study of LED light source illumination conditions for ideal algae cultivation

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chin; Huang, Chien-Fu; Chen, Cin-Fu; Yue, Cheng-Feng

    2017-02-01

    Utilizing LED light source modules with 3 different RGB colors, the illumination effect of different wavelengths had been investigated on the growth curve of the same kind of micro algae. It was found that the best micro algae culturing status came out with long wavelength light such as red light (650 670 nm). Based on the same condition for a period of 3 weeks , the grown micro algae population density ratio represented by Optical Density (O.D.) ratio is 1?0.4?0.7 corresponding to growth with Red, Green, Blue light sources, respectively. Mixing 3 types and 2 types of LEDs with different parameters, the grown micro algae population densities were compared in terms of O.D. Interestingly enough, different light sources resulted in significant discoloration on micro algae growth, appearing yellow, brown, green, etc. Our experiments results showed such discoloration effect is reversible. Based on the same lighting condition, micro algae growth can be also affected by incubator size, nutrition supply, and temperature variation. In recent years, micro algae related technologies have been international wise a hot topic of energy and environmental protection for research and development institutes, and big energy companies among those developed countries. There will be an economically prosperous future. From this study of LED lighting to ideal algae cultivation, it was found that such built system would be capable of optimizing artificial cultivation system, leading to economic benefits for its continuous development. Since global warming causing weather change, accompanying with reducing energy sources and agriculture growth shortage are all threatening human being survival.

  3. Biological applications of an LCoS-based programmable array microscope (PAM)

    NASA Astrophysics Data System (ADS)

    Hagen, Guy M.; Caarls, Wouter; Thomas, Martin; Hill, Andrew; Lidke, Keith A.; Rieger, Bernd; Fritsch, Cornelia; van Geest, Bert; Jovin, Thomas M.; Arndt-Jovin, Donna J.

    2007-02-01

    We report on a new generation, commercial prototype of a programmable array optical sectioning fluorescence microscope (PAM) for rapid, light efficient 3D imaging of living specimens. The stand-alone module, including light source(s) and detector(s), features an innovative optical design and a ferroelectric liquid-crystal-on-silicon (LCoS) spatial light modulator (SLM) instead of the DMD used in the original PAM design. The LCoS PAM (developed in collaboration with Cairn Research, Ltd.) can be attached to a port of a(ny) unmodified fluorescence microscope. The prototype system currently operated at the Max Planck Institute incorporates a 6-position high-intensity LED illuminator, modulated laser and lamp light sources, and an Andor iXon emCCD camera. The module is mounted on an Olympus IX71 inverted microscope with 60-150X objectives with a Prior Scientific x,y, and z high resolution scanning stages. Further enhancements recently include: (i) point- and line-wise spectral resolution and (ii) lifetime imaging (FLIM) in the frequency domain. Multiphoton operation and other nonlinear techniques should be feasible. The capabilities of the PAM are illustrated by several examples demonstrating single molecule as well as lifetime imaging in live cells, and the unique capability to perform photoconversion with arbitrary patterns and high spatial resolution. Using quantum dot coupled ligands we show real-time binding and subsequent trafficking of individual ligand-growth factor receptor complexes on and in live cells with a temporal resolution and sensitivity exceeding those of conventional CLSM systems. The combined use of a blue laser and parallel LED or visible laser sources permits photoactivation and rapid kinetic analysis of cellular processes probed by photoswitchable visible fluorescent proteins such as DRONPA.

  4. A spectrally tunable solid-state source for radiometric, photometric, and colorimetric applications

    NASA Astrophysics Data System (ADS)

    Fryc, Irena; Brown, Steven W.; Eppeldauer, George P.; Ohno, Yoshihiro

    2004-10-01

    A spectrally tunable light source using a large number of LEDs and an integrating sphere has been designed and being developed at NIST. The source is designed to have a capability of producing any spectral distributions mimicking various light sources in the visible region by feedback control of individual LEDs. The output spectral irradiance or radiance of the source will be calibrated by a reference instrument, and the source will be used as a spectroradiometric as well as photometric and colorimetric standard. The use of the tunable source mimicking spectra of display colors, for example, rather than a traditional incandescent standard lamp for calibration of colorimeters, can reduce the spectral mismatch errors of the colorimeter measuring displays significantly. A series of simulations have been conducted to predict the performance of the designed tunable source when used for calibration of colorimeters. The results indicate that the errors can be reduced by an order of magnitude compared with those when the colorimeters are calibrated against Illuminant A. Stray light errors of a spectroradiometer can also be effectively reduced by using the tunable source producing a blackbody spectrum at higher temperature (e.g., 9000 K). The source can also approximate various CIE daylight illuminants and common lamp spectral distributions for other photometric and colorimetric applications.

  5. Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model

    PubMed Central

    Joshi, Chaitanya; Irish, Elinor K.; Spiller, Timothy P.

    2017-01-01

    Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one quadrature component are reduced below the standard quantum limit. With less noise than the best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies and has already improved sensing capabilities in areas ranging from gravitational wave detection to biomedical applications. In this work we propose a novel technique for generating squeezed states of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the standard quantum limit. The degree of squeezing and the time of generation are directly controlled by the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our protocol promises to be capable of generating a useful degree of squeezing with present experimental capabilities. PMID:28358025

  6. Background-Limited Infrared-Submillimeter Spectroscopy (BLISS)

    NASA Technical Reports Server (NTRS)

    Bradford, Charles Matt

    2004-01-01

    The bulk of the cosmic far-infrared background light will soon be resolved into its individual sources with Spitzer, Astro-F, Herschel, and submm/mm ground-based cameras. The sources will be dusty galaxies at z approximately equal to 1-4. Their physical conditions and processes in these galaxies are directly probed with moderate-resolution spectroscopy from 20 micrometers to 1 mm. Currently large cold telescopes are being combined with sensitive direct detectors, offering the potential for mid-far-IR spectroscopy at the background limit (BLISS). The capability will allow routine observations of even modest high-redshift galaxies in a variety of lines. The BLISS instrument's capabilities are described in this presentation.

  7. Versatile spin-polarized electron source

    DOEpatents

    Jozwiak, Chris; Park, Cheol -Hwan; Gotlieb, Kenneth; Louie, Steven G.; Hussain, Zahid; Lanzara, Alessandra

    2015-09-22

    One or more embodiments relate generally to the field of photoelectron spin and, more specifically, to a method and system for creating a controllable spin-polarized electron source. One preferred embodiment of the invention generally comprises: method for creating a controllable spin-polarized electron source comprising the following steps: providing one or more materials, the one or more materials having at least one surface and a material layer adjacent to said surface, wherein said surface comprises highly spin-polarized surface electrons, wherein the direction and spin of the surface electrons are locked together; providing at least one incident light capable of stimulating photoemission of said surface electrons; wherein the photon polarization of said incident light is tunable; and inducing photoemission of the surface electron states.

  8. Programmable phase plate for tool modification in laser machining applications

    DOEpatents

    Thompson Jr., Charles A.; Kartz, Michael W.; Brase, James M.; Pennington, Deanna; Perry, Michael D.

    2004-04-06

    A system for laser machining includes a laser source for propagating a laser beam toward a target location, and a spatial light modulator having individual controllable elements capable of modifying a phase profile of the laser beam to produce a corresponding irradiance pattern on the target location. The system also includes a controller operably connected to the spatial light modulator for controlling the individual controllable elements. By controlling the individual controllable elements, the phase profile of the laser beam may be modified into a desired phase profile so as to produce a corresponding desired irradiance pattern on the target location capable of performing a machining operation on the target location.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozsef, G

    Purpose: To build a test device for HDR afterloaders capable of checking source positions, times at positions and estimate the activity of the source. Methods: A catheter is taped on a plastic scintillation sheet. When a source travels through the catheter, the scintillator sheet lights up around the source. The sheet is monitored with a video camera, and records the movement of the light spot. The center of the spot on each image on the video provides the source location, and the time stamps of the images can provide the dwell time the source spend in each location. Finally, themore » brightness of the light spot is related to the activity of the source. A code was developed for noise removal, calibrate the scale of the image to centimeters, eliminate the distortion caused by the oblique view angle, identifying the boundaries of the light spot, transforming the image into binary and detect and calculate the source motion, positions and times. The images are much less noisy if the camera is shielded. That requires that the light spot is monitored in a mirror, rather than directly. The whole assembly is covered from external light and has a size of approximately 17×35×25cm (H×L×W) Results: A cheap camera in BW mode proved to be sufficient with a plastic scintillator sheet. The best images were resulted by a 3mm thick sheet with ZnS:Ag surface coating. The shielding of the camera decreased the noise, but could not eliminate it. A test run even in noisy condition resulted in approximately 1 mm and 1 sec difference from the planned positions and dwell times. Activity tests are in progress. Conclusion: The proposed method is feasible. It might simplify the monthly QA process of HDR Brachytherapy units.« less

  10. Using synchrotron light to accelerate EUV resist and mask materials learning

    NASA Astrophysics Data System (ADS)

    Naulleau, Patrick; Anderson, Christopher N.; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Jones, Gideon; McClinton, Brittany; Miyakawa, Ryan; Mochi, Iacopo; Montgomery, Warren; Rekawa, Seno; Wallow, Tom

    2011-03-01

    As commercialization of extreme ultraviolet lithography (EUVL) progresses, direct industry activities are being focused on near term concerns. The question of long term extendibility of EUVL, however, remains crucial given the magnitude of the investments yet required to make EUVL a reality. Extendibility questions are best addressed using advanced research tools such as the SEMATECH Berkeley microfield exposure tool (MET) and actinic inspection tool (AIT). Utilizing Lawrence Berkeley National Laboratory's Advanced Light Source facility as the light source, these tools benefit from the unique properties of synchrotron light enabling research at nodes generations ahead of what is possible with commercial tools. The MET for example uses extremely bright undulator radiation to enable a lossless fully programmable coherence illuminator. Using such a system, resolution enhancing illuminations achieving k1 factors of 0.25 can readily be attained. Given the MET numerical aperture of 0.3, this translates to an ultimate resolution capability of 12 nm. Using such methods, the SEMATECH Berkeley MET has demonstrated resolution in resist to 16-nm half pitch and below in an imageable spin-on hard mask. At a half pitch of 16 nm, this material achieves a line-edge roughness of 2 nm with a correlation length of 6 nm. These new results demonstrate that the observed stall in ultimate resolution progress in chemically amplified resists is a materials issue rather than a tool limitation. With a resolution limit of 20-22 nm, the CAR champion from 2008 remains as the highest performing CAR tested to date. To enable continued advanced learning in EUV resists, SEMATECH has initiated a plan to implement a 0.5 NA microfield tool at the Advanced Light Source synchrotron facility. This tool will be capable of printing down to 8-nm half pitch.

  11. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  12. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source

    PubMed Central

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; Lemke, Henrik T.; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric

    2015-01-01

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milli­seconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of the instrument capabilities and recent achievements is presented. PMID:25931061

  13. Far-Infrared Beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; May, Tim E.

    2014-06-01

    The far-infrared beamline at the Canadian Light Source is a state of the art user facility, which offers significantly more far-infrared brightness than conventional globar sources. The infrared radiation is collected from a bending magnet through a 55 X 37 mrad2 port to a Bruker IFS 125 HR spectrometer, which is equipped with a nine compartment scanning arm, allowing it to achieve spectral resolution better than 0.001 cm-1. Currently the beamline can achieve signal to noise ratios up to 8 times that which can be achieved using a traditional thermal source. This talk will provide an overview of the the beamline, and the capabilities available to users, recent and planned improvements including the addition of a Glow Discharge cell and advances in Coherent Synchrotron Radiation. Furthermore, the process of acquiring access to the facility will be covered.

  14. Theory of Maxwell's fish eye with mutually interacting sources and drains

    NASA Astrophysics Data System (ADS)

    Leonhardt, Ulf; Sahebdivan, Sahar

    2015-11-01

    Maxwell's fish eye is predicted to image with a resolution not limited by the wavelength of light. However, interactions between sources and drains may ruin the subwavelength imaging capabilities of this and similar absolute optical instruments. Nevertheless, as we show in this paper, at resonance frequencies of the device, an array of drains may resolve a single source, or alternatively, a single drain may scan an array of sources, no matter how narrowly spaced they are. It seems that near-field information can be obtained from far-field distances.

  15. Light distribution modulated diffuse reflectance spectroscopy.

    PubMed

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-06-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation.

  16. Light distribution modulated diffuse reflectance spectroscopy

    PubMed Central

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-01-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  17. Dual-channel operation in a synchronously pumped optical parametric oscillator for the generation of broadband mid-infrared coherent light sources.

    PubMed

    Liu, Pei; Wang, Sicong; He, Puyuan; Zhang, Zhaowei

    2018-05-01

    We report, to the best of our knowledge, a novel approach for generating broadband mid-infrared (mid-IR) light by implementing a dual-channel scheme in a synchronously pumped optical parametric oscillator (SPOPO). Two-channel operation was achieved by inserting a prism pair and two reflection mirrors inside an optical parametric oscillator (OPO) cavity. Pumped by a Yb-fiber laser, the OPO generated an idler wave at ∼3150  nm with a -10  dB bandwidth of ∼13.2  THz, which was twice as much as that of the pump source. This scheme represents a promising technical route to transform conventional SPOPOs into a device capable of generating mid-IR light with very broad instantaneous bandwidth.

  18. Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source

    PubMed Central

    Gioux, Sylvain; Lomnes, Stephen J.; Choi, Hak Soo; Frangioni, John V.

    2010-01-01

    Fluorescence lifetime imaging (FLi) could potentially improve exogenous near-infrared (NIR) fluorescence imaging, because it offers the capability of discriminating a signal of interest from background, provides real-time monitoring of a chemical environment, and permits the use of several different fluorescent dyes having the same emission wavelength. We present a high-power, LED-based, NIR light source for the clinical translation of wide-field (larger than 5 cm in diameter) FLi at frequencies up to 35 MHz. Lifetime imaging of indocyanine green (ICG), IRDye 800-CW, and 3,3′-diethylthiatricarbocyanine iodide (DTTCI) was performed over a large field of view (10 cm by 7.5 cm) using the LED light source. For comparison, a laser diode light source was employed as a gold standard. Experiments were performed both on the bench by diluting the fluorescent dyes in various chemical environments in Eppendorf tubes, and in vivo by injecting the fluorescent dyes mixed in Matrigel subcutaneously into CD-1 mice. Last, measured fluorescence lifetimes obtained using the LED and the laser diode sources were compared with those obtained using a state-of-the-art time-domain imaging system and with those previously described in the literature. On average, lifetime values obtained using the LED and the laser diode light sources were consistent, exhibiting a mean difference of 3% from the expected values and a coefficient of variation of 12%. Taken together, our study offers an alternative to laser diodes for clinical translation of FLi and explores the use of relatively low frequency modulation for in vivo imaging. PMID:20459250

  19. Upgrades to improve the usability, reliability, and spectral range of the MST Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Kubala, S. Z.; Borchardt, M. T.; Den Hartog, D. J.; Holly, D. J.; Jacobson, C. M.; Morton, L. A.; Young, W. C.

    2016-11-01

    The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.

  20. Upgrades to improve the usability, reliability, and spectral range of the MST Thomson scattering diagnostic.

    PubMed

    Kubala, S Z; Borchardt, M T; Den Hartog, D J; Holly, D J; Jacobson, C M; Morton, L A; Young, W C

    2016-11-01

    The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.

  1. Astrometric light-travel time signature of sources in nonlinear motion. I. Derivation of the effect and radial motion

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, G.; Torra, J.

    2006-04-01

    Context: .Very precise planned space astrometric missions and recent improvements in imaging capabilities require a detailed review of the assumptions of classical astrometric modeling.Aims.We show that Light-Travel Time must be taken into account in modeling the kinematics of astronomical objects in nonlinear motion, even at stellar distances.Methods.A closed expression to include Light-Travel Time in the current astrometric models with nonlinear motion is provided. Using a perturbative approach the expression of the Light-Travel Time signature is derived. We propose a practical form of the astrometric modelling to be applied in astrometric data reduction of sources at stellar distances(d>1 pc).Results.We show that the Light-Travel Time signature is relevant at μ as accuracy (or even at mas) depending on the time span of the astrometric measurements. We explain how information on the radial motion of a source can be obtained. Some estimates are provided for known nearby binary systemsConclusions.Given the obtained results, it is clear that this effect must be taken into account in interpreting precise astrometric measurements. The effect is particularly relevant in measurements performed by the planned astrometric space missions (GAIA, SIM, JASMINE, TPF/DARWIN). An objective criterion is provided to quickly evaluate whether the Light-Travel Time modeling is required for a given source or system.

  2. Role Of High Speed Photography In The Testing Capabilities Of The Arnold Engineering Development Center (AEDC) Range And Track Facilities

    NASA Astrophysics Data System (ADS)

    Hendrix, Roy E.; Dugger, Paul H.

    1983-03-01

    Since the onset of user testing in the AEDC aeroballistic ranges in 1961, concentrated efforts in such areas as model launching techniques, test environment simulation, and specialized instrumentation have been made to enhance the usefulness of these test facilities. A wide selection of specialized instrumentation has been developed over the years to provide, among other features, panoramic photographic coverage of test models during flight. Pulsed ruby lasers, xenon flash lamps, visible-light spark sources, and flash X-ray systems are employed as short-duration radiation sources in various front-light and back-light photographic systems. Visible-light and near infrared image intensifier diodes are used to achieve high-speed shuttering in photographic pyrometry systems that measure surface temperatures of test models in flight. Turbine-driven framing cameras are used to provide multiframe photography of such high-speed phenomena as impact debris formation and model encounter with erosive fields. As a result, the capabilities of these ballistic range test units have increased significantly in regard to the types of tests that can be accommodated and to the quality and quantity of data that can be provided. Presently, five major range and companion track facilities are active in conducting hypervelocity testing in AEDC's von K6rman Gas Dynamics Facility (VKF): Ranges G, K, and S-1 and Tracks G and K. The following types of tests are conducted in these test units: ablation/erosion, transpiration-cooled nosetip (TCNT), nosetip transition, heat transfer, aerodynamic, cannon projectile, rocket contrail, reentry physics, and hypervelocity impact. The parallel achievements in high-speed photography and testing capabilities are discussed, and the significant role of photographic systems in the development of the overall testing capabilities of the AEDC range and track facilities is illustrated in numerous examples of photographic results.

  3. Roadway Marking Optics for Autonomous Vehicle Guidance and Other Machine Vision Applications

    NASA Astrophysics Data System (ADS)

    Konopka, Anthony T.

    This work determines optimal planar geometric light source and optical imager configurations and electromagnetic wavelengths for maximizing the reflected signal intensity when using machine vision technology to image roadway markings with embedded spherical glass beads. It is found through a first set of experiments that roadway marking samples exhibiting little or no bead rolling effects are uniformly reflective with respect to the azimuthal angle of observation when measured for retroreflectivity within industry standard 30-meter geometry. A second set of experiments indicate that white roadway markings exhibit higher reflectivity throughout the visible spectrum than yellow roadway markings. A roadway marking optical model capable of being used to determine optimal geometric light source and optical imager configurations for maximizing the reflected signal intensities of roadway marking targets is constructed and simulated using optical engineering software. It is found through a third set of experiments that high signal intensities can be measured when the polar angles of the light source and optical imager along a plane normal to a roadway marking are equal, with the maximum signal intensity being measured when the polar angles of both the light source and optical imager are 90°.

  4. Integrated Testing and Maintenance Technologies.

    DTIC Science & Technology

    1983-12-01

    provides pilot cueing for mode failures of LRU’s. Equipment fail and status indicators are lighted displays that indicate specific failures within an...provided with appropriate display cueing only when a reversion results in some loss of capability or performance. Three forms of degraded mode advisories...are- a. Reversion to an alternative data source of equivalent accuracy with no pilot cueing . b. Reversion to an alternative data source of lesser

  5. Photoreceptor System for Melatonin Regulation and Phototherapy

    NASA Technical Reports Server (NTRS)

    Glickman, Gena (Inventor); Brainard, George (Inventor)

    2010-01-01

    The present invention involves a light system for stimulating or regulating neuroendocrine, circadian, and photoneural systems in mammals based upon the discovery of peak sensitivity ranging from 425-505 nm; a light meter system for quantifying light which stimulates or regulates mammalian circadian, photoneural, and neuroendocrine systems. The present invention also relates to translucent and transparent materials, and lamps or other light sources with or without filters capable of stimulating or regulating neuroendocrine, circadian, and photoneural systems in mammals. Additionally, the present invention involves treatment of mammals with a wide variety of disorders or deficits, including light responsive disorders, eating disorders, menstrual cycle disorders, non-specific alerting and performance deficits, hormone-sensitive cancers, and cardiovascular disorders.

  6. Control over high peak-power laser light and laser-driven X-rays

    NASA Astrophysics Data System (ADS)

    Zhao, Baozhen; Banerjee, Sudeep; Yan, Wenchao; Zhang, Ping; Zhang, Jun; Golovin, Grigory; Liu, Cheng; Fruhling, Colton; Haden, Daniel; Chen, Shouyuan; Umstadter, Donald

    2018-04-01

    An optical system was demonstrated that enables continuous control over the peak power level of ultrashort duration laser light. The optical characteristics of amplified and compressed femtosecond-duration light from a chirped-pulse amplification laser are shown to remain invariant and maintain high-fidelity using this system. When the peak power was varied by an order-of-magnitude, up to its maximum attainable value, the phase, spectral bandwidth, polarization state, and focusability of the light remained constant. This capability led to precise control of the focused laser intensity and enabled a correspondingly high level of control over the power of an all-laser-driven Thomson X-ray light source.

  7. The matter in extreme conditions instrument at the Linac Coherent Light Source

    DOE PAGES

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; ...

    2015-04-21

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.

  8. Light collection and pulse-shape discrimination in elongated scintillator cells for the PROSPECT reactor antineutrino experiment

    NASA Astrophysics Data System (ADS)

    Ashenfelter, J.; Balantekin, B.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bowes, A.; Brodsky, J. P.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Commeford, K.; Davee, D.; Dean, D.; Deichert, G.; Diwan, M. V.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Goddard, B. W.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Langford, T. J.; Littlejohn, B. R.; Martinez Caicedo, D. A.; McKeown, R. D.; Mendenhall, M. P.; Mueller, P.; Mumm, H. P.; Napolitano, J.; Neilson, R.; Norcini, D.; Pushin, D.; Qian, X.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Sheets, S.; Stemen, N. T.; Surukuchi, P. T.; Varner, R. L.; Viren, B.; Wang, W.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y. R.; Zangakis, G.; Zhang, C.; Zhang, X.

    2015-11-01

    A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.

  9. Fungal photobiology: visible light as a signal for stress, space and time

    PubMed Central

    Fuller, Kevin K.; Loros, Jennifer J.; Dunlap, Jay C.

    2014-01-01

    Visible light is an important source of energy and information for much of life on this planet. Though fungi are neither photosynthetic nor capable of observing adjacent objects, it is estimated that the majority of fungal species display some form of light response, ranging from developmental decision making to metabolic reprogramming to pathogenesis. As such, advances in our understanding of fungal photobiology will likely reach the broad fields impacted by these organisms, including agriculture, industry and medicine. In this review, we will first describe the mechanisms by which fungi sense light and then discuss the selective advantages likely imparted by their ability to do so. PMID:25323429

  10. Influence of non-line of sight luminescent emitters in visible light communication systems

    NASA Astrophysics Data System (ADS)

    Ghorai, Anaranya; Walvekar, Pratik; Nayak, Shreyas; Narayan, K. S.

    2018-01-01

    We introduce and demonstrate concepts which utilize the non-line of sight fraction of light incident on a detector assembly in a visible-light communication (VLC) system. In addition to ambient light, realistic enclosures where VLC is implemented consist of a sizable fraction of scattered and reflected light. We present results of VLC systems with detectors responding to contributions from the light source scattered off a surface embedded with fluorescent and phosphorescent emitters besides the direct line of sight signal. Contribution from the emitters takes a form of discernible fluctuations in the detector signal. The implication of our results from noise analysis of these fluctuations indicates the possibility of utilizing smart coatings to further tailor VLC capabilities.

  11. Elemental Composition of Mars Return Samples Using X-Ray Fluorescence Imaging at the National Synchrotron Light Source II

    NASA Astrophysics Data System (ADS)

    Thieme, J.; Hurowitz, J. A.; Schoonen, M. A.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.

    2018-04-01

    NSLS-II at BNL provides a unique and critical capability to perform assessments of the elemental composition and the chemical state of Mars returned samples using synchrotron radiation X-ray fluorescence imaging and X-ray absorption spectroscopy.

  12. The 1.083 micron tunable CW semiconductor laser

    NASA Technical Reports Server (NTRS)

    Wang, C. S.; Chen, Jan-Shin; Lu, Ken-Gen; Ouyang, Keng

    1991-01-01

    A tunable CW laser is desired to produce light equivalent to the helium spectral line at 1.08 microns. This laser will serve as an optical pumping source for He-3 and He-4 atoms used in space magnetometers. This light source can be fabricated either as a semiconductor laser diode or a pumped solid state laser. Continuous output power of greater than 10 mW is desired. Semiconductor lasers can be thermally tuned, but must be capable of locking onto the helium resonance lines. Solid state lasers must have efficient pumping sources suitable for space configuration. Additional requirements are as follows: space magnetometer applications will include low mass (less than 0.5 kg), low power consumption (less than 0.75 W), and high stability/reliability for long missions (5-10 years).

  13. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations.

    PubMed

    Zhang, Congcong; Chen, Penglei; Hu, Wenping

    2016-03-09

    Organic light-emitting transistors (OLETs) represent an emerging class of organic optoelectronic devices, wherein the electrical switching capability of organic field-effect transistors (OFETs) and the light-generation capability of organic light-emitting diodes (OLEDs) are inherently incorporated in a single device. In contrast to conventional OFETs and OLEDs, the planar device geometry and the versatile multifunctional nature of OLETs not only endow them with numerous technological opportunities in the frontier fields of highly integrated organic electronics, but also render them ideal scientific scaffolds to address the fundamental physical events of organic semiconductors and devices. This review article summarizes the recent advancements on OLETs in light of materials, device configurations, operation conditions, etc. Diverse state-of-the-art protocols, including bulk heterojunction, layered heterojunction and laterally arranged heterojunction structures, as well as asymmetric source-drain electrodes, and innovative dielectric layers, which have been developed for the construction of qualified OLETs and for shedding new and deep light on the working principles of OLETs, are highlighted by addressing representative paradigms. This review intends to provide readers with a deeper understanding of the design of future OLETs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Construction and commissioning of the compact energy-recovery linac at KEK

    NASA Astrophysics Data System (ADS)

    Akemoto, Mitsuo; Arakawa, Dai; Asaoka, Seiji; Cenni, Enrico; Egi, Masato; Enami, Kazuhiro; Endo, Kuninori; Fukuda, Shigeki; Furuya, Takaaki; Haga, Kaiichi; Hajima, Ryoichi; Hara, Kazufumi; Harada, Kentaro; Honda, Tohru; Honda, Yosuke; Honma, Teruya; Hosoyama, Kenji; Kako, Eiji; Katagiri, Hiroaki; Kawata, Hiroshi; Kobayashi, Yukinori; Kojima, Yuuji; Kondou, Yoshinari; Tanaka, Olga; Kume, Tatsuya; Kuriki, Masao; Matsumura, Hiroshi; Matsushita, Hideki; Michizono, Shinichiro; Miura, Takako; Miyajima, Tsukasa; Nagahashi, Shinya; Nagai, Ryoji; Nakai, Hirotaka; Nakajima, Hiromitsu; Nakamura, Norio; Nakanishi, Kota; Nigorikawa, Kazuyuki; Nishimori, Nobuyuki; Nogami, Takashi; Noguchi, Shuichi; Obina, Takashi; Qiu, Feng; Sagehashi, Hidenori; Sakai, Hiroshi; Sakanaka, Shogo; Sasaki, Shinichi; Satoh, Kotaro; Sawamura, Masaru; Shimada, Miho; Shinoe, Kenji; Shishido, Toshio; Tadano, Mikito; Takahashi, Takeshi; Takai, Ryota; Takenaka, Tateru; Tanimoto, Yasunori; Uchiyama, Takashi; Ueda, Akira; Umemori, Kensei; Watanabe, Ken; Yamamoto, Masahiro

    2018-01-01

    Energy-recovery linacs (ERLs) are promising for advanced synchrotron light sources, high-power free electron lasers (FELs), high-brightness gamma-ray sources, and electron-ion colliders. To demonstrate the critical technology of ERL-based light sources, we have designed and constructed a test accelerator, the compact ERL (cERL). Using advanced technology that includes a photocathode direct current (DC) electron gun and two types of 1.3-GHz-frequency superconducting cavities, the cERL was designed to be capable of recirculating low emittance (≤1 mm ṡ mrad) and high average-current (≥10 mA) electron beams while recovering the beam energy. During initial commissioning, the cERL demonstrated successful recirculation of high-quality beams with normalized transverse emittance of ∼0.14 mm ṡ mrad and momentum spread of ∼1.2 × 10-4 (rms) at a beam energy of 20 MeV and bunch charge below 100 fC. Energy recovery in the superconducting main linac was also demonstrated for high-average-current continuous-wave beams. These results constitute an important milestone toward realizing ERL-based light sources.

  15. The Matter in Extreme Conditions instrument at the Linac Coherent Light Source

    PubMed Central

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; Boyce, Richard F.; Boyce, Richard M.; Callen, Alice; Campell, Marc; Curiel, Ruben; Galtier, Eric; Garofoli, Justin; Granados, Eduardo; Hastings, Jerry; Hays, Greg; Heimann, Philip; Lee, Richard W.; Milathianaki, Despina; Plummer, Lori; Schropp, Andreas; Wallace, Alex; Welch, Marc; White, William; Xing, Zhou; Yin, Jing; Young, James; Zastrau, Ulf; Lee, Hae Ja

    2015-01-01

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented. PMID:25931063

  16. Transmission x-ray microscopy at Diamond-Manchester I13 Imaging Branchline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vila-Comamala, Joan, E-mail: joan.vila.comamala@gmail.com; Wagner, Ulrich; Bodey, Andrew J.

    2016-01-28

    Full-field Transmission X-ray Microscopy (TXM) has been shown to be a powerful method for obtaining quantitative internal structural and chemical information from materials at the nanoscale. The installation of a Full-field TXM station will extend the current microtomographic capabilities of the Diamond-Manchester I13 Imaging Branchline at Diamond Light Source (UK) into the sub-100 nm spatial resolution range using photon energies from 8 to 14 keV. The dedicated Full-field TXM station will be built in-house with contributions of Diamond Light Source support divisions and via collaboration with the X-ray Optics Group of Paul Scherrer Institut (Switzerland) which will develop state-of-the-art diffractive X-raymore » optical elements. Preliminary results of the I13 Full-field TXM station are shown. The Full-field TXM will become an important Diamond Light Source direct imaging asset for material science, energy science and biology at the nanoscale.« less

  17. Picosecond Pulse Recirculation for High Average Brightness Thomson Scattering-based Gamma-ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, V. A.

    2009-06-12

    Pulse recirculation has been successfully demonstrated with the interaction laser system of LLNL's Thomson-Radiated Extreme X-ray (T-REX) source. The recirculation increased twenty-eight times the intensity of the light coming out of the laser system, demonstrating the capability of increasing the gamma-ray flux emitted by T-REX. The technical approach demonstrated could conceivably increase the average gamma-ray flux output by up to a hundred times.

  18. Solid-state radioluminescent compositions

    DOEpatents

    Clough, Roger L.; Gill, John T.; Hawkins, Daniel B.; Renschler, Clifford L.; Shepodd, Timothy J.; Smith, Henry M.

    1991-01-01

    A solid state radioluminescent composition for light source comprises an optically clear polymer organic matrix containing tritiated organic materials and dyes capable of "red" shifting primary scintillation emissions from the polymer matrix. The tritiated organic materials are made by reducing, with tritium, an unsaturated organic compound that prior to reduction contains olefinic or alkynylic bonds.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashenfelter, J.; Jaffe, D.; Diwan, M. V.

    A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. As a result, key design features for optimizing MeV-scale response and background rejection capabilities are identified.

  20. Method and apparatus for eliminating coherent noise in a coherent energy imaging system without destroying spatial coherence

    NASA Technical Reports Server (NTRS)

    Shulman, A. R. (Inventor)

    1971-01-01

    A method and apparatus for substantially eliminating noise in a coherent energy imaging system, and specifically in a light imaging system of the type having a coherent light source and at least one image lens disposed between an input signal plane and an output image plane are, discussed. The input signal plane is illuminated with the light source by rotating the lens about its optical axis. In this manner, the energy density of coherent noise diffraction patterns as produced by imperfections such as dust and/or bubbles on and/or in the lens is distributed over a ring-shaped area of the output image plane and reduced to a point wherein it can be ignored. The spatial filtering capability of the coherent imaging system is not affected by this noise elimination technique.

  1. Development of a wireless, self-sustaining damage detection sensor system based on chemiluminescence for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Kuang, K. S. C.

    2014-03-01

    A novel application of chemiluminescence resulting from the chemical reaction in a glow-stick as sensors for structural health monitoring is demonstrated here. By detecting the presence of light emitting from these glow-sticks, it is possible to develop a low-cost sensing device with the potential to provide early warning of damage in a variety of engineering applications such as monitoring of cracks or damage in concrete shear walls, detecting of ground settlement, soil liquefaction, slope instability, liquefaction-related damage of underground structure and others. In addition, this paper demonstrates the ease of incorporating wireless capability to the sensor device and the possibility of making the sensor system self-sustaining by means of a renewable power source for the wireless module. A significant advantage of the system compared to previous work on the use of plastic optical fibre (POF) for damage detection is that here the system does not require an electrically-powered light source. Here, the sensing device, embedded in a cement host, is shown to be capable of detecting damage. A series of specimens with embedded glow-sticks have been investigated and an assessment of their damage detection capability will be reported. The specimens were loaded under flexure and the sensor responses were transmitted via a wireless connection.

  2. Penning plasma based simultaneous light emission source of visible and VUV lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, G. L., E-mail: glvyas27@gmail.com; Prakash, R.; Pal, U. N.

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure heliummore » in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20–106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.« less

  3. Measurement of the light flux density patterns from luminaires proposed as photon sources for photosynthesis during space travel

    NASA Technical Reports Server (NTRS)

    Walker, Paul N.

    1989-01-01

    Two luminaires were evaluated to determine the light flux density pattern on a horizontal plane surface. NASA supplied both luminaires; one was made by NASA and the other is commercially available. Tests were made for three combinations of luminaire height and luminaire lens material using the NASA luminaire; only one configuration of the commercial luminaire was tested. Measurements were made using four sensors with different wavelength range capabilities. The data are presented in graphical and tabular formats.

  4. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Bennett N., E-mail: bennett.walker@fda.hhs.gov; Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993; James, Robert H.

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearlymore » 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.« less

  5. Light collection and pulse-shape discrimination in elongated scintillator cells for the PROSPECT reactor antineutrino experiment

    DOE PAGES

    Ashenfelter, J.; Jaffe, D.; Diwan, M. V.; ...

    2015-11-06

    A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. As a result, key design features for optimizing MeV-scale response and background rejection capabilities are identified.

  6. Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff

    2015-01-01

    Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (<1 arcsecond). To accommodate this somewhat demanding requirement, NASA Marshall Space Flight Center (MSFC) has procured a custom, windowless low-energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.

  7. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography

    PubMed Central

    2016-01-01

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p-type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination. PMID:28066690

  8. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography.

    PubMed

    Hölz, K; Lietard, J; Somoza, M M

    2017-01-03

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p -type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.

  9. X-Ray Structure determination of the Glycine Cleavage System Protein H of Mycobacterium tuberculosis Using An Inverse Compton Synchrotron X-Ray Source

    PubMed Central

    Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.

    2010-01-01

    Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333

  10. Color stable manganese-doped phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Deshpande, Anirundha Rajendra; Grigorov, Ljudmil Slavchev

    2014-04-29

    A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor material radiationally coupled to the light source. The phosphor material includes a color-stable Mn.sup.+4 doped phosphor prepared by a process including providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof.

  11. Color stable manganese-doped phosphors

    DOEpatents

    Lyons, Robert Joseph [Burnt Hills, NY; Setlur, Anant Achyut [Niskayuna, NY; Deshpande, Anirudha Rajendra [Twinsburg, OH; Grigorov, Ljudmil Slavchev [Sofia, BG

    2012-08-28

    A process for preparing color stable Mn.sup.+4 doped phosphors includes providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof. A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor composition radiationally coupled to the light source, and which includes a color stable Mn.sup.+4 doped phosphor.

  12. All-sky brightness monitoring of light pollution with astronomical methods.

    PubMed

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.

  13. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities

    PubMed Central

    Miller, Steven D.; Mills, Stephen P.; Elvidge, Christopher D.; Lindsey, Daniel T.; Lee, Thomas F.; Hawkins, Jeffrey D.

    2012-01-01

    Most environmental satellite radiometers use solar reflectance information when it is available during the day but must resort at night to emission signals from infrared bands, which offer poor sensitivity to low-level clouds and surface features. A few sensors can take advantage of moonlight, but the inconsistent availability of the lunar source limits measurement utility. Here we show that the Day/Night Band (DNB) low-light visible sensor on the recently launched Suomi National Polar-orbiting Partnership (NPP) satellite has the unique ability to image cloud and surface features by way of reflected airglow, starlight, and zodiacal light illumination. Examples collected during new moon reveal not only meteorological and surface features, but also the direct emission of airglow structures in the mesosphere, including expansive regions of diffuse glow and wave patterns forced by tropospheric convection. The ability to leverage diffuse illumination sources for nocturnal environmental sensing applications extends the advantages of visible-light information to moonless nights. PMID:22984179

  14. Renewal of the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, J. M.

    2008-12-31

    To ensure that state-of-the-art hard x-ray tools are available for US scientists and engineers who are solving key problems in energy, environment, technology development and human health, the nation's unique high-energy x-ray source needs a major renewal of its capabilities. The Advanced Photon Source renewal program responds to key scientific needs driven by our user community. The renewal encompasses many innovations in beamlines and accelerator capabilities, each of which will transform our tools and allow new problems to be solved. In particular the APS renewal dramatically expands two compelling avenues for research. Through x-ray imaging, we can illuminate complex hierarchical structures from the molecular level to the macroscopic level, and study how they change in time and in response to stimuli. Images will facilitate understanding how proteins fit together to make living organisms, contribute to development of lighter, higher-strength alloys for fuel-efficient transportation and advance the use of biomass for alternative fuels. Hard x-rays are also especially suited to the study of real materials, under realistic conditions and in real-time. The advances proposed in this area would help develop more efficient catalysts, enhance green manufacturing, point the way to artificial light-harvesting inspired by biology and help us develop more efficient lighting. The scope of the renewal of our {approx}more » $$1.5B facility is estimated to be {approx}$$350M over five years. It is vital that the investment begin as soon as possible. The renewed APS would complement other national investments such as the National Synchrotron Light Source-II and would keep the U.S. internationally competitive.« less

  15. 78 FR 5776 - University of Colorado Boulder, et al.; Notice of Consolidated Decision on Applications for Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... capabilities of this instrument are expanded spectral reach, x-ray beams with controllable polarization, and... optical antennas, plasmonics in metals and semiconductors (including graphene), photonic crystals, and... the Linac Coherent Light Source II project's ray probe pulses with controllable inter-pulse time delay...

  16. Cone penetrometer fiber optic raman spectroscopy probe assembly

    DOEpatents

    Kyle, Kevin R.; Brown, Steven B.

    2000-01-01

    A chemically and mechanically robust optical Raman spectroscopy probe assembly that can be incorporated in a cone penetrometer (CPT) for subsurface deployment. This assembly consists of an optical Raman probe and a penetrometer compatible optical probe housing. The probe is intended for in-situ chemical analysis of chemical constituents in the surrounding environment. The probe is optically linked via fiber optics to the light source and the detection system at the surface. A built-in broadband light source provides a strobe method for direct measurement of sample optical density. A mechanically stable sapphire window is sealed directly into the side-wall of the housing using a metallic, chemically resistant, hermetic seal design. This window permits transmission of the interrogation light beam and the resultant signal. The spectroscopy probe assembly is capable of accepting Raman, Laser induced Fluorescence, reflectance, and other optical probes with collimated output for CPT deployment.

  17. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Vasily V.; Hall, Gregory E., E-mail: gehall@bnl.gov

    We demonstrate a method of combining a supercontinuum light source with a commercial Fourier transform spectrometer, using a novel approach to dual-beam balanced detection, implemented with phase-sensitive detection on a single light detector. A 40 dB reduction in the relative intensity noise is achieved for broadband light, analogous to conventional balanced detection methods using two matched photodetectors. Unlike conventional balanced detection, however, this method exploits the time structure of the broadband source to interleave signal and reference pulse trains in the time domain, recording the broadband differential signal at the fundamental pulse repetition frequency of the supercontinuum. The method ismore » capable of real-time correction for instability in the supercontinuum spectral structure over a broad range of wavelengths and is compatible with commercially designed spectrometers. A proof-of-principle experimental setup is demonstrated for weak absorption in the 1500-1600 nm region.« less

  18. Active implant for optoacoustic natural sound enhancement

    NASA Astrophysics Data System (ADS)

    Mohrdiek, S.; Fretz, M.; Jose James, R.; Spinola Durante, G.; Burch, T.; Kral, A.; Rettenmaier, A.; Milani, R.; Putkonen, M.; Noell, W.; Ortsiefer, M.; Daly, A.; Vinciguerra, V.; Garnham, C.; Shah, D.

    2017-02-01

    This paper summarizes the results of an EU project called ACTION: ACTive Implant for Optoacoustic Natural sound enhancement. The project is based on a recent discovery that relatively low levels of pulsed infrared laser light are capable of triggering activity in hair cells of the partially hearing (hearing impaired) cochlea and vestibule. The aim here is the development of a self-contained, smart, highly miniaturized system to provide optoacoustic stimuli directly from an array of miniature light sources in the cochlea. Optoacoustic compound action potentials (oaCAP) are generated by the light source fully inserted into the unmodified cochlea. Previously, the same could only be achieved with external light sources connected to a fiber optic light guide. This feat is achieved by integrating custom made VCSEL arrays at a wavelength of about 1550 nm onto small flexible substrates. The laser light is collimated by a specially designed silicon-based ultra-thin lens (165 um thick) to get the energy density required for the generation of oaCAP signals. A dramatic miniaturization of the packaging technology is also required. A long term biocompatible and hermetic sapphire housing with a size of less than a 1 cubic millimeter and miniature Pt/PtIr feedthroughs is developed, using a low temperature laser assisted process for sealing. A biofouling thin film protection layer is developed to avoid fibrinogen and cell growth on the system.

  19. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.

    2001-01-01

    An electrodeless microwave discharge lamp includes an envelope with a discharge forming fill disposed therein which emits light, the fill being capable of absorbing light at one wavelength and re-emitting the absorbed light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill, a source of microwave energy coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed within the microwave cavity and configured to reflect at least some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length.

  20. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source

    NASA Astrophysics Data System (ADS)

    Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  1. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source.

    PubMed

    Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  2. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices

    PubMed Central

    O'Toole, Martina; Diamond, Dermot

    2008-01-01

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements. PMID:27879829

  3. Interactive optical panel

    DOEpatents

    Veligdan, J.T.

    1995-10-03

    An interactive optical panel assembly includes an optical panel having a plurality of ribbon optical waveguides stacked together with opposite ends thereof defining panel first and second faces. A light source provides an image beam to the panel first face for being channeled through the waveguides and emitted from the panel second face in the form of a viewable light image. A remote device produces a response beam over a discrete selection area of the panel second face for being channeled through at least one of the waveguides toward the panel first face. A light sensor is disposed across a plurality of the waveguides for detecting the response beam therein for providing interactive capability. 10 figs.

  4. Using Spatial Correlations of SPDC Sources for Increasing the Signal to Noise Ratio in Images

    NASA Astrophysics Data System (ADS)

    Ruíz, A. I.; Caudillo, R.; Velázquez, V. M.; Barrios, E.

    2017-05-01

    We experimentally show that, by using spatial correlations of photon pairs produced by Spontaneous Parametric Down-Conversion, it is possible to increase the Signal to Noise Ratio in images of objects illuminated with those photons; in comparison, objects illuminated with light from a laser present a minor ratio. Our simple experimental set-up was capable to produce an average improvement in signal to noise ratio of 11dB of Parametric Down-Converted light over laser light. This simple method can be easily implemented for obtaining high contrast images of faint objects and for transmitting information with low noise.

  5. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices.

    PubMed

    O'Toole, Martina; Diamond, Dermot

    2008-04-07

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements.

  6. Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans.

    PubMed

    Fracalossi, Camila; Nagata, Juliana Yuri; Pellosi, Diogo Silva; Terada, Raquel Sano Suga; Hioka, Noboru; Baesso, Mauro Luciano; Sato, Francielle; Rosalen, Pedro Luiz; Caetano, Wilker; Fujimaki, Mitsue

    2016-09-01

    Photodynamic inactivation of microorganisms is based on a photosensitizing substance which, in the presence of light and molecular oxygen, produces singlet oxygen, a toxic agent to microorganisms and tumor cells. This study aimed to evaluate singlet oxygen quantum yield of erythrosine solutions illuminated with a halogen light source in comparison to a LED array (control), and the photodynamic effect of erythrosine dye in association with the halogen light source on Streptococcus mutans. Singlet oxygen quantum yield of erythrosine solutions was quantified using uric acid as a chemical-probe in an aqueous solution. The in vitro effect of the photodynamic antimicrobial activity of erythrosine in association with the halogen photopolimerizing light on Streptococcus mutans (UA 159) was assessed during one minute. Bacterial cultures treated with erythrosine alone served as negative control. Singlet oxygen with 24% and 2.8% degradation of uric acid in one minute and a quantum yield of 0.59 and 0.63 was obtained for the erythrosine samples illuminated with the halogen light and the LED array, respectively. The bacterial cultures with erythrosine illuminated with the halogen light presented a decreased number of CFU mL(-1) in comparison with the negative control, with minimal inhibitory concentrations between 0.312 and 0.156mgmL(-1). The photodynamic response of erythrosine induced by the halogen light was capable of killing S. mutans. Clinical trials should be conducted to better ascertain the use of erythrosine in association with halogen light source for the treatment of dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Coupling a versatile aerosol apparatus to a synchrotron: Vacuum ultraviolet light scattering, photoelectron imaging, and fragment free mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shu, Jinian; Wilson, Kevin R.; Ahmed, Musahid; Leone, Stephen R.

    2006-04-01

    An aerosol apparatus has been coupled to the Chemical Dynamics Beamline of the Advanced Light Source at Lawrence Berkeley National Laboratory. This apparatus has multiple capabilities for aerosol studies, including vacuum ultraviolet (VUV) light scattering, photoelectron imaging, and mass spectroscopy of aerosols. By utilizing an inlet system consisting of a 200μm orifice nozzle and aerodynamic lenses, aerosol particles of ˜50nm-˜1μm in diameter can be sampled directly from atmospheric pressure. The machine is versatile and can probe carbonaceous aerosols generated by a laboratory flame, nebulized solutions of biological molecules, hydrocarbon aerosol reaction products, and synthesized inorganic nanoparticles. The sensitivity of this apparatus is demonstrated by the detection of nanoparticles with VUV light scattering, photoelectron imaging, and charged particle detection. In addition to the detection of nanoparticles, the thermal vaporization of aerosols on a heater tip leads to the generation of intact gas phase molecules. This phenomenon coupled to threshold single photon ionization, accessible with tunable VUV light, allows for fragment-free mass spectrometry of complex molecules. The initial experiments with light scattering, photoelectron imaging, and aerosol mass spectrometry reported here serve as a demonstration of the design philosophy and multiple capabilities of the apparatus.

  8. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  9. Starshade Test in Nevada

    NASA Image and Video Library

    2016-08-09

    A test of a small-scale starshade model in a dry lake bed in central Nevada's Smith Creek by Northrup Grumman in May-June 2014. A telescope points toward a bright light, which mimics the conditions of starlight in space. Other lights, which are up to 10 million times fainter than the light source standing in for the star, represent the reflected light of planets. Telescopes searching for the relatively dim light of an exoplanet next to its much bright star are faced with a challenge as difficult as searching from Los Angeles for a firefly in New York– if the firefly is also beside a lighthouse. These tests determined that a starshade, or external occulter, is indeed capable of blocking starlight to a degree that reveals the light of a planet. http://photojournal.jpl.nasa.gov/catalog/PIA20908

  10. Optical antenna for a visible light communications receiver

    NASA Astrophysics Data System (ADS)

    Valencia-Estrada, Juan Camilo; García-Márquez, Jorge; Topsu, Suat; Chassagne, Luc

    2018-01-01

    Visible Light Communications (VLC) receivers adapted to be used in high transmission rates will eventually use either, high aperture lenses or non-linear optical elements capable of converting light arriving to the receiver into an electric signal. The high aperture lens case, reveals a challenge from an optical designers point-of-view. As a matter of fact, the lens must collect a wide aperture intensity flux using a limited aperture as its use is intended to portable devices. This last also limits both, lens thickness and its focal length. Here, we show a first design to be adapted to a VLC receiver that take these constraints into account. This paper describes a method to design catadioptric and monolithic lenses to be used as an optical collector of light entering from a near point light source as a spherical fan L with a wide acceptance angle α° and high efficiency. These lenses can be mass produced and therefore one can find many practical applications in VLC equipped devices. We show a first design for a near light source without magnification, and second one with a detector's magnification in a meridional section. We utilize rigorous geometric optics, vector analysis and ordinary differential equations.

  11. Novel MCP-Based Electron Source Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haughey, M.; Shiltsev V., Shiltsev V.; Stancari, G.

    Microchannel plates (MCPs) were recently proposed as novel type of cathodes for electron guns [1], suitable for applications in design of electron lenses. We report results of the first systematic study of microchannel plate based photomultiplier time response and maximum cur-rent density tests using different sources of light pulses. The Burle 85011-501 MCP-PMT is found to have good time response properties being capable of producing na-nosecond long pulses with modest maximum current density and performance strongly dependent on magnetic field strength.

  12. Addressing Physics Grand Challenges Using the Jefferson Lab FEL

    NASA Astrophysics Data System (ADS)

    Williams, Gwyn P.

    2006-11-01

    The Jefferson Lab Free Electron Laser[1] is the first of the so-called 4^th generation light sources to go operational. Capable of delivering extraordinarily bright, tunable light in ultrafast pulses from THz[2] through infrared to UV, the facility extends the experimental reach of accelerator-based light-sources by many orders of magnitude. This allows new opportunities to study many of the ``Grand Challenges'' recently defined by the Office of Science, Basic Energy Sciences Division, most of which are concerned with understandings of equilibrium and non-equilibrium behavior of materials in physics, chemistry and biology using precise pump and probe techniques. Specifically, in condensed matter physics, the JLab FEL permits new studies which go beyond earlier studies of reductionist behavior to those which examine emergent behavior. Thus, the understanding of high Tc superconductivity, colossal magneto-resistance, and observations of the breakdown of the Born-Oppenheimer approximation, are examples of collective behavior which is now treated theoretically via the concept of quasiparticles. In this presentation we will describe the dual pathways of light source development and physics challenges, and then show how they are combined in experiments that allow new insights to be developed to understand material function. We will illustrate this with details of the evolution of accelerator-based light sources, and with examples of work performed to date. References: [1] Neil et al. Phys. Rev.Letts 84, 662 (2000). [2] Carr, Martin, McKinney, Neil, Jordan & Williams, Nature 420, 153 (2002).

  13. OGLE-2016-BLG-1003: First Resolved Caustic-crossing Binary-source Event Discovered by Second-generation Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Jung, Y. K.; Udalski, A.; Bond, I. A.; Yee, J. C.; Gould, A.; Han, C.; Albrow, M. D.; Lee, C.-U.; Kim, S.-L.; Hwang, K.-H.; Chung, S.-J.; Ryu, Y.-H.; Shin, I.-G.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; Park, B.-G.; Kim, H.-W.; Pogge, R. W.; KMTNet Collaboration; Skowron, J.; Szymański, M. K.; Poleski, R.; Mróz, P.; Kozłowski, S.; Pietrukowicz, P.; Soszyński, I.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Abe, F.; Bennett, D. P.; Barry, R.; Sumi, T.; Asakura, Y.; Bhattacharya, A.; Donachie, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Rattenbury, N. J.; Evans, P.; Sharan, A.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yamada, T.; Yonehara, A.; MOA Collaboration

    2017-06-01

    We report the analysis of the first resolved caustic-crossing binary-source microlensing event OGLE-2016-BLG-1003. The event is densely covered by round-the-clock observations of three surveys. The light curve is characterized by two nested caustic-crossing features, which is unusual for typical caustic-crossing perturbations. From the modeling of the light curve, we find that the anomaly is produced by a binary source passing over a caustic formed by a binary lens. The result proves the importance of high-cadence and continuous observations, and the capability of second-generation microlensing experiments to identify such complex perturbations that are previously unknown. However, the result also raises the issues of the limitations of current analysis techniques for understanding lens systems beyond two masses and of determining the appropriate multiband observing strategy of survey experiments.

  14. Characterisation of the high dynamic range Large Pixel Detector (LPD) and its use at X-ray free electron laser sources

    NASA Astrophysics Data System (ADS)

    Veale, M. C.; Adkin, P.; Booker, P.; Coughlan, J.; French, M. J.; Hart, M.; Nicholls, T.; Schneider, A.; Seller, P.; Pape, I.; Sawhney, K.; Carini, G. A.; Hart, P. A.

    2017-12-01

    The STFC Rutherford Appleton Laboratory have delivered the Large Pixel Detector (LPD) for MHz frame rate imaging at the European XFEL. The detector system has an active area of 0.5 m × 0.5 m and consists of a million pixels on a 500 μm pitch. Sensors have been produced from 500 μm thick Hammamatsu silicon tiles that have been bump bonded to the readout ASIC using a silver epoxy and gold stud technique. Each pixel of the detector system is capable of measuring 105 12 keV photons per image readout at 4.5 MHz. In this paper results from the testing of these detectors at the Diamond Light Source and the Linac Coherent Light Source (LCLS) are presented. The performance of the detector in terms of linearity, spatial uniformity and the performance of the different ASIC gain stages is characterised.

  15. Multicolor white light-emitting diodes for illumination applications

    NASA Astrophysics Data System (ADS)

    Chi, Solomon W. S.; Chen, Tzer-Perng; Tu, Chuan-Cheng; Chang, Chih-Sung; Tsai, Tzong-Liang; Hsieh, Mario C. C.

    2004-01-01

    Semiconductor light emitting diode (LED) has become a promising device for general-purpose illumination applications. LED has the features of excellent durability, long operation life, low power consumption, no mercury containing and potentially high efficiency. Several white LED technologies appear capable of meeting the technical requirements of illumination. In this paper we present a new multi-color white (MCW) LED as a high luminous efficacy, high color rendering index and low cost white illuminator. The device consists of two LED chips, one is AlInGaN LED for emitting shorter visible spectra, another is AlInGaP LED for emitting longer visible spectra. At least one chip in the MCW-LED has two or more transition energy levels used for emitting two or more colored lights. The multiple colored lights generated from the MCW-LED can be mixed into a full-spectral white light. Besides, there is no phosphors conversion layer used in the MCW-LED structure. Therefore, its color rendering property and illumination efficiency are excellent. The Correlated Color Temperature (CCT) of the MCW-LED may range from 2,500 K to over 10,000 K. The theoretical General Color Rendering Index (Ra) could be as high as 94, which is close to the incandescent and halogen sources, while the Ra of binary complementary white (BCW) LED is about 30 ~ 45. Moreover, compared to the expensive ternary RGB (Red AlInGaP + Green AlInGaN + Blue AlInGaN) white LED sources, the MCW-LED uses only one AlInGaN chip in combination with one cheap AlInGaP chip, to form a low cost, high luminous performance white light source. The MCW-LED is an ideal light source for general-purpose illumination applications.

  16. Programmable artificial phototactic microswimmer.

    PubMed

    Dai, Baohu; Wang, Jizhuang; Xiong, Ze; Zhan, Xiaojun; Dai, Wei; Li, Chien-Cheng; Feng, Shien-Ping; Tang, Jinyao

    2016-12-01

    Phototaxis is commonly observed in motile photosynthetic microorganisms. For example, green algae are capable of swimming towards a light source (positive phototaxis) to receive more energy for photosynthesis, or away from a light source (negative phototaxis) to avoid radiation damage or to hide from predators. Recently, with the aim of applying nanoscale machinery to biomedical applications, various inorganic nanomotors based on different propulsion mechanisms have been demonstrated. The only method to control the direction of motion of these self-propelled micro/nanomotors is to incorporate a ferromagnetic material into their structure and use an external magnetic field for steering. Here, we show an artificial microswimmer that can sense and orient to the illumination direction of an external light source. Our microswimmer is a Janus nanotree containing a nanostructured photocathode and photoanode at opposite ends that release cations and anions, respectively, propelling the microswimmer by self-electrophoresis. Using chemical modifications, we can control the zeta potential of the photoanode and program the microswimmer to exhibit either positive or negative phototaxis. Finally, we show that a school of microswimmers mimics the collective phototactic behaviour of green algae in solution.

  17. Time-resolved spectroscopy using a chopper wheel as a fast shutter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shicong; Wendt, Amy E.; Boffard, John B.

    Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a “fast” electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a “fast” mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsedmore » light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas.« less

  18. Design and Testing of a Luminance and Chrominance Stabilization System for a Computer-Controlled Color Display.

    DTIC Science & Technology

    1987-07-01

    OVER TIME The phosphor stability over time was studied by measuring the spectrum over an extended period of time. On each day the spectrum of the...intensity, it causes the display to change in order to keep the light intensity constant. For example, in one case , the high intensity room lights were...MC1445. This device has the capability of switching! from one video source to another in a very shoi t time, 20 ns. The MC1445 is used to switch from

  19. Low-coherence interferometric tip-clearance probe

    NASA Astrophysics Data System (ADS)

    Kempe, Andreas; Schlamp, Stefan; Rösgen, Thomas; Haffner, Ken

    2003-08-01

    We propose an all-fiber, self-calibrating, economical probe that is capable of near-real-time, single-port, simultaneous blade-to-blade tip-clearance measurements with submillimeter accuracy (typically <100 μm, absolute) in the first stages of a gas turbine. Our probe relies on the interference between backreflected light from the blade tips during the 1-μs blade passage time and a frequency-shifted reference with variable time delay, making use of a low-coherence light source. A single optical fiber of arbitrary length connects the self-contained optics and electronics to the turbine.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves themore » development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.« less

  1. Surface-enhanced Raman detection of CW agents in water using gold sol gel substrates

    NASA Astrophysics Data System (ADS)

    Premasiri, W. Ranjith; Clarke, Richard H.; Womble, M. Edward

    2002-02-01

    The development of a water analysis system capable of detecting both inanimate trace chemical contaminants and viable microbial contaminants has long been a project of interest to our group. The capability of detecting both chemical and biological agent sources in a single device configuration would clearly add to the value of such a product. In the present work, we describe results with chemical warfare agents from our efforts to produce a Raman system for the detection of both chemical and biological warfare agents in water. We utilize laser Raman light scattering and employ Surface Enhanced Raman Spectroscopy (SERS)on solid state gold sol-gel detectors combined with fiber optic collection of the enhanced light signal in the sampling system to augment the normally low intensity Raman Scattering signal from trace materials.

  2. Tactical lighting in special operations medicine: survey of current preferences.

    PubMed

    Calvano, Christopher J; Enzenauer, Robert W; Eisnor, Derek L; Laporta, Anthony J

    2013-01-01

    Success in Special Operations Forces medicine (SOFMED) is dependent on maximizing visual capability without compromising the provider or casualty position when under fire. There is no single ideal light source suitable for varied SOFMED environments. We present the results of an online survey of Special Operations Medical Operators in an attempt to determine strengths and weaknesses of current systems. There was no consensus ideal hue for tactical illumination. Most Operators own three or more lights, and most lights were not night vision compatible. Most importantly, nearly 25% of respondents reported that lighting issues contributed to a poor casualty outcome; conversely, a majority (50 of 74) stated their system helped prevent a poor outcome. Based on the results of this initial survey, we can affirm that the design and choice of lighting is critical to SOFMED success. We are conducting ongoing studies to further define ideal systems for tactical applications including field, aviation, and marine settings. 2013.

  3. GaN-based integrated photonics chip with suspended LED and waveguide

    NASA Astrophysics Data System (ADS)

    Li, Xin; Wang, Yongjin; Hane, Kazuhiro; Shi, Zheng; Yan, Jiang

    2018-05-01

    We propose a GaN-based integrated photonics chip with suspended LED and straight waveguide with different geometric parameters. The integrated photonics chip is prepared by double-side process. Light transmission performance of the integrated chip verse current is quantitatively analyzed by capturing light transmitted to waveguide tip and BPM (beam propagation method) simulation. Reduction of the waveguide width from 8 μm to 4 μm results in an over linear reduction of the light output power while a doubling of the length from 250 μm to 500 μm only results in under linear decrease of the output power. Free-space data transmission with 80 Mbps random binary sequence of the integrated chip is capable of achieving high speed data transmission via visible light. This study provides a potential approach for GaN-based integrated photonics chip as micro light source and passive optical device in VLC (visible light communication).

  4. Starshade Night Test

    NASA Image and Video Library

    2016-08-09

    A night test of a small-scale starshade model, in a dry lake bed in central Nevada's Smith Creek by Northrup Grumman, took place in May to June 2014. A telescope points toward a bright light, which in the darkness of the desert mimics the conditions of starlight in space. Other lights, which are up to 10 million times fainter than the light source standing in for the star, represent the reflected light of planets. Telescopes searching for the relatively dim light of an exoplanet next to its much brighter star are faced with a challenge as difficult as searching from Los Angeles for a firefly in New York -- if the firefly is next to the brightness of a lighthouse. The tests by Northrup Grumman determined that a starshade, or external occulter, is capable of blocking starlight to a degree that can indeed reveal the light of a planet. http://photojournal.jpl.nasa.gov/catalog/PIA20901

  5. A novel autonomous real-time position method based on polarized light and geomagnetic field.

    PubMed

    Wang, Yinlong; Chu, Jinkui; Zhang, Ran; Wang, Lu; Wang, Zhiwen

    2015-04-08

    Many animals exploit polarized light in order to calibrate their magnetic compasses for navigation. For example, some birds are equipped with biological magnetic and celestial compasses enabling them to migrate between the Western and Eastern Hemispheres. The Vikings' ability to derive true direction from polarized light is also widely accepted. However, their amazing navigational capabilities are still not completely clear. Inspired by birds' and Vikings' ancient navigational skills. Here we present a combined real-time position method based on the use of polarized light and geomagnetic field. The new method works independently of any artificial signal source with no accumulation of errors and can obtain the position and the orientation directly. The novel device simply consists of two polarized light sensors, a 3-axis compass and a computer. The field experiments demonstrate device performance.

  6. A novel autonomous real-time position method based on polarized light and geomagnetic field

    PubMed Central

    Wang, Yinlong; Chu, Jinkui; Zhang, Ran; Wang, Lu; Wang, Zhiwen

    2015-01-01

    Many animals exploit polarized light in order to calibrate their magnetic compasses for navigation. For example, some birds are equipped with biological magnetic and celestial compasses enabling them to migrate between the Western and Eastern Hemispheres. The Vikings' ability to derive true direction from polarized light is also widely accepted. However, their amazing navigational capabilities are still not completely clear. Inspired by birds' and Vikings' ancient navigational skills. Here we present a combined real-time position method based on the use of polarized light and geomagnetic field. The new method works independently of any artificial signal source with no accumulation of errors and can obtain the position and the orientation directly. The novel device simply consists of two polarized light sensors, a 3-axis compass and a computer. The field experiments demonstrate device performance. PMID:25851793

  7. A novel autonomous real-time position method based on polarized light and geomagnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Yinlong; Chu, Jinkui; Zhang, Ran; Wang, Lu; Wang, Zhiwen

    2015-04-01

    Many animals exploit polarized light in order to calibrate their magnetic compasses for navigation. For example, some birds are equipped with biological magnetic and celestial compasses enabling them to migrate between the Western and Eastern Hemispheres. The Vikings' ability to derive true direction from polarized light is also widely accepted. However, their amazing navigational capabilities are still not completely clear. Inspired by birds' and Vikings' ancient navigational skills. Here we present a combined real-time position method based on the use of polarized light and geomagnetic field. The new method works independently of any artificial signal source with no accumulation of errors and can obtain the position and the orientation directly. The novel device simply consists of two polarized light sensors, a 3-axis compass and a computer. The field experiments demonstrate device performance.

  8. Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm.

    PubMed

    Jiang, Minshan; Liu, Tan; Liu, Xiaojing; Jiao, Shuliang

    2014-12-01

    We accomplished spectral domain optical coherence tomography and auto-fluorescence microscopy for imaging the retina with a single broadband light source centered at 480 nm. This technique is able to provide simultaneous structural imaging and lipofuscin molecular contrast of the retina. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. To test the capabilities of the technique we periodically imaged the retinas of the same rats for four weeks. The images successfully demonstrated lipofuscin accumulation in the retinal pigment epithelium with aging. The experimental results showed that the dual-modal imaging system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.

  9. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  10. Integrated experimental setup for angle resolved photoemission spectroscopy of transuranic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Kevin S.; Joyce, John J.; Durakiewicz, Tomasz

    2013-09-15

    We have developed the Angle Resolved Photoemission Spectroscopy (ARPES) system for transuranic materials. The ARPES transuranic system is an endstation upgrade to the Laser Plasma Light Source (LPLS) at Los Alamos National Laboratory. The LPLS is a tunable light source for photoemission with a photon energy range covering the vacuum ultraviolet (VUV) and soft x-ray regions (27–140 eV). The LPLS was designed and developed for transuranic materials. Transuranic photoemission is currently not permitted at the public synchrotrons worldwide in the VUV energy range due to sample encapsulation requirements. With the addition of the ARPES capability to the LPLS system theremore » is an excellent opportunity to explore new details centered on the electronic structure of actinide and transuranic materials.« less

  11. Highly Efficient, All-Dielectric Huygens Metasurfaces

    NASA Astrophysics Data System (ADS)

    Ollanik, Adam; Farrar-Foley, Nick; Smith, Jake; Escarra, Matthew

    Demonstration of the control of light by the introduction of abrupt phase discontinuities across a subwavelength scale has opened the doors to a new level of wavefront control. All-dielectric Huygens metasurfaces hold significant promise due to their dramatically improved efficiency over plasmonic approaches. We present the successful design, computational modeling, and experimental realization of all-dielectric transmissive Huygens metasurfaces capable of deflection efficiency >90%. Dielectric Huygens sources, taking advantage of spectrally aligned electric and magnetic dipole resonances, are capable of tunable phase delay for transmitted light with near unity efficiency of forward scattering. Using ellipsoidal cylinder nanoantennas, we are able to manipulate the phase response and engineer a metasurface with a spatially gradient phase profile. Through careful design and optimization we mitigate the effects of inter-antenna coupling. We have designed and modeled metasurfaces demonstrating anomalous refraction with very high efficiency (>80%) for wavelength bands from the UV to the near-IR. These surfaces were designed using three distinct nanoantenna materials, Si, TiO2, and GaP, to demonstrate the flexibility of the technique. Experimentally, Si nanoantennas are fabricated using a combination of electron beam lithography and ICP/RIE-etching. Metasurfaces are characterized using a goniospectrometer capable of mapping light intensity on a cylindrical shell surrounding the metasurface.

  12. PePSS - A portable sky scanner for measuring extremely low night-sky brightness

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Kómar, Ladislav; Kundracik, František

    2018-05-01

    A new portable sky scanner designed for low-light-level detection at night is developed and employed in night sky brightness measurements in a rural region. The fast readout, adjustable sensitivity and linear response guaranteed in 5-6 orders of magnitude makes the device well suited for narrow-band photometry in both dark areas and bright urban and suburban environments. Quasi-monochromatic night-sky brightness data are advantageous in the accurate characterization of spectral power distribution of scattered and emitted light and, also allows for the possibility to retrieve light output patterns from whole-city light sources. The sky scanner can operate in both night and day regimes, taking advantage of the complementarity of both radiance data types. Due to its inherent very high sensitivity the photomultiplier tube could be used in night sky radiometry, while the spectrometer-equipped system component capable of detecting elevated intensities is used in daylight monitoring. Daylight is a source of information on atmospheric optical properties that in turn are necessary in processing night sky radiances. We believe that the sky scanner has the potential to revolutionize night-sky monitoring systems.

  13. A first comparison of the responses of a 4He-based fast-neutron detector and a NE-213 liquid-scintillator reference detector

    NASA Astrophysics Data System (ADS)

    Jebali, R.; Scherzinger, J.; Annand, J. R. M.; Chandra, R.; Davatz, G.; Fissum, K. G.; Friederich, H.; Gendotti, U.; Hall-Wilton, R.; Håkansson, E.; Kanaki, K.; Lundin, M.; Murer, D.; Nilsson, B.; Rosborg, A.; Svensson, H.

    2015-09-01

    A first comparison has been made between the pulse-shape discrimination characteristics of a novel 4He-based pressurized scintillation detector and a NE-213 liquid-scintillator reference detector using an Am/Be mixed-field neutron and gamma-ray source and a high-resolution scintillation-pulse digitizer. In particular, the capabilities of the two fast neutron detectors to discriminate between neutrons and gamma-rays were investigated. The NE-213 liquid-scintillator reference cell produced a wide range of scintillation-light yields in response to the gamma-ray field of the source. In stark contrast, due to the size and pressure of the 4He gas volume, the 4He-based detector registered a maximum scintillation-light yield of 750keVee to the same gamma-ray field. Pulse-shape discrimination for particles with scintillation-light yields of more than 750keVee was excellent in the case of the 4He-based detector. Above 750keVee its signal was unambiguously neutron, enabling particle identification based entirely upon the amount of scintillation light produced.

  14. Construction of an array of LEDs coupled to a concentrator for phototherapy

    NASA Astrophysics Data System (ADS)

    Almeida, Joana; Liang, Dawei

    2011-07-01

    The use of LED devices for phototherapy has been expanding in the last decade. This technology provides a safer emission spectrum in large target tissue areas when compared to laser emissions. For enhancing the phototherapeutic effects of red light emitted by LEDs, a simple optical concentrator capable of efficient light concentration and homogenization was developed. The LEDs wavelength of 660 nm is coincident with an absorption peak of the mitochondrial photoreceptor molecule cytochrome c oxidase. The prototype was optimized by non-sequential ray-tracing software ZEMAX, attaining both excellent light uniformity and 50mW/cm2 irradiance at the concentrator output end. Heat emanated from the LEDs source is effectively dissipated by the side walls of the concentrator, ensuring a nearly constant temperature environment for tissue treatment. The prototype was tested on cutaneous hyperpigmented marks caused by cupping in two healthy volunteers. Marks were irradiated by LEDs radiations with or without the use of concentrator respectively. Equal exposure durations and light fluences were tested. The use of the concentrator-coupled LEDs source revealed an activation of blood movement immediately after LEDs exposure, an effect not attainable by the LEDs source without the concentrator even at extended exposure time. Promising futures for the treatment of inflammation, tissue repair and skin rejuvenation could be expected by adopting this simple technique.

  15. Large Plant Growth Chambers: Flying Soon on a Space Station near You!

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Morrow, Robert C.; Levine, Howard G.

    2014-01-01

    The International Space Station (ISS) now has platforms for conducting research on horticultural plant species, and those capabilities continue to grow. The Veggie vegetable production system will be deployed to the ISS in Spring of 2014 to act as an applied research platform with goals of studying food production in space, providing the crew with a source of fresh food, allowing behavioral health and plant microbiology experimentation, and being a source of recreation and enjoyment for the crew. Veggie was conceived, designed, and constructed by Orbital Technologies Corporation (ORBITEC, Madison, WI). Veggie is the largest plant growth chamber that NASA has flown to date, and is capable of growing a wide array of horticultural crops. It was designed for low energy usage, low launch mass and stowage volume, and minimal crew time requirements. The Veggie flight hardware consists of a light cap containing red (630 nanometers), blue, (455 nanometers) and green (530 nanometers) light emitting diodes. Interfacing with the light cap is an extendable bellows baseplate secured to the light cap via magnetic closures and stabilized with extensible flexible arms. The baseplate contains vents allowing air from the ISS cabin to be pulled through the plant growth area by a fan in the light cap. The baseplate holds a Veggie root mat reservoir that will supply water to plant pillows attached via elastic cords. Plant pillows are packages of growth media and seeds that will be sent to ISS dry and installed and hydrated on orbit. Pillows can be constructed in various sizes for different plant types. Watering will be via passive wicking from the root mat to the pillows. Science procedures will include photography or videography, plant thinning, pollination, harvesting, microbial sampling, water sampling, etcetera. Veggie is one of the ISS flight options currently available for research investigations on plants. The Plant Habitat (PH) is being designed and constructed through a NASA-ORBITEC collaboration, and is scheduled to fly on ISS around 2016. This large plant chamber will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional monitoring capabilities include leaf temperature sensing and root zone moisture and oxygen sensing. The PH light cap will have red (630 nanometers), blue (450 nanometers), green (525 nanometers), far red (730 nanometers) and broad spectrum white light emitting diodes. There will be several internal cameras to monitor and record plant growth and operations.

  16. Vacuum-Compatible Wideband White Light and Laser Combiner Source System

    NASA Technical Reports Server (NTRS)

    Azizi, Alineza; Ryan, Daniel J.; Tang, Hong; Demers, Richard T.; Kadogawa, Hiroshi; An, Xin; Sun, George Y.

    2010-01-01

    For the Space Interferometry Mission (SIM) Spectrum Calibration Development Unit (SCDU) testbed, wideband white light is used to simulate starlight. The white light source mount requires extremely stable pointing accuracy (<3.2 microradians). To meet this and other needs, the laser light from a single-mode fiber was combined, through a beam splitter window with special coating from broadband wavelengths, with light from multimode fiber. Both lights were coupled to a photonic crystal fiber (PCF). In many optical systems, simulating a point star with broadband spectrum with stability of microradians for white light interferometry is a challenge. In this case, the cameras use the white light interference to balance two optical paths, and to maintain close tracking. In order to coarse align the optical paths, a laser light is sent into the system to allow tracking of fringes because a narrow band laser has a great range of interference. The design requirements forced the innovators to use a new type of optical fiber, and to take a large amount of care in aligning the input sources. The testbed required better than 1% throughput, or enough output power on the lowest spectrum to be detectable by the CCD camera (6 nW at camera). The system needed to be vacuum-compatible and to have the capability for combining a visible laser light at any time for calibration purposes. The red laser is a commercially produced 635-nm laser 5-mW diode, and the white light source is a commercially produced tungsten halogen lamp that gives a broad spectrum of about 525 to 800 nm full width at half maximum (FWHM), with about 1.4 mW of power at 630 nm. A custom-made beam splitter window with special coating for broadband wavelengths is used with the white light input via a 50-mm multi-mode fiber. The large mode area PCF is an LMA-8 made by Crystal Fibre (core diameter of 8.5 mm, mode field diameter of 6 mm, and numerical aperture at 625 nm of 0.083). Any science interferometer that needs a tracking laser fringe to assist in alignment can use this system.

  17. New opportunities in the study of in-medium nuclear properties with FAZIA

    NASA Astrophysics Data System (ADS)

    Gruyer, Diego; Frankland, John D.

    2017-11-01

    In this contribution we investigate the capabilities (resolution and efficiency) of the FAZIA demonstrator, with a particular emphasis on light cluster structure studies (excited state energy, width, and spin) and emitting source characterization (temperature and density), using multi-particle correlations. This study has been performed on simulated ^{32}{S}+^{12} C collisions from 25 to 80MeV/A.

  18. Analysis of Shade Matching in Natural Dentitions Using Intraoral Digital Spectrophotometer in LED and Filtered LED Light Sources.

    PubMed

    Chitrarsu, Vijai Krishnan; Chidambaranathan, Ahila Singaravel; Balasubramaniam, Muthukumar

    2017-10-31

    To evaluate the shade matching capabilities in natural dentitions using Vita Toothguide 3D-Master and an intraoral digital spectrophotometer (Vita Easyshade Advance 4.0) in various light sources. Participants between 20 and 40 years old with natural, unrestored right maxillary central incisors, no history of bleaching, orthodontic treatment, or malocclusion and no rotations were included. According to their shades, subjects were randomly selected and grouped into A1, A2, and A3. A total of 100 participants (50 male and 50 female) in each group were chosen for this study. Shade selection was made between 10 am and 2 pm for all light sources. The same examiner selected the shade of natural teeth with Vita Toothguide 3D-Master under natural light within 2 minutes. Once the Vita Toothguide 3D-Masterwas matched with the maxillary right central incisor, the L*, a*, and b* values, chroma, and hue were recorded with Vita Easyshade Advance 4.0 by placing it on the shade tab under the same light source. The values were statistically analyzed using one-way ANOVA and Tukey's HSD post hoc test with SPSS v22.0 software. The mean ∆E* ab values for shades A1, A2, and A3 for groups 1, 2, and 3 were statistically significantly different from each other (p < 0.001). The intraoral digital spectrophotometer showed statistically significant differences in shade matching compared to Vita Toothguide 3D-Master. Incandescent light showed more accurate shade matching than the filtered LED, LED, and daylight. © 2017 by the American College of Prosthodontists.

  19. Photo-ignition process of multiwall carbon nanotubes and ferrocene by continuous wave Xe lamp illumination.

    PubMed

    Visconti, Paolo; Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe

    2017-01-01

    This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV-vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2 +∙ and MWCNT - , easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples.

  20. Photo-ignition process of multiwall carbon nanotubes and ferrocene by continuous wave Xe lamp illumination

    PubMed Central

    Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe

    2017-01-01

    This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV–vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2+∙ and MWCNT−, easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples. PMID:28144572

  1. A compact free space quantum key distribution system capable of daylight operation

    NASA Astrophysics Data System (ADS)

    Benton, David M.; Gorman, Phillip M.; Tapster, Paul R.; Taylor, David M.

    2010-06-01

    A free space quantum key distribution system has been demonstrated. Consideration has been given to factors such as field of view and spectral width, to cut down the deleterious effect from background light levels. Suitable optical sources such as lasers and RCLEDs have been investigated as well as optimal wavelength choices, always with a view to building a compact and robust system. The implementation of background reduction measures resulted in a system capable of operating in daylight conditions. An autonomous system was left running and generating shared key material continuously for over 7 days.

  2. Design and modeling of a light powered biomimicry micropump

    NASA Astrophysics Data System (ADS)

    Sze, Tsun-kay Jackie; Liu, Jin; Dutta, Prashanta

    2015-06-01

    The design of compact micropumps to provide steady flow has been an on-going challenge in the field of microfluidics. In this work, a novel micropump concept is introduced utilizing bacteriorhodopsin and sugar transporter proteins. The micropump utilizes light energy to activate the transporter proteins, which create an osmotic pressure gradient and drive the fluid flow. The capability of the bio inspired micropump is demonstrated using a quasi 1D numerical model, where the contributions of bacteriorhodopsin and sugar transporter proteins are taken care of by appropriate flux boundary conditions in the flow channel. Proton flux created by the bacteriorhodopsin proteins is compared with experimental results to obtain the appropriate working conditions of the proteins. To identify the pumping capability, we also investigate the influences of several key parameters, such as the membrane fraction of transporter proteins, membrane proton permeability and the presence of light. Our results show that there is a wide bacteriorhodopsin membrane fraction range (from 0.2 to 10%) at which fluid flow stays nearly at its maximum value. Numerical results also indicate that lipid membranes with low proton permeability can effectively control the light source as a method to turn on/off fluid flow. This capability allows the micropump to be activated and shut off remotely without bulky support equipment. In comparison with existing micropumps, this pump generates higher pressures than mechanical pumps. It can produce peak fluid flow and shutoff head comparable to other non-mechanical pumps.

  3. Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.

    PubMed

    Jiang, Liyong; Yin, Tingting; Dong, Zhaogang; Liao, Mingyi; Tan, Shawn J; Goh, Xiao Ming; Allioux, David; Hu, Hailong; Li, Xiangyin; Yang, Joel K W; Shen, Zexiang

    2015-10-27

    Dark-field microscopy is a widely used tool for measuring the optical resonance of plasmonic nanostructures. However, current numerical methods for simulating the dark-field scattering spectra were carried out with plane wave illumination either at normal incidence or at an oblique angle from one direction. In actual experiments, light is focused onto the sample through an annular ring within a range of glancing angles. In this paper, we present a theoretical model capable of accurately simulating the dark-field light source with an annular ring. Simulations correctly reproduce a counterintuitive blue shift in the scattering spectra from gold nanodisks with a diameter beyond 140 nm. We believe that our proposed simulation method can be potentially applied as a general tool capable of simulating the dark-field scattering spectra of plasmonic nanostructures as well as other dielectric nanostructures with sizes beyond the quasi-static limit.

  4. Broad source fringe formation with a Fresnel biprism and a Mach-Zehnder interferometer.

    PubMed

    Leon, S C

    1987-12-15

    A biprism is used to combine identical spatially incoherent wavefronts that have been split by an amplitude splitting interferometer such as the Mach-Zehnder. The performance of this composite interferometer is evaluated by tracing the chief ray through parallel optical systems using Snell's law and trigonometry. Fringes formed in spatially incoherent light with this optical system are compared with those formed using the Mach-Zehnder and grating interferometers. It is shown that the combination can exhibit extended source fringe formation capability greatly exceeding that of the Mach-Zehnder interferometer.

  5. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    NASA Astrophysics Data System (ADS)

    Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko

    2013-11-01

    A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  6. Plastic Optical Fibre Sensor for Spine Bending Monitoring with Power Fluctuation Compensation

    PubMed Central

    Zawawi, Mohd Anwar; O'Keeffe, Sinead; Lewis, Elfed

    2013-01-01

    This paper presents the implementation of power fluctuation compensation for an intensity-based optical fibre bending sensor aimed at monitoring human spine bending in a clinical environment. To compensate for the light intensity changes from the sensor light source, a reference signal was provided via the light reflection from an aluminum foil surface fixed at a certain distance from the source fibre end tips. From the results, it was found that the investigated sensor compensation technique was capable of achieving a 2° resolution for a bending angle working range between 0° and 20°. The study also suggested that the output voltage ratio has a 0.55% diversion due to input voltage variation between 2.9 V and 3.4 V and a 0.25% output drift for a 2 h measurement. With the achieved sensor properties, human spine monitoring in a clinical environment can potentially be implemented using this approach with power fluctuation compensation. PMID:24233073

  7. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability

    PubMed Central

    Gagnon-Turcotte, Gabriel; Avakh Kisomi, Alireza; Ameli, Reza; Dufresne Camaro, Charles-Olivier; LeChasseur, Yoan; Néron, Jean-Luc; Brule Bareil, Paul; Fortier, Paul; Bories, Cyril; de Koninck, Yves; Gosselin, Benoit

    2015-01-01

    We present a small and lightweight fully wireless optogenetic headstage capable of optical neural stimulation and electrophysiological recording. The headstage is suitable for conducting experiments with small transgenic rodents, and features two implantable fiber-coupled light-emitting diode (LED) and two electrophysiological recording channels. This system is powered by a small lithium-ion battery and is entirely built using low-cost commercial off-the-shelf components for better flexibility, reduced development time and lower cost. Light stimulation uses customizable stimulation patterns of varying frequency and duty cycle. The optical power that is sourced from the LED is delivered to target light-sensitive neurons using implantable optical fibers, which provide a measured optical power density of 70 mW/mm2 at the tip. The headstage is using a novel foldable rigid-flex printed circuit board design, which results into a lightweight and compact device. Recording experiments performed in the cerebral cortex of transgenic ChR2 mice under anesthetized conditions show that the proposed headstage can trigger neuronal activity using optical stimulation, while recording microvolt amplitude electrophysiological signals. PMID:26371006

  8. Fiber Fabry-Perot sensors for detection of partial discharges in power transformers.

    PubMed

    Yu, Bing; Kim, Dae Woong; Deng, Jiangdong; Xiao, Hai; Wang, Anbo

    2003-06-01

    A diaphragm-based interferometric fiberoptic sensor that uses a low-coherence light source was designed and tested for on-line detection of the acoustic waves generated by partial discharges inside high-voltage power transformers. The sensor uses a fused-silica diaphragm and a single-mode optical fiber encapsulated in a fused-silica glass tube to form an extrinsic Fabry-Perot interferometer, which is interrogated by low-coherence light. Test results indicate that these fiber optic acoustic sensors are capable of faithfully detecting acoustic signals propagating inside transformer oil with high sensitivity and wide bandwidth.

  9. NIR light propagation in a digital head model for traumatic brain injury (TBI)

    PubMed Central

    Francis, Robert; Khan, Bilal; Alexandrakis, George; Florence, James; MacFarlane, Duncan

    2015-01-01

    Near infrared spectroscopy (NIRS) is capable of detecting and monitoring acute changes in cerebral blood volume and oxygenation associated with traumatic brain injury (TBI). Wavelength selection, source-detector separation, optode density, and detector sensitivity are key design parameters that determine the imaging depth, chromophore separability, and, ultimately, clinical usefulness of a NIRS instrument. We present simulation results of NIR light propagation in a digital head model as it relates to the ability to detect intracranial hematomas and monitor the peri-hematomal tissue viability. These results inform NIRS instrument design specific to TBI diagnosis and monitoring. PMID:26417498

  10. Dielectric particle injector for material processing

    NASA Technical Reports Server (NTRS)

    Leung, Philip L. (Inventor)

    1992-01-01

    A device for use as an electrostatic particle or droplet injector is disclosed which is capable of injecting dielectric particles or droplets. The device operates by first charging the dielectric particles or droplets using ultraviolet light induced photoelectrons from a low work function material plate supporting the dielectric particles or droplets, and then ejecting the charged particles or droplets from the plate by utilizing an electrostatic force. The ejected particles or droplets are mostly negatively charged in the preferred embodiment; however, in an alternate embodiment, an ion source is used instead of ultraviolet light to eject positively charged dielectric particles or droplets.

  11. Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    1999-01-01

    A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals. Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.

  12. A smartphone-based chip-scale microscope using ambient illumination.

    PubMed

    Lee, Seung Ah; Yang, Changhuei

    2014-08-21

    Portable chip-scale microscopy devices can potentially address various imaging needs in mobile healthcare and environmental monitoring. Here, we demonstrate the adaptation of a smartphone's camera to function as a compact lensless microscope. Unlike other chip-scale microscopy schemes, this method uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is based on the shadow imaging technique where the sample is placed on the surface of the image sensor, which captures direct shadow images under illumination. To improve the image resolution beyond the pixel size, we perform pixel super-resolution reconstruction with multiple images at different angles of illumination, which are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. The lensless imaging scheme allows for sub-micron resolution imaging over an ultra-wide field-of-view (FOV). Image acquisition and reconstruction are performed on the device using a custom-built Android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.

  13. A smartphone-based chip-scale microscope using ambient illumination

    PubMed Central

    Lee, Seung Ah; Yang, Changhuei

    2014-01-01

    Portable chip-scale microscopy devices can potentially address various imaging needs in mobile healthcare and environmental monitoring. Here, we demonstrate the adaptation of a smartphone’s camera to function as a compact lensless microscope. Unlike other chip-scale microscopy schemes, this method uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is based on the shadow imaging technique where the sample is placed on the surface of the image sensor, which captures direct shadow images under illumination. To improve the imaging resolution beyond the pixel size, we perform pixel super-resolution reconstruction with multiple images at different angles of illumination, which are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. The lensless imaging scheme allows for sub-micron resolution imaging over an ultra-wide field-of-view (FOV). Image acquisition and reconstruction is performed on the device using a custom-built android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system. PMID:24964209

  14. Timing Analysis with INTEGRAL: Comparing Different Reconstruction Algorithms

    NASA Technical Reports Server (NTRS)

    Grinberg, V.; Kreykenboehm, I.; Fuerst, F.; Wilms, J.; Pottschmidt, K.; Bel, M. Cadolle; Rodriquez, J.; Marcu, D. M.; Suchy, S.; Markowitz, A.; hide

    2010-01-01

    INTEGRAL is one of the few instruments capable of detecting X-rays above 20keV. It is therefore in principle well suited for studying X-ray variability in this regime. Because INTEGRAL uses coded mask instruments for imaging, the reconstruction of light curves of X-ray sources is highly non-trivial. We present results from the comparison of two commonly employed algorithms, which primarily measure flux from mask deconvolution (ii-lc-extract) and from calculating the pixel illuminated fraction (ii-light). Both methods agree well for timescales above about 10 s, the highest time resolution for which image reconstruction is possible. For higher time resolution, ii-light produces meaningful results, although the overall variance of the lightcurves is not preserved.

  15. Characterisation of the high dynamic range Large Pixel Detector (LPD) and its use at X-ray free electron laser sources

    DOE PAGES

    Veale, M. C.; Adkin, P.; Booker, P.; ...

    2017-12-04

    The STFC Rutherford Appleton Laboratory have delivered the Large Pixel Detector (LPD) for MHz frame rate imaging at the European XFEL. The detector system has an active area of 0.5 m × 0.5 m and consists of a million pixels on a 500 μm pitch. Sensors have been produced from 500 μm thick Hammamatsu silicon tiles that have been bump bonded to the readout ASIC using a silver epoxy and gold stud technique. Each pixel of the detector system is capable of measuring 10 5 12 keV photons per image readout at 4.5 MHz. In this paper results from themore » testing of these detectors at the Diamond Light Source and the Linac Coherent Light Source (LCLS) are presented. As a result, the performance of the detector in terms of linearity, spatial uniformity and the performance of the different ASIC gain stages is characterised.« less

  16. Controlling the spectrum of photons generated on a silicon nanophotonic chip

    PubMed Central

    Kumar, Ranjeet; Ong, Jun Rong; Savanier, Marc; Mookherjea, Shayan

    2014-01-01

    Directly modulated semiconductor lasers are widely used, compact light sources in optical communications. Semiconductors can also be used to generate nonclassical light; in fact, CMOS-compatible silicon chips can be used to generate pairs of single photons at room temperature. Unlike the classical laser, the photon-pair source requires control over a two-dimensional joint spectral intensity (JSI) and it is not possible to process the photons separately, as this could destroy the entanglement. Here we design a photon-pair source, consisting of planar lightwave components fabricated using CMOS-compatible lithography in silicon, which has the capability to vary the JSI. By controlling either the optical pump wavelength, or the temperature of the chip, we demonstrate the ability to select different JSIs, with a large variation in the Schmidt number. Such control can benefit high-dimensional communications where detector-timing constraints can be relaxed by realizing a large Schmidt number in a small frequency range. PMID:25410792

  17. Real-time color measurement using active illuminant

    NASA Astrophysics Data System (ADS)

    Tominaga, Shoji; Horiuchi, Takahiko; Yoshimura, Akihiko

    2010-01-01

    This paper proposes a method for real-time color measurement using active illuminant. A synchronous measurement system is constructed by combining a high-speed active spectral light source and a high-speed monochrome camera. The light source is a programmable spectral source which is capable of emitting arbitrary spectrum in high speed. This system is the essential advantage of capturing spectral images without using filters in high frame rates. The new method of real-time colorimetry is different from the traditional method based on the colorimeter or the spectrometers. We project the color-matching functions onto an object surface as spectral illuminants. Then we can obtain the CIE-XYZ tristimulus values directly from the camera outputs at every point on the surface. We describe the principle of our colorimetric technique based on projection of the color-matching functions and the procedure for realizing a real-time measurement system of a moving object. In an experiment, we examine the performance of real-time color measurement for a static object and a moving object.

  18. Characterisation of the high dynamic range Large Pixel Detector (LPD) and its use at X-ray free electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veale, M. C.; Adkin, P.; Booker, P.

    The STFC Rutherford Appleton Laboratory have delivered the Large Pixel Detector (LPD) for MHz frame rate imaging at the European XFEL. The detector system has an active area of 0.5 m × 0.5 m and consists of a million pixels on a 500 μm pitch. Sensors have been produced from 500 μm thick Hammamatsu silicon tiles that have been bump bonded to the readout ASIC using a silver epoxy and gold stud technique. Each pixel of the detector system is capable of measuring 10 5 12 keV photons per image readout at 4.5 MHz. In this paper results from themore » testing of these detectors at the Diamond Light Source and the Linac Coherent Light Source (LCLS) are presented. As a result, the performance of the detector in terms of linearity, spatial uniformity and the performance of the different ASIC gain stages is characterised.« less

  19. A quantum light-emitting diode for the standard telecom window around 1,550 nm.

    PubMed

    Müller, T; Skiba-Szymanska, J; Krysa, A B; Huwer, J; Felle, M; Anderson, M; Stevenson, R M; Heffernan, J; Ritchie, D A; Shields, A J

    2018-02-28

    Single photons and entangled photon pairs are a key resource of many quantum secure communication and quantum computation protocols, and non-Poissonian sources emitting in the low-loss wavelength region around 1,550 nm are essential for the development of fibre-based quantum network infrastructure. However, reaching this wavelength window has been challenging for semiconductor-based quantum light sources. Here we show that quantum dot devices based on indium phosphide are capable of electrically injected single photon emission in this wavelength region. Using the biexciton cascade mechanism, they also produce entangled photons with a fidelity of 87 ± 4%, sufficient for the application of one-way error correction protocols. The material system further allows for entangled photon generation up to an operating temperature of 93 K. Our quantum photon source can be directly integrated with existing long distance quantum communication and cryptography systems, and provides a promising material platform for developing future quantum network hardware.

  20. Single-photon technique for the detection of periodic extraterrestrial laser pulses.

    PubMed

    Leeb, W R; Poppe, A; Hammel, E; Alves, J; Brunner, M; Meingast, S

    2013-06-01

    To draw humankind's attention to its existence, an extraterrestrial civilization could well direct periodic laser pulses toward Earth. We developed a technique capable of detecting a quasi-periodic light signal with an average of less than one photon per pulse within a measurement time of a few tens of milliseconds in the presence of the radiation emitted by an exoplanet's host star. Each of the electronic events produced by one or more single-photon avalanche detectors is tagged with precise time-of-arrival information and stored. From this we compute a histogram displaying the frequency of event-time differences in classes with bin widths on the order of a nanosecond. The existence of periodic laser pulses manifests itself in histogram peaks regularly spaced at multiples of the-a priori unknown-pulse repetition frequency. With laser sources simulating both the pulse source and the background radiation, we tested a detection system in the laboratory at a wavelength of 850 nm. We present histograms obtained from various recorded data sequences with the number of photons per pulse, the background photons per pulse period, and the recording time as main parameters. We then simulated a periodic signal hypothetically generated on a planet orbiting a G2V-type star (distance to Earth 500 light-years) and show that the technique is capable of detecting the signal even if the received pulses carry as little as one photon on average on top of the star's background light.

  1. The influence of the earth radiation on space target detection system

    NASA Astrophysics Data System (ADS)

    Su, Xiaofeng; Chen, FanSheng; Cuikun, .; Liuyan, .

    2017-05-01

    In the view of space remote sensing such as satellite detection space debris detection etc. visible band is usually used in order to have the all-weather detection capability, long wavelength infrared (LWIR) detection is also an important supplement. However, in the tow wave band, the earth can be a very strong interference source, especially in the dim target detecting. When the target is close to the earth, especially the LEO target, the background radiation of the earth will also enter into the baffle, and became the stray light through reflection, the stray light can reduce the signal to clutter ratio (SCR) of the target and make it difficult to be detected. In the visible band, the solar albedo by the earth is the main clutter source while in the LWIR band the radiation of the earth is the main clutter source. So, in this paper, we establish the energy transformation from the earth background radiation to the detection system to assess the effects of the stray light. Firstly, we discretize the surface of the earth to different unit, and using MODTRAN to calculate the radiation of the discrete point in different light and climate conditions, then, we integral all the radiation which can reach the baffle in the same observation angles to get the energy distribution, finally, according the target energy and the non-uniformity of the detector, we can calculate the design requirement of the system stray light suppression, which provides the design basis for the optical system.

  2. Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation

    NASA Astrophysics Data System (ADS)

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David

    2018-03-01

    Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.

  3. Status and Prospects for Low-Light Visible Sensing from the VIIRS Day/Night Band on Suomi NPP and JPSS-1

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Seaman, C.; Combs, C.; Solbrig, J. E.; Straka, W. C.; Walther, A.; NOH, Y. J.; Heidinger, A.

    2016-12-01

    Since its launch in October 2011, the Visible/Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has delivered above and beyond expectations, revolutionizing our ability to observe and characterize the nocturnal environment. Taking advantage of natural and artificial (man-made) light sources, the DNB offers unique information content ranging from the surface to the upper atmosphere. Notable developments include the quantitative use of moonlight for cloud property retrievals and the discovery of nightglow sensitivity revealing the signatures of gravity waves. The DNB represents a remarkable advance to the heritage low-light visible sensing of the Operational Linescan System (OLS), providing spatial and radiometric resolution unprecedented to the space platform. Soon, we will have yet another dimension of resolution to consider—temporal. In early 2017, NOAA's Joint Polar Satellite System-1 (J1) will join S-NPP in early afternoon (1330 local time, ascending node) sun-synchronous orbital plane, displaced ½ orbit ( 50 min) from S-NPP. Having two DNB sensors will offer an expanded ability (lower latitudes) to examine the temporal properties of various light sources, track the motion of ships, low-level clouds and dust storms, fire line evolution, cloud optical properties, and even the dynamics of mesospheric gravity wave structures such as thunderstorm-induced concentric gravity waves and mesospheric bores. This presentation will provide an update to the science and application-oriented research involving the S-NPP/DNB, examples of key capabilities, first results of lunar irradiance model validation, and a look ahead toward the new research opportunities to be afforded by tandem S-NPP/J1 observations. The AGU is well-positioned for anticipating these capabilities "on the eve" of the J1 launch.

  4. MaRIE: Probing Dynamic Processes in Soft Materials Using Advanced Light Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sykora, Milan; Kober, Edward Martin

    Los Alamos National Laboratory has developed a concept for a new research facility, MaRIE: Matter-Radiation Interactions in Extremes. The key motivation for MaRIE is to develop new experimental capabilities needed to fill the existing gaps in our fundamental understanding of materials important for key National Nuclear Security Agency (NNSA) goals. MaRIE will bring two major new capabilities: (a) the ability to characterize the meso- and microstructure of materials in bulk as well as local dynamic response characteristics, and (b) the ability to characterize how this microstructure evolves under NNSA-relevant conditions and impacts the material’s performance in this regime.

  5. Single-photon decision maker

    NASA Astrophysics Data System (ADS)

    Naruse, Makoto; Berthel, Martin; Drezet, Aurélien; Huant, Serge; Aono, Masashi; Hori, Hirokazu; Kim, Song-Ju

    2015-08-01

    Decision making is critical in our daily lives and for society in general and is finding evermore practical applications in information and communication technologies. Herein, we demonstrate experimentally that single photons can be used to make decisions in uncertain, dynamically changing environments. Using a nitrogen-vacancy in a nanodiamond as a single-photon source, we demonstrate the decision-making capability by solving the multi-armed bandit problem. This capability is directly and immediately associated with single-photon detection in the proposed architecture, leading to adequate and adaptive autonomous decision making. This study makes it possible to create systems that benefit from the quantum nature of light to perform practical and vital intelligent functions.

  6. Blue light potentiates neurogenesis induced by retinoic acid-loaded responsive nanoparticles.

    PubMed

    Santos, Tiago; Ferreira, Raquel; Quartin, Emanuel; Boto, Carlos; Saraiva, Cláudia; Bragança, José; Peça, João; Rodrigues, Cecília; Ferreira, Lino; Bernardino, Liliana

    2017-09-01

    Neurogenic niches constitute a powerful endogenous source of new neurons that can be used for brain repair strategies. Neuronal differentiation of these cells can be regulated by molecules such as retinoic acid (RA) or by mild levels of reactive oxygen species (ROS) that are also known to upregulate RA receptor alpha (RARα) levels. Data showed that neural stem cells from the subventricular zone (SVZ) exposed to blue light (405nm laser) transiently induced NADPH oxidase-dependent ROS, resulting in β-catenin activation and neuronal differentiation, and increased RARα levels. Additionally, the same blue light stimulation was capable of triggering the release of RA from light-responsive nanoparticles (LR-NP). The synergy between blue light and LR-NP led to amplified neurogenesis both in vitro and in vivo, while offering a temporal and spatial control of RA release. In conclusion, this combinatory treatment offers great advantages to potentiate neuronal differentiation, and provides an innovative and efficient application for brain regenerative therapies. Controlling the differentiation of stem cells would support the development of promising brain regenerative therapies. Blue light transiently increased reactive oxygen species, resulting in neuronal differentiation and increased retinoic acid receptor (RARα) levels. Additionally, the same blue light stimulation was capable of triggering the release of RA from light-responsive nanoparticles (LR-NP). The synergy between blue light and LR-NP led to amplified neurogenesis, while offering a temporal and spatial control of RA release. In this sense, our approach relying on the modulation of endogenous stem cells for the generation of new neurons may support the development of novel clinical therapies. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Source characteristics and design consideration for an iron-free variable-period/polarizing undulator for the UV/VUV range on SPEAR (abstract)

    NASA Astrophysics Data System (ADS)

    Tatchyn, Roman

    1992-01-01

    Insertion devices that are tuned by electrical period variation are particularly suited for the design of flexible polarized-light sources [R. Tatchyn, J. Appl. Phys. 65, 4107 (1989); R. Tatchyn and T. Cremer, IEEE Trans. Mag. 26, 3102 (1990)]. Important advantages vis-a-vis mechanical or hybrid variable field designs include: (1) significantly more rapid modulation of both polarization and energy, (2) an inherently larger set of polarization modulation capabilities and (3) polarization/energy modulation at continuously optimized values of K. In this paper we outline some of the general considerations that enter into the design of hysteresis-free variable-period/polarizing undulator structures and present the parameters of a recently-completed prototype design capable of generating intense levels of UV/VUV photon flux on SPEAR running at 3 GeV.

  8. Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.

  9. Unexpected photoreactivation of Vibrio harveyi bacteria living in ionization environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alifano, P.; Tala, A.; Tredici, S. M.

    2011-05-15

    Bacteria undergoing environmental effects is extremely interesting for structural, mechanistic, and evolutionary implications. Luminescent bacteria that have evolved in a specific ambient have developed particular responses and their behavior can give us new suggestions on the task and production of luciferina proteins. To analyze the UV interaction under controlled laboratory conditions, we used photoluminescent bacterial strains belonging to a new species evolutionarily close to Vibrio harveyi sampled from a coastal cave with a high radon content that generates ionizing radiation. The survival of the bacterial strains was analyzed, in the light and in the dark, following a variety of genotoxicmore » treatments including UV radiation exposure. The strains were irradiated by a germicide lamp. The results demonstrated that most of the strains exhibited a low rate of survival after the UV exposure. After irradiation by visible light following the UV exposure, all strains showed a high capability of photoreactivation when grown. This capability was quite unexpected because these bacteria were sampled from a dark ambient without UV radiation. This leads us to hypothesize that the photoreactivation in these bacteria might have been evolved to repair DNA lesions also induced by different radiation sources other than UV (e.g., x-ray) and that the luminescent bacteria might use their own light emission to carry out the photoreactivation. The high capability of photoreactivation of these bacteria was also justified by the results of deconvolution. The deconvolution was applied to the emission spectra and it was able to show evidence of different light peaks. The presence of the visible peak could control the photolysis enzyme.« less

  10. Method and apparatus for determining the physical properties of materials using dynamic light scattering techniques

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S. (Inventor)

    1992-01-01

    A system for determining the physical properties of materials through the use of dynamic light scattering is disclosed. The system includes a probe, a laser source for directing a laser beam into the probe, and a photodetector for converting scattered light detected by the probe into electrical signals. The probe includes at least one optical fiber connected to the laser source and a second optical fiber connected to the photodetector. Each of the fibers may adjoin a gradient index microlens which is capable of providing a collimated laser beam into a scattering medium. The position of the second optical fiber with respect to the optical axis of the probe determines whether homodyne or self-beating detection is provided. Self-beating detection may be provided without a gradient index microlens. This allows a very small probe to be constructed which is insertable through a hypodermic needle or the like into a droplet extending from such a needle. A method of detecting scattered light through the use of a collimated, Gaussian laser beam is also provided. A method for controlling the waist and divergence of the optical field emanating from the free end of an optical fiber is also provided.

  11. Digital image profilers for detecting faint sources which have bright companions, phase 2

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham

    1991-01-01

    A breadboard image profiling system developed for the first phase of this project demonstrated the potential for detecting extremely faint optical sources in the presence of light companions. Experimental data derived from laboratory testing of the device supports the theory that image profilers of this type may approach the theoretical limit imposed by photon statistics. The objective of Phase 2 of this program is the development of a ground-based multichannel image profiling system capable of detecting faint stellar objects slightly displaced from brighter stars. We have finalized the multichannel image profiling system and attempted three field tests.

  12. SNL Five-Year Facilities & Infrastructure Plan FY2015-2019

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipriani, Ralph J.

    2014-12-01

    Sandia’s development vision is to provide an agile, flexible, safer, more secure, and efficient enterprise that leverages the scientific and technical capabilities of the workforce and supports national security requirements in multiple areas. Sandia’s Five-Year Facilities & Infrastructure Planning program represents a tool to budget and prioritize immediate and short-term actions from indirect funding sources in light of the bigger picture of proposed investments from direct-funded, Work for Others and other funding sources. As a complementary F&I investment program, Sandia’s indirect investment program supports incremental achievement of the development vision within a constrained resource environment.

  13. Development of GaN-based microchemical sensor nodes

    NASA Technical Reports Server (NTRS)

    Prokopuk, Nicholas; Son, Kyung-Ah; George, Thomas; Moon, Jeong S.

    2005-01-01

    Sensors based III-N technology are gaining significant interest due to their potential for monolithic integration of RF transceivers and light sources and the capability of high temperature operations. We are developing a GaN-based micro chemical sensor node for remote detection of chemical toxins, and present electrical responses of AlGaN/GaN HEMT (High Electron Mobility Transistor) sensors to chemical toxins as well as other common gases.

  14. The infrared imaging spectrograph (IRIS) for TMT: overview of innovative science programs

    NASA Astrophysics Data System (ADS)

    Wright, Shelley A.; Larkin, James E.; Moore, Anna M.; Do, Tuan; Simard, Luc; Adamkovics, Maté; Armus, Lee; Barth, Aaron J.; Barton, Elizabeth; Boyce, Hope; Cooke, Jeffrey; Cote, Patrick; Davidge, Timothy; Ellerbroek, Brent; Ghez, Andrea M.; Liu, Michael C.; Lu, Jessica R.; Macintosh, Bruce A.; Mao, Shude; Marois, Christian; Schoeck, Matthias; Suzuki, Ryuji; Tan, Jonathan C.; Treu, Tommaso; Wang, Lianqi; Weiss, Jason

    2014-07-01

    IRIS (InfraRed Imaging Spectrograph) is a first light near-infrared diffraction limited imager and integral field spectrograph being designed for the future Thirty Meter Telescope (TMT). IRIS is optimized to perform astronomical studies across a significant fraction of cosmic time, from our Solar System to distant newly formed galaxies (Barton et al. [1]). We present a selection of the innovative science cases that are unique to IRIS in the era of upcoming space and ground-based telescopes. We focus on integral field spectroscopy of directly imaged exoplanet atmospheres, probing fundamental physics in the Galactic Center, measuring 104 to 1010 M supermassive black hole masses, resolved spectroscopy of young star-forming galaxies (1 < z < 5) and first light galaxies (6 < z < 12), and resolved spectroscopy of strong gravitational lensed sources to measure dark matter substructure. For each of these science cases we use the IRIS simulator (Wright et al. [2], Do et al. [3]) to explore IRIS capabilities. To highlight the unique IRIS capabilities, we also update the point and resolved source sensitivities for the integral field spectrograph (IFS) in all five broadband filters (Z, Y, J, H, K) for the finest spatial scale of 0.004" per spaxel. We briefly discuss future development plans for the data reduction pipeline and quicklook software for the IRIS instrument suite.

  15. Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams

    DOEpatents

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.

    1997-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.

  16. Lock-in imaging with synchronous digital mirror demodulation

    NASA Astrophysics Data System (ADS)

    Bush, Michael G.

    2010-04-01

    Lock-in imaging enables high contrast imaging in adverse conditions by exploiting a modulated light source and homodyne detection. We report results on a patent pending lock-in imaging system fabricated from commercial-off-theshelf parts utilizing standard cameras and a spatial light modulator. By leveraging the capabilities of standard parts we are able to present a low cost, high resolution, high sensitivity camera with applications in search and rescue, friend or foe identification (IFF), and covert surveillance. Different operating modes allow the same instrument to be utilized for dual band multispectral imaging or high dynamic range imaging, increasing the flexibility in different operational settings.

  17. Photonics walking up a human hair

    NASA Astrophysics Data System (ADS)

    Zeng, Hao; Parmeggiani, Camilla; Martella, Daniele; Wasylczyk, Piotr; Burresi, Matteo; Wiersma, Diederik S.

    2016-03-01

    While animals have access to sugars as energy source, this option is generally not available to artificial machines and robots. Energy delivery is thus the bottleneck for creating independent robots and machines, especially on micro- and nano- meter length scales. We have found a way to produce polymeric nano-structures with local control over the molecular alignment, which allowed us to solve the above issue. By using a combination of polymers, of which part is optically sensitive, we can create complex functional structures with nanometer accuracy, responsive to light. In particular, this allowed us to realize a structure that can move autonomously over surfaces (it can "walk") using the environmental light as its energy source. The robot is only 60 μm in total length, thereby smaller than any known terrestrial walking species, and it is capable of random, directional walking and rotating on different dry surfaces.

  18. High-energy synchrotron X-ray radiography of shock-compressed materials

    NASA Astrophysics Data System (ADS)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  19. Fourth User Workshop on High-Power Lasers at the Linac Coherent Light Source

    DOE PAGES

    Bolme, Cindy Anne; Mackinnon, Andy; Glenzer, Siegfried

    2017-05-30

    The fourth international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA, on October 3–4, 2016. The workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory (SLAC), and garnered the attendance of more than 110 scientists. Participants discussed the warm dense matter and high-pressure science that is being conducted using high-power lasers at the LCLS Matter in Extreme Conditions (MEC) endstation. During the past year, there have been seven journal articles published from research at the MEC instrument. Here, the specific topics discussed at thismore » workshop were experimental highlights from the past year, current status and future commissioning of MEC capabilities, and future facility upgrades that will enable the expanded science reach of the facility.« less

  20. Fourth User Workshop on High-Power Lasers at the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolme, Cindy Anne; Mackinnon, Andy; Glenzer, Siegfried

    The fourth international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA, on October 3–4, 2016. The workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory (SLAC), and garnered the attendance of more than 110 scientists. Participants discussed the warm dense matter and high-pressure science that is being conducted using high-power lasers at the LCLS Matter in Extreme Conditions (MEC) endstation. During the past year, there have been seven journal articles published from research at the MEC instrument. Here, the specific topics discussed at thismore » workshop were experimental highlights from the past year, current status and future commissioning of MEC capabilities, and future facility upgrades that will enable the expanded science reach of the facility.« less

  1. X-Ray Detector Simulations - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tina, Adrienne

    2015-08-20

    The free-electron laser at LCLS produces X-Rays that are used in several facilities. This light source is so bright and quick that we are capable of producing movies of objects like proteins. But making these movies would not be possible without a device that can detect the X-Rays and produce images. We need X-Ray cameras. The challenges LCLS faces include the X-Rays’ high repetition rate of 120 Hz, short pulses that can reach 200 femto-seconds, and extreme peak brightness. We need detectors that are compatible with this light source, but before they can be used in the facilities, they mustmore » first be characterized. My project was to do just that, by making a computer simulation program. My presentation discusses the individual detectors I simulated, the details of my program, and how my project will help determine which detector is most useful for a specific experiment.« less

  2. Stereoscopic augmented reality with pseudo-realistic global illumination effects

    NASA Astrophysics Data System (ADS)

    de Sorbier, Francois; Saito, Hideo

    2014-03-01

    Recently, augmented reality has become very popular and has appeared in our daily life with gaming, guiding systems or mobile phone applications. However, inserting object in such a way their appearance seems natural is still an issue, especially in an unknown environment. This paper presents a framework that demonstrates the capabilities of Kinect for convincing augmented reality in an unknown environment. Rather than pre-computing a reconstruction of the scene like proposed by most of the previous method, we propose a dynamic capture of the scene that allows adapting to live changes of the environment. Our approach, based on the update of an environment map, can also detect the position of the light sources. Combining information from the environment map, the light sources and the camera tracking, we can display virtual objects using stereoscopic devices with global illumination effects such as diffuse and mirror reflections, refractions and shadows in real time.

  3. Creating an EPICS Based Test Stand Development System for a BPM Digitizer of the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-06-22

    The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test themore » digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.« less

  4. Using a Fuzzy Light Sensor to Improve the Efficiency of Solar Panels

    NASA Astrophysics Data System (ADS)

    Suryono; Suseno, Jatmiko Endro; Sulistiati, Ainie Khuriati Riza; Prahara, Tahan

    2018-02-01

    Solar panel efficiency can be increased by improving the quality of photovoltaic material, the effectiveness of electronic circuit, and the light source tracking model. This research is aimed at improving the quality of solar panels by tracking light source using a fuzzy logic sensor. A fuzzy light sensor property is obtained from two LDR (light dependent resistor) light sensors installed in parallel to each other and is given a light separator in between them. Both sensors are mounted on a solar panel. Sensor output is acquired using a 12 bit ADC from an ATSAM3XE microcontroller and is then sent to a computer using WIFI radio. A PID (Proportional-Integral-Derivative) control algorithm is used to manage the position of the solar panel in line with the input given by the fuzzy light sensor. This control mechanism works based on the margin of fuzzy membership from both sensors that is used to move a motor DC that in turn moves the solar panel. Experimental results show a characteristically symmetrical fuzzy membership of both sensors with a reflected correlation of R=0.9981 after gains from both sensors are arranged with a program. Upon being tested in the field, this system was capable of improving the performance of solar panels in gaining power compared to their original fixed position. The discrepancy was evident when the angle of incoming sunlight approached both 0° and 180°. Further calculations of data acquired by the fuzzy light sensor show increased solar panel power efficiency by up to 5.6%.

  5. Multiwaveguide implantable probe for light delivery to sets of distributed brain targets.

    PubMed

    Zorzos, Anthony N; Boyden, Edward S; Fonstad, Clifton G

    2010-12-15

    Optical fibers are commonly inserted into living tissues such as the brain in order to deliver light to deep targets for neuroscientific and neuroengineering applications such as optogenetics, in which light is used to activate or silence neurons expressing specific photosensitive proteins. However, an optical fiber is limited to delivering light to a single target within the three-dimensional structure of the brain. We here demonstrate a multiwaveguide probe capable of independently delivering light to multiple targets along the probe axis, thus enabling versatile optical control of sets of distributed brain targets. The 1.45-cm-long probe is microfabricated in the form of a 360-μm-wide array of 12 parallel silicon oxynitride (SiON) multimode waveguides clad with SiO(2) and coated with aluminum; probes of custom dimensions are easily created as well. The waveguide array accepts light from a set of sources at the input end and guides the light down each waveguide to an aluminum corner mirror that efficiently deflects light away from the probe axis. Light losses at each stage are small (input coupling loss, 0.4 ± 0.3 dB; bend loss, negligible; propagation loss, 3.1 ± 1 dB/cm using the outscattering method and 3.2 ± 0.4 dB/cm using the cutback method; corner mirror loss, 1.5 ± 0.4 dB); a waveguide coupled, for example, to a 5 mW source will deliver over 1.5 mW to a target at a depth of 1 cm.

  6. Interactive optical panel

    DOEpatents

    Veligdan, James T.

    1995-10-03

    An interactive optical panel assembly 34 includes an optical panel 10 having a plurality of ribbon optical waveguides 12 stacked together with opposite ends thereof defining panel first and second faces 16, 18. A light source 20 provides an image beam 22 to the panel first face 16 for being channeled through the waveguides 12 and emitted from the panel second face 18 in the form of a viewable light image 24a. A remote device 38 produces a response beam 40 over a discrete selection area 36 of the panel second face 18 for being channeled through at least one of the waveguides 12 toward the panel first face 16. A light sensor 42,50 is disposed across a plurality of the waveguides 12 for detecting the response beam 40 therein for providing interactive capability.

  7. Aperture lamp

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.

    2003-01-01

    A discharge lamp includes means for containing a light emitting fill, the fill being capable of absorbing light at one wavelength and re-emitting the light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill; means for exciting the fill to cause the fill to emit light; and means for reflecting some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length. Another discharge lamp includes an envelope; a fill which emits light when excited disposed in the envelope; a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light; and a reflective ceramic structure disposed around the envelope and defining an light emitting opening, wherein the structure comprises a sintered body built up directly on the envelope and made from a combination of alumina and silica.

  8. Simulation of optical interstellar scintillation

    NASA Astrophysics Data System (ADS)

    Habibi, F.; Moniez, M.; Ansari, R.; Rahvar, S.

    2013-04-01

    Aims: Stars twinkle because their light propagates through the atmosphere. The same phenomenon is expected on a longer time scale when the light of remote stars crosses an interstellar turbulent molecular cloud, but it has never been observed at optical wavelengths. The aim of the study described in this paper is to fully simulate the scintillation process, starting from the molecular cloud description as a fractal object, ending with the simulations of fluctuating stellar light curves. Methods: Fast Fourier transforms are first used to simulate fractal clouds. Then, the illumination pattern resulting from the crossing of background star light through these refractive clouds is calculated from a Fresnel integral that also uses fast Fourier transform techniques. Regularisation procedure and computing limitations are discussed, along with the effect of spatial and temporal coherency (source size and wavelength passband). Results: We quantify the expected modulation index of stellar light curves as a function of the turbulence strength - characterised by the diffraction radius Rdiff - and the projected source size, introduce the timing aspects, and establish connections between the light curve observables and the refractive cloud. We extend our discussion to clouds with different structure functions from Kolmogorov-type turbulence. Conclusions: Our study confirms that current telescopes of ~4 m with fast-readout, wide-field detectors have the capability of discovering the first interstellar optical scintillation effects. We also show that this effect should be unambiguously distinguished from any other type of variability through the observation of desynchronised light curves, simultaneously measured by two distant telescopes.

  9. Possibilities of lasers within NOTES.

    PubMed

    Stepp, Herbert; Sroka, Ronald

    2010-10-01

    Lasers possess unique properties that render them versatile light sources particularly for NOTES. Depending on the laser light sources used, diagnostic as well as therapeutic purposes can be achieved. The diagnostic potential offered by innovative concepts such as new types of ultra-thin endoscopes and optical probes supports the physician with optical information of ultra-high resolution, tissue discrimination and manifold types of fluorescence detection. In addition, the potential 3-D capability promises enhanced recognition of tissue type and pathological status. These diagnostic techniques might enable or at least contribute to accurate and safe procedures within the spatial restrictions inherent with NOTES. The therapeutic potential ranges from induction of phototoxic effects over tissue welding, coagulation and tissue cutting to stone fragmentation. As proven in many therapeutic laser endoscopic treatment concepts, laser surgery is potentially bloodless and transmits the energy without mechanical forces. Specialized NOTES endoscopes will likely incorporate suitable probes for improving diagnostic procedures, laser fibres with advantageous light delivery possibility or innovative laser beam manipulation systems. NOTES training centres may support the propagation of the complex handling and the safety aspects for clinical use to the benefit of the patient.

  10. Study of noninvasive detection of latent fingerprints using UV laser

    NASA Astrophysics Data System (ADS)

    Li, Hong-xia; Cao, Jing; Niu, Jie-qing; Huang, Yun-gang; Mao, Lin-jie; Chen, Jing-rong

    2011-06-01

    Latent fingerprints present a considerable challenge in forensics, and noninvasive procedure that captures a digital image of the latent fingerprints is significant in the field of criminal investigation. The capability of photography technologies using 266nm UV Nd:YAG solid state laser as excitation light source to provide detailed images of unprocessed latent fingerprints is demonstrated. Unprocessed latent fingerprints were developed on various non-absorbent and absorbing substrates. According to the special absorption, reflection, scattering and fluorescence characterization of the various residues in fingerprints (fatty acid ester, protein, and carbosylic acid salts etc) to the UV light to weaken or eliminate the background disturbance and increase the brightness contrast of fingerprints with the background, and using 266nm UV laser as excitation light source, fresh and old latent fingerprints on the surface of four types of non-absorbent objects as magazine cover, glass, back of cellphone, wood desktop paintwork and two types of absorbing objects as manila envelope, notebook paper were noninvasive detected and appeared through reflection photography and fluorescence photography technologies, and the results meet the fingerprint identification requirements in forensic science.

  11. Characterization of pseudosingle bunch kick-and-cancel operational mode

    DOE PAGES

    Sun, C.; Robin, D. S.; Steier, C.; ...

    2015-12-18

    Pseudosingle-bunch kick-and-cancel (PSB-KAC) is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments andmore » drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements.« less

  12. Design of LED fish lighting attractors using horizontal/vertical LIDC mapping method.

    PubMed

    Shen, S C; Huang, H J

    2012-11-19

    This study employs a sub-module concept to develop high-brightness light-emitting diode (HB-LED) fishing light arrays to replace traditional fishing light attractors. The horizontal/vertical (H/V) plane light intensity distribution curve (LIDC) of a LED light source are mapped to assist in the design of a non-axisymmetric lens with a fish-attracting light pattern that illuminates sufficiently large areas and alternates between bright and dark. These LED fishing light attractors are capable of attracting schools of fish toward the perimeter of the luminous zone surrounding fishing boats. Three CT2 boats (10 to 20 ton capacity) were recruited to conduct a field test for 1 y on the sea off the southwestern coast of Taiwan. Field tests show that HB-LED fishing light array installed 5 m above the boat deck illuminated a sea surface of 5 × 12 m and achieved an illuminance of 2000 lx. The test results show that the HB-LED fishing light arrays increased the mean catch of the three boats by 5% to 27%. In addition, the experimental boats consumed 15% to 17% less fuel than their counterparts.

  13. Light output function and assembly of the time-of-flight enhanced diagnostics neutron spectrometer plastic scintillators for background reduction by double kinematic selection at EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, X. Y.; Chen, Z. J.; Zhang, X.

    The 2.5 MeV neutron spectrometer TOFED (Time-Of-Flight Enhanced Diagnostics) has been constructed to perform advanced neutron emission spectroscopy diagnosis of deuterium plasmas on EAST. The instrument has a double-ring structure which, in combination with pulse shape digitization, allows for a dual kinematic selection in the time-of-flight/recoil proton energy (tof/E{sub p}) space, thus improving the spectrometer capability to resolve fast ion signatures in the neutron spectrum, in principle up to a factor ≈100. The identification and separation of features from the energetic ions in the neutron spectrum depends on the detailed knowledge of the instrument response function, both in terms ofmore » the light output function of the scintillators and the effect of undesired multiple neutron scatterings in the instrument. This work presents the determination of the light output function of the TOFED plastic scintillator detectors and their geometrical assembly. Results from dedicated experiments with γ-ray sources and quasi-monoenergetic neutron beams are presented. Implications on the instrument capability to perform background suppression based on double kinematic selection are discussed.« less

  14. A novel versatile microbiosensor for local hydrogen detection by means of scanning photoelectrochemical microscopy.

    PubMed

    Zhao, Fangyuan; Conzuelo, Felipe; Hartmann, Volker; Li, Huaiguang; Stapf, Stefanie; Nowaczyk, Marc M; Rögner, Matthias; Plumeré, Nicolas; Lubitz, Wolfgang; Schuhmann, Wolfgang

    2017-08-15

    The development of a versatile microbiosensor for hydrogen detection is reported. Carbon-based microelectrodes were modified with a [NiFe]-hydrogenase embedded in a viologen-modified redox hydrogel for the fabrication of a sensitive hydrogen biosensor By integrating the microbiosensor in a scanning photoelectrochemical microscope, it was capable of serving simultaneously as local light source to initiate photo(bio)electrochemical reactions while acting as sensitive biosensor for the detection of hydrogen. A hydrogen evolution biocatalyst based on photosystem 1-platinum nanoparticle biocomplexes embedded into a specifically designed redox polymer was used as a model for proving the capability of the developed hydrogen biosensor for the detection of hydrogen upon localized illumination. The versatility and sensitivity of the proposed microbiosensor as probe tip allows simplification of the set-up used for the evaluation of complex electrochemical processes and the rapid investigation of local photoelectrocatalytic activity of biocatalysts towards light-induced hydrogen evolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics.

    PubMed

    Shin, Gunchul; Gomez, Adrian M; Al-Hasani, Ream; Jeong, Yu Ra; Kim, Jeonghyun; Xie, Zhaoqian; Banks, Anthony; Lee, Seung Min; Han, Sang Youn; Yoo, Chul Jong; Lee, Jong-Lam; Lee, Seung Hee; Kurniawan, Jonas; Tureb, Jacob; Guo, Zhongzhu; Yoon, Jangyeol; Park, Sung-Il; Bang, Sang Yun; Nam, Yoonho; Walicki, Marie C; Samineni, Vijay K; Mickle, Aaron D; Lee, Kunhyuk; Heo, Seung Yun; McCall, Jordan G; Pan, Taisong; Wang, Liang; Feng, Xue; Kim, Tae-Il; Kim, Jong Kyu; Li, Yuhang; Huang, Yonggang; Gereau, Robert W; Ha, Jeong Sook; Bruchas, Michael R; Rogers, John A

    2017-02-08

    In vivo optogenetics provides unique, powerful capabilities in the dissection of neural circuits implicated in neuropsychiatric disorders. Conventional hardware for such studies, however, physically tethers the experimental animal to an external light source, limiting the range of possible experiments. Emerging wireless options offer important capabilities that avoid some of these limitations, but the current size, bulk, weight, and wireless area of coverage is often disadvantageous. Here, we present a simple but powerful setup based on wireless, near-field power transfer and miniaturized, thin, flexible optoelectronic implants, for complete optical control in a variety of behavioral paradigms. The devices combine subdermal magnetic coil antennas connected to microscale, injectable light-emitting diodes (LEDs), with the ability to operate at wavelengths ranging from UV to blue, green-yellow, and red. An external loop antenna allows robust, straightforward application in a multitude of behavioral apparatuses. The result is a readily mass-producible, user-friendly technology with broad potential for optogenetics applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs

    NASA Astrophysics Data System (ADS)

    Weiss, Joel Todd

    Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a sustained flux >1011 x-rays/pixel/second. In addition, digitization of residual analog signals allows sensitivity for single x-rays or low flux signals. Pixel high flux linearity is evaluated by direct exposure to an unattenuated synchrotron source x-ray beam and flux measurements of more than 1010 9.52 keV x-rays/pixel/s are made. Detector sensitivity to small signals is evaluated and dominant sources of error are identified. These new pixels boast multiple orders of magnitude improvement in maximum sustained flux over the MM-PAD, which is capable of measuring a sustained flux in excess of 108 x-rays/pixel/second while maintaining sensitivity to smaller signals, down to single x-rays.

  17. Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)

    2001-01-01

    Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.

  18. Nanoscale infrared (IR) spectroscopy and imaging of structural lipids in human stratum corneum using an atomic force microscope to directly detect absorbed light from a tunable IR laser source.

    PubMed

    Marcott, Curtis; Lo, Michael; Kjoller, Kevin; Domanov, Yegor; Balooch, Guive; Luengo, Gustavo S

    2013-06-01

    An atomic force microscope (AFM) and a tunable infrared (IR) laser source have been combined in a single instrument (AFM-IR) capable of producing ~200-nm spatial resolution IR spectra and absorption images. This new capability enables IR spectroscopic characterization of human stratum corneum at unprecendented levels. Samples of normal and delipidized stratum corneum were embedded, cross-sectioned and mounted on ZnSe prisms. A pulsed tunable IR laser source produces thermomechanical expansion upon absorption, which is detected through excitation of contact resonance modes in the AFM cantilever. In addition to reducing the total lipid content, the delipidization process damages the stratum corneum morphological structure. The delipidized stratum corneum shows substantially less long-chain CH2 -stretching IR absorption band intensity than normal skin. AFM-IR images that compare absorbances at 2930/cm (lipid) and 3290/cm (keratin) suggest that regions of higher lipid concentration are located at the perimeter of corneocytes in the normal stratum corneum. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Development of a high performance surface slope measuring system for two-dimensional mapping of x-ray optics

    NASA Astrophysics Data System (ADS)

    Lacey, Ian; Adam, Jérôme; Centers, Gary P.; Gevorkyan, Gevork S.; Nikitin, Sergey M.; Smith, Brian V.; Yashchuk, Valeriy V.

    2017-09-01

    The research and development work on the Advanced Light Source (ALS) upgrade to a diffraction limited storage ring light source, ALS-U, has brought to focus the need for near-perfect x-ray optics, capable of delivering light to experiments without significant degradation of brightness and coherence. The desired surface quality is characterized with residual (after subtraction of an ideal shape) surface slope and height errors of <50-100 nrad (rms) and <1-2 nm (rms), respectively. The ex-situ metrology that supports the optimal usage of the optics at the beamlines has to offer even higher measurement accuracy. At the ALS X-Ray Optics Laboratory, we are developing a new surface slope profiler, the Optical Surface Measuring System (OSMS), capable of two-dimensional (2D) surface-slope metrology at an absolute accuracy below the above optical specification. In this article we provide the results of comprehensive characterization of the key elements of the OSMS, a NOM-like high-precision granite gantry system with air-bearing translation and a custom-made precision air-bearing stage for tilting and flipping the surface under test. We show that the high performance of the gantry system allows implementing an original scanning mode for 2D mapping. We demonstrate the efficiency of the developed 2D mapping via comparison with 1D slope measurements performed with the same hyperbolic test mirror using the ALS developmental long trace profiler. The details of the OSMS design and the developed measuring techniques are also provided.

  20. Cost-Effective Hyperspectral Transmissometers for Oceanographic Applications: Performance Analysis

    PubMed Central

    Ramírez-Pérez, Marta; Röttgers, Rüdiger; Torrecilla, Elena; Piera, Jaume

    2015-01-01

    The recent development of inexpensive, compact hyperspectral transmissometers broadens the research capabilities of oceanographic applications. These developments have been achieved by incorporating technologies such as micro-spectrometers as detectors as well as light emitting diodes (LEDs) as light sources. In this study, we evaluate the performance of the new commercial LED-based hyperspectral transmissometer VIPER (TriOS GmbH, Rastede, Germany), which combines different LEDs to emulate the visible light spectrum, aiming at the determination of attenuation coefficients in coastal environments. For this purpose, experimental uncertainties related to the instrument stability, the effect of ambient light and derived temperature, and salinity correction factors are analyzed. Our results identify some issues related to the thermal management of the LEDs and the contamination of ambient light. Furthermore, the performance of VIPER is validated against other transmissometers through simultaneous field measurements. It is demonstrated that VIPER provides a compact and cost-effective alternative for beam attenuation measurements in coastal waters, but it requires the consideration of several optimizations. PMID:26343652

  1. Parallel phase-sensitive three-dimensional imaging camera

    DOEpatents

    Smithpeter, Colin L.; Hoover, Eddie R.; Pain, Bedabrata; Hancock, Bruce R.; Nellums, Robert O.

    2007-09-25

    An apparatus is disclosed for generating a three-dimensional (3-D) image of a scene illuminated by a pulsed light source (e.g. a laser or light-emitting diode). The apparatus, referred to as a phase-sensitive 3-D imaging camera utilizes a two-dimensional (2-D) array of photodetectors to receive light that is reflected or scattered from the scene and processes an electrical output signal from each photodetector in the 2-D array in parallel using multiple modulators, each having inputs of the photodetector output signal and a reference signal, with the reference signal provided to each modulator having a different phase delay. The output from each modulator is provided to a computational unit which can be used to generate intensity and range information for use in generating a 3-D image of the scene. The 3-D camera is capable of generating a 3-D image using a single pulse of light, or alternately can be used to generate subsequent 3-D images with each additional pulse of light.

  2. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    DOE PAGES

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; ...

    2015-04-15

    The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.

  3. Development of GaN-based micro chemical sensor nodes

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah; Prokopuk, Nicholas; George, Thomas; Moon, Jeong S.

    2005-01-01

    Sensors based on III-N technology are gaining significant interest due to their potential for monolithic integration of RF transceivers and light sources and the capability of high temperature operations. We are developing a GaN-based micro chemical sensor node for remote detection of chemical toxins, and present electrical responses of AlGaN/GaN HEMT (High Electron Mobility Transistor) sensors to chemical toxins as well as other common gases.

  4. SpIOMM and SITELLE: Wide-field Imaging FTS for the Study of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Drissen, Laurent; Bernier, Anne-Pier; Robert, Carmelle; Robert

    2011-12-01

    SpIOMM, a wide-field Imaging Fourier Transform Spectrometer attached to the Mont Mégantic 1.6-m telescope, is capable of obtaining the visible spectrum of every source of light in a 12 arcminute field of view, with a spectral resolution ranging from R = 1 (wide-band image) to R = 25 000, resulting in 1.7 million spectra with a spatial resolution of one arcsecond. SITELLE will be a similar instrument attached to the Canada-France-Hawaii telescope, and will be in operation in early 2013. We present a short description of these instruments and illustrate their capabilities to study nearby galaxies with the results of a data cube of M51.

  5. Laser Based Phosphor Converted Solid State White Light Emitters

    NASA Astrophysics Data System (ADS)

    Cantore, Michael

    Artificial lighting and as a consequence the ability to be productive when the sun does not shine may be a profound achievement in society that is largely taken for granted. As concerns arise due to our dependence on energy sources with finite lifespan or environmentally negative effects, efforts to reduce energy consumption and create clean renewable alternatives has become highly valued. In the scope of artificial lighting, the use of incandescent lamps has shifted to more efficient light sources. Fluorescent lighting made the first big gains in efficiency over incandescent lamps with peak efficiency for mature designs reaching luminous efficacy of approximately 90 lm/W; more than three times as efficient as an incandescent lamp. Lamps based on light emitting diodes (LEDs) which can produce light at even greater efficiency, color quality and without the potential for hazardous chemical release from lamp failure. There is a significant challenge with LED based light sources. Their peak efficiency occurs at low current densities and then droops as the current density increases. Laser diodes (LDs) do not suffer from decreasing efficiency due to increased current. An alternative solid state light source using LDs has potential to make further gains in efficiency as well as allow novel illuminant designs which may be impractical or even impossible even with LED or other conventional sources. While similar to LEDS, the use of LDs does present new challenges largely due to the increased optical power density which must be accommodated in optics and phosphor materials. Single crystal YAG:Ce has been shown to be capable of enduring this more extreme operating environment while retaining the optical and fluorescing qualities desired for use as a wavelength converter in phosphor converted LD based white emitting systems. The incorporation of this single crystal phosphor in a system with a commercial laser diode with peak wall plug efficiency of 31% resulted in emission of white light with a luminous efficacy of 86.7 lm/W at a current of 1.4A. A total luminous flux of 1100 lm with luminous efficacy of 76 lm/W at 3.0 A current was achieved. Simulations have been conducted which show that as the InGaN LD technology matures towards the efficiencies of about 75%, which has been observed in the GaAs material system, luminous efficacy of similar blue LD with single crystal YAG:Ce systems will exceed 200 lm/W.

  6. Road safety enhancement: an investigation on the visibility of on-road image projections using DMD-based pixel light systems

    NASA Astrophysics Data System (ADS)

    Rizvi, Sadiq; Ley, Peer-Phillip; Knöchelmann, Marvin; Lachmayer, Roland

    2018-02-01

    Research reveals that visual information forms the major portion of the received data for driving. At night -owing to the, sometimes scarcity, sometime inhomogeneity of light- the human physiology and psychology experiences a dramatic alteration. It is found that although the likelihood of accident occurrence is higher during the day due to heavier traffic, the most fatal accidents still occur during night time. How can road safety be improved in limited lighting conditions using DMD-based high resolution headlamps? DMD-based pixel light systems, utilizing HID and LED light sources, are able to address hundreds of thousands of pixels individually. Using camera information, this capability allows 'glare-free' light distributions that perfectly adapt to the needs of all road users. What really enables these systems to stand out however, is their on-road image projection capability. This projection functionality may be used in co-operation with other driver assistance systems as an assist feature for the projection of navigation data, warning signs, car status information etc. Since contrast sensitivity constitutes a decisive measure of the human visual function, here is then a core question: what distributions of luminance in the projection space produce highly visible on-road image projections? This work seeks to address this question. Responses on sets of differently illuminated projections are collected from a group of participants and later interpreted using statistical data obtained using a luminance camera. Some aspects regarding the correlation between contrast ratio, symbol form and attention capture are also discussed.

  7. Modeling, development, and testing of a shortwave infrared supercontinuum laser source for use in active hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Meola, Joseph; Absi, Anthony; Leonard, James D.; Ifarraguerri, Agustin I.; Islam, Mohammed N.; Alexander, Vinay V.; Zadnik, Jerome A.

    2013-05-01

    A fundamental limitation of current visible through shortwave infrared hyperspectral imaging systems is the dependence on solar illumination. This reliance limits the operability of such systems to small windows during which the sun provides enough solar radiation to achieve adequate signal levels. Similarly, nighttime collection is infeasible. This work discusses the development and testing of a high-powered super-continuum laser for potential use as an on-board illumination source coupled with a hyperspectral receiver to allow for day/night operability. A 5-watt shortwave infrared supercontinuum laser was developed, characterized in the lab, and tower-tested along a 1.6km slant path to demonstrate propagation capability as a spectral light source.

  8. Author Contribution to the Pu Handbook II: Chapter 37 LLNL Integrated Sample Preparation Glovebox (TEM) Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Mark A.

    The development of our Integrated Actinide Sample Preparation Laboratory (IASPL) commenced in 1998 driven by the need to perform transmission electron microscopy studies on naturally aged plutonium and its alloys looking for the microstructural effects of the radiological decay process (1). Remodeling and construction of a laboratory within the Chemistry and Materials Science Directorate facilities at LLNL was required to turn a standard radiological laboratory into a Radiological Materials Area (RMA) and Radiological Buffer Area (RBA) containing type I, II and III workplaces. Two inert atmosphere dry-train glove boxes with antechambers and entry/exit fumehoods (Figure 1), having a baseline atmospheremore » of 1 ppm oxygen and 1 ppm water vapor, a utility fumehood and a portable, and a third double-walled enclosure have been installed and commissioned. These capabilities, along with highly trained technical staff, facilitate the safe operation of sample preparation processes and instrumentation, and sample handling while minimizing oxidation or corrosion of the plutonium. In addition, we are currently developing the capability to safely transfer small metallographically prepared samples to a mini-SEM for microstructural imaging and chemical analysis. The gloveboxes continue to be the most crucial element of the laboratory allowing nearly oxide-free sample preparation for a wide variety of LLNL-based characterization experiments, which includes transmission electron microscopy, electron energy loss spectroscopy, optical microscopy, electrical resistivity, ion implantation, X-ray diffraction and absorption, magnetometry, metrological surface measurements, high-pressure diamond anvil cell equation-of-state, phonon dispersion measurements, X-ray absorption and emission spectroscopy, and differential scanning calorimetry. The sample preparation and materials processing capabilities in the IASPL have also facilitated experimentation at world-class facilities such as the Advanced Photon Source at Argonne National Laboratory, the European Synchrotron Radiation Facility in Grenoble, France, the Stanford Synchrotron Radiation Facility, the National Synchrotron Light Source at Brookhaven National Laboratory, the Advanced Light Source at Lawrence Berkeley National Laboratory, and the Triumph Accelerator in Canada.« less

  9. The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, D.; Barbrel, B.; Falcone, R. W.

    2015-05-15

    We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability ofmore » spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.« less

  10. Multipoint sensing with a low-coherence source using single-arm frequency-shifted interferometry

    DOE PAGES

    Zhang, Yiwei; Ye, Fei; Qi, Bing; ...

    2016-07-12

    We demonstrate that multiple-site sensing along an optical fiber can be done with incoherent continuous-wave light. Here, using a broadband low-coherence noise source, a slow detector, and an optical modulator, we construct a single-arm frequency-shifted interferometer (SA-FSI) capable of simultaneously sensing multiple weak-reflection sites distributed either in parallel or in series along fiber links. By scanning the driving frequency of an electro-optic amplitude modulator in the range of 2.7–3.2 GHz at steps of 41.7 KHz, we demonstrate a spatial resolution of 0.3 m and a measurement range of over 1 km.

  11. New Developments of Broadband Cavity Enhanced Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Walsh, A.; Zhao, D.; Linnartz, H.; Ubachs, W.

    2013-06-01

    In recent years, cavity enhanced spectroscopic techniques, such as cavity ring-down spectroscopy (CRDS), cavity enhanced absorption spectroscopy (CEAS), and broadband cavity enhanced absorption spectroscopy (BBCEAS), have been widely employed as ultra-sensitive methods for the measurement of weak absorptions and in the real-time detection of trace species. In this contribution, we introduce two new cavity enhanced spectroscopic concepts: a) Optomechanical shutter modulated BBCEAS, a variant of BBCEAS capable of measuring optical absorption in pulsed systems with typically low duty cycles. In conventional BBCEAS applications, the latter substantially reduces the signal-to-noise ratio (S/N), consequently also reducing the detection sensitivity. To overcome this, we incorporate a fast optomechanical shutter as a time gate, modulating the detection scheme of BBCEAS and increasing the effective duty cycle reaches a value close to unity. This extends the applications of BBCEAS into pulsed samples and also in time-resolved studies. b) Cavity enhanced self-absorption spectroscopy (CESAS), a new spectroscopic concept capable of studying light emitting matter (plasma, flames, combustion samples) simultaneously in absorption and emission. In CESAS, a sample (plasma, flame or combustion source) is located in an optically stable cavity consisting of two high reflectivity mirrors, and here it acts both as light source and absorbing medium. A high detection sensitivity of weak absorption is reached without the need of an external light source, such as a laser or broadband lamp. The performance is illustrated by the first CESAS result on a supersonically expanding hydrocarbon plasma. We expect CESAS to become a generally applicable analytical tool for real time and in situ diagnostics. A. Walsh, D. Zhao, W. Ubachs, H. Linnartz, J. Phys. Chem. A, {dx.doi.org/10.1021/jp310392n}, in press, 2013. A. Walsh, D. Zhao, H. Linnartz Rev. Sci. Instrum. {84}(2), 021608 2013. A. Walsh, D. Zhao, H. Linnartz Appl. Phys. Lett. {101}(9), 091111 2012.

  12. Security authentication with a three-dimensional optical phase code using random forest classifier: an overview

    NASA Astrophysics Data System (ADS)

    Markman, Adam; Carnicer, Artur; Javidi, Bahram

    2017-05-01

    We overview our recent work [1] on utilizing three-dimensional (3D) optical phase codes for object authentication using the random forest classifier. A simple 3D optical phase code (OPC) is generated by combining multiple diffusers and glass slides. This tag is then placed on a quick-response (QR) code, which is a barcode capable of storing information and can be scanned under non-uniform illumination conditions, rotation, and slight degradation. A coherent light source illuminates the OPC and the transmitted light is captured by a CCD to record the unique signature. Feature extraction on the signature is performed and inputted into a pre-trained random-forest classifier for authentication.

  13. Contributions of axionlike particles to lepton dipole moments

    DOE PAGES

    Marciano, W. J.; Masiero, A.; Paradisi, P.; ...

    2016-12-30

    We examined contributions of a spin-0 axionlike particle (ALP) to lepton dipole moments, g - 2 and EDMs. Barr-Zee and light-by-light loop effects from a light pseudoscalar ALP are found to be capable of resolving the longstanding muon g - 2 discrepancy at the expense of relatively large ALP - γ γ couplings. We also discussed the compatibility of such large couplings with direct experimental constraints and perturbative unitarity bounds. Future tests of such a scenario are described. For C P -violating ALP couplings, the electron EDM is found to probe much smaller, theoretically more easily accommodated ALP interactions. Wemore » advocate future planned improvements in electron EDM searches as a way to not only significantly constrain ALP parameters, but also potentially unveil a new source of C P violation which could have far-reaching ramifications.« less

  14. Solution-processed nanoparticle super-float-gated organic field-effect transistor as un-cooled ultraviolet and infrared photon counter.

    PubMed

    Yuan, Yongbo; Dong, Qingfeng; Yang, Bin; Guo, Fawen; Zhang, Qi; Han, Ming; Huang, Jinsong

    2013-01-01

    High sensitivity photodetectors in ultraviolet (UV) and infrared (IR) range have broad civilian and military applications. Here we report on an un-cooled solution-processed UV-IR photon counter based on modified organic field-effect transistors. This type of UV detectors have light absorbing zinc oxide nanoparticles (NPs) sandwiched between two gate dielectric layers as a floating gate. The photon-generated charges on the floating gate cause high resistance regions in the transistor channel and tune the source-drain output current. This "super-float-gating" mechanism enables very high sensitivity photodetectors with a minimum detectable ultraviolet light intensity of 2.6 photons/μm(2)s at room temperature as well as photon counting capability. Based on same mechansim, infrared photodetectors with lead sulfide NPs as light absorbing materials have also been demonstrated.

  15. Pulse transducer with artifact signal attenuator. [heart rate sensors

    NASA Technical Reports Server (NTRS)

    Cash, W. H., Jr.; Polhemus, J. T. (Inventor)

    1980-01-01

    An artifact signal attenuator for a pulse rate sensor is described. The circuit for attenuating background noise signals is connected with a pulse rate transducer which has a light source and a detector for light reflected from blood vessels of a living body. The heart signal provided consists of a modulated dc signal voltage indicative of pulse rate. The artifact signal resulting from light reflected from the skin of the body comprises both a constant dc signal voltage and a modulated dc signal voltage. The amplitude of the artifact signal is greater and the frequency less than that of the heart signal. The signal attenuator circuit includes an operational amplifier for canceling the artifact signal from the output signal of the transducer and has the capability of meeting packaging requirements for wrist-watch-size packages.

  16. Optical design of an in vivo laparoscopic lighting system

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolong; Abdolmalaki, Reza Yazdanpanah; Mancini, Gregory J.; Tan, Jindong

    2017-12-01

    This paper proposes an in vivo laparoscopic lighting system design to address the illumination issues, namely poor lighting uniformity and low optical efficiency, existing in the state-of-the-art in vivo laparoscopic cameras. The transformable design of the laparoscopic lighting system is capable of carrying purposefully designed freeform optical lenses for achieving lighting performance with high illuminance uniformity and high optical efficiency in a desired target region. To design freeform optical lenses for extended light sources such as LEDs with Lambertian light intensity distributions, we present an effective and complete freeform optical design method. The procedures include (1) ray map computation by numerically solving a standard Monge-Ampere equation; (2) initial freeform optical surface construction by using Snell's law and a lens volume restriction; (3) correction of surface normal vectors due to accumulated errors from the initially constructed surfaces; and (4) feedback modification of the solution to deal with degraded illuminance uniformity caused by the extended sizes of the LEDs. We employed an optical design software package to evaluate the performance of our laparoscopic lighting system design. The simulation results show that our design achieves greater than 95% illuminance uniformity and greater than 89% optical efficiency (considering Fresnel losses) for illuminating the target surgical region.

  17. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting

    PubMed Central

    Kim, Hoon-sik; Brueckner, Eric; Song, Jizhou; Li, Yuhang; Kim, Seok; Lu, Chaofeng; Sulkin, Joshua; Choquette, Kent; Huang, Yonggang; Nuzzo, Ralph G.; Rogers, John A.

    2011-01-01

    Properties that can now be achieved with advanced, blue indium gallium nitride light emitting diodes (LEDs) lead to their potential as replacements for existing infrastructure in general illumination, with important implications for efficient use of energy. Further advances in this technology will benefit from reexamination of the modes for incorporating this materials technology into lighting modules that manage light conversion, extraction, and distribution, in ways that minimize adverse thermal effects associated with operation, with packages that exploit the unique aspects of these light sources. We present here ideas in anisotropic etching, microscale device assembly/integration, and module configuration that address these challenges in unconventional ways. Various device demonstrations provide examples of the capabilities, including thin, flexible lighting “tapes” based on patterned phosphors and large collections of small light emitters on plastic substrates. Quantitative modeling and experimental evaluation of heat flow in such structures illustrates one particular, important aspect of their operation: small, distributed LEDs can be passively cooled simply by direct thermal transport through thin-film metallization used for electrical interconnect, providing an enhanced and scalable means to integrate these devices in modules for white light generation. PMID:21666096

  18. The unique observing capabilities of the Swift x-ray telescope

    NASA Astrophysics Data System (ADS)

    Hill, J. E.; Angelini, L.; Morris, D. C.; Burrows, D. N.; Abbey, A. F.; Campana, S.; Capalbi, M.; Cusumano, G.; Kennea, J. A.; Klar, R.; Mangels, C.; Moretti, A.; Osborne, J. P.; Perri, M.; Racusin, J.; Tagliaferri, G.; Tamburelli, F.; Wood, P.; Nousek, J. A.; Wells, A.

    2005-08-01

    The XRT is a sensitive, autonomous X-ray imaging spectrometer onboard the Swift Gamma-Ray Burst Observatory. The unique observing capabilities of the XRT allow it to autonomously refine the Swift BAT positions (~1-4' uncertainty) to better than 2.5 arcsec in XRT detector coordinates, within 5 seconds of target acquisition by the Swift Observatory for typical bursts, and to measure the flux, spectrum, and light curve of GRBs and afterglows over a wide dynamic range covering more than seven orders of magnitude in flux (62 Crab to < 1 mCrab). The results of the rapid positioning capability of the XRT are presented here for both known sources and newly discovered GRBs, demonstrating the ability to automatically utilise one of two integration times according to the burst brightness, and to correct the position for alignment offsets caused by the fast pointing performance and variable thermal environment of the satellite as measured by the Telescope Alignment Monitor. The onboard results are compared to the positions obtained by groundbased follow-up. After obtaining the position, the XRT switches between four CCD readout modes, automatically optimising the scientific return from the source depending on the flux of the GRB. Typical data products are presented here.

  19. The unique observing capabilities of the Swift x-ray telescope

    NASA Astrophysics Data System (ADS)

    Hill, J. E.; Angelini, L.; Morris, D. C.; Burrows, D. N.; Abbey, A. F.; Campana, S.; Cusumano, G.; Kennea, J. A.; Klar, R.; Mangels, C.; Moretti, A.; Perri, M.; Racusin, J.; Tagliaferri, G.; Tamburelli, F.; Wood, P.; Nousek, J. A.; Wells, A.

    2005-01-01

    The XRT is a sensitive, autonomous X-ray imaging spectrometer onboard the Swift Gamma-Ray Burst Observatory. The unique observing capabilities of the XRT allow it to autonomously refine the Swift BAT positions (~1-4' uncertainty) to better than 2.5 arcsec in XRT detector coordinates, within 5 seconds of target acquisition by the Swift Observatory for typical bursts, and to measure the flux, spectrum, and light curve of GRBs and afterglows over a wide dynamic range covering more than seven orders of magnitude in flux (62 Crab to < 1 mCrab). The results of the rapid positioning capability of the XRT are presented here for both known sources and newly discovered GRBs, demonstrating the ability to automatically utilise one of two integration times according to the burst brightness, and to correct the position for alignment offsets caused by the fast pointing performance and variable thermal environment of the satellite as measured by the Telescope Alignment Monitor. The onboard results are compared to the positions obtained by groundbased follow-up. After obtaining the position, the XRT switches between four CCD readout modes, automatically optimising the scientific return from the source depending on the flux of the GRB. Typical data products are presented here.

  20. Stable Isotope Measurements of Carbon Dioxide, Methane, and Hydrogen Sulfide Gas Using Frequency Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowak-Lovato, K.

    2014-12-01

    Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.

  1. The classification of flaring states of blazars

    NASA Astrophysics Data System (ADS)

    Resconi, E.; Franco, D.; Gross, A.; Costamante, L.; Flaccomio, E.

    2009-08-01

    Aims: The time evolution of the electromagnetic emission from blazars, in particular high-frequency peaked sources (HBLs), displays irregular activity that has not yet been understood. In this work we report a methodology capable of characterizing the time behavior of these variable objects. Methods: The maximum likelihood blocks (MLBs) is a model-independent estimator that subdivides the light curve into time blocks, whose length and amplitude are compatible with states of constant emission rate of the observed source. The MLBs yield the statistical significance in the rate variations and strongly suppresses the noise fluctuations in the light curves. We applied the MLBs for the first time on the long term X-ray light curves (RXTE/ASM) of Mkn 421, Mkn 501, 1ES 1959+650, and 1ES 2155-304, more than 10 years of observational data (1996-2007). Using the MLBs interpretation of RXTE/ASM data, the integrated time flux distribution is determined for each single source considered. We identify in these distributions the characteristic level, as well as the flaring states of the blazars. Results: All the distributions show a significant component at negative flux values, most probably caused by an uncertainty in the background subtraction and by intrinsic fluctuations of RXTE/ASM. This effect concerns in particular short time observations. To quantify the probability that the intrinsic fluctuations give rise to a false identification of a flare, we study a population of very faint sources and their integrated time-flux distribution. We determine duty cycle or fraction of time a source spent in the flaring state of the source Mkn 421, Mkn 501, 1ES 1959+650 and 1ES 2155-304. Moreover, we study the random coincidences between flares and generic sporadic events such as high-energy neutrinos or flares in other wavelengths.

  2. Quantum Optics in Astrophysics: The Potential of a New Window

    NASA Astrophysics Data System (ADS)

    Solomos, Nikolaos H.

    2006-08-01

    The entire optical astronomy relies upon the detection of light. In this contribution, we put emphasis to the fact that a new window to the universe could be opened with the obvious idea of applying the ...Quantum Theory to describe incoming light Quanta (!). It is clearly the appropriate approach but, nevertheless, it never deemed necessary in main stream astrophysics: Customarily, traditional astronomy not only prefers time-averaged quantities, (although fluctuations in time of a measurement can be a source of information which is getting entirely lost in any time-averaged value) but misses much more information content by continuing to use old semi-classical approaches to treat photon detection processes. Thus, we fail to describe and appreciate in full very important properties of cosmic light, like spatiotemporal coherence. Nevertheless, 45 years of knowledge accumulation in Quantum Optics and technology can now result to the development of instruments capable to extract intimate quantum information scrambled in the incoming optical light fields from celestial sources, provided their ability to detect light emission alterations in the

  3. Tritium containing polymers having a polymer backbone substantially void of tritium

    DOEpatents

    Jensen, G.A.; Nelson, D.A.; Molton, P.M.

    1992-03-31

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.

  4. Tritium containing polymers having a polymer backbone substantially void of tritium

    DOEpatents

    Jensen, George A.; Nelson, David A.; Molton, Peter M.

    1992-01-01

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium.

  5. A multi-parameter optical fiber sensor with interrogation and discrimination capabilities

    NASA Astrophysics Data System (ADS)

    Zhan, Yage; Wu, Hua; Yang, Qinyu; Pei, Jincheng; Yang, Xichun

    2009-11-01

    A multi-parameter and multi-function, but low-cost, optical fiber grating sensor with self-interrogation and self-discrimination capabilities is presented theoretically and experimentally. The sensor bases on three fiber Bragg gratings (FBG) and one fiber long period grating (LPG). Strain, vibration, pressure, ordinary temperature (-10 to 100 °C) and high temperature (100-800 °C) can be measured by the sensor. When high temperature (100-800 °C) is measured, the LPG is used as a high temperture sensor head and FBG 1 is used as an interrogation element. Alternatively, when one of the other four measurands is measured, FBG 1 (or FBG 2) is used as a sensor head and LPG is used as an interrogation element. When two of the other four measurands are measured simultaneously, FBG 1 and FBG 2 are used as sensor heads and LPG is used as a shared interrogation element. FBG 3 is used as a reference element to eliminate the errors resulted from light source fluctuation and the cross-sensitivity between measurand and environmental temperature. The measurands can be interrogated according to the signals of the photodiodes (PDs), which are related to the relative wavelength shift of the LPG and the FBGs. Experimental results agree well with theoretical analyses. The interrogation scheme is immune to light source fluctuation and the cross-sensitivity between measurands and enviromental temperature, and also the dynamic range is large.

  6. High-speed Particle Image Velocimetry Near Surfaces

    PubMed Central

    Lu, Louise; Sick, Volker

    2013-01-01

    Multi-dimensional and transient flows play a key role in many areas of science, engineering, and health sciences but are often not well understood. The complex nature of these flows may be studied using particle image velocimetry (PIV), a laser-based imaging technique for optically accessible flows. Though many forms of PIV exist that extend the technique beyond the original planar two-component velocity measurement capabilities, the basic PIV system consists of a light source (laser), a camera, tracer particles, and analysis algorithms. The imaging and recording parameters, the light source, and the algorithms are adjusted to optimize the recording for the flow of interest and obtain valid velocity data. Common PIV investigations measure two-component velocities in a plane at a few frames per second. However, recent developments in instrumentation have facilitated high-frame rate (> 1 kHz) measurements capable of resolving transient flows with high temporal resolution. Therefore, high-frame rate measurements have enabled investigations on the evolution of the structure and dynamics of highly transient flows. These investigations play a critical role in understanding the fundamental physics of complex flows. A detailed description for performing high-resolution, high-speed planar PIV to study a transient flow near the surface of a flat plate is presented here. Details for adjusting the parameter constraints such as image and recording properties, the laser sheet properties, and processing algorithms to adapt PIV for any flow of interest are included. PMID:23851899

  7. Performance assessment study of the balloon-borne astronomical soft gamma-ray polarimeter PoGOLite

    NASA Astrophysics Data System (ADS)

    Arimoto, M.; Kanai, Y.; Ueno, M.; Kataoka, J.; Kawai, N.; Tanaka, T.; Yamamoto, K.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Axelsson, M.; Kiss, M.; Marini Bettolo, C.; Carlson, P.; Klamra, W.; Pearce, M.; Chen, P.; Craig, B.; Kamae, T.; Madejski, G.; Ng, J. S. T.; Rogers, R.; Tajima, H.; Thurston, T. S.; Saito, Y.; Takahashi, T.; Gunji, S.; Bjornsson, C.-I.; Larsson, S.; Ryde, F.; Bogaert, G.; Varner, G.

    2007-12-01

    Measurements of polarization play a crucial role in the understanding of the dominant emission mechanism of astronomical sources. Polarized Gamma-ray Observer-Light version (PoGOLite) is a balloon-borne astronomical soft gamma-ray polarimeter at the 25 80 keV band. The PoGOLite detector consists of a hexagonal close-packed array of 217 Phoswich detector cells (PDCs) and side anti-coincidence shields (SASs) made of BGO crystals surrounding PDCs. Each PDC consists of a slow hollow scintillator, a fast scintillator and a BGO crystal that connects to a photomultiplier tube at the end. To examine the PoGOLite's capability and estimate the performance, we conducted experiments with the PDC using radioisotope 241Am. In addition, we compared this result with performance expected by Monte Carlo simulation with Geant4. As a result, we found that the actual PDC has the capability to detect a 100 m Crab source until 80 keV.

  8. The search for TeV-scale dark matter with the HAWC observatory

    DOE PAGES

    Harding, J. Patrick

    2015-01-01

    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to 100 GeV - 100 TeV gamma rays and cosmic rays. Located at an elevation of 4100 m on the Sierra Negra mountain in Mexico, HAWC observes extensive air showers from gamma and cosmic rays with an array of water tanks which produce Cherenkov light in the presence of air showers. With a field-of-view capable of observing 2/3 of the sky each day, and a sensitivity of 1 Crab/day, HAWC will be able to map out the sky in gamma and cosmic rays in detail. In thismore » paper, we discuss the capabilities of HAWC to map out the directions and spectra of TeV gamma rays and cosmic rays coming from sources of dark matter annihilation. We discuss the HAWC sensitivity to multiple extended sources of dark matter annihilation and the possibility of HAWC observations of annihilations in nearby dark matter subhalos.« less

  9. A pH sensing system using fluorescence-based fibre optical sensor capable of small volume sample measurement

    NASA Astrophysics Data System (ADS)

    Deng, Shijie; McAuliffe, Michael A. P.; Salaj-Kosla, Urszula; Wolfe, Raymond; Lewis, Liam; Huyet, Guillaume

    2017-02-01

    In this work, a low cost optical pH sensing system that allows for small volume sample measurements was developed. The system operates without the requirement of laboratory instruments (e.g. laser source, spectrometer and CCD camera), this lowers the cost and enhances the portability. In the system, an optical arrangement employing a dichroic filter was used which allows the excitation and emission light to be transmitted using a single fibre thus improving the collection efficiency of the fluorescence signal and also the ability of inserting measurement. The pH sensor in the system uses bromocresol purple as the indicator which is immobilised by sol-gel technology through a dip-coating process. The sensor material was coated on the tip of a 1 mm diameter optical fibre which makes it possible for inserting into very small volume samples to measure the pH. In the system, a LED with a peak emission wavelength of 465 nm is used as the light source and a silicon photo-detector is used to detect the uorescence signal. Optical filters are applied after the LED and in front of the photo-detector to separate the excitation and emission light. The fluorescence signal collected is transferred to a PC through a DAQ and processed by a Labview-based graphic-user-interface (GUI). Experimental results show that the system is capable of sensing pH values from 5.3 to 8.7 with a linear response of R2=0.969. Results also show that the response times for a pH changes from 5.3 to 8.7 is approximately 150 s and for a 0.5 pH changes is approximately 50 s.

  10. Type II Radio Bursts Observed by STEREO/Waves and Wind/Waves instruments

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Magdalenic, J.; Zhukov, A.; Rodriguez, L.; Mierla, M.; Maksimovic, M.; Cecconi, B.; Santolik, O.

    2013-12-01

    Type II radio bursts are slow-drift emissions triggered by suprathermal electrons accelerated on shock fronts of propagating CMEs. We present several events at kilometric wavelengths observed by radio instruments onboard the STEREO and Wind spacecraft. The STEREO/Waves and Wind/Waves have goniopolarimetric (GP, also referred to as direction finding) capabilities that allow us to triangulate radio sources when an emission is observed by two or more spacecraft. As the GP inversion has high requirements on the signal-to-noise ratio we only have a few type II radio bursts with sufficient intensity for this analysis. We have compared obtained radio sources with white-light observations of STEREO/COR and STEREO/HI instruments. Our preliminary results indicate that radio sources are located at flanks of propagating CMEs.

  11. A stand-alone compact EUV microscope based on gas-puff target source.

    PubMed

    Torrisi, Alfio; Wachulak, Przemyslaw; Węgrzyński, Łukasz; Fok, Tomasz; Bartnik, Andrzej; Parkman, Tomáš; Vondrová, Šárka; Turňová, Jana; Jankiewicz, Bartłomiej J; Bartosewicz, Bartosz; Fiedorowicz, Henryk

    2017-02-01

    We report on a very compact desk-top transmission extreme ultraviolet (EUV) microscope based on a laser-plasma source with a double stream gas-puff target, capable of acquiring magnified images of objects with a spatial (half-pitch) resolution of sub-50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi-monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  12. Vision in the dimmest habitats on earth.

    PubMed

    Warrant, Eric

    2004-10-01

    A very large proportion of the world's animal species are active in dim light, either under the cover of night or in the depths of the sea. The worlds they see can be dim and extended, with light reaching the eyes from all directions at once, or they can be composed of bright point sources, like the multitudes of stars seen in a clear night sky or the rare sparks of bioluminescence that are visible in the deep sea. The eye designs of nocturnal and deep-sea animals have evolved in response to these two very different types of habitats, being optimised for maximum sensitivity to extended scenes, or to point sources, or to both. After describing the many visual adaptations that have evolved across the animal kingdom for maximising sensitivity to extended and point-source scenes, I then use case studies from the recent literature to show how these adaptations have endowed nocturnal animals with excellent vision. Nocturnal animals can see colour and negotiate dimly illuminated obstacles during flight. They can also navigate using learned terrestrial landmarks, the constellations of stars or the dim pattern of polarised light formed around the moon. The conclusion from these studies is clear: nocturnal habitats are just as rich in visual details as diurnal habitats are, and nocturnal animals have evolved visual systems capable of exploiting them. The same is certainly true of deep-sea animals, as future research will no doubt reveal.

  13. Combined optical resolution photoacoustic and fluorescence micro-endoscopy

    NASA Astrophysics Data System (ADS)

    Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J.

    2012-02-01

    We present a new micro-endoscopy system combining real-time C-scan optical-resolution photoacoustic micro-endoscopy (OR-PAME), and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the OR-PAM sub-system is capable of imaging with a resolution of ~ 7μm. The fluorescence sub-system consists of a diode laser with 445 nm-centered emissions as the light source, an objective lens and a CCD camera. Proflavine, a FDA approved drug for human use, is used as the fluorescent contrast agent by topical application. The fluorescence system does not require any mechanical scanning. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single mode fibers. The absorption of Proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural and functional information given by OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping researchers and clinicians visualize angiogenesis, effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.

  14. Hyperspectral Imagers for the Study of Massive Star Nebulae

    NASA Astrophysics Data System (ADS)

    Drissen, L.; Alarie, A.; Martin, T.; Spiomm/Sitelle Team

    2012-12-01

    We present two wide-field imaging Fourier transform spectrometers built by our team to study the interstellar medium around massive stars in the Milky Way and nearby galaxies. SpIOMM, attached to the Mont Mégantic 1.6-m telescope, is capable of obtaining the visible spectrum of every source of light in a 12 arcminute field of view, with a spectral resolution ranging from R = 1 (wide-band image) to R = 25 000, resulting in about a million spectra with a spatial resolution of one arcsecond. SITELLE will be a similar instrument attached to the Canada-France-Hawaii telescope, and will be in operation in early 2013. We illustrate SpIOMM's capabilities to study the interactions between massive stars and their environment.

  15. Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation

    NASA Astrophysics Data System (ADS)

    Essameldin, Mahmoud; Fleischmann, Friedrich; Henning, Thomas; Lang, Walter

    2017-02-01

    Freeform optical systems are playing an important role in the field of illumination engineering for redistributing the light intensity, because of its capability of achieving accurate and efficient results. The authors have presented the basic idea of the freeform lens design method at the 117th annual meeting of the German Society of Applied Optics (DGAOProceedings). Now, we demonstrate the feasibility of the design method by designing and evaluating a freeform lens. The concepts of luminous intensity mapping, energy conservation and differential equation are combined in designing a lens for non-imaging applications. The required procedures to design a lens including the simulations are explained in detail. The optical performance is investigated by using a numerical simulation of optical ray tracing. For evaluation, the results are compared with another recently published design method, showing the accurate performance of the proposed method using a reduced number of mapping angles. As a part of the tolerance analyses of the fabrication processes, the influence of the light source misalignments (translation and orientation) on the beam-shaping performance is presented. Finally, the importance of considering the extended light source while designing a freeform lens using the proposed method is discussed.

  16. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This image is an observation of Quasar 3C 273 by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. It reveals the presence of a new source (upper left) with a red shift that indicates that it is about 10 billion light years away. Quasars are mysterious, bright, star-like objects apparently located at the very edge of the visible universe. Although no bigger than our solar system, they radiate as much visible light as a thousand galaxies. Quasars also emit radio signals and were previously recognized as x-ray sources. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2 was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center.

  17. Review of Canadian Light Source facilities for biological applications

    NASA Astrophysics Data System (ADS)

    Grochulski, Pawel; Fodje, Michel; Labiuk, Shaun; Wysokinski, Tomasz W.; Belev, George; Korbas, Malgorzata; Rosendahl, Scott M.

    2017-11-01

    The newly-created Biological and Life Sciences Department at the Canadian Light Source (CLS) encompasses four sets of beamlines devoted to biological studies ranging in scope from the atomic scale to cells, tissues and whole organisms. The Canadian Macromolecular Crystallography Facility (CMCF) consists of two beamlines devoted primarily to crystallographic studies of proteins and other macromolecules. The Mid-Infrared Spectromicroscopy (Mid-IR) beamline focusses on using infrared energy to obtain biochemical, structural and dynamical information about biological systems. The Bio-Medical Imaging and Therapy (BMIT) facility consists of two beamlines devoted to advanced imaging and X-ray therapy techniques. The Biological X-ray Absorption Spectroscopy (BioXAS) facility is being commissioned and houses three beamlines devoted to X-ray absorption spectroscopy and multi-mode X-ray fluorescence imaging. Together, these beamlines provide CLS Users with a powerful array of techniques to study today's most pressing biological questions. We describe these beamlines along with their current powerful features and envisioned future capabilities.

  18. Shadow Detection Based on Regions of Light Sources for Object Extraction in Nighttime Video

    PubMed Central

    Lee, Gil-beom; Lee, Myeong-jin; Lee, Woo-Kyung; Park, Joo-heon; Kim, Tae-Hwan

    2017-01-01

    Intelligent video surveillance systems detect pre-configured surveillance events through background modeling, foreground and object extraction, object tracking, and event detection. Shadow regions inside video frames sometimes appear as foreground objects, interfere with ensuing processes, and finally degrade the event detection performance of the systems. Conventional studies have mostly used intensity, color, texture, and geometric information to perform shadow detection in daytime video, but these methods lack the capability of removing shadows in nighttime video. In this paper, a novel shadow detection algorithm for nighttime video is proposed; this algorithm partitions each foreground object based on the object’s vertical histogram and screens out shadow objects by validating their orientations heading toward regions of light sources. From the experimental results, it can be seen that the proposed algorithm shows more than 93.8% shadow removal and 89.9% object extraction rates for nighttime video sequences, and the algorithm outperforms conventional shadow removal algorithms designed for daytime videos. PMID:28327515

  19. Covariance mapping of two-photon double core hole states in C 2 H 2 and C 2 H 6 produced by an x-ray free electron laser

    DOE PAGES

    Mucke, M; Zhaunerchyk, V; Frasinski, L J; ...

    2015-07-01

    Few-photon ionization and relaxation processes in acetylene (C 2H 2) and ethane (C 2H 6) were investigated at the linac coherent light source x-ray free electron laser (FEL) at SLAC, Stanford using a highly efficient multi-particle correlation spectroscopy technique based on a magnetic bottle. The analysis method of covariance mapping has been applied and enhanced, allowing us to identify electron pairs associated with double core hole (DCH) production and competing multiple ionization processes including Auger decay sequences. The experimental technique and the analysis procedure are discussed in the light of earlier investigations of DCH studies carried out at the samemore » FEL and at third generation synchrotron radiation sources. In particular, we demonstrate the capability of the covariance mapping technique to disentangle the formation of molecular DCH states which is barely feasible with conventional electron spectroscopy methods.« less

  20. Manipulating photoinduced voltage in metasurface with circularly polarized light.

    PubMed

    Bai, Qiang

    2015-02-23

    Recently, the concept of metasurface has provided one an unprecedented opportunity and ability to control the light in the deep subwavelength scale. However, so far most efforts are devoted to exploiting the novel scattering properties and applications of metasurface in optics. Here, I theoretically and numerically demonstrate that longitudinal and transverse photoinduced voltages can be simultaneously realized in the proposed metasurface utilizing the magnetic resonance under the normal incidence of circularly polarized light, which may extend the concept and functionality of metasurface into the electronics and may provide a potential scheme to realize a nanoscale tunable voltage source through a nanophotonic roadmap. The signs of longitudinal and transverse photoin-duced voltages can be manipulated by tuning the resonant frequency and the handedness of circularly polarized light, respectively. Analytical formulae of photoinduced voltage are presented based on the theory of symmetry of field. This work may bridge nanophotonics and electronics, expands the capability of metasurface and has many potential applications.

  1. Integration of OLEDs in biomedical sensor systems: design and feasibility analysis

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.

    2010-04-01

    Organic (electronic) Light Emitting Diodes (OLEDs) have been shown to have applications in the field of lighting and flexible display. These devices can also be incorporated in sensors as light source for imaging/fluorescence sensing for miniaturized systems for biomedical applications and low-cost displays for sensor output. The current device capability aligns well with the aforementioned applications as low power diffuse lighting and momentary/push button dynamic display. A top emission OLED design has been proposed that can be incorporated with the sensor and peripheral electrical circuitry, also based on organic electronics. Feasibility analysis is carried out for an integrated optical imaging/sensor system, based on luminosity and spectrum band width. A similar study is also carried out for sensor output display system that functions as a pseudo active OLED matrix. A power model is presented for device power requirements and constraints. The feasibility analysis is also supplemented with the discussion about implementation of ink-jet printing and stamping techniques for possibility of roll to roll manufacturing.

  2. Applications of Fiber Optics in Experimental Mechanics

    DTIC Science & Technology

    1987-01-01

    or-plane component of vibration. This fiber optic "Ham,7 Cuomo’ and Hoogenboom et al.9 In all array system was claimcd to be capable or a frequency...mechanical action and CTeeCtiVrly reduce the I3alexavllent p esropationg aong the inthecont f fiber. ( y prvids a microbending induced by the deformer. On a...transmit light as a source of poIer sufficient to directly activate mechanical phenomena. R41 tIdd F . and rurek, P. A.. "’Single Nildl Iithr-O)pti

  3. SIKA—the multiplexing cold-neutron triple-axis spectrometer at ANSTO

    NASA Astrophysics Data System (ADS)

    Wu, C.-M.; Deng, G.; Gardner, J. S.; Vorderwisch, P.; Li, W.-H.; Yano, S.; Peng, J.-C.; Imamovic, E.

    2016-10-01

    SIKA is a new cold-neutron triple-axis spectrometer receiving neutrons from the cold source CG4 of the 20MW Open Pool Australian Light-water reactor. As a state-of-the-art triple-axis spectrometer, SIKA is equipped with a large double-focusing pyrolytic graphite monochromator, a multiblade pyrolytic graphite analyser and a multi-detector system. In this paper, we present the design, functions, and capabilities of SIKA, and discuss commissioning experimental results from powder and single-crystal samples to demonstrate its performance.

  4. Bipolar lead acid battery development

    NASA Technical Reports Server (NTRS)

    Eskra, Michael; Vidas, Robin; Miles, Ronald; Halpert, Gerald; Attia, Alan; Perrone, David

    1991-01-01

    A modular bipolar battery configuration is under development at Johnson Control, Inc. (JCI) and the Jet Propulsion Laboratory (JPL). The battery design, incorporating proven lead acid electrochemistry, yields a rechargeable, high-power source that is light weight and compact. This configuration offers advantages in power capability, weight, and volume over conventional monopolar batteries and other battery chemistries. The lead acid bipolar battery operates in a sealed, maintenance-free mode allowing for maximum application flexibility. It is ideal for high-voltage and high-power applications.

  5. OOM - OBJECT ORIENTATION MANIPULATOR, VERSION 6.1

    NASA Technical Reports Server (NTRS)

    Goza, S. P.

    1994-01-01

    The Object Orientation Manipulator (OOM) is an application program for creating, rendering, and recording three-dimensional computer-generated still and animated images. This is done using geometrically defined 3D models, cameras, and light sources, referred to collectively as animation elements. OOM does not provide the tools necessary to construct 3D models; instead, it imports binary format model files generated by the Solid Surface Modeler (SSM). Model files stored in other formats must be converted to the SSM binary format before they can be used in OOM. SSM is available as MSC-21914 or as part of the SSM/OOM bundle, COS-10047. Among OOM's features are collision detection (with visual and audio feedback), the capability to define and manipulate hierarchical relationships between animation elements, stereographic display, and ray-traced rendering. OOM uses Euler angle transformations for calculating the results of translation and rotation operations. OOM provides an interactive environment for the manipulation and animation of models, cameras, and light sources. Models are the basic entity upon which OOM operates and are therefore considered the primary animation elements. Cameras and light sources are considered secondary animation elements. A camera, in OOM, is simply a location within the three-space environment from which the contents of the environment are observed. OOM supports the creation and full animation of cameras. Light sources can be defined, positioned and linked to models, but they cannot be animated independently. OOM can simultaneously accommodate as many animation elements as the host computer's memory permits. Once the required animation elements are present, the user may position them, orient them, and define any initial relationships between them. Once the initial relationships are defined, the user can display individual still views for rendering and output, or define motion for the animation elements by using the Interp Animation Editor. The program provides the capability to save still images, animated sequences of frames, and the information that describes the initialization process for an OOM session. OOM provides the same rendering and output options for both still and animated images. OOM is equipped with a robust model manipulation environment featuring a full screen viewing window, a menu-oriented user interface, and an interpolative Animation Editor. It provides three display modes: solid, wire frame, and simple, that allow the user to trade off visual authenticity for update speed. In the solid mode, each model is drawn based on the shading characteristics assigned to it when it was built. All of the shading characteristics supported by SSM are recognized and properly rendered in this mode. If increasing model complexity impedes the operation of OOM in this mode, then wireframe and simple modes are available. These provide substantially faster screen updates than solid mode. The creation and placement of cameras and light sources is under complete control of the user. One light source is provided in the default element set. It is modeled as a direct light source providing a type of lighting analogous to that provided by the Sun. OOM can accommodate as many light sources as the memory of the host computer permits. Animation is created in OOM using a technique called key frame interpolation. First, various program functions are used to load models, load or create light sources and cameras, and specify initial positions for each element. When these steps are completed, the Interp function is used to create an animation sequence for each element to be animated. An animation sequence consists of a user-defined number of frames (screen images) with some subset of those being defined as key frames. The motion of the element between key frames is interpolated automatically by the software. Key frames thus act as transition points in the motion of an element. This saves the user from having to individually define element data at each frame of a sequence. Animation frames and still images can be output to videotape recorders, film recorders, color printers, and disk files. OOM is written in C-language for implementation on SGI IRIS 4D series workstations running the IRIX operating system. A minimum of 8Mb of RAM is recommended for this program. The standard distribution medium for OOM is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. OOM is also offered as a bundle with a related program, SSM (Solid Surface Modeler). Please see the abstract for SSM/OOM (COS-10047) for information about the bundled package. OOM was released in 1993.

  6. Hyperspectral Fluorescence and Reflectance Imaging Instrument

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; O'Neal, S. Duane; Lanoue, Mark; Russell, Jeffrey

    2008-01-01

    The system is a single hyperspectral imaging instrument that has the unique capability to acquire both fluorescence and reflectance high-spatial-resolution data that is inherently spatially and spectrally registered. Potential uses of this instrument include plant stress monitoring, counterfeit document detection, biomedical imaging, forensic imaging, and general materials identification. Until now, reflectance and fluorescence spectral imaging have been performed by separate instruments. Neither a reflectance spectral image nor a fluorescence spectral image alone yields as much information about a target surface as does a combination of the two modalities. Before this system was developed, to benefit from this combination, analysts needed to perform time-consuming post-processing efforts to co-register the reflective and fluorescence information. With this instrument, the inherent spatial and spectral registration of the reflectance and fluorescence images minimizes the need for this post-processing step. The main challenge for this technology is to detect the fluorescence signal in the presence of a much stronger reflectance signal. To meet this challenge, the instrument modulates artificial light sources from ultraviolet through the visible to the near-infrared part of the spectrum; in this way, both the reflective and fluorescence signals can be measured through differencing processes to optimize fluorescence and reflectance spectra as needed. The main functional components of the instrument are a hyperspectral imager, an illumination system, and an image-plane scanner. The hyperspectral imager is a one-dimensional (line) imaging spectrometer that includes a spectrally dispersive element and a two-dimensional focal plane detector array. The spectral range of the current imaging spectrometer is between 400 to 1,000 nm, and the wavelength resolution is approximately 3 nm. The illumination system consists of narrowband blue, ultraviolet, and other discrete wavelength light-emitting-diode (LED) sources and white-light LED sources designed to produce consistently spatially stable light. White LEDs provide illumination for the measurement of reflectance spectra, while narrowband blue and UV LEDs are used to excite fluorescence. Each spectral type of LED can be turned on or off depending on the specific remote-sensing process being performed. Uniformity of illumination is achieved by using an array of LEDs and/or an integrating sphere or other diffusing surface. The image plane scanner uses a fore optic with a field of view large enough to provide an entire scan line on the image plane. It builds up a two-dimensional image in pushbroom fashion as the target is scanned across the image plane either by moving the object or moving the fore optic. For fluorescence detection, spectral filtering of a narrowband light illumination source is sometimes necessary to minimize the interference of the source spectrum wings with the fluorescence signal. Spectral filtering is achieved with optical interference filters and absorption glasses. This dual spectral imaging capability will enable the optimization of reflective, fluorescence, and fused datasets as well as a cost-effective design for multispectral imaging solutions. This system has been used in plant stress detection studies and in currency analysis.

  7. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOEpatents

    Benjamin, R.F.

    1983-10-18

    An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

  8. Investigation of the polarization state of dual APPLE-II undulators.

    PubMed

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S; Sawhney, Kawal

    2016-01-01

    The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  9. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOEpatents

    Benjamin, Robert F.

    1987-01-01

    An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

  10. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOEpatents

    Benjamin, R.F.

    1987-03-10

    An apparatus is disclosed for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously. 3 figs.

  11. Use of the CEBAF Accelerator for IR and UV Free Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunn, Byung; Sinclair, Charles; Leemann, Christoph

    1992-08-01

    The CEBAF superconducting linac is capable of accelerating electron beams suitable for driving high-power free-electron lasers. The 45 MeV injector linac with a 6 cm period wiggler can produce kilowatt output powers of infrared light (3.6-17 micrometer), while the 400 MeV north linac can produce ultraviolet light (~200 nm) at similar powers. The FELs require the addition of a high-peak intensity electron source (~ 60 A peak current) and extraction beam lines to wigglers with appropriate electron and photon optics. FEL operation is compatible with simultaneous baseline CEBAF nuclear physics operation. A design for a CEBAF-based FEL facility has beenmore » developed. The current status of the FEL project is reported.« less

  12. Assessment of a portable handheld UV light device for the disinfection of viruses and bacteria in water.

    PubMed

    Abd-Elmaksoud, Sherif; Naranjo, Jaime E; Gerba, Charles P

    2013-06-01

    Effective individual microbiological water purifiers are needed for consumption of untreated water sources by campers, emergency use, military, and in developing counties. A handheld UV light device was tested to assess if it could meet the virus reduction requirements established by the United State Environmental Protection Agency, National Science Foundation and the World Health Organization. The device was found capable of inactivating at least 4 log₁₀ of poliovirus type 1, rotavirus SA-11 and MS-2 virus in 500 mL volumes of general case test water. But in the presence of high turbidity and organic matter, filtration was necessary to achieve a 4 log₁₀ reduction of the test viruses.

  13. Multi-dimensional position sensor using range detectors

    DOEpatents

    Vann, Charles S.

    2000-01-01

    A small, non-contact optical sensor uses ranges and images to detect its relative position to an object in up to six degrees of freedom. The sensor has three light emitting range detectors which illuminate a target and can be used to determine distance and two tilt angles. A camera located between the three range detectors senses the three remaining degrees of freedom, two translations and one rotation. Various range detectors, with different light sources, e.g. lasers and LEDs, different collection options, and different detection schemes, e.g. diminishing return and time of flight can be used. This sensor increases the capability and flexibility of computer controlled machines, e.g. it can instruct a robot how to adjust automatically to different positions and orientations of a part.

  14. KSC-2012-4238

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – Inside the Space Life Sciences Laboratory, or SLSL, at NASA’s Kennedy Space Center in Florida, radish plants are being harvested in a plant growth chamber. The plants were grown under red and blue LED lights. The plant experiment at Kennedy is part of the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. This plant experiment studies the effects of different types of lighting on plants such as radishes and leaf lettuce. Results of these studies will help provide information on how to grow food sources for deep space exploration missions. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. Photo credit: NASA/Frank Ochoa-Gonzales

  15. KSC-2012-4241

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – Inside the Space Life Sciences Laboratory, or SLSL, at NASA’s Kennedy Space Center in Florida, radish plants were harvested from a plant growth chamber. The plants were grown under red and blue LED lights. The plant experiment at Kennedy is part of the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. This plant experiment studies the effects of different types of lighting on plants such as radishes and leaf lettuce. Results of these studies will help provide information on how to grow food sources for deep space exploration missions. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. Photo credit: NASA/Frank Ochoa-Gonzales

  16. Biomolecular Analysis Capability for Cellular and Omics Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.

    2016-01-01

    International Space Station (ISS) assembly complete ushered a new era focused on utilization of this state-of-the-art orbiting laboratory to advance science and technology research in a wide array of disciplines, with benefits to Earth and space exploration. ISS enabling capability for research in cellular and molecular biology includes equipment for in situ, on-orbit analysis of biomolecules. Applications of this growing capability range from biomedicine and biotechnology to the emerging field of Omics. For example, Biomolecule Sequencer is a space-based miniature DNA sequencer that provides nucleotide sequence data for entire samples, which may be used for purposes such as microorganism identification and astrobiology. It complements the use of WetLab-2 SmartCycler"TradeMark", which extracts RNA and provides real-time quantitative gene expression data analysis from biospecimens sampled or cultured onboard the ISS, for downlink to ground investigators, with applications ranging from clinical tissue evaluation to multigenerational assessment of organismal alterations. And the Genes in Space-1 investigation, aimed at examining epigenetic changes, employs polymerase chain reaction to detect immune system alterations. In addition, an increasing assortment of tools to visualize the subcellular distribution of tagged macromolecules is becoming available onboard the ISS. For instance, the NASA LMM (Light Microscopy Module) is a flexible light microscopy imaging facility that enables imaging of physical and biological microscopic phenomena in microgravity. Another light microscopy system modified for use in space to image life sciences payloads is initially used by the Heart Cells investigation ("Effects of Microgravity on Stem Cell-Derived Cardiomyocytes for Human Cardiovascular Disease Modeling and Drug Discovery"). Also, the JAXA Microscope system can perform remotely controllable light, phase-contrast, and fluorescent observations. And upcoming confocal microscopy capability will allow for optical sectioning of biological tissues to determine microanatomical localization of biomarkers. Furthermore, NASA's geneLAB effort addresses integration of genomic, epigenomic, transcriptomic, proteomic and metabolomic datasets, by applying an innovative open source science platform for multi-investigator high throughput utilization of the ISS. In sum, the expanding ISS capability for analysis of biomolecules is enabling innovative research in a broad spectrum of areas such as cellular and molecular biology, biotechnology, tissue engineering, biomedicine, and Omics, providing manifold benefits for humanity.

  17. Effects of artificial lighting on the detection of plant stress with spectral reflectance remote sensing in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew C.; Richards, Jeffrey T.

    2006-09-01

    Plant-based life support systems that utilize bioregenerative technologies have been proposed for long-term human missions to both the Moon and Mars. Bioregenerative life support systems will utilize higher plants to regenerate oxygen, water, and edible biomass for crews, and are likely to significantly lower the ‘equivalent system mass’ of crewed vehicles. As part of an ongoing effort to begin the development of an automatic remote sensing system to monitor plant health in bioregenerative life support modules, we tested the efficacy of seven artificial illumination sources on the remote detection of plant stresses. A cohort of pepper plants (Capsicum annuum L.) were grown 42 days at 25 °C, 70% relative humidity, and 300 μmol m-2 s-1 of photosynthetically active radiation (PAR; from 400 to 700 nm). Plants were grown under nutritional stresses induced by irrigating subsets of the plants with 100, 50, 25, or 10% of a standard nutrient solution. Reflectance spectra of the healthy and stressed plants were collected under seven artificial lamps including two tungsten halogen lamps, plus high pressure sodium, metal halide, fluorescent, microwave, and red/blue light emitting diode (LED) sources. Results indicated that several common algorithms used to estimate biomass and leaf chlorophyll content were effective in predicting plant stress under all seven illumination sources. However, the two types of tungsten halogen lamps and the microwave illumination source yielded linear models with the highest residuals and thus the highest predictive capabilities of all lamps tested. The illumination sources with the least predictive capabilities were the red/blue LEDs and fluorescent lamps. Although the red/blue LEDs yielded the lowest residuals for linear models derived from the remote sensing data, the LED arrays used in these experiments were optimized for plant productivity and not the collection of remote sensing data. Thus, we propose that if adjusted to optimize the collectio n of remote sensing information from plants, LEDs remain the best candidates for illumination sources for monitoring plant stresses in bioregenerative life support systems.

  18. Honeybee navigation: critically examining the role of the polarization compass

    PubMed Central

    Evangelista, C.; Kraft, P.; Dacke, M.; Labhart, T.; Srinivasan, M. V.

    2014-01-01

    Although it is widely accepted that honeybees use the polarized-light pattern of the sky as a compass for navigation, there is little direct evidence that this information is actually sensed during flight. Here, we ask whether flying bees can obtain compass cues derived purely from polarized light, and communicate this information to their nest-mates through the ‘waggle dance’. Bees, from an observation hive with vertically oriented honeycombs, were trained to fly to a food source at the end of a tunnel, which provided overhead illumination that was polarized either parallel to the axis of the tunnel, or perpendicular to it. When the illumination was transversely polarized, bees danced in a predominantly vertical direction with waggles occurring equally frequently in the upward or the downward direction. They were thus using the polarized-light information to signal the two possible directions in which they could have flown in natural outdoor flight: either directly towards the sun, or directly away from it. When the illumination was axially polarized, the bees danced in a predominantly horizontal direction with waggles directed either to the left or the right, indicating that they could have flown in an azimuthal direction that was 90° to the right or to the left of the sun, respectively. When the first half of the tunnel provided axial illumination and the second half transverse illumination, bees danced along all of the four principal diagonal directions, which represent four equally likely locations of the food source based on the polarized-light information that they had acquired during their journey. We conclude that flying bees are capable of obtaining and signalling compass information that is derived purely from polarized light. Furthermore, they deal with the directional ambiguity that is inherent in polarized light by signalling all of the possible locations of the food source in their dances, thus maximizing the chances of recruitment to it. PMID:24395964

  19. Honeybee navigation: critically examining the role of the polarization compass.

    PubMed

    Evangelista, C; Kraft, P; Dacke, M; Labhart, T; Srinivasan, M V

    2014-01-01

    Although it is widely accepted that honeybees use the polarized-light pattern of the sky as a compass for navigation, there is little direct evidence that this information is actually sensed during flight. Here, we ask whether flying bees can obtain compass cues derived purely from polarized light, and communicate this information to their nest-mates through the 'waggle dance'. Bees, from an observation hive with vertically oriented honeycombs, were trained to fly to a food source at the end of a tunnel, which provided overhead illumination that was polarized either parallel to the axis of the tunnel, or perpendicular to it. When the illumination was transversely polarized, bees danced in a predominantly vertical direction with waggles occurring equally frequently in the upward or the downward direction. They were thus using the polarized-light information to signal the two possible directions in which they could have flown in natural outdoor flight: either directly towards the sun, or directly away from it. When the illumination was axially polarized, the bees danced in a predominantly horizontal direction with waggles directed either to the left or the right, indicating that they could have flown in an azimuthal direction that was 90° to the right or to the left of the sun, respectively. When the first half of the tunnel provided axial illumination and the second half transverse illumination, bees danced along all of the four principal diagonal directions, which represent four equally likely locations of the food source based on the polarized-light information that they had acquired during their journey. We conclude that flying bees are capable of obtaining and signalling compass information that is derived purely from polarized light. Furthermore, they deal with the directional ambiguity that is inherent in polarized light by signalling all of the possible locations of the food source in their dances, thus maximizing the chances of recruitment to it.

  20. Effective light absorption and its enhancement factor for silicon nanowire-based solar cell.

    PubMed

    Duan, Zhiqiang; Li, Meicheng; Mwenya, Trevor; Fu, Pengfei; Li, Yingfeng; Song, Dandan

    2016-01-01

    Although nanowire (NW) antireflection coating can enhance light trapping capability, which is generally used in crystal silicon (CS) based solar cells, whether it can improve light absorption in the CS body depends on the NW geometrical shape and their geometrical parameters. In order to conveniently compare with the bare silicon, two enhancement factors E(T) and E(A) are defined and introduced to quantitatively evaluate the efficient light trapping capability of NW antireflective layer and the effective light absorption capability of CS body. Five different shapes (cylindrical, truncated conical, convex conical, conical, and concave conical) of silicon NW arrays arranged in a square are studied, and the theoretical results indicate that excellent light trapping does not mean more light can be absorbed in the CS body. The convex conical NW has the best light trapping, but the concave conical NW has the best effective light absorption. Furthermore, if the cross section of silicon NW is changed into a square, both light trapping and effective light absorption are enhanced, and the Eiffel Tower shaped NW arrays have optimal effective light absorption.

  1. Optical design of an in vivo laparoscopic lighting system.

    PubMed

    Liu, Xiaolong; Abdolmalaki, Reza Yazdanpanah; Mancini, Gregory J; Tan, Jindong

    2017-12-01

    This paper proposes an in vivo laparoscopic lighting system design to address the illumination issues, namely poor lighting uniformity and low optical efficiency, existing in the state-of-the-art in vivo laparoscopic cameras. The transformable design of the laparoscopic lighting system is capable of carrying purposefully designed freeform optical lenses for achieving lighting performance with high illuminance uniformity and high optical efficiency in a desired target region. To design freeform optical lenses for extended light sources such as LEDs with Lambertian light intensity distributions, we present an effective and complete freeform optical design method. The procedures include (1) ray map computation by numerically solving a standard Monge-Ampere equation; (2) initial freeform optical surface construction by using Snell's law and a lens volume restriction; (3) correction of surface normal vectors due to accumulated errors from the initially constructed surfaces; and (4) feedback modification of the solution to deal with degraded illuminance uniformity caused by the extended sizes of the LEDs. We employed an optical design software package to evaluate the performance of our laparoscopic lighting system design. The simulation results show that our design achieves greater than 95% illuminance uniformity and greater than 89% optical efficiency (considering Fresnel losses) for illuminating the target surgical region. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. In-liquid Plasma. A stable light source for advanced oxidation processes in environmental remediation

    NASA Astrophysics Data System (ADS)

    Tsuchida, Akihiro; Shimamura, Takeshi; Sawada, Seiya; Sato, Susumu; Serpone, Nick; Horikoshi, Satoshi

    2018-06-01

    A microwave-inspired device that generates stable in-liquid plasma (LP) in aqueous media and emits narrow light emission lines at 280-320 nm, 660 nm and 780 nm is examined as a light source capable of driving photochemical reactions and advanced oxidation processes in wastewater treatments. The microwave-driven lighting efficiency was improved by decompressing the inside of the reaction vessel, which resulted in lowering the incident power of the microwaves and suppressed the deterioration of the microwave irradiation antenna. This protocol made it possible to generate continuous stable plasma in water. Evaluation of the LP device was carried out by revisiting the decomposition of 1,4-dioxane in aqueous media against the use of such other conventional water treatment processes as (i) UV irradiation alone, (ii) TiO2-assisted photocatalysis with UV irradiation (UV/TiO2), (iii) oxidation with sodium hypochlorite (NaClO), and (iv) UV-assisted decomposition in the presence of NaClO (UV/NaClO). The in-liquid plasma technique proved superior to these four other methods. The influence of pH on the LP protocol was ascertained through experiments in acidified (HCl and H2SO4) and alkaline (NaOH and KOH) aqueous media. Except for H2SO4, decomposition of 1,4-dioxane was enhanced in both acidic and alkaline media.

  3. NASA Lighting Research, Test, & Analysis

    NASA Technical Reports Server (NTRS)

    Clark, Toni

    2015-01-01

    The Habitability and Human Factors Branch, at Johnson Space Center, in Houston, TX, provides technical guidance for the development of spaceflight lighting requirements, verification of light system performance, analysis of integrated environmental lighting systems, and research of lighting-related human performance issues. The Habitability & Human Factors Lighting Team maintains two physical facilities that are integrated to provide support. The Lighting Environment Test Facility (LETF) provides a controlled darkroom environment for physical verification of lighting systems with photometric and spetrographic measurement systems. The Graphics Research & Analysis Facility (GRAF) maintains the capability for computer-based analysis of operational lighting environments. The combined capabilities of the Lighting Team at Johnson Space Center have been used for a wide range of lighting-related issues.

  4. OLED lighting devices having multi element light extraction and luminescence conversion layer

    DOEpatents

    Krummacher, Benjamin Claus; Antoniadis, Homer

    2010-11-16

    An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  5. Biomimetic MEMS sensor array for navigation and water detection

    NASA Astrophysics Data System (ADS)

    Futterknecht, Oliver; Macqueen, Mark O.; Karman, Salmah; Diah, S. Zaleha M.; Gebeshuber, Ille C.

    2013-05-01

    The focus of this study is biomimetic concept development for a MEMS sensor array for navigation and water detection. The MEMS sensor array is inspired by abstractions of the respective biological functions: polarized skylight-based navigation sensors in honeybees (Apis mellifera) and the ability of African elephants (Loxodonta africana) to detect water. The focus lies on how to navigate to and how to detect water sources in desert-like or remote areas. The goal is to develop a sensor that can provide both, navigation clues and help in detecting nearby water sources. We basically use the information provided by the natural polarization pattern produced by the sunbeams scattered within the atmosphere combined with the capability of the honeybee's compound eye to extrapolate the navigation information. The detection device uses light beam reactive MEMS, which are capable to detect the skylight polarization based on the Rayleigh sky model. For water detection we present various possible approaches to realize the sensor. In the first approach, polarization is used: moisture saturated areas near ground have a small but distinctively different effect on scattering and polarizing light than less moist ones. Modified skylight polarization sensors (Karman, Diah and Gebeshuber, 2012) are used to visualize this small change in scattering. The second approach is inspired by the ability of elephants to detect infrasound produced by underground water reservoirs, and shall be used to determine the location of underground rivers and visualize their exact routes.

  6. The EIGER detector for low-energy electron microscopy and photoemission electron microscopy.

    PubMed

    Tinti, G; Marchetto, H; Vaz, C A F; Kleibert, A; Andrä, M; Barten, R; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Franz, T; Fröjdh, E; Greiffenberg, D; Lopez-Cuenca, C; Mezza, D; Mozzanica, A; Nolting, F; Ramilli, M; Redford, S; Ruat, M; Ruder, Ch; Schädler, L; Schmidt, Th; Schmitt, B; Schütz, F; Shi, X; Thattil, D; Vetter, S; Zhang, J

    2017-09-01

    EIGER is a single-photon-counting hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland. It is designed for applications at synchrotron light sources with photon energies above 5 keV. Features of EIGER include a small pixel size (75 µm × 75 µm), a high frame rate (up to 23 kHz), a small dead-time between frames (down to 3 µs) and a dynamic range up to 32-bit. In this article, the use of EIGER as a detector for electrons in low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) is reported. It is demonstrated that, with only a minimal modification to the sensitive part of the detector, EIGER is able to detect electrons emitted or reflected by the sample and accelerated to 8-20 keV. The imaging capabilities are shown to be superior to the standard microchannel plate detector for these types of applications. This is due to the much higher signal-to-noise ratio, better homogeneity and improved dynamic range. In addition, the operation of the EIGER detector is not affected by radiation damage from electrons in the present energy range and guarantees more stable performance over time. To benchmark the detector capabilities, LEEM experiments are performed on selected surfaces and the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm are detected using the PEEM endstation at the Surface/Interface Microscopy (SIM) beamline of the Swiss Light Source.

  7. Miniaturization as a key factor to the development and application of advanced metrology systems

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Dobrev, Ivo; Harrington, Ellery; Hefti, Peter; Khaleghi, Morteza

    2012-10-01

    Recent technological advances of miniaturization engineering are enabling the realization of components and systems with unprecedented capabilities. Such capabilities, which are significantly beneficial to scientific and engineering applications, are impacting the development and the application of optical metrology systems for investigations under complex boundary, loading, and operating conditions. In this paper, and overview of metrology systems that we are developing is presented. Systems are being developed and applied to high-speed and high-resolution measurements of shape and deformations under actual operating conditions for such applications as sustainability, health, medical diagnosis, security, and urban infrastructure. Systems take advantage of recent developments in light sources and modulators, detectors, microelectromechanical (MEMS) sensors and actuators, kinematic positioners, rapid prototyping fabrication technologies, as well as software engineering.

  8. Device structure for OLED light device having multi element light extraction and luminescence conversion layer

    DOEpatents

    Antoniadis,; Homer, Krummacher [Mountain View, CA; Claus, Benjamin [Regensburg, DE

    2008-01-22

    An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  9. Performance characteristics of UV imaging instrumentation for diffusion, dissolution and release testing studies.

    PubMed

    Jensen, Sabrine S; Jensen, Henrik; Goodall, David M; Østergaard, Jesper

    2016-11-30

    UV imaging is capable of providing spatially and temporally resolved absorbance measurements, which is highly beneficial in drug diffusion, dissolution and release testing studies. For optimal planning and design of experiments, knowledge about the capabilities and limitations of the imaging system is required. The aim of this study was to characterize the performance of two commercially available UV imaging systems, the D100 and SDI. Lidocaine crystals, lidocaine containing solutions, and gels were applied in the practical assessment of the UV imaging systems. Dissolution of lidocaine from single crystals into phosphate buffer and 0.5% (w/v) agarose hydrogel at pH 7.4 was investigated to shed light on the importance of density gradients under dissolution conditions in the absence of convective flow. In addition, the resolution of the UV imaging systems was assessed by the use of grids. Resolution was found to be better in the vertical direction than the horizontal direction, consistent with the illumination geometry. The collimating lens in the SDI imaging system was shown to provide more uniform light intensity across the UV imaging area and resulted in better resolution as compared to the D100 imaging system (a system without a lens). Under optimal conditions, the resolution was determined to be 12.5 and 16.7 line pairs per mm (lp/mm) corresponding to line widths of 40μm and 30μm in the horizontal and vertical direction, respectively. Overall, the performance of the UV imaging systems was shown mainly to depend on collimation of light, the light path, the positioning of the object relative to the line of 100μm fibres which forms the light source, and the distance of the object from the sensor surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  11. plas.io: Open Source, Browser-based WebGL Point Cloud Visualization

    NASA Astrophysics Data System (ADS)

    Butler, H.; Finnegan, D. C.; Gadomski, P. J.; Verma, U. K.

    2014-12-01

    Point cloud data, in the form of Light Detection and Ranging (LiDAR), RADAR, or semi-global matching (SGM) image processing, are rapidly becoming a foundational data type to quantify and characterize geospatial processes. Visualization of these data, due to overall volume and irregular arrangement, is often difficult. Technological advancement in web browsers, in the form of WebGL and HTML5, have made interactivity and visualization capabilities ubiquitously available which once only existed in desktop software. plas.io is an open source JavaScript application that provides point cloud visualization, exploitation, and compression features in a web-browser platform, reducing the reliance for client-based desktop applications. The wide reach of WebGL and browser-based technologies mean plas.io's capabilities can be delivered to a diverse list of devices -- from phones and tablets to high-end workstations -- with very little custom software development. These properties make plas.io an ideal open platform for researchers and software developers to communicate visualizations of complex and rich point cloud data to devices to which everyone has easy access.

  12. Complex EUV imaging reflectometry: spatially resolved 3D composition determination and dopant profiling with a tabletop 13nm source

    NASA Astrophysics Data System (ADS)

    Porter, Christina L.; Tanksalvala, Michael; Gerrity, Michael; Miley, Galen P.; Esashi, Yuka; Horiguchi, Naoto; Zhang, Xiaoshi; Bevis, Charles S.; Karl, Robert; Johnsen, Peter; Adams, Daniel E.; Kapteyn, Henry C.; Murnane, Margaret M.

    2018-03-01

    With increasingly 3D devices becoming the norm, there is a growing need in the semiconductor industry and in materials science for high spatial resolution, non-destructive metrology techniques capable of determining depth-dependent composition information on devices. We present a solution to this problem using ptychographic coherent diffractive imaging (CDI) implemented using a commercially available, tabletop 13 nm source. We present the design, simulations, and preliminary results from our new complex EUV imaging reflectometer, which uses coherent 13 nm light produced by tabletop high harmonic generation. This tool is capable of determining spatially-resolved composition vs. depth profiles for samples by recording ptychographic images at multiple incidence angles. By harnessing phase measurements, we can locally and nondestructively determine quantities such as device and thin film layer thicknesses, surface roughness, interface quality, and dopant concentration profiles. Using this advanced imaging reflectometer, we can quantitatively characterize materials-sciencerelevant and industry-relevant nanostructures for a wide variety of applications, spanning from defect and overlay metrology to the development and optimization of nano-enhanced thermoelectric or spintronic devices.

  13. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  14. KSC-2012-4242

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – Inside the Space Life Sciences Laboratory, or SLSL, at NASA’s Kennedy Space Center in Florida, red leaf lettuce plants were harvested from a plant growth chamber. The plants were grown under red and blue LED lights. The plant experiment at Kennedy is part of the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. This plant experiment studies the effects of different types of lighting on plants such as radishes and leaf lettuce. Results of these studies will help provide information on how to grow food sources for deep space exploration missions. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. Photo credit: NASA/Frank Ochoa-Gonzales

  15. Driver circuit for solid state light sources

    DOEpatents

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  16. From photons to phonons and back: a THz optical memory in diamond.

    PubMed

    England, D G; Bustard, P J; Nunn, J; Lausten, R; Sussman, B J

    2013-12-13

    Optical quantum memories are vital for the scalability of future quantum technologies, enabling long-distance secure communication and local synchronization of quantum components. We demonstrate a THz-bandwidth memory for light using the optical phonon modes of a room temperature diamond. This large bandwidth makes the memory compatible with down-conversion-type photon sources. We demonstrate that four-wave mixing noise in this system is suppressed by material dispersion. The resulting noise floor is just 7×10(-3) photons per pulse, which establishes that the memory is capable of storing single quanta. We investigate the principle sources of noise in this system and demonstrate that high material dispersion can be used to suppress four-wave mixing noise in Λ-type systems.

  17. Effects of high-color-discrimination capability spectra on color-deficient vision.

    PubMed

    Perales, Esther; Linhares, João Manuel Maciel; Masuda, Osamu; Martínez-Verdú, Francisco M; Nascimento, Sérgio Miguel Cardoso

    2013-09-01

    Light sources with three spectral bands in specific spectral positions are known to have high-color-discrimination capability. W. A. Thornton hypothesized that they may also enhance color discrimination for color-deficient observers. This hypothesis was tested here by comparing the Rösch-MacAdam color volume for color-deficient observers rendered by three of these singular spectra, two reported previously and one derived in this paper by maximization of the Rösch-MacAdam color solid. It was found that all illuminants tested enhance discriminability for deuteranomalous observers, but their impact on other congenital deficiencies was variable. The best illuminant was the one derived here, as it was clearly advantageous for the two red-green anomalies and for tritanopes and almost neutral for red-green dichromats. We conclude that three-band spectra with high-color-discrimination capability for normal observers do not necessarily produce comparable enhancements for color-deficient observers, but suitable spectral optimization clearly enhances the vision of the color deficient.

  18. Photodynamic therapy to destroy pneumonia associated microorganisms using external irradiation source

    NASA Astrophysics Data System (ADS)

    Bassi, Rosane; Myakawa, Walter; Navarro, Ricardo S.; Baptista, Alessandra; Ribeiro, Martha Simões; Nunez, Silvia Cristina

    2018-02-01

    An endotracheal tube (ETT) is required for the management of critically ill, mechanically ventilated patients. Ventilatorassociated pneumonia (VAP) affects patients hospitalized in intensive care units; its risk of occurrence is 1% to up 3% for each day of mechanical ventilation. The polymicrobial nature of VAP is established with mixed bacterial-fungal biofilms colonizing the ETT. The microbial interaction enhances the microbial pathogenesis contributing to high indexes of morbidity/mortality. Antimicrobial Photodynamic Therapy (aPDT) could be a suitable therapy for decontamination of oral cavity and ETT at the same time, but the use of a fiber optics inside the ETT seems to not be appropriated since a cannula for secretion aspiration has to be introduced into the ETT to keep it's lumen. The aim of this study is to proof the concept that an external light source from a LED is capable of reach all areas of the ETT. We use a commercial ETT, 60μM methylene blue (MB), and a 660nm diode laser and calculated the transmission coefficient of light in different situations as only tube, tube with biofilm and biofilm+MB. The results prove that is possible to transmit light through the tube even in the presence of MB and biofilm although a high attenuation of about 60% was measured depending on the tested condition.

  19. Visible-Infrared Hyperspectral Image Projector

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew

    2013-01-01

    The VisIR HIP generates spatially-spectrally complex scenes. The generated scenes simulate real-world targets viewed by various remote sensing instruments. The VisIR HIP consists of two subsystems: a spectral engine and a spatial engine. The spectral engine generates spectrally complex uniform illumination that spans the wavelength range between 380 nm and 1,600 nm. The spatial engine generates two-dimensional gray-scale scenes. When combined, the two engines are capable of producing two-dimensional scenes with a unique spectrum at each pixel. The VisIR HIP can be used to calibrate any spectrally sensitive remote-sensing instrument. Tests were conducted on the Wide-field Imaging Interferometer Testbed at NASA s Goddard Space Flight Center. The device is a variation of the calibrated hyperspectral image projector developed by the National Institute of Standards and Technology in Gaithersburg, MD. It uses Gooch & Housego Visible and Infrared OL490 Agile Light Sources to generate arbitrary spectra. The two light sources are coupled to a digital light processing (DLP(TradeMark)) digital mirror device (DMD) that serves as the spatial engine. Scenes are displayed on the DMD synchronously with desired spectrum. Scene/spectrum combinations are displayed in rapid succession, over time intervals that are short compared to the integration time of the system under test.

  20. A measurement concept for hot-spot BRDFs from space

    NASA Technical Reports Server (NTRS)

    Gerstl, S.A.W.

    1996-01-01

    Several concepts for canopy hot-spot measurements from space have been investigated. The most promising involves active illumination and bistatic detection that would allow hot-spot angular distribution (BRDF) measurements from space in a search-light mode. The concept includes a pointable illumination source, such as a laser operating at an atmospheric window wavelength, coupled with a number of high spatial-resolution detectors that are clustered around the illumination source in space, receiving photons nearly coaxial with the reto-reflection direction. Microwave control and command among the satellite cluster would allow orienting the direction of the laser beam as well as the focusing detectors simultaneously so that the coupled system can function like a search light with almost unlimited pointing capabilities. The concept is called the Hot-Spot Search-Light (HSSL) satellite. A nominal satellite altitude of 600 km will allow hot-spot BRDF measurements out to about 18 degrees phase angle. The distributed are taking radiometric measurements of the intensity wings of the hot-spot angular distribution without the need for complex imaging detectors. The system can be operated at night for increased signal-to-noise ratio. This way the hot-spot angular signatures can be quantified and parameterized in sufficient detail to extract the biophysical information content of plant architectures.

  1. Endoscopic hyperspectral imaging: light guide optimization for spectral light source

    NASA Astrophysics Data System (ADS)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2018-02-01

    Hyperspectral imaging (HSI) is a technology used in remote sensing, food processing and documentation recovery. Recently, this approach has been applied in the medical field to spectrally interrogate regions of interest within respective substrates. In spectral imaging, a two (spatial) dimensional image is collected, at many different (spectral) wavelengths, to sample spectral signatures from different regions and/or components within a sample. Here, we report on the use of hyperspectral imaging for endoscopic applications. Colorectal cancer is the 3rd leading cancer for incidences and deaths in the US. One factor of severity is the miss rate of precancerous/flat lesions ( 65% accuracy). Integrating HSI into colonoscopy procedures could minimize misdiagnosis and unnecessary resections. We have previously reported a working prototype light source with 16 high-powered light emitting diodes (LEDs) capable of high speed cycling and imaging. In recent testing, we have found our current prototype is limited by transmission loss ( 99%) through the multi-furcated solid light guide (lightpipe) and the desired framerate (20-30 fps) could not be achieved. Here, we report on a series of experimental and modeling studies to better optimize the lightpipe and the spectral endoscopy system as a whole. The lightpipe was experimentally evaluated using an integrating sphere and spectrometer (Ocean Optics). Modeling the lightpipe was performed using Monte Carlo optical ray tracing in TracePro (Lambda Research Corp.). Results of these optimization studies will aid in manufacturing a revised prototype with the newly designed light guide and increased sensitivity. Once the desired optical output (5-10 mW) is achieved then the HIS endoscope system will be able to be implemented without adding onto the procedure time.

  2. Position Index for the Matrix Light Source

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi; Kobayashi, Yoshinori; Onda, Shou; Irikura, Takashi

    It is expected that in the future white LEDs will be widely used in practical applications including replacing conventional lighting in offices and homes. The white LED light source of matrix arrangement is also considered in it. On the other hand, although now the unified glare rating (UGR) is widely used for evaluation of the discomfort glare of the interior lighting, UGR is a thing for a uniform light source, and its application to the matrix light sources that have non-uniform luminance has not been considered. The aim of this study is to clarify the position index which is one of element of UGR for the matrix light source. In this case, to apply the position index for a matrix light source to UGR, the concept of the revised position index is invented. As the preliminary experiment, method for measuring the position index was conducted, and as the experiment, position index for the matrix light source was conducted and compared with the uniform light source. The results of the experiments show that the position index is decided by the relative angle between line of sight and light source. It is also found that the matrix light source have larger position index than uniform light source. Furthermore, it is shown that the discomfort glare caused by a matrix light source can be evaluated by applying the revised position index to the UGR.

  3. Light quality influences indigo precursors production and seed germination in Isatis tinctoria L. and Isatis indigotica Fort.

    PubMed

    Tozzi, Sabrina; Lercari, Bartolomeo; Angelini, Luciana G

    2005-01-01

    Isatis tinctoria L. and Isatis indigotica Fort. are biennial herbaceous plants belonging to the family of Cruciferae that are used as a source of natural indigo and show several morphological and genetic differences. Production of indigo (indigotin) precursors, indican (indoxyl beta-D glucoside) and isatan B (indoxyl ketogluconate), together with seed germination ability were compared in Isatis tinctoria and Isatis indigotica grown under six different light conditions (darkness, white, red, far red, blue, yellow light) at 25 degrees C. Light quality influenced both germination and production of indigo precursors in the two Isatis species. Different responsiveness to far red and blue light was observed. Indeed, a detrimental effect on germination by blue and far red light was found in I. tinctoria only. Different amounts of isatan B were produced under red and far red light in the two Isatis species. In I. tinctoria, the level of main indigo precursor isatan B was maximal under red light and minimal under far red light. Whereas in I. indigotica far red light promoted a large accumulation of isatan B. The photon fluence rate dependency for white and yellow light responses showed that the accumulation of indigo precursors was differently influenced in the two Isatis species. In particular, both white and yellow light enhanced above 40 micromol m(-2) s(-1) the production of isatan B in I. indigotica while only white light showed a photon fluence dependency in I. tinctoria. These results suggest a different role played by the labile and stable phytochrome species (phyA and phyB) in the isatan B production in I. tinctoria and I. indigotica. I. indigotica, whose germination percentage was not influenced by light quality, demonstrated higher germination capability compared with I. tinctoria. In fact, I. tinctoria showed high frequency of germination in darkness and under light sources that establish high phytochrome photoequilibrium (red, white and yellow light). Germination in I. tinctoria was negatively affected by far red and blue light. I. indigotica seeds appear to be indifferent to canopy-like light (far red). Our results provide further insights on the distinct behaviour of I. tinctoria and I. indigotica that belong to two different genetic clusters and different original environments.

  4. Experimental demonstration of a soft x-ray self-seeded free-electron laser

    DOE PAGES

    Ratner, D.; Abela, R.; Amann, J.; ...

    2015-02-06

    The Linac Coherent Light Source has added self-seeding capability to the soft x-ray range using a grating monochromator system. We report demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10 -4, and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50 fold higher brightness to users.

  5. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.

    2018-03-01

    We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.

  6. Resonance lamp absorption technique for simultaneous determination of the OH concentration and temperature at 10 spatial positions in combustion environments

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Gregory, Ray W.

    1994-01-01

    A rugged, easy to implement, line-of-sight absorption instrument which utilizes a low pressure water vapor microwave discharge cell as the light source, has been developed to make simultaneous measurements of the OH concentration and temperature at 10 spatial positions. The design, theory, and capability of the instrument are discussed. Results of the measurements obtained on a methane/air flat flame burner are compared with those obtained using a single-frequency, tunable dye laser system.

  7. Utility and safety of a novel surgical microscope laser light source

    PubMed Central

    Bakhit, Mudathir S.; Suzuki, Kyouichi; Sakuma, Jun; Fujii, Masazumi; Murakami, Yuta; Ito, Yuhei; Sugano, Tetsuo; Saito, Kiyoshi

    2018-01-01

    Objective Tissue injuries caused by the thermal effects of xenon light microscopes have previously been reported. Due to this, the development of a safe microscope light source became a necessity. A newly developed laser light source is evaluated regarding its effectiveness and safety as an alternative to conventional xenon light source. Methods We developed and tested a new laser light source for surgical microscopes. Four experiments were conducted to compare xenon and laser lights: 1) visual luminance comparison, 2) luminous and light chromaticity measurements, 3) examination and analysis of visual fatigue, and 4) comparison of focal temperature elevation due to light source illumination using porcine muscle samples. Results Results revealed that the laser light could be used at a lower illumination value than the xenon light (p < 0.01). There was no significant difference in visual fatigue status between the laser light and the xenon light. The laser light was superior to the xenon light regarding luminous intensity and color chromaticity. The focal temperature elevation of the muscle samples was significantly higher when irradiated with xenon light in vitro than with laser light (p < 0.01). Conclusion The newly developed laser light source is more efficient and safer than a conventional xenon light source. It lacks harmful ultraviolet waves, has a longer lifespan, a lower focal temperature than that of other light sources, a wide range of brightness and color production, and improved safety for the user’s vision. Further clinical trials are necessary to validate the impact of this new light source on the patient’s outcome and prognosis. PMID:29390016

  8. Characterization of a tin-loaded liquid scintillator for gamma spectroscopy and neutron detection

    NASA Astrophysics Data System (ADS)

    Wen, Xianfei; Harvey, Taylor; Weinmann-Smith, Robert; Walker, James; Noh, Young; Farley, Richard; Enqvist, Andreas

    2018-07-01

    A tin-loaded liquid scintillator has been developed for gamma spectroscopy and neutron detection. The scintillator was characterized in regard to energy resolution, pulse shape discrimination, neutron light output function, and timing resolution. The loading of tin into scintillators with low effective atomic number was demonstrated to provide photopeaks with acceptable energy resolution. The scintillator was shown to have reasonable neutron/gamma discrimination capability based on the charge comparison method. The effect on the discrimination quality of the total charge integration time and the initial delay time for tail charge integration was studied. To obtain the neutron light output function, the time-of-flight technique was utilized with a 252Cf source. The light output function was validated with the MCNPX-PoliMi code by comparing the measured and simulated pule height spectra. The timing resolution of the developed scintillator was also evaluated. The tin-loading was found to have negligible impact on the scintillation decay times. However, a relatively large degradation of timing resolution was observed due to the reduced light yield.

  9. Simulating Photo-Refraction Images of Keratoconus and Near-Sightedness Eyes

    NASA Astrophysics Data System (ADS)

    Baker, Kevin; Lewis, James W. L.; Chen, Ying-Ling

    2004-11-01

    Keratoconus is an abnormal condition of the eye resulting from cone-shaped features on the cornea that degrade the quality of vision. These corneal features result from thinning and subsequent bulging due to intraocular pressure. The abnormal corneal curvature increases the refractive power asymmetrically and can be misdiagnosed by examiners as astigmatism and nearsightedness. Since corrective treatment is possible, early detection of this condition is desirable. Photo-refraction (PR) detects the retinal irradiance reflected from a single light source and is an inexpensive method used to identify refractive errors. For near- (far-) sighted eye, a crescent appears on the same (opposite) side of the light source. The capability of a PR device to detect keratoconus and to differentiate this condition from myopia was investigated. Using a commercial optical program, synthetic eye models were constructed for both near-sighted and keratoconus eyes. PR images of various eye conditions were calculated. The keratoconus cone shapes were modeled with typical published cone locations and sizes. The results indicate significant differences between the images of keratoconus and near-sighted eyes.

  10. Utilization of a new optical sensor unit to monitor the electrochemical elimination of selected dyes in water

    NASA Astrophysics Data System (ADS)

    Valica, M.; Černá, T.; Hostin, S.

    2017-10-01

    This paper presents results obtained by developed optical sensor, which consist from multi-wavelength LED light source and two photodetectors capable of measuring the change in optical signal along two different optical paths (absorbance and reflectance measurements). Arduino microcomputer was used for light source management and optical signal data measuring and recording. Analytical validation of developed optical sensor is presented in this paper. The performance of the system has been tested with varying water solution of dyes (malachite green, methyl orange, trypan red). These results show strong correlations between the optical signal response and colour change from the dyes. Sensor was used for continual in-situ monitoring of electrochemical elimination of selected dyes (current density 15.7 mA cm-2, electrolyte volume 4 L and NaCl concentration 2 g L-1). Maximum decolorization level varies with each dye. For malachite green was obtain 92,7 % decolorization (25 min); methyl orange 90,8% (8,5 min) and trypan red 84,7% decolorization after 33 min of electrochemical treatment.

  11. 1550 nm superluminescent diode and anti-Stokes effect CCD camera based optical coherence tomography for full-field optical metrology

    NASA Astrophysics Data System (ADS)

    Kredzinski, Lukasz; Connelly, Michael J.

    2011-06-01

    Optical Coherence Tomography (OCT) is a promising non-invasive imaging technology capable of carrying out 3D high-resolution cross-sectional images of the internal microstructure of examined material. However, almost all of these systems are expensive, requiring the use of complex optical setups, expensive light sources and complicated scanning of the sample under test. In addition most of these systems have not taken advantage of the competitively priced optical components available at wavelength within the main optical communications band located in the 1550 nm region. A comparatively simple and inexpensive full-field OCT system (FF-OCT), based on a superluminescent diode (SLD) light source and anti-stokes imaging device was constructed, to perform 3D cross-sectional imaging. This kind of inexpensive setup with moderate resolution could be easily applicable in low-level biomedical and industrial diagnostics. This paper involves calibration of the system and determines its suitability for imaging structures of biological tissues such as teeth, which has low absorption at 1550 nm.

  12. Image of the Quasar 3C 273 Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This image is an observation of Quasar 3C 273 by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. It reveals the presence of a new source (upper left) with a red shift that indicates that it is about 10 billion light years away. Quasars are mysterious, bright, star-like objects apparently located at the very edge of the visible universe. Although no bigger than our solar system, they radiate as much visible light as a thousand galaxies. Quasars also emit radio signals and were previously recognized as x-ray sources. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2 was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center.

  13. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  14. Advances in Low-Temperature Tungsten Spectroscopy Capability to Quantify DIII-D Divertor Erosion

    DOE PAGES

    Abrams, Tyler; Thomas, Daniel M.; Unterberg, Ezekial A.; ...

    2018-01-05

    Recent emphasis of tungsten (W) plasma-materialsinteractions (PMI) experiments on DIII-D has made it essential to enhance the W I and W II measurement capabilities of its spectroscopy diagnostic suite to acquire W sourcing measurements with high temporal, spatial, and wavelength resolution. To this end, four new viewing chords for the Multichordal Divertor Spectrometer (MDS) and diverter filterscope systems were installed, leading to a 7x increase in blue light sensitivity. W I and low-Z impurity line identifications were performed in the 3995-4030 Å region, placing wavelengths within 0.1 Å of the NIST values. A novel method was also developed for themore » DIII-D high temporal resolution filterscopes to distinguish between W I light and background contamination, important due to the relatively weak intensity of this line, using two different bandpass filters width different widths but the same center wavelength. Lastly, fast imaging of the W I 4008.75 Å spectral line with a PCO Pixelfly VGA 200/205 camera allowed for discrimination between ELMy and intra-ELM W I emission profiles with very high (~1 mm) spatial resolution.« less

  15. Facile synthesis of amorphous FeOOH/MnO2 composites as screen-printed electrode materials for all-printed solid-state flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Lu, Qiang; Liu, Li; Yang, Shuanglei; Liu, Jun; Tian, Qingyong; Yao, Weijing; Xue, Qingwen; Li, Mengxiao; Wu, Wei

    2017-09-01

    More convenience and intelligence life lead by flexible/wearable electronics requires innovation and hommization of power sources. Here, amorphous FeOOH/MnO2 composite as screen-printed electrode materials for supercapacitors (SCs) is synthesized by a facile method, and solid-state flexible SCs with aesthetic design are fabricated by fully screen-printed process on different substrates, including PET, paper and textile. The amorphous FeOOH/MnO2 composite shows a high specific capacitance and a good rate capability (350.2 F g-1 at a current density of 0.5 A g-1 and 159.5 F g-1 at 20 A g-1). It also possesses 95.6% capacitance retention even after 10 000 cycles. Moreover, the all-printed solid-state flexible SC device exhibits a high area specific capacitance of 5.7 mF cm-2 and 80% capacitance retention even after 2000 cycles. It also shows high mechanical flexibility. Simultaneously, these printed SCs on different substrates in series are capable to light up a 1.9 V yellow light emitting diode (LED), even after bending and stretching.

  16. Advances in Low-Temperature Tungsten Spectroscopy Capability to Quantify DIII-D Divertor Erosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrams, Tyler; Thomas, Daniel M.; Unterberg, Ezekial A.

    Recent emphasis of tungsten (W) plasma-materialsinteractions (PMI) experiments on DIII-D has made it essential to enhance the W I and W II measurement capabilities of its spectroscopy diagnostic suite to acquire W sourcing measurements with high temporal, spatial, and wavelength resolution. To this end, four new viewing chords for the Multichordal Divertor Spectrometer (MDS) and diverter filterscope systems were installed, leading to a 7x increase in blue light sensitivity. W I and low-Z impurity line identifications were performed in the 3995-4030 Å region, placing wavelengths within 0.1 Å of the NIST values. A novel method was also developed for themore » DIII-D high temporal resolution filterscopes to distinguish between W I light and background contamination, important due to the relatively weak intensity of this line, using two different bandpass filters width different widths but the same center wavelength. Lastly, fast imaging of the W I 4008.75 Å spectral line with a PCO Pixelfly VGA 200/205 camera allowed for discrimination between ELMy and intra-ELM W I emission profiles with very high (~1 mm) spatial resolution.« less

  17. Method and apparatus for acquisition and tracking of light sources in a transient event rich environment

    NASA Technical Reports Server (NTRS)

    Bolin, Kenneth (Inventor); Flynn, David (Inventor); Fowski, Walter (Inventor); Miklus, Kenneth (Inventor); Kissh, Frank (Inventor); Abreu, Rene (Inventor)

    1993-01-01

    A method and apparatus for tracking a light source in a transient event rich environment locks on to a light source incident on a field-of-view 1 of a charge-coupled-device (CCD) array 6, validates the permanence of said light source and transmits data relating to the brilliance and location of said light source if said light source is determined to be permanent.

  18. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    NASA Astrophysics Data System (ADS)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  19. Growth of sedimentary Bathyarchaeota on lignin as an energy source.

    PubMed

    Yu, Tiantian; Wu, Weichao; Liang, Wenyue; Lever, Mark Alexander; Hinrichs, Kai-Uwe; Wang, Fengping

    2018-06-05

    Members of the archaeal phylum Bathyarchaeota are among the most abundant microorganisms on Earth. Although versatile metabolic capabilities such as acetogenesis, methanogenesis, and fermentation have been suggested for bathyarchaeotal members, no direct confirmation of these metabolic functions has been achieved through growth of Bathyarchaeota in the laboratory. Here we demonstrate, on the basis of gene-copy numbers and probing of archaeal lipids, the growth of Bathyarchaeota subgroup Bathy-8 in enrichments of estuarine sediments with the biopolymer lignin. Other organic substrates (casein, oleic acid, cellulose, and phenol) did not significantly stimulate growth of Bathyarchaeota Meanwhile, putative bathyarchaeotal tetraether lipids incorporated 13 C from 13 C-bicarbonate only when added in concert with lignin. Our results are consistent with organoautotrophic growth of a bathyarchaeotal group with lignin as an energy source and bicarbonate as a carbon source and shed light into the cycling of one of Earth's most abundant biopolymers in anoxic marine sediment.

  20. Non-contact pumping of light emitters via non-radiative energy transfer

    DOEpatents

    Klimov, Victor I.; Achermann, Marc

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  1. Light Truck Capabilities, Utility Requirements, and Uses : Implications for Fuel Economy. Final Report

    DOT National Transportation Integrated Search

    1996-04-01

    In April 1994, NHTSA issued an Advanced Notice of Proposed Rule Making (ANPRM) requesting information regarding light truck fuel economy capabilities for model years 1998 through 2006. Subsequently, in the Department of Transportation Appropriations ...

  2. Light trapping for solar fuel generation with Mie resonances.

    PubMed

    Kim, Soo Jin; Thomann, Isabell; Park, Junghyun; Kang, Ju-Hyung; Vasudev, Alok P; Brongersma, Mark L

    2014-03-12

    The implementation of solar fuel generation as a clean, terawatt-scale energy source is critically dependent on the development of high-performance, inexpensive photocatalysts. Many candidate materials, including for example α-Fe2O3 (hematite), suffer from very poor charge transport with minority carrier diffusion lengths that are significantly shorter (nanometer scale) than the absorption depth of light (micrometer scale near the band edge). As a result, most of the photoexcited carriers recombine rather than participate in water-splitting reactions. For this reason, there is a tremendous opportunity for photon management. Plasmon-resonant nanostructures have been employed to effectively enhance light absorption in the near-surface region of photocatalysts, but this approach suffers from intrinsic optical losses in the metal. Here, we circumvent this issue by driving optical resonances in the active photocatalyst material itself. We illustrate that judiciously nanopatterned photocatalysts support optical Mie and guided resonances capable of substantially enhancing the photocarrier generation rate within 10-20 nm from the water/photocatalyst interface.

  3. Light, Molecules, Action: Using Ultrafast Uv-Visible and X-Ray Spectroscopy to Probe Excited State Dynamics in Photoactive Molecules

    NASA Astrophysics Data System (ADS)

    Sension, R. J.

    2017-06-01

    Light provides a versatile energy source capable of precise manipulation of material systems on size scales ranging from molecular to macroscopic. Photochemistry provides the means for transforming light energy from photon to process via movement of charge, a change in shape, a change in size, or the cleavage of a bond. Photochemistry produces action. In the work to be presented here ultrafast UV-Visible pump-probe, and pump-repump-probe methods have been used to probe the excited state dynamics of stilbene-based molecular motors, cyclohexadiene-based switches, and polyene-based photoacids. Both ultrafast UV-Visible and X-ray absorption spectroscopies have been applied to the study of cobalamin (vitamin B_{12}) based compounds. Optical measurements provide precise characterization of spectroscopic signatures of the intermediate species on the S_{1} surface, while time-resolved XANES spectra at the Co K-edge probe the structural changes that accompany these transformations.

  4. First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere

    NASA Astrophysics Data System (ADS)

    Abdellaoui, G.; Abe, S.; Adams, J. H., Jr.; Ahriche, A.; Allard, D.; Allen, L.; Alonso, G.; Anchordoqui, L.; Anzalone, A.; Arai, Y.; Asano, K.; Attallah, R.; Attoui, H.; Ave Pernas, M.; Bacholle, S.; Bakiri, M.; Baragatti, P.; Barrillon, P.; Bartocci, S.; Bayer, J.; Beldjilali, B.; Belenguer, T.; Belkhalfa, N.; Bellotti, R.; Belov, A.; Belov, K.; Benmessai, K.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Bisconti, F.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Bobik, P.; Bogomilov, M.; Bozzo, E.; Bruno, A.; Caballero, K. S.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Capel, F.; Caramete, A.; Caramete, L.; Carlson, P.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellina, A.; Catalano, C.; Catalano, O.; Cellino, A.; Chikawa, M.; Chiritoi, G.; Christl, M. J.; Connaughton, V.; Conti, L.; Cordero, G.; Cotto, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Cummings, A.; Dagoret-Campagne, S.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Di Martino, M.; Diaz Damian, A.; Djemil, T.; Dutan, I.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Eser, J.; Fenu, F.; Fernández-González, S.; Fernández-Soriano, J.; Ferrarese, S.; Flamini, M.; Fornaro, C.; Fouka, M.; Franceschi, A.; Franchini, S.; Fuglesang, C.; Fujii, T.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; García-Ortega, E.; Garipov, G.; Gascón, E.; Genci, J.; Giraudo, G.; González Alvarado, C.; Gorodetzky, P.; Greg, R.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Haiduc, M.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Hidber Cruz, W.; Ikeda, D.; Inoue, N.; Inoue, S.; Isgrò, F.; Itow, Y.; Jammer, T.; Jeong, S.; Joven, E.; Judd, E. G.; Jung, A.; Jochum, J.; Kajino, F.; Kajino, T.; Kalli, S.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Kedadra, A.; Khales, H.; Khrenov, B. A.; Kim, Jeong-Sook; Kim, Soon-Wook; Kleifges, M.; Klimov, P. A.; Kolev, D.; Krantz, H.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; La Barbera, A.; Lachaud, C.; Lahmar, H.; Lakhdari, F.; Larson, R.; Larsson, O.; Lee, J.; Licandro, J.; López Campano, L.; Maccarone, M. C.; Mackovjak, S.; Mahdi, M.; Maravilla, D.; Marcelli, L.; Marcos, J. L.; Marini, A.; Marszał, W.; Martens, K.; Martín, Y.; Martinez, O.; Martucci, M.; Masciantonio, G.; Mase, K.; Mastafa, M.; Matev, R.; Matthews, J. N.; Mebarki, N.; Medina-Tanco, G.; Mendoza, M. A.; Menshikov, A.; Merino, A.; Meseguer, J.; Meyer, S. S.; Mimouni, J.; Miyamoto, H.; Mizumoto, Y.; Monaco, A.; Morales de los Ríos, J. A.; Moretto, C.; Nagataki, S.; Naitamor, S.; Napolitano, T.; Naslund, W.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Pagliaro, A.; Painter, W.; Panasyuk, M. I.; Panico, B.; Pasqualino, G.; Parizot, E.; Park, I. H.; Pastircak, B.; Patzak, T.; Paul, T.; Pérez-Grande, I.; Perfetto, F.; Peter, T.; Picozza, P.; Pindado, S.; Piotrowski, L. W.; Piraino, S.; Placidi, L.; Plebaniak, Z.; Pliego, S.; Pollini, A.; Polonski, Z.; Popescu, E. M.; Prat, P.; Prévôt, G.; Prieto, H.; Puehlhofer, G.; Putis, M.; Rabanal, J.; Radu, A. A.; Reyes, M.; Rezazadeh, M.; Ricci, M.; Rodríguez Frías, M. D.; Rodencal, M.; Ronga, F.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez Cano, G.; Sagawa, H.; Sahnoune, Z.; Saito, A.; Sakaki, N.; Salazar, H.; Sanchez Balanzar, J. C.; Sánchez, J. L.; Santangelo, A.; Sanz-Andrés, A.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Spataro, B.; Stan, I.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Talai, M. C.; Tenzer, C.; Thomas, S. B.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Traïche, M.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tubbs, J.; Turriziani, S.; Uchihori, Y.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Vankova, G.; Vigorito, C.; Villaseñor, L.; Vlcek, B.; von Ballmoos, P.; Vrabel, M.; Wada, S.; Watanabe, J.; Watts, J., Jr.; Weber, M.; Weigand Muñoz, R.; Weindl, A.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, S.; Young, R.; Zgura, I. S.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2018-05-01

    EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25th of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector.

  5. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes.

    PubMed

    Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R; Castillo, Gabriel R; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng

    2014-08-07

    Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips.

  6. Measurement techniques for low emittance tuning and beam dynamics at CESR

    NASA Astrophysics Data System (ADS)

    Billing, M. G.; Dobbins, J. A.; Forster, M. J.; Kreinick, D. L.; Meller, R. E.; Peterson, D. P.; Ramirez, G. A.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Williams, H. A.; Palmer, M. A.; Holtzapple, R. L.; Flanagan, J.

    2018-03-01

    After operating as a High Energy Physics electron-positron collider, the Cornell Electron-positron Storage Ring (CESR) has been converted to become a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS). Over the course of several years CESR was adapted for accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Initially some specific topics were targeted for accelerator physic research with the storage ring in this mode, labeled CesrTA. These topics included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud (EC) development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CesrTA occurred over a several year period, described elsewhere [1–3]. A number of specific instruments were developed for CesrTA. Much of the pre-existing instrumentation was modified to accommodate the scope of these studies and these are described in a companion paper [4]. To complete this research, a number of procedures were developed or modified, often requiring coordinated measurements among different instruments [5]. This paper provides an overview of types of measurements employed for the study of beam dynamics during the operation of CesrTA.

  7. Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency.

    PubMed

    Jin, Long; Chen, Jun; Zhang, Binbin; Deng, Weili; Zhang, Lei; Zhang, Haitao; Huang, Xi; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin

    2016-08-23

    The rapid development of Internet of Things and the related sensor technology requires sustainable power sources for their continuous operation. Scavenging and utilizing the ambient environmental energy could be a superior solution. Here, we report a self-powered helmet for emergency, which was powered by the energy converted from ambient mechanical vibration via a hybridized nanogenerator that consists of a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG). Integrating with transformers and rectifiers, the hybridized nanogenerator can deliver a power density up to 167.22 W/m(3), which was demonstrated to light up 1000 commercial light-emitting diodes (LEDs) instantaneously. By wearing the developed safety helmet, equipped with rationally designed hybridized nanogenerator, the harvested vibration energy from natural human motion is also capable of powering a wireless pedometer for real-time transmitting data reporting to a personal cell phone. Without adding much extra weight to a commercial one, the developed wearing helmet can be a superior sustainable power source for explorers, engineers, mine-workers under well, as well as and disaster-relief workers, especially in remote areas. This work not only presents a significant step toward energy harvesting from human biomechanical movement, but also greatly expands the applicability of TENGs as power sources for self-sustained electronics.

  8. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Toward a Climate-Specific Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Hacke, Peter L.; Kempe, Michael D.

    2015-06-14

    Reduced optical transmittance of encapsulation resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of installations in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding thatmore » will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xe, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests. Index Terms -- reliability, durability, thermal activation.« less

  9. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Towards a Climate-Specific Test: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Annigoni, Eleonora; Ballion, Amal

    2015-08-12

    Reduced optical transmittance of encapsulants resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of service in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding thatmore » will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xenon, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests.« less

  10. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Towards a Climate-Specific Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Annigoni, Eleonora; Ballion, Amal

    2015-06-14

    Reduced optical transmittance of encapsulants resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of service in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding thatmore » will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xenon, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests.« less

  11. Pupillary response to direct and consensual chromatic light stimuli.

    PubMed

    Traustason, Sindri; Brondsted, Adam Elias; Sander, Birgit; Lund-Andersen, Henrik

    2016-02-01

    To assess whether the direct and consensual postillumination (ipRGC-driven) pupil light responses to chromatic light stimuli are equal in healthy subjects. Pupil responses in healthy volunteers were recorded using a prototype binocular chromatic pupillometer (IdeaMedical, Copenhagen), which is capable of both direct and consensual pupillometry measurements. The device uses a pair of dual monochromatic narrow bandwidth LED light sources, red (660 nm) and blue (470 nm). Pupil light responses were recorded with infrared video cameras and analysed using custom-made circuitry and software. Subjects were randomized to receive light stimuli at either the right or left eye after 5 min of dark adaptation. Pupil light responses were recorded in both eyes for 10 seconds before illumination, during illumination and 50 seconds after illumination with red and blue light. Three variables were defined for the recorded pupil responses: the maximal constriction amplitude (CAmax ), the pupil response during illumination and postillumination pupil response (PIPR). No difference was found in the pupil response to blue light. With red light, the pupil response during illumination was slightly larger during consensual illumination compared to direct illumination (0.54 and 0.52, respectively, p = 0.027, paired Wilcoxon's test, n = 12), while no differences were found for CAmax or the PIPR. No difference was found between direct and consensual pupil response to either red or blue light in the postillumination period. Direct and consensual responses can readily be compared when examining the postillumination pupil response to blue light as estimation of photosensitive retinal ganglion cell activation. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  12. Combined spectrophotometry and tensile measurements of human connective tissues: potentials and limitations.

    PubMed

    Ernstberger, Markus; Sichting, Freddy; Baselt, Tobias; Hartmann, Peter; Aust, Gabriela; Hammer, Niels

    2013-06-01

    Strain-dependent transmission data of nine iliotibial tract specimens are determined using a custom-built optical setup with a halogen light source and an industrial norm material testing machine. Polarized light microscopy and hematoxylin-eosin staining indicated that lateral contraction of collagen structures is responsible for total intensity variations during a 20-cycle preconditioning and a 5-cycle tensile test. Tensile force progress is opposite to total transmission progress. Due to dehydration, wavelength-specific radiation intensity shifting is determined during the test, primarily noticeable in a water absorption band between 1400 and 1500 nm. The results show the capability of integrating spectrophotometry technology into biomechanics for determining structural alterations of human collagen due to applied strain. Being more sensitive to drying, spectrophotometry may likely serve as a quality control in stress-strain testing of biological structures.

  13. Compact Laser System for Field Deployable Ultracold Atom Sensors

    NASA Astrophysics Data System (ADS)

    Pino, Juan; Luey, Ben; Anderson, Mike

    2013-05-01

    As ultracold atom sensors begin to see their way to the field, there is a growing need for small, accurate, and robust laser systems to cool and manipulate atoms for sensing applications such as magnetometers, gravimeters, atomic clocks and inertial sensing. In this poster we present a laser system for Rb, roughly the size of a paperback novel, capable of generating and controlling light sufficient for the most complicated of cold atom sensors. The system includes >100dB of non-mechanical, optical shuttering, the ability to create short, microsecond pulses, a Demux stage to port light onto different optical paths, and an atomically referenced, frequency agile laser source. We will present data to support the system, its Size Weight and Power (SWaP) requirements, as well as laser stability and performance. funded under DARPA

  14. Eye safety related to near infrared radiation exposure to biometric devices.

    PubMed

    Kourkoumelis, Nikolaos; Tzaphlidou, Margaret

    2011-03-01

    Biometrics has become an emerging field of technology due to its intrinsic security features concerning the identification of individuals by means of measurable biological characteristics. Two of the most promising biometric modalities are iris and retina recognition, which primarily use nonionizing radiation in the infrared region. Illumination of the eye is achieved by infrared light emitting diodes (LEDs). Even if few LED sources are capable of causing direct eye damage as they emit incoherent light, there is a growing concern about the possible use of LED arrays that might pose a potential threat. Exposure to intense coherent infrared radiation has been proven to have significant effects on living tissues. The purpose of this study is to explore the biological effects arising from exposing the eye to near infrared radiation with reference to international legislation.

  15. Interferometry in the Era of Very Large Telescopes

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.

    2010-01-01

    Research in modern stellar interferometry has focused primarily on ground-based observatories, with very long baselines or large apertures, that have benefited from recent advances in fringe tracking, phase reconstruction, adaptive optics, guided optics, and modern detectors. As one example, a great deal of effort has been put into development of ground-based nulling interferometers. The nulling technique is the sparse aperture equivalent of conventional coronography used in filled aperture telescopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. Nulling interferometry has helped to advance our understanding of the astrophysics of many distant objects by providing the spatial resolution necessary to localize the various faint emission sources near bright objects. We illustrate the current capabilities of this technique by describing the first scientific results from the Keck Interferometer Nuller that combines the light from the two largest optical telescopes in the world including new, unpublished measurements of exozodiacal dust disks. We discuss prospects in the near future for interferometry in general, the capabilities of secondary masking interferometry on very large telescopes, and of nulling interferometry using outriggers on very large telescopes. We discuss future development of a simplified space-borne NIR nulling architecture, the Fourier-Kelvin Stellar Interferometer, capable of detecting and characterizing an Earth twin in the near future and how such a mission would benefit from the optical wavelength coverage offered by large, ground-based instruments.

  16. Herschel Shines Light on the Episodic Evolutionary Sequence of Protostars

    NASA Astrophysics Data System (ADS)

    Green, Joel D.; DIGIT; FOOSH; COPS Teams

    2014-01-01

    New far-infrared and submillimeter spectroscopic capabilities, along with moderate spatial and spectral resolution, provide the opportunity to study the diversity of shocks, accretion processes, and compositions of the envelopes of developing protostellar objects in nearby molecular clouds. We present the "COPS" (CO in Protostars) sample; a statistical analysis of the full sample of 30 Class 0/I protostars from the "DIGIT" Key project using Herschel-PACS/SPIRE 50-700 micron spectroscopy. We consider the sample as a whole in characteristic spectral lines, using a standardized data reduction procedure for all targets, and analyze the differences in the continuum and gas over the full sample, presenting an overview of trends. We compare the sources in evolutionary state, envelope mass, and gas properties to more evolved sources from the"FOOSH'' (FUor) samples.

  17. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving anmore » ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we have made significant progress with the design of PEP-X, a USR that would inhabit the decommissioned PEP-II tunnel at SLAC. The enlargement of the dynamic aperture is largely a result of the cancellations of the 4th-order resonances in the 3rd-order achromats and the effective use of lattice optimization programs. In this paper, we will show those cancellations of the 4th-order resonances using an analytical approach based on the exponential Lie operators and the Poisson brackets. Wherever possible, our analytical results will be compared with their numerical counterparts. Using the derived formulae, we will construct 4th-order geometric achromats and use them as modules for the lattice of the PEP-X USR, noting that only geometric terms are canceled to the 4th order.« less

  18. Heating device for semiconductor wafers

    DOEpatents

    Vosen, Steven R.

    1999-01-01

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  19. Heating device for semiconductor wafers

    DOEpatents

    Vosen, S.R.

    1999-07-27

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  20. A trillion frames per second: the techniques and applications of light-in-flight photography.

    PubMed

    Faccio, Daniele; Velten, Andreas

    2018-06-14

    Cameras capable of capturing videos at a trillion frames per second allow to freeze light in motion, a very counterintuitive capability when related to our everyday experience in which light appears to travel instantaneously. By combining this capability with computational imaging techniques, new imaging opportunities emerge such as three dimensional imaging of scenes that are hidden behind a corner, the study of relativistic distortion effects, imaging through diffusive media and imaging of ultrafast optical processes such as laser ablation, supercontinuum and plasma generation. We provide an overview of the main techniques that have been developed for ultra-high speed photography with a particular focus on `light in flight' imaging, i.e. applications where the key element is the imaging of light itself at frame rates that allow to freeze it's motion and therefore extract information that would otherwise be blurred out and lost. . © 2018 IOP Publishing Ltd.

  1. Computer Generated Holography with Intensity-Graded Patterns

    PubMed Central

    Conti, Rossella; Assayag, Osnath; de Sars, Vincent; Guillon, Marc; Emiliani, Valentina

    2016-01-01

    Computer Generated Holography achieves patterned illumination at the sample plane through phase modulation of the laser beam at the objective back aperture. This is obtained by using liquid crystal-based spatial light modulators (LC-SLMs), which modulate the spatial phase of the incident laser beam. A variety of algorithms is employed to calculate the phase modulation masks addressed to the LC-SLM. These algorithms range from simple gratings-and-lenses to generate multiple diffraction-limited spots, to iterative Fourier-transform algorithms capable of generating arbitrary illumination shapes perfectly tailored on the base of the target contour. Applications for holographic light patterning include multi-trap optical tweezers, patterned voltage imaging and optical control of neuronal excitation using uncaging or optogenetics. These past implementations of computer generated holography used binary input profile to generate binary light distribution at the sample plane. Here we demonstrate that using graded input sources, enables generating intensity graded light patterns and extend the range of application of holographic light illumination. At first, we use intensity-graded holograms to compensate for LC-SLM position dependent diffraction efficiency or sample fluorescence inhomogeneity. Finally we show that intensity-graded holography can be used to equalize photo evoked currents from cells expressing different levels of chanelrhodopsin2 (ChR2), one of the most commonly used optogenetics light gated channels, taking into account the non-linear dependence of channel opening on incident light. PMID:27799896

  2. Developing a spectroradiometer data uncertainty methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Josh; Vignola, Frank; Habte, Aron

    The proper calibration and measurement uncertainty of spectral data obtained from spectroradiometers is essential in accurately quantifying the output of photovoltaic (PV) devices. PV cells and modules are initially characterized using solar simulators but field performance is evaluated using natural sunlight. Spectroradiometers are used to measure the spectrum of both these light sources in an effort to understand the spectral dependence of various PV output capabilities. These chains of characterization and measurement are traceable to National Metrology Institutes such as National Institute of Standards and Technology, and therefore there is a need for a comprehensive uncertainty methodology to determine themore » accuracy of spectroradiometer data. In this paper, the uncertainties associated with the responsivity of a spectroradiometer are examined using the Guide to the Expression of Uncertainty in Measurement (GUM) protocols. This is first done for a generic spectroradiometer, and then, to illustrate the methodology, the calibration of a LI-COR 1800 spectroradiometer is performed. The reader should be aware that the implementation of this methodology will be specific to the spectroradiometer being analyzed and the experimental setup that is used. Depending of the characteristics of the spectroradiometer being evaluated additional sources of uncertainty may need to be included, but the general GUM methodology is the same. Several sources of uncertainty are associated with the spectroradiometer responsivity. Major sources of uncertainty associated with the LI-COR spectroradiometer are noise in the signal at wavelengths less than 400 nm. At wavelengths more than 400 nm, the responsivity can vary drastically, and it is dependent on the wavelength of light, the temperature dependence, the angle of incidence, and the azimuthal orientation of the sensor to the light source. As a result, the expanded uncertainties in the responsivity of the LI-COR spectroradiometer in the wavelength range of 400-1050 nm can range from 4% to 14% at the 95% confidence level.« less

  3. Developing a spectroradiometer data uncertainty methodology

    DOE PAGES

    Peterson, Josh; Vignola, Frank; Habte, Aron; ...

    2017-04-11

    The proper calibration and measurement uncertainty of spectral data obtained from spectroradiometers is essential in accurately quantifying the output of photovoltaic (PV) devices. PV cells and modules are initially characterized using solar simulators but field performance is evaluated using natural sunlight. Spectroradiometers are used to measure the spectrum of both these light sources in an effort to understand the spectral dependence of various PV output capabilities. These chains of characterization and measurement are traceable to National Metrology Institutes such as National Institute of Standards and Technology, and therefore there is a need for a comprehensive uncertainty methodology to determine themore » accuracy of spectroradiometer data. In this paper, the uncertainties associated with the responsivity of a spectroradiometer are examined using the Guide to the Expression of Uncertainty in Measurement (GUM) protocols. This is first done for a generic spectroradiometer, and then, to illustrate the methodology, the calibration of a LI-COR 1800 spectroradiometer is performed. The reader should be aware that the implementation of this methodology will be specific to the spectroradiometer being analyzed and the experimental setup that is used. Depending of the characteristics of the spectroradiometer being evaluated additional sources of uncertainty may need to be included, but the general GUM methodology is the same. Several sources of uncertainty are associated with the spectroradiometer responsivity. Major sources of uncertainty associated with the LI-COR spectroradiometer are noise in the signal at wavelengths less than 400 nm. At wavelengths more than 400 nm, the responsivity can vary drastically, and it is dependent on the wavelength of light, the temperature dependence, the angle of incidence, and the azimuthal orientation of the sensor to the light source. As a result, the expanded uncertainties in the responsivity of the LI-COR spectroradiometer in the wavelength range of 400-1050 nm can range from 4% to 14% at the 95% confidence level.« less

  4. Radioistopes to Solar to High Energy Accelerators - Chip-Scale Energy Sources

    NASA Astrophysics Data System (ADS)

    Lal, Amit

    2013-12-01

    This talk will present MEMS based power sources that utilize radioisotopes, solar energy, and potentially nuclear energy through advancements in integration of new structures and materials within MEMS. Micro power harvesters can harness power from vibration, radioisotopes, light, sound, and biology may provide pathways to minimize or even eliminate batteries in sensor nodes. In this talk work on radioisotope thin films for MEMS will be include the self-reciprocating cantilever, betavoltaic cells, and high DC voltages. The self-reciprocating cantilever energy harvester allows small commercially viable amounts of radioisotopes to generate mW to Watts of power so that very reliable power sources that last 100s of years are possible. The tradeoffs between reliability and potential stigma with radioisotopes allow one to span a useful design space with reliability as a key parameter. These power sources provide pulsed power at three different time scales using mechanical, RF, and static extraction of energy from collected charge. Multi-use capability, both harvesting radioisotope power and local vibration energy extends the reliability of micro-power sources further.

  5. Back-bombardment compensation in microwave thermionic electron guns

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Jeremy M. D.; Madey, John M. J.

    2014-12-01

    The development of capable, reliable, and cost-effective compact electron beam sources remains a long-standing objective of the efforts to develop the accelerator systems needed for on-site research and industrial applications ranging from electron beam welding to high performance x-ray and gamma ray light sources for element-resolved microanalysis and national security. The need in these applications for simplicity, reliability, and low cost has emphasized solutions compatible with the use of the long established and commercially available pulsed microwave rf sources and L-, S- or X-band linear accelerators. Thermionic microwave electron guns have proven to be one successful approach to the development of the electron sources for these systems providing high macropulse average current beams with picosecond pulse lengths and good emittance out to macropulse lengths of 4-5 microseconds. But longer macropulse lengths are now needed for use in inverse-Compton x-ray sources and other emerging applications. We describe in this paper our approach to extending the usable macropulse current and pulse length of these guns through the use of thermal diffusion to compensate for the increase in cathode surface temperature due to back-bombardment.

  6. Effect of raceme-localized supplemental light on soybean reproductive abscission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, R.L.; Brun, W.A.; Brenner, M.L.

    The percentage of soybean (Glycine max (L.) Merr.) reproductive structures that abscise is a potentially important yield factor. To better understand the involvement of light in the abscission of reproductive structures, a series of in vitro raceme-culture and growth-chamber experiments were conducted. In the in vitro raceme-culture experiments, racemes with four to six flowers at or past anthesis were excised from the soybean plant (genotype IX93-100), embedded in a complete nutrient, solid agar medium, and subjected to various light treatments. A series of three experiments indicated that the racemes contain a photoreceptor, possibly phytochrome, capable of regulating sucrose accumulation. Inmore » each of the growth chamber studies, supplemental light was supplied directly to individual soybean flowers via fiber optic light guides. The light source increased the photon flux to the flowers by 10-fold. The first growth chamber experiment showed that flowers receiving supplemental light were more intense sinks for /sup 14/C-sucrose than were controls (intensity value of 1.0 vs 0.4 x 10/sup -7/, intensity = (dps of flower/dps of raceme)/(kg dry wt of flower)). In a second study, 42% of flowers treated with supplemental light set pods, while only 26% of control flowers set pods. A third experiment showed that red supplemental light produced 55% fruit set, compared to 41% set for far-red light, and 35% for controls. These experiments indicate that both photoassimilate accumulation and abscission in young soybean reproductive structures may be regulated by light quality.« less

  7. Nonimaging Optical Illumination System

    DOEpatents

    Winston, Roland

    1994-08-02

    A nonimaging illumination optical device for producing selected intensity output over an angular range. The device includes a light reflecting surface (24, 26) around a light source (22) which is disposed opposite the aperture opening of the light reflecting surface (24, 26). The light source (22) has a characteristic dimension which is small relative to one or more of the distance from the light source (22) to the light reflecting surface (24, 26) or the angle subtended by the light source (22) at the light reflecting surface (24, 26).

  8. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockett, Mark H., E-mail: stockett@phys.au.dk; Houmøller, Jørgen; Støchkel, Kristian

    2016-05-15

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g.,more » 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.« less

  9. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy.

    PubMed

    Stockett, Mark H; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen

    2016-05-01

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

  10. Development of a circadian light source

    NASA Astrophysics Data System (ADS)

    Nicol, David B.; Ferguson, Ian T.

    2002-11-01

    Solid state lighting presents a new paradigm for lighting - controllability. Certain characteristics of the lighting environment can be manipulated, because of the possibility of using multiple LEDs of different emission wavelengths as the illumination source. This will provide a new, versatile, general illumination source due to the ability to vary the spectral power distribution. New effects beyond the visual may be achieved that are not possible with conventional light sources. Illumination has long been the primary function of lighting but as the lighting industry has matured the psychological aspects of lighting have been considered by designers; for example, choosing a particular lighting distribution or color variation in retail applications. The next step in the evolution of light is to consider the physiological effects of lighting that cause biological changes in a person within the environment. This work presents the development of a source that may have important bearing on this area of lighting. A circadian light source has been developed to provide an illumination source that works by modulating its correlated color temperature to mimic the changes in natural daylight through the day. In addition, this source can cause or control physiological effects for a person illuminated by it. The importance of this is seen in the human circadian rhythm's peak response corresponding to blue light at ~460 nm which corresponds to the primary spectral difference in increasing color temperature. The device works by adding blue light to a broadband source or mixing polychromatic light to mimic the variation of color temperature observed for the Planckian Locus on the CIE diagram. This device can have several applications including: a tool for researchers in this area, a general illumination lighting technology, and a light therapy device.

  11. A tuneable approach to uniform light distribution for artificial daylight photodynamic therapy.

    PubMed

    O'Mahoney, Paul; Haigh, Neil; Wood, Kenny; Brown, C Tom A; Ibbotson, Sally; Eadie, Ewan

    2018-06-16

    Implementation of daylight photodynamic therapy (dPDT) is somewhat limited by variable weather conditions. Light sources have been employed to provide artificial dPDT indoors, with low irradiances and longer treatment times. Uniform light distribution across the target area is key to ensuring effective treatment, particularly for large areas. A novel light source is developed with tuneable direction of light emission in order to meet this challenge. Wavelength composition of the novel light source is controlled such that the protoporphyrin-IX (PpIX) weighed spectra of both the light source and daylight match. The uniformity of the light source is characterised on a flat surface, a model head and a model leg. For context, a typical conventional PDT light source is also characterised. Additionally, the wavelength uniformity across the treatment site is characterised. The PpIX-weighted spectrum of the novel light source matches with PpIX-weighted daylight spectrum, with irradiance values within the bounds for effective dPDT. By tuning the direction of light emission, improvements are seen in the uniformity across large anatomical surfaces. Wavelength uniformity is discussed. We have developed a light source that addresses the challenges in uniform, multiwavelength light distribution for large area artificial dPDT across curved anatomical surfaces. Copyright © 2018. Published by Elsevier B.V.

  12. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1997-01-01

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

  13. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1994-01-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

  14. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1997-05-06

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

  15. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1994-11-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

  16. An experimental apparatus for diffraction-limited soft x-ray nano-focusing

    NASA Astrophysics Data System (ADS)

    Merthe, Daniel J.; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Yuan, Sheng; McKinney, Wayne R.; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory Y.; Rakawa, Senajith B.; Anderson, Erik; Smith, Brian V.; Domning, Edward E.; Warwick, Tony; Padmore, Howard

    2011-09-01

    Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing. The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. Visible-light long-trace profilometry was used to pre-align the mirror before installation at the beamline. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.

  17. X-Ray Scattering Echoes and Ghost Halos from the Intergalactic Medium: Relation to the Nature of AGN Variability

    NASA Astrophysics Data System (ADS)

    Corrales, Lia

    2015-05-01

    X-ray bright quasars might be used to trace dust in the circumgalactic and intergalactic medium through the phenomenon of X-ray scattering, which is observed around Galactic objects whose light passes through a sufficient column of interstellar gas and dust. Of particular interest is the abundance of gray dust larger than 0.1 μ m, which is difficult to detect at other wavelengths. To calculate X-ray scattering from large grains, one must abandon the traditional Rayleigh-Gans approximation. The Mie solution for the X-ray scattering optical depth of the universe is ∼ 1%. This presents a great difficulty for distinguishing dust scattered photons from the point source image of Chandra, which is currently unsurpassed in imaging resolution. The variable nature of AGNs offers a solution to this problem, as scattered light takes a longer path and thus experiences a time delay with respect to non-scattered light. If an AGN dims significantly (≳ 3 dex) due to a major feedback event, the Chandra point source image will be suppressed relative to the scattering halo, and an X-ray echo or ghost halo may become visible. I estimate the total number of scattering echoes visible by Chandra over the entire sky: {{N}ech}∼ {{10}3}({{ν }fb}/y{{r}-1}), where {{ν }fb} is the characteristic frequency of feedback events capable of dimming an AGN quickly.

  18. Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiang; Shi, Junkai; Xu, Baozhong

    2014-01-20

    A chirp-tunable femtosecond 10 W, 42 MHz photonic-crystal-fiber oscillator-amplifier system that is capable of delivering sub-60 fs light pulses at 1040 nm is used to demonstrate high-efficiency terahertz radiation generation via optical rectification in GaP crystals only a few millimeters in length. The optimization of the chirp of the fiber-laser pulses is shown to radically enhance the terahertz output, indicating one possible way to more efficiently use these extended nonlinear crystals in compact fiber-pumped terahertz radiation sources.

  19. Laser fluorescence bronchoscope for localization of occult lung tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Profio, A.E.; Doiron, D.R.; King, E.G.

    1979-11-01

    A system for imaging occult bronchogenic carcinoma by the fluorescence of previously-injected, tumor-specific compound hematoporphyrin-derivative has been assembled and successfully used to locate a tumor l mm thick. The violet excitation source is a krypton ion laser coupled to fused quartz fiber light conductor. An electrostatic image intensifier attached to a standard flexible fiberoptic bronchoscope provides a bright image even at relatively low irradiance. A red secondary filter rejects most reflected background and autofluorescence. Sensitivity and contrast capability of the system should permit detection of a tumor less than 0.1 mm thick.

  20. Venturi Air-Jet Vacuum Ejector For Sampling Air

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.

    1990-01-01

    Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.

  1. Status Report for the Hypervelocity Free-Flight Aerodynamic Facility

    NASA Technical Reports Server (NTRS)

    Cornelison, Charles J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The Hypervelocity Free-Flight Aerodynamic Facility, located at Ames Research Center, is NASA's only aeroballistic facility. During 1997, its model imaging and time history recording systems were the focus of a major refurbishment effort. Specifically the model detection, spark gap (light source); Kerr cell (high speed shuttering); and interval timer sub-systems were inspected, repaired, modified or replaced as required. These refurbishment efforts have fully restored the HFFAF's capabilities to a much better condition, comparable to what it was 15 years ago. Details of this refurbishment effort along with a brief discussion of future upgrade plans are presented.

  2. Scanning Transmission Electron Microscopy at High Resolution

    PubMed Central

    Wall, J.; Langmore, J.; Isaacson, M.; Crewe, A. V.

    1974-01-01

    We have shown that a scanning transmission electron microscope with a high brightness field emission source is capable of obtaining better than 3 Å resolution using 30 to 40 keV electrons. Elastic dark field images of single atoms of uranium and mercury are shown which demonstrate this fact as determined by a modified Rayleigh criterion. Point-to-point micrograph resolution between 2.5 and 3.0 Å is found in dark field images of micro-crystallites of uranium and thorium compounds. Furthermore, adequate contrast is available to observe single atoms as light as silver. Images PMID:4521050

  3. A versatile setup using femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yujie, E-mail: styojm@physics.tamu.edu; Voronine, Dmitri V.; Sokolov, Alexei V.

    2015-08-15

    We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.

  4. Tunable system for production of mirror and cusp configurations using chassis of permanent magnets

    NASA Astrophysics Data System (ADS)

    Hyde, Alexander; Bushmelov, Maxim; Batishchev, Oleg

    2018-03-01

    Compact arrays of permanent magnets have shown promise as replacements for electromagnets in applications requiring magnetic cusps and mirrors. An adjustable system capable of suspending and translating a pair of light, nonmagnetic chassis carrying such sources of magnetic field has been designed and constructed. Using this device to align two cylindrical chassis, strong solenoid-like domains of field, as well as classic biconic cusp and magnetic mirror topologies, are generated. Employing a pair of ring-shaped chassis instead, the superposition of their naturally-emitted cusps is demonstrated to produce sextupolar and octupolar magnetic fields.

  5. Experimental demonstration of a soft x-ray self-seeded free-electron laser.

    PubMed

    Ratner, D; Abela, R; Amann, J; Behrens, C; Bohler, D; Bouchard, G; Bostedt, C; Boyes, M; Chow, K; Cocco, D; Decker, F J; Ding, Y; Eckman, C; Emma, P; Fairley, D; Feng, Y; Field, C; Flechsig, U; Gassner, G; Hastings, J; Heimann, P; Huang, Z; Kelez, N; Krzywinski, J; Loos, H; Lutman, A; Marinelli, A; Marcus, G; Maxwell, T; Montanez, P; Moeller, S; Morton, D; Nuhn, H D; Rodes, N; Schlotter, W; Serkez, S; Stevens, T; Turner, J; Walz, D; Welch, J; Wu, J

    2015-02-06

    The Linac Coherent Light Source has added a self-seeding capability to the soft x-ray range using a grating monochromator system. We report the demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10(-4), and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50-fold higher brightness to users.

  6. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Strum, R.; Stiles, D.

    In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.

  7. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    DOE PAGES

    Liu, Y.; Strum, R.; Stiles, D.; ...

    2017-11-20

    In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.

  8. Multidimensional Attosecond Resonant X-Ray Spectroscopy of Molecules: Lessons from the Optical Regime

    PubMed Central

    Mukamel, Shaul; Healion, Daniel; Zhang, Yu; Biggs, Jason D.

    2013-01-01

    New free-electron laser and high-harmonic generation X-ray light sources are capable of supplying pulses short and intense enough to perform resonant nonlinear time-resolved experiments in molecules. Valence-electron motions can be triggered impulsively by core excitations and monitored with high temporal and spatial resolution. We discuss possible experiments that employ attosecond X-ray pulses to probe the quantum coherence and correlations of valence electrons and holes, rather than the charge density alone, building on the analogy with existing studies of vibrational motions using femtosecond techniques in the visible regime. PMID:23245522

  9. Cobalt.

    PubMed

    Fowler, Joseph F

    2016-01-01

    Cobalt has been a recognized allergen capable of causing contact dermatitis for decades. Why, therefore, has it been named 2016 "Allergen of the Year"? Simply put, new information has come to light in the last few years regarding potential sources of exposure to this metallic substance. In addition to reviewing some background on our previous understanding of cobalt exposures, this article will highlight the recently recognized need to consider leather as a major site of cobalt and the visual cues suggesting the presence of cobalt in jewelry. In addition, a chemical spot test for cobalt now allows us to better identify its presence in suspect materials.

  10. LED intense headband light source for fingerprint analysis

    DOEpatents

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  11. Active locking and entanglement in type II optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Ruiz-Rivas, Joaquín; de Valcárcel, Germán J.; Navarrete-Benlloch, Carlos

    2018-02-01

    Type II optical parametric oscillators are amongst the highest-quality sources of quantum-correlated light. In particular, when pumped above threshold, such devices generate a pair of bright orthogonally-polarized beams with strong continuous-variable entanglement. However, these sources are of limited practical use, because the entangled beams emerge with different frequencies and a diffusing phase difference. It has been proven that the use of an internal wave-plate coupling the modes with orthogonal polarization is capable of locking the frequencies of the emerging beams to half the pump frequency, as well as reducing the phase-difference diffusion, at the expense of reducing the entanglement levels. In this work we characterize theoretically an alternative locking mechanism: the injection of a laser at half the pump frequency. Apart from being less invasive, this method should allow for an easier real-time experimental control. We show that such an injection is capable of generating the desired phase locking between the emerging beams, while still allowing for large levels of entanglement. Moreover, we find an additional region of the parameter space (at relatively large injections) where a mode with well defined polarization is in a highly amplitude-squeezed state.

  12. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  13. Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II

    DOE PAGES

    Nazaretski, E.; Yan, H.; Lauer, K.; ...

    2017-10-05

    A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less

  14. Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaretski, E.; Yan, H.; Lauer, K.

    A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less

  15. Multispectral simulation environment for modeling low-light-level sensor systems

    NASA Astrophysics Data System (ADS)

    Ientilucci, Emmett J.; Brown, Scott D.; Schott, John R.; Raqueno, Rolando V.

    1998-11-01

    Image intensifying cameras have been found to be extremely useful in low-light-level (LLL) scenarios including military night vision and civilian rescue operations. These sensors utilize the available visible region photons and an amplification process to produce high contrast imagery. It has been demonstrated that processing techniques can further enhance the quality of this imagery. For example, fusion with matching thermal IR imagery can improve image content when very little visible region contrast is available. To aid in the improvement of current algorithms and the development of new ones, a high fidelity simulation environment capable of producing radiometrically correct multi-band imagery for low- light-level conditions is desired. This paper describes a modeling environment attempting to meet these criteria by addressing the task as two individual components: (1) prediction of a low-light-level radiance field from an arbitrary scene, and (2) simulation of the output from a low- light-level sensor for a given radiance field. The radiance prediction engine utilized in this environment is the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model which is a first principles based multi-spectral synthetic image generation model capable of producing an arbitrary number of bands in the 0.28 to 20 micrometer region. The DIRSIG model is utilized to produce high spatial and spectral resolution radiance field images. These images are then processed by a user configurable multi-stage low-light-level sensor model that applies the appropriate noise and modulation transfer function (MTF) at each stage in the image processing chain. This includes the ability to reproduce common intensifying sensor artifacts such as saturation and 'blooming.' Additionally, co-registered imagery in other spectral bands may be simultaneously generated for testing fusion and exploitation algorithms. This paper discusses specific aspects of the DIRSIG radiance prediction for low- light-level conditions including the incorporation of natural and man-made sources which emphasizes the importance of accurate BRDF. A description of the implementation of each stage in the image processing and capture chain for the LLL model is also presented. Finally, simulated images are presented and qualitatively compared to lab acquired imagery from a commercial system.

  16. Miniaturized, High-Speed, Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith; Arzoumanian, Zaven; Kenyon, Steve; Spartana, Nick

    2013-01-01

    A low-cost, miniature x-ray source has been developed that can be modulated in intensity from completely off to full intensity on nanosecond timescales. This modulated x-ray source (MXS) has no filaments and is extremely rugged. The energy level of the MXS is adjustable from 0 to more than 100 keV. It can be used as the core of many new devices, providing the first practical, arbitrarily time-variable source of x-rays. The high-speed switching capability and miniature size make possible many new technologies including x-ray-based communication, compact time-resolved x-ray diffraction, novel x-ray fluorescence instruments, and low- and precise-dose medical x-rays. To make x-rays, the usual method is to accelerate electrons into a target material held at a high potential. When the electrons stop in the target, x-rays are produced with a spectrum that is a function of the target material and the energy to which the electrons are accelerated. Most commonly, the electrons come from a hot filament. In the MXS, the electrons start off as optically driven photoelectrons. The modulation of the x-rays is then tied to the modulation of the light that drives the photoelectron source. Much of the recent development has consisted of creating a photoelectrically-driven electron source that is robust, low in cost, and offers high intensity. For robustness, metal photocathodes were adopted, including aluminum and magnesium. Ultraviolet light from 255- to 350-nm LEDs (light emitting diodes) stimulated the photoemissions from these photocathodes with an efficiency that is maximized at the low-wavelength end (255 nm) to a value of roughly 10(exp -4). The MXS units now have much higher brightness, are much smaller, and are made using a number of commercially available components, making them extremely inexpensive. In the latest MXS design, UV efficiency is addressed by using a high-gain electron multiplier. The photocathode is vapor-deposited onto the input cone of a Burle Magnum(TradeMark) multiplier. This system yields an extremely robust photon-driven electron source that can tolerate long, weeks or more, exposure to air with negligible degradation. The package is also small. When combined with the electron target, necessary vacuum fittings, and supporting components (but not including LED electronics or high-voltage sources), the entire modulated x-ray source weighs as little as 158 grams.

  17. Measuring Cavitation with Synchrotron X-Rays

    NASA Astrophysics Data System (ADS)

    Duke, Daniel; Kastengren, Alan; Powell, Chris; X-Ray Fuel Spray Group, Energy Systems Division Team

    2012-11-01

    Cavitation plays an important role in the formation of sprays from small nozzles such as those found in fuel injection systems. A sharp-edged inlet from the sac into the nozzle of a diesel fuel injector is shown to inititate a strong sheet-like cavitation along the boundary layer of the nozzle throat, which is difficult to measure and can lead to acoustic damage. To investigate this phenomenon, a diagnostic technique capable of mapping the density field of the nozzle through regions of intense cavitation is required. Available visible-light techniques are limited to qualitative observations of the outer extent of cavitation zones. However, brilliant X-rays from a synchrotron source have negligible refraction and are capable of penetrating the full extent of cavitation zones. We present the early results of a novel application of line-of-sight, time-resolved X-ray radiography on a cavitating model nozzle. Experiments were conducted at Sector 7-BM of the Advanced Photon Source. Density and vapor distribution are measured from the quantitative absorption of monochromatic X-rays. The density field can then be tomographically reconstructed from the projections. The density is then validated against a range of compressible and incompressible numerical simulations. This research was performed at the 7-BM beamline of the Advanced Photon Source. We acknowledge the support of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357 and the DOE Vehicle Technologies Program (DOE-EERE).

  18. Jovian System as a Demonstration of JWST’s Capabilities for Solar System Science: Status Update

    NASA Astrophysics Data System (ADS)

    Conrad, Al; Fouchet, Thierry

    2018-06-01

    Characterize Jupiter’s cloud layers, winds, composition, auroral activity, and temperature structureProduce maps of the atmosphere and surface of volcanically-active Io and icy satellite Ganymede to constrain their thermal and atmospheric structure, and search for plumesCharacterize the ring structure, and its sources, sinks and evolution.We will present our progress to date in planning these observations and provide an update on our expectations.Our program will utilize all JWST instruments in different observing modes to demonstrate the capabilities of JWST’s instruments on one of the largest and brightest sources in the Solar System and on very faint targets next to it. We will also observe weak emission/absorption bands on strong continua, and with NIRIS/AMI we will maximize the Strehl ratio on unresolved features, such as Io’s volcanoes.We will deliver a number of science enabling products that will facilitate community science, including, e.g.: i) characterizing Jupiter’s scattered light in the context of scientific observations, ii) resolve point sources with AMI in a crowded field (Io’s volcanoes), and compare this to classical observations, iii) develop tools to mosaic/visualize spectral datacubes using MIRI and NIRSpec on Jupiter. Finally, our program will also set a first temporal benchmark to study time variations in the jovian system and any interconnectivity (e.g., through its magnetic field) during JWST’s lifetime.

  19. Spectral design flexibility of LED brings better life

    NASA Astrophysics Data System (ADS)

    Ou, Haiyan; Corell, Dennis; Ou, Yiyu; Poulsen, Peter B.; Dam-Hansen, Carsten; Petersen, Paul-Michael

    2012-03-01

    Light-emitting diodes (LEDs) are penetrating into the huge market of general lighting because they are energy saving and environmentally friendly. The big advantage of LED light sources, compared to traditional incandescent lamps and fluorescent light tubes, is the flexible spectral design to make white light using different color mixing schemes. The spectral design flexibility of white LED light sources will promote them for novel applications to improve the life quality of human beings. As an initial exploration to make use of the spectral design flexibility, we present an example: 'no blue' white LED light source for sufferers of disease Porphyria. An LED light source prototype, made of high brightness commercial LEDs applying an optical filter, was tested by a patient suffering from Porphyria. Preliminary results have shown that the sufferer could withstand the light source for much longer time than the standard light source. At last future perspectives on spectral design flexibility of LED light sources improving human being's life will be discussed, with focus on the light and health. The good health is ensured by the spectrum optimized so that vital hormones (melatonin and serotonin) are produced during times when they support human daily rhythm.

  20. 20 CFR Appendix 2 to Part 220 - Medical-Vocational Guidelines

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... medically determinable impairment(s). 203.00Maximum sustained work capability limited to medium work as a... his or her maximum sustained work capability for sedentary, light, medium, heavy, or very heavy work... at the various functional levels (sedentary, light, medium, heavy, and very heavy) as supported by...

  1. 20 CFR Appendix 2 to Part 220 - Medical-Vocational Guidelines

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... medically determinable impairment(s). 203.00Maximum sustained work capability limited to medium work as a... his or her maximum sustained work capability for sedentary, light, medium, heavy, or very heavy work... at the various functional levels (sedentary, light, medium, heavy, and very heavy) as supported by...

  2. 20 CFR Appendix 2 to Part 220 - Medical-Vocational Guidelines

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... medically determinable impairment(s). 203.00Maximum sustained work capability limited to medium work as a... his or her maximum sustained work capability for sedentary, light, medium, heavy, or very heavy work... at the various functional levels (sedentary, light, medium, heavy, and very heavy) as supported by...

  3. 20 CFR Appendix 2 to Part 220 - Medical-Vocational Guidelines

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... medically determinable impairment(s). 203.00Maximum sustained work capability limited to medium work as a... his or her maximum sustained work capability for sedentary, light, medium, heavy, or very heavy work... at the various functional levels (sedentary, light, medium, heavy, and very heavy) as supported by...

  4. 20 CFR Appendix 2 to Part 220 - Medical-Vocational Guidelines

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... medically determinable impairment(s). 203.00Maximum sustained work capability limited to medium work as a... his or her maximum sustained work capability for sedentary, light, medium, heavy, or very heavy work... at the various functional levels (sedentary, light, medium, heavy, and very heavy) as supported by...

  5. Time-lapse contact microscopy of cell cultures based on non-coherent illumination

    NASA Astrophysics Data System (ADS)

    Gabriel, Marion; Balle, Dorothée; Bigault, Stéphanie; Pornin, Cyrille; Gétin, Stéphane; Perraut, François; Block, Marc R.; Chatelain, François; Picollet-D'Hahan, Nathalie; Gidrol, Xavier; Haguet, Vincent

    2015-10-01

    Video microscopy offers outstanding capabilities to investigate the dynamics of biological and pathological mechanisms in optimal culture conditions. Contact imaging is one of the simplest imaging architectures to digitally record images of cells due to the absence of any objective between the sample and the image sensor. However, in the framework of in-line holography, other optical components, e.g., an optical filter or a pinhole, are placed underneath the light source in order to illuminate the cells with a coherent or quasi-coherent incident light. In this study, we demonstrate that contact imaging with an incident light of both limited temporal and spatial coherences can be achieved with sufficiently high quality for most applications in cell biology, including monitoring of cell sedimentation, rolling, adhesion, spreading, proliferation, motility, death and detachment. Patterns of cells were recorded at various distances between 0 and 1000 μm from the pixel array of the image sensors. Cells in suspension, just deposited or at mitosis focalise light into photonic nanojets which can be visualised by contact imaging. Light refraction by cells significantly varies during the adhesion process, the cell cycle and among the cell population in connection with every modification in the tridimensional morphology of a cell.

  6. Luminance requirements for lighted signage

    NASA Astrophysics Data System (ADS)

    Freyssinier, Jean Paul; Narendran, Nadarajah; Bullough, John D.

    2006-08-01

    Light-emitting diode (LED) technology is presently targeted to displace traditional light sources in backlighted signage. The literature shows that brightness and contrast are perhaps the two most important elements of a sign that determine its attention-getting capabilities and its legibility. Presently, there are no luminance standards for signage, and the practice of developing brighter signs to compete with signs in adjacent businesses is becoming more commonplace. Sign luminances in such cases may far exceed what people usually need for identifying and reading a sign. Furthermore, the practice of higher sign luminance than needed has many negative consequences, including higher energy use and light pollution. To move toward development of a recommendation for lighted signage, several laboratory human factors evaluations were conducted. A scale model of a storefront was used to present human subjects with a typical red channel-letter sign at luminances ranging from 8 cd/m2 to 1512 cd/m2 under four background luminances typical of nighttime outdoor and daytime inside-mall conditions (1, 100, 300, 1000 cd/m2), from three scaled viewing distances (30, 60, 340 ft), and either in isolation or adjacent to two similar signs. Subjects rated the brightness, acceptability, and ease of reading of the test sign for each combination of sign and background luminances and scaled viewing distances.

  7. LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae.

    PubMed

    Perozeni, Federico; Stella, Giulio Rocco; Ballottari, Matteo

    2018-01-05

    Microalgae are unicellular photosynthetic organisms considered as potential alternative sources for biomass, biofuels or high value products. However, limited biomass productivity is commonly experienced in their cultivating system despite their high potential. One of the reasons for this limitation is the high thermal dissipation of the light absorbed by the outer layers of the cultures exposed to high light caused by the activation of a photoprotective mechanism called non-photochemical quenching (NPQ). In the model organism for green algae Chlamydomonas reinhardtii , NPQ is triggered by pigment binding proteins called light-harvesting-complexes-stress-related (LHCSRs), which are over-accumulated in high light. It was recently reported that biomass productivity can be increased both in microalgae and higher plants by properly tuning NPQ induction. In this work increased light use efficiency is reported by introducing in C. reinhardtii a LHCSR3 gene under the control of Heat Shock Protein 70 / RUBISCO small chain 2 promoter in a npq4 lhcsr1 background, a mutant strain knockout for all LHCSR genes. This complementation strategy leads to a low expression of LHCSR3 , causing a strong reduction of NPQ induction but is still capable of protecting from photodamage at high irradiance, resulting in an improved photosynthetic efficiency and higher biomass accumulation.

  8. A Wirelessly Powered and Controlled Device for Optical Neural Control of Freely-Behaving Animals

    PubMed Central

    Wentz, Christian T.; Bernstein, Jacob G.; Monahan, Patrick; Guerra, Alexander; Rodriguez, Alex; Boyden, Edward S.

    2011-01-01

    Optogenetics, the ability to use light to activate and silence specific neuron types within neural networks in vivo and in vitro, is revolutionizing neuroscientists’ capacity to understand how defined neural circuit elements contribute to normal and pathological brain functions. Typically awake behaving experiments are conducted by inserting an optical fiber into the brain, tethered to a remote laser, or by utilizing an implanted LED, tethered to a remote power source. A fully wireless system would enable chronic or longitudinal experiments where long duration tethering is impractical, and would also support high-throughput experimentation. However, the high power requirements of light sources (LEDs, lasers), especially in the context of the high-frequency pulse trains often desired in experiments, precludes battery-powered approaches from being widely applicable. We have developed a headborne device weighing 2 grams capable of wirelessly receiving power using a resonant RF power link and storing the energy in an adaptive supercapacitor circuit, which can algorithmically control one or more headborne LEDs via a microcontroller. The device can deliver approximately 2W of power to the LEDs in steady state, and 4.3W in bursts. We also present an optional radio transceiver module (1 gram) which, when added to the base headborne device, enables real-time updating of light delivery protocols; dozens of devices can be simultaneously controlled from one computer. We demonstrate use of the technology to wirelessly drive cortical control of movement in mice. These devices may serve as prototypes for clinical ultra-precise neural prosthetics that use light as the modality of biological control. PMID:21701058

  9. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Shields, J. V.; Will, D.; Britt, C.; Perzanowski, D.; Pojmański, G.

    2017-10-01

    The All-Sky Automated Survey for Supernovae (ASAS-SN) is working toward imaging the entire visible sky every night to a depth of V˜ 17 mag. The present data covers the sky and spans ˜2-5 years with ˜100-400 epochs of observation. The data should contain some ˜1 million variable sources, and the ultimate goal is to have a database of these observations publicly accessible. We describe here a first step, a simple but unprecedented web interface https://asas-sn.osu.edu/ that provides an up to date aperture photometry light curve for any user-selected sky coordinate. The V band photometry is obtained using a two-pixel (16.″0) radius aperture and is calibrated against the APASS catalog. Because the light curves are produced in real time, this web tool is relatively slow and can only be used for small samples of objects. However, it also imposes no selection bias on the part of the ASAS-SN team, allowing the user to obtain a light curve for any point on the celestial sphere. We present the tool, describe its capabilities, limitations, and known issues, and provide a few illustrative examples.

  10. Fabrication of full-color GaN-based light-emitting diodes on nearly lattice-matched flexible metal foils.

    PubMed

    Kim, Hyeryun; Ohta, Jitsuo; Ueno, Kohei; Kobayashi, Atsushi; Morita, Mari; Tokumoto, Yuki; Fujioka, Hiroshi

    2017-05-18

    GaN-based light-emitting diodes (LEDs) have been widely accepted as highly efficient solid-state light sources capable of replacing conventional incandescent and fluorescent lamps. However, their applications are limited to small devices because their fabrication process is expensive as it involves epitaxial growth of GaN by metal-organic chemical vapor deposition (MOCVD) on single crystalline sapphire wafers. If a low-cost epitaxial growth process such as sputtering on a metal foil can be used, it will be possible to fabricate large-area and flexible GaN-based light-emitting displays. Here we report preparation of GaN films on nearly lattice-matched flexible Hf foils using pulsed sputtering deposition (PSD) and demonstrate feasibility of fabricating full-color GaN-based LEDs. It was found that introduction of low-temperature (LT) grown layers suppressed the interfacial reaction between GaN and Hf, allowing the growth of high-quality GaN films on Hf foils. We fabricated blue, green, and red LEDs on Hf foils and confirmed their normal operation. The present results indicate that GaN films on Hf foils have potential applications in fabrication of future large-area flexible GaN-based optoelectronics.

  11. Mixotrophy in the Winter Bloom-forming Heterocapsa rotundata: Quantifying Grazing Rates Using Two Methodologies

    NASA Astrophysics Data System (ADS)

    Aceves, A.; Pierson, J. J.; Millette, N.

    2016-02-01

    Mixotrophic plankton are capable of obtaining their energy through photosynthesis and phagocytosis, and have been observed to be common among marine and freshwater dinoflagellates. The role of mixotrophic dinoflagellates in the `microbial loop' has received little attention. Organisms that were only thought to introduce new carbon into the loop through photosynthesis may also consume fixed carbon by ingesting bacteria, making the `microbial loop' more complex that originally conceived. The nanodinoflagellate Heterocapsa rotundata was cultured under various light and nutrient regimes to investigate the role of phototrophy and phagotrophy during winter conditions in the Chesapeake Bay. We quantified grazing rates of H. rotundata on bacteria using two feeding methods, ingestion of polycarbonate microspheres and prey removal experiments. Ingestion of fluorescent microspheres by H. rotundata revealed their ability to phagocytize particles. Using flow cytometry we calculated grazing rates of H. rotundata on bacteria under various light intensities and ammonium concentrations and found that H. rotundata increased phagotrophy at lower light intensities and ammonium was positively correlated with the grazing rates of H. rotundata. We conclude that H. rotundata uses mixotrophy as a primary source for obtaining carbon during the winter when there is limited light and lower temperatures.

  12. Light Emitting Diode Flashlights as Effective and Inexpensive Light Sources for Fluorescence Microscopy

    PubMed Central

    Robertson, J. Brian; Zhang, Yunfei; Johnson, Carl Hirschie

    2009-01-01

    Summary Light-emitting diodes (LEDs) are becoming more commonly used as light sources for fluorescence microscopy. We describe the adaptation of a commercially available LED flashlight for use as a source for fluorescence excitation. This light source is long-lived, inexpensive, and is effective for excitation in the range of 440–600 nm. PMID:19772530

  13. Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of Brassica microgreens

    USDA-ARS?s Scientific Manuscript database

    Multi-layer vertical production systems using sole-source (SS) lighting can be used for microgreen production; however, traditional SS lighting can consume large amounts of electrical energy. Light-emitting diodes (LEDs) offer many advantages over conventional light sources including: high photoelec...

  14. LED lamp

    DOEpatents

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  15. Photonic crystal light source

    DOEpatents

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  16. Solar irradiance limits the long-term survival of Listeria monocytogenes in seawater.

    PubMed

    NicAogáin, K; Magill, D; O'Donoghue, B; Conneely, A; Bennett, C; O'Byrne, C P

    2018-03-01

    Seafood has often been implicated in outbreaks of food-borne illness caused by Listeria monocytogenes but the source of contamination is usually not known. In this study we investigated the possibility that this pathogen could survive in seawater for an extended time period. Freshly collected seawater samples were inoculated with 1 × 10 8  CFU per ml of L. monocytogenes EGD-e and survival was monitored by plate counting for up to 25 days. When incubated in the dark, either at ambient temperatures (4-14°C) or at 16°C, >10 4  CFU per ml survivors were present after 25 days. However, when the seawater cell suspensions were exposed to ambient light (solar irradiation) and temperatures, L. monocytogenes lost viability rapidly and no survivors could be detected after the 80 h time point. Both UV-A and visible light in the blue region of the spectrum (470 nm) were found to contribute to this effect. The stress inducible sigma factor σ B was found to play a role in survival of L. monocytogenes in seawater. Together these data demonstrate that solar irradiation is a critical determinant of L. monocytogenes survival in marine environments. The data further suggest the possibility of controlling this food-borne pathogen in food-processing environments using visible light. Listeria monocytogenes is a food-borne bacterial pathogen capable of causing the life-threatening infection, listeriosis. In seafood the route of contamination from the environment is often not well understood as this pathogen is not generally thought to survive well in seawater. Here we provide evidence that L. monocytogenes is capable of surviving for long periods of time in seawater when light is excluded. Sunlight is demonstrated to have a significant effect on the survival of this pathogen in seawater, and both visible (470 nm) and UV-A light are shown to contribute to this effect. © 2017 The Society for Applied Microbiology.

  17. A compact, coherent light source system architecture

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Dattoli, G.; DiPalma, E.; Einstein, J.; Milton, S. V.; Petrillo, V.; Rau, J. V.; Sabia, E.; Spassovsky, I. P.; van der Slot, P. J. M.

    2016-09-01

    Our team has been examining several architectures for short-wavelength, coherent light sources. We are presently exploring the use and role of advanced, high-peak power lasers for both accelerating the electrons and generating a compact light source with the same laser. Our overall goal is to devise light sources that are more accessible by industry and in smaller laboratory settings. Although we cannot and do not want to compete directly with sources such as third-generation light sources or that of national-laboratory-based free-electron lasers, we have several interesting schemes that could bring useful and more coherent, short-wavelength light source to more researchers. Here, we present and discuss several results of recent simulations and our future steps for such dissemination.

  18. Characterization of modulated time-of-flight range image sensors

    NASA Astrophysics Data System (ADS)

    Payne, Andrew D.; Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.

    2009-01-01

    A number of full field image sensors have been developed that are capable of simultaneously measuring intensity and distance (range) for every pixel in a given scene using an indirect time-of-flight measurement technique. A light source is intensity modulated at a frequency between 10-100 MHz, and an image sensor is modulated at the same frequency, synchronously sampling light reflected from objects in the scene (homodyne detection). The time of flight is manifested as a phase shift in the illumination modulation envelope, which can be determined from the sampled data simultaneously for each pixel in the scene. This paper presents a method of characterizing the high frequency modulation response of these image sensors, using a pico-second laser pulser. The characterization results allow the optimal operating parameters, such as the modulation frequency, to be identified in order to maximize the range measurement precision for a given sensor. A number of potential sources of error exist when using these sensors, including deficiencies in the modulation waveform shape, duty cycle, or phase, resulting in contamination of the resultant range data. From the characterization data these parameters can be identified and compensated for by modifying the sensor hardware or through post processing of the acquired range measurements.

  19. The LAMP instrument at the Linac Coherent Light Source free-electron laser

    NASA Astrophysics Data System (ADS)

    Osipov, Timur; Bostedt, Christoph; Castagna, J.-C.; Ferguson, Ken R.; Bucher, Maximilian; Montero, Sebastian C.; Swiggers, Michele L.; Obaid, Razib; Rolles, Daniel; Rudenko, Artem; Bozek, John D.; Berrah, Nora

    2018-03-01

    The Laser Applications in Materials Processing (LAMP) instrument is a new end-station for soft X-ray imaging, high-field physics, and ultrafast X-ray science experiments that is available to users at the Linac Coherent Light Source (LCLS) free-electron laser. While the instrument resides in the Atomic, Molecular and Optical science hutch, its components can be used at any LCLS beamline. The end-station has a modular design that provides high flexibility in order to meet user-defined experimental requirements and specifications. The ultra-high-vacuum environment supports different sample delivery systems, including pulsed and continuous atomic, molecular, and cluster jets; liquid and aerosols jets; and effusive metal vapor beams. It also houses movable, large-format, high-speed pnCCD X-ray detectors for detecting scattered and fluorescent photons. Multiple charged-particle spectrometer options are compatible with the LAMP chamber, including a double-sided spectrometer for simultaneous and even coincident measurements of electrons, ions, and photons produced by the interaction of the high-intensity X-ray beam with the various samples. Here we describe the design and capabilities of the spectrometers along with some general aspects of the LAMP chamber and show some results from the initial instrument commissioning.

  20. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Sallis, Shawn; Fuchs, Oliver; Blum, Monika; Weinhardt, Lothar; Heske, Clemens; Pepper, John; Jones, Michael; Brown, Adam; Spucces, Adrian; Chow, Ken; Smith, Brian; Glans, Per-Anders; Chen, Yanxue; Yan, Shishen; Pan, Feng; Piper, Louis F. J.; Denlinger, Jonathan; Guo, Jinghua; Hussain, Zahid; Chuang, Yi-De; Yang, Wanli

    2017-03-01

    An endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without moving any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.

  1. Intense X-ray and EUV light source

    DOEpatents

    Coleman, Joshua; Ekdahl, Carl; Oertel, John

    2017-06-20

    An intense X-ray or EUV light source may be driven by the Smith-Purcell effect. The intense light source may utilize intense electron beams and Bragg crystals. This may allow the intense light source to range from the extreme UV range up to the hard X-ray range.

  2. Carambola optics for recycling of light.

    PubMed

    Leutz, Ralf; Fu, Ling; Ries, Harald

    2006-04-20

    Recycling of light allows the luminance (radiance) emitted by a light source to be increased at the cost of reducing the total luminous flux (radiant power). Recycling of light means returning part of the emitted light to the source, where part of it will escape absorption. An optical design that is suitable for multiple and controlled recycling is described. Carambola optics is named for its resemblance to star fruit. Several pairs of mirrors or prisms redirect light repeatedly onto the source, thus achieving multiple transits of the light through the source. This recycled light exits the carambola in the same phase space as light directly emitted and not recycled.

  3. Method and system for evaluating integrity of adherence of a conductor bond to a mating surface of a substrate

    DOEpatents

    Telschow, K.L.; Siu, B.K.

    1996-07-09

    A method of evaluating integrity of adherence of a conductor bond to a substrate includes: (a) impinging a plurality of light sources onto a substrate; (b) detecting optical reflective signatures emanating from the substrate from the impinged light; (c) determining location of a selected conductor bond on the substrate from the detected reflective signatures; (d) determining a target site on the selected conductor bond from the detected reflective signatures; (e) optically imparting an elastic wave at the target site through the selected conductor bond and into the substrate; (f) optically detecting an elastic wave signature emanating from the substrate resulting from the optically imparting step; and (g) determining integrity of adherence of the selected conductor bond to the substrate from the detected elastic wave signature emanating from the substrate. A system is disclosed which is capable of conducting the method. 13 figs.

  4. Method and system for evaluating integrity of adherence of a conductor bond to a mating surface of a substrate

    DOEpatents

    Telschow, Kenneth L.; Siu, Bernard K.

    1996-01-01

    A method of evaluating integrity of adherence of a conductor bond to a substrate includes: a) impinging a plurality of light sources onto a substrate; b) detecting optical reflective signatures emanating from the substrate from the impinged light; c) determining location of a selected conductor bond on the substrate from the detected reflective signatures; d) determining a target site on the selected conductor bond from the detected reflective signatures; e) optically imparting an elastic wave at the target site through the selected conductor bond and into the substrate; f) optically detecting an elastic wave signature emanating from the substrate resulting from the optically imparting step; and g) determining integrity of adherence of the selected conductor bond to the substrate from the detected elastic wave signature emanating from the substrate. A system is disclosed which is capable of conducting the method.

  5. Towards combined optical coherence tomography and hyper-spectral imaging for gastrointestinal endoscopy

    NASA Astrophysics Data System (ADS)

    Attendu, Xavier; Crunelle, Camille; de Sivry-Houle, Martin Poinsinet; Maubois, Billie; Urbain, Joanie; Turrell, Chloe; Strupler, Mathias; Godbout, Nicolas; Boudoux, Caroline

    2018-04-01

    Previous works have demonstrated feasibility of combining optical coherence tomography (OCT) and hyper-spectral imaging (HSI) through a single double-clad fiber (DCF). In this proceeding we present the continued development of a system combining both modalities and capable of rapid imaging. We discuss the development of a rapidly scanning, dual-band, polygonal swept-source system which combines NIR (1260-1340 nm) and visible (450-800 nm) wavelengths. The NIR band is used for OCT imaging while visible light allows HSI. Scanning rates up to 24 kHz are reported. Furthermore, we present and discuss the fiber system used for light transport, delivery and collection, and the custom signal acquisition software. Key points include the use of a double-clad fiber coupler as well as important alignments and back-reflection management. Simultaneous and co-registered imaging with both modalities is presented in a bench-top system

  6. OSCAR: A new modular device for the identification and correlation of low energy particles

    NASA Astrophysics Data System (ADS)

    Dell'Aquila, D.; Lombardo, I.; Verde, G.; Vigilante, M.; Ausanio, G.; Ordine, A.; Miranda, M.; De Luca, M.; Alba, R.; Augey, L.; Barlini, S.; Bonnet, E.; Borderie, B.; Bougault, R.; Bruno, M.; Camaiani, A.; Casini, G.; Chbihi, A.; Cicerchia, M.; Cinausero, M.; Fabris, D.; Faible, Q.; Francalanza, L.; Frankland, J. D.; Grassi, L.; Gramegna, F.; Gruyer, D.; Kordyasz, A. J.; Kozik, T.; LaTorre, R.; Le Neindre, N.; Lopez, O.; Marchi, T.; Morelli, L.; Ottanelli, P.; Parlog, M.; Pastore, G.; Pasquali, G.; Piantelli, S.; Santonocito, D.; Stefanini, A. A.; Tortone, G.; Valdrè, S.; Vient, E.

    2018-01-01

    A new modular and high versatility hodoscope, OSCAR, has been developed and characterized. The aim of this hodoscope is to work as an ancillary detector of present large acceptance heavy ion detectors in specific angular regions where low thresholds and high granularities are needed. We discuss the capabilities of OSCAR in the ΔE-E identification of very low energy light particles, providing a precise map of the thickness uniformity of the ΔE (SSSSD, 20 μm) stage and showing how the thickness gradient affects the identification of particles. Energy spectra of light identified particles produced in Ca+Ca collisions at 35AMeV are used to investigate isospin transport phenomena involving the emission of low energy particles from the quasi-target (QT) source in semi-peripheral nuclear collisions. The possibility to explore particle-particle correlations are also discussed.

  7. Miniaturized integration of a fluorescence microscope

    PubMed Central

    Ghosh, Kunal K.; Burns, Laurie D.; Cocker, Eric D.; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J.

    2013-01-01

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals towards relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including semiconductor light source and sensor. This device enables high-speed cellular-level imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens. PMID:21909102

  8. CASOAR - An infrared active wave front sensor for atmospheric turbulence analysis

    NASA Astrophysics Data System (ADS)

    Cariou, Jean-Pierre; Dolfi, Agnes

    1992-12-01

    Knowledge of deformation of every point of a wave front over time allows statistical turbulence parameters to be analyzed, and the definition of real time adaptive optics to be designed. An optical instrumentation was built to meet this need. Integrated in a compact enclosure for experiments on outdoor sites, the CASOAR allows the deformations of a wave front to be measured rapidly (100 Hz) and with accuracy (1 deg). The CASOAR is an active system: it includes its own light source (CW CO2 laser), making it self-contained, self-aligned and insensitive to spurious light rays. After being reflected off a mirror located beyond the atmospheric layer to be analyzed (range of several kilometers), the beam is received and detected by coherent mixing. Electronic phase is converted in optical phase and recorded or displayed in real time on a monitor. Experimental results are shown, pointing out the capabilities of this device.

  9. Position, Orientation and Velocity Detection of Unmanned Underwater Vehicles (UUVs) Using an Optical Detector Array

    PubMed Central

    Pe’eri, Shachak; Thein, May-Win; Rzhanov, Yuri; Celikkol, Barbaros; Swift, M. Robinson

    2017-01-01

    This paper presents a proof-of-concept optical detector array sensor system to be used in Unmanned Underwater Vehicle (UUV) navigation. The performance of the developed optical detector array was evaluated for its capability to estimate the position, orientation and forward velocity of UUVs with respect to a light source fixed in underwater. The evaluations were conducted through Monte Carlo simulations and empirical tests under a variety of motion configurations. Monte Carlo simulations also evaluated the system total propagated uncertainty (TPU) by taking into account variations in the water column turbidity, temperature and hardware noise that may degrade the system performance. Empirical tests were conducted to estimate UUV position and velocity during its navigation to a light beacon. Monte Carlo simulation and empirical results support the use of the detector array system for optics based position feedback for UUV positioning applications. PMID:28758936

  10. Electricity generation from digitally printed cyanobacteria.

    PubMed

    Sawa, Marin; Fantuzzi, Andrea; Bombelli, Paolo; Howe, Christopher J; Hellgardt, Klaus; Nixon, Peter J

    2017-11-06

    Microbial biophotovoltaic cells exploit the ability of cyanobacteria and microalgae to convert light energy into electrical current using water as the source of electrons. Such bioelectrochemical systems have a clear advantage over more conventional microbial fuel cells which require the input of organic carbon for microbial growth. However, innovative approaches are needed to address scale-up issues associated with the fabrication of the inorganic (electrodes) and biological (microbe) parts of the biophotovoltaic device. Here we demonstrate the feasibility of using a simple commercial inkjet printer to fabricate a thin-film paper-based biophotovoltaic cell consisting of a layer of cyanobacterial cells on top of a carbon nanotube conducting surface. We show that these printed cyanobacteria are capable of generating a sustained electrical current both in the dark (as a 'solar bio-battery') and in response to light (as a 'bio-solar-panel') with potential applications in low-power devices.

  11. Device for translating negative film image to a line scan

    DOEpatents

    Dutton, G.W.

    1998-05-19

    A negative film reader records high-resolution optical density changes across negative film radiographic images to allow precise image dimensions to be determined. A laser light source capable of high-resolution focusing is passed through an intensity control filter, focused by a lens, and reflected off a mirror to focus in the plane of the negative film. The light transmitted through the film is collected by a second lens and directed to a photo diode detector which senses the transmitted intensity. The output of the photo diode signal amplifier is sent to the Y-axis input of an X-Y recorder. The film sample is transported in a plane perpendicular to the beam axis by means of a slide. The film position is monitored, with the signal amplified and recorded as the X-axis on the X-Y recorder. The linear dimensions and positions of image components can be determined by direct measurement of the amplified recording.

  12. Aladdin: Transforming science at SRC

    NASA Astrophysics Data System (ADS)

    Bisognano, J.; Bissen, M.; Green, M.; Jacobs, K.; Moore, C.; Olson, E.; Severson, M.; Wehlitz, R.

    2011-09-01

    The Synchrotron Radiation Center (SRC) is dedicated to enabling of innovative research using IR, ultraviolet, and soft X-ray synchrotron radiation. It delivers beam time with high reliability (99%) and continues to improve the Aladdin storage ring complex. A lower emittance tuning has been commissioned to support a microfocus capability. SRC successfully installed an APPLE II undulator providing elliptically polarized light with lattice compensation for flexible scanning. Installation of a new IR beamline at SRC is providing synchrotron chemical imaging with unprecedented structural and chemical information, simultaneously. In addition, SRC has established a strong education and outreach program to bring the knowledge and power of light source science to a wider national community. It is moving forward into the future by developing a new micro focus beamline producing a diffraction-limited focus of about 500 nm at 22 eV, proposing an additional diffraction-limited chemical imaging beamline, and advancing the Wisconsin Free Electron Laser (WiFEL) concept.

  13. Miniaturized integration of a fluorescence microscope.

    PubMed

    Ghosh, Kunal K; Burns, Laurie D; Cocker, Eric D; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J

    2011-09-11

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals for relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including a semiconductor light source and sensor. This device enables high-speed cellular imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens.

  14. Thermal energy harvesting near-infrared radiation and accessing low temperatures with plasmonic sensors

    NASA Astrophysics Data System (ADS)

    Karker, Nicholas A.; Dharmalingam, Gnanaprakash; Carpenter, Michael A.

    2015-10-01

    Near-infrared (NIR) thermal energy harvesting has been demonstrated for gold nanorods (AuNRs), allowing concentration dependent, ppm-level, gas detection of H2, CO, and NO2 at 500 °C without using a white light source. Part-per-million detection capabilities of the gold nanorods are demonstrated with a factor of 11 reduction in collection times in the NIR as compared to measurements made in the visible light region. Decreased collection times are enabled by an increase in S : N ratio, which allowed a demonstration of selectivity through the use of both full spectral and a reduced spectral-based principal component analysis. Furthermore, low temperature thermal imaging spectra have been obtained at sample temperatures ranging from 275-500 °C, showing the possibility of energy harvested gas sensing at lower temperatures. These findings are promising in the area of miniaturizing plasmonic gas sensing technology and integration in areas such as gas turbines.

  15. Non-invasive light-weight integration engine for building EHR from autonomous distributed systems.

    PubMed

    Crespo Molina, Pere; Angulo Fernández, Carlos; Maldonado Segura, José A; Moner Cano, David; Robles Viejo, Montserrat

    2006-01-01

    Pangea-LE is a message oriented light-weight integration engine, allowing concurrent access to clinical information from disperse and heterogeneous data sources. The engine extracts the information and serves it to the requester client applications in a flexible XML format. This XML response message can be formatted on demand by the appropriate XSL (Extensible Stylesheet Language) transformation in order to fit client application needs. In this article we present a real use case sample where Pangea-LE collects and generates "on the fly" a structured view of all the patient clinical information available in a healthcare organisation. This information is presented to healthcare professionals in an EHR (Electronic Health Record) viewer Web application with patient search and EHR browsing capabilities. Implantation in a real environment has been a notable success due to the non-invasive method which extremely respects the existing information systems.

  16. Closed-loop optical neural stimulation based on a 32-channel low-noise recording system with online spike sorting

    NASA Astrophysics Data System (ADS)

    Nguyen, T. K. T.; Navratilova, Z.; Cabral, H.; Wang, L.; Gielen, G.; Battaglia, F. P.; Bartic, C.

    2014-08-01

    Objective. Closed-loop operation of neuro-electronic systems is desirable for both scientific and clinical (neuroprosthesis) applications. Integrating optical stimulation with recording capability further enhances the selectivity of neural stimulation. We have developed a system enabling the local delivery of optical stimuli and the simultaneous electrical measuring of the neural activities in a closed-loop approach. Approach. The signal analysis is performed online through the implementation of a template matching algorithm. The system performance is demonstrated with the recorded data and in awake rats. Main results. Specifically, the neural activities are simultaneously recorded, detected, classified online (through spike sorting) from 32 channels, and used to trigger a light emitting diode light source using generated TTL signals. Significance. A total processing time of 8 ms is achieved, suitable for optogenetic studies of brain mechanisms online.

  17. KSC-2012-4239

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – Inside the Space Life Sciences Laboratory, or SLSL, at NASA’s Kennedy Space Center in Florida, Dr. Matthew Mickens, a plant biologist from North Carolina Agriculture and Technical State University in North Carolina, measures radish plants that were just harvested from a plant growth chamber. The plants were grown under red and blue LED lights. The plant experiment at Kennedy is part of the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. This plant experiment studies the effects of different types of lighting on plants such as radishes and leaf lettuce. Results of these studies will help provide information on how to grow food sources for deep space exploration missions. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. Photo credit: NASA/Frank Ochoa-Gonzales

  18. KSC-2012-4240

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – Inside the Space Life Sciences Laboratory, or SLSL, at NASA’s Kennedy Space Center in Florida, Dr. Matthew Mickens, a plant biologist from North Carolina Agriculture and Technical State University in North Carolina, measures radish plants that were just harvested from a plant growth chamber. The plants were grown under red and blue LED lights. The plant experiment at Kennedy is part of the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. This plant experiment studies the effects of different types of lighting on plants such as radishes and leaf lettuce. Results of these studies will help provide information on how to grow food sources for deep space exploration missions. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. Photo credit: NASA/Frank Ochoa-Gonzales

  19. Optical to optical interface device

    NASA Technical Reports Server (NTRS)

    Oliver, D. S.; Vohl, P.; Nisenson, P.

    1972-01-01

    The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.

  20. Design and validation of a diffuse reflectance and spectroscopic microendoscope with poly(dimethylsioxane)-based phantoms

    PubMed Central

    Greening, Gage J.; Powless, Amy J.; Hutcheson, Joshua A.; Prieto, Sandra P.; Majid, Aneeka A.; Muldoon, Timothy J.

    2015-01-01

    Many cases of epithelial cancer originate in basal layers of tissue and are initially undetected by conventional microendoscopy techniques. We present a bench-top, fiber-bundle microendoscope capable of providing high resolution images of surface cell morphology. Additionally, the microendoscope has the capability to interrogate deeper into material by using diffuse reflectance and broadband diffuse reflectance spectroscopy. The purpose of this multimodal technique was to overcome the limitation of microendoscopy techniques that are limited to only visualizing morphology at the tissue or cellular level. Using a custom fiber optic probe, high resolution surface images were acquired using topical proflavine to fluorescently stain non-keratinized epithelia. A 635 nm laser coupled to a 200 μm multimode fiber delivers light to the sample and the diffuse reflectance signal was captured by a 1 mm image guide fiber. Finally, a tungsten-halogen lamp coupled to a 200 μm multimode fiber delivers broadband light to the sample to acquire spectra at source-detector separations of 374, 729, and 1051 μm. To test the instrumentation, a high resolution proflavine-induced fluorescent image of resected healthy mouse colon was acquired. Additionally, five monolayer poly(dimethylsiloxane)-based optical phantoms with varying absorption and scattering properties were created to acquire diffuse reflectance profiles and broadband spectra. PMID:25983372

  1. Design and validation of a diffuse reflectance and spectroscopic microendoscope with poly(dimethylsiloxane)-based phantoms

    NASA Astrophysics Data System (ADS)

    Greening, Gage J.; Powless, Amy J.; Hutcheson, Joshua A.; Prieto, Sandra P.; Majid, Aneeka A.; Muldoon, Timothy J.

    2015-03-01

    Many cases of epithelial cancer originate in basal layers of tissue and are initially undetected by conventional microendoscopy techniques. We present a bench-top, fiber-bundle microendoscope capable of providing high resolution images of surface cell morphology. Additionally, the microendoscope has the capability to interrogate deeper into material by using diffuse reflectance and broadband diffuse reflectance spectroscopy. The purpose of this multimodal technique was to overcome the limitation of microendoscopy techniques that are limited to only visualizing morphology at the tissue or cellular level. Using a custom fiber optic probe, high resolution surface images were acquired using topical proflavine to fluorescently stain non-keratinized epithelia. A 635 nm laser coupled to a 200 μm multimode fiber delivers light to the sample and the diffuse reflectance signal was captured by a 1 mm image guide fiber. Finally, a tungsten-halogen lamp coupled to a 200 μm multimode fiber delivers broadband light to the sample to acquire spectra at source-detector separations of 374, 729, and 1051 μm. To test the instrumentation, a high resolution proflavine-induced fluorescent image of resected healthy mouse colon was acquired. Additionally, five monolayer poly(dimethylsiloxane)-based optical phantoms with varying absorption and scattering properties were created to acquire diffuse reflectance profiles and broadband spectra.

  2. CubeSat Nighttime Earth Observations

    NASA Astrophysics Data System (ADS)

    Pack, D. W.; Hardy, B. S.; Longcore, T.

    2017-12-01

    Satellite monitoring of visible emissions at night has been established as a useful capability for environmental monitoring and mapping the global human footprint. Pioneering work using Defense Meteorological Support Program (DMSP) sensors has been followed by new work using the more capable Visible Infrared Imaging Radiometer Suite (VIIRS). Beginning in 2014, we have been investigating the ability of small visible light cameras on CubeSats to contribute to nighttime Earth science studies via point-and-stare imaging. This paper summarizes our recent research using a common suite of simple visible cameras on several AeroCube satellites to carry out nighttime observations of urban areas and natural gas flares, nighttime weather (including lighting), and fishing fleet lights. Example results include: urban image examples, the utility of color imagery, urban lighting change detection, and multi-frame sequences imaging nighttime weather and large ocean areas with extensive fishing vessel lights. Our results show the potential for CubeSat sensors to improve monitoring of urban growth, light pollution, energy usage, the urban-wildland interface, the improvement of electrical power grids in developing countries, light-induced fisheries, and oil industry flare activity. In addition to orbital results, the nighttime imaging capabilities of new CubeSat sensors scheduled for launch in October 2017 are discussed.

  3. Lighting system with thermal management system

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2015-02-24

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  4. Lighting system with thermal management system

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2015-08-25

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  5. Lighting system with thermal management system

    DOEpatents

    Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2013-05-07

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  6. Lighting system with thermal management system

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr, Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2016-10-11

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  7. An ultra-high-speed cinematographic method for the study of wakes in hypersonic ballistic ranges

    NASA Astrophysics Data System (ADS)

    Koeneke, Axel; Jaeggy, Bernard Charles; Koerber, Germain

    1987-11-01

    Optical methods are among the only possibilities to study hypersonic wakes in ballistic ranges. Because of the flow velocities involved the methods employed must permit exposure time well below one microsecond. The ISL has used ultrahigh speed visualization techniques for the study of the transition of hypersonic wakes for quite some time, but the means available up to now did not permit investigation of the time-history of the instabilities in the wake. The use of a laser equipped with an acousto-optical modulator is proposed as a source of ultrashort, highly energetic pulses with high repetition rate to be used to record a certain number of images of the same experiment in order to study the time history of these instabilities. Advantages of the laser as a light source are not only the high energies available together with pulse duration down to 20 nanoseconds, but mostly the free choice of repetition rate independently of exposure time, and the possibility to synchronize the pulses with external events. The laser is a point source and as such can be used in a variety of different optical setups. The coherent nature of the laser light even permits holographic techniques. The reception system capable of recording the images at a sufficient rate is the basic problem in the development and use of the proposed setup.

  8. Assessment of the actual light dose in photodynamic therapy.

    PubMed

    Schaberle, Fabio A

    2018-06-09

    Photodynamic therapy (PDT) initiates with the absorption of light, which depends on the spectral overlap between the light source emission and the photosensitizer absorption, resulting in the number of photons absorbed, the key parameter starting PDT processes. Most papers report light doses regardless if the light is only partially absorbed or shifted relatively to the absorption peak, misleading the actual light dose value and not allowing quantitative comparisons between photosensitizers and light sources. In this manuscript a method is presented to calculate the actual light dose delivered by any light source for a given photosensitizer. This method allows comparing light doses delivered for any combination of light source (broad or narrow band or daylight) and photosensitizer. Copyright © 2018. Published by Elsevier B.V.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, C J

    A renaissance in nuclear physics is occurring around the world because of a new kind of incredibly bright, gamma-ray light source that can be created with short pulse lasers and energetic electron beams. These highly Mono-Energetic Gamma-ray (MEGa-ray) sources produce narrow, laser-like beams of incoherent, tunable gamma-rays and are enabling access and manipulation of the nucleus of the atom with photons or so called 'Nuclear Photonics'. Just as in the early days of the laser when photon manipulation of the valence electron structure of the atom became possible and enabling to new applications and science, nuclear photonics with laser-based gamma-raymore » sources promises both to open up wide areas of practical isotope-related, materials applications and to enable new discovery-class nuclear science. In the United States, the development of high brightness and high flux MEGa-ray sources is being actively pursued at the Lawrence Livermore National Laboratory in Livermore (LLNL), California near San Francisco. The LLNL work aims to create by 2013 a machine that will advance the state of the art with respect to source the peak brightness by 6 orders of magnitude. This machine will create beams of 1 to 2.3 MeV photons with color purity matching that of common lasers. In Europe a similar but higher photon energy gamma source has been included as part of the core capability that will be established at the Extreme Light Infrastructure Nuclear Physics (ELI-NP) facility in Magurele, Romania outside of Bucharest. This machine is expected to have an end point gamma energy in the range of 13 MeV. The machine will be co-located with two world-class, 10 Petawatt laser systems thus allowing combined intense-laser and gamma-ray interaction experiments. Such capability will be unique in the world. In this talk, Dr. Chris Barty from LLNL will review the state of the art with respect to MEGa-ray source design, construction and experiments and will describe both the ongoing projects around the world as well some of the exciting applications that these machines will enable. The optimized interaction of short-duration, pulsed lasers with relativistic electron beams (inverse laser-Compton scattering) is the key to unrivaled MeV-scale photon source monochromaticity, pulse brightness and flux. In the MeV spectral range, such Mono-Energetic Gamma-ray (MEGa-ray) sources can have many orders of magnitude higher peak brilliance than even the world's largest synchrotrons. They can efficiently perturb and excite the isotope-specific resonant structure of the nucleus in a manner similar to resonant laser excitation of the valence electron structure of the atom.« less

  10. Environmental Testing of Tritium-Phosphor Glass Vials for Use in Long-Life Radioisotope Power Conversion Units

    NASA Technical Reports Server (NTRS)

    Zemcov, Michael; Cardona, Pedro; Parkus, James; Patru, Dorin; Yost, Valerie

    2017-01-01

    Power generation in extreme environments, such as the outer solar system, the night side of planets, or other low-illumination environments, currently presents a technology gap that challenges NASA's ambitious scientific goals. We are developing a radioisotope power cell (RPC) that utilizes commercially available tritium light sources and standard 1.85 eV InGaP2 photovoltaic cells to convert beta particle energy to electric energy. In the test program described here, we perform environmental tests on commercially available borosilicate glass vials internally coated with a ZnS luminescent phosphor that are designed to contain gaseous tritium in our proposed power source. Such testing is necessary to ensure that the glass containing the radioactive tritium is capable of withstanding the extreme environments of launch and space for extended periods of time.

  11. Compact illumination optic with three freeform surfaces for improved beam control.

    PubMed

    Sorgato, Simone; Mohedano, Rubén; Chaves, Julio; Hernández, Maikel; Blen, José; Grabovičkić, Dejan; Benítez, Pablo; Miñano, Juan Carlos; Thienpont, Hugo; Duerr, Fabian

    2017-11-27

    Multi-chip and large size LEDs dominate the lighting market in developed countries these days. Nevertheless, a general optical design method to create prescribed intensity patterns for this type of extended sources does not exist. We present a design strategy in which the source and the target pattern are described by means of "edge wavefronts" of the system. The goal is then finding an optic coupling these wavefronts, which in the current work is a monolithic part comprising up to three freeform surfaces calculated with the simultaneous multiple surface (SMS) method. The resulting optic fully controls, for the first time, three freeform wavefronts, one more than previous SMS designs. Simulations with extended LEDs demonstrate improved intensity tailoring capabilities, confirming the effectiveness of our method and suggesting that enhanced performance features can be achieved by controlling additional wavefronts.

  12. Non-invasive, Contrast-enhanced Spectral Imaging of Breast Cancer Signatures in Preclinical Animal Models In vivo

    PubMed Central

    Ramanujan, V Krishnan; Ren, Songyang; Park, Sangyong; Farkas, Daniel L

    2011-01-01

    We report here a non-invasive multispectral imaging platform for monitoring spectral reflectance and fluorescence images from primary breast carcinoma and metastatic lymph nodes in preclinical rat model in vivo. The system is built around a monochromator light source and an acousto-optic tunable filter (AOTF) for spectral selection. Quantitative analysis of the measured reflectance profiles in the presence of a widely-used lymphazurin dye clearly demonstrates the capability of the proposed imaging platform to detect tumor-associated spectral signatures in the primary tumors as well as metastatic lymphatics. Tumor-associated changes in vascular oxygenation and interstitial fluid pressure are reasoned to be the physiological sources of the measured reflectance profiles. We also discuss the translational potential of our imaging platform in intra-operative clinical setting. PMID:21572915

  13. Study of a Solar Sensor for use in Space Vehicle Orientation Control Systems

    NASA Technical Reports Server (NTRS)

    Spencer, Paul R.

    1961-01-01

    The solar sensor described herein may be used for a variety of space operations requiring solar orientation. The use of silicon solar cells as the sensing elements provides the sensor with sufficient capability to withstand the hazards of a space environment. A method of arranging the cells in a sensor consists simply of mounting them at a large angle to the base. The use of an opaque shield placed between the cells and perpendicular to the base enhances the small-angle sensitivity while adding slightly to the bulk of the sensor. The difference in illumination of these cells as the result of an oblique incidence of the light rays from the reference source causes an electrical error signal which, when used in a battery-bridge circuit, requires a minimum of electrical processing for use in a space-vehicle orientation control system. An error which could occur after prolonged operation of the sensor is that resulting from asymmetrical aging of opposite cells. This could be periodically corrected with a balance potentiometer. A more routine error in the sensor is that produced by reflected earth radiation. This error may be eliminated over a large portion of the operation time by restricting the field of view and, consequently, the capture capability. A more sophisticated method of eliminating this error is to use separate sensors, for capture and fine pointing, along with a switching device. An experimental model has been constructed and tested to yield an output sensitivity of 1.2 millivolts per second of arc with a load resistance of 1,000 ohms and a reference light source of approximately 1,200 foot-candles delivered at the sensor.

  14. A global simulation approach to optics, lighting, rendering, and human perception for the improvement of safety in automobiles

    NASA Astrophysics Data System (ADS)

    Delacour, Jacques; Fournier, Laurent; Menu, Jean-Pierre

    2005-02-01

    In order to provide optimum comfort and safety conditions, information must be seen as clearly as possible by the driver and in all lighting conditions, by day and by night. Therefore, it is becoming fundamental to anticipate in order to predict what the driver will see in a vehicle, in various configurations of scene and observation conditions, so as to optimize the lighting, the ergonomics of the interfaces and the choice of surrounding materials which can be a source of reflection. This information and choices which will depend on it, make it necessary to call upon simulation techniques capable of modeling, globally and simultaneously, the entire light phenomena: surrounding lighting, display technologies, the inside lighting, taking into consideration the multiple reflections caused by the reflection of this light inside the vehicle. This has been the object of an important development, which results in the solution SPEOS Visual Ergonomics, led by company OPTIS. A unique human vision model was developed in collaboration with worldwide specialists in visual perception to transform spectral luminance information into perceived visual information. This model, based on physiological aspects, takes into account the response of the eye to light levels, to color, to contrast, and to ambient lighting, as well as to rapid changes in surrounding luminosity, in accordance with the response of the retina. This unique tool, and information now accessible, enable ergonomists and designers of on board systems to improve the conditions of global visibility, and in so doing the global perception of the environment that the driver will have.

  15. Survey of on-road image projection with pixel light systems

    NASA Astrophysics Data System (ADS)

    Rizvi, Sadiq; Knöchelmann, Marvin; Ley, Peer-Phillip; Lachmayer, Roland

    2017-12-01

    HID, LED and laser-based high resolution automotive headlamps, as of late known as `pixel light systems', are at the forefront of the developing technologies paving the way for autonomous driving. In addition to light distribution capabilities that outperform Adaptive Front Lighting and Matrix Beam systems, pixel light systems provide the possibility of image projection directly onto the street. The underlying objective is to improve the driving experience, in any given scenario, in terms of safety, comfort and interaction for all road users. The focus of this work is to conduct a short survey on this state-of-the-art image projection functionality. A holistic research regarding the image projection functionality can be divided into three major categories: scenario selection, technological development and evaluation design. Consequently, the work presented in this paper is divided into three short studies. Section 1 provides a brief introduction to pixel light systems and a justification for the approach adopted for this study. Section 2 deals with the selection of scenarios (and driving maneuvers) where image projection can play a critical role. Section 3 discusses high power LED and LED array based prototypes that are currently under development. Section 4 demonstrates results from an experiment conducted to evaluate the illuminance of an image space projected using a pixel light system prototype developed at the Institute of Product Development (IPeG). Findings from this work can help to identify and advance future research work relating to: further development of pixel light systems, scenario planning, examination of optimal light sources, behavioral response studies etc.

  16. Optical-to-optical interface device

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.; Bleha, W. P.; Miller, L.; Grinberg, J.; Fraas, L.; Margerum, D.

    1975-01-01

    An investigation was conducted to develop an optical-to-optical interface device capable of performing real-time incoherent-to-incoherent optical image conversion. The photoactivated liquid crystal light valve developed earlier represented a prototype liquid crystal light valve device capable of performing these functions. A device was developed which had high performance and extended lifetime.

  17. Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source.

    PubMed

    Ahmad, Azeem; Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Mehta, Dalip Singh

    2016-04-01

    In this Letter, we demonstrate quantitative phase imaging of biological samples, such as human red blood cells (RBCs) and onion cells using narrow temporal frequency and wide angular frequency spectrum light source. This type of light source was synthesized by the combined effect of spatial, angular, and temporal diversity of speckle reduction technique. The importance of using low spatial and high temporal coherence light source over the broad band and narrow band light source is that it does not require any dispersion compensation mechanism for biological samples. Further, it avoids the formation of speckle or spurious fringes which arises while using narrow band light source.

  18. The role of light microscopy in aerospace analytical laboratories

    NASA Technical Reports Server (NTRS)

    Crutcher, E. R.

    1977-01-01

    Light microscopy has greatly reduced analytical flow time and added new dimensions to laboratory capability. Aerospace analytical laboratories are often confronted with problems involving contamination, wear, or material inhomogeneity. The detection of potential problems and the solution of those that develop necessitate the most sensitive and selective applications of sophisticated analytical techniques and instrumentation. This inevitably involves light microscopy. The microscope can characterize and often identify the cause of a problem in 5-15 minutes with confirmatory tests generally less than one hour. Light microscopy has and will make a very significant contribution to the analytical capabilities of aerospace laboratories.

  19. Toward the realization of a compact chemical sensor platform using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Marcus, Logan S.; Pellegrino, Paul M.

    2015-05-01

    The Army is investigating several spectroscopic techniques (e.g., infrared spectroscopy) that could allow for an adaptable sensor platform. Traditionally, chemical sensing platforms have been hampered by the opposing concerns of increasing sensor capability while maintaining a minimal package size. Current sensors, although reasonably sized, are geared to more classical chemical threats, and the ability to expand their capabilities to a broader range of emerging threats is uncertain. Recently, photoacoustic spectroscopy, employed in a sensor format, has shown enormous potential to address these ever-changing threats, while maintaining a compact sensor design. In order to realize the advantage of photoacoustic sensor miniaturization, light sources of comparable size are required. Recent research has employed quantum cascade lasers (QCLs) in combination with MEMS-scale photoacoustic cell designs. The continuous tuning capability of QCLs over a broad wavelength range in the mid-infrared spectral region greatly expands the number of compounds that can be identified. Results have demonstrated that utilizing a tunable QCL with a MEMS-scale photoacoustic cell produces favorable detection limits (ppb levels) for chemical targets (e.g., dimethyl methyl phosphonate (DMMP), vinyl acetate, 1,4-dioxane). Although our chemical sensing research has benefitted from the broad tuning capabilities of QCLs, the limitations of these sources must be considered. Current commercially available tunable systems are still expensive and obviously geared more toward laboratory operation, not fielding. Although the laser element itself is quite small, the packaging, power supply, and controller remain logistical burdens. Additionally, operational features such as continuous wave (CW) modulation and laser output powers while maintaining wide tunability are not yet ideal for a variety of sensing applications. In this paper, we will discuss our continuing evaluation of QCL technology as it matures in relation to our ultimate goal of a universal compact chemical sensor platform.

  20. A novel amblyopia treatment system based on LED light source

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling

    2011-05-01

    A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.

  1. A novel amblyopia treatment system based on LED light source

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling

    2010-12-01

    A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.

  2. The Inverse-Square Law with Data Loggers

    ERIC Educational Resources Information Center

    Bates, Alan

    2013-01-01

    The inverse-square law for the intensity of light received at a distance from a light source has been verified using various experimental techniques. Typical measurements involve a manual variation of the distance between a light source and a light sensor, usually by sliding the sensor or source along a bench, measuring the source-sensor distance…

  3. Colors of attraction: Modeling insect flight to light behavior.

    PubMed

    Donners, Maurice; van Grunsven, Roy H A; Groenendijk, Dick; van Langevelde, Frank; Bikker, Jan Willem; Longcore, Travis; Veenendaal, Elmar

    2018-06-26

    Light sources attract nocturnal flying insects, but some lamps attract more insects than others. The relation between the properties of a light source and the number of attracted insects is, however, poorly understood. We developed a model to quantify the attractiveness of light sources based on the spectral output. This model is fitted using data from field experiments that compare a large number of different light sources. We validated this model using two additional datasets, one for all insects and one excluding the numerous Diptera. Our model facilitates the development and application of light sources that attract fewer insects without the need for extensive field tests and it can be used to correct for spectral composition when formulating hypotheses on the ecological impact of artificial light. In addition, we present a tool allowing the conversion of the spectral output of light sources to their relative insect attraction based on this model. © 2018 Wiley Periodicals, Inc.

  4. Geometrical analysis of an optical fiber bundle displacement sensor

    NASA Astrophysics Data System (ADS)

    Shimamoto, Atsushi; Tanaka, Kohichi

    1996-12-01

    The performance of a multifiber optical lever was geometrically analyzed by extending the Cook and Hamm model [Appl. Opt. 34, 5854-5860 (1995)] for a basic seven-fiber optical lever. The generalized relationships between sensitivity and the displacement detection limit to the fiber core radius, illumination irradiance, and coupling angle were obtained by analyses of three various types of light source, i.e., a parallel beam light source, an infinite plane light source, and a point light source. The analysis of the point light source was confirmed by a measurement that used the light source of a light-emitting diode. The sensitivity of the fiber-optic lever is inversely proportional to the fiber core radius, whereas the receiving light power is proportional to the number of illuminating and receiving fibers. Thus, the bundling of the finer fiber with the larger number of illuminating and receiving fibers is more effective for improving sensitivity and the displacement detection limit.

  5. High power cladding light stripper using segmented corrosion method: theoretical and experimental studies.

    PubMed

    Yin, Lu; Yan, Mingjian; Han, Zhigang; Wang, Hailin; Shen, Hua; Zhu, Rihong

    2017-04-17

    We present the segmented corrosion method that uses hydrofluoric acid to etch the fiber of a fiber laser for removing high-power cladding light to improve stripping uniformity and power handling capability. For theoretical guidelines, we propose a simulation model of etched-fiber stripping to evaluate the relationship between the etched-fiber parameters and cladding light attenuation and to analyze the stripping uniformity achieved with segmented corrosion. A two-segment etched fiber is fabricated with cladding light attenuation of 19.8 dB and power handling capability up to 670 W. We find that the cladding light is stripped uniformly and the temperature distribution is uniform without the formation of hot spots.

  6. A microfabricated, low dark current a-Se detector for measurement of microplasma optical emission in the UV for possible use on-site

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Karim, Karim S.; Karanassios, Vassili

    2013-05-01

    Traditionally, samples are collected on-site (i.e., in the field) and are shipped to a lab for chemical analysis. An alternative is offered by using portable chemical analysis instruments that can be used on-site (i.e., in the field). Many analytical measurements by optical emission spectrometry require use of light-sources and of spectral lines that are in the Ultra-Violet (UV, ~200 nm - 400 nm wavelength) region of the spectrum. For such measurements, a portable, battery-operated, fiber-optic spectrometer equipped with an un-cooled, linear, solid-state detector may be used. To take full advantage of the advanced measurement capabilities offered by state-of-the-art solid-state detectors, cooling of the detector is required. But cooling and other thermal management hamper portability and use on-site because they add size and weight and they increase electrical power requirements. To address these considerations, an alternative was implemented, as described here. Specifically, a microfabricated solid-state detector for measurement of UV photons will be described. Unlike solid-state detectors developed on crystalline Silicon, this miniaturized and low-cost detector utilizes amorphous Selenium (a-Se) as its photosensitive material. Due to its low dark current, this detector does not require cooling, thus it is better suited for portable use and for chemical measurements on-site. In this paper, a microplasma will be used as a light-source of UV photons for the a-Se detector. For example, spectra acquired using a microplasma as a light-source will be compared with those obtained with a portable, fiber-optic spectrometer equipped with a Si-based 2080-element detector. And, analytical performance obtained by introducing ng-amounts of analytes into the microplasma will be described.

  7. Active multispectral reflection fingerprinting of persistent chemical agents

    NASA Astrophysics Data System (ADS)

    Tholl, H. D.; Münzhuber, F.; Kunz, J.; Raab, M.; Rattunde, M.; Hugger, S.; Gutty, F.; Grisard, A.; Larat, C.; Papillon, D.; Schwarz, M.; Lallier, E.; Kastek, M.; Piatkowski, T.; Brygo, F.; Awanzino, C.; Wilsenack, F.; Lorenzen, A.

    2017-10-01

    Remote detection of toxic chemicals of very low vapour pressure deposited on surfaces in form of liquid films, droplets or powder is a capability that is needed to protect operators and equipment in chemical warfare scenarios and in industrial environments. Infrared spectroscopy is a suitable means to support this requirement. Available instruments based on passive emission spectroscopy have difficulties in discriminating the infrared emission spectrum of the surface background from that of the contamination. Separation of background and contamination is eased by illuminating the surface with a spectrally tune-able light source and by analyzing the reflectivity spectrum. The project AMURFOCAL (Active Multispectral Reflection Fingerprinting of Persistent Chemical Agents) has the research topic of stand-off detection and identification of chemical warfare agents (CWAs) with amplified quantum cascade laser technology in the long-wave infrared spectral range. The project was conducted under the Joint Investment Programme (JIP) on CBRN protection funded through the European Defence Agency (EDA). The AMURFOCAL instrument comprises a spectrally narrow tune-able light source with a broadband infrared detector and chemometric data analysis software. The light source combines an external cavity quantum cascade laser (EC-QCL) with an optical parametric amplifier (OPA) to boost the peak output power of a short laser pulse tune-able over the infrared fingerprint region. The laser beam is focused onto a target at a distance between 10 and 20 m. A 3D data cube is registered by tuning the wavelength of the laser emission while recording the received signal scattered off the target using a multi-element infrared detector. A particular chemical is identified through the extraction of its characteristic spectral fingerprint out of the measured data. The paper describes the AMURFOCAL instrument, its functional units, and its principles of operation.

  8. Multiphoton lithography using a high-repetition rate microchip laser.

    PubMed

    Ritschdorff, Eric T; Shear, Jason B

    2010-10-15

    Multiphoton lithography (MPL) provides a means to create prototype, three-dimensional (3D) materials for numerous applications in analysis and cell biology. A major impediment to the broad adoption of MPL in research laboratories is its reliance on high peak-power light sources, a requirement that typically has been met using expensive femtosecond titanium:sapphire lasers. Development of affordable microchip laser sources has the potential to substantially extend the reach of MPL, but previous lasers have provided relatively low pulse repetition rates (low kilohertz range), thereby limiting the rate at which microforms could be produced using this direct-write approach. In this report, we examine the MPL capabilities of a new, high-repetition-rate (36.6 kHz) microchip Nd:YAG laser. We show that this laser enables an approximate 4-fold decrease in fabrication times for protein-based microforms relative to the existing state-of-the-art microchip source and demonstrate its utility for creating complex 3D microarchitectures.

  9. Differentially-driven MEMS spatial light modulator

    DOEpatents

    Stappaerts, Eddy A.

    2004-09-14

    A MEMS SLM and an electrostatic actuator associated with a pixel in an SLM. The actuator has three electrodes: a lower electrode; an upper electrode fixed with respect to the lower electrode; and a center electrode suspended and actuable between the upper and lower electrodes. The center electrode is capable of resiliently-biasing to restore the center electrode to a non-actuated first equilibrium position, and a mirror is operably connected to the center electrode. A first voltage source provides a first bias voltage across the lower and center electrodes and a second voltage source provides a second bias voltage across the upper and center electrodes, with the first and second bias voltages determining the non-actuated first equilibrium position of the center electrode. A third voltage source provides a variable driver voltage across one of the lower/center and upper/center electrode pairs in series with the corresponding first or second bias voltage, to actuate the center electrode to a dynamic second equilibrium position.

  10. Project Profile: Hydrogen Fuel Cell Mobile Lighting Tower (HFCML)

    NASA Technical Reports Server (NTRS)

    McLaughlin, Russell

    2013-01-01

    NASA is committed to finding innovative solutions that improve the operational performance of ground support equipment while providing environment and cost benefits, as well. Through the Hydrogen Fuel Cell Mobile Lighting Tower (HFCML) project, NASA gained operational exposure to a novel application of high efficiency technologies. Traditionally, outdoor lighting and auxiliary power at security gates, launch viewing sites, fallback areas, outage support, and special events is provided by diesel generators with metal halide lights. Diesel generators inherently contribute to C02, NOx, particulate emissions, and are very noisy. In 2010, engineers from NASA's Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) introduced KSC operations to a novel technology for outdoor lighting needs. Developed by a team led by Sandia National Laboratory (SNL), the technology pairs a 5kW hydrogen fuel cell with robust high efficiency plasma lights in a towable trailer. Increased efficiency, in both the fuel cell power source and lighting load, yields longer run times between fueling operations while providing greater auxiliary power. Because of the unit's quiet operation and no exhaust fumes, it is capable of being used indoors and in emergency situations, and meets the needs of all other operational roles for metal halide/diesel generators. The only discharge is some water and warm air. Environmental benefits include elimination of diesel particulate emissions and estimated 73% greenhouse gas emissions savings when the hydrogen source is natural gas (per GREET model). As the technology matures the costs could become competitive for the fuel cell units which are approximately 5 times diesel units. Initial operational . concerns included the hydrogen storage tanks and valves, lightning safety/grounding, and required operating and refueling procedures. TEERM facilitated technical information exchange (design drawings, technical standards, and operations manuals) necessary for KSC hydrogen system experts to approve use of the HFCML unit, including initiating the environmental checklist (i.e. exterior lighting waiver due to sea turtles), and development of operations and maintenance instructions. TEERM worked with SNL to establish a bailment agreement for KSC to utilize a Beta unit as part of normal Center Operations for a period of twelve months.

  11. Acne phototherapy using UV-free high-intensity narrow-band blue light: a three-center clinical study

    NASA Astrophysics Data System (ADS)

    Shalita, Alan R.; Harth, Yoram; Elman, Monica; Slatkine, Michael; Talpalariu, Gerry; Rosenberg, Yitzhak; Korman, Avner; Klein, Arieh

    2001-05-01

    Propionibacterium. acnes is a Gram positive, microaerophilic bacterium which takes a part in the pathogenesis of inflammatory acne. P. acnes is capable to produce high amounts endogenic porphyrins with no need of any trigger molecules. Light in the violet-blue range (407-420 nm) has been shown to exhibit a phototoxic effect on Propionibacterium acnes when irradiated in vitro. The purpose of our study was to test the clinical effects of a high intensity narrowband blue light source on papulo pustular acne. A total of 35 patients in 3 centers were treated twice a week with a high intensity metal halide lamp illuminating the entire face (20x20 cm2) or the back with visible light in the 407-420 nm range at an intensity of 90 mW/cm2 (CureLight Ltd.) for a total of 4 weeks. UV is totally cut off. In each treatment the patient was exposed to light for 8-15 minutes. After 8 treatments, 80% of the patients with mild to moderate papulo-pustular acne showed significant improvement at reducing the numbers of non- inflammatory, inflammatory and total facial lesions. Inflammatory lesion count decrease by a mean of 68%. No side effects to the treatment were noticed. In conclusion, full face or back illumination with the high intensity pure blue light we used exhibits a rapid significant decrease in acne lesions counts in 8 biweekly treatments.

  12. Annual Report: DOE Advanced Combustion Systems & Fuels R&D; Light-Duty Diesel Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, Stephen

    Despite compliance issues in previous years, automakers have demonstrated that the newest generation of diesel power trains are capable of meeting all federal and state regulations (EPA, 2016). Diesels continue to be a cost-effective, efficient, powerful propulsion source for many light- and medium-duty vehicle applications (Martec, 2016). Even modest reductions in the fuel consumption of light- and medium duty diesel vehicles in the U.S. will eliminate millions of tons of CO2 emissions per year. Continued improvement of diesel combustion systems will play an important role in reducing fleet fuel consumption, but these improvements will require an unprecedented scientific understanding ofmore » how changes in engine design and calibration affect the mixture preparation, combustion, and pollutant formation processes that take place inside the cylinder. The focus of this year’s research is to provide insight into the physical mechanisms responsible for improved thermal efficiency observed with a stepped-lip piston. Understanding how piston design can influence efficiency will help engineers develop and optimize new diesel combustion systems.« less

  13. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes

    PubMed Central

    Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R.; Castillo, Gabriel R.; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng

    2014-01-01

    Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips. PMID:25100561

  14. Climate logging with a new rapid optical technique at siple dome

    USGS Publications Warehouse

    Bay, R.C.; Price, P.B.; Clow, G.D.; Gow, A.J.

    2001-01-01

    The dust logger design is based on a decade of experience in the use of light sources to measure optical properties of deep Antarctic ice. Light is emitted at the top of the instrument by side-directed LEDs, scattered or absorbed by dust in the ice surrounding the borehole, and collected in a downhole-pointing photomultiplier tube (PMT) a meter below. With this method the ice is sampled at ambient pressure in a much larger volume than is the case in a core study, and the entire length can be logged in one day. In ice in which scattering is dominated by bubbles, the absorption from dust impurities is perceived as a drop in signal, whereas in bubble-free ice the scattering from dust increases the light collected. We report on results obtained in Siple Dome Hole A in December 2000. The instrument measured increases in dust concentration extending over many meters during glacial maxima, as well as narrow spikes due to ??? 1 cm thick ash and dust bands of volcanic origin. Monte Carlo simulation is employed to clarify data analysis and predict the capabilities of future designs.

  15. Laser discrimination by stimulated emission of a phosphor

    NASA Technical Reports Server (NTRS)

    Mathur, V. K.; Chakrabarti, K.

    1991-01-01

    A method for discriminating sources of UV, near infrared, and far infrared laser radiation was discovered. This technology is based on the use of a single magnesium sulfide phosphor doubly doped with rare earth ions, which is thermally/optically stimulated to generate colors correlatable to the incident laser radiation. The phosphor, after initial charging by visible light, exhibits green stimulated luminescence when exposed to a near infrared source (Nd: YAG laser). On exposure to far infrared sources (CO2 laser) the phosphor emission changes to orange color. A UV laser produces both an orange red as well as green color. A device using this phosphor is useful for detecting the laser and for discriminating between the near infrared, far infrared, and UV lasers. The technology is also capable of infrared laser diode beam profiling since the radiation source leaves an imprint on the phosphor that can be photographed. Continued development of the technology offers potential for discrimination between even smaller bandwidths within the infrared spectrum, a possible aid to communication or wavemixing devices that need to rapidly identify and process optical signals.

  16. Behavioural responses of krill and cod to artificial light in laboratory experiments

    PubMed Central

    Løkkeborg, S.; Humborstad, O-B.

    2018-01-01

    Most fishes and crustaceans respond to light, and artificial light sources may therefore be an efficient stimulus to manipulate behaviours in aquatic animals. It has been hypothesised that the catch efficiency of pots could be increased if prey, for example krill, can be attracted into the pots providing a visual stimulus and a source of live bait. To find which light characteristics are most attractive to krill, we tested the effects of light intensity and wavelength composition on Northern krill’s (Meganyctiphanes norvegica) behavioural response to an artificial light source. The most attractive individual wavelength was 530 nm (green light), while broadband (425–750 nm) white light was an equally attractive light source. The intensity of the emitted light did not appear to have a direct effect on attraction to the light source, however it did significantly increase swimming activity among the observed krill. The most promising light stimuli for krill were tested to determine whether they would have a repulsive or attractive effect on cod (Gadus morhua); These light stimuli appeared to have a slightly repulsive, but non-significant, effect on cod. However, we suggest that a swarm of krill attracted to an artificial light source may produce a more effective visual stimulus to foraging cod. PMID:29370231

  17. Behavioural responses of krill and cod to artificial light in laboratory experiments.

    PubMed

    Utne-Palm, A C; Breen, M; Løkkeborg, S; Humborstad, O-B

    2018-01-01

    Most fishes and crustaceans respond to light, and artificial light sources may therefore be an efficient stimulus to manipulate behaviours in aquatic animals. It has been hypothesised that the catch efficiency of pots could be increased if prey, for example krill, can be attracted into the pots providing a visual stimulus and a source of live bait. To find which light characteristics are most attractive to krill, we tested the effects of light intensity and wavelength composition on Northern krill's (Meganyctiphanes norvegica) behavioural response to an artificial light source. The most attractive individual wavelength was 530 nm (green light), while broadband (425-750 nm) white light was an equally attractive light source. The intensity of the emitted light did not appear to have a direct effect on attraction to the light source, however it did significantly increase swimming activity among the observed krill. The most promising light stimuli for krill were tested to determine whether they would have a repulsive or attractive effect on cod (Gadus morhua); These light stimuli appeared to have a slightly repulsive, but non-significant, effect on cod. However, we suggest that a swarm of krill attracted to an artificial light source may produce a more effective visual stimulus to foraging cod.

  18. Overview of the Mathematical and Empirical Receptor Models Workshop (Quail Roost II)

    NASA Astrophysics Data System (ADS)

    Stevens, Robert K.; Pace, Thompson G.

    On 14-17 March 1982, the U.S. Environmental Protection Agency sponsored the Mathematical and Empirical Receptor Models Workshop (Quail Roost II) at the Quail Roost Conference Center, Rougemont, NC. Thirty-five scientists were invited to participate. The objective of the workshop was to document and compare results of source apportionment analyses of simulated and real aerosol data sets. The simulated data set was developed by scientists from the National Bureau of Standards. It consisted of elemental mass data generated using a dispersion model that simulated transport of aerosols from a variety of sources to a receptor site. The real data set contained the mass, elemental, and ionic species concentrations of samples obtained in 18 consecutive 12-h sampling periods in Houston, TX. Some participants performed additional analyses of the Houston filters by X-ray powder diffraction, scanning electron microscopy, or light microscopy. Ten groups analyzed these data sets using a variety of modeling procedures. The results of the modeling exercises were evaluated and structured in a manner that permitted model intercomparisons. The major conclusions and recommendations derived from the intercomparisons were: (1) using aerosol elemental composition data, receptor models can resolve major emission sources, but additional analyses (including light microscopy and X-ray diffraction) significantly increase the number of sources that can be resolved; (2) simulated data sets that contain up to 6 dissimilar emission sources need to be generated, so that different receptor models can be adequately compared; (3) source apportionment methods need to be modified to incorporate a means of apportioning such aerosol species as sulfate and nitrate formed from SO 2 and NO, respectively, because current models tend to resolve particles into chemical species rather than to deduce their sources and (4) a source signature library may be required to be compiled for each airshed in order to improve the resolving capabilities of receptor models.

  19. Active 3D camera design for target capture on Mars orbit

    NASA Astrophysics Data System (ADS)

    Cottin, Pierre; Babin, François; Cantin, Daniel; Deslauriers, Adam; Sylvestre, Bruno

    2010-04-01

    During the ESA Mars Sample Return (MSR) mission, a sample canister launched from Mars will be autonomously captured by an orbiting satellite. We present the concept and the design of an active 3D camera supporting the orbiter navigation system during the rendezvous and capture phase. This camera aims at providing the range and bearing of a 20 cm diameter canister from 2 m to 5 km within a 20° field-of-view without moving parts (scannerless). The concept exploits the sensitivity and the gating capability of a gated intensified camera. It is supported by a pulsed source based on an array of laser diodes with adjustable amplitude and pulse duration (from nanoseconds to microseconds). The ranging capability is obtained by adequately controlling the timing between the acquisition of 2D images and the emission of the light pulses. Three modes of acquisition are identified to accommodate the different levels of ranging and bearing accuracy and the 3D data refresh rate. To come up with a single 3D image, each mode requires a different number of images to be processed. These modes can be applied to the different approach phases. The entire concept of operation of this camera is detailed with an emphasis on the extreme lighting conditions. Its uses for other space missions and terrestrial applications are also highlighted. This design is implemented in a prototype with shorter ranging capabilities for concept validation. Preliminary results obtained with this prototype are also presented. This work is financed by the Canadian Space Agency.

  20. High efficiency light source using solid-state emitter and down-conversion material

    DOEpatents

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  1. Parenting self-efficacy beliefs in parents of children with autism: Perspectives from Singapore.

    PubMed

    Chong, Wan Har; Kua, Shu Mei

    2017-01-01

    Substantial empirical evidence has highlighted the psychological stress and negative well-being of parents whose children are diagnosed with autism. It has further indicated a need for understanding the mechanisms through which these parents come to successfully meet the challenges of caregiving for these children whose condition are often characterized by persistent behavioral, social, and communication problems. This qualitative study aims to bridge the research gap in 3 ways. First, we sought to understand the ways in which mothers of children having autism foster their parenting self-efficacy (PSE) when caring for their child. Second, we sought to identify additional PSE sources. Third, we attempted to understand how these mothers successfully manage negative experiences that were often in the way of their parenting efforts. Ten mothers with children between 7 and 9 years of age were interviewed. Bandura's social-cognitive framework guided the analyses of the sources of PSE (Bandura, 1997). Mastery experiences were identified as the most critical PSE source, and the physiological and affective states of the mothers were second most important in shaping their PSE. Vicarious experiences and verbal persuasion did not emerge as salient sources. "Support in parenting" was also found to be significant in fostering the mothers' perceived capability. Furthermore, we noted that while multiple negative experiences were encountered, these mothers tended to frame their experiences in adaptive ways to allow them to use these as feedback for subsequent parenting endeavors to booster their perceived capability. Implications for future research were discussed in the light of these findings. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Silicon micromachined broad band light source

    NASA Technical Reports Server (NTRS)

    George, Thomas (Inventor); Jones, Eric (Inventor); Tuma, Margaret L. (Inventor); Eastwood, Michael (Inventor); Hansler, Richard (Inventor)

    2004-01-01

    A micro electromechanical system (MEMS) broad band incandescent light source includes three layers: a top transmission window layer; a middle filament mount layer; and a bottom reflector layer. A tungsten filament with a spiral geometry is positioned over a hole in the middle layer. A portion of the broad band light from the heated filament is reflective off the bottom layer. Light from the filament and the reflected light of the filament are transmitted through the transmission window. The light source may operate at temperatures of 2500 K or above. The light source may be incorporated into an on board calibrator (OBC) for a spectrometer.

  3. A two-metric proposal to specify the color-rendering properties of light sources for retail lighting

    NASA Astrophysics Data System (ADS)

    Freyssinier, Jean Paul; Rea, Mark

    2010-08-01

    Lighting plays an important role in supporting retail operations, from attracting customers, to enabling the evaluation of merchandise, to facilitating the completion of the sale. Lighting also contributes to the identity, comfort, and visual quality of a retail store. With the increasing availability and quality of white LEDs, retail lighting specifiers are now considering LED lighting in stores. The color rendering of light sources is a key factor in supporting retail lighting goals and thus influences a light source's acceptance by users and specifiers. However, there is limited information on what consumers' color preferences are, and metrics used to describe the color properties of light sources often are equivocal and fail to predict preference. The color rendering of light sources is described in the industry solely by the color rendering index (CRI), which is only indirectly related to human perception. CRI is intended to characterize the appearance of objects illuminated by the source and is increasingly being challenged because new sources are being developed with increasingly exotic spectral power distributions. This paper discusses how CRI might be augmented to better use it in support of the design objectives for retail merchandising. The proposed guidelines include the use of gamut area index as a complementary metric to CRI for assuring good color rendering.

  4. Effect of laser speckle on light from laser diode-pumped phosphor-converted light sources.

    PubMed

    Aquino, Felipe; Jadwisienczak, Wojciech M; Rahman, Faiz

    2017-01-10

    Laser diode (LD) pumped white light sources are being developed as an alternative to light-emitting diode-pumped sources for high efficiency and/or high brightness applications. While several performance metrics of laser-pumped phosphor-converted light sources have been investigated, the effect of laser speckle has not been sufficiently explored. This paper describes our experimental studies on how laser speckle affects the behavior of light from laser-excited phosphor lamps. A single LD pumping a phosphor plate was the geometry explored in this work. Overall, our findings are that the down-converted light did not exhibit any speckle, whereas speckle was present in the residual pump light but much reduced from that in direct laser light. Furthermore, a thicker coating of small-grained phosphors served to effectively reduce speckle through static pump light diffusion in the phosphor coating. Our investigations showed that speckle is not of concern in illumination from LD-pumped phosphor-converted light sources.

  5. Soft-tissue and phase-contrast imaging at the Swiss Light Source

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Mohan, Nishant; Stampanoni, Marco; Muller, Ralph

    2004-05-01

    Recent results show that bone vasculature is a major contributor to local tissue porosity, and therefore can be directly linked to the mechanical properties of bone tissue. With the advent of third generation synchrotron radiation (SR) sources, micro-computed tomography (μCT) with resolutions in the order of 1 μm and better has become feasible. This technique has been employed frequently to analyze trabecular architecture and local bone tissue properties, i.e. the hard or mineralized bone tissue. Nevertheless, less is known about the soft tissues in bone, mainly due to inadequate imaging capabilities. Here, we discuss three different methods and applications to visualize soft tissues. The first approach is referred to as negative imaging. In this case the material around the soft tissue provides the absorption contrast necessary for X-ray based tomography. Bone vasculature from two different mouse strains was investigated and compared qualitatively. Differences were observed in terms of local vessel number and vessel orientation. The second technique represents corrosion casting, which is principally adapted for imaging of vascular systems. The technique of corrosion casting has already been applied successfully at the Swiss Light Source. Using the technology we were able to show that pathological features reminiscent of Alzheimer"s disease could be distinguished in the brain vasculature of APP transgenic mice. The third technique discussed here is phase contrast imaging exploiting the high degree of coherence of third generation synchrotron light sources, which provide the necessary physical conditions for phase contrast. The in-line approach followed here for phase contrast retrieval is a modification of the Gerchberg-Saxton-Fienup type. Several measurements and theoretical thoughts concerning phase contrast imaging are presented, including mathematical phase retrieval. Although up-to-now only phase images have been computed, the approach is now ready to retrieve the phase for a large number of angular positions of the specimen allowing application of holotomography, which is the three-dimensional reconstruction of phase images.

  6. Near-Infrared Spectroscopy Using a Supercontinuum Laser: Application to Long Wavelength Transmission Spectra of Barley Endosperm and Oil.

    PubMed

    Ringsted, Tine; Dupont, Sune; Ramsay, Jacob; Jespersen, Birthe Møller; Sørensen, Klavs Martin; Keiding, Søren Rud; Engelsen, Søren Balling

    2016-07-01

    The supercontinuum laser is a new type of light source, which combines the collimation and intensity of a laser with the broad spectral region of a lamp. Using such a source therefore makes it possible to focus the light onto small sample areas without losing intensity and thus facilitate either rapid or high-intensity measurements. Single seed transmission analysis in the long wavelength (LW) near-infrared (NIR) region is one area that might benefit from a brighter light source such as the supercontinuum laser. This study is aimed at building an experimental spectrometer consisting of a supercontinuum laser source and a dispersive monochromator in order to investigate its capability to measure the barley endosperm using transmission experiments in the LW NIR region. So far, barley and wheat seeds have only been studied using NIR transmission in the short wavelength region up to 1100 nm. However, the region in the range of 2260-2380 nm has previously shown to be particularly useful in differentiating barley phenotypes using NIR spectroscopy in reflectance mode. In the present study, 350 seeds (consisting of 70 seeds from each of five barley genotypes) in 1 mm slices were measured by NIR transmission in the range of 2235-2381 nm and oils from the same five barley genotypes were measured in a cuvette with a 1 mm path length in the range of 2003-2497 nm. The spectra of the barley seeds could be classified according to genotypes by principal component analysis; and spectral covariances with reference analysis of moisture, β-glucan, starch, protein and lipid were established. The spectral variations of the barley oils were compared to the fatty acid compositions as measured using gas chromotography-mass spectrometry (GC-MS). © The Author(s) 2016.

  7. Evaluating white LEDs for outdoor landscape lighting application

    NASA Astrophysics Data System (ADS)

    Shakir, Insiya; Narendran, Nadarajah

    2002-11-01

    A laboratory experiment was conducted to understand the acceptability of different white light emitting diodes (LEDs) for outdoor landscape lighting. The study used a scaled model setup. The scene was designed to replicate the exterior of a typical upscale suburban restaurant including the exterior facade of the building, an approach with steps, and a garden. The lighting was designed to replicate light levels commonly found in nighttime outdoor conditions. The model had a central dividing partition with symmetrical scenes on both sides for side-by-side evaluations of the two scenes with different light sources. While maintaining equal luminance levels and distribution between the two scenes, four types of light sources were evaluated. These include, halogen, phosphor white LED, and two white light systems using RGB LEDs. These light sources were tested by comparing two sources at a time placed side-by-side and by individual assessment of each lighting condition. The results showed that the RGB LEDs performed equal or better than the most widely used halogen light source in this given setting. A majority of the subjects found slightly dimmer ambient lighting to be more typical for restaurants and therefore found RGB LED and halogen light sources to be more inviting. The phosphor white LEDs made the space look brighter, however a majority of the subjects disliked them.

  8. Study on Formulation of Optimum Lighting-system for Purchasing Power at Stores

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroki; Nakashima, Yoshio; Takamatsu, Mamoru; Oota, Masaaki; Sawa, Kazuhiro

    In store lighting, difference in the look-and-feel of foods gives effects on the purchasing power of customers. This study conducted the digitalization and quantification on the effects of the variation of light-source color and illuminance used for lighting foods on image recognition on foods. As a result, it was clarified that when meat was illuminated with the light source of “pink” or “faint pink,” image evaluation on foods became higher. In addition, when illuminance increase was applied to these two light-source colors, image evaluation on “faint pink” became further higher. The reason is supposed to be that the redness of meat increased, which may have enhanced fresher impression. From this study, it has been clarified that the light-source color and illuminance optimum for each food are variant. The results show that lighting foods with the optimum light-source color and illuminance can make foods look better.

  9. Laser induced fluorescence as a diagnostic tool integrated into a scanning fiber endoscope for mouse imaging

    NASA Astrophysics Data System (ADS)

    Brown, Christopher M.; Maggio-Price, Lillian; Seibel, Eric J.

    2007-02-01

    Scanning fiber endoscope (SFE) technology has shown promise as a minimally invasive optical imaging tool. To date, it is capable of capturing full-color 500-line images, at 15 Hz frame rate in vivo, as a 1.6 mm diameter endoscope. The SFE uses a singlemode optical fiber actuated at mechanical resonance to scan a light spot over tissue while backscattered or fluorescent light at each pixel is detected in time series using several multimode optical fibers. We are extending the capability of the SFE from a RGB reflectance imaging device to a diagnostic tool by imaging laser induced fluorescence (LIF) in tissue, allowing for correlation of endogenous fluorescence to tissue state. Design of the SFE for diagnostic imaging is guided by a comparison of single point spectra acquired from an inflammatory bowel disease (IBD) model to tissue histology evaluated by a pathologist. LIF spectra were acquired by illuminating tissue with a 405 nm light source and detecting intrinsic fluorescence with a multimode optical fiber. The IBD model used in this study was mdr1a-/- mice, where IBD was modulated by infection with Helicobacter bilis. IBD lesions in the mouse model ranged from mild to marked hyperplasia and dysplasia, from the distal colon to the cecum. A principle components analysis (PCA) was conducted on single point spectra of control and IBD tissue. PCA allowed for differentiation between healthy and dysplastic tissue, indicating that emission wavelengths from 620 - 650 nm were best able to differentiate diseased tissue and inflammation from normal healthy tissue.

  10. Light source comprising a common substrate, a first led device and a second led device

    DOEpatents

    Choong, Vi-En

    2010-02-23

    At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

  11. Light Microscopy Module (LMM)-Emulator

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Smith, Trent M.; Richards, Stephanie E.

    2016-01-01

    The Light Microscopy Module (LMM) is a microscope facility developed at Glenn Research Center (GRC) that provides researchers with powerful imaging capability onboard the International Space Station (ISS). LMM has the ability to have its hardware recongured on-orbit to accommodate a wide variety of investigations, with the capability of remotely acquiring and downloading digital images across multiple levels of magnication.

  12. Liquid crystal television spatial light modulators

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Chao, Tien-Hsin

    1989-01-01

    The spatial light modulation characteristics and capabilities of the liquid crystal television (LCTV) spatial light modulators (SLMs) are discussed. A comparison of Radio Shack, Epson, and Citizen LCTV SLMs is made.

  13. Prevention of the adverse photic effects of peripheral light-focusing using UV-blocking contact lenses.

    PubMed

    Kwok, L Stephen; Kuznetsov, Valerian A; Ho, Arthur; Coroneo, Minas T

    2003-04-01

    Peripheral light-focusing (PLF) is an occult form of ultraviolet radiation (UVR) hazardous to the human eye. In PLF, obliquely incident light is refracted from the peripheral cornea to concentrated sites inside the anterior segment. In the current study, the directionality of this phenomenon for UVR and whether PLF is established in outdoor settings exposed to sunlight were investigated. The protection provided by a UV-blocking contact lens was also evaluated. UVA and UVB sensors were placed on the nasal limbus of an anatomically based model eye. The temporal limbus was exposed to a UV light source placed at various angles behind the frontal plane. PLF was quantified with the sensor output. The ensemble was mounted in the orbit of a mannequin head and exposed to sunlight in three insolation environments within the region of Sydney, Australia. PLF for UVA and UVB was determined with no eyewear or with sunglasses and commercially available soft contact lenses, with and without UV-blocking capability. The intensity of UVA peaked at approximately 120 degrees incidence, the level at which the UVB response was also at its maximum. The intensification of UVA was up to x18.3. The intensity of PLF for UVA and UVB was reduced by an order of magnitude by a UV-blocking contact lens, whereas a clear contact lenses had a much lesser effect. Only the UV-blocking contact lens achieved a significant effect on UVA and UVB irradiance in the urban, beach, and mountain locales (P < 0.056). The results identify another type of sunlight hazard: the peripheral focusing of obliquely incident light. UVR from albedo (reflected ambient light) is capable of establishing PLF in the anterior segment, but this can be shielded by UV-blocking soft contact lenses. Sunglasses may be unable to shield oblique rays, unless side protection is incorporated. Contact lenses can offer UVR protection against all angles of incidence, including the peak-response angle. They can also protect the eye in settings in which the wearing of sunglasses is not feasible or convenient.

  14. DUV light source availability improvement via further enhancement of gas management technologies

    NASA Astrophysics Data System (ADS)

    Riggs, Daniel J.; O'Brien, Kevin; Brown, Daniel J. W.

    2011-04-01

    The continuous evolution of the semiconductor market necessitates ever-increasing improvements in DUV light source uptime as defined in the SEMI E10 standard. Cymer is developing technologies to exceed current and projected light source availability requirements via significant reduction in light source downtime. As an example, consider discharge chamber gas management functions which comprise a sizable portion of DUV light source downtime. Cymer's recent introduction of Gas Lifetime Extension (GLXTM) as a productivity improvement technology for its DUV lithography light sources has demonstrated noteworthy reduction in downtime. This has been achieved by reducing the frequency of full gas replenishment events from once per 100 million pulses to as low as once per 2 billion pulses. Cymer has continued to develop relevant technologies that target further reduction in downtime associated with light source gas management functions. Cymer's current subject is the development of technologies to reduce downtime associated with gas state optimization (e.g. total chamber gas pressure) and gas life duration. Current gas state optimization involves execution of a manual procedure at regular intervals throughout the lifetime of light source core components. Cymer aims to introduce a product enhancement - iGLXTM - that eliminates the need for the manual procedure and, further, achieves 4 billion pulse gas lives. Projections of uptime on DUV light sources indicate that downtime associated with gas management will be reduced by 70% when compared with GLX2. In addition to reducing downtime, iGLX reduces DUV light source cost of operation by constraining gas usage. Usage of fluorine rich Halogen gas mix has been reduced by 20% over GLX2.

  15. Non-optically combined multispectral source for IR, visible, and laser testing

    NASA Astrophysics Data System (ADS)

    Laveigne, Joe; Rich, Brian; McHugh, Steve; Chua, Peter

    2010-04-01

    Electro Optical technology continues to advance, incorporating developments in infrared and laser technology into smaller, more tightly-integrated systems that can see and discriminate military targets at ever-increasing distances. New systems incorporate laser illumination and ranging with gated sensors that allow unparalleled vision at a distance. These new capabilities augment existing all-weather performance in the mid-wave infrared (MWIR) and long-wave infrared (LWIR), as well as low light level visible and near infrared (VNIR), giving the user multiple means of looking at targets of interest. There is a need in the test industry to generate imagery in the relevant spectral bands, and to provide temporal stimulus for testing range-gated systems. Santa Barbara Infrared (SBIR) has developed a new means of combining a uniform infrared source with uniform laser and visible sources for electro-optics (EO) testing. The source has been designed to allow laboratory testing of surveillance systems incorporating an infrared imager and a range-gated camera; and for field testing of emerging multi-spectral/fused sensor systems. A description of the source will be presented along with performance data relating to EO testing, including output in pertinent spectral bands, stability and resolution.

  16. Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source.

    PubMed

    Song, Shaozhen; Xu, Jingjiang; Wang, Ruikang K

    2016-11-01

    Current optical coherence tomography (OCT) imaging suffers from short ranging distance and narrow imaging field of view (FOV). There is growing interest in searching for solutions to these limitations in order to expand further in vivo OCT applications. This paper describes a solution where we utilize an akinetic swept source for OCT implementation to enable ~10 cm ranging distance, associated with the use of a wide-angle camera lens in the sample arm to provide a FOV of ~20 x 20 cm 2 . The akinetic swept source operates at 1300 nm central wavelength with a bandwidth of 100 nm. We propose an adaptive calibration procedure to the programmable akinetic light source so that the sensitivity of the OCT system over ~10 cm ranging distance is substantially improved for imaging of large volume samples. We demonstrate the proposed swept source OCT system for in vivo imaging of entire human hands and faces with an unprecedented FOV (up to 400 cm 2 ). The capability of large-volume OCT imaging with ultra-long ranging and ultra-wide FOV is expected to bring new opportunities for in vivo biomedical applications.

  17. Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source

    PubMed Central

    Song, Shaozhen; Xu, Jingjiang; Wang, Ruikang K.

    2016-01-01

    Current optical coherence tomography (OCT) imaging suffers from short ranging distance and narrow imaging field of view (FOV). There is growing interest in searching for solutions to these limitations in order to expand further in vivo OCT applications. This paper describes a solution where we utilize an akinetic swept source for OCT implementation to enable ~10 cm ranging distance, associated with the use of a wide-angle camera lens in the sample arm to provide a FOV of ~20 x 20 cm2. The akinetic swept source operates at 1300 nm central wavelength with a bandwidth of 100 nm. We propose an adaptive calibration procedure to the programmable akinetic light source so that the sensitivity of the OCT system over ~10 cm ranging distance is substantially improved for imaging of large volume samples. We demonstrate the proposed swept source OCT system for in vivo imaging of entire human hands and faces with an unprecedented FOV (up to 400 cm2). The capability of large-volume OCT imaging with ultra-long ranging and ultra-wide FOV is expected to bring new opportunities for in vivo biomedical applications. PMID:27896012

  18. Modeling of an Adjustable Beam Solid State Light Project

    NASA Technical Reports Server (NTRS)

    Clark, Toni

    2015-01-01

    This proposal is for the development of a computational model of a prototype variable beam light source using optical modeling software, Zemax Optics Studio. The variable beam light source would be designed to generate flood, spot, and directional beam patterns, while maintaining the same average power usage. The optical model would demonstrate the possibility of such a light source and its ability to address several issues: commonality of design, human task variability, and light source design process improvements. An adaptive lighting solution that utilizes the same electronics footprint and power constraints while addressing variability of lighting needed for the range of exploration tasks can save costs and allow for the development of common avionics for lighting controls.

  19. A slow neutron polarimeter for the measurement of parity-odd neutron rotary power.

    PubMed

    Snow, W M; Anderson, E; Barrón-Palos, L; Bass, C D; Bass, T D; Crawford, B E; Crawford, C; Dawkins, J M; Esposito, D; Fry, J; Gardiner, H; Gan, K; Haddock, C; Heckel, B R; Holley, A T; Horton, J C; Huffer, C; Lieffers, J; Luo, D; Maldonado-Velázquez, M; Markoff, D M; Micherdzinska, A M; Mumm, H P; Nico, J S; Sarsour, M; Santra, S; Sharapov, E I; Swanson, H E; Walbridge, S B; Zhumabekova, V

    2015-05-01

    We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10(-7) rad/m.

  20. An experiment on the color rendering of different light sources

    NASA Astrophysics Data System (ADS)

    Fumagalli, Simonetta; Bonanomi, Cristian; Rizzi, Alessandro

    2013-02-01

    The color rendering index (CRI) of a light source attempts to measure how much the color appearance of objects is preserved when they are illuminated by the given light source. This problem is of great importance for various industrial and scientific fields, such as lighting architecture, design, ergonomics, etc. Usually a light source is specified through the Correlated Color Temperature or CCT. However two (or more) light sources with the same CCT but different spectral power distribution can exist. Therefore color samples viewed under two light sources with equal CCTs can appear different. Hence, the need for a method to assess the quality of a given illuminant in relation to color. Recently CRI has had a renewed interest because of the new LED-based lighting systems. They usually have a color rendering index rather low, but good preservation of color appearance and a pleasant visual appearance (visual appeal). Various attempts to develop a new color rendering index have been done so far, but still research is working for a better one. This article describes an experiment performed by human observers concerning the appearance preservation of color under some light sources, comparing it with a range of available color rendering indices.

  1. EGR distribution and fluctuation probe based on CO.sub.2 measurements

    DOEpatents

    Parks, II, James E; Partridge, Jr., William P; Yoo, Ji Hyung

    2015-04-07

    A diagnostic system having a single-port EGR probe and a method for using the same. The system includes a light source, an EGR probe, a detector and a processor. The light source may provide a combined light beam composed of light from a mid-infrared signal source and a mid-infrared reference source. The signal source may be centered at 4.2 .mu.m and the reference source may be centered at 3.8 .mu.m. The EGR probe may be a single-port probe with internal optics and a sampling chamber with two flow cells arranged along the light path in series. The optics may include a lens for focusing the light beam and a mirror for reflecting the light beam received from a pitch optical cable to a catch optical cable. The signal and reference sources are modulated at different frequencies, thereby allowing them to be separated and the signal normalized by the processor.

  2. Synchrotron Light Sources in Developing Countries

    NASA Astrophysics Data System (ADS)

    Winick, Herman; Pianetta, Piero

    The more than 50 light sources in operation include facilities in Brazil, Korea, and Taiwan which started in the 1980's when they were developing countries. They came on line in the 1990's and have since trained hundreds of graduate students. They have attracted mid-career diaspora scientists to return. Growing user communities have demanded more advanced facilities, leading to higher performance new light sources that are now coming into operation. Light sources in the developing world now include the following: ∖textbf{SESAME}in the Middle East which is scheduled to start research in 2017 (∖underline {www.sesame.org}); ∖textbf{The African Light Source}, in the planning stage (∖underline {www.safricanlightsource.org}); and ∖textbf{The Mexican Light Source}, in the planning stage (∖underline {http://www.aps.org/units/fip/newsletters/201509/mexico.cfm}). See: http://wpj.sagepub.com/content/32/4/92.full.pdf +html; http://www.lightsources.org/press-release/2015/11/20/grenoble-resolutions-mark-historical-step-towards-african-light-source..

  3. Reduction of background clutter in structured lighting systems

    DOEpatents

    Carlson, Jeffrey J.; Giles, Michael K.; Padilla, Denise D.; Davidson, Jr., Patrick A.; Novick, David K.; Wilson, Christopher W.

    2010-06-22

    Methods for segmenting the reflected light of an illumination source having a characteristic wavelength from background illumination (i.e. clutter) in structured lighting systems can comprise pulsing the light source used to illuminate a scene, pulsing the light source synchronously with the opening of a shutter in an imaging device, estimating the contribution of background clutter by interpolation of images of the scene collected at multiple spectral bands not including the characteristic wavelength and subtracting the estimated background contribution from an image of the scene comprising the wavelength of the light source and, placing a polarizing filter between the imaging device and the scene, where the illumination source can be polarized in the same orientation as the polarizing filter. Apparatus for segmenting the light of an illumination source from background illumination can comprise an illuminator, an image receiver for receiving images of multiple spectral bands, a processor for calculations and interpolations, and a polarizing filter.

  4. Phase resolved and coherence gated en face reflection imaging of multilayered embryonal carcinoma cells

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Fukami, Tadashi; Iwai, Hidenao; Yamashita, Yutaka

    2012-03-01

    Embryonal carcinoma (EC) cells, which are cell lines derived from teratocarcinomas, have characteristics in common with stem cells and differentiate into many kinds of functional cells. Similar to embryonic stem (ES) cells, undifferentiated EC cells form multi-layered spheroids. In order to visualize the three-dimensional structure of multilayered EC cells without labeling, we employed full-field interference microscopy with the aid of a low-coherence quantitative phase microscope, which is a reflection-type interference microscope employing the digital holographic technique with a low-coherent light source. Owing to the low-coherency of the light-source (halogen lamp), only the light reflected from reflective surface at a specific sectioning height generates an interference image on the CCD camera. P19CL6 EC cells, derived from mouse teratocarcinomas, formed spheroids that are about 50 to 200 micrometers in diameter. Since the height of each cell is around 10 micrometers, it is assumed that each spheroid has 5 to 20 cell layers. The P19CL6 spheroids were imaged in an upright configuration and the horizontally sectioned reflection images of the sample were obtained by sequentially and vertically scanning the zero-path-length height. Our results show the threedimensional structure of the spheroids, in which plasma and nuclear membranes were distinguishably imaged. The results imply that our technique is further capable of imaging induced pluripotent stem (iPS) cells for the assessment of cell properties including their pluripotency.

  5. First light from the Vela pulsar with the Fermi Gamma-ray Space Telescope

    NASA Astrophysics Data System (ADS)

    Razzano, M.

    2009-04-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an international space mission entirely devoted to the study of the high-energy gamma rays from the Universe. The main instrument aboard Fermi is the Large Area Telescope (LAT), a pair conversion telescope equipped with the state-of-the art in gamma-ray detectors technology. Thanks to its large field of view and effective area, combined with its excellent timing capability, Fermi-LAT is a perfect instrument for probing physics of gamma-ray emission in pulsars. LAT is expected to discover tens of new pulsars, both radio-loud and radio-quiet (Geminga-like). Moreover, LAT will observe with unprecedented statistics the brightest pulsars, investigating the details of magnetospheric emission. The first two months of the mission have been focused on the commissioning and first light, during which the LAT firmly detected the six previously known EGRET gamma-ray pulsars. One of the main sources of interest during our first light observations has been the Vela pulsar, the brightest persistent source in the whole gamma-ray sky. Thanks to its brightness, the Vela pulsar is an ideal candidate for calibrating the LAT and testing its performance. In addition, observations of Vela will help answer many questions related to the physics of pulsar emission processes. We present here some recent results obtained by the LAT on the Vela pulsar, using high-quality timing solutions provided by radio observations carried out within the Fermi pulsar radio timing campaign.

  6. Lessons from Coronagraphic Imaging with HST that may apply to JWST

    NASA Astrophysics Data System (ADS)

    Grady, C. A.; Hines, Dean C.; Schneider, Glenn; McElwain, Michael W.

    2017-06-01

    One of the major capabilities offered by JWST is coronagraphic imaging from space, covering the near through mid-IR and optimized for study of planet formation and the evolution of planetary systems. Planning for JWST has resulted in expectations for instrument performance, observation strategies and data reduction approaches. HST with 20 years of coronagraphic imaging offers some experience which may be useful to those planning for JWST. 1) Real astronomical sources do not necessarily conform to expectations. Debris disks may be accompanied by more distant material, and some systems may be conspicuous in scattered light when offering only modest IR excesses. Proto-planetary disks are not constantly illuminated, and thus a single epoch observation of the source may not be sufficient to reveal everything about it. 2) The early expectation with NICMOS was that shallow, 2-roll observations would reveal a wealth of debris disks imaged in scattered light, and that only a limited set of PSF observations would be required. Instead, building up a library of spatially resolved disks in scattered light has proven to require alternate observing strategies, is still on-going, and has taken far longer than expected. 3) A wealth of coronagraphic options with an instrument may not be scientifically informative, unless there is a similar time investment in acquisition of calibration data in support of the science observations. 4) Finally, no one anticipated what can be gleaned from coronagraphic imaging. We should expect similar, unexpected, and ultimately revolutionary discoveries with JWST.

  7. Light Source Matters--Students' Explanations about the Behavior of Light When Different Light Sources Are Used in Task Assignments of Optics

    ERIC Educational Resources Information Center

    Kesonen, Mikko Henri Petteri; Asikainen, Mervi Anita; Hirvonen, Pekka Emil

    2017-01-01

    In the present article, the context-dependency of student reasoning is studied in a context of optics. We investigated introductory students' explanations about the behavior of light when different light sources, namely a small light bulb and a laser, were used in otherwise identical task assignments. The data was gathered with the aid of pretest…

  8. Coumarin-Based Oxime Esters: Photobleachable and Versatile Unimolecular Initiators for Acrylate and Thiol-Based Click Photopolymerization under Visible Light-Emitting Diode Light Irradiation.

    PubMed

    Li, Zhiquan; Zou, Xiucheng; Zhu, Guigang; Liu, Xiaoya; Liu, Ren

    2018-05-09

    Developing efficient unimolecular visible light-emitting diode (LED) light photoinitiators (PIs) with photobleaching capability, which are essential for various biomedical applications and photopolymerization of thick materials, remains a great challenge. Herein, we demonstrate the synthesis of a series of novel PIs, containing coumarin moieties as chromophores and oxime ester groups as initiation functionalities and explore their structure-activity relationship. The investigated oxime esters can effectively induce acrylates and thiol-based click photopolymerization under 450 nm visible LED light irradiation. The initiator O-3 exhibited excellent photobleaching capability and enabled photopolymerization of thick materials (∼4.8 mm). The efficient unimolecular photobleachable initiators show great potential in dental materials and 3D printings.

  9. Microelectromechanical Systems (MEMS) Broadband Light Source Developed

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.

    2003-01-01

    A miniature, low-power broadband light source has been developed for aerospace applications, including calibrating spectrometers and powering miniature optical sensors. The initial motivation for this research was based on flight tests of a Fabry-Perot fiberoptic temperature sensor system used to detect aircraft engine exhaust gas temperature. Although the feasibility of the sensor system was proven, the commercial light source optically powering the device was identified as a critical component requiring improvement. Problems with the light source included a long stabilization time (approximately 1 hr), a large amount of heat generation, and a large input electrical power (6.5 W). Thus, we developed a new light source to enable the use of broadband optical sensors in aerospace applications. Semiconductor chip-based light sources, such as lasers and light-emitting diodes, have a relatively narrow range of emission wavelengths in comparison to incandescent sources. Incandescent light sources emit broadband radiation from visible to infrared wavelengths; the intensity at each wavelength is determined by the filament temperature and the materials chosen for the filament and the lamp window. However, present commercial incandescent light sources are large in size and inefficient, requiring several watts of electrical power to obtain the desired optical power, and they emit a large percentage of the input power as heat that must be dissipated. The miniature light source, developed jointly by the NASA Glenn Research Center, the Jet Propulsion Laboratory, and the Lighting Innovations Institute, requires one-fifth the electrical input power of some commercial light sources, while providing similar output light power that is easily coupled to an optical fiber. Furthermore, it is small, rugged, and lightweight. Microfabrication technology was used to reduce the size, weight, power consumption, and potential cost-parameters critical to future aerospace applications. This chip-based light source has the potential for monolithic fabrication with on-chip drive electronics. Other uses for these light sources are in systems for vehicle navigation, remote sensing applications such as monitoring bridges for stress, calibration sources for spectrometers, light sources for space sensors, display lighting, addressable arrays, and industrial plant monitoring. Two methods for filament fabrication are being developed: wet-chemical etching and laser ablation. Both yield a 25-mm-thick tungsten spiral filament. The proof-of-concept filament shown was fabricated with the wet etch method. Then it was tested by heating it in a vacuum chamber using about 1.25 W of electrical power; it generated bright, blackbody radiation at approximately 2650 K. The filament was packaged in Glenn's clean-room facilities. This design uses three chips vacuum-sealed with glass tape. The bottom chip consists of a reflective film deposited on silicon, the middle chip contains a tungsten filament bonded to silicon, and the top layer is a transparent window. Lifetime testing on the package will begin shortly. The emitted optical power is expected to be approximately 1.0 W with the spectral peak at 1.1 mm.

  10. Inverse compton light source: a compact design proposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deitrick, Kirsten Elizabeth

    In the last decade, there has been an increasing demand for a compact Inverse Compton Light Source (ICLS) which is capable of producing high-quality X-rays by colliding an electron beam and a high-quality laser. It is only in recent years when both SRF and laser technology have advanced enough that compact sources can approach the quality found at large installations such as the Advanced Photon Source at Argonne National Laboratory. Previously, X-ray sources were either high flux and brilliance at a large facility or many orders of magnitude lesser when produced by a bremsstrahlung source. A recent compact source wasmore » constructed by Lyncean Technologies using a storage ring to produce the electron beam used to scatter the incident laser beam. By instead using a linear accelerator system for the electron beam, a significant increase in X-ray beam quality is possible, though even subsequent designs also featuring a storage ring offer improvement. Preceding the linear accelerator with an SRF reentrant gun allows for an extremely small transverse emittance, increasing the brilliance of the resulting X-ray source. In order to achieve sufficiently small emittances, optimization was done regarding both the geometry of the gun and the initial electron bunch distribution produced off the cathode. Using double-spoke SRF cavities to comprise the linear accelerator allows for an electron beam of reasonable size to be focused at the interaction point, while preserving the low emittance that was generated by the gun. An aggressive final focusing section following the electron beam's exit from the accelerator produces the small spot size at the interaction point which results in an X-ray beam of high flux and brilliance. Taking all of these advancements together, a world class compact X-ray source has been designed. It is anticipated that this source would far outperform the conventional bremsstrahlung and many other compact ICLSs, while coming closer to performing at the levels found at large facilities than ever before. The design process, including the development between subsequent iterations, is presented here in detail, with the simulation results for this groundbreaking X-ray source.« less

  11. A compact high brightness laser synchrotron light source for medical applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    1999-07-01

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.

  12. Optical wireless applications: a solution to ease the wireless airwaves spectrum crunch

    NASA Astrophysics Data System (ADS)

    Kavehrad, M.

    2013-01-01

    Demands by the communications industry for greater and greater bandwidth push the capability of conventional wireless technology. Part of the Radio Spectrum that is suitable for mobility is very limited. Higher frequency waves above 30 GHz tend to travel only a few miles or less and generally do not penetrate solid materials very well. This offers a sustainable solution for the current Spectrum Crunch in the lower microwave bands. One mission of this paper is to demonstrate practical and usable networks that can select a self-limiting link distance, allowing spectrum reuse. The motivation for operators of such bands to actually choose to self-limit is that by doing so, they improve the signal-tonoise against competing users at a lower cost than trying to overcome interference. These characteristics of wave propagation are not necessarily disadvantageous as they enable more densely packed communications links. Thus, high frequencies can provide very efficient spectrum utilization through "selective spectrum reuse", and naturally increase the security of transmissions. Optical systems and networks offer a far greater bandwidth. This means new devices and systems have to be developed. Semiconductor Light Emitting Diode (LED) is considered to be the future primary lighting source for buildings, automobiles and aircrafts. LED provides higher energy efficiency compared to incandescent and fluorescent light sources and it will play a major role in the global reduction of carbon dioxide emissions, as a consequence of the significant energy savings. Lasers are also under investigation for similar applications. These core devices have the potential to revolutionize how we use light, including not only for illumination, but as well; for communications, sensing, navigation, positioning, surveillance, and imaging.

  13. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    ERIC Educational Resources Information Center

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  14. Light Source

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Research on food growth for long duration spacecraft has resulted in a light source for growing plants indoors known as Qbeam, a solid state light source consisting of a control unit and lamp. The light source, manufactured by Quantum Devices, Inc., is not very hot, although it generates high intensity radiation. When Ron Ignatius, an industrial partner of WCSAR, realized that terrestrial plant research lighting was not energy efficient enough for space use, he and WCSAR began to experiment with light emitting diodes. A line of LED products was developed, and QDI was formed to market the technology. An LED-based cancer treatment device is currently under development.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riza, Nabeel Agha; Perez, Frank

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector tomore » calculate a temperature of the device.« less

  16. The Fresnel Zone Light Field Spectral Imager

    DTIC Science & Technology

    2017-03-23

    Marciniak Member AFIT-ENP-MS-17-M-095 Abstract This thesis provides a computational model and the first experimental demonstration of a Fresnel zone...Fresnel propagation. It was validated experimentally and provides excellent demonstration of system capabilities. The experimentally demonstrated system...in the measured light fields, they did not degrade the system’s performance. Experimental demonstration also showed the capability to resolve between

  17. Illumination control apparatus for compensating solar light

    NASA Technical Reports Server (NTRS)

    Owens, L. J. (Inventor)

    1978-01-01

    An illumination control apparatus is presented for supplementing light from solar radiation with light from an artificial light source to compensate for periods of insufficient levels of solar light. The apparatus maintains a desired illumination level within an interior space comprising an artificial light source connected to an electrical power source with a switch means for selectively energizing said light source. An actuator means for controlling the on-off operation of the switch means is connected to a light sensor which responses to the illumination level of the interior space. A limit switch carried adjacent to the actuator limits the movement of the actuator within a predetermined range so as to prevent further movement thereof during detection of erroneous illumination conditions.

  18. LightWAVE: Waveform and Annotation Viewing and Editing in a Web Browser.

    PubMed

    Moody, George B

    2013-09-01

    This paper describes LightWAVE, recently-developed open-source software for viewing ECGs and other physiologic waveforms and associated annotations (event markers). It supports efficient interactive creation and modification of annotations, capabilities that are essential for building new collections of physiologic signals and time series for research. LightWAVE is constructed of components that interact in simple ways, making it straightforward to enhance or replace any of them. The back end (server) is a common gateway interface (CGI) application written in C for speed and efficiency. It retrieves data from its data repository (PhysioNet's open-access PhysioBank archives by default, or any set of files or web pages structured as in PhysioBank) and delivers them in response to requests generated by the front end. The front end (client) is a web application written in JavaScript. It runs within any modern web browser and does not require installation on the user's computer, tablet, or phone. Finally, LightWAVE's scribe is a tiny CGI application written in Perl, which records the user's edits in annotation files. LightWAVE's data repository, back end, and front end can be located on the same computer or on separate computers. The data repository may be split across multiple computers. For compatibility with the standard browser security model, the front end and the scribe must be loaded from the same domain.

  19. Role of Reduced Exogenous Organic Compounds in the Physiology of the Blue-Green Bacteria (Algae): Photoheterotrophic Growth of a “Heterotrophic” Blue-Green Bacterium

    PubMed Central

    Ingram, L. O.; Calder, J. A.; Van Baalen, C.; Plucker, F. E.; Parker, P. L.

    1973-01-01

    Nostoc sp. (strain Mac) was shown to be capable of using glucose, fructose, or sucrose as a sole source of carbon and energy in the dark. In the light in the absence of exogenously supplied CO2, this strain exhibited a more versatile metabolism. In addition to the three sugars above, glycerol and acetate served as sole sources of carbon. This photoheterotrophic growth in the absence of exogenously supplied CO2 appears to involve O2-evolving photosynthesis. The action spectrum for photoheterotrophic growth on acetate closely resembles the action spectrum for photosynthesis. The physiology of photoheterotrophic growth was further investigated through determinations of stable carbon isotope ratios and measurements of gas exchanges. These investigations suggest that respired CO2 from substrate oxidation is assimilated by the photosynthetic machinery. PMID:4196252

  20. Characterization and use of the spent beam for serial operation of LCLS

    DOE PAGES

    Boutet, Sébastien; Foucar, Lutz; Barends, Thomas R. M.; ...

    2015-04-11

    X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for amore » particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps.« less

Top