Sample records for light source facility

  1. The Linac Coherent Light Source

    DOE PAGES

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-05-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  2. Advanced Light Source Activity Report 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  3. Synchrotron Light Sources in Developing Countries

    NASA Astrophysics Data System (ADS)

    Winick, Herman; Pianetta, Piero

    The more than 50 light sources in operation include facilities in Brazil, Korea, and Taiwan which started in the 1980's when they were developing countries. They came on line in the 1990's and have since trained hundreds of graduate students. They have attracted mid-career diaspora scientists to return. Growing user communities have demanded more advanced facilities, leading to higher performance new light sources that are now coming into operation. Light sources in the developing world now include the following: ∖textbf{SESAME}in the Middle East which is scheduled to start research in 2017 (∖underline {www.sesame.org}); ∖textbf{The African Light Source}, in the planning stage (∖underline {www.safricanlightsource.org}); and ∖textbf{The Mexican Light Source}, in the planning stage (∖underline {http://www.aps.org/units/fip/newsletters/201509/mexico.cfm}). See: http://wpj.sagepub.com/content/32/4/92.full.pdf +html; http://www.lightsources.org/press-release/2015/11/20/grenoble-resolutions-mark-historical-step-towards-african-light-source..

  4. National Synchrotron Light Source

    ScienceCinema

    BNL

    2017-12-09

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  5. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Study on the characteristics of linac based THz light source

    NASA Astrophysics Data System (ADS)

    Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu

    2009-10-01

    There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.

  6. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, E.Z.

    1995-05-01

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

  7. Wireless Occupancy Sensors for Lighting Controls: An Applications Guide for Federal Facility Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This guide provides federal facility managers with an overview of the energy savings potential of wireless lighting occupancy sensors for various room types, cost considerations, key steps to successful installation of wireless sensors, pros and cons of various technology options, light source considerations, and codes and standards.

  8. X-ray micro-Tomography at the Advanced Light Source

    USDA-ARS?s Scientific Manuscript database

    The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 10.5KeV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 KeV. A...

  9. Synchrotron Light Sources in Developing Countries

    NASA Astrophysics Data System (ADS)

    Winick, Herman; Pianetta, Piero

    2017-01-01

    The more than 50 light sources now in operation around the world include facilities in Brazil, Korea, and Taiwan which started their programs in the 1980's when they were developing countries. They came on line in the 1990's and have since trained hundreds of graduate students locally, without sending them abroad and losing many of them. They have also attracted dozens of mid-career diaspora scientists to return. Their growing user communities have demanded more advanced facilities, leading to the funding of higher performance new light sources that are now coming into operation. Light sources in the developing world now include the following: SESAME in the Middle East which is scheduled to start research in 2017 (www.sesame.org); The African Light Source, in the planning stage (www.africanlightsource.org); and The Mexican Light Source, in the planning stage (http://www.aps.org/units/fip/newsletters/201509/mexico.cfm). See: http://wpj.sagepub.com/content/32/4/92.full.pdf +html; http://www.lightsources.org/press-release/2015/11/20/grenoble-resolutions-mark-historical-step-towards-african-light-source. SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  10. National Synchrotron Light Source

    ScienceCinema

    None

    2017-12-09

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  11. Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff

    2015-01-01

    Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (<1 arcsecond). To accommodate this somewhat demanding requirement, NASA Marshall Space Flight Center (MSFC) has procured a custom, windowless low-energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.

  12. Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsch, Paul

    2013-11-07

    The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites asmore » well as contaminated sites around the United States and beyond.« less

  13. Photon Science for Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Zahid; Tamura, Lori; Padmore, Howard

    2010-03-31

    Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's lightmore » sources possible scientific directions for addressing these profound yet urgent challenges.« less

  14. Conceptual design of a stray light facility for Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; Hellin, M. L.; Marcotte, S.; Mazy, E.; Versluys, J.; François, M.; Taccola, M.; Zuccaro Marchi, A.

    2017-11-01

    With the upcoming of TMA or FMA (Three or Four Mirrors Anastigmat) telescope design in Earth Observation system, stray light is a major contributor to the degradation of the image quality. Numerous sources of stray light can be identified and theoretically evaluated. Nevertheless in order to build a stray light model of the instrument, the Point Spread Function(s) of the instrument, i.e., the flux response of the instrument to the flux received at the instrument entrance from an infinite distant point source needs to be determined. This paper presents a conceptual design of a facility placed in a vacuum chamber to eliminate undesired air particles scatter light sources. The specification of the clean room class or vacuum will depend on the required rejection to be measured. Once the vacuum chamber is closed, the stray light level from the external environment can be considered as negligible. Inside the chamber a dedicated baffle design is required to eliminate undesired light generated by the set up itself e.g. retro reflected light away from the instrument under test. This implies blackened shrouds all around the specimen. The proposed illumination system is a 400 mm off axis parabolic mirror with a focal length of 2 m. The off axis design suppresses the problem of stray light that can be generated by the internal obstruction. A dedicated block source is evaluated in order to avoid any stray light coming from the structure around the source pinhole. Dedicated attention is required on the selection of the source to achieve the required large measurement dynamic.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura

    This annual report of the Advanced Light Source details science highlights and facility developments during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  16. Updates on the African Synchrotron Light Source (AfLS) Project

    NASA Astrophysics Data System (ADS)

    Dobbins, Tabbetha; Mtingwa, Sekazi; Wague, Ahmadou; Connell, Simon; Masara, Brian; Ntsoane, Tshepo; Norris, Lawrence; Winick, Herman; Evans-Lutterodt, Kenneth; Hussein, Tarek; Maresha, Feene; McLaughlin, Krystle; Oladijo, Philip; Du Plessis, Esna; Murenzi, Romain; Reed, Kennedy; Sette, Francesco; Werin, Sverker; Dorfan, Jonathan; Yousef, Mohammad

    Africa is the only habitable continent without a synchrotron light source. A full steering committee was elected at the African Light Source (AfLS) conference on November 16-20, 2015 at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The conference brought together African scientists, policy makers, and stakeholders to discuss a synchrotron light source in Africa. Firm outcomes of the Conference were a set of resolutions and a roadmap. Additionally, a collaborative proposal to promote Advanced Light Sources and crystallographic sciences in targeted regions of the world was submitted by the International Union of Pure and Applied Physics (IUPAP) and the International Union of Crystallography (IUCr) to the International Council for Science (ICSU). www.africanlightsource.org.

  17. A stroboscopic technique for using CCD cameras in flow visualization systems for continuous viewing and stop action photography

    NASA Technical Reports Server (NTRS)

    Franke, John M.; Rhodes, David B.; Jones, Stephen B.; Dismond, Harriet R.

    1992-01-01

    A technique for synchronizing a pulse light source to charge coupled device cameras is presented. The technique permits the use of pulse light sources for continuous as well as stop action flow visualization. The technique has eliminated the need to provide separate lighting systems at facilities requiring continuous and stop action viewing or photography.

  18. Development of a microsecond X-ray protein footprinting facility at the Advanced Light Source.

    PubMed

    Gupta, Sayan; Celestre, Richard; Petzold, Christopher J; Chance, Mark R; Ralston, Corie

    2014-07-01

    X-ray footprinting (XF) is an important structural biology tool used to determine macromolecular conformations and dynamics of both nucleic acids and proteins in solution on a wide range of timescales. With the impending shut-down of the National Synchrotron Light Source, it is ever more important that this tool continues to be developed at other synchrotron facilities to accommodate XF users. Toward this end, a collaborative XF program has been initiated at the Advanced Light Source using the white-light bending-magnet beamlines 5.3.1 and 3.2.1. Accessibility of the microsecond time regime for protein footprinting is demonstrated at beamline 5.3.1 using the high flux density provided by a focusing mirror in combination with a micro-capillary flow cell. It is further reported that, by saturating samples with nitrous oxide, the radiolytic labeling efficiency is increased and the imprints of bound versus bulk water can be distinguished. These results both demonstrate the suitability of the Advanced Light Source as a second home for the XF experiment, and pave the way for obtaining high-quality structural data on complex protein samples and dynamics information on the microsecond timescale.

  19. Direct micro-CT observation confirms the induction of embolism upon xylem cutting under tension

    USDA-ARS?s Scientific Manuscript database

    We used two different Synchrotron-based micro-CT facilities (SLS: Swiss Light Source, Villigen, Switzerland, and ALS: Advanced Light Source, Berkeley, CA USA) to test the excision artifact described by Wheeler et al. (2013). Specifically, we examined the impact of cutting xylem under tension and und...

  20. Low emittance lattice for the storage ring of the Turkish Light Source Facility TURKAY

    NASA Astrophysics Data System (ADS)

    Nergiz, Z.; Aksoy, A.

    2015-06-01

    The TAC (Turkish Accelerator Center) project aims to build an accelerator center in Turkey. The first stage of the project is to construct an Infra-Red Free Electron Laser (IR-FEL) facility. The second stage is to build a synchrotron radiation facility named TURKAY, which is a third generation synchrotron radiation light source that aims to achieve a high brilliance photon beam from a low emittance electron beam at 3 GeV. The electron beam parameters are highly dependent on the magnetic lattice of the storage ring. In this paper a low emittance storage ring for TURKAY is proposed and the beam dynamic properties of the magnetic lattice are investigated. Supported by Turkish Republic Ministry of Development (DPT2006K120470)

  1. Operating experience with existing light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, M.Q.

    It is instructive to consider what an explosive growth there has been in the development of light sources using synchrotron radiation. This is well illustrated by the list of facilities given in Table I. In many cases, synchrotron light facilities have been obtained by tacking on parasitic beam lines to rings that were built for high energy physics. Of the twenty-three facilities in this table, however, eleven were built explicitely for this synchrotron radiation. Another seven have by now been converted for use as dedicated facilities leaving only five that share time with high energy physics. These five parasitically operatedmore » facilities are still among our best sources of hard x-rays, however, and their importance to the fields of science where these x-rays are needed must be emphasized. While the number of facilities in this table is impressive, it is even more impressive to add up the total number of user beam lines. Most of these rings are absolutely surrounded by beam lines and finding real estate on the experimental floor of one of these facilities for adding a new experiment looks about as practical as adding a farm in the middle of Manhattan. Nonetheless, the managers of these rings seem to have an attitude of ''always room for one more'' and new experimental beam lines do appear. This situation is necessary because the demand for beam time has exploded at an even faster rate than the development of the facilities. The field is not only growing, it can be expected to continue to grow for some time. Some of the explicit plans for future development will be discussed in the companion paper by Lee Teng.« less

  2. Real-time data-intensive computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkinson, Dilworth Y., E-mail: dyparkinson@lbl.gov; Chen, Xian; Hexemer, Alexander

    2016-07-27

    Today users visit synchrotrons as sources of understanding and discovery—not as sources of just light, and not as sources of data. To achieve this, the synchrotron facilities frequently provide not just light but often the entire end station and increasingly, advanced computational facilities that can reduce terabytes of data into a form that can reveal a new key insight. The Advanced Light Source (ALS) has partnered with high performance computing, fast networking, and applied mathematics groups to create a “super-facility”, giving users simultaneous access to the experimental, computational, and algorithmic resources to make this possible. This combination forms an efficientmore » closed loop, where data—despite its high rate and volume—is transferred and processed immediately and automatically on appropriate computing resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beamtime. We will describe our work at the ALS ptychography, scattering, micro-diffraction, and micro-tomography beamlines.« less

  3. Chemical Crystallography at the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Laura; Giordano, Nico; Teat, Simon

    Chemical crystallography at synchrotrons was pioneered at the Daresbury SRS station 9.8. The chemical crystallography beamlines at the Advanced Light Source seek to follow that example, with orders of magnitude more flux than a lab source, and various in situ experiments. This article thus attempts to answer why a chemist would require synchrotron X-rays, to describe the techniques available at the ALS chemical crystallography beamlines, and place the current facilities in a historical context.

  4. Chemical Crystallography at the Advanced Light Source

    DOE PAGES

    McCormick, Laura; Giordano, Nico; Teat, Simon; ...

    2017-12-18

    Chemical crystallography at synchrotrons was pioneered at the Daresbury SRS station 9.8. The chemical crystallography beamlines at the Advanced Light Source seek to follow that example, with orders of magnitude more flux than a lab source, and various in situ experiments. This article thus attempts to answer why a chemist would require synchrotron X-rays, to describe the techniques available at the ALS chemical crystallography beamlines, and place the current facilities in a historical context.

  5. Far-Infrared Beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; May, Tim E.

    2014-06-01

    The far-infrared beamline at the Canadian Light Source is a state of the art user facility, which offers significantly more far-infrared brightness than conventional globar sources. The infrared radiation is collected from a bending magnet through a 55 X 37 mrad2 port to a Bruker IFS 125 HR spectrometer, which is equipped with a nine compartment scanning arm, allowing it to achieve spectral resolution better than 0.001 cm-1. Currently the beamline can achieve signal to noise ratios up to 8 times that which can be achieved using a traditional thermal source. This talk will provide an overview of the the beamline, and the capabilities available to users, recent and planned improvements including the addition of a Glow Discharge cell and advances in Coherent Synchrotron Radiation. Furthermore, the process of acquiring access to the facility will be covered.

  6. Atomic physics research with second and third generation synchrotron light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B.M.

    1990-10-01

    This contribution to these proceedings is intended to provide an introduction and overview for other contributions on atomic (and related) physics research at existing and planned synchrotron light sources. The emphasis will be on research accomplishments and future opportunities, but a comparison will be given of operating characteristics for first, second, and third generation machines. First generation light sources were built to do research with the primary electron and positron beams, rather than with the synchrotron radiation itself. Second generation machines were specifically designed to be dedicated synchrotron-radiation facilities, with an emphasis on the use of bending-magnet radiation. The newmore » third generation light sources are being designed to optimize radiation from insertion devices, such as undulators and wigglers. Each generation of synchrotron light source offers useful capabilities for forefront research in atomic physics and many other disciplines. 27 refs., 1 fig., 3 tabs.« less

  7. Review of Canadian Light Source facilities for biological applications

    NASA Astrophysics Data System (ADS)

    Grochulski, Pawel; Fodje, Michel; Labiuk, Shaun; Wysokinski, Tomasz W.; Belev, George; Korbas, Malgorzata; Rosendahl, Scott M.

    2017-11-01

    The newly-created Biological and Life Sciences Department at the Canadian Light Source (CLS) encompasses four sets of beamlines devoted to biological studies ranging in scope from the atomic scale to cells, tissues and whole organisms. The Canadian Macromolecular Crystallography Facility (CMCF) consists of two beamlines devoted primarily to crystallographic studies of proteins and other macromolecules. The Mid-Infrared Spectromicroscopy (Mid-IR) beamline focusses on using infrared energy to obtain biochemical, structural and dynamical information about biological systems. The Bio-Medical Imaging and Therapy (BMIT) facility consists of two beamlines devoted to advanced imaging and X-ray therapy techniques. The Biological X-ray Absorption Spectroscopy (BioXAS) facility is being commissioned and houses three beamlines devoted to X-ray absorption spectroscopy and multi-mode X-ray fluorescence imaging. Together, these beamlines provide CLS Users with a powerful array of techniques to study today's most pressing biological questions. We describe these beamlines along with their current powerful features and envisioned future capabilities.

  8. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppens, Philip

    2003-06-22

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellentmore » training for students and postdoctoral scientists in the field.« less

  9. Facilities for small-molecule crystallography at synchrotron sources.

    PubMed

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  10. Development of a EUV Test Facility at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  11. Mercury free microscopy: an opportunity for core facility directors.

    PubMed

    Baird, T Regan; Kaufman, Daniel; Brown, Claire M

    2014-07-01

    Mercury Free Microscopy (MFM) is a new movement that encourages microscope owners to choose modern mercury free light sources to replace more traditional mercury based arc lamps. Microscope performance is enhanced with new solid state technologies because they offer a more stable light intensity output and have a more uniform light output across the visible spectrum. Solid state sources not only eliminate mercury but also eliminate the cost of consumable bulbs (lifetime ∼200 hours), use less energy, reduce the instrument down time when bulbs fail and reduce the staff time required to replace and align bulbs. With lifetimes on the order of tens of thousands of hours, solid state replacements can pay for themselves over their lifetime with the omission of consumable, staff (no need to replace and align bulbs) and energy costs. Solid state sources are also sustainable and comply with institutional and government body mandates to reduce energy consumption, carbon footprints and hazardous waste. MFM can be used as a mechanism to access institutional financial resources for sustainable technology through a variety of stakeholders to defray the cost to microscope owners for the initial purchase of solid state sources or the replacement cost of mercury based sources. Core facility managers can take a lead in this area as "green" ambassadors for their institution by championing a local MFM program that will save their institution money and energy and eliminate mercury from the waste stream. Managers can leverage MFM to increase the visibility of their facility, their impact within the institution, and as a vital educational resource for scientific and administrative consultation.

  12. Main functions, recent updates, and applications of Synchrotron Radiation Workshop code

    NASA Astrophysics Data System (ADS)

    Chubar, Oleg; Rakitin, Maksim; Chen-Wiegart, Yu-Chen Karen; Chu, Yong S.; Fluerasu, Andrei; Hidas, Dean; Wiegart, Lutz

    2017-08-01

    The paper presents an overview of the main functions and new application examples of the "Synchrotron Radiation Workshop" (SRW) code. SRW supports high-accuracy calculations of different types of synchrotron radiation, and simulations of propagation of fully-coherent radiation wavefronts, partially-coherent radiation from a finite-emittance electron beam of a storage ring source, and time-/frequency-dependent radiation pulses of a free-electron laser, through X-ray optical elements of a beamline. An extended library of physical-optics "propagators" for different types of reflective, refractive and diffractive X-ray optics with its typical imperfections, implemented in SRW, enable simulation of practically any X-ray beamline in a modern light source facility. The high accuracy of calculation methods used in SRW allows for multiple applications of this code, not only in the area of development of instruments and beamlines for new light source facilities, but also in areas such as electron beam diagnostics, commissioning and performance benchmarking of insertion devices and individual X-ray optical elements of beamlines. Applications of SRW in these areas, facilitating development and advanced commissioning of beamlines at the National Synchrotron Light Source II (NSLS-II), are described.

  13. Light ion production for a future radiobiological facility at CERN: Preliminary studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stafford-Haworth, Joshua, E-mail: Joshua.Stafford-Haworth@cern.ch; John Adams Institute at Royal Holloway, University of London, Egham, Surrey TW20 0EX; Bellodi, Giulia

    2014-02-15

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented alongmore » with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.« less

  14. Light ion production for a future radiobiological facility at CERN: preliminary studies.

    PubMed

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard

    2014-02-01

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  15. 42 CFR 485.62 - Condition of participation: Physical environment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... generated by electricity, an alternate power source with automatic triggering must be present. (4) Lights... the exterior walkways and parking areas are clean and orderly and maintained free of any defects that... facility. (5) Parking spaces are large enough and close enough to the facility to allow safe access by the...

  16. 42 CFR 485.62 - Condition of participation: Physical environment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... generated by electricity, an alternate power source with automatic triggering must be present. (4) Lights... the exterior walkways and parking areas are clean and orderly and maintained free of any defects that... facility. (5) Parking spaces are large enough and close enough to the facility to allow safe access by the...

  17. Diamond Light Source: status and perspectives.

    PubMed

    Materlik, Gerhard; Rayment, Trevor; Stuart, David I

    2015-03-06

    Diamond Light Source, a third-generation synchrotron radiation (SR) facility in the UK, celebrated its 10th anniversary in 2012. A private limited company was set up in April 2002 to plan, construct and operate the new user-oriented SR facility, called in brief Diamond. It succeeded the Synchrotron Radiation Source in Daresbury, a second-generation synchrotron that opened in 1980 as the world's first dedicated X-ray-providing facility, closing finally in 2008, by which time Diamond's accelerators and first beamlines were operating and user experiments were under way. This theme issue of Philosophical Transactions of the Royal Society A gives some examples of the rich diversity of research done in the initial five years, with some glimpses of activity up to 2014. Speakers at the 10 year anniversary symposium were drawn from a small number of major thematic areas and each theme was elaborated by a few speakers whose contributions were placed into a broader context by a leading member of the UK academic community in the role of rapporteur. This introduction gives a summary of the design choices and strategic planning of Diamond as a coherent user facility, a snapshot of its present status and some consideration of future perspectives. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Effects of type of light on mouse circadian behaviour and stress levels.

    PubMed

    Alves-Simoes, Marta; Coleman, Georgia; Canal, Maria Mercè

    2016-02-01

    Light is the principal synchronizing environmental factor for the biological clock. Light quantity (intensity), and light quality (type of light source) can have different effects. The aim of this study was to determine the effects of the type of light experienced from the time of birth on mouse growth, circadian behaviour and stress levels. We raised pigmented and albino mice under 24 h light-dark cycles of either fluorescent or white light-emitting diode (LED) light source during the suckling stage, and the animals were then exposed to various light environments after weaning and their growth rate, locomotor activity and plasma corticosterone concentration were measured. We found that the type of light the animals were exposed to did not affect the animals' growth rates or stress levels. However, we observed significant effects on the expression of the locomotor activity rhythm under low contrast light-dark cycles in pigmented mice, and under constant light in both albino and pigmented mice. These results highlight the importance of environmental light quality (light source) on circadian behavioural rhythms, and the need for close monitoring of light environments in animal facilities. © The Author(s) 2015.

  19. Addressing Challenges to the Design & Test of Operational Lighting Environments for the International Space Station

    NASA Technical Reports Server (NTRS)

    Clark, Toni A.

    2014-01-01

    In our day to day lives, the availability of light, with which to see our environment, is often taken for granted. The designers of land based lighting systems use sunlight and artificial light as their toolset. The availability of power, quantity of light sources, and variety of design options are often unlimited. The accessibility of most land based lighting systems makes it easy for the architect and engineer to verify and validate their design ideas. Failures with an implementation, while sometimes costly, can easily be addressed by renovation. Consider now, an architectural facility orbiting in space, 260 miles above the surface of the earth. This human rated architectural facility, the International Space Station (ISS) must maintain operations every day, including life support and appropriate human comforts without fail. The facility must also handle logistics of regular shipments of cargo, including new passengers. The ISS requires accommodations necessary for human control of machine systems. Additionally, the ISS is a research facility and supports investigations performed inside and outside its livable volume. Finally, the facility must support remote operations and observations by ground controllers. All of these architectural needs require a functional, safe, and even an aesthetic lighting environment. At Johnson Space Center, our Habitability and Human Factors team assists our diverse customers with their lighting environment challenges, via physical test and computer based analysis. Because of the complexity of ISS operational environment, our team has learned and developed processes that help ISS operate safely. Because of the dynamic exterior lighting environment, uses computational modeling to predict the lighting environment. The ISS' orbit exposes it to a sunrise every 90 minutes, causing work surfaces to quickly change from direct sunlight to earthshine to total darkness. Proper planning of vehicle approaches, robotics operations, and crewed Extra Vehicular Activities are mandatory to ensure safety to the crew and all others involved. Innovation in testing techniques is important as well. The advent of Solid State Lighting technology and the lack of stable national and international standards for its implementation pose new challenges on how to design, test and verify individual light fixtures and the environment that uses them. The ISS will soon be replacing its internal fluorescent lighting system to a solid state LED system. The Solid State Lighting Assembly will be used not only for general lighting, but also as a medical countermeasure to control the circadian rhythm of the crew. The new light source has performance criteria very specific to its spectral fingerprint, creating new challenges that were originally not as significant during the original design of the ISS. This presentation will showcase findings and toolsets our team is using to assist in the planning of tasks, and design of operational lighting environments on the International Space Station.

  20. Indoor Lighting Facilities

    NASA Astrophysics Data System (ADS)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics on building construction floor area from the Ministry of Land, Infrastructure, Transport and Tourism, the total floor area of building construction started in Japan in 2007 was 160,991 thousand square meters, or 14.8% less than the area of the previous year, and the reduction was the first reduction in the past five years. The office markets in Tokyo and Nagoya were active, as represented by the supplies of skyscrapers, and energy saving measures, such as the adoption of high efficiency lighting equipment, the control for initial stage illuminance, daylight harvesting, and the use of occupancy sensors, were well established. In the field of public construction, including museums, multi-purpose halls, and religious buildings, the total area of the new construction was 10.8% less than the total for the previous year, and this reduction was a continuation of an eleven-year trend. In spaces with high ceiling, the innovation for easy replacement of light sources used with reflection mirror systems and optical fibers was noted. Hospitals adapted to the expectation for improved services in their selection of lighting facilities to improve the residential environment for patients while taking into consideration the needs of the aging population, by their use of devices in corridors to help maintain a continuity of light. In libraries, a pendant system was developed to illuminate both ceilings and book shelves. In the field of theaters and halls, the time limit for repairing existing systems had come for the large facilities that were opened during the theater and hall construction boom of the 1960s through 1980s, and around 26 renovations were done. Almost all the renovations were conversions to intelligent dimming systems and lighting control desks. In the field of stores and commercial facilities, the atmosphere and glitter of the selling floor was produced by new light sources, such as ceramic metal halide lamps and LEDs, which have high efficiency, long life, and excellent color rendering properties. In the field of lodging, restaurants, and services, suitable atmospheres for the locations were produced by devices for controlling the light distribution of 12 V tungsten halogen equipment and by the use of indirect illumination in up-scale restaurants. In the field of residence, as was the case in the previous year, lighting distribution plans corresponding to diverse activities, such as island kitchens and home theaters, were adopted in horizontally or vertically arranged floor plans. Also, light sources, appliances, and controls with excellent efficiency were adopted for common spaces in order to correspond to the energy saving law.

  1. Light Microscopy Module Imaging Tested and Demonstrated

    NASA Technical Reports Server (NTRS)

    Gati, Frank

    2004-01-01

    The Fluids Integrated Rack (FIR), a facility-class payload, and the Light Microscopy Module (LMM), a subrack payload, are integrated research facilities that will fly in the U.S. Laboratory module, Destiny, aboard the International Space Station. Both facilities are being engineered, designed, and developed at the NASA Glenn Research Center by Northrop Grumman Information Technology. The FIR is a modular, multiuser scientific research facility that is one of two racks that make up the Fluids and Combustion Facility (the other being the Combustion Integrated Rack). The FIR has a large volume dedicated for experimental hardware; easily reconfigurable diagnostics, power, and data systems that allow for unique experiment configurations; and customizable software. The FIR will also provide imagers, light sources, power management and control, command and data handling for facility and experiment hardware, and data processing and storage. The first payload in the FIR will be the LMM. The LMM integrated with the FIR is a remotely controllable, automated, on-orbit microscope subrack facility, with key diagnostic capabilities for meeting science requirements--including video microscopy to observe microscopic phenonema and dynamic interactions, interferometry to make thin-film measurements with nanometer resolution, laser tweezers to manipulate micrometer-sized particles, confocal microscopy to provide enhanced three-dimensional visualization of structures, and spectrophotometry to measure the photonic properties of materials. Vibration disturbances were identified early in the LMM development phase as a high risk for contaminating the science microgravity environment. An integrated FIR-LMM test was conducted in Glenn's Acoustics Test Laboratory to assess mechanical sources of vibration and their impact to microscopic imaging. The primary purpose of the test was to characterize the LMM response at the sample location, the x-y stage within the microscope, to vibration emissions from the FIR and LMM support structures.

  2. Lighting Systems For High Speed Photography Applying Special Metal Halide Discharge Lamps

    NASA Astrophysics Data System (ADS)

    Gillum, Keith M.; Steuernagel, K. H.

    1983-03-01

    High speed photography requires, in addition to a good color quality of the light source, a very high level of illumination. Conventional lighting systems utilizing incandescent lamps or other metal halide lamp types has inherent problems of inefficient light output or poor color quality. Heat generated by incandescent lamps and the power these sources require drive up operating and installation costs. A most economical and practical solution was devised by using the metal halide discharge lamp developed by OSRAM, GmbH of Munich, West Germany. This lamp trade marked the HMITM Metallogen was primarily developed for the needs of the television and motion picture film industry. Due to their high efficiency and other consistent operating qualities these lamps also fulfill the needs of high speed photography, e.g. in crash test facilities, when special engineering activities are carried out. The OSRAM HMITM lamp is an AC discharge metal halide lamp with rare earth additives to increase both the efficiency and light output qualities. Since the lamp is an AC source, a special method had to be developed to overcome the strobing effect, which is normal for AC lamps given their modulated light output, when used with high speed cameras, (e.g. with >1000 fps). This method is based on an increased frequency for the lamp supply voltage coupled with a mix of the light output achieved using a multiphase mains power supply. First developed in 1977, this system using the OSRAM HMITM lamps was installed in a crash test facility of a major automotive manufacturer in West Germany. The design resulted in the best lighting and performance ever experienced. Since that time several other motor companies have made use of this breakthrough. Industrial and scientific users are now considering additional applications use of this advanced high speed lighting system.

  3. Phytochrome-mediated responses implications for controlled environment research facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, H.

    1994-12-31

    Light is undoubtedly the most important environmental variable for plant growth and development; plants not only use radiant energy in photosynthesis, they also respond to the quantity, quality, direction and timing of incident radiation through photomorphogenic responses that can have huge effects on the rate of growth and the pattern of development. It is surprising, therefore, that the manufacturers and suppliers of controlled environment facilities have been singularly uninventive in the design of the lighting assemblies they provide. The consumer has one choice only - a lighting assembly that provides irradiance levels usually only a fraction of sunlight, and amore » control system that is limited to regulating the timing of the on-off switch. The reasons for these limitations are partly technological, but in the main they result from ignorance on the part of both the consumer and the manufacturer. A specific and powerful example of this ignorance relates to the importance of the so-called far-red wavelengths (FR = 700-800 nm). Because the human eye can hardly detect wavelengths above 700 nm, and photosynthesis also cuts off at ca. 700 mn, the majority of plant and crop physiologists are still almost completely unaware that FR radiation can have massive effects on growth rate and development. In consequence, most growth cabinets have light sources based on fluorescent tubes, and provide very little FR apart from that emitted by a token number of small incandescent bulbs. Larger growth facilities often use broader spectrum light sources, but growth facilities that provide the capability to vary the FR incident upon the plants are about as abundant as seals in the Sahara. This article sets the background of the significance of FR radiation in the natural environment and its importance for plant growth and development in the hope that it might inform intelligently those concerned with improving the design of plant growth facilities.« less

  4. Phytochrome-mediated responses: Implications for controlled environment research facilities

    NASA Technical Reports Server (NTRS)

    Smith, Harry

    1994-01-01

    Light is undoubtedly the most important environmental variable for plant growth and development; plants not only use radiant energy in photosynthesis, they also respond to the quantity, quality, direction and timing of incident radiation through photomorphogenic response that can have huge effects on the rate of growth and the pattern of development. It is surprising, therefore, that the manufacturers and suppliers of controlled environment facilities have been singularly uninventive in the design of the lighting assemblies they provide. The consumer has one choice only - a lighting assembly that provides irradiance levels usually only a fraction of sunlight, and a control system that is limited to regulating the timing of the on-off switch. The reasons for these limitations are partly technological, but in the main they result from ignorance on the part of both the consumer and the manufacturer. A specific and powerful example of this ignorance relates to the importance of the so-called far-red wavelengths (FR = 700-800 nm). Because the human eye can hardly detect wavelengths above 700 nm, and photosynthesis also cuts off at about 700 nm, the majority of plant and crop physiologists are still almost completely unaware that FR radiation can have massive effects on growth rate and development. In consequence, most growth cabinets have light sources based on fluorescent tubes, and provide very little FR apart from that emitted by a token number of small incandescent bulbs. Larger growth facilities often use broader spectrum light sources, but growth facilities that provide the capability to vary the FR incident upon the plants are about as abundant as seals in the Sahara. This article sets the background of the significance of FR radiation in the natural environment and its importance for plant growth and development in the hope that it might inform intelligently those concerned with improving the design of plant growth facilities.

  5. Convenient determination of luminescence quantum yield using a combined electronic absorption and emission spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, John; Mishra, Ashok Kumar

    2016-01-15

    It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.

  6. Optical laser systems at the Linac Coherent Light Source

    DOE PAGES

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; ...

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  7. Towards a 4{sup th} generation storage ring at the Canadian Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallin, Les; Wurtz, Ward

    2016-07-27

    Demands from beamline scientists for more brilliant sources of synchrotron radiation have resulted in the emergence of 4{sup th} generation (diffraction-limited) storage rings. The practical development of the multi-bend achromat (MBA) concept by MAX IV lab has spurred many synchrotron light sources around the world to develop similar machines. For existing facilities two options are available: upgrading existing machines or building a new structure. The Canadian Light Source (CLS) has explored both options. For a new low emittance source in the existing CLS tunnel a decrease in electron energy would be required. A machine similar to the ALS upgrade couldmore » be contemplated. To achieve low emittance at our present energy of 2.9 GeV a new storage ring is desirable. Several options have been investigated. These designs use extremely strong focusing magnets to achieve extremely low emittances in compact lattice achromats.« less

  8. Shielding calculations for the National Synchrotron Light Source-II experimental beamlines

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2013-01-01

    Brookhaven National Laboratory is in the process of building a new Electron storage ring for scientific research using synchrotron radiation. This facility, called the "National Synchrotron Light Source II" (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, designed to maximize the scientific output of the facility. The project scope includes the design of an electron storage ring and the experimental beamlines, which stores a maximum of 500 mA electron beam current at an energy of 3.0 GeV. When fully built there will be at least 58 beamlines using synchrotron radiation for experimental programs. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in the synchrotron radiation flux to <1%. Because of the very demanding requirements for synchrotron radiation brilliance for the experiments, each of the 58 beamlines will be unique in terms of the source properties and experimental configuration. This makes the shielding configuration of each of the beamlines unique. The shielding calculation methodology and the results for five representative beamlines of NSLS-II, have been presented in this paper.

  9. First Structural Steel Erected at NSLS-II

    ScienceCinema

    None

    2017-12-09

    Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.

  10. Measurement and Validation of Bidirectional Reflectance of Space Shuttle and Space Station Materials for Computerized Lighting Models

    NASA Technical Reports Server (NTRS)

    Fletcher, Lauren E.; Aldridge, Ann M.; Wheelwright, Charles; Maida, James

    1997-01-01

    Task illumination has a major impact on human performance: What a person can perceive in his environment significantly affects his ability to perform tasks, especially in space's harsh environment. Training for lighting conditions in space has long depended on physical models and simulations to emulate the effect of lighting, but such tests are expensive and time-consuming. To evaluate lighting conditions not easily simulated on Earth, personnel at NASA Johnson Space Center's (JSC) Graphics Research and Analysis Facility (GRAF) have been developing computerized simulations of various illumination conditions using the ray-tracing program, Radiance, developed by Greg Ward at Lawrence Berkeley Laboratory. Because these computer simulations are only as accurate as the data used, accurate information about the reflectance properties of materials and light distributions is needed. JSC's Lighting Environment Test Facility (LETF) personnel gathered material reflectance properties for a large number of paints, metals, and cloths used in the Space Shuttle and Space Station programs, and processed these data into reflectance parameters needed for the computer simulations. They also gathered lamp distribution data for most of the light sources used, and validated the ability to accurately simulate lighting levels by comparing predictions with measurements for several ground-based tests. The result of this study is a database of material reflectance properties for a wide variety of materials, and lighting information for most of the standard light sources used in the Shuttle/Station programs. The combination of the Radiance program and GRAF's graphics capability form a validated computerized lighting simulation capability for NASA.

  11. Recent Beam Measurements and New Instrumentation at the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, F.; Baptiste, K.; Barry, W.

    2012-04-11

    The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and usedmore » in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.« less

  12. RECENT BEAM MEASUREMENTS AND NEW INSTRUMENTATION AT THE ADVANCED LIGHT SOURCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, Fernando; Baptiste, Kenneth; Barry, Walter

    2008-05-05

    The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and usedmore » in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.« less

  13. Design of an holographic off-axis calibration light source for ARGOS at the LBT

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Gassler, Wolfgang; Peter, Diethard; Blumchen, Thomas; Aigner, Simon; Quirrenbach, Andreas

    We report on the design of an artificial light source for ARGOS, the multiple Rayleigh laser guide star (LGS) facility at the Large Binocular Telescope (LBT). Our light source mimics the expected night-time illumination of the adaptive secondary mirror (ASM) by the laser beacons very accurately and provides a way to check the achieved performance, allowing thorough testing of the system during day time. The optical design makes use of computer generated holograms (CGH) and strong aspheres to achieve a very small residual wavefront error. Additional structures on the CGH facilitate quick and precise alignment of the optics in the prime focus. We demonstrate that the scheme can be applied to the current European Extremely Large Telescope (E-ELT) design in a similar way.

  14. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K; Weber, F; Dewald, E

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  15. Review of the Elementary Particles Physics in the External Electromagnetic Fields Studies at KEK

    NASA Astrophysics Data System (ADS)

    Konstantinova, O. Tanaka

    2017-03-01

    High Energy Accelerator Research Organization (KEK [1]) is a world class accelerator-based research laboratory. The field of its scientific interests spreads widely from the study of fundamental properties of matter, particle physics, nuclear physics to materials science, life science, technical researches, and industrial applications. Research outcomes from the laboratory achieved making use of high-energy particle beams and synchrotron radiation. Two synchrotron facilities of KEK, the Photon Factory (PF) ring and the Photon Factory Advanced Ring (PF-AR) are the second biggest synchrotron light source in Japan. A very wide range of the radiated light, from visible light to X-ray, is provided for a variety of materials science, biology, and life science [2]. KEK strives to work closely with national and international research institutions, promoting collaborative research activities. Advanced research and facilities provision are key factors to be at the frontier of the accelerator science. In this review I am going to discuss KEK overall accelerator-based science, and to consider light sources research and development. The state of arts of the current projects with respect to the elementary particles physics in the external electromagnetic fields is also stressed here.

  16. Photocathodes for High Repetition Rate Light Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). Below details the Principal Investigators and contact information. Each PI submits separately for a budget through his corresponding institute. The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus ismore » on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-­conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-­antimonide cathodes (BNL – LBNL) b) Development and testing of a diamond amplifier for photocathodes (SBU -­ BNL) c) Tests of both cathodes in superconducting RF photoguns (SBU) and copper RF photoguns (LBNL) Our work made extensive use of synchrotron radiation materials science techniques, such as powder-­ and single-­crystal diffraction, x-­ray fluorescence, EXAFS and variable energy XPS. BNL and LBNL have many complementary facilities at the two light sources associated with these laboratories (NSLS and ALS, respectively); use of these will be a major thrust of our program and bring our understanding of these complex materials to a new level. In addition, CHESS at Cornell will be used to continue seamlessly throughout the NSLS dark period and new diffraction facilities at ALS will be utilized. We also will continue to make use of the excellent analytical facilities at the CNF (BNL) and the Molecular Foundry (LBNL), where we have access to state of the art UHV XPS, SPM, SEM and scanning Auger microscopy.« less

  17. Role Of High Speed Photography In The Testing Capabilities Of The Arnold Engineering Development Center (AEDC) Range And Track Facilities

    NASA Astrophysics Data System (ADS)

    Hendrix, Roy E.; Dugger, Paul H.

    1983-03-01

    Since the onset of user testing in the AEDC aeroballistic ranges in 1961, concentrated efforts in such areas as model launching techniques, test environment simulation, and specialized instrumentation have been made to enhance the usefulness of these test facilities. A wide selection of specialized instrumentation has been developed over the years to provide, among other features, panoramic photographic coverage of test models during flight. Pulsed ruby lasers, xenon flash lamps, visible-light spark sources, and flash X-ray systems are employed as short-duration radiation sources in various front-light and back-light photographic systems. Visible-light and near infrared image intensifier diodes are used to achieve high-speed shuttering in photographic pyrometry systems that measure surface temperatures of test models in flight. Turbine-driven framing cameras are used to provide multiframe photography of such high-speed phenomena as impact debris formation and model encounter with erosive fields. As a result, the capabilities of these ballistic range test units have increased significantly in regard to the types of tests that can be accommodated and to the quality and quantity of data that can be provided. Presently, five major range and companion track facilities are active in conducting hypervelocity testing in AEDC's von K6rman Gas Dynamics Facility (VKF): Ranges G, K, and S-1 and Tracks G and K. The following types of tests are conducted in these test units: ablation/erosion, transpiration-cooled nosetip (TCNT), nosetip transition, heat transfer, aerodynamic, cannon projectile, rocket contrail, reentry physics, and hypervelocity impact. The parallel achievements in high-speed photography and testing capabilities are discussed, and the significant role of photographic systems in the development of the overall testing capabilities of the AEDC range and track facilities is illustrated in numerous examples of photographic results.

  18. Tunnel vision for US X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2017-03-01

    Construction can begin on a major upgrade to the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in the US after the tunnel that will house the facility was cleared of equipment.

  19. Fourth User Workshop on High-Power Lasers at the Linac Coherent Light Source

    DOE PAGES

    Bolme, Cindy Anne; Mackinnon, Andy; Glenzer, Siegfried

    2017-05-30

    The fourth international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA, on October 3–4, 2016. The workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory (SLAC), and garnered the attendance of more than 110 scientists. Participants discussed the warm dense matter and high-pressure science that is being conducted using high-power lasers at the LCLS Matter in Extreme Conditions (MEC) endstation. During the past year, there have been seven journal articles published from research at the MEC instrument. Here, the specific topics discussed at thismore » workshop were experimental highlights from the past year, current status and future commissioning of MEC capabilities, and future facility upgrades that will enable the expanded science reach of the facility.« less

  20. Fourth User Workshop on High-Power Lasers at the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolme, Cindy Anne; Mackinnon, Andy; Glenzer, Siegfried

    The fourth international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA, on October 3–4, 2016. The workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory (SLAC), and garnered the attendance of more than 110 scientists. Participants discussed the warm dense matter and high-pressure science that is being conducted using high-power lasers at the LCLS Matter in Extreme Conditions (MEC) endstation. During the past year, there have been seven journal articles published from research at the MEC instrument. Here, the specific topics discussed at thismore » workshop were experimental highlights from the past year, current status and future commissioning of MEC capabilities, and future facility upgrades that will enable the expanded science reach of the facility.« less

  1. X-Ray Detector Simulations - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tina, Adrienne

    2015-08-20

    The free-electron laser at LCLS produces X-Rays that are used in several facilities. This light source is so bright and quick that we are capable of producing movies of objects like proteins. But making these movies would not be possible without a device that can detect the X-Rays and produce images. We need X-Ray cameras. The challenges LCLS faces include the X-Rays’ high repetition rate of 120 Hz, short pulses that can reach 200 femto-seconds, and extreme peak brightness. We need detectors that are compatible with this light source, but before they can be used in the facilities, they mustmore » first be characterized. My project was to do just that, by making a computer simulation program. My presentation discusses the individual detectors I simulated, the details of my program, and how my project will help determine which detector is most useful for a specific experiment.« less

  2. Numerical analysis of the beam position monitor pickup for the Iranian light source facility

    NASA Astrophysics Data System (ADS)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2017-03-01

    In this paper, we describe the design of a button type Beam Position Monitor (BPM) for the low emittance storage ring of the Iranian Light Source Facility (ILSF). First, we calculate sensitivities, induced power and intrinsic resolution based on solving Laplace equation numerically by finite element method (FEM), in order to find the potential at each point of BPM's electrode surface. After the optimization of the designed BPM, trapped high order modes (HOM), wakefield and thermal loss effects are calculated. Finally, after fabrication of BPM, it is experimentally tested by using a test-stand. The results depict that the designed BPM has a linear response in the area of 2×4 mm2 inside the beam pipe and the sensitivity of 0.080 and 0.087 mm-1 in horizontal and vertical directions. Experimental results also depict that they are in a good agreement with numerical analysis.

  3. Indoor Lighting Facilities

    NASA Astrophysics Data System (ADS)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics by the Ministry of Land, Infrastructure and Transport, the total floor space of all building construction started was 188.87 million m2 (1.5% increase y/y), marking the fourth straight year of increase. Many large-scale buildings under construction in central Tokyo become fully occupied by tenants before completion. As for office buildings, it is required to develop comfortable and functional office spaces as working styles are becoming more and more diversified, and lighting is also an element of such functionalities. The total floor space of construction started for exhibition pavilions, multipurpose halls, conference halls and religious architectures decreased 11.1% against the previous year. This marked a decline for 10 consecutive years and the downward trend continues. In exhibition pavilions, the light radiation is measured and adjusted throughout the year so as not to damage the artworks by lighting. Hospitals, while providing higher quality medical services and enhancing the dwelling environment of patients, are expected to meet various restrictions and requirements, including the respect for privacy. Meanwhile, lighting designs for school classrooms tend to be homogeneous, yet new ideas are being promoted to strike a balance between the economical and functional aspects. The severe economic environment continues to be hampering the growth of theaters and halls in both the private and public sectors. Contrary to the downsizing trend of such facilities, additional installations of lighting equipment were conspicuous, and the adoption of high efficacy lighting appliances and intelligent function control circuits are becoming popular. In the category of stores/commercial facilities, the construction of complex facilities is a continuing trend. Indirect lighting, high luminance discharge lamps with excellent color rendition and LEDs are being effectively used in these facilities, together with the introduction of lighting designs that take into account the traffic flow of shoppers. For hotels, restaurants and other service industries, lighting equipment that corresponds to the purpose of the facility is being employed. An innovative lighting design was observed for the bath space, while such idea was not so much emphasized in the past. As to residences, illumination positioning plans that cope with diversifying lifestyles in an innovative space expanding in a horizontal or vertical direction using high efficient light sources/appliances are being introduced.

  4. SNL Five-Year Facilities & Infrastructure Plan FY2015-2019

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipriani, Ralph J.

    2014-12-01

    Sandia’s development vision is to provide an agile, flexible, safer, more secure, and efficient enterprise that leverages the scientific and technical capabilities of the workforce and supports national security requirements in multiple areas. Sandia’s Five-Year Facilities & Infrastructure Planning program represents a tool to budget and prioritize immediate and short-term actions from indirect funding sources in light of the bigger picture of proposed investments from direct-funded, Work for Others and other funding sources. As a complementary F&I investment program, Sandia’s indirect investment program supports incremental achievement of the development vision within a constrained resource environment.

  5. The new design of final optics assembly on SG-III prototype facility

    NASA Astrophysics Data System (ADS)

    Li, Ping; Zhao, Runchang; Wang, Wei; Jia, Huaiting; Chen, Liangmin; Su, Jingqin

    2014-09-01

    To improve the performance of SG-III prototype facility (TIL-Technical Integration Line), final optics assembly (FOA) is re-designed. It contains that stray light and focusing ghosts are optimized, operational performance and environments are improved and the total thickness of optics is reduced. With the re-designed FOA, Some performance advantages are achieved. First, the optics damages are mitigated obviously, especially crystals and Focus lens; Second, stray light and focusing ghosts are controlled better that organic contamination sources inside FOA are eliminated; Third, maintenance and operation are more convenient for the atoms environment; Fourth, the focusable power on target is increased for lower B-integral.

  6. BRDF Calibration of Sintered PTFE in the SWIR

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2009-01-01

    Satellite instruments operating in the reflective solar wavelength region often require accurate and precise determination of the Bidirectional Reflectance Distribution Function (BRDF) of laboratory-based diffusers used in their pre-flight calibrations and ground-based support of on-orbit remote sensing instruments. The Diffuser Calibration Facility at NASA's Goddard Space Flight Center is a secondary diffuser calibration standard after NEST for over two decades, providing numerous NASA projects with BRDF data in the UV, Visible and the NIR spectral regions. Currently the Diffuser Calibration Facility extended the covered spectral range from 900 nm up to 1.7 microns. The measurements were made using the existing scatterometer by replacing the Si photodiode based receiver with an InGaAs-based one. The BRDF data was recorded at normal incidence and scatter zenith angles from 10 to 60 deg. Tunable coherent light source was setup. Broadband light source application is under development. Gray-scale sintered PTFE samples were used at these first trials, illuminated with P and S polarized incident light. The results are discussed and compared to empirically generated BRDF data from simple model based on 8 deg directional/hemispherical measurements.

  7. Facile preparation of N-doped TiO2 at ambient temperature and pressure under UV light with 4-nitrophenol as the nitrogen source and its photocatalytic activities.

    PubMed

    Horikoshi, Satoshi; Shirasaka, Yutaro; Uchida, Hiroshi; Horikoshi, Natsuko; Serpone, Nick

    2016-08-04

    To date syntheses of nitrogen-doped TiO2 photocatalysts (TiO2-xNx) have been carried out under high temperatures and high pressures with either NH3 or urea as the nitrogen sources. This article reports for the first time the facile preparation of N-doped TiO2 (P25 titania) in aqueous media at ambient temperature and pressure under inert conditions (Ar- and N2-purged dispersions) with 4-nitrophenol (or 4-nitrobenzaldehyde) as the nitrogen source. The resulting N-doped P25 TiO2 materials were characterized by UV/Vis and X-ray photoelectron spectroscopies (XPS) that confirmed the presence of nitrogen within the photocatalyst; X-ray diffraction (XRD) techniques confirmed the crystalline phases of the doped material. The photocatalytic activity of N-doped TiO2 was assessed through examining the photodegradation of 4-chlorophenol in aqueous media and iso-propanol as a volatile pollutant under UV/Vis and visible-light irradiation. Under visible light irradiation, undoped P25 was inactive contrary to N-doped P25 that successfully degraded 95% of the 4-chlorophenol (after 10 h) and 23% of iso-propanol (after 2.5 h).

  8. Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K.M.; Weber, F.A.; Dewald, E.L.

    2004-10-01

    The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.

  9. Calibration of space instruments at the Metrology Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, R., E-mail: roman.klein@ptb.de; Fliegauf, R.; Gottwald, A.

    2016-07-27

    PTB has more than 20 years of experience in the calibration of space-based instruments using synchrotron radiation to cover the UV, VUV and X-ray spectral range. New instrumentation at the electron storage ring Metrology Light Source (MLS) opens up extended calibration possibilities within this framework. In particular, the set-up of a large vacuum vessel that can accommodate entire space instruments opens up new prospects. Moreover, a new facility for the calibration of radiation transfer source standards with a considerably extended spectral range has been put into operation. Besides, characterization and calibration of single components like e.g. mirrors, filters, gratings, andmore » detectors is continued.« less

  10. EUSO-TA prototype telescope

    NASA Astrophysics Data System (ADS)

    Bisconti, Francesca; JEM-EUSO Collaboration

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  11. Design of a magnetic circuit for a cryogenic undulator in Taiwan photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jui-Che, E-mail: huang.juiche@nsrrc.org.tw; Kuo, Cheng-Ying; Yang, Chin-Kang

    2016-07-27

    The plan for beamlines in Phase II at Taiwan Photon Source is to construct two new BioSAXS and nano-ARPES beamlines. A highly brilliant light source can be produced with a cryogenic undulator, and many synchrotron facilities have been developed and operated with these in their storage rings. The development of a cryogenic undulator became a target for a light source in TPS phase II. A cryogenic undulator with period of length 15 mm will be made in a hybrid magnetic structure, and use PrFeB permanent-magnet materials. A maximum magnetic field 1.31 T is estimated at gap 4 mm and temperaturemore » about 100 K. The spectral performance of a TPS cryogenic undulator is presented in this paper.« less

  12. PREFACE: REXS 2013 - Workshop on Resonant Elastic X-ray Scattering in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Beutier, G.; Mazzoli, C.; Yakhou, F.; Brown, S. D.; Bombardi, A.; Collins, S. P.

    2014-05-01

    The aim of this workshop was to bring together experts in experimental and theoretical aspects of resonant elastic x-ray scattering, along with researchers who are new to the field, to discuss important recent results and the fundamentals of the technique. The meeting was a great success, with the first day dedicated to students and new researchers in the field, who received introductory lectures and tutorials. All conference delegates were invited either to make an oral presentation or to present a poster, accompanied by a short talk. The first two papers selected for the REXS13 proceedings (Grenier & Joly and Helliwell) give a basic background to the theory of REXS and applications across a wide range of scientific areas. The remainder of the papers report on some of the latest scientific results obtained by applying the REXS technique to contemporary problems in condensed matter, materials and x-ray physics. It is hoped that these proceedings provide a snapshot of the current status of a vibrant and diverse scientific technique that will be of value not just to those who attended the workshop but also to any other reader with an interest in the subject. Local Scientific Committee REXS13 International Scientific Advisory Committee M Altarelli, European XFEL, Germany F de Bergevin, European Synchrotron Radiation Facility, France J Garcia-Ruiz, Universidad de Zaragoza, Spain A I Goldman, Iowa State University, USA M Goldmann, Institut Nanosciences, France T Schulli, European Synchrotron Radiation Facility, France C R Natoli, Laboratori Nazionali de Frascati, Italy G Materlik, Diamond Light Source, UK L Paolasini, European Synchrotron Radiation Facility, France U Staub, Paul Scherrer Institut, Switzerland K Finkelstein, Cornell University, USA Y Murakami, Photon Factory, Japan REXS13 Local Scientific Committee G Beutier, CNRS Grenoble, France C Mazzoli, Politecnico di Milano, Italy F Yakhou, European Synchrotron Radiation Facility, France S D Brown, XMaS UK CRG, France A Bombardi, Diamond Light Source, UK S P Collins, Diamond Light Source, UK http://www.rexs2013.org/

  13. Using synchrotron light to accelerate EUV resist and mask materials learning

    NASA Astrophysics Data System (ADS)

    Naulleau, Patrick; Anderson, Christopher N.; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Jones, Gideon; McClinton, Brittany; Miyakawa, Ryan; Mochi, Iacopo; Montgomery, Warren; Rekawa, Seno; Wallow, Tom

    2011-03-01

    As commercialization of extreme ultraviolet lithography (EUVL) progresses, direct industry activities are being focused on near term concerns. The question of long term extendibility of EUVL, however, remains crucial given the magnitude of the investments yet required to make EUVL a reality. Extendibility questions are best addressed using advanced research tools such as the SEMATECH Berkeley microfield exposure tool (MET) and actinic inspection tool (AIT). Utilizing Lawrence Berkeley National Laboratory's Advanced Light Source facility as the light source, these tools benefit from the unique properties of synchrotron light enabling research at nodes generations ahead of what is possible with commercial tools. The MET for example uses extremely bright undulator radiation to enable a lossless fully programmable coherence illuminator. Using such a system, resolution enhancing illuminations achieving k1 factors of 0.25 can readily be attained. Given the MET numerical aperture of 0.3, this translates to an ultimate resolution capability of 12 nm. Using such methods, the SEMATECH Berkeley MET has demonstrated resolution in resist to 16-nm half pitch and below in an imageable spin-on hard mask. At a half pitch of 16 nm, this material achieves a line-edge roughness of 2 nm with a correlation length of 6 nm. These new results demonstrate that the observed stall in ultimate resolution progress in chemically amplified resists is a materials issue rather than a tool limitation. With a resolution limit of 20-22 nm, the CAR champion from 2008 remains as the highest performing CAR tested to date. To enable continued advanced learning in EUV resists, SEMATECH has initiated a plan to implement a 0.5 NA microfield tool at the Advanced Light Source synchrotron facility. This tool will be capable of printing down to 8-nm half pitch.

  14. Polarimetry - Scope on the 3.6-m Devasthal Optical Telescope

    NASA Astrophysics Data System (ADS)

    Joshi, Umesh Chandra; Ganesh, Shashikiran; Baliyan, Kiran Singh

    2018-04-01

    Polarization measurements are very helpful to understand the nature of some of the stellar and extra-galactic sources. Light from astronomical objects is in general polarized to some degree and its measurement gives additional information related to the magnetic field, the distribution of scattering material, the non-thermal nature of light, etc. Since the degree of polarization in the majority of astronomical sources is 1-5%, and polarimetry requires additional optics with respect to classical imaging, these measurements require much more photons to achieve a good signal-to-noise ratio for which the 3.6-m Devasthal Optical Telescope (DOT) facility is suitable.

  15. THz pulses from 4th generation X-ray light sources: Perspectives for fully synchronized THz pump X-ray probe experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gensch, M.

    2010-02-03

    In this paper the prospects of terahertz (THz) pulses generated at 4th generation X-ray light sources are presented on the example of recent results from a prototype set-up at the soft X-ray FEL FLASH. It is shown, that the THz pulses from the relativistic ultra short electron bunches have unique properties, that at FLASH are utilized for novel THz pump X-ray probe experiments with a robust few fs resolution. Based on these experiences it is discussed, how future facilities can benefit from implementation of similar or further improved instrumentation.

  16. 40 CFR 49.10711 - Federal Implementation Plan for the Astaris-Idaho LLC Facility (formerly owned by FMC Corporation...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to which emissions reduce the transmission of light and obscure the view of an object in the...: main shale pile (Table 1 of this section, source 2), emergency/contingency raw ore shale pile (Table 1...

  17. Radiological considerations for bulk shielding calculations of national synchrotron light source-II

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2011-12-01

    Brookhaven National Laboratory is designing a new electron synchrotron for scientific research using synchrotron radiation. This facility, called the “National Synchrotron Light Source II” (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. The project scope includes the design, construction, installation, and commissioning of the following accelerators: a 200 MeV linac, a booster synchrotron operating from 200 MeV to 3.0 GeV, and the storage ring which stores a maximum of 500 mA current of electrons at an energy of 3.0 GeV. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in stored beam current to <1%. Because of the very demanding requirements for beam emittance and synchrotron radiation brilliance, the beam life-time is expected to be quite low, on the order of 2 h. Analysis of the bulk shielding for operating this facility and the input parameters used for this analysis have been discussed in this paper. The characteristics of each of the accelerators and their operating modes have been summarized with the input assumptions for the bulk shielding analysis.

  18. The Far-Infrared Beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant; May, Tim

    2009-06-01

    The far-infrared beamline at the Canadian Light Source. is a state of the art facility, which offers significantly more far-infrared brightness than conventional globar sources. While there is the potential to direct this advantage to many research areas, to date most of the effort has been directed toward high-resolution gas phase studies. The infrared radiation is collected from a bending magnet through a 55 X 37 mrad^{2} port to a Bruker IFS 125 HR spectrometer, which is equipped with a nine compartment scanning arm, allowing it to achieve spectral resolution better than 0.001 cm^{-1}. Currently the beamline can achieve signal to noise ratios up to 8 times that which can be achieved using a traditional thermal source. Data from the recently completed commissioning experiments will be presented along with a general overview of the beamline.

  19. Microelectromechanical Systems (MEMS) Broadband Light Source Developed

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.

    2003-01-01

    A miniature, low-power broadband light source has been developed for aerospace applications, including calibrating spectrometers and powering miniature optical sensors. The initial motivation for this research was based on flight tests of a Fabry-Perot fiberoptic temperature sensor system used to detect aircraft engine exhaust gas temperature. Although the feasibility of the sensor system was proven, the commercial light source optically powering the device was identified as a critical component requiring improvement. Problems with the light source included a long stabilization time (approximately 1 hr), a large amount of heat generation, and a large input electrical power (6.5 W). Thus, we developed a new light source to enable the use of broadband optical sensors in aerospace applications. Semiconductor chip-based light sources, such as lasers and light-emitting diodes, have a relatively narrow range of emission wavelengths in comparison to incandescent sources. Incandescent light sources emit broadband radiation from visible to infrared wavelengths; the intensity at each wavelength is determined by the filament temperature and the materials chosen for the filament and the lamp window. However, present commercial incandescent light sources are large in size and inefficient, requiring several watts of electrical power to obtain the desired optical power, and they emit a large percentage of the input power as heat that must be dissipated. The miniature light source, developed jointly by the NASA Glenn Research Center, the Jet Propulsion Laboratory, and the Lighting Innovations Institute, requires one-fifth the electrical input power of some commercial light sources, while providing similar output light power that is easily coupled to an optical fiber. Furthermore, it is small, rugged, and lightweight. Microfabrication technology was used to reduce the size, weight, power consumption, and potential cost-parameters critical to future aerospace applications. This chip-based light source has the potential for monolithic fabrication with on-chip drive electronics. Other uses for these light sources are in systems for vehicle navigation, remote sensing applications such as monitoring bridges for stress, calibration sources for spectrometers, light sources for space sensors, display lighting, addressable arrays, and industrial plant monitoring. Two methods for filament fabrication are being developed: wet-chemical etching and laser ablation. Both yield a 25-mm-thick tungsten spiral filament. The proof-of-concept filament shown was fabricated with the wet etch method. Then it was tested by heating it in a vacuum chamber using about 1.25 W of electrical power; it generated bright, blackbody radiation at approximately 2650 K. The filament was packaged in Glenn's clean-room facilities. This design uses three chips vacuum-sealed with glass tape. The bottom chip consists of a reflective film deposited on silicon, the middle chip contains a tungsten filament bonded to silicon, and the top layer is a transparent window. Lifetime testing on the package will begin shortly. The emitted optical power is expected to be approximately 1.0 W with the spectral peak at 1.1 mm.

  20. Status Report for the Hypervelocity Free-Flight Aerodynamic Facility

    NASA Technical Reports Server (NTRS)

    Cornelison, Charles J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The Hypervelocity Free-Flight Aerodynamic Facility, located at Ames Research Center, is NASA's only aeroballistic facility. During 1997, its model imaging and time history recording systems were the focus of a major refurbishment effort. Specifically the model detection, spark gap (light source); Kerr cell (high speed shuttering); and interval timer sub-systems were inspected, repaired, modified or replaced as required. These refurbishment efforts have fully restored the HFFAF's capabilities to a much better condition, comparable to what it was 15 years ago. Details of this refurbishment effort along with a brief discussion of future upgrade plans are presented.

  1. Light emitting diodes as a plant lighting source

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Tennessen, D. J.; Morrow, R. C.; Tibbitts, T. W.

    1994-01-01

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. A number of LED characteristics are of considerable importance in selecting a light source for plant lighting in a controlled environment facility. Of particular importance is the characteristic that light is generated by an LED at a rate far greater than the corresponding thermal radiation predicted by the bulk temperature of the device as defined by Plank's radiation law. This is in sharp contrast to other light sources, such as an incandescent or high intensity discharge lamp. A plant lighting system for controlled environments must provide plants with an adequate flux of photosynthetically active radiation, plus providing photons in the spectral regions that are involved in the photomorphogenic and phototropic responses that result in normal plant growth and development. Use of light sources that emit photons over a broad spectral range generally meet these two lighting requirements. Since the LED's emit over specific spectral regions, they must be carefully selected so that the levels of photsynthetically active and photomorphogenic and phototropic radiation meet these plant requirements.

  2. Ultraviolet Free Electron Laser Facility preliminary design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, butmore » have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).« less

  3. Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, Peter E.; Simonson, J. Michael

    2011-10-24

    This report is based on the Department of Energy (DOE) Workshop on “Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery” that was held at the Bethesda Marriott in Maryland on October 24-25, 2011. The workshop brought together leading researchers from the Basic Energy Sciences (BES) facilities and Advanced Scientific Computing Research (ASCR). The workshop was co-sponsored by these two Offices to identify opportunities and needs for data analysis, ownership, storage, mining, provenance and data transfer at light sources, neutron sources, microscopy centers and other facilities. Their charge was to identify current and anticipated issues inmore » the acquisition, analysis, communication and storage of experimental data that could impact the progress of scientific discovery, ascertain what knowledge, methods and tools are needed to mitigate present and projected shortcomings and to create the foundation for information exchanges and collaboration between ASCR and BES supported researchers and facilities. The workshop was organized in the context of the impending data tsunami that will be produced by DOE’s BES facilities. Current facilities, like SLAC National Accelerator Laboratory’s Linac Coherent Light Source, can produce up to 18 terabytes (TB) per day, while upgraded detectors at Lawrence Berkeley National Laboratory’s Advanced Light Source will generate ~10TB per hour. The expectation is that these rates will increase by over an order of magnitude in the coming decade. The urgency to develop new strategies and methods in order to stay ahead of this deluge and extract the most science from these facilities was recognized by all. The four focus areas addressed in this workshop were: Workflow Management - Experiment to Science: Identifying and managing the data path from experiment to publication. Theory and Algorithms: Recognizing the need for new tools for computation at scale, supporting large data sets and realistic theoretical models. Visualization and Analysis: Supporting near-real-time feedback for experiment optimization and new ways to extract and communicate critical information from large data sets. Data Processing and Management: Outlining needs in computational and communication approaches and infrastructure needed to handle unprecedented data volume and information content. It should be noted that almost all participants recognized that there were unlikely to be any turn-key solutions available due to the unique, diverse nature of the BES community, where research at adjacent beamlines at a given light source facility often span everything from biology to materials science to chemistry using scattering, imaging and/or spectroscopy. However, it was also noted that advances supported by other programs in data research, methodologies, and tool development could be implemented on reasonable time scales with modest effort. Adapting available standard file formats, robust workflows, and in-situ analysis tools for user facility needs could pay long-term dividends. Workshop participants assessed current requirements as well as future challenges and made the following recommendations in order to achieve the ultimate goal of enabling transformative science in current and future BES facilities: Theory and analysis components should be integrated seamlessly within experimental workflow. Develop new algorithms for data analysis based on common data formats and toolsets. Move analysis closer to experiment. Move the analysis closer to the experiment to enable real-time (in-situ) streaming capabilities, live visualization of the experiment and an increase of the overall experimental efficiency. Match data management access and capabilities with advancements in detectors and sources. Remove bottlenecks, provide interoperability across different facilities/beamlines and apply forefront mathematical techniques to more efficiently extract science from the experiments. This workshop report examines and reviews the status of several BES facilities and highlights the successes and shortcomings of the current data and communication pathways for scientific discovery. It then ascertains what methods and tools are needed to mitigate present and projected data bottlenecks to science over the next 10 years. The goal of this report is to create the foundation for information exchanges and collaborations among ASCR and BES supported researchers, the BES scientific user facilities, and ASCR computing and networking facilities. To jumpstart these activities, there was a strong desire to see a joint effort between ASCR and BES along the lines of the highly successful Scientific Discovery through Advanced Computing (SciDAC) program in which integrated teams of engineers, scientists and computer scientists were engaged to tackle a complete end-to-end workflow solution at one or more beamlines, to ascertain what challenges will need to be addressed in order to handle future increases in data« less

  4. National Synchrotron Light Source annual report 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less

  5. Gamma bang time/reaction history diagnostics for the National Ignition Facility using 90 degrees off-axis parabolic mirrors.

    PubMed

    Malone, R M; Herrmann, H W; Stoeffl, W; Mack, J M; Young, C S

    2008-10-01

    Gas Cherenkov detectors (GCDs) have been used to convert fusion gamma into photons to achieve gamma bang time and reaction history measurements. The GCDs designed for OMEGA used Cassegrain reflector optics in order to fit inside a 10 in. manipulator. A novel design for the National Ignition Facility using 90 degrees off-axis parabolic mirrors will increase light collection efficiency from fusion gammas and achieve minimum time dispersion. The broadband Cherenkov light (from 200 to 800 nm) is relayed into a high-speed detector using three parabolic mirrors. Because light is collected from many source planes throughout the CO(2) gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation location along the gas cell. The current design collects light from a 100 mm diameter by 500 mm long gas volume. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they fly through the CO(2) gas volume. A cluster of four channels will allow for increased dynamic range as well as for different gamma energy threshold sensitivities.

  6. A security vulnerabilities assessment tool for interim storage facilities of low-level radioactive wastes.

    PubMed

    Bible, J; Emery, R J; Williams, T; Wang, S

    2006-11-01

    Limited permanent low-level radioactive waste (LLRW) disposal capacity and correspondingly high disposal costs have resulted in the creation of numerous interim storage facilities for either decay-in-storage operations or longer term accumulation efforts. These facilities, which may be near the site of waste generation or in distal locations, often were not originally designed for the purpose of LLRW storage, particularly with regard to security. Facility security has become particularly important in light of the domestic terrorist acts of 2001, wherein LLRW, along with many other sources of radioactivity, became recognized commodities to those wishing to create disruption through the purposeful dissemination of radioactive materials. Since some LLRW materials may be in facilities that may exhibit varying degrees of security control sophistication, a security vulnerabilities assessment tool grounded in accepted criminal justice theory and security practice has been developed. The tool, which includes dedicated sections on general security, target hardening, criminalization benefits, and the presence of guardians, can be used by those not formally schooled in the security profession to assess the level of protection afforded to their respective facilities. The tool equips radiation safety practitioners with the ability to methodically and systematically assess the presence or relative status of various facility security aspects, many of which may not be considered by individuals from outside the security profession. For example, radiation safety professionals might not ordinarily consider facility lighting aspects, which is a staple for the security profession since it is widely known that crime disproportionately occurs more frequently at night or in poorly lit circumstances. Likewise, the means and associated time dimensions for detecting inventory discrepancies may not be commonly considered. The tool provides a simple means for radiation safety professionals to assess, and perhaps enhance in a reasonable fashion, the security of their interim storage operations. Aspects of the assessment tool can also be applied to other activities involving the protection of sources of radiation as well.

  7. Damage sources for the NIF Grating Debris Shield (GDS) and methods for their mitigation

    NASA Astrophysics Data System (ADS)

    Carr, C. W.; Bude, J.; Miller, P. E.; Parham, T.; Whitman, P.; Monticelli, M.; Raman, R.; Cross, D.; Welday, B.; Ravizza, F.; Suratwala, T.; Davis, J.; Fischer, M.; Hawley, R.; Lee, H.; Matthews, M.; Norton, M.; Nostrand, M.; Vanblarcom, D.; Sommer, S.

    2017-11-01

    The primary sources of damage on the National Ignition Facility (NIF) Grating Debris Shield (GDS) are attributed to two independent types of laser-induced particulates. The first comes from the eruptions of bulk damage in a disposable debris shield downstream of the GDS. The second particle source comes from stray light focusing on absorbing glass armor at higher than expected fluences. We show that the composition of the particles is secondary to the energetics of their delivery, such that particles from either source are essentially benign if they arrive at the GDS with low temperatures and velocities.

  8. Femtosecond timing distribution and control for next generation accelerators and light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li -Jin

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even attosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. Anmore » increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objective of the work described in this proposal is to set up an optical timing distribution system based on mode locked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the technology to market.« less

  9. Penning plasma based simultaneous light emission source of visible and VUV lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, G. L., E-mail: glvyas27@gmail.com; Prakash, R.; Pal, U. N.

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure heliummore » in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20–106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.« less

  10. National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less

  11. X-Ray Structure determination of the Glycine Cleavage System Protein H of Mycobacterium tuberculosis Using An Inverse Compton Synchrotron X-Ray Source

    PubMed Central

    Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.

    2010-01-01

    Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333

  12. Online & Offline data storage and data processing at the European XFEL facility

    NASA Astrophysics Data System (ADS)

    Gasthuber, Martin; Dietrich, Stefan; Malka, Janusz; Kuhn, Manuela; Ensslin, Uwe; Wrona, Krzysztof; Szuba, Janusz

    2017-10-01

    For the upcoming experiments at the European XFEL light source facility, a new online and offline data processing and storage infrastructure is currently being built and verified. Based on the experience of the system being developed for the Petra III light source at DESY, presented at the last CHEP conference, we further develop the system to cope with the much higher volumes and rates ( 50GB/sec) together with a more complex data analysis and infrastructure conditions (i.e. long range InfiniBand connections). This work will be carried out in collaboration of DESY/IT, European XFEL and technology support from IBM/Research. This presentation will shortly wrap up the experience of 1 year runtime of the PetraIII ([3]) system, continue with a short description of the challenges for the European XFEL ([2]) experiments and the main section, showing the proposed system for online and offline with initial result from real implementation (HW & SW). This will cover the selected cluster filesystem GPFS ([5]) including Quality of Service (QOS), extensive use of flash based subsystems and other new and unique features this architecture will benefit from.

  13. UV LED lighting for automated crystal centring

    PubMed Central

    Chavas, Leonard M. G.; Yamada, Yusuke; Hiraki, Masahiko; Igarashi, Noriyuki; Matsugaki, Naohiro; Wakatsuki, Soichi

    2011-01-01

    A direct outcome of the exponential growth of macromolecular crystallography is the continuously increasing demand for synchrotron beam time, both from academic and industrial users. As more and more projects entail screening a profusion of sample crystals, fully automated procedures at every level of the experiments are being implemented at all synchrotron facilities. One of the major obstacles to achieving such automation lies in the sample recognition and centring in the X-ray beam. The capacity of UV light to specifically react with aromatic residues present in proteins or with DNA base pairs is at the basis of UV-assisted crystal centring. Although very efficient, a well known side effect of illuminating biological samples with strong UV sources is the damage induced on the irradiated samples. In the present study the effectiveness of a softer UV light for crystal centring by taking advantage of low-power light-emitting diode (LED) sources has been investigated. The use of UV LEDs represents a low-cost solution for crystal centring with high specificity. PMID:21169682

  14. Overview of Lattice Design and Evaluation for the APS Upgrade

    DOE PAGES

    Borland, M.; Emery, L.; Lindberg, R.; ...

    2017-08-01

    The Advanced Photon Source (APS) is a 7-GeV synchrotron light source that has been in operation since 1996. Since that time, the effective emittance has been decreased from 8 nm to 3.1 nm, which is very competitive for a 3rd-generation light source. However, newer facilities such as PETRA-III, NSLS-II, and MAX-IV are pushing the emittance to significantly smaller values. MAX-IV in particular has set the current benchmark with an emittance of about 300 pm at 3 GeV. This was accomplished by use of a multi-bend achromat lattice, which takes advantage of the 1/M3 scaling of the emittance with respect tomore » the number of dipoles M. In order to ensure that our facility remains competitive, APS is pursuing a major upgrade, which involves replacement of the existing double-bend lattice with a seven-bend achromat lattice, promising a 40-fold reduction in emittance. This paper describes the process of developing and evaluating candidate lattice designs. Two candidate 6-GeV lattices are described: one providing a natural emittance of 67 pm and the other providing 41 pm. Our analysis includes single-particle dynamics as well as single- and multi-bunch collective effects.« less

  15. Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices.

    PubMed

    Xiong, Yujie; Long, Ran; Liu, Dong; Zhong, Xiaolan; Wang, Chengming; Li, Zhi-Yuan; Xie, Yi

    2012-08-07

    The photothermal effect in localized surface plasmon resonance (LSPR) should be fully utilized when integrating plasmonics into solar technologies for improved light absorption. In this communication, we demonstrate that the photothermal effect of silver nanostructures can provide a heat source for thermoelectric devices for the first time. The plasmonic band of silver nanostructures can be facilely manoeuvred by tailoring their shapes, enabling them to interact with photons in different spectral ranges for the efficient utilization of solar light. It is anticipated that this concept can be extended to design a photovoltaic-thermoelectric tandem cell structure with plasmonics as mediation for light harvesting.

  16. Correction of Depolarizing Resonances in ELSA

    NASA Astrophysics Data System (ADS)

    Steier, C.; Husmann, D.

    1997-05-01

    The 3.5 GeV electron stretcherring ELSA (ELectron Stretcher Accelerator) at Bonn University is operational since 1987, both as a continuous beam facility for external fixed target experiments and as a partially dedicated synchrotron light source. For the external experiments an upgrade to polarized electrons is under way. One source of polarized electrons (GaAs crystal, photoeffect using circular polarized laser light) is operational. The studies of minimizing the losses in polarization degree due to crossing of depolarizing resonances that necessarily exist in circular accelerators (storagerings) just started recently. Calculations concerning different correction schemes for the depolarizing resonances in ELSA are presented, and first results of measurements are shown (done by means of a Møller polarimeter in one of the external beamlines).

  17. AI-BL1.0: a program for automatic on-line beamline optimization using the evolutionary algorithm.

    PubMed

    Xi, Shibo; Borgna, Lucas Santiago; Zheng, Lirong; Du, Yonghua; Hu, Tiandou

    2017-01-01

    In this report, AI-BL1.0, an open-source Labview-based program for automatic on-line beamline optimization, is presented. The optimization algorithms used in the program are Genetic Algorithm and Differential Evolution. Efficiency was improved by use of a strategy known as Observer Mode for Evolutionary Algorithm. The program was constructed and validated at the XAFCA beamline of the Singapore Synchrotron Light Source and 1W1B beamline of the Beijing Synchrotron Radiation Facility.

  18. Environmental practices for biomedical research facilities.

    PubMed Central

    Medlin, E L; Grupenhoff, J T

    2000-01-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12. PMID:11121360

  19. Addressing Physics Grand Challenges Using the Jefferson Lab FEL

    NASA Astrophysics Data System (ADS)

    Williams, Gwyn P.

    2006-11-01

    The Jefferson Lab Free Electron Laser[1] is the first of the so-called 4^th generation light sources to go operational. Capable of delivering extraordinarily bright, tunable light in ultrafast pulses from THz[2] through infrared to UV, the facility extends the experimental reach of accelerator-based light-sources by many orders of magnitude. This allows new opportunities to study many of the ``Grand Challenges'' recently defined by the Office of Science, Basic Energy Sciences Division, most of which are concerned with understandings of equilibrium and non-equilibrium behavior of materials in physics, chemistry and biology using precise pump and probe techniques. Specifically, in condensed matter physics, the JLab FEL permits new studies which go beyond earlier studies of reductionist behavior to those which examine emergent behavior. Thus, the understanding of high Tc superconductivity, colossal magneto-resistance, and observations of the breakdown of the Born-Oppenheimer approximation, are examples of collective behavior which is now treated theoretically via the concept of quasiparticles. In this presentation we will describe the dual pathways of light source development and physics challenges, and then show how they are combined in experiments that allow new insights to be developed to understand material function. We will illustrate this with details of the evolution of accelerator-based light sources, and with examples of work performed to date. References: [1] Neil et al. Phys. Rev.Letts 84, 662 (2000). [2] Carr, Martin, McKinney, Neil, Jordan & Williams, Nature 420, 153 (2002).

  20. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    DOE PAGES

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; ...

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure andmore » its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.« less

  1. Engaging local industry in the development of basic research infrastructure and instrumentation – The case of HIE-ISOLDE and ESS Scandinavia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahlander, Claes, E-mail: claes.fahlander@nuclear.lu.se

    Two world-class research facilities, the European Spallation Source, ESS, and the light-source facility MAX-IV, are being built in southern Sweden. They will primarily, when completed, be used for research in the fields of material sciences, life sciences, medicine and pharmacology. Their construction and the operation and maintenance of them for many years will create new business opportunities for companies in Europe in general and in Sweden, Denmark and Norway in particular in many different sectors. A project, CATE, Cluster for Accelerator Technology, was set up with the aim to strengthen the skills of companies in the Öresund-Kattegat-Skagerrak region in Scandinaviamore » in the field of accelerator technology such that they will become competitive and be able to take advantage of the potential of these two research facilities. CATE was strategically important and has helped to create partnerships between companies and new business opportunities in the region.« less

  2. Engaging local industry in the development of basic research infrastructure and instrumentation - The case of HIE-ISOLDE and ESS Scandinavia

    NASA Astrophysics Data System (ADS)

    Fahlander, Claes

    2016-07-01

    Two world-class research facilities, the European Spallation Source, ESS, and the light-source facility MAX-IV, are being built in southern Sweden. They will primarily, when completed, be used for research in the fields of material sciences, life sciences, medicine and pharmacology. Their construction and the operation and maintenance of them for many years will create new business opportunities for companies in Europe in general and in Sweden, Denmark and Norway in particular in many different sectors. A project, CATE, Cluster for Accelerator Technology, was set up with the aim to strengthen the skills of companies in the Öresund-Kattegat-Skagerrak region in Scandinavia in the field of accelerator technology such that they will become competitive and be able to take advantage of the potential of these two research facilities. CATE was strategically important and has helped to create partnerships between companies and new business opportunities in the region.

  3. iss031e143143

    NASA Image and Video Library

    2012-06-19

    ISS031-E-143143 (19 June 2012) --- Al Jubayl, Saudi Arabia at night is featured in this image photographed by an Expedition 31 crew member on the International Space Station. The city of Al Jubayl (or Jubail) is located on the Saudi Arabian coastline of the Persian Gulf. The city has a history extending back more than 7,000 years, but since 1975 it has been associated with the heavy industries of petrochemical refining and production, fertilizer production and steel works. At night, these industrial areas form a brightly lit region (center) to the south of the residential and commercial center of Al Jubayl (characterized by green-gray lighting). An artificial peninsula extending into the Persian Gulf to the northeast hosts supertanker docks and petroleum storage facilities. The Persian Gulf to the north and northeast is devoid of lights; likewise, the open desert to the south-southeast provides a stark contrast to the well-lit urban and industrial areas. A bright circle of light located within the heavy industrial area (center) cannot be resolved in this photograph, but is likely a concentration of lights associated with ongoing processing or construction activities. The approximate scale of the feature ? hundreds of meters in diameter ? is consistent with multiple stationary light sources, particularly if the light from those sources is accentuated due to the camera?s low light settings.

  4. Author Contribution to the Pu Handbook II: Chapter 37 LLNL Integrated Sample Preparation Glovebox (TEM) Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Mark A.

    The development of our Integrated Actinide Sample Preparation Laboratory (IASPL) commenced in 1998 driven by the need to perform transmission electron microscopy studies on naturally aged plutonium and its alloys looking for the microstructural effects of the radiological decay process (1). Remodeling and construction of a laboratory within the Chemistry and Materials Science Directorate facilities at LLNL was required to turn a standard radiological laboratory into a Radiological Materials Area (RMA) and Radiological Buffer Area (RBA) containing type I, II and III workplaces. Two inert atmosphere dry-train glove boxes with antechambers and entry/exit fumehoods (Figure 1), having a baseline atmospheremore » of 1 ppm oxygen and 1 ppm water vapor, a utility fumehood and a portable, and a third double-walled enclosure have been installed and commissioned. These capabilities, along with highly trained technical staff, facilitate the safe operation of sample preparation processes and instrumentation, and sample handling while minimizing oxidation or corrosion of the plutonium. In addition, we are currently developing the capability to safely transfer small metallographically prepared samples to a mini-SEM for microstructural imaging and chemical analysis. The gloveboxes continue to be the most crucial element of the laboratory allowing nearly oxide-free sample preparation for a wide variety of LLNL-based characterization experiments, which includes transmission electron microscopy, electron energy loss spectroscopy, optical microscopy, electrical resistivity, ion implantation, X-ray diffraction and absorption, magnetometry, metrological surface measurements, high-pressure diamond anvil cell equation-of-state, phonon dispersion measurements, X-ray absorption and emission spectroscopy, and differential scanning calorimetry. The sample preparation and materials processing capabilities in the IASPL have also facilitated experimentation at world-class facilities such as the Advanced Photon Source at Argonne National Laboratory, the European Synchrotron Radiation Facility in Grenoble, France, the Stanford Synchrotron Radiation Facility, the National Synchrotron Light Source at Brookhaven National Laboratory, the Advanced Light Source at Lawrence Berkeley National Laboratory, and the Triumph Accelerator in Canada.« less

  5. Future Looks Bright for Interferometry

    NASA Astrophysics Data System (ADS)

    2008-09-01

    First Light for the PRIMA instrument The PRIMA instrument [1] of the ESO Very Large Telescope Interferometer (VLTI) recently saw "first light" at its new home atop Cerro Paranal in Chile. When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and enable astrometric precision unmatched by any other existing astronomical facility. PRIMA will be a unique tool for the detection of exoplanets. First Light of the PRIMA Instrument ESO PR Photo 29a/08 Preparing for PRIMA "PRIMA is specifically designed to see if one star 'wobbles' to and fro because it is has unseen planetary companions", says instrument scientist Gerard van Belle. "This allows us to not only detect exoplanets, but to measure their mass." PRIMA's expected astrometric precision of tens of micro-arcseconds is unmatched by any other existing astronomical facility, whether on the ground or in orbit [2]. In addition to taking astrometric measurements PRIMA will be the key to the imaging of faint sources with the VLTI using the science instruments AMBER and MIDI. Interferometry combines the light received by two or more telescopes, concentrating on tiny differences between the signals to measure angles with exquisite precision. Using this technique PRIMA can pick out details as sharply as a single telescope with a diameter equivalent to the largest distance between the telescopes. For the VLTI, the distance between the two telescope elements is about 200 metres. The PRIMA instrument is unique amongst the VLTI instruments, in that it is effectively two interferometers in one. PRIMA will take data from two sources on the sky simultaneously: the brighter source can be used for tracking, allowing the interferometer to "stare" at the fainter source for longer than is now possible with conventional interferometers. Although there have been earlier pathfinder experiments to test this technique, PRIMA represents the first facility-class instrument of its kind that is open to all astronomers. PRIMA parts arrived at the summit at Paranal at the end of July and were integrated and tested during the following month. On 2 September 2008, as a first milestone, starlight from two VLTI 1.8-m Auxiliary Telescopes was fed into the PRIMA system, and interference fringes were detected on PRIMA's Fringe Sensor Unit. Three days later the system was routinely using active tracking on the fringes, compensating for atmospheric turbulence. First light - or, in the case of interferometric instruments, first fringes - actually occurred ahead of the ambitious schedule set out by lead engineer Francoise Delplancke: "There were many activities that all had to be successful simultaneously for this to happen, but the assembly, integration, and verification went smoothly - I was pleased by how easy and reliable the fringe tracking was, for our first try." All PRIMA sub-systems [3] have been installed successfully for use with two Auxiliary Telescopes and will now be submitted to intensive commissioning tests before being offered to the community of users for routine observations [4].

  6. Claudio Pellegrini and the World’s First Hard X-ray Free-Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellegrini, Claudio

    2015-10-20

    President Obama welcomed SLAC's Claudio Pellegrini inside the Oval Office on Tuesday morning as a recipient of the Enrico Fermi Award, one of the highest honors the U.S. government can give to a scientist. Pellegrini, a visiting scientist and consulting professor at SLAC and distinguished professor emeritus at the University of California, Los Angeles, received the award for research that aided in the development of X-ray free-electron lasers (XFELs) including SLAC's Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility that started up in 2009. Here, Pellegrini describes his efforts that contributed to the realization of SLAC’smore » Linac Coherent Light Source, the world’s first hard X-ray free-electron laser.« less

  7. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines.

    PubMed

    Wojdyla, Justyna Aleksandra; Kaminski, Jakub W; Panepucci, Ezequiel; Ebner, Simon; Wang, Xiaoqiang; Gabadinho, Jose; Wang, Meitian

    2018-01-01

    Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods.

  8. Claudio Pellegrini and the World’s First Hard X-ray Free-Electron Laser

    ScienceCinema

    Pellegrini, Claudio

    2018-01-16

    President Obama welcomed SLAC's Claudio Pellegrini inside the Oval Office on Tuesday morning as a recipient of the Enrico Fermi Award, one of the highest honors the U.S. government can give to a scientist. Pellegrini, a visiting scientist and consulting professor at SLAC and distinguished professor emeritus at the University of California, Los Angeles, received the award for research that aided in the development of X-ray free-electron lasers (XFELs) including SLAC's Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility that started up in 2009. Here, Pellegrini describes his efforts that contributed to the realization of SLAC’s Linac Coherent Light Source, the world’s first hard X-ray free-electron laser.

  9. Impact of the Diamond Light Source on research in Earth and environmental sciences: current work and future perspectives

    PubMed Central

    Burke, Ian T.; Mosselmans, J. Frederick W.; Shaw, Samuel; Peacock, Caroline L.; Benning, Liane G.; Coker, Victoria S.

    2015-01-01

    Diamond Light Source Ltd celebrated its 10th anniversary as a company in December 2012 and has now accepted user experiments for over 5 years. This paper describes the current facilities available at Diamond and future developments that enhance its capacities with respect to the Earth and environmental sciences. A review of relevant research conducted at Diamond thus far is provided. This highlights how synchrotron-based studies have brought about important advances in our understanding of the fundamental parameters controlling highly complex mineral–fluid–microbe interface reactions in the natural environment. This new knowledge not only enhances our understanding of global biogeochemical processes, but also provides the opportunity for interventions to be designed for environmental remediation and beneficial use. PMID:25624516

  10. National synchrotron light source. Activity report, October 1, 1995--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, E.Z.; Hastings, J.B.

    1997-05-01

    The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the fundingmore » of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 windows in FY 1996 so that the power upgrade will be achieved in FY 1997.« less

  11. Progress toward the Wisconsin Free Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisognano, Joseph; Eisert, D; Fisher, M V

    2011-03-01

    The University of Wisconsin-Madison/Synchrotron Radiation Center is advancing its design for a seeded VUV/soft X-ray Free Electron Laser facility called WiFEL. To support this vision of an ultimate light source, we are pursuing a program of strategic R&D addressing several crucial elements. This includes development of a high repetition rate, VHF superconducting RF electron gun, R&D on photocathode materials by ARPES studies, and evaluation of FEL facility architectures (e.g., recirculation, compressor scenarios, CSR dechirping, undulator technologies) with the specific goal of cost containment. Studies of high harmonic generation for laser seeding are also planned.

  12. X-Ray Testing Constellation-X Optics at MSFC's 100-m Facility

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Baker, Markus; Content, David; Freeman, Mark; Glenn, Paul; Gubarev, Mikhail; Hair, Jason; Jones, William; Joy, Marshall

    2003-01-01

    In addition to the 530-m-long X-Ray Calibration Facility (XRCF), NASA's Marshall Space Flight Center (MSFC) operates a 104-m-long (source-to-detector) X-ray-test facility. Originally developed and still occasionally used for stray-light testing of visible-fight optical systems, the so-called "Stray-Light Facility" now serves primarily as a convenient and inexpensive facility for performance evaluation and calibration of X-ray optics and detectors. The facility can accommodate X-ray optics up to about 1-m diameter and 12-m focal length. Currently available electron-impact sources at the facility span the approximate energy range 0.2 to 100 keV, thus supporting testing of soft- and hard-X-ray optics and detectors. Available MSFC detectors are a front-illuminated CCD (charge-coupled device) and a scanning CZT (cadmium--zinc--telluride) detector, with low-energy cut-offs of about 0.8 and 3 keV, respectively. In order to test developmental optics for the Constellation-X Project, led by NASA's Goddard Space Flight Center (GSFC), MSFC undertook several enhancements to the facility. Foremost among these was development and fabrication of a five-degree-of-freedom (5-DoF) optics mount and control system, which translates and tilts the user-provided mirror assembly suspended from its interface plate. Initial Constellation-X tests characterize the performance of the Optical Alignment Pathfinder Two (OAP2) for the large Spectroscopy X-ray Telescope (SXT) and of demonstration mirror assemblies for the Hard X-ray Telescope (HXT). With the Centroid Detector Assembly (CDA), used for precision alignment of the Chandra (nee AXAF) mirrors, the Constellation-X SXT Team optically aligned the individual mirrors of the OAPZ at GSFC. The team then developed set-up and alignment procedures, including transfer of the alignment from the optical alignment facility at GSFC to the X-ray test facility at MSFC, using a reference flat and fiducials. The OAPZ incorporates additional ancillary features --- fixed aperture mask and movable sub-aperture mask --- to facilitate X-ray characterization of the optics. Although the OAPZ was designed to- have low sensitivity to temperature offsets and gradients, analyses showed the necessity of active temperature control for the X-ray performance testing. Thus, the Smithsonian Astrophysical Observatory (SAO) implemented a thermal control and monitoring system, designed to hold the OAP2 close to its assembly.

  13. SESAME-A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2010-02-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research center in construction in Jordan. It will enable world class research by scientists from the region, reversing the brain drain. It will also build bridges between diverse societies, contributing to a culture of peace through international cooperation in science. The centerpiece is a synchrotron light source originating from BESSY I, a gift by Germany. The upgraded machine, a 2.5 GeV 3rd Generation Light Source (133m circumference, 26nm-rad emittance and 12 places for insertion devices), will provide light from infra-red to hard X-rays, offering excellent opportunities to train local scientists and attract those working abroad to return. The SESAME Council meets twice each year and presently has nine Members (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey). Members have responsibility for the project and provide the annual operations budget (1.5M US dollars in 2009, expected to rise to about 5M when operation starts in 2012-13). Jordan provided the site, building, and infrastructure. A staff of 20 is installing the 0.8 GeV BESSY I injection system. The facility will have the capacity to serve 30 or more experiments operating simultaneously. See www.sesame.org.jo )

  14. Combustion Research Facility | A Department of Energy Office of Science

    Science.gov Websites

    Off on EERE Officials Visit CRF CRF Topics About Us(14) About Us(6) Advanced Light Source(7) August September 2017 July 2017 June 2017 May 2017 March 2017 January 2017 August 2016 June 2016 May 2016 March 2016 February 2016 January 2016 December 2015 November 2015 August 2015 June 2015 May 2015 April 2015

  15. EUV wavefront metrology system in EUVA

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takayuki; Ouchi, Chidane; Hasegawa, Masanobu; Kato, Seima; Suzuki, Akiyoshi; Sugisaki, Katsumi; Murakami, Katsuhiko; Saito, Jun; Niibe, Masahito

    2004-05-01

    An Experimental extreme ultraviolet (EUV) interferometer (EEI) using an undulator as a light source was installed in New SUBARU synchrotron facility at Himeji Institute of Technology (HIT). The EEI can evaluate the five metrology methods reported before. (1) A purpose of the EEI is to determine the most suitable method for measuring the projection optics of EUV lithography systems for mass production tools.

  16. The Impact of Environmental Light Intensity on Experimental Tumor Growth.

    PubMed

    Suckow, Mark A; Wolter, William R; Duffield, Giles E

    2017-09-01

    Cancer research requires for consistent models that minimize environmental variables. Within the typical laboratory animal housing facility, animals may be exposed to varying intensities of light as a result of cage type, cage position, light source, and other factors; however, studies evaluating the differential effect of light intensity during the light phase on tumor growth are lacking. The effect of cage face light intensity, as determined by cage rack position was evaluated with two tumor models using the C57Bl/6NHsd mouse and transplantable B16F10 melanoma cells or Lewis lung carcinoma (LLC) cells. Animals were housed in individually-ventilated cages placed at the top, middle, or bottom of the rack in a diagonal pattern so that the top cage was closest to the ceiling light source, and cage face light intensity was measured. Following a two-week acclimation period at the assigned cage position, animals were subcutaneously administered either 1.3×10 6 B16F10 melanoma cells or 2.5×10 5 Lewis lung carcinoma cells. Weights of excised tumors were measured following euthanasia 18 days (melanoma) or 21 days (LCC) after tumor cell administration. Cage face light intensity was significantly different depending on the location of the cage, with cages closest to the light source have the greatest intensity. Mean tumor weights were significantly less (p<0.001 for melanoma; p≤0.01 for LCC) in middle light intensity mice compared to high and low light intensity mice. The environmental light intensity to which experimental animals are exposed may vary markedly with cage location and can significantly influence experimental tumor growth, thus supporting the idea that light intensity should be controlled as an experimental variable for animals used in cancer research. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Light Emitting Diodes (LEDs)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  18. Construction and operation of a support facilities (Building 729) for operation/testing of a prototype accelerator/storage ring (XLS) and machine shop for the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    Proposed action is to construct at BNL a 5,600-ft[sup 2] support building, install and operate a prototypic 200 MeV accelerator and a prototypic 700 MeV storage ring within, and to construct and operate a 15 kV substation to power the building. The accelerator and storage ring would comprise the x-ray lithography source or XLS.

  19. Construction and operation of a support facilities (Building 729) for operation/testing of a prototype accelerator/storage ring (XLS) and machine shop for the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, New York. Environmental assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    Proposed action is to construct at BNL a 5,600-ft{sup 2} support building, install and operate a prototypic 200 MeV accelerator and a prototypic 700 MeV storage ring within, and to construct and operate a 15 kV substation to power the building. The accelerator and storage ring would comprise the x-ray lithography source or XLS.

  20. Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Xie, Jinlei; Yang, Yefeng; He, Haiping; Cheng, Ding; Mao, Minmin; Jiang, Qinxu; Song, Lixin; Xiong, Jie

    2015-11-01

    Heterostructured semiconductor nanostructures have provoked great interest in the areas of energy, environment and catalysis. Herein, we report a novel hierarchical Ag3PO4/TiO2 heterostructure consisting of nearly spherical Ag3PO4 particles firmly coupled on the surface of TiO2 nanofibers (NFs). The construction of Ag3PO4/TiO2 heterostructure with tailored morphologies, compositions and optical properties was simply achieved via a facile and green synthetic strategy involving the electrospinning and solution-based processes. Owing to the synergetic effects of the components, the resulting hybrid heterostructures exhibited much improved visible light photocatalytic performance, which could degrade the RhB dye completely in 7.5 min. In addition, the coupling of Ag3PO4 particles with UV-light-sensitive TiO2 NFs enabled full utilization of solar energy and less consumption of noble metals, significantly appealing for their practical use in new energy sources and environmental issues. The developed synthetic strategy was considered to be applicable for the rational design and construction of other heterostructured catalysts.

  1. Polarized Negative Light Ions at the Cooler Synchrotron COSY/Juelich

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebel, R.; Felden, O.; Rossen, P. von

    2005-04-06

    The polarized ion source at the cooler synchrotron facility COSY of the research centre Juelich in Germany delivers negative polarized protons or deuterons for medium energy experiments. The polarized ion source, originally built by the universities of Bonn, Erlangen and Cologne, is based on the colliding beams principle, using after an upgrade procedure an intense pulsed neutralized caesium beam for charge exchange with a pulsed highly polarized hydrogen beam. The source is operated at 0.5 Hz repetition rate with 20 ms pulse length, which is the maximum useful length for the injection into the synchrotron. Routinely intensities of 20 {mu}Amore » are delivered for injection into the cyclotron of the COSY facility. For internal targets the intensity of 2 mA and a polarization up to 90% have been reached. Reliable long-term operation for experiments at COSY for up to 9 weeks has been achieved. Since 2003 polarized deuterons with different combinations of vector and tensor polarization were delivered to experiments.« less

  2. Characterization of contaminant removal by an optical strip material

    NASA Astrophysics Data System (ADS)

    Hamilton, James P.; Frigo, S. P.; Caroll, Brenden J.; Assoufidyen, L.; Lewis, Matthew S.; Cook, Russell E.; de Carlo, F.

    2001-03-01

    Department of Chemistry and Engineering Physics, University of Wisconsin-Platteville, Platteville, WI 53818 Advanced Photon Source, X-Ray Facilities Division, Argonne National Laboratory, Advanced Photon Source, User Program Division, Argonne National Laboratory, *Electron Microscopy Center, Materials Science Division, Argonne National Laboratory, Argonne National Laboratory, 9700 S. Cass Ave., Argonne IL 60439-4856 USA A novel optical strip coating material, Opticlean, has been shown to safely remove fingerprints, particles and contamination from a variety of optical surfaces including coated glass, Si and first surface mirrors. Contaminant removal was monitored by Nomarski, Atomic Force and Scanning Electron Microscopy. Sub-micron features on diffraction gratings and silicon wafers were also cleaned without leaving light scattering particles on the surface. **This work was supported in part by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences, under contract no. W-31-109-ENG-38. The authors acknowledge the support and facilities provided by the Advanced Photon Source and the Electron Microscopy Center at Argonne National Laboratory.

  3. Benefit from NASA

    NASA Image and Video Library

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. "A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back," said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  4. Interface Control Document for the Traffic Lights and Emergency Communications System at Gretna and Governor Nicholls Traffic Light Facilities

    DOT National Transportation Integrated Search

    1997-11-06

    Gretna and Governor Nicholls Light facilities are two manned shore side : facilities mounted in critical areas on the banks of the Mississippi River in : the port of New Orleans, Louisiana. Coast Guard plans call for the lights to : be remotely contr...

  5. 75 FR 8807 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    .... JJJJ Paper and Other Web X X X Coating. KKKK Surface Coating of X X X Metal Cans. MMMM Miscellaneous... X X Facilities. S Pulp and Paper X T Halogenated Solvent Cleaning.. X X U Group I Polymers and... Automobiles X and Light-Duty Trucks. JJJJ Paper and Other Web Coating... X KKKK Surface Coating of Metal Cans...

  6. 75 FR 36773 - Pipeline Safety: Updating Facility Response Plans in Light of the Deepwater Horizon Oil Spill

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    .... PHMSA-2010-0175] Pipeline Safety: Updating Facility Response Plans in Light of the Deepwater Horizon Oil... 194. In light of the Deepwater Horizon oil spill in the Gulf of Mexico, which has resulted in the... Systems. Subject: Updating Facility Response Plans in Light of the Deepwater Horizon Oil Spill. Advisory...

  7. 149 Sources and 15 Years Later: The Navy-NRAO Green Bank Interferometer Monitoring Program

    NASA Astrophysics Data System (ADS)

    Lazio, T. J. W.; Waltman, E. B.; Ghigo, F.; Johnston, K. J.

    2000-12-01

    Flux densities for 149 sources were monitored with the Green Bank Interferometer for durations ranging from 3 to 15 yrs, covering the interval 1979--1996, with most sources observed for 6 yrs. Observations were at two radio frequencies (approximately 2.5 and 8.2 GHz) and have a typical sampling of one flux density measurement every 2 days. We have used these light curves to conduct various variability analysis of the sources. We find suggestive, though not unambiguous evidence, that these sources have a common, broadband mechanism for intrinsic variations. We also find that the extrinsic variation is more consistent with radio-wave scattering in an extended medium rather than in a thin screen. The primary motivation for this monitoring program was the identification of extreme scattering events. In an effort to identify ESEs in a systematic manner, we have taken the wavelet transform of the light curves. We find 15 events in the light curves of 12 sources that we classify as probable ESEs. However, we also find that five ESEs previously identified from these data do not survive our wavelet selection criteria. Future identification of ESEs will probably continue to rely on both visual and systematic methods. We present examples of the light curves and variability analyses. Instructions for obtaining the data are also given. The GBI is a facility of the National Science Foundation and was operated by the National Radio Astronomy Observatory under contract to the USNO and NRL during these observations. A portion of this work was performed while TJWL held a National Research Council-NRL Research Associateship. Basic research in radio astronomy at the NRL is supported by the Office of Naval Research.

  8. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines

    PubMed Central

    Wojdyla, Justyna Aleksandra; Kaminski, Jakub W.; Ebner, Simon; Wang, Xiaoqiang; Gabadinho, Jose; Wang, Meitian

    2018-01-01

    Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods. PMID:29271779

  9. National Synchrotron Light Source II storage ring vacuum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hseuh, Hsiao-Chaun, E-mail: hseuh@bnl.gov; Hetzel, Charles; Leng, Shuwei

    2016-05-15

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. The majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. This paper presents themore » design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  10. Matched Template Signal Processing for Continuous Wave Laser Tracking of Space Debris

    NASA Astrophysics Data System (ADS)

    Raj, S.; Ward, R.; Roberts, L.; Fleddermann, R.; Francis, S.; McClellend, D.; Shaddock, D.; Smith, C.

    2016-09-01

    The build up of space junk in Earth's orbit space is a growing concern as it shares the same orbit as many currently active satellites. As the number of objects increase in these orbits, the likelihood of collisions between satellites and debris will increase [1]. The eventual goal is to be able to maneuver space debris to avoid such collisions. We at SERC aim to accomplish this by using ground based laser facilities that are already being used to track space debris orbit. One potential method to maneuver space debris is using continuous wave lasers and applying photon pressure on the debris and attempt to change the orbit. However most current laser ranging facilities operates using pulsed lasers where a pulse of light is sent out and the time taken for the pulse to return back to the telescope is measured after being reflected by the target. If space debris maneuvering is carried out with a continuous wave laser then two laser sources need to be used for ranging and maneuvering. The aim of this research is to develop a laser ranging system that is compatible with the continuous wave laser; using the same laser source to simultaneously track and maneuver space debris. We aim to accomplish this by modulating the outgoing laser light with pseudo random noise (PRN) codes, time tagging the outgoing light, and utilising a matched filter at the receiver end to extract the various orbital information of the debris.

  11. Forward directed x-ray from source produced by relativistic electrons from a Self-Modulated Laser Wakefield Accelerator

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Albert, Felicie; Shaw, Jessica; King, Paul; Milder, Avi; Marsh, Ken; Pak, Arthur; Joshi, Chan

    2017-10-01

    Plasma-based particle accelerators are now able to provide the scientific community with novel light sources. Their applications span many disciplines, including high-energy density sciences, where they can be used as probes to explore the physics of dense plasmas and warm dense matter. A recent advance is in the experimental and theoretical characterization of x-ray emission from electrons in the self-modulated laser wakefield regime (SMLWFA) where little is known about the x-ray properties. A series of experiments at the LLNL Jupiter Laser Facility, using the 1 ps 150 J Titan laser, have demonstrated low divergence electron beams with energies up to 300 MeV and 6 nCs of charge, and betatron x-rays with critical energies up to 20 keV. This work identifies two other mechanisms which produce high energy broadband x-rays and gamma-rays from the SMLWFA: Bremsstrahlung and inverse Compton scattering. We demonstrate the use of Compton scattering and bremsstrahlung to generate x/Gamma-rays from 3 keV up to 1.5 MeV with a source size of 50um and a divergence of 100 mrad. This work is an important step towards developing this x-ray light source on large-scale international laser facilities, and also opens up the prospect of using them for applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under the contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  12. A single blue nanorod light emitting diode.

    PubMed

    Hou, Y; Bai, J; Smith, R; Wang, T

    2016-05-20

    We report a light emitting diode (LED) consisting of a single InGaN/GaN nanorod fabricated by a cost-effective top-down approach from a standard LED wafer. The device demonstrates high performance with a reduced quantum confined Stark effect compared with a standard planar counterpart fabricated from the same wafer, confirmed by optical and electrical characterization. Current density as high as 5414 A cm(-2) is achieved without significant damage to the device due to the high internal quantum efficiency. The efficiency droop is mainly ascribed to Auger recombination, which was studied by an ABC model. Our work provides a potential method for fabricating compact light sources for advanced photonic integrated circuits without involving expensive or time-consuming fabrication facilities.

  13. Transverse gradient in Apple-type undulators

    PubMed Central

    Calvi, M.; Camenzuli, C.; Prat, E.; Schmidt, Th.

    2017-01-01

    Apple-type undulators are globally recognized as the most flexible devices for the production of variable polarized light in the soft X-ray regime, both at synchrotron and free-electron laser facilities. Recently, the implementation of transverse gradient undulators has been proposed to enhance the performance of new generation light sources. In this paper it is demonstrated that Apple undulators do not only generate linear and elliptical polarized light but also variable transverse gradient under certain conditions. A general theoretical framework is introduced to evaluate the K-value and its transverse gradient for an Apple undulator, and formulas for all regular operational modes and different Apple types (including the most recent Delta type and Apple X) are calculated and critically discussed. PMID:28452751

  14. NASA Lighting Research, Test, & Analysis

    NASA Technical Reports Server (NTRS)

    Clark, Toni

    2015-01-01

    The Habitability and Human Factors Branch, at Johnson Space Center, in Houston, TX, provides technical guidance for the development of spaceflight lighting requirements, verification of light system performance, analysis of integrated environmental lighting systems, and research of lighting-related human performance issues. The Habitability & Human Factors Lighting Team maintains two physical facilities that are integrated to provide support. The Lighting Environment Test Facility (LETF) provides a controlled darkroom environment for physical verification of lighting systems with photometric and spetrographic measurement systems. The Graphics Research & Analysis Facility (GRAF) maintains the capability for computer-based analysis of operational lighting environments. The combined capabilities of the Lighting Team at Johnson Space Center have been used for a wide range of lighting-related issues.

  15. Light-emitting diodes as a radiation source for plants

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.; Barta, D. J.; Ignatius, R. W.; Martin, T. S.

    1991-01-01

    Development of a more effective radiation source for use in plant-growing facilities would be of significant benefit for both research and commercial crop production applications. An array of light-emitting diodes (LEDs) that produce red radiation, supplemented with a photosynthetic photon flux (PPF) of 30 micromoles s-1 m-2 in the 400- to 500-nm spectral range from blue fluorescent lamps, was used effectively as a radiation source for growing plants. Growth of lettuce (Lactuca sativa L. Grand Rapids') plants maintained under the LED irradiation system at a total PPF of 325 micromoles s-1 m-2 for 21 days was equivalent to that reported in the literature for plants grown for the same time under cool-white fluorescent and incandescent radiation sources. Characteristics of the plants, such as leaf shape, color, and texture, were not different from those found with plants grown under cool-white fluorescent lamps. Estimations of the electrical energy conversion efficiency of a LED system for plant irradiation suggest that it may be as much as twice that published for fluorescent systems.

  16. Laser resonance ionization spectroscopy of antimony

    NASA Astrophysics Data System (ADS)

    Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.

    2017-02-01

    The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.

  17. Manual of good practices for sanitation in coal mining operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of the manual was to act as a guideline, setting reasonable recommendations relative to mine sanitation which will enable mines to install adequate facilities and make appropriate alterations conserving and improving the health and welfare of the mine worker. A systematic evaluation was undertaken of the sanitation facilities and maintenance at coal mines. Consideration was given to central facilities including building, floors, walls, partitions, ceilings, lockers, baskets and benches, showers, toilets, lavatories, lighting, ventilation and temperature control, and maintenance. Also discussed were food vending machines, water source, water quality, water treatment, water delivery systems for underground and surfacemore » mines, sanitary waste disposal, workplace toilets in underground and surface mines, refuse control and handling for underground and surface mines, and pest control.« less

  18. Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging.

    PubMed

    Wang, Weiping; Lu, Ya-Chun; Huang, Hong; Feng, Jiu-Ju; Chen, Jian-Rong; Wang, Ai-Jun

    2014-04-07

    A simple, facile and green hydrothermal method was developed in the synthesis of water-soluble nitrogen-doped carbon dots (N-CDs) from streptomycin. The as-prepared N-CDs displayed bright blue fluorescence under the irradiation of UV light, together with a high quantum yield of 7.6% and good biocompatibility as demonstrated by the cell viability assay. Thus, the N-CDs can be used as fluorescent probes for cell imaging, which have potential applications in bioimaging and related fields. This strategy opens a new way for the preparation of fluorescent carbon nanomaterials using small molecules as carbon sources.

  19. Inverse compton light source: a compact design proposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deitrick, Kirsten Elizabeth

    In the last decade, there has been an increasing demand for a compact Inverse Compton Light Source (ICLS) which is capable of producing high-quality X-rays by colliding an electron beam and a high-quality laser. It is only in recent years when both SRF and laser technology have advanced enough that compact sources can approach the quality found at large installations such as the Advanced Photon Source at Argonne National Laboratory. Previously, X-ray sources were either high flux and brilliance at a large facility or many orders of magnitude lesser when produced by a bremsstrahlung source. A recent compact source wasmore » constructed by Lyncean Technologies using a storage ring to produce the electron beam used to scatter the incident laser beam. By instead using a linear accelerator system for the electron beam, a significant increase in X-ray beam quality is possible, though even subsequent designs also featuring a storage ring offer improvement. Preceding the linear accelerator with an SRF reentrant gun allows for an extremely small transverse emittance, increasing the brilliance of the resulting X-ray source. In order to achieve sufficiently small emittances, optimization was done regarding both the geometry of the gun and the initial electron bunch distribution produced off the cathode. Using double-spoke SRF cavities to comprise the linear accelerator allows for an electron beam of reasonable size to be focused at the interaction point, while preserving the low emittance that was generated by the gun. An aggressive final focusing section following the electron beam's exit from the accelerator produces the small spot size at the interaction point which results in an X-ray beam of high flux and brilliance. Taking all of these advancements together, a world class compact X-ray source has been designed. It is anticipated that this source would far outperform the conventional bremsstrahlung and many other compact ICLSs, while coming closer to performing at the levels found at large facilities than ever before. The design process, including the development between subsequent iterations, is presented here in detail, with the simulation results for this groundbreaking X-ray source.« less

  20. Product selectivity of visible-light photocatalytic reduction of carbon dioxide using titanium dioxide doped by different nitrogen-sources

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoguo; Huang, Zhengfeng; Cheng, Xudong; Wang, Qingli; Chen, Yi; Dong, Peimei; Zhang, Xiwen

    2015-11-01

    The influence of nitrogen-source on the photocatalytic properties of nitrogen-doped titanium dioxide is herein first investigated from the perspective of the chemical bond form of the nitrogen element in the nitrogen-source. The definitive role of groups such as Nsbnd N from the nitrogen-source on the surface of as-prepared samples in the selectivity of the dominant product of photocatalytic reduction is demonstrated. Well-crystallized one-dimensional Nsbnd TiO2 nanorod arrays with a preferred orientation of the rutile (3 1 0) facet are manufactured via a hydrothermal treatment using hydrazine and ammonia variously as the source of nitrogen. Significant selectivity of the dominant reduced products has been exhibited for Nsbnd TiO2 prepared from different nitrogen-sources in carbon dioxide photocatalytic reduction under visible light illumination. CH4 is the main product with N2H4-doped Nsbnd TiO2, while CO is the main product with NH3-doped Nsbnd TiO2, which can be attributed to the existence of the reducing Nsbnd N groups in the N2H4-doped Nsbnd TiO2 surfaces after the hydrothermal treatment. Compared with the approaches previously reported, the facile one-step route utilized here accomplishes the fabrication of Nsbnd TiO2 possessing visible-light activity and attainment of selectivity of dominant photocatalytic reduction product simultaneously by choosing a nitrogen-source with appropriate chemical bond form, which provides a completely new approach to understanding the effects of doping treatment on photocatalytic properties.

  1. Fourth Generation Light Sources

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    1997-05-01

    Concepts and designs are now being developed at laboratories around the world for light sources with performance levels that exceed present sources, including the very powerful and successful third generation synchrotron radiation sources that have come on line in the past few years. Workshops (M. Cornacchia and H. Winick (eds), Workshop on Fourth Generation Light Sources, Feb. 24-27, 1992, SSRL Report 92/02) (J.-L. Laclare (ed), ICFA Workshop on Fourth Generation Light Sources, Jan. 22-25, 1996, ESRF Report) have been held to review directions for future sources. A main thrust is to increase the brightness and coherence of the radiation using storage rings with lower electron-beam emittance or free-electron lasers (FELs). In the infra-red part of the spectrum very high brightness and coherence is already provided by FEL user facilities driven by linacs and storage rings. It now appears possible to extend FEL operation to the VUV, soft X-ray and even hard X-ray spectral range, to wavelengths down to the angstrom range, using high energy linacs equipped with high-brightness rf photoinjectors and bunch-length compressors. R&D to develop such sources is in progress at BNL, DESY, KEK, SLAC and other laboratories. In the absence of mirrors to form optical cavities, short wavelengths are reached in FEL systems in which a high peak current, low-emittance electron beam becomes bunch-density modulated at the optical wavelength in a single pass through a long undulator by self-amplified spontaneous emission (SASE); i.e.; startup from noise. A proposal to use the last kilometer of the three kilometer SLAC linac (the first two kilometers will be used for injection to the PEP II B-Factory) to provide 15 GeV electron beams to reach 1.5 Angstroms by SASE in a 100 m long undulator is in preparation.

  2. Helium broadened propane absorption cross sections in the far-IR

    NASA Astrophysics Data System (ADS)

    Wong, A.; Billinghurst, B.; Bernath, P. F.

    2017-09-01

    Infrared absorption spectra for pure and He broadened propane have been recorded in the far-IR region (650-1300 cm-1) at the Canadian Light Source (CLS) facility using either the synchrotron or internal glowbar source depending on the required resolution. The measurements were made for 4 temperatures in the range 202-292 K and for 3 pressures of He broadening gas up to 100 Torr. Infrared absorption cross sections are derived from the spectra and the integrated cross sections are within 10 % of the corresponding values from the Pacific Northwest National Laboratory (PNNL) for all temperatures and pressures.

  3. Low emittance electron storage rings

    NASA Astrophysics Data System (ADS)

    Levichev, E. B.

    2018-01-01

    Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.

  4. SLAC Linac Preparations for FACET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, R.; Bentson, L.; Kharakh, D.

    The SLAC 3km linear electron accelerator has been cut at the two-thirds point to provide beams to two independent programs. The last third provides the electron beam for the Linac Coherent Light Source (LCLS), leaving the first two-thirds available for FACET, the new experimental facility for accelerator science and test beams. In this paper, we describe this separation and projects to prepare the linac for the FACET experimental program.

  5. SESAME -- A light source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2012-02-01

    Developed under UNESCO and modelled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research centre in construction in Jordan, enabling world-class research while promoting peace through scientific cooperation. Its centerpiece, a new 2.5 GeV 3rd Generation Electron Storage Ring (133m circumference, 26nm-rad emittance, 12 places for insertion devices), will provide intense light from infra-red to hard X-rays. The Council (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey), provides the annual budget. Concrete shielding is complete, and a staff of 21 is installing the refurbished 0.8 GeV BESS Y I injector system, a gift from Germany. The facility can serve 25 simultaneous experiments. Beamline equipment has been provided by Daresbury (UK), the Helmholtz Assoc. (Germany), the Swiss Light Source, LURE (France), the Univ. of Liverpool, Elettra (Italy) and US labs. Jordan has contributed 3.3M, in addition to a building and land. The EU has contributed 4.8M. Commitments confirmed by Members look set to provide most of 35M needed to complete construction of the ring and 3 beamlines. A training program has been underway since 2000. See www.sesame.org.jo

  6. Status of the SAGA Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneyasu, T.; Takabayashi, Y.; Iwasaki, Y.

    The SAGA Light Source (SAGA-LS) is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring that is 75.6 m in circumference. The SAGA-LS has been stably providing synchrotron radiation to users since it first started user operation in February 2006. Along with the user operation, various machine improvements have been made over the past years, including upgrading the injector linac control system, replacing a septum magnet and constructing a beam diagnostic system. In addition to these improvements, insertion devices have been developed and installed. An APPLE-II type variable polarization undulator was installedmore » in 2008. To address the demand from users for high-flux hard x-rays, a superconducting 4 T class wiggler is being developed. An experimental setup for generating MeV photons by laser Compton scattering is being constructed for beam monitoring and future user experiments.« less

  7. National Synchrotron Light Source II storage ring vacuum systems

    DOE PAGES

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  8. FACILITY 72, INTERIOR. 15LIGHT DOUBLE DOORS WITH 15LIGHT SIDELIGHTS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 72, INTERIOR. 15-LIGHT DOUBLE DOORS WITH 15-LIGHT SIDELIGHTS AND 2-LIGHT TRANSOM. LIVING ROOM BEYOND. VIEW FACING NORTH-NORTHEAST. - U.S. Naval Base, Pearl Harbor, Naval Housing Area Makalapa, Senior Officers' Quarters Type C, North end of Makalapa Drive, Pearl City, Honolulu County, HI

  9. Dark Skies: Local Success, Global Challenge

    NASA Astrophysics Data System (ADS)

    Lockwood, G. W.

    2009-01-01

    The Flagstaff, Arizona 1987 lighting code reduced the growth rate of man-made sky glow by a third. Components of the code include requirements for full cutoff lighting, lumens per acre limits in radial zones around observatories, and use of low-pressure sodium monochromatic lighting for roadways and parking lots. Broad public acceptance of Flagstaff's lighting code demonstrates that dark sky preservation has significant appeal and few visibility or public safety negatives. An inventory by C. Luginbuhl et al. of the light output and shielding of a sampling of various zoning categories (municipal, commercial, apartments, single-family residences, roadways, sports facilities, industrial, etc.), extrapolated over the entire city, yields a total output of 139 million lumens. Commercial and industrial sources account for 62% of the total. Outdoor sports lighting increases the total by 24% on summer evenings. Flagstaff's per capita lumen output is 2.5 times greater than the nominal 1,000 lumens per capita assumed by R. Garstang in his early sky glow modeling work. We resolved the discrepancy with respect to Flagstaff's measured sky glow using an improved model that includes substantial near ground attenuation by foliage and structures. A 2008 university study shows that astronomy contributes $250M annually to Arizona's economy. Another study showed that the application of lighting codes throughout Arizona could reduce energy consumption significantly. An ongoing effort led by observatory directors statewide will encourage lighting controls in currently unregulated metropolitan areas whose growing sky glow threatens observatory facilities more than 100 miles away. The national press (New York Times, the New Yorker, the Economist, USA Today, etc.) have publicized dark sky issues but frequent repetition of the essential message and vigorous action will be required to steer society toward darker skies and less egregious waste.

  10. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M. J.; Fournier, K. B.; Colvin, J. D.

    2015-06-15

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ ofmore » 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.« less

  11. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    DOE PAGES

    May, M. J.; Fournier, K. B.; Colvin, J. D.; ...

    2015-06-01

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainlessmore » steel. The NIF laser deposited ~460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. In conclusion, time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range« less

  12. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondrasek, R.; Kutsaev, Sergey; Delahaye, P.

    2012-11-15

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficienciesmore » of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.« less

  13. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondrasek, R.; Delahaye, P.; Kutsaev, Sergey

    2012-11-01

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a 252Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies ofmore » both gaseous and solid species including 14.7% for the radioactive species 143Ba27+. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for 23Na7+ and 17.9% for 39K10+ were obtained injecting stable Na+ and K+ beams from a surface ionization source.« less

  14. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Hohenberger, M.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K.; Regan, S. P.

    2015-06-01

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5-9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ˜460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.

  15. Self-Biased Hybrid Piezoelectric-Photoelectrochemical Cell with Photocatalytic Functionalities.

    PubMed

    Tan, Chuan Fu; Ong, Wei Li; Ho, Ghim Wei

    2015-07-28

    Utilizing solar energy for environmental and energy remediations based on photocatalytic hydrogen (H2) generation and water cleaning poses great challenges due to inadequate visible-light power conversion, high recombination rate, and intermittent availability of solar energy. Here, we report an energy-harvesting technology that utilizes multiple energy sources for development of sustainable operation of dual photocatalytic reactions. The fabricated hybrid cell combines energy harvesting from light and vibration to run a power-free photocatalytic process that exploits novel metal-semiconductor branched heterostructure (BHS) of its visible light absorption, high charge-separation efficiency, and piezoelectric properties to overcome the aforementioned challenges. The desirable characteristics of conductive flexible piezoelectrode in conjunction with pronounced light scattering of hierarchical structure originate intrinsically from the elaborate design yet facile synthesis of BHS. This self-powered photocatalysis system could potentially be used as H2 generator and water treatment system to produce clean energy and water resources.

  16. The development of the advanced cryogenic radiometer facility at NRC

    NASA Astrophysics Data System (ADS)

    Gamouras, A.; Todd, A. D. W.; Côté, É.; Rowell, N. L.

    2018-02-01

    The National Research Council (NRC) of Canada has established a next generation facility for the primary realization of optical radiant power. The main feature of this facility is a new cryogenic electrical substitution radiometer with a closed-cycle helium cryocooler. A monochromator-based approach allows for detector calibrations at any desired wavelength. A custom-designed motion apparatus includes two transfer standard radiometer mounting ports which has increased our measurement capability by allowing the calibration of two photodetectors in one measurement cycle. Measurement uncertainties have been improved through several upgrades, including newly designed and constructed transimpedance amplifiers for the transfer standard radiometers, and a higher power broadband light source. The most significant improvements in uncertainty arise from the enhanced characteristics of the new cryogenic radiometer including its higher cavity absorptance and reduced non-equivalence effects.

  17. Compact laser accelerators for X-ray phase-contrast imaging

    PubMed Central

    Najmudin, Z.; Kneip, S.; Bloom, M. S.; Mangles, S. P. D.; Chekhlov, O.; Dangor, A. E.; Döpp, A.; Ertel, K.; Hawkes, S. J.; Holloway, J.; Hooker, C. J.; Jiang, J.; Lopes, N. C.; Nakamura, H.; Norreys, P. A.; Rajeev, P. P.; Russo, C.; Streeter, M. J. V.; Symes, D. R.; Wing, M.

    2014-01-01

    Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300 TW laser, which allowed the energy of the synchrotron source to be extended to the 10–100 keV range. PMID:24470414

  18. OPTIMIZATION OF EXPERIMENTAL DESIGNS BY INCORPORATING NIF FACILITY IMPACTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eder, D C; Whitman, P K; Koniges, A E

    2005-08-31

    For experimental campaigns on the National Ignition Facility (NIF) to be successful, they must obtain useful data without causing unacceptable impact on the facility. Of particular concern is excessive damage to optics and diagnostic components. There are 192 fused silica main debris shields (MDS) exposed to the potentially hostile target chamber environment on each shot. Damage in these optics results either from the interaction of laser light with contamination and pre-existing imperfections on the optic surface or from the impact of shrapnel fragments. Mitigation of this second damage source is possible by identifying shrapnel sources and shielding optics from them.more » It was recently demonstrated that the addition of 1.1-mm thick borosilicate disposable debris shields (DDS) block the majority of debris and shrapnel fragments from reaching the relatively expensive MDS's. However, DDS's cannot stop large, faster moving fragments. We have experimentally demonstrated one shrapnel mitigation technique showing that it is possible to direct fast moving fragments by changing the source orientation, in this case a Ta pinhole array. Another mitigation method is to change the source material to one that produces smaller fragments. Simulations and validating experiments are necessary to determine which fragments can penetrate or break 1-3 mm thick DDS's. Three-dimensional modeling of complex target-diagnostic configurations is necessary to predict the size, velocity, and spatial distribution of shrapnel fragments. The tools we are developing will be used to set the allowed level of debris and shrapnel generation for all NIF experimental campaigns.« less

  19. Calibration of scintillation-light filters for neutron time-of-flight spectrometers at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, D. B., E-mail: sayre4@llnl.gov; Barbosa, F.; Caggiano, J. A.

    Sixty-four neutral density filters constructed of metal plates with 88 apertures of varying diameter have been radiographed with a soft x-ray source and CCD camera at National Security Technologies, Livermore. An analysis of the radiographs fits the radial dependence of the apertures’ image intensities to sigmoid functions, which can describe the rapidly decreasing intensity towards the apertures’ edges. The fitted image intensities determine the relative attenuation value of each filter. Absolute attenuation values of several imaged filters, measured in situ during calibration experiments, normalize the relative quantities which are now used in analyses of neutron spectrometer data at the Nationalmore » Ignition Facility.« less

  20. Calibration of scintillation-light filters for neutron time-of-flight spectrometers at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, D. B.; Barbosa, F.; Caggiano, J. A.

    Sixty-four neutral density filters constructed of metal plates with 88 apertures of varying diameter have been radiographed with a soft x-ray source and CCD camera at National Security Technologies, Livermore. An analysis of the radiographs fits the radial dependence of the apertures’ image intensities to sigmoid functions, which can describe the rapidly decreasing intensity towards the apertures’ edges. Here, the fitted image intensities determine the relative attenuation value of each filter. Absolute attenuation values of several imaged filters, measured in situ during calibration experiments, normalize the relative quantities which are now used in analyses of neutron spectrometer data at themore » National Ignition Facility.« less

  1. Calibration of scintillation-light filters for neutron time-of-flight spectrometers at the National Ignition Facility

    DOE PAGES

    Sayre, D. B.; Barbosa, F.; Caggiano, J. A.; ...

    2016-07-26

    Sixty-four neutral density filters constructed of metal plates with 88 apertures of varying diameter have been radiographed with a soft x-ray source and CCD camera at National Security Technologies, Livermore. An analysis of the radiographs fits the radial dependence of the apertures’ image intensities to sigmoid functions, which can describe the rapidly decreasing intensity towards the apertures’ edges. Here, the fitted image intensities determine the relative attenuation value of each filter. Absolute attenuation values of several imaged filters, measured in situ during calibration experiments, normalize the relative quantities which are now used in analyses of neutron spectrometer data at themore » National Ignition Facility.« less

  2. Calibration of scintillation-light filters for neutron time-of-flight spectrometers at the National Ignition Facility.

    PubMed

    Sayre, D B; Barbosa, F; Caggiano, J A; DiPuccio, V N; Eckart, M J; Grim, G P; Hartouni, E P; Hatarik, R; Weber, F A

    2016-11-01

    Sixty-four neutral density filters constructed of metal plates with 88 apertures of varying diameter have been radiographed with a soft x-ray source and CCD camera at National Security Technologies, Livermore. An analysis of the radiographs fits the radial dependence of the apertures' image intensities to sigmoid functions, which can describe the rapidly decreasing intensity towards the apertures' edges. The fitted image intensities determine the relative attenuation value of each filter. Absolute attenuation values of several imaged filters, measured in situ during calibration experiments, normalize the relative quantities which are now used in analyses of neutron spectrometer data at the National Ignition Facility.

  3. Passive solar nursing home for Northern Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.G.; Ward, J.D.

    This project is a 32-bed nursing home designed as an addition to an existing facility. Passive solar strategies included direct gain room windows and clerestories which admit light to phase change salt pouches in the ceilings of patient rooms. Corridors are skykighted; and the heating, ventilating, and conditioning system is comprised of water-source heat pumps and a 5000 gallon storage tank in conjunction with an air to air heat recovery wheel.

  4. Practical color vision tests for air traffic control applicants: en route center and terminal facilities.

    PubMed

    Mertens, H W; Milburn, N J; Collins, W E

    2000-12-01

    Two practical color vision tests were developed and validated for use in screening Air Traffic Control Specialist (ATCS) applicants for work at en route center or terminal facilities. The development of the tests involved careful reproduction/simulation of color-coded materials from the most demanding, safety-critical color task performed in each type of facility. The tests were evaluated using 106 subjects with normal color vision and 85 with color vision deficiency. The en route center test, named the Flight Progress Strips Test (FPST), required the identification of critical red/black coding in computer printing and handwriting on flight progress strips. The terminal option test, named the Aviation Lights Test (ALT), simulated red/green/white aircraft lights that must be identified in night ATC tower operations. Color-coding is a non-redundant source of safety-critical information in both tasks. The FPST was validated by direct comparison of responses to strip reproductions with responses to the original flight progress strips and a set of strips selected independently. Validity was high; Kappa = 0.91 with original strips as the validation criterion and 0.86 with different strips. The light point stimuli of the ALT were validated physically with a spectroradiometer. The reliabilities of the FPST and ALT were estimated with Chronbach's alpha as 0.93 and 0.98, respectively. The high job-relevance, validity, and reliability of these tests increases the effectiveness and fairness of ATCS color vision testing.

  5. Design of laser monitoring and sound localization system

    NASA Astrophysics Data System (ADS)

    Liu, Yu-long; Xu, Xi-ping; Dai, Yu-ming; Qiao, Yang

    2013-08-01

    In this paper, a novel design of laser monitoring and sound localization system is proposed. It utilizes laser to monitor and locate the position of the indoor conversation. In China most of the laser monitors no matter used in labor in an instrument uses photodiode or phototransistor as a detector at present. At the laser receivers of those facilities, light beams are adjusted to ensure that only part of the window in photodiodes or phototransistors received the beams. The reflection would deviate from its original path because of the vibration of the detected window, which would cause the changing of imaging spots in photodiode or phototransistor. However, such method is limited not only because it could bring in much stray light in receivers but also merely single output of photocurrent could be obtained. Therefore a new method based on quadrant detector is proposed. It utilizes the relation of the optical integral among quadrants to locate the position of imaging spots. This method could eliminate background disturbance and acquired two-dimensional spots vibrating data pacifically. The principle of this whole system could be described as follows. Collimated laser beams are reflected from vibrate-window caused by the vibration of sound source. Therefore reflected beams are modulated by vibration source. Such optical signals are collected by quadrant detectors and then are processed by photoelectric converters and corresponding circuits. Speech signals are eventually reconstructed. In addition, sound source localization is implemented by the means of detecting three different reflected light sources simultaneously. Indoor mathematical models based on the principle of Time Difference Of Arrival (TDOA) are established to calculate the twodimensional coordinate of sound source. Experiments showed that this system is able to monitor the indoor sound source beyond 15 meters with a high quality of speech reconstruction and to locate the sound source position accurately.

  6. Far-infrared Beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Zhao, Jianbao; Billinghurst, Brant

    2017-06-01

    Far-infrared is a particularly useful technique for studies on lattice modes as they generally appear in the Far-infrared region. Far-infrared is also an important tool for gathering information on the electrical transport properties of metallic materials and the band gap of semiconductors. This poster will describe the horizontal microscope that has recently been built in the Far-infrared beamline at the Canadian Light Source Inc. (CLS). This microscope is specially designed for high-pressure Far-infrared absorbance and reflectance spectroscopic studies. The numerical aperture (0.5) and the long working distance (82.1 mm) in the microscope are good fits for Diamond Anvil Cell (DAC). The spectra are recorded using liquid helium cooled Si bolometer or Ge:Cu detector. The pressure in the DAC can be determined by using the fluorescence spectrometer available onsite. The Far-infrared beamline at CLS is a state-of-the-art synchrotron facility, offering significantly more brightness than conventional sources. Because of the high brightness of the synchrotron radiation, we can obtain the Far-infrared reflectance/absorbance spectra on the small samples with more throughput than with a conventional source. The Far-infrared beamline is open to users through peer review.

  7. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    PubMed

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  8. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  9. The Linac Coherent Light Source: Recent Developments and Future Plans

    DOE PAGES

    Schoenlein, R. W.; Boutet, S.; Minitti, M. P.; ...

    2017-08-18

    The development of X-ray free-electron lasers (XFELs) has launched a new era in X-ray science by providing ultrafast coherent X-ray pulses with a peak brightness that is approximately one billion times higher than previous X-ray sources. The Linac Coherent Light Source (LCLS) facility at the SLAC National Accelerator Laboratory, the world’s first hard X-ray FEL, has already demonstrated a tremendous scientific impact across broad areas of science. Here in this paper, a few of the more recent representative highlights from LCLS are presented in the areas of atomic, molecular, and optical science; chemistry; condensed matter physics; matter in extreme conditions;more » and biology. This paper also outlines the near term upgrade (LCLS-II) and motivating science opportunities for ultrafast X-rays in the 0.25–5 keV range at repetition rates up to 1 MHz. Future plans to extend the X-ray energy reach to beyond 13 keV (<1 Å) at high repetition rate (LCLS-II-HE) are envisioned, motivated by compelling new science of structural dynamics at the atomic scale.« less

  10. CONCEPTUAL DESIGN REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROBINSON,K.

    2006-12-31

    Brookhaven National Laboratory has prepared a conceptual design for a world class user facility for scientific research using synchrotron radiation. This facility, called the ''National Synchrotron Light Source II'' (NSLS-II), will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and functions with a spatial resolution of {approx}1 nm, an energy resolution of {approx}0.1 meV, and the ultra high sensitivity required to perform spectroscopymore » on a single atom. The overall objective of the NSLS-II project is to deliver a research facility to advance fundamental science and have the capability to characterize and understand physical properties at the nanoscale, the processes by which nanomaterials can be manipulated and assembled into more complex hierarchical structures, and the new phenomena resulting from such assemblages. It will also be a user facility made available to researchers engaged in a broad spectrum of disciplines from universities, industries, and other laboratories.« less

  11. Visibility and Visual Characteristics of the Ivanpah Solar Electric Generating System Power Tower Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Robert; Abplanalp, Jennifer M.

    2015-03-01

    This report presents the results of a study conducted to document the visibility and visual characteristics of the Ivanpah Solar Electric Generating System (ISEGS), a utility-scale solar power tower facility located on land administered by the U.S. Department of the Interior Bureau of Land Management in southern California. Study activities consisted of field observations of the ISEGS facility and comparison of the observations made in the field with the visual contrast assessments and visual simulations in the ISEGS Final Environmental Impact Statement (Final EIS) and supporting documents created prior to ISEGS construction. Field observations of ISEGS were made from 19more » locations within 35 mi (56 km) of the facility in the course of one week in September 2014. The study results established that reflected sunlight from the receivers was the primary source of visual contrast from the operating ISEGS facility. The ISEGS facility was found to be a major source of visual contrast for all observations up to 20 mi (32 km), and was easily visible at 35 mi. Glare from individual heliostats was frequently visible, and often brighter than the reflected light from the receivers. Heliostat glare caused discomfort for one or more viewers at distances up to 20 mi. The ISEGS power blocks were brightly lit at night, and were conspicuous at the observation distance of approximately 6 mi (10 km). The facility is substantially brighter and is seen more clearly in the field than in photographs of the facility or in the prepared simulations, which were based on photographs. The simulations of the ISEGS facility in the Final EIS, which were evaluated as part of this study, sometimes lacked spatial accuracy and realism. The evaluated simulations generally under-represented the actual visual contrast from the project, and some of the contrast ratings in the Final EIS predicted substantially lower levels of visual contrast than were actually observed for the operating facility.« less

  12. The JLab high power ERL light source

    NASA Astrophysics Data System (ADS)

    Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.

    2006-02-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made concerning the physics performance, design optimization, and operational limitations of such a first generation high power ERL light source.

  13. Ratio of He{sup 2+}/He{sup +} from 80 to 800 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samson, J.A.R.; Stolte, W.C.; He, Z.X.

    1997-04-01

    The importance of studying the double ionization of He by single photons lies in the fact that He presents the simplest structure for the study of electron correlation processes. Even so it has proved a challenging problem to understand and describe theoretically. Surprisingly, it has also proved difficult to agree experimentally on the absolute values of the He{sup 2+}/He{sup +} ratios. The availability of new synchrotron facilities with high intensity light outputs have increased the experimental activity in this area. However, by the very nature of those continuum sources systematic errors occur due to the presence of higher order spectramore » and great care must be exercised. The authors have measured the He{sup 2+}/He{sup +} ratios over a period of 5 years, the last three at the ALS utilizing beamlines 9.0.1 and 6.3.2. The sources of systematic errors that they have considered include: scattered light, higher order spectra, detector sensitivity to differently charged ions, discriminator levels in the counting equipment, gas purity, and stray electrons from filters and metal supports. The measurements have been made at three different synchrotron facilities with different types of monochromators and their potential for different sources of systematic errors. However, the authors data from all these different measurements agree within a few percent of each other. From the above results and their precision total photoionization cross sections for He, the authors can obtain the absolute photoionization cross section for He{sup 2+}. They find similar near perfect agreement with several of the latest calculations.« less

  14. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-07-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  15. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-01-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  16. High solar-light photocatalytic activity of using Cu3Se2/rGO nanocomposites synthesized by a green co-precipitation method

    NASA Astrophysics Data System (ADS)

    Nouri, Morteza; Saray, Abdolali Moghaddam; Azimi, H. R.; Yousefi, Ramin

    2017-11-01

    Current work presents a facile, cost-effective, and green method to synthesize copper selenide nanostructures and copper selenide/graphene nanocomposites. The products were synthesized by a co-precipitation method by glycine amino acid as a green surfactant and graphene oxide (GO) sheets as a graphene source. X-ray diffraction patterns (XRD) of the products indicated that the products were Cu2Se3 with tetragonal phase. Fourier transform infrared (FTIR) spectroscopy and the XRD patterns indicated that the GO sheets were changed into reduced GO (rGO) during the synthesis process. Scanning and transmission electron microscopy (SEM and TEM) images showed the nanoparticles (NPs) that were decorated on rGO sheets had the significantly smaller size in compared to the pristine NPs. UV-vis results revealed that, the absorption peak of the products were in the visible region with a band-gap value between 1.85 eV and 1.95 eV. Finally, the products were applied as photocatalytic materials to remove Methylene Blue (MB) dye under solar-light and visible-light irradiation conditions. It was observed; the rGO had a significant role in enhancing the photocatalytic performance of the products and Cu2Se3/rGO (15%) could degrade more than 91% and 73% of MB only during 1 h under solar-light and visible-light sources, respectively.

  17. X-ray phase-contrast tomosynthesis of a human ex vivo breast slice with an inverse Compton x-ray source

    NASA Astrophysics Data System (ADS)

    Eggl, E.; Schleede, S.; Bech, M.; Achterhold, K.; Grandl, S.; Sztrókay, A.; Hellerhoff, K.; Mayr, D.; Loewen, R.; Ruth, R. D.; Reiser, M. F.; Pfeiffer, F.

    2016-12-01

    While the performance of conventional x-ray tube sources often suffers from the broad polychromatic spectrum, synchrotrons that could provide highly brilliant x-rays are restricted to large research facilities and impose high investment and maintenance costs. Lately, a new type of compact synchrotron sources has been investigated. These compact light sources (CLS) based on inverse Compton scattering provide quasi-monochromatic hard x-rays. The flux and brilliance yielded by a CLS currently lie between x-ray tube sources and third-generation synchrotrons. The relatively large partially coherent x-ray beam is well suited for the investigation of preclinical applications of grating-based phase-contrast and dark-field imaging. Here we present the first grating-based multimodal tomosynthesis images of a human breast slice acquired at a CLS to investigate the possibilities of improved breast cancer diagnostics.

  18. Synchrotron sheds new light on geophysical materials

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    On December 20,1996, scientists working with the Advanced Photon Source (APS) at Argonne National Laboratory in Illinois conducted “first light” experiments in a new laboratory for synchrotron radiation research in the geosciences. The demonstration marks the dawn of a new era in rock and mineral physics when, as geophysicist Thomas Duffy of Princeton University notes, researchers will be able to 'shine a bright new light on some of our planet's deepest and darkest secrets.”The new light is from the APS, a particle accelerator dedicated to the production of brilliant X rays for research, and it shone on the GeoSoilEnviroCARS (GSECARS) experimental facility. The purpose of GSECARS is to develop X-ray beamlines at the APS and make them available to scientists for frontier research in Earth, planetary, geophysics, soil, and environmental sciences.

  19. Optical characterization of ultra-sensitive TES bolometers for SAFARI

    NASA Astrophysics Data System (ADS)

    Audley, Michael D.; de Lange, Gerhard; Gao, Jian-Rong; Khosropanah, Pourya; Mauskopf, Philip D.; Morozov, Dmitry; Trappe, Neil A.; Doherty, Stephen; Withington, Stafford

    2014-07-01

    We have characterized the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays will image a 2'×2' field of view with spectral information over the wavelength range 34—210 μm. SAFARI requires extremely sensitive detectors (goal NEP ~ 0.2 aW/√Hz), with correspondingly low saturation powers (~5 fW), to take advantage of SPICA's cooled optics. We have constructed an ultra-low background optical test facility containing an internal cold black-body illuminator and have recently added an internal hot black-body source and a light-pipe for external illumination. We illustrate the performance of the test facility with results including spectral-response measurements. Based on an improved understanding of the optical throughput of the test facility we find an optical efficiency of 60% for prototype SAFARI detectors.

  20. Preparing the MAX IV storage rings for timing-based experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stråhlman, C., E-mail: Christian.Strahlman@maxlab.lu.se; Olsson, T., E-mail: Teresia.Olsson@maxlab.lu.se; Leemann, S. C.

    2016-07-27

    Time-resolved experimental techniques are increasingly abundant at storage ring facilities. Recent developments in accelerator technology and beamline instrumentation allow for simultaneous operation of high-intensity and timing-based experiments. The MAX IV facility is a state-of-the-art synchrotron light source in Lund, Sweden, that will come into operation in 2016. As many storage ring facilities are pursuing upgrade programs employing strong-focusing multibend achromats and passive harmonic cavities (HCs) in high-current operation, it is of broad interest to study the accelerator and instrumentation developments required to enable timing-based experiments at such machines. In particular, the use of hybrid filling modes combined with pulse pickingmore » by resonant excitation or pseudo single bunch has shown promising results. These methods can be combined with novel beamline instrumentation, such as choppers and instrument gating. In this paper we discuss how these techniques can be implemented and employed at MAX IV.« less

  1. Exposure of fluid milk to LED light negatively affects consumer perception and alters underlying sensory properties.

    PubMed

    Martin, Nicole; Carey, Nancy; Murphy, Steven; Kent, David; Bang, Jae; Stubbs, Tim; Wiedmann, Martin; Dando, Robin

    2016-06-01

    Fluid milk consumption per capita in the United States has been steadily declining since the 1940s. Many factors have contributed to this decline, including the increasing consumption of carbonated beverages and bottled water. To meet the challenge of stemming the decline in consumption of fluid milk, the dairy industry must take a systematic approach to identifying and correcting for factors that negatively affect consumers' perception of fluid milk quality. To that end, samples of fluid milk were evaluated to identify factors, with a particular focus on light-emitting diode (LED) light exposure, which negatively affect the perceived sensory quality of milk, and to quantify their relative effect on the consumer's experience. Fluid milk samples were sourced from 3 processing facilities with varying microbial postprocessing contamination patterns based on historical testing. The effect of fat content, light exposure, age, and microbiological content were assayed across 23 samples of fluid milk, via consumer, descriptive sensory, and instrumental analyses. Most notably, light exposure resulted in a broad negative reaction from consumers, more so than samples with microbiological contamination exceeding 20,000 cfu/mL on days approaching code. The predominant implication of the study is that a component of paramount importance in ensuring the success of the dairy industry would be to protect fluid milk from all sources of light exposure, from processing plant to consumer. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Advanced X-ray Optics Metrology for Nanofocusing and Coherence Preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Kenneth A.; Yashchuk, Valeriy

    2007-12-01

    What is the point of developing new high-brightness light sources if beamline optics won't be available to realize the goals of nano-focusing and coherence preservation? That was one of the central questions raised during a workshop at the 2007 Advanced Light Source Users Meeting. Titled, 'Advanced X-Ray Optics Metrology for Nano-focusing and Coherence Preservation', the workshop was organized by Kenneth Goldberg and Valeriy Yashchuk (both of Lawrence Berkeley National Laboratory, LBNL), and it brought together industry representatives and researchers from Japan, Europe, and the US to discuss the state of the art and to outline the optics requirements of newmore » light sources. Many of the presentations are viewable on the workshop website http://goldberg.lbl.gov/MetrologyWorkshop07/. Many speakers shared the same view of one of the most significant challenges facing the development of new high-brightness third and fourth generation x-ray, soft x-ray, and EUV light sources: these sources place extremely high demands on the surface quality of beamline optics. In many cases, the 1-2-nm surface error specs that define the outer bounds of 'diffraction-limited' quality are beyond the reach of leading facilities and optics vendors. To focus light to 50-nm focal spots, or smaller, from reflective optics and to preserve the high coherent flux that new sources make possible, the optical surface quality and alignment tolerances must be measured in nano-meters and nano-radians. Without a significant, well-supported research effort, including the development of new metrology techniques for use both on and off the beamline, these goals will likely not be met. The scant attention this issue has garnered is evident in the stretched budgets and limited manpower currently dedicated to metrology. With many of the world's leading groups represented at the workshop, it became clear that Japan and Europe are several steps ahead of the US in this critical area. But the situation isn't all dire: several leading groups are blazing a trail forward, and the recognition of this issue is increasing. The workshop featured eleven invited talks whose presenters came from Japan, Europe, and the US.« less

  3. Utilization of solvothermally grown InP/ZnS quantum dots as wavelength converters for fabrication of white light-emitting diodes.

    PubMed

    Jang, Eun-Pyo; Yang, Heesun

    2013-09-01

    This work reports on a simple solvothermal synthesis of InP/ZnS core/shell quantum dots (QDs) using a much safer and cheaper phosphorus precursor of tris(dimethylamino)phosphine than the most popularly chosen tris(trimethylsilyl)phosphine. The band gap of InP QDs is facilely controlled by varying the solvothermal core growth time (4 vs. 6 h) with a fixed temperature of 150 degrees C, and the successive solvothermal ZnS shelling at 220 degrees C for 6 h results in green- and yellow-emtting InP/ZnS QD with emission quantum yield of 41-42%. The broad size distribution of as-synthesized InP/ZnS QDs, which appears to be inherent in the current solvothermal approach, is improved by a size-selective sorting procedure, and the emission properties of the resulting size-sorted QD fractions are investigated. To produce white emission for general lighting source, a blue light-emitting diode (LED) is combined with non-size-soroted green or yellow QDs as wavelength converters. Furthermore, the QD-LED that includes a blend of green and yellow QDs is fabricated to generate a white lighting source with an enhanced color rendering performance, and its electroluminescent properties are characterized in detail.

  4. Instructor/Operator Station Design Handbook for Aircrew Training Devices.

    DTIC Science & Technology

    1987-10-01

    to only the necessary work areas and baffles it from the CRT; (f) use of a selective -spectrum lighting system, in which the spectral output of the...operator. While the device provides some new features which support training, such as a debrief facility and a computer-based instructor training module , the...ZIP Code) 10 SOURCE OF FUNDING NUMBERS Brooks Air Force Base, Texas 78235-5601 PROGRAM PROJECT TASK WORK UNIT ELEMENT NO NO NO ACCESSION NO 62205F

  5. Production of High Intracavity UV Power From a CW Laser Source

    NASA Technical Reports Server (NTRS)

    David, R. T.; Chyba, T. H.; Keppel, C. E.; Gaskell, D.; Ent, R.

    1998-01-01

    The goal of this research project is to create a prototype high power CW source of ultraviolet (UV) photons for photon-electron scattering at the Thomas Jefferson National Accelerator Facility (TJNAF), Hall B. The facility will use optical resonant cavities to produce a high photon flux. The technical approach will be to frequency-double the 514.5 mn light from an Argon-Ion Laser to create 0.1 to 1.0 watt in the UV. The produced UV power will be stored in a resonant cavity to generate an high intracavity UV power of 102 to 103 watts. The specific aim of this project is to first design and construct the low-Q doubling cavity and lock it to the Argon-Ion wavelength. Secondly, the existing 514.5 nm high-Q build-up cavity and its locking electronics will be modified to create high intracavity UV power. The entire system will then be characterized and evaluated for possible beam line use.

  6. The European XFEL Free Electron Laser at DESY

    ScienceCinema

    Weise, Hans [Deutsches Elektronen-Synchrotron, Germany

    2017-12-09

    The European X-ray Free-Electron laser Facility (XFEL) is going to be built in an international collaboration at the Deutsches Elektronen-Synchrotron (DESY), Germany, and the Technical Design Report was published in 2006. The official project is expected for summer 2007. This new facility will offer photon beams at wavelengths as short as 1 angstrom with highest peak brilliance being more than 100 million times higher than present day synchrotron radiation sources. The radiation has a high degree of transverse coherence and the pulse duration is reduced from {approx}100 picoseconds (typ. for SR light sources) down to the {approx}10 femtosecond time domain. The overall layout of the XFEL will be described. This includes the envisaged operation parameters for the linear accelerator using superconducting TESLA technology. The complete design is based on the actually operated FLASH free-electron laser at DESY. Experience with the operation during first long user runs at wavelengths from 30 to 13 nm will be described in detail.

  7. Targets used in the production of radioactive ion beams at the HRIBF

    NASA Astrophysics Data System (ADS)

    Stracener, D. W.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Mueller, P. E.; Bilheux, J. C.

    2004-03-01

    Radioactive ion beams are produced at the Holifield Radioactive Ion Beam Facility using the Isotope Separation On-Line (ISOL) technique where the atoms are produced in a thick target, transported to an ion source, ionized, and extracted from the ion source to form an ion beam. These radioactive ion beams are then accelerated to energies of a few MeV per nucleon and delivered to experimental stations for use in nuclear physics and nuclear astrophysics experiments. At the heart of this facility is the RIB production target, where the radioactive nuclei are produced using beams of light ions (p, d, 3He, α) to induce nuclear reactions in the target nuclei. Several target materials have been developed and used successfully, including Al 2O 3, HfO 2, SiC, CeS, liquid Ge, liquid Ni, and a low-density matrix of uranium carbide. The details of these targets and some of the target developments that led to the delivery of high-quality radioactive ion beams are discussed in this paper.

  8. Water Recovery from Advanced Water Purification Facility Reverse Osmosis Concentrate by Photobiological Treatment Followed by Secondary Reverse Osmosis.

    PubMed

    Ikehata, Keisuke; Zhao, Yuanyuan; Kulkarni, Harshad; Li, Yuan; Snyder, Shane A; Ishida, Kenneth P; Anderson, Michael A

    2018-06-19

    Reverse osmosis (RO)-based desalination and advanced water purification facilities have inherent challenges associated with concentrate management and disposal. Although enhanced permeate recovery and concentrate minimization are desired, membrane scaling due to inorganic constituents such as silica, calcium, phosphate, and iron hinders the process. To solve this problem, a new diatom-based photobiological process has been developed to remove these scaling constituents by biological uptake and precipitation. In this study, RO concentrate samples were collected from a full-scale advanced water reclamation facility in California and were treated in 3.8- and 57-L photobioreactors inoculated with a brackish water diatom Pseudostaurosira trainorii PEWL001 using light-emitting diode bulbs or natural sunlight as a light source. The photobiological treatment removed 95% of reactive silica and 64% of calcium and enabled additional water recovery using a secondary RO at a recovery rate up to 66%. This represents 95% overall recovery including 85% recovery in the primary RO unit. In addition to the scaling constituents, the photobiological treatment removed twelve pharmaceuticals and personal care products, as well as N-nitrosodimethylamine, from RO concentrate samples primarily via photolysis. This novel approach has a strong potential for application to brackish water desalination and advanced water purification in arid and semi-arid areas.

  9. Technical basis for the use of a correlated neutron source in the uranium neutron coincidence collar

    DOE PAGES

    Root, Margaret A.; Menlove, Howard Olsen; Lanza, Richard C.; ...

    2017-01-16

    Active neutron coincidence systems are commonly used by international inspectorates to verify a material balance across the various stages of the nuclear fuel cycle. The Uranium Neutron Coincidence Collar (UNCL) is one such instrument; it is used to measure the linear density of 235U (g 235U/cm of active length in assembly) in fresh light water reactor fuel in nuclear fuel fabrication facilities. The UNCL and other active neutron interrogation detectors have historically relied on americium lithium ( 241AmLi) sources to induce fission within the sample in question. Californium-252 is under consideration as a possible alternative to the traditional 241AmLi source.more » Finally, this work relied upon a combination of experiments and Monte Carlo simulations to demonstrate the technical basis for the replacement of 241AmLi sources with 252Cf sources by evaluating the statistical uncertainty in the measurements incurred by each source and assessing the penetrability of neutrons from each source for the UNCL.« less

  10. Technical basis for the use of a correlated neutron source in the uranium neutron coincidence collar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Root, Margaret A.; Menlove, Howard Olsen; Lanza, Richard C.

    Active neutron coincidence systems are commonly used by international inspectorates to verify a material balance across the various stages of the nuclear fuel cycle. The Uranium Neutron Coincidence Collar (UNCL) is one such instrument; it is used to measure the linear density of 235U (g 235U/cm of active length in assembly) in fresh light water reactor fuel in nuclear fuel fabrication facilities. The UNCL and other active neutron interrogation detectors have historically relied on americium lithium ( 241AmLi) sources to induce fission within the sample in question. Californium-252 is under consideration as a possible alternative to the traditional 241AmLi source.more » Finally, this work relied upon a combination of experiments and Monte Carlo simulations to demonstrate the technical basis for the replacement of 241AmLi sources with 252Cf sources by evaluating the statistical uncertainty in the measurements incurred by each source and assessing the penetrability of neutrons from each source for the UNCL.« less

  11. The Light at Night Mapping Project: LAN MAP 1, the Tucson Basin

    NASA Astrophysics Data System (ADS)

    Craine, E. R.; Craine, B. L.; Craine, P. R.; Craine, E. M.

    2012-05-01

    Tucson, Arizona, once billed as the Astronomical Capital of the World, has long been home to at least ten major astronomical institutions and facilities. The region also hosts numerous productive amateur observatories and professional-amateur astronomical collaborations. In spite of the implementation of progressive night time lighting codes, the continued growth of the region has arguably deprived Tucson of its title, and threatens the future of some if not all of these facilities. It has become apparent that there are several difficulties in regulating this lighting environment. It is not easy to model the actual effects of new or changed lighting fixtures, there are compelling economic conflicts that must be considered, and adherence to various guidelines is often ignored. Perhaps the most fundamental problem is that there have historically been no comprehensive measures of either light at night or sky brightness over the extended growth areas. What measurements do exist are inhomogeneous and poorly accessible spot measurements at some observatory sites. These have little to tell us about the actual light distributions in the overall region, and rarely are informative of the specific light sources that offend the observatory sites. Tucson remains, for the time, an important astronomical resource. Because of its astronomical and lighting code circumstances, it is an interesting and valuable laboratory for studying these issues. In this paper we introduce an innovative new 5-year project to comprehensively map both sky brightness and associated artificial lighting over extended areas of development in the vicinity of important astronomical institutions. We discuss the various vectors employed in data collection; we outline the protocols used for each methodology, give examples of the data collected, and discuss data analysis and conclusions. This program has been underway since January 2012, and has already produced results of interest to professional and amateur astronomers alike.

  12. New synchrotron powder diffraction facility for long-duration experiments

    PubMed Central

    Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.

    2017-01-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992

  13. A cylindrical salad growth facility with a light-emitting diodes unit as a component for biological life support system for space crews

    NASA Astrophysics Data System (ADS)

    Erokhin, A. N.; Berkovich, Yu. A.; Smolianina, S. O.; Krivobok, N. M.; Agureev, A. N.; Kalandarov, S. K.

    2006-01-01

    Efficiency of salad production under light-emitting diodes was tested with a prototype space plant growth facility "Phytocycle SD" with a 10-step crop conveyer. The system has a plant chamber in the form of a spiral cylinder. The planting unit inside the chamber is built of 10 root modules which provide a co-axial planting cylinder that rotates relative to the leaf chamber. Twelve panels of the lighting unit on the internal surfaces of the spiral cylinder carry 438 red (660 nm) and 88 blue (470 nm) light-emitting diodes producing average PPF equal 360 μmol m -2 s -1 4 cm below the light source, and 3 panels producing PPF equal 190 μmol m -2 s -1 at the initial steps of the plant conveyer. The system requires 0.44 kW and provides a plant chamber volume of 0.19 m 3, with 0.86 m 2 illuminated crop area. Productive efficiency of the facility was studied in a series of laboratory experiments with celery cabbage ( Brassica pekinensis) ( Lour) ( Rupr.) grown in the conveyer with a one-step period of 3 days. The crop grew in a fiber ion-exchange mineral-rich soil BIONA V3 under the 24-h light. Maximal productivity of the ripe (30-day-old) plants reached 700 g of the fresh edible biomass from one root module. There was a 30% greater biomass production and 3-5 times greater specific productivity per unit of expenditure of consumable resources over plants grown in a flat planting. This improved production was due to the extension of illuminated crop area for the final conveyor steps and concentration of photon flux toward center axis of cylindrical growth chamber. Biomass contents of ascorbic acid and carotene gathered from one root module per day ranged from 250 to 300 mg and 30 to 40 mg respectively. With this productivity, celery cabbage raised in "Phytocycle SD" potentially can satisfy the daily demands in vitamin C, vitamin A for a crew of three. Wider nutritional needs can be satisfied by planting mixed salad crops.

  14. 40 CFR 60.390 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... affected facility. 60.390 Section 60.390 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and...

  15. 40 CFR 60.390 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... affected facility. 60.390 Section 60.390 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and...

  16. Development of a low background test facility for the SPICA-SAFARI on-ground calibration

    NASA Astrophysics Data System (ADS)

    Dieleman, P.; Laauwen, W. M.; Ferrari, L.; Ferlet, M.; Vandenbussche, B.; Meinsma, L.; Huisman, R.

    2012-09-01

    SAFARI is a far-infrared camera to be launched in 2021 onboard the SPICA satellite. SAFARI offers imaging spectroscopy and imaging photometry in the wavelength range of 34 to 210 μm with detector NEP of 2•10-19 W/√Hz. A cryogenic test facility for SAFARI on-ground calibration and characterization is being developed. The main design driver is the required low background of a few attoWatts per pixel. This prohibits optical access to room temperature and hence all test equipment needs to be inside the cryostat at 4.5K. The instrument parameters to be verified are interfaces with the SPICA satellite, sensitivity, alignment, image quality, spectral response, frequency calibration, and point spread function. The instrument sensitivity is calibrated by a calibration source providing a spatially homogeneous signal at the attoWatt level. This low light intensity is achieved by geometrical dilution of a 150K source to an integrating sphere. The beam quality and point spread function is measured by a pinhole/mask plate wheel, back-illuminated by a second integrating sphere. This sphere is fed by a stable wide-band source, providing spectral lines via a cryogenic etalon.

  17. Beam dynamics and expected performance of Sweden's new storage-ring light source: MAX IV

    NASA Astrophysics Data System (ADS)

    Leemann, S. C.; Andersson, Å.; Eriksson, M.; Lindgren, L.-J.; Wallén, E.; Bengtsson, J.; Streun, A.

    2009-12-01

    MAX IV will be Sweden’s next-generation high-performance synchrotron radiation source. The project has recently been granted funding and construction is scheduled to begin in 2010. User operation for a broad and international user community should commence in 2015. The facility is comprised of two storage rings optimized for different wavelength ranges, a linac-based short-pulse facility and a free-electron laser for the production of coherent radiation. The main radiation source of MAX IV will be a 528 m ultralow emittance storage ring operated at 3 GeV for the generation of high-brightness hard x rays. This storage ring was designed to meet the requirements of state-of-the-art insertion devices which will be installed in nineteen 5 m long dispersion-free straight sections. The storage ring is based on a novel multibend achromat design delivering an unprecedented horizontal bare lattice emittance of 0.33 nm rad and a vertical emittance below the 8 pm rad diffraction limit for 1 Å radiation. In this paper we present the beam dynamics considerations behind this storage-ring design and detail its expected unique performance.

  18. LIGHT SOURCE: Physical design of a 10 MeV LINAC for polymer radiation processing

    NASA Astrophysics Data System (ADS)

    Feng, Guang-Yao; Pei, Yuan-Ji; Wang, Lin; Zhang, Shan-Cai; Wu, Cong-Feng; Jin, Kai; Li, Wei-Min

    2009-06-01

    In China, polymer radiation processing has become one of the most important processing industries. The radiation processing source may be an electron beam accelerator or a radioactive source. Physical design of an electron beam facility applied for radiation crosslinking is introduced in this paper because of it's much higher dose rate and efficiency. Main part of this facility is a 10 MeV travelling wave electron linac with constant impedance accelerating structure. A start to end simulation concerning the linac is reported in this paper. The codes Opera-3d, Poisson-superfish and Parmela are used to describe electromagnetic elements of the accelerator and track particle distribution from the cathode to the end of the linac. After beam dynamic optimization, wave phase velocities in the structure have been chosen to be 0.56, 0.9 and 0.999 respectively. Physical parameters about the main elements such as DC electron gun, iris-loaded periodic structure, solenoids, etc, are presented. Simulation results proves that it can satisfy the industrial requirement. The linac is under construction. Some components have been finished. Measurements proved that they are in a good agreement with the design values.

  19. LIGHT - from laser ion acceleration to future applications

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Light Collaboration

    2013-10-01

    Creation of high intensity multi-MeV ion bunches by high power lasers became a reliable tool during the last 15 years. The laser plasma source provides for TV/m accelerating field gradients and initially sub-ps bunch lengths. However, the large envelope divergence and the continuous exponential energy spectrum are substential drawbacks for many possible applications. To face this problem, the LIGHT collaboration was founded (Laser Ion Generation, Handling and Transport). The collaboration consists of several university groups and research centers, namely TU Darmstadt, JWGU Frankfurt, HI Jena, HZDR Dresden and GSI Darmstadt. The central goal is building a test beamline for merging laser ion acceleration with conventional accelerator infrastructure at the GSI facility. In the latest experiments, low divergent proton bunches with a central energy of up to 10 MeV and containing >109 particles could be provided at up to 2.2 m behind the plasma source, using a pulsed solenoid. In a next step, a radiofrequency cavity will be added to the beamline for phase rotation of these bunches, giving access to sub-ns bunch lengths and reaching highest intensities. An overview of the LIGHT objectives and the recent experimental results will be given. This work was supported by HIC4FAIR.

  20. SESAME, A 3rd Generation Synchrotron Light Source for the Middle East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einfeld, D.; Hasnain, S.S.; Sayers, Z.

    2004-05-12

    Developed under the auspices of UNESCO, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be a major international research centre in the Middle East and Mediterranean region. On 6th of January 2003, the official foundation of SESAME took place. The facility is located in Allan, Jordan, 30 km North-West of Amman. As of August 2003 the Founding Members are Bahrain, Egypt, Iran, Israel, Jordan, Pakistan, Palestine, Turkey and United Arabic Emirates, representing a population of over 300 million. SESAME will be a 2.5 GeV 3rd Generation light source (emittance 24.6 nm.rad, circumference {approx}125m). About 40% ofmore » the circumference is available for insertion devices (average length 2.75m) in 13 straight sections. Beam lines are up to 36m. The site and a building are provided by Jordan. Construction started in August 2003. The scientific program will start with up to 6 beam lines: MAD Protein Crystallography, SAXS and WAXS for polymers and proteins, Powder Diffraction for material science, UV/VUV/SXR Photoelectron Spectroscopy and Photoabsorption Spectroscopy, IR Spectroscopy, and EXAFS.« less

  1. The effect of weave orientation on the BRDF of tarp samples

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi; Butler, James J.

    2003-10-01

    The results of bi-directional reflectance distribution function (BRDF) measurements of four tarp samples obtained from NASA"s Stennis Space Center (SSC) are presented. The measurements were performed in the Diffuser Calibration Facility (DCaF) at NASA"s Goddard Space Flight Center (GSFC). The samples are of similar material structure but different reflectance. The experimental data were obtained with a Xe arc lamp/monochromator light source as well as laser light sources in the ultraviolet, visible, and near infrared spectral regions. The BRDF data were recorded at four incident zenith angles and at five incident azimuth angles. The dependence of the measured BRDF on weave orientation was analyzed and presented. 8 degree irectional/hemispherical reflectance data were also measured for each tarp sample, and those results are also reported. All results are NIST traceable through calibrated standard plates. The specular and diffuse scatter data obtained from these studies are used by NASA"s SSC in their field-based, vicarious calibration of satellite and airborne remote sensing instruments.

  2. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    PubMed Central

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  3. Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Shaughnessy Brennan; Hashim, Akel; Gleason, Arianna

    In this paper, we measure the shock drive capabilities of a 30 J, nanosecond, 527 nm laser system at the matter in extreme conditions hutch of the Linac Coherent Light Source. Using a velocity interferometer system for any reflector, we ascertain the maximum instantaneous ablation pressure and characterize its dependence on a drive laser spot size, spatial profile, and temporal profile. We also examine the effects of these parameters on shock spatial and temporal uniformity. Our analysis shows the drive laser capable of generating instantaneous ablation pressures exceeding 160 GPa while maintaining a 1D shock profile. We find that slopemore » pulses provide higher instantaneous ablation pressures than plateau pulses. Our results show instantaneous ablation pressures comparable to those measured at the Omega Laser Facility in Rochester, NY under similar optical drive parameters. In conclusion, we analyze how optical laser ablation pressures are compare with known scaling relations, accounting for variable laser wavelengths.« less

  4. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    PubMed

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  5. Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source

    DOE PAGES

    Brown, Shaughnessy Brennan; Hashim, Akel; Gleason, Arianna; ...

    2017-10-23

    In this paper, we measure the shock drive capabilities of a 30 J, nanosecond, 527 nm laser system at the matter in extreme conditions hutch of the Linac Coherent Light Source. Using a velocity interferometer system for any reflector, we ascertain the maximum instantaneous ablation pressure and characterize its dependence on a drive laser spot size, spatial profile, and temporal profile. We also examine the effects of these parameters on shock spatial and temporal uniformity. Our analysis shows the drive laser capable of generating instantaneous ablation pressures exceeding 160 GPa while maintaining a 1D shock profile. We find that slopemore » pulses provide higher instantaneous ablation pressures than plateau pulses. Our results show instantaneous ablation pressures comparable to those measured at the Omega Laser Facility in Rochester, NY under similar optical drive parameters. In conclusion, we analyze how optical laser ablation pressures are compare with known scaling relations, accounting for variable laser wavelengths.« less

  6. Facile one-pot synthesis of hexagons of NaSrB5O9:Tb3+ phosphor for solid-state lighting

    NASA Astrophysics Data System (ADS)

    Ramesh, B.; Dillip, G. R.; Deva Prasad Raju, B.; Somasundaram, K.; Prasad Peddi, Siva; de Carvalho dos Anjos, Virgilio; Joo, S. W.

    2017-04-01

    NaSrB5O9:Tb3+ hexagons were synthesized by a facile solid-state reaction method. The synthesized powders were structurally examined by x-ray diffraction analysis (XRD), and Rietveld refinement was performed using the XRD data and Fullprof software. Hexagon-like morphology was observed using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The elemental composition of the phosphors was investigated qualitatively by energy dispersive x-ray analysis (EDS) and quantitatively by x-ray photoelectron spectroscopy (XPS). The phosphor has a strong green emission at 545 nm under excitation of 379 nm, which is due to the 5{{\\text{D}}4}{{\\to}7}{{\\text{F}}5} transition of the Tb3+ ion. A lifetime of 3.48 ms was obtained for the phosphor. The important parameters of the light source were determined, such as the thermal quenching, critical distance, the nature of the dopant ion interaction, color coordinates, and quantum yield values. Other reported properties include the site occupancy of the dopant, surface properties, morphological properties, and optical properties.

  7. A comparative study of fluorescent and LED lighting in industrial facilities

    NASA Astrophysics Data System (ADS)

    Perdahci PhD, C.; Akin BSc, H. C.; Cekic Msc, O.

    2018-05-01

    Industrial facilities have always been in search for reducing outgoings and minimizing energy consumption. Rapid developments in lighting technology require more energy efficient solutions not only for industries but also for many sectors and for households. Addition of solid-state technology has brought LED lamps into play and with LED lamp usage, efficacy level has reached its current values. Lighting systems which uses fluorescent and LED lamps have become the prior choice for many industrial facilities. This paper presents a comparative study about fluorescent and LED based indoor lighting systems for a warehouse building in an industrial facility in terms of lighting distribution values, colour rendering, power consumption, energy efficiency and visual comfort. Both scenarios have been modelled and simulated by using Relux and photometric data for the luminaires have been gathered by conducting tests and measurements in an accredited laboratory.

  8. batman: BAsic Transit Model cAlculatioN in Python

    NASA Astrophysics Data System (ADS)

    Kreidberg, Laura

    2015-11-01

    I introduce batman, a Python package for modeling exoplanet transit light curves. The batman package supports calculation of light curves for any radially symmetric stellar limb darkening law, using a new integration algorithm for models that cannot be quickly calculated analytically. The code uses C extension modules to speed up model calculation and is parallelized with OpenMP. For a typical light curve with 100 data points in transit, batman can calculate one million quadratic limb-darkened models in 30 seconds with a single 1.7 GHz Intel Core i5 processor. The same calculation takes seven minutes using the four-parameter nonlinear limb darkening model (computed to 1 ppm accuracy). Maximum truncation error for integrated models is an input parameter that can be set as low as 0.001 ppm, ensuring that the community is prepared for the precise transit light curves we anticipate measuring with upcoming facilities. The batman package is open source and publicly available at https://github.com/lkreidberg/batman .

  9. Gas bremsstrahlung shielding calculation for first optic enclosure of ILSF medical beamline

    NASA Astrophysics Data System (ADS)

    Beigzadeh Jalali, H.; Salimi, E.; Rahighi, J.

    2016-10-01

    Gas bremsstrahlung is generated in high energy electron storage ring accompanies the synchrotron radiation into the beamlines and strike the various components of the beamline. In this paper, radiation shielding calculation for secondary gas bremsstrahlung is performed for the first optics enclosure (FOE) of medical beamline of the Iranian Light Source Facility (ILSF). Dose equivalent rate (DER) calculation is accomplished using FLUKA Monte Carlo code. A comprehensive study of DER distribution at the back wall, sides and roof is given.

  10. Status of NSLS-II Storage Ring Vacuum Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doom,L.; Hseuh,H.; Ferreira, M.

    2009-05-04

    National Synchrotron Light Source II (NSLS-II), being constructed at Brookhaven National Laboratory, is a 3-GeV, high-flux and high- brightness synchrotron radiation facility with a nominal current of 500 mA. The storage ring vacuum system will have extruded aluminium chambers with ante-chamber for photon fans and distributed NEG strip pumping. Discrete photon absorbers will be used to intercept the un-used bending magnet radiation. In-situ bakeout will be implemented to achieve fast conditioning during initial commissioning and after interventions.

  11. Morphology of methane hydrate host sediments

    USGS Publications Warehouse

    Jones, K.W.; Feng, H.; Tomov, S.; Winters, W.J.; Eaton, M.; Mahajan, D.

    2005-01-01

    The morphological features including porosity and grains of methane hydrate host sediments were investigated using synchrotron computed microtomography (CMT) technique. The sediment sample was obtained during Ocean Drilling Program Leg 164 on the Blake Ridge at water depth of 2278.5 m. The CMT experiment was performed at the Brookhaven National Synchrotron Light Source facility. The analysis gave ample porosity, specific surface area, mean particle size, and tortuosity. The method was found to be highly effective for the study of methane hydrate host sediments.

  12. Retraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhiheng; Feldman, Leonard C; Tolk, Norman H.

    IN OUR 2006 REPORT, DESORPTION OF H FROM SI(111) BY RESONANT EXCITATION OF THE Si-H vibrational stretch mode (1), we reported resonant photodesorption of hydrogen from a Si(111) surface using tunable infrared radiation that corresponded to the Si-H vibrational stretch mode. Our recent attempts to reproduce these experiments have been unsuccessful, and the free electron laser facility at Vanderbilt, a unique light source for this experiment, has shut down, prohibiting further research. Because our conclusions are now in question, we retract the Report.

  13. Schlieren System Enhancements at GRC

    NASA Technical Reports Server (NTRS)

    Woike, Mark; Clem, Michelle M.

    2013-01-01

    This presentation describes the latest improvements that have been made to the Schlieren systems at the NASA Glenn Research Center. These systems are used for the visualization of flow and shock structures in our wind tunnel test facilities. Improvements have been made to the optics, light sources and knife edges using the latest state-of-the-art technology. The eventual goal of this upgrade work is to improve the sensitivity of the systems so that they can be used to make quantitative flow measurements.

  14. New Snapshots of Photosynthesis Captured by SLAC’s X-ray Laser

    ScienceCinema

    None

    2018-06-13

    The machinery responsible for photosynthesis – while commonplace and essential to life on Earth – is still not fully understood. One of its molecular mysteries involves how a protein complex, photosystem II, harvests energy from light and uses it to split water into hydrogen and oxygen. The process generates the oxygen in the air that we breathe. New X-ray methods at the Department of Energy’s SLAC National Accelerator Laboratory have captured the first detailed image of this protein complex at room temperature, which allows scientists to closely watch how water is split during photosynthesis at the temperature at which it occurs naturally. The research team took the images using the bright, fast pulses of light at SLAC’s X-ray free-electron laser – the Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility.

  15. New Snapshots of Photosynthesis Captured by SLAC’s X-ray Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-11-22

    The machinery responsible for photosynthesis – while commonplace and essential to life on Earth – is still not fully understood. One of its molecular mysteries involves how a protein complex, photosystem II, harvests energy from light and uses it to split water into hydrogen and oxygen. The process generates the oxygen in the air that we breathe. New X-ray methods at the Department of Energy’s SLAC National Accelerator Laboratory have captured the first detailed image of this protein complex at room temperature, which allows scientists to closely watch how water is split during photosynthesis at the temperature at which itmore » occurs naturally. The research team took the images using the bright, fast pulses of light at SLAC’s X-ray free-electron laser – the Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility.« less

  16. Final Technical Report - Nuclear Studies with Intermediate Energy Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norum, Blaine

    During the almost 20 year period of this grant research was carried out on atomic nuclei and their constituents using both photons and electrons. Research was carried out at the electron accelerator facility of the Netherlands Institute for Nuclear and High Energy Physics (NIKHEFK, Amsterdam) until the electron accelerator facility was closed in 1998. Subsequently, research was carried out at the Laser-Electron Gamma Source (LEGS) of the National Synchrotron Light Source (NSLS) located at the Brookhaven National Laboratory (BNL) until the LEGS was closed at the end of 2006. During the next several years research was carried out at bothmore » the Thomas Jefferson National Accelerator Facility (JLAB) and the High Intensity Gamma Source (HIGS) of the Tri-Universities Nuclear Laboratory (TUNL) located on the campus of Duke University. Since approximately 2010 the principal focus was on research at TUNL, although analysis of data from previous research at other facilities continued. The principal early focus of the research was on the role of pions in nuclei. This was studied by studying the production of pions using both photons (at LEGS) and electrons (at NIKHEF-K and JLAB). Measurements of charged pion photoproduction from deuterium at LEGS resulted in the most interesting result of these two decades of work. By measuring the production of a charged pion (p + ) in coincidence with an emitted photon we observed structures in the residual two-nucleon system. These indicated the existence of long-lived states not explicable by standard nuclear theory; they suggest a set of configurations not explicable in terms of a nucleon-nucleon pair. The existence of such “exotic” structures has formed the foundation for most of the work that has ensued.« less

  17. Use of the CEBAF Accelerator for IR and UV Free Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunn, Byung; Sinclair, Charles; Leemann, Christoph

    1992-08-01

    The CEBAF superconducting linac is capable of accelerating electron beams suitable for driving high-power free-electron lasers. The 45 MeV injector linac with a 6 cm period wiggler can produce kilowatt output powers of infrared light (3.6-17 micrometer), while the 400 MeV north linac can produce ultraviolet light (~200 nm) at similar powers. The FELs require the addition of a high-peak intensity electron source (~ 60 A peak current) and extraction beam lines to wigglers with appropriate electron and photon optics. FEL operation is compatible with simultaneous baseline CEBAF nuclear physics operation. A design for a CEBAF-based FEL facility has beenmore » developed. The current status of the FEL project is reported.« less

  18. Measurement of power spectral density of broad-spectrum visible light with heterodyne near field scattering and its scalability to betatron radiation.

    PubMed

    Siano, M; Paroli, B; Chiadroni, E; Ferrario, M; Potenza, M A C

    2015-12-28

    We exploit the speckle field generated by scattering from a colloidal suspension to access both spatial and temporal coherence properties of broadband radiation. By applying the Wiener-Khinchine theorem to the retrieved temporal coherence function, information about the emission spectrum of the source is obtained in good agreement with the results of a grating spectrometer. Experiments have been performed with visible light. We prove more generally that our approach can be considered as a tool for modeling a variety of cases. Here we discuss how to apply such diagnostics to broad-spectrum betatron radiation produced in the laser-driven wakefield accelerator under development at SPARC LAB facility in Frascati.

  19. A convolutional neural network approach to calibrating the rotation axis for X-ray computed tomography.

    PubMed

    Yang, Xiaogang; De Carlo, Francesco; Phatak, Charudatta; Gürsoy, Dogˇa

    2017-03-01

    This paper presents an algorithm to calibrate the center-of-rotation for X-ray tomography by using a machine learning approach, the Convolutional Neural Network (CNN). The algorithm shows excellent accuracy from the evaluation of synthetic data with various noise ratios. It is further validated with experimental data of four different shale samples measured at the Advanced Photon Source and at the Swiss Light Source. The results are as good as those determined by visual inspection and show better robustness than conventional methods. CNN has also great potential for reducing or removing other artifacts caused by instrument instability, detector non-linearity, etc. An open-source toolbox, which integrates the CNN methods described in this paper, is freely available through GitHub at tomography/xlearn and can be easily integrated into existing computational pipelines available at various synchrotron facilities. Source code, documentation and information on how to contribute are also provided.

  20. 7 CFR 305.6 - Cold treatment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) The cold treatment facility must remain locked during non-working hours. (v) Black light or sticky... hours. (vi) Black light or sticky paper must be used within the cold treatment facility, and other... remain locked during non-working hours. (viii) Black lights or sticky paper must be used within the cold...

  1. 40 CFR 60.390 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... to coat plastic body components or all-plastic automobile or light-duty truck bodies on separate...

  2. 40 CFR 60.390 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... to coat plastic body components or all-plastic automobile or light-duty truck bodies on separate...

  3. 40 CFR 60.390 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... to coat plastic body components or all-plastic automobile or light-duty truck bodies on separate...

  4. Metrology of variable-line-spacing x-ray gratings using the APS Long Trace Profiler

    NASA Astrophysics Data System (ADS)

    Sheung, Janet; Qian, Jun; Sullivan, Joseph; Thomasset, Muriel; Manton, Jonathan; Bean, Sunil; Takacs, Peter; Dvorak, Joseph; Assoufid, Lahsen

    2017-09-01

    As resolving power targets have increased with each generation of beamlines commissioned in synchrotron radiation facilities worldwide, diffraction gratings are quickly becoming crucial optical components for meeting performance targets. However, the metrology of variable-line-spacing (VLS) gratings for high resolution beamlines is not widespread; in particular, no metrology facility at any US DOE facility is currently equipped to fully characterize such gratings. To begin to address this issue, the Optics Group at the Advanced Photon Source at Argonne, in collaboration with SOLEIL and with support from Brookhaven National Laboratory (BNL), has developed an alternative beam path addition to the Long Trace Profiler (LTP) at Argonne's Advanced Photon Source. This significantly expands the functionality of the LTP not only to measure mirrors surface slope profile at normal incidence, but also to characterize the groove density of VLS diffraction gratings in the Littrow incidence up to 79°, which covers virtually all diffraction gratings used at synchrotrons in the first order. The LTP light source is a 20mW HeNe laser, which yields enough signal for diffraction measurements to be performed on low angle blazed gratings optimized for soft X-ray wavelengths. We will present the design of the beam path, technical requirements for the optomechanics, and our data analysis procedure. Finally, we discuss challenges still to be overcome and potential limitations with use of the LTP to perform metrology on diffraction gratings.

  5. Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.

    2007-01-01

    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).

  6. Beamlines of the Biomedical Imaging and Therapy Facility at the Canadian Light Source - Part 2

    NASA Astrophysics Data System (ADS)

    Wysokinski, T. W.; Chapman, D.; Adams, G.; Renier, M.; Suortti, P.; Thomlinson, W.

    2013-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides a world class facility with unique synchrotron-specific imaging and therapy capabilities. This paper describes Insertion Device (ID) beamline 05ID-2 with the beam terminated in the first experimental hutch: POE-2. The experimental methods available in POE-2 include: Microbeam Radiation Therapy (MRT), Synchrotron Stereotactic Radiation Therapy (SSRT) and absorption imaging (projection and Computed Tomography (CT)). The source for the ID beamline is a multi-pole superconductive 4.3 T wiggler, which can generate ~30 kW of radiative power and deliver dose as high as 3000 Gy/s required for MRT program. The optics in POE-1 hutch prepares either monochromatic or filtered white beam that is used in POE-2. The Double Crystal (DC), bent Laue monochromator will prepare a beam over 10 cm wide at sample point, while spanning an energy range appropriate for imaging studies of animals (20-100+ keV). The experimental hutch will have a flexible positioning system that can handle subjects up to 120 kg. Several different cameras will be available with resolutions ranging from 4 μm to 150 μm. The latest update on the status of 05B1-1 bending magnet (BM) beamline, described in Part 1 [1], is also included.

  7. 9 CFR 3.126 - Facilities, indoor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., vents, fans, or air-conditioning and shall be ventilated so as to minimize drafts, odors, and moisture condensation. (c) Lighting. Indoor housing facilities shall have ample lighting, by natural or artificial means...

  8. A beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source.

    PubMed

    Kunz, Martin; MacDowell, Alastair A; Caldwell, Wendel A; Cambie, Daniella; Celestre, Richard S; Domning, Edward E; Duarte, Robert M; Gleason, Arianna E; Glossinger, James M; Kelez, Nicholas; Plate, David W; Yu, Tony; Zaug, Joeseph M; Padmore, Howard A; Jeanloz, Raymond; Alivisatos, A Paul; Clark, Simon M

    2005-09-01

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 T superconducting bending magnet (superbend). Useful X-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness-preserving optics of the beamline. These optics are comprised of a plane parabola collimating mirror, followed by a Kohzu monochromator vessel with Si(111) crystals (E/DeltaE approximately equal 7000) and W/B4C multilayers (E/DeltaE approximately equal 100), and then a toroidal focusing mirror with variable focusing distance. The experimental enclosure contains an automated beam-positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detector (CCD or image-plate detector). Future developments aim at the installation of a second endstation dedicated to in situ laser heating and a dedicated high-pressure single-crystal station, applying both monochromatic and polychromatic techniques.

  9. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis

    NASA Astrophysics Data System (ADS)

    Gann, E.; Young, A. T.; Collins, B. A.; Yan, H.; Nasiatka, J.; Padmore, H. A.; Ade, H.; Hexemer, A.; Wang, C.

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (˜285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition.

  10. Two mirror X-ray pulse split and delay instrument for femtosecond time resolved investigations at the LCLS free electron laser facility

    DOE PAGES

    Berrah, Nora; Fang, Li; Murphy, Brendan F.; ...

    2016-05-20

    We built a two-mirror based X-ray split and delay (XRSD) device for soft X-rays at the Linac Coherent Light Source free electron laser facility. The instrument is based on an edge-polished mirror design covering an energy range of 250 eV-1800 eV and producing a delay between the two split pulses variable up to 400 femtoseconds with a sub-100 attosecond resolution. We present experimental and simulation results regarding molecular dissociation dynamics in CH3I and CO probed by the XRSD device. In conclusion, we observed ion kinetic energy and branching ratio dependence on the delay times which were reliably produced by themore » XRSD instrument.« less

  11. High-precision measurement of the light response of BC-418 plastic scintillator to protons with energies from 100 keV to 10 MeV

    NASA Astrophysics Data System (ADS)

    Henzl, Vladimir; Daub, Brian; French, Jennifer; Matthews, June; Kovash, Michael; Wender, Stephen; Famiano, Michael; Koehler, Katrina; Yuly, Mark

    2010-11-01

    The determination of the light response of many organic scintillators to various types of radiation has been a subject of numerous experimental as well as theoretical studies in the past. But while the data on light response to particles with energies above 1 MeV are precise and abundant, the information on light response to very low energy particles (i.e. below 1 MeV) is scarce or completely missing. In this study we measured the light response of a BC-418 scintillator to protons with energies from 100 keV to 10 MeV. The experiment was performed at Weapons Neutron Research Facility at LANSCE, Los Alamos. The neutron beam from a spallation source is used to irradiate the active target made from BC-418 plastic scintillator. The recoiled protons detected in the active target are measured in coincidence with elastically scattered incident neutrons detected by and adjacent liquid scintillator. Time of flight of the incident neutron and the knowledge of scattering geometry allow for a kinematically complete and high-precision measurement of the light response as a function of the proton energy.

  12. Effect of sulfur source on photocatalytic degradation performance of CdS/MoS2 prepared with one-step hydrothermal synthesis.

    PubMed

    Wang, Yanfeng; Chen, Wei; Chen, Xiao; Feng, Huajun; Shen, Dongsheng; Huang, Bin; Jia, Yufeng; Zhou, Yuyang; Liang, Yuxiang

    2018-03-01

    CdS/MoS 2 , an extremely efficient photocatalyst, has been extensively used in hydrogen photoproduction and pollutant degradation. CdS/MoS 2 can be synthesized by a facile one-step hydrothermal process. However, the effect of the sulfur source on the synthesis of CdS/MoS 2 via one-step hydrothermal methods has seldom been investigated. We report herein a series of one-step hydrothermal preparations of CdS/MoS 2 using three different sulfur sources: thioacetamide, l-cysteine, and thiourea. The results revealed that the sulfur source strongly affected the crystallization, morphology, elemental composition and ultraviolet (UV)-visible-light-absorption ability of the CdS/MoS 2 . Among the investigated sulfur sources, thioacetamide provided the highest visible-light absorption ability for CdS/MoS 2 , with the smallest average particle size and largest surface area, resulting in the highest efficiency in Methylene Blue (MB) degradation. The photocatalytic activity of CdS/MoS 2 synthesized from the three sulfur sources can be arranged in the following order: thioacetamide>l-cysteine>thiourea. The reaction rate constants (k) for thioacetamide, l-cysteine, and thiourea were estimated to be 0.0197, 0.0140, and 0.0084min -1 , respectively. However, thioacetamide may be limited in practical application in terms of its price and toxicity, while l-cysteine is relatively economical, less toxic and exhibited good photocatalytic degradation performance toward MB. Copyright © 2017. Published by Elsevier B.V.

  13. A 6He production facility and an electrostatic trap for measurement of the beta-neutrino correlation

    NASA Astrophysics Data System (ADS)

    Mukul, I.; Hass, M.; Heber, O.; Hirsh, T. Y.; Mishnayot, Y.; Rappaport, M. L.; Ron, G.; Shachar, Y.; Vaintraub, S.

    2018-08-01

    A novel experiment has been commissioned at the Weizmann Institute of Science for the study of weak interactions via a high-precision measurement of the beta-neutrinoangular correlation in the radioactive decay of short-lived 6He. The facility consists of a 14 MeV d + t neutron generator to produce atomic 6He, followed by ionization and bunching in an electron beam ion source, and injection into an electrostatic ion beam trap. This ion trap has been designed for efficient detection of the decay products from trapped light ions. The storage time in the trap for different stable ions was found to be in the range of 0.6 to 1.2 s at the chamber pressure of ∼7 × 10-10 mbar. We present the initial test results of the facility, and also demonstrate an important upgrade of an existing method (Stora et al., 2012) for production of light radioactive atoms, viz. 6He, for the precision measurement. The production rate of 6He atoms in the present setup has been estimated to be ∼ 1 . 45 × 10-4 atoms per neutron, and the system efficiency was found to be 4.0 ± 0.6%. An improvement to this setup is also presented for the enhanced production and diffusion of radioactive atoms for future use.

  14. Experimental realization of underdense plasma photocathode wakefield acceleration at FACET

    NASA Astrophysics Data System (ADS)

    Scherkl, Paul

    2017-10-01

    Novel electron beam sources from compact plasma accelerator concepts currently mature into the driving technology for next generation high-energy physics and light source facilities. Particularly electron beams of ultra-high brightness could pave the way for major advances for both scientific and commercial applications, but their generation remains tremendously challenging. The presentation outlines the experimental demonstration of the world's first bright electron beam source from spatiotemporally synchronized laser pulses injecting electrons into particle-driven plasma wakefields at FACET. Two distinctive types of operation - laser-triggered density downramp injection (``Plasma Torch'') and underdense plasma photocathode acceleration (``Trojan Horse'') - and their intermediate transitions are characterized and contrasted. Extensive particle-in-cell simulations substantiate the presentation of experimental results. In combination with novel techniques to minimize the beam energy spread, the acceleration scheme presented here promises ultra-high beam quality and brightness.

  15. Commissioning for the European XFEL facility

    NASA Astrophysics Data System (ADS)

    Nölle, D.

    2017-06-01

    The European XFEL is a 4th generation light source based on the Self Amplified Spontaneous Emission (SASE) FreeElectron-Laser concept. It is currently being commissioned in North- Germany. The core installation is a 17.5 GeV superconducting accelerator driving 3 SASE lines with photon energies from 1 to beyond 20 keV range with a maximum of 27.000 pulses per second. The international facility is organized as a limited liability company with shareholders from the contributing countries. DESY has taken over the leadership of the accelerator construction consortium, and will be in charge of the operation of the accelerator complex. The facility was set up with contributions from the 11 shareholder countries, either being hardware systems and/or staff or cash contributions. The construction is almost complete, and the commissioning phase has started by the end of 2015. This contribution will report the status of the accelerator complex with emphasis on the commissioning of the accelerator and an outlook to the commissioning of the SASE 1 FEL line.

  16. KSC-2009-3284

    NASA Image and Video Library

    2009-05-27

    CAPE CANAVERAL, Fla. – This is a rendering of one of two proposed solar power systems that NASA and Florida Power & Light Company are beginning to construct on NASA's Kennedy Space Center as part of a public-private partnership that promotes a clean-energy future. A groundbreaking ceremony took place on May 27 at the Kennedy Space Center Visitor Complex. FPL, Florida's largest electric utility, will build and maintain two solar photovoltaic power generation systems at Kennedy. One will produce an estimated 10 megawatts of emissions-free power for FPL customers, which is enough energy to serve roughly 1,100 homes. The second is a one-megawatt solar power facility that will provide renewable energy directly to Kennedy. The FPL facilities at NASA will help provide Florida residents and America's space program with new sources of clean energy that will cut reliance on fossil fuels and improve the environment by reducing greenhouse gas emissions. The one megawatt facility also will help NASA meet its goal for use of power generated from renewable energy. Photo courtesy of FPL

  17. KSC-2009-3285

    NASA Image and Video Library

    2009-05-27

    CAPE CANAVERAL, Fla. – These maps show one of the locations of the proposed solar power systems that NASA and Florida Power & Light Company are beginning to construct on NASA's Kennedy Space Center as part of a public-private partnership that promotes a clean-energy future. A groundbreaking ceremony took place on May 27 at the Kennedy Space Center Visitor Complex. FPL, Florida's largest electric utility, will build and maintain two solar photovoltaic power generation systems at Kennedy. One will produce an estimated 10 megawatts of emissions-free power for FPL customers, which is enough energy to serve roughly 1,100 homes. The second is a one-megawatt solar power facility that will provide renewable energy directly to Kennedy. The FPL facilities at NASA will help provide Florida residents and America's space program with new sources of clean energy that will cut reliance on fossil fuels and improve the environment by reducing greenhouse gas emissions. The one megawatt facility also will help NASA meet its goal for use of power generated from renewable energy. Photo courtesy of FPL

  18. A national facility for biological cryo-electron microscopy

    PubMed Central

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback. PMID:25615867

  19. Computational Modeling to Limit the Impact Displays and Indicator Lights Have on Habitable Volume Operational Lighting Constraints

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Brainard, G.; Salazar, G.; Johnston, S.; Schwing, B.; Litaker, H.; Kolomenski, A.; Venus, D.; Tran, K.; Hanifin, J.; hide

    2017-01-01

    NASA has demonstrated an interest in improving astronaut health and performance through the installment of a new lighting countermeasure on the International Space Station. The Solid State Lighting Assembly (SSLA) system is designed to positively influence astronaut health by providing a daily change to light spectrum to improve circadian entrainment. Unfortunately, existing NASA standards and requirements define ambient light level requirements for crew sleep and other tasks, yet the number of light-emitting diode (LED) indicators and displays within a habitable volume is currently uncontrolled. Because each of these light sources has its own unique spectral properties, the additive lighting environment ends up becoming something different from what was planned or researched. Restricting the use of displays and indicators is not a solution because these systems provide beneficial feedback to the crew. The research team for this grant used computer-based computational modeling and real-world lighting mockups to document the impact that light sources other than the ambient lighting system contribute to the ambient spectral lighting environment. In particular, the team was focused on understanding the impacts of long-term tasks located in front of avionics or computer displays. The team also wanted to understand options for mitigating the changes to the ambient light spectrum in the interest of maintaining the performance of a lighting countermeasure. The project utilized a variety of physical and computer-based simulations to determine direct relationships between system implementation and light spectrum. Using real-world data, computer models were built in the commercially available optics analysis software Zemax Optics Studio(c). The team also built a mockup test facility that had the same volume and configuration as one of the Zemax models. The team collected over 1200 spectral irradiance measurements, each representing a different configuration of the mockup. Analysis of the data showed a measurable impact on ambient light spectrum. This data showed that obvious design techniques exist that can be used to bind the ambient light spectrum closer to the planned spectral operating environment for the observer's eye point. The following observations should be considered when designing an operational environment that is dominated by computer displays. When more light is directed into the field of view of the observer, the greater the impact it will make on various human factors issues that depend on spectral shape and intensity. Because viewing angle has a large part to play in the amount of light flux on the crewmember's retina, beam shape, combined with light source location is an important factor for determining percent probable incident flux on the observer from any combination of light sources. Computer graphics design and display lumen output are major factors influencing the amount of spectrally intense light projected into the environment and in the viewer's direction. Use of adjustable white point display software was useful only if the predominant background color was white and if it matched the ambient light system's color. Display graphics that used a predominantly black background had the least influence on unplanned spectral energy projected into the environment. Percent reflectance makes a difference in total energy reflected back into an environment, and within certain architectural geometries, reflectance can be used to control the amount of a light spectrum that is allowed to perpetuate in the environment. Data showed that room volume and distance from significant light sources influence the total spectrum in a room. Smaller environments had a homogenizing effect on total light spectrum, whereas light from multiple sources in larger environments was less mixed. The findings indicated above should be considered when making recommendations for practice or standards for architectural systems. The ambient lighting system, surface reflectance, and display and indicator implementation all factor into the users' spectral environment. A variety of low-cost solutions exist to mitigate the impact of light from non-architectural lighting systems, and much potential for system automation and integration of display systems with the ambient environment. This team believes that proper planning can be used to avoid integration problems and also believes that human-in-the-loop evaluations, real-world test and measurement, and computer modeling can be used to determine how changes to a process, display graphics, and architecture will help maintain the planned spectral operating lighting environment.

  20. Particle damage sources for fused silica optics and their mitigation on high energy laser systems.

    PubMed

    Bude, J; Carr, C W; Miller, P E; Parham, T; Whitman, P; Monticelli, M; Raman, R; Cross, D; Welday, B; Ravizza, F; Suratwala, T; Davis, J; Fischer, M; Hawley, R; Lee, H; Matthews, M; Norton, M; Nostrand, M; VanBlarcom, D; Sommer, S

    2017-05-15

    High energy laser systems are ultimately limited by laser-induced damage to their critical components. This is especially true of damage to critical fused silica optics, which grows rapidly upon exposure to additional laser pulses. Much progress has been made in eliminating damage precursors in as-processed fused silica optics (the advanced mitigation process, AMP3), and very high damage resistance has been demonstrated in laboratory studies. However, the full potential of these improvements has not yet been realized in actual laser systems. In this work, we explore the importance of additional damage sources-in particular, particle contamination-for fused silica optics fielded in a high-performance laser environment, the National Ignition Facility (NIF) laser system. We demonstrate that the most dangerous sources of particle contamination in a system-level environment are laser-driven particle sources. In the specific case of the NIF laser, we have identified the two important particle sources which account for nearly all the damage observed on AMP3 optics during full laser operation and present mitigations for these particle sources. Finally, with the elimination of these laser-driven particle sources, we demonstrate essentially damage free operation of AMP3 fused silica for ten large optics (a total of 12,000 cm 2 of beam area) for shots from 8.6 J/cm 2 to 9.5 J/cm 2 of 351 nm light (3 ns Gaussian pulse shapes). Potentially many other pulsed high energy laser systems have similar particle sources, and given the insight provided by this study, their identification and elimination should be possible. The mitigations demonstrated here are currently being employed for all large UV silica optics on the National Ignition Facility.

  1. Self-assembled hierarchical carbon/g-C3N4 composite with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Huang, Ru-Long; Huang, Wei-Qing; Li, Dong-Feng; Ma, Li-Li; Pan, Anlian; Hu, Wangyu; Fan, Xiaoxing; Huang, Gui-Fang

    2018-04-01

    Hierarchical carbon/g-C3N4 composites consisting of nanosheets are synthesized by a direct thermal diffusion and exfoliation approach with glucose acting as the intercalator and carbon source. This facile protocol not only renders nanosheets with a large surface area, but also carbon intercalation into the interlayer of g-C3N4. Therefore, the synthesized carbon/g-C3N4 composites exhibit superior photocatalytic performance for degrading representative methylene blue (MB) under visible light irradiatuon. Carbon/g-C3N4 composites with an optimal glucose mass ratio of 0.25% show the apparent reaction rate constant of 0.253 h-1, which is 9 times higher than that over bluk g-C3N4. The superior photocatalytic performance of carbon/g-C3N4 hierarchical architectures can be attributed to the synergic effects of large reactive sites, effective visible light adsorption and faster charge transfer owing to the superior electron transfer ability of carbon as verified by the PL and photoelectrochemical measurements. The main reactive species responsible for the photocatalytic degradation are photoinduced holes and ·OH radicals under visible light irradiation. This work provides a facile way to fabricate effecient g-C3N4-based photocatalysts for the potential application in dealing with environmental and energy shortage issues using solar energy.

  2. Direct Growth of III-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Ti Interlayer

    NASA Astrophysics Data System (ADS)

    Prabaswara, Aditya; Min, Jung-Wook; Zhao, Chao; Janjua, Bilal; Zhang, Daliang; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; Ng, Tien Khee; Ooi, Boon S.

    2018-02-01

    Consumer electronics have increasingly relied on ultra-thin glass screen due to its transparency, scalability, and cost. In particular, display technology relies on integrating light-emitting diodes with display panel as a source for backlighting. In this study, we undertook the challenge of integrating light emitters onto amorphous quartz by demonstrating the direct growth and fabrication of a III-nitride nanowire-based light-emitting diode. The proof-of-concept device exhibits a low turn-on voltage of 2.6 V, on an amorphous quartz substrate. We achieved 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits a broad linewidth spectrum of light centered at true yellow color ( 590 nm), an important wavelength bridging the green-gap in solid-state lighting technology, with significantly less strain and dislocations compared to conventional planar quantum well nitride structures. Our endeavor highlighted the feasibility of fabricating III-nitride optoelectronic device on a scalable amorphous substrate through facile growth and fabrication steps. For practical demonstration, we demonstrated tunable correlated color temperature white light, leveraging on the broadly tunable nanowire spectral characteristics across red-amber-yellow color regime.

  3. Direct Growth of III-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Ti Interlayer.

    PubMed

    Prabaswara, Aditya; Min, Jung-Wook; Zhao, Chao; Janjua, Bilal; Zhang, Daliang; Albadri, Abdulrahman M; Alyamani, Ahmed Y; Ng, Tien Khee; Ooi, Boon S

    2018-02-06

    Consumer electronics have increasingly relied on ultra-thin glass screen due to its transparency, scalability, and cost. In particular, display technology relies on integrating light-emitting diodes with display panel as a source for backlighting. In this study, we undertook the challenge of integrating light emitters onto amorphous quartz by demonstrating the direct growth and fabrication of a III-nitride nanowire-based light-emitting diode. The proof-of-concept device exhibits a low turn-on voltage of 2.6 V, on an amorphous quartz substrate. We achieved ~ 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits a broad linewidth spectrum of light centered at true yellow color (~ 590 nm), an important wavelength bridging the green-gap in solid-state lighting technology, with significantly less strain and dislocations compared to conventional planar quantum well nitride structures. Our endeavor highlighted the feasibility of fabricating III-nitride optoelectronic device on a scalable amorphous substrate through facile growth and fabrication steps. For practical demonstration, we demonstrated tunable correlated color temperature white light, leveraging on the broadly tunable nanowire spectral characteristics across red-amber-yellow color regime.

  4. LENS: μLENS Simulations, Analysis, and Results

    NASA Astrophysics Data System (ADS)

    Rasco, Charles

    2013-04-01

    Simulations of the Low-Energy Neutrino Spectrometer prototype, μLENS, have been performed in order to benchmark the first measurements of the μLENS detector at the Kimballton Underground Research Facility (KURF). μLENS is a 6x6x6 celled scintillation lattice filled with Linear Alkylbenzene based scintillator. We have performed simulations of μLENS using the GEANT4 toolkit. We have measured various radioactive sources, LEDs, and environmental background radiation measurements at KURF using up to 96 PMTs with a simplified data acquisition system of QDCs and TDCs. In this talk we will demonstrate our understanding of the light propagation and we will compare simulation results with measurements of the μLENS detector of various radioactive sources, LEDs, and the environmental background radiation.

  5. Standoff alpha radiation detection for hot cell imaging and crime scene investigation

    NASA Astrophysics Data System (ADS)

    Kerst, Thomas; Sand, Johan; Ihantola, Sakari; Peräjärvi, Kari; Nicholl, Adrian; Hrnecek, Erich; Toivonen, Harri; Toivonen, Juha

    2018-02-01

    This paper presents the remote detection of alpha contamination in a nuclear facility. Alpha-active material in a shielded nuclear radiation containment chamber has been localized by optical means. Furthermore, sources of radiation danger have been identified in a staged crime scene setting. For this purpose, an electron-multiplying charge-coupled device camera was used to capture photons generated by alpha-induced air scintillation (radioluminescence). The detected radioluminescence was superimposed with a regular photograph to reveal the origin of the light and thereby the alpha radioactive material. The experimental results show that standoff detection of alpha contamination is a viable tool in radiation threat detection. Furthermore, the radioluminescence spectrum in the air is spectrally analyzed. Possibilities of camera-based alpha threat detection under various background lighting conditions are discussed.

  6. Standoff alpha radiation detection for hot cell imaging and crime scene investigation

    NASA Astrophysics Data System (ADS)

    Kerst, Thomas; Sand, Johan; Ihantola, Sakari; Peräjärvi, Kari; Nicholl, Adrian; Hrnecek, Erich; Toivonen, Harri; Toivonen, Juha

    2018-06-01

    This paper presents the remote detection of alpha contamination in a nuclear facility. Alpha-active material in a shielded nuclear radiation containment chamber has been localized by optical means. Furthermore, sources of radiation danger have been identified in a staged crime scene setting. For this purpose, an electron-multiplying charge-coupled device camera was used to capture photons generated by alpha-induced air scintillation (radioluminescence). The detected radioluminescence was superimposed with a regular photograph to reveal the origin of the light and thereby the alpha radioactive material. The experimental results show that standoff detection of alpha contamination is a viable tool in radiation threat detection. Furthermore, the radioluminescence spectrum in the air is spectrally analyzed. Possibilities of camera-based alpha threat detection under various background lighting conditions are discussed.

  7. The Art of Photoelectron Spectroscopy, from Micro to Nano

    NASA Astrophysics Data System (ADS)

    Rotenberg, Eli

    Angle-resolved photoemission spectroscopy (ARPES) was developed for the determination of the electronic bandstructure of solids. In the last 20 years, ARPES has become nearly unlimited with respect to instrumental resolution, and therefore able to illuminate more subtle electronic aspects, such as ground-state symmetry breaking and the many-body interactions (MBIs) that characterize ground states such as superconductivity. These MBIs involve exchange of momentum among electrons or with excitations such as phonons, and can therefore couple to nanoscale structures. By controlling the structure at the nanoscale, we can therefore hope to control or enhance the ground state properties of materials through nanoscale engineering. This dream has motivated the development of nanoscale ARPES (nanoARPES) machines that are now coming online worldwide. After a brief overview, I will show the latest results from the new nanoARPES endstation at the MAESTRO facility (Microscopic and Electronic Structure Observatory), a new user beamline commissioned this year at the Advanced Light Source (ALS). We achieved routine operation at spatial resolution around 120 nm, and expect improvement down to 50 nm or better. Examples will include graphene and 2D-metal-chalcogenide heterostructures. I will also discuss the prospects for dramatic improvements expected as new diffraction-limited light sources such as the ALS-U project are realized. Work performed at the Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  8. Light fidelity (Li-Fi): An effective solution for data transmission

    NASA Astrophysics Data System (ADS)

    Sharma, Vaishali; Rajput, Shreya; Sharma, Praveen Kumar

    2016-03-01

    The rapid advancement in the field of science has led to the development of many technologies, gadgets and equipment which in turn has hold pressure on Wi-Fi, modems, board band connections etc., to lessen this stress new revolution in this field has rooted on termed "LI-FI". Li-Fi stands for light fidelity i.e. light is used for the transmission of data. The concept of Li-Fi is taking the fiber out of fiber optics sending information through an LED that varies in intensity faster than human eye can follow. Li-Fi offers an entirely new paradigm in wireless technology in term of communication, speed, flexibility, usability etc. The idea of data through illumination is similar to radio waves communication difference lies in the use of LED in LI-Fi, which made it superior than Wi-Fi. Hence Li-Fi is linked to the visible light communication network provision transmission which is looked upon as an advancement. Thus a new class of light with high intensity light source of solid state design bringing clean lighting solution to general and specialty lighting. With energy efficiency, long useful lifetime, full spectrum and dimming. Li-Fi is just not only confined to light and LED indeed it is a platform with versatile advantages and facilities. This paper gives a brief idea about the introduction of Li-Fi, its working, advantages, limitations etc.

  9. Commissioning and Early Operation Experience of the NSLS-II Storage Ring RF System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, F.; Rose, J.; Cupolo, J.

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) is a 3 GeV electron X-ray user facility commissioned in 2014. The storage ring RF system, essential for replenishing energy loss per turn of the electrons, consists of digital low level RF controllers, 310 kW CW klystron transmitters, CESR-B type superconducting cavities, as well as a supporting cryogenic system. Here we will report on RF commissioning and early operation experience of the system for beam current up to 200mA.

  10. X-ray Laser Animated Fly-Through

    ScienceCinema

    None

    2018-01-16

    Take a tour with an electron's-eye-view through SLAC's revolutionary new X-ray laser facility with this 5 1/2 minute animation. See how the X-ray pulses are generated using the world's longest linear accelerator along with unique arrays of machinery specially designed for this one-of-a-kind tool. For more than 40 years, SLAC's two-mile-long linear accelerator (or linac) linac has produced high-energy electrons for cutting-edge physics experiments. Now, SLAC's linac has entered a new phase of its career with the creation of the Linac Coherent Light Source (LCLS).

  11. OAST Space Theme Workshop. Volume 3: Working group summary. 6: Power (P-2). A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Power requirements for the multipurpose space power platform, for space industrialization, SETI, the solar system exploration facility, and for global services are assessed for various launch dates. Priorities and initiatives for the development of elements of space power systems are described for systems using light power input (solar energy source) or thermal power input, (solar, chemical, nuclear, radioisotopes, reactors). Systems for power conversion, power processing, distribution and control are likewise examined.

  12. Pressure loads and aerodynamic force information for the -89A space shuttle orbiter configuration, volume 2

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1973-01-01

    Experimental aerodynamic investigations were conducted in a low speed wind tunnel on an 0.0405 scale representation of the 89A light weight Space Shuttle Orbiter to obtain pressure loads data in the presence of the ground for orbiter structural strength analysis. The model and the facility are described, and data reduction is outlined. Tables are included for data set/run number collation, data set/component collation, model component description, and pressure tap locations by series number. Tabulated force and pressure source data are presented.

  13. Future prospects of nuclear reactions induced by gamma-ray beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Filipescu, D.; Balabanski, D. L.; Camera, F.; Gheorghe, I.; Ghita, D.; Glodariu, T.; Kaur, J.; Ur, C. A.; Utsunomiya, H.; Varlamov, V. V.

    2017-01-01

    The future prospects of photonuclear reactions studies at the new Extreme Light Infrastructure—Nuclear Physics (ELI-NP) facility are discussed in view of the pursuit of investigating the electromagnetic response of nuclei using γ-ray beams of unprecedented energy resolution and intensity characteristics. We present here the features of the γ-ray beam source, the emerging ELI-NP experimental program involving photonuclear reactions cross section measurements and spectroscopy and angular measurements of γ-rays and neutrons along with the detection arrays currently under implementation.

  14. Microbes to Biomes at Berkeley Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-10-28

    Microbes are the Earth's most abundant and diverse form of life. Berkeley Lab's Microbes to Biomes initiative -- which will take advantage of research expertise at the Joint Genome Institute, Advanced Light Source, Molecular Foundry, and the new computational science facility -- is designed to explore and reveal the interactions of microbes with one another and with their environment. Microbes power our planet’s biogeochemical cycles, provide nutrients to our plants, purify our water and are integral components in keeping the human body free of disease and may hold the key to the Earth’s future.

  15. Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert D.

    2006-08-10

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less

  16. Extraordinary tools for extraordinary science: the impact of SciDAC on accelerator science and technology

    NASA Astrophysics Data System (ADS)

    Ryne, Robert D.

    2006-09-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  17. Determining the VLF/ULF source height using phase measurements

    NASA Astrophysics Data System (ADS)

    Ryabov, A.; Kotik, D. S.

    2012-12-01

    Generation of ULF/VLF waves in the ionosphere using powerful RF facilities has been studied for the last 40 years, both theoretically and experimentally. During this time, it was proposed several mechanisms for explaining the experimental results: modulation of ionospheric currents based on thermal nonlinearity, ponderomotive mechanisms for generation both VLF and ULF signals, cubic nonlinearity, etc. According mentioned above mechanisms the VLF/ULF signal source could be located in the lower or upper ionosphere. The group velocity of signal propagation in the ionosphere is significantly smaller than speed of light. As a result the appreciable time delay of the received signals will occur at the earth surface. This time delay could be determine by measuring the phase difference between received and reference signals, which are GPS synchronized. The experiment on determining the time delay of ULF signal propagation from the ionospheric source was carried out at SURA facility in 2012 and the results are presented in this paper. The comparison with numerical simulation of the time delay using the adjusted IRI model and ionosonde data shows well agreement with the experimental observations. The work was supported by RFBR grant 11-02-00419-a and RF Ministry of education and science by state contract 16.518.11.7066.

  18. Estimated health impact of a shift from light fuel to residential wood-burning in Upper Austria.

    PubMed

    Haluza, Daniela; Kaiser, August; Moshammer, Hanns; Flandorfer, Claudia; Kundi, Michael; Neuberger, Manfred

    2012-07-01

    The dependency on carbon-based fossil energy and growing awareness of climate change issues has induced ambitious policy initiatives to promote renewable energy sources for indoor heating. Combustion of regionally available material such as wood is considered a carbon-neutral alternative for oil and gas, but unregulated revival of wood stoves may cause detrimental health effects. For the prognosis of the health impact of air pollution due to the use of wood stoves, Upper Austria served for a case study. On the basis of recent measurements of particulate matter <10 μm in aerodynamic diameter (PM10) and nitrous gases (NO(x)), we compared the air pollution attributable to present energy mix (termed scenario 1) with two alternatives: For scenario 2, we assumed replacement of light fuel oil by either fossil gas or biomass, and for scenario 3, replacement of light fuel oil by biomass only. Compared with the current exposure from scenario 1, the increased annual mean PM10 levels are estimated to lead to 101 (95% CI 56;146) and 174 (95% CI 92;257) additional deaths among 1.4 million inhabitants per year for scenarios 2 and 3, respectively. Without adequate strategies for reducing the emissions of domestic heating facilities, replacement of fossil energy sources could lead to an increased health risk.

  19. Recent Major Improvements to the ALS Sector 5 MacromolecularCrystallography Beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, Simon A.; Glossinger, James; Smith-Baumann, Alexis

    2007-07-01

    Although the Advanced Light Source (ALS) was initially conceived primarily as a low energy (1.9GeV) 3rd generation source of VUV and soft x-ray radiation it was realized very early in the development of the facility that a multipole wiggler source coupled with high quality, (brightness preserving), optics would result in a beamline whose performance across the optimal energy range (5-15keV) for macromolecular crystallography (MX) would be comparable to, or even exceed, that of many existing crystallography beamlines at higher energy facilities. Hence, starting in 1996, a suite of three beamlines, branching off a single wiggler source, was constructed, which togethermore » formed the ALS Macromolecular Crystallography Facility. From the outset this facility was designed to cater equally to the needs of both academic and industrial users with a heavy emphasis placed on the development and introduction of high throughput crystallographic tools, techniques, and facilities--such as large area CCD detectors, robotic sample handling and automounting facilities, a service crystallography program, and a tightly integrated, centralized, and highly automated beamline control environment for users. This facility was immediately successful, with the primary Multiwavelength Anomalous Diffraction beamline (5.0.2) in particular rapidly becoming one of the foremost crystallographic facilities in the US--responsible for structures such as the 70S ribosome. This success in-turn triggered enormous growth of the ALS macromolecular crystallography community and spurred the development of five additional ALS MX beamlines all utilizing the newly developed superconducting bending magnets ('superbends') as sources. However in the years since the original Sector 5.0 beamlines were built the performance demands of macromolecular crystallography users have become ever more exacting; with growing emphasis placed on studying larger complexes, more difficult structures, weakly diffracting or smaller crystals, and on more rapidly screening larger numbers of candidate crystals; all of these requirements translate directly into a pressing need for increased flux, a tighter beam focus and faster detectors. With these growing demands in mind a major program of beamline and detector upgrades was initiated in 2004 with the goal of dramatically enhancing all aspects of beamline performance. Approximately $3 million in funding from diverse sources including NIH, LBL, the ALS, and the industrial and academic members of the beamline Participating Research Team (PRT), has been employed to develop and install new high performance beamline optics and to purchase the latest generation of CCD detectors. This project, which reached fruition in early 2007, has now fulfilled all of its original goals--boosting the flux on all three beamlines by up to 20-fold--with a commensurate reduction in exposure and data acquisition times for users. The performance of the Sector 5.0 beamlines is now comparable to that of the latest generation ALS superbend beamlines and, in the case of beamline 5.0.2, even surpasses it by a considerable margin. Indeed, the present performance of this beamline is now, once again, comparable to that envisioned for many MX beamlines planned or under construction on newer or higher energy machines.« less

  20. OLED lighting devices having multi element light extraction and luminescence conversion layer

    DOEpatents

    Krummacher, Benjamin Claus; Antoniadis, Homer

    2010-11-16

    An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  1. The effects of light therapy on depression and sleep disruption in older adults in a long-term care facility.

    PubMed

    Wu, Mann-Chian; Sung, Huei-Chuan; Lee, Wen-Li; Smith, Graeme D

    2015-10-01

    This study aims to evaluate the effect of light therapy on depression and sleep disruption in older adults residing in a long-term care facility. Psychological morbidity is a problem commonly seen in older adults residing in long-term care facilities. Limited research has addressed the effect of light therapy on depression in this population. A quasi-experimental pretest and posttest design was used. Thirty-four participants in the experimental group received light therapy by sitting in front of a 10000-lux light box 30 min in the morning, three times a week for 4 weeks. Thirty-one participants in the control group received routine care without light therapy. Depression was measured by Geriatric Depression Scale-Short Form at baseline and week 4. After receiving 4 weeks of light therapy, the mean depression score in the experimental group decreased from 7.24 (SD3.42) at pretest to 5.91 (SD 3.40) at posttest, and had a significant reduction (t = 2.22, P = 0.03). However, there was no significant difference in depression score and sleep disruption between the experimental group and control group. Light therapy might have the potential to reduce depressive symptoms and sleep disruption and may be a viable intervention to improve mental health of older adults in the long-term care facilities. © 2014 Wiley Publishing Asia Pty Ltd.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. Withmore » ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and potentially revolutionary science involves soft excitations such as magnons and phonons; in general, these are well below the resolution that can be probed by today’s optical systems. The study of these low-energy excitations will only move forward if advances are made in high-resolution gratings for the soft X-ray energy region, and higher-resolution crystal analyzers for the hard X-ray region. In almost all the forefront areas of X-ray science today, the main limitation is our ability to focus, monochromate, and manipulate X-rays at the level required for these advanced measurements. To address these issues, the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) sponsored a workshop, X-ray Optics for BES Light Source Facilities, which was held March 27–29, 2013, near Washington, D.C. The workshop addressed a wide range of technical and organizational issues. Eleven working groups were formed in advance of the meeting and sought over several months to define the most pressing problems and emerging opportunities and to propose the best routes forward for a focused R&D program to solve these problems. The workshop participants identified eight principal research directions (PRDs), as follows: Development of advanced grating lithography and manufacturing for high-energy resolution techniques such as soft X-ray inelastic scattering. Development of higher-precision mirrors for brightness preservation through the use of advanced metrology in manufacturing, improvements in manufacturing techniques, and in mechanical mounting and cooling. Development of higher-accuracy optical metrology that can be used in manufacturing, verification, and testing of optomechanical systems, as well as at wavelength metrology that can be used for quantification of individual optics and alignment and testing of beamlines. Development of an integrated optical modeling and design framework that is designed and maintained specifically for X-ray optics. Development of nanolithographic techniques for improved spatial resolution and efficiency of zone plates. Development of large, perfect single crystals of materials other than silicon for use as beam splitters, seeding monochromators, and high-resolution analyzers. Development of improved thin-film deposition methods for fabrication of multilayer Laue lenses and high-spectral-resolution multilayer gratings. Development of supports, actuator technologies, algorithms, and controls to provide fully integrated and robust adaptive X-ray optic systems. Development of fabrication processes for refractive lenses in materials other than silicon. The workshop participants also addressed two important nontechnical areas: our relationship with industry and organization of optics within the light source facilities. Optimization of activities within these two areas could have an important effect on the effectiveness and efficiency of our overall endeavor. These are crosscutting managerial issues that we identified as areas that needed further in-depth study, but they need to be coordinated above the individual facilities. Finally, an issue that cuts across many of the optics improvements listed above is routine access to beamlines that ideally are fully dedicated to optics research and/or development. The success of the BES X-ray user facilities in serving a rapidly increasing user community has led to a squeezing of beam time for vital instrumentation activities. Dedicated development beamlines could be shared with other R&D activities, such as detector programs and novel instrument development. In summary, to meet the challenges of providing the highest-quality X-ray beams for users and to fully utilize the high-brightness sources of today and those that are on the horizon, it will be critical to make strategic investments in X-ray optics R&D. This report can provide guidance and direction for effective use of investments in the field of X-ray optics and potential approaches to develop a better-coordinated program of X-ray optics development within the suite of BES synchrotron radiation facilities. Due to the importance and complexity of the field, the need for tight coordination between BES light source facilities and with industry, as well as the rapid evolution of light source capabilities, the workshop participants recommend holding similar workshops at least biannually.« less

  3. Evaluation of Infrasound and Strobe Lights for Eliciting Avoidance Behavior in Juvenile Salmon and Char

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Robert P.; Neitzel, Duane A.; Amidan, Brett G.

    2001-12-01

    Laboratory tests were conducted using juvenile chinook salmon Oncorhynchus tshawytscha, brook trout Salvelinus fontinalis, and rainbow trout O. mykiss to determine specific behavior responses to infrasound (< 20 Hz) and flashing strobe lights. The objective of these tests was to determine if juvenile salmonids could be deterred from entrainment at water diversion structures. Caged fish were acclimated in a static test tank and their behavior was recorded using low light cameras. Species-specific behavior was characterized by measuring movements of the fish within the cage and by observing startle and habituation responses. Wild chinook salmon (40-45 mm TL) and hatchery rearedmore » chinook salmon (45-50 mm TL) exhibited avoidance responses when initially exposed to a 10-Hz volume displacement source of infrasound. Rainbow and eastern brook trout (25-100 mm TL) did not respond with avoidance or other behaviors to infrasound. Evidence of habituation to the infrasound source was evident for chinook salmon during repeated exposures. Wild and hatchery chinook displayed a higher proportion of movement during the initial exposures to infrasound when the acclimation period in the test tank was 2-3 h as compared to a 12-15 h acclimation period. A flashing strobe light produced consistent movement in wild chinook salmon (60% of the tests), hatchery reared chinook salmon (50%), and rainbow trout (80%). No measurable responses were observed for brook trout. Results indicate that consistent, repeatable responses can be elicited from some fish using high-intensity strobe lights under a controlled laboratory testing. The species specific behaviors observed in these experiments might be used to predict how fish might react to low-frequency sound and strobe lights in a screening facility.« less

  4. Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions

    NASA Astrophysics Data System (ADS)

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; Turnbull, D.; Collins, T. J. B.; Radha, P. B.; McKenty, P. W.; Zuegel, J. D.; Marshall, F. J.; Regan, S. P.; Sangster, T. C.; Seka, W.; Campbell, E. M.; Goncharov, V. N.; Bowers, M. W.; Di Nicola, J.-M. G.; Erbert, G.; MacGowan, B. J.; Pelz, L. J.; Moody, J.; Yang, S. T.

    2018-05-01

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light-changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. These results indicate that wavelength detuning successfully mitigates CBET. Simulations predict that optimized phase plates and wavelength-detuning CBET mitigation utilizing the three-legged beam layout of the OMEGA Laser System significantly increase absorption and achieve >100-Gbar hot-spot pressures in symmetric direct drive.

  5. Facile synthesis of amorphous FeOOH/MnO2 composites as screen-printed electrode materials for all-printed solid-state flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Lu, Qiang; Liu, Li; Yang, Shuanglei; Liu, Jun; Tian, Qingyong; Yao, Weijing; Xue, Qingwen; Li, Mengxiao; Wu, Wei

    2017-09-01

    More convenience and intelligence life lead by flexible/wearable electronics requires innovation and hommization of power sources. Here, amorphous FeOOH/MnO2 composite as screen-printed electrode materials for supercapacitors (SCs) is synthesized by a facile method, and solid-state flexible SCs with aesthetic design are fabricated by fully screen-printed process on different substrates, including PET, paper and textile. The amorphous FeOOH/MnO2 composite shows a high specific capacitance and a good rate capability (350.2 F g-1 at a current density of 0.5 A g-1 and 159.5 F g-1 at 20 A g-1). It also possesses 95.6% capacitance retention even after 10 000 cycles. Moreover, the all-printed solid-state flexible SC device exhibits a high area specific capacitance of 5.7 mF cm-2 and 80% capacitance retention even after 2000 cycles. It also shows high mechanical flexibility. Simultaneously, these printed SCs on different substrates in series are capable to light up a 1.9 V yellow light emitting diode (LED), even after bending and stretching.

  6. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis.

    PubMed

    Gann, E; Young, A T; Collins, B A; Yan, H; Nasiatka, J; Padmore, H A; Ade, H; Hexemer, A; Wang, C

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (∼285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition. © 2012 American Institute of Physics

  7. Time-resolved imaging of the microbunching instability and energy spread at the Linac Coherent Light Source

    DOE PAGES

    Ratner, D.; Behrens, C.; Ding, Y.; ...

    2015-03-09

    The microbunching instability (MBI) is a well known problem for high brightness electron beams and has been observed at accelerator facilities around the world. Free-electron lasers (FELs) are particularly susceptible to MBI, which can distort the longitudinal phase space and increase the beam’s slice energy spread (SES). Past studies of MBI at the Linac Coherent Light Source (LCLS) relied on optical transition radiation to infer the existence of microbunching. With the development of the x-band transverse deflecting cavity (XTCAV), we can for the first time directly image the longitudinal phase space at the end of the accelerator and complete amore » comprehensive study of MBI, revealing both detailed MBI behavior as well as insights into mitigation schemes. The fine time resolution of the XTCAV also provides the first LCLS measurements of the final SES, a critical parameter for many advanced FEL schemes. As a result, detailed MBI and SES measurements can aid in understanding MBI mechanisms, benchmarking simulation codes, and designing future high- brightness accelerators.« less

  8. Device structure for OLED light device having multi element light extraction and luminescence conversion layer

    DOEpatents

    Antoniadis,; Homer, Krummacher [Mountain View, CA; Claus, Benjamin [Regensburg, DE

    2008-01-22

    An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  9. 1993 CAT workshop on beamline optical designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    An Advanced Photon Source (APS) Collaborative Access Team (CAT) Workshop on Beamline Optical Designs was held at Argonne National Laboratory on July 26--27, 1993. The goal of this workshop was to bring together experts from various synchrotron sources to provide status reports on crystal, reflecting, and polarizing optics as a baseline for discussions of issues facing optical designers for CAT beamlines at the APS. Speakers from the European Synchrotron Radiation Facility (ESRF), the University of Chicago, the National Synchrotron Light Source, and the University of Manchester (England) described single- and double-crystal monochromators, mirrors, glass capillaries, and polarizing optics. Following thesemore » presentations, the 90 participants divided into three working groups: Crystal Optics Design, Reflecting Optics, and Optics for Polarization Studies. This volume contains copies of the presentation materials from all speakers, summaries of the three working groups, and a ``catalog`` of various monochromator designs.« less

  10. Parabolic single-crystal diamond lenses for coherent x-ray imaging

    DOE PAGES

    Terentyev, Sergey; Blank, Vladimir; Polyakov, Sergey; ...

    2015-09-18

    We demonstrate parabolic single-crystal diamond compound refractive lenses designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic shapes with a ≃1 μm precision and surface roughness. The compound refractive lens comprised of six lenses with a radius of curvature R=200 μm at the vertex of the parabola and a geometrical aperture A=900 μm focuses 10 keVmore » x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of ≃20×90 μm 2 with a gain factor of ≃50-100.« less

  11. Renewal of the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, J. M.

    2008-12-31

    To ensure that state-of-the-art hard x-ray tools are available for US scientists and engineers who are solving key problems in energy, environment, technology development and human health, the nation's unique high-energy x-ray source needs a major renewal of its capabilities. The Advanced Photon Source renewal program responds to key scientific needs driven by our user community. The renewal encompasses many innovations in beamlines and accelerator capabilities, each of which will transform our tools and allow new problems to be solved. In particular the APS renewal dramatically expands two compelling avenues for research. Through x-ray imaging, we can illuminate complex hierarchical structures from the molecular level to the macroscopic level, and study how they change in time and in response to stimuli. Images will facilitate understanding how proteins fit together to make living organisms, contribute to development of lighter, higher-strength alloys for fuel-efficient transportation and advance the use of biomass for alternative fuels. Hard x-rays are also especially suited to the study of real materials, under realistic conditions and in real-time. The advances proposed in this area would help develop more efficient catalysts, enhance green manufacturing, point the way to artificial light-harvesting inspired by biology and help us develop more efficient lighting. The scope of the renewal of our {approx}more » $$1.5B facility is estimated to be {approx}$$350M over five years. It is vital that the investment begin as soon as possible. The renewed APS would complement other national investments such as the National Synchrotron Light Source-II and would keep the U.S. internationally competitive.« less

  12. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  13. A monolithic and flexible fluoropolymer film microreactor for organic synthesis applications.

    PubMed

    Kim, Jin-Oh; Kim, Heejin; Ko, Dong-Hyeon; Min, Kyoung-Ik; Im, Do Jin; Park, Soo-Young; Kim, Dong-Pyo

    2014-11-07

    A photocurable and viscous fluoropolymer with chemical stability is a highly desirable material for fabrication of microchemical devices. Lack of a reliable fabrication method, however, limits actual applications for organic reactions. Herein, we report fabrication of a monolithic and flexible fluoropolymer film microreactor and its use as a new microfluidic platform. The fabrication involves facile soft lithography techniques that enable partial curing of thin laminates, which can be readily bonded by conformal contact without any external forces. We demonstrate fabrication of various functional channels (~300 μm thick) such as those embedded with either a herringbone micromixer pattern or a droplet generator. Organic reactions under strongly acidic and basic conditions can be carried out in this film microreactor even at elevated temperature with excellent reproducibility. In particular, the transparent film microreactor with good deformability could be wrapped around a light-emitting lamp for close contact with the light source for efficient photochemical reactions with visible light, which demonstrates easy integration with optical components for functional miniaturized systems.

  14. Driver circuit for solid state light sources

    DOEpatents

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  15. A convolutional neural network approach to calibrating the rotation axis for X-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaogang; De Carlo, Francesco; Phatak, Charudatta

    This paper presents an algorithm to calibrate the center-of-rotation for X-ray tomography by using a machine learning approach, the Convolutional Neural Network (CNN). The algorithm shows excellent accuracy from the evaluation of synthetic data with various noise ratios. It is further validated with experimental data of four different shale samples measured at the Advanced Photon Source and at the Swiss Light Source. The results are as good as those determined by visual inspection and show better robustness than conventional methods. CNN has also great potential forreducing or removingother artifacts caused by instrument instability, detector non-linearity,etc. An open-source toolbox, which integratesmore » the CNN methods described in this paper, is freely available through GitHub at tomography/xlearn and can be easily integrated into existing computational pipelines available at various synchrotron facilities. Source code, documentation and information on how to contribute are also provided.« less

  16. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas.

    PubMed

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L

    2012-10-01

    High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  17. A national facility for biological cryo-electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saibil, Helen R., E-mail: h.saibil@mail.cryst.bbk.ac.uk; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided ofmore » the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.« less

  18. Canadian macromolecular crystallography facility: a suite of fully automated beamlines.

    PubMed

    Grochulski, Pawel; Fodje, Michel; Labiuk, Shaunivan; Gorin, James; Janzen, Kathryn; Berg, Russ

    2012-06-01

    The Canadian light source is a 2.9 GeV national synchrotron radiation facility located on the University of Saskatchewan campus in Saskatoon. The small-gap in-vacuum undulator illuminated beamline, 08ID-1, together with the bending magnet beamline, 08B1-1, constitute the Canadian Macromolecular Crystallography Facility (CMCF). The CMCF provides service to more than 50 Principal Investigators in Canada and the United States. Up to 25% of the beam time is devoted to commercial users and the general user program is guaranteed up to 55% of the useful beam time through a peer-review process. CMCF staff provides "Mail-In" crystallography service to users with the highest scored proposals. Both beamlines are equipped with very robust end-stations including on-axis visualization systems, Rayonix 300 CCD series detectors and Stanford-type robotic sample auto-mounters. MxDC, an in-house developed beamline control system, is integrated with a data processing module, AutoProcess, allowing full automation of data collection and data processing with minimal human intervention. Sample management and remote monitoring of experiments is enabled through interaction with a Laboratory Information Management System developed at the facility.

  19. Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants

    PubMed Central

    Seddigi, Zaki S.; Baig, Umair; Ahmed, Saleh A.; Abdulaziz, M. A.; Danish, Ekram Y.; Khaled, Mazen M.; Lais, Abul

    2017-01-01

    In the present work, bismuth oxychloride nanoparticles–a light harvesting semiconductor photocatalyst–were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs) were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions. PMID:28245225

  20. Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants.

    PubMed

    Seddigi, Zaki S; Gondal, Mohammed A; Baig, Umair; Ahmed, Saleh A; Abdulaziz, M A; Danish, Ekram Y; Khaled, Mazen M; Lais, Abul

    2017-01-01

    In the present work, bismuth oxychloride nanoparticles-a light harvesting semiconductor photocatalyst-were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs) were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions.

  1. Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures

    PubMed Central

    Kumar, Suneel; Sharma, Rahul; Sharma, Vipul; Harith, Gurunarayanan; Sivakumar, Vaidyanathan

    2016-01-01

    Photocatalytic activity of semiconductor nanostructures is gaining much importance in recent years in both energy and environmental applications. However, several parameters play a crucial role in enhancing or suppressing the photocatalytic activity through, for example, modifying the band gap energy positions, influencing the generation and transport of charge carriers and altering the recombination rate. In this regard, physical parameters such as the support material and the irradiation source can also have significant effect on the activity of the photocatalysts. In this work, we have investigated the role of reduced graphene oxide (RGO) support and the irradiation source on mixed metal chalcogenide semiconductor (CdS–ZnO) nanostructures. The photocatalyst material was synthesized using a facile hydrothermal method and thoroughly characterized using different spectroscopic and microscopic techniques. The photocatalytic activity was evaluated by studying the degradation of a model dye (methyl orange, MO) under visible light (only) irradiation and under natural sunlight. The results reveal that the RGO-supported CdS–ZnO photocatalyst performs considerably better than the unsupported CdS–ZnO nanostructures. In addition, both the catalysts perform significantly better under natural sunlight than under visible light (only) irradiation. In essence, this work paves way for tailoring the photocatalytic activity of semiconductor nanostructures. PMID:28144518

  2. Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances

    NASA Astrophysics Data System (ADS)

    Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu

    2015-12-01

    We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06584d

  3. Study of resonance light scattering for remote optical probing

    NASA Technical Reports Server (NTRS)

    Penney, C. M.; Morey, W. W.; St. Peters, R. L.; Silverstein, S. D.; Lapp, M.; White, D. R.

    1973-01-01

    Enhanced scattering and fluorescence processes in the visible and UV were investigated which will enable improved remote measurements of gas properties. The theoretical relationship between scattering and fluorescence from an isolated molecule in the approach to resonance is examined through analysis of the time dependence of re-emitted light following excitation of pulsed incident light. Quantitative estimates are developed for the relative and absolute intensities of fluorescence and resonance scattering. New results are obtained for depolarization of scattering excited by light at wavelengths within a dissociative continuum. The experimental work was performed in two separate facilities. One of these utilizes argon and krypton lasers, single moded by a tilted etalon, and a 3/4 meter double monochromator. This facility was used to determine properties of the re-emission from NO2, I2 and O3 excited by visible light. The second facility involves a narrow-line dye laser, and a 3/4 meter single monochromator. The dye laser produces pulsed light with 5 nsec pulse duration and 0.005 nm spectral width.

  4. Position Index for the Matrix Light Source

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi; Kobayashi, Yoshinori; Onda, Shou; Irikura, Takashi

    It is expected that in the future white LEDs will be widely used in practical applications including replacing conventional lighting in offices and homes. The white LED light source of matrix arrangement is also considered in it. On the other hand, although now the unified glare rating (UGR) is widely used for evaluation of the discomfort glare of the interior lighting, UGR is a thing for a uniform light source, and its application to the matrix light sources that have non-uniform luminance has not been considered. The aim of this study is to clarify the position index which is one of element of UGR for the matrix light source. In this case, to apply the position index for a matrix light source to UGR, the concept of the revised position index is invented. As the preliminary experiment, method for measuring the position index was conducted, and as the experiment, position index for the matrix light source was conducted and compared with the uniform light source. The results of the experiments show that the position index is decided by the relative angle between line of sight and light source. It is also found that the matrix light source have larger position index than uniform light source. Furthermore, it is shown that the discomfort glare caused by a matrix light source can be evaluated by applying the revised position index to the UGR.

  5. Shock-wave facility at Tokyo Institute of Technology

    NASA Astrophysics Data System (ADS)

    Sawaoka, A.; Kondo, K.

    1982-04-01

    The shock-wave facility at the Tokyo Institute of Technology is described. Two double-stage light-gas guns are used to studying material science and technology. Recently construction has begun for a new type of rail gun combined with a double-stage light-gas gun.

  6. PREFACE: 6th Workshop on Infrared Spectroscopy and Microscopy with Accelerator-Based Sources (WIRMS11)

    NASA Astrophysics Data System (ADS)

    Lupi, Stefano; Perucchi, Andrea

    2012-05-01

    This volume of Journal of Physics: Conference Series is dedicated to a subset of papers related to the work presented at the 6th edition of the international Workshop on Infrared Spectroscopy and Microscopy with Accelerator-Based Sources (WIRMS), held in Trieste, Italy, September 4-8 2011. Previous editions of the conference were held in Porquerolles (France), Lake Tahoe (USA), Rathen (Germany), Awaji (Japan), and Banff (Canada). This edition was organized and chaired by Stefano Lupi (Roma La Sapienza) and co-chaired by Andrea Perucchi (Elettra), with the support of the Italian Synchrotron Light Laboratory ELETTRA, which was honored to host the WIRMS workshop in its tenth anniversary. The 6th WIRMS edition addressed several different topics, ranging from biochemistry to strongly correlated materials, from geology to conservation science, and from forensics to the study of cometary dusts. Representatives from the infrared scientific programs at synchrotron light sources and free-electron-laser facilities. This edition was attended by 88 participants, including representatives from the infrared scientific programs at synchrotron light sources and free-electron-laser facilities, who enjoyed the stimulating scientific presentations, several detailed discussions, and the beautiful weather and scenery of the Trieste gulf. Participants came from 16 different nations and four continents, including many young scientists, six of which were supported by the organizers. There were 45 scientific talks divided in 11 sessions: Facilities, Microspectroscopy (I, II, III), Time-Resolved Spectroscopies, Extreme Conditions, Condensed Matter, Near-Field, Imaging, THz Techniques and High-Resolution Spectroscopy. 37 posters were also presented at two very lively evening poster sessions. We would like to use the opportunity of writing this preface to thank all the participants of the workshop for the very high level of their scientific contribution and for the very friendly atmosphere, which were the most important keys to the success of the workshop. We also wish to thank all the companies (Bruker, Tydex, Spiricon, Allectra, Neaspec, Micos) and institutions (Sincrotrone Trieste, Sapienza University of Rome, EMS, INFN, CNR-IOM) sponsoring this event. We are indebted to the members of the International Advisory Committee for their valuable help in the difficult choosing of the invited speakers, and for more general advice on the conference organization and structuring. A special acknowledgment goes to the ELETTRA secretary staff, and in particular to Mariella Antonetti, who has been involved with the organization from the very beginning. The 7th WIRMS conference will be held in Melbourne (Australia). Our best wishes go to the organizers for a successful conference. Additional information on the conference can still be found on the conference website: http://www.elettra.trieste.it/events/2011/WIRMS/ A selection of the conference pictures is also available on Flickr: http://www.flickr.com/photos/sincrotronets/sets/72157627705743677/ Guest Editors Stefano Lupi and Andrea Perucchi Conference photograph The PDF also contains details of the Local Organizing Committee and International Advisory Committee and a list of Sponsors.

  7. Utility and safety of a novel surgical microscope laser light source

    PubMed Central

    Bakhit, Mudathir S.; Suzuki, Kyouichi; Sakuma, Jun; Fujii, Masazumi; Murakami, Yuta; Ito, Yuhei; Sugano, Tetsuo; Saito, Kiyoshi

    2018-01-01

    Objective Tissue injuries caused by the thermal effects of xenon light microscopes have previously been reported. Due to this, the development of a safe microscope light source became a necessity. A newly developed laser light source is evaluated regarding its effectiveness and safety as an alternative to conventional xenon light source. Methods We developed and tested a new laser light source for surgical microscopes. Four experiments were conducted to compare xenon and laser lights: 1) visual luminance comparison, 2) luminous and light chromaticity measurements, 3) examination and analysis of visual fatigue, and 4) comparison of focal temperature elevation due to light source illumination using porcine muscle samples. Results Results revealed that the laser light could be used at a lower illumination value than the xenon light (p < 0.01). There was no significant difference in visual fatigue status between the laser light and the xenon light. The laser light was superior to the xenon light regarding luminous intensity and color chromaticity. The focal temperature elevation of the muscle samples was significantly higher when irradiated with xenon light in vitro than with laser light (p < 0.01). Conclusion The newly developed laser light source is more efficient and safer than a conventional xenon light source. It lacks harmful ultraviolet waves, has a longer lifespan, a lower focal temperature than that of other light sources, a wide range of brightness and color production, and improved safety for the user’s vision. Further clinical trials are necessary to validate the impact of this new light source on the patient’s outcome and prognosis. PMID:29390016

  8. Installation of a second superconducting wiggler at SAGA-LS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneyasu, T., E-mail: kaneyasu@saga-ls.jp; Takabayashi, Y.; Iwasaki, Y.

    The SAGA Light Source is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring with a circumference of 75.6 m. A superconducting wiggler (SCW) with a peak magnetic field of 4 T has been routinely operating for generating hard X-rays since its installation in 2010. In light of this success, it was decided to install a second SCW as a part of the beamline construction by Sumitomo Electric Industries. To achieve this, machine modifications including installation of a new magnet power supply, improvement of the magnet control system, and replacement of themore » vacuum chambers in the storage ring were carried out. Along with beamline construction, installation and commissioning of the second SCW are scheduled to take place in 2015.« less

  9. Angular Distribution of light emission in ELVES events

    NASA Astrophysics Data System (ADS)

    Mussa, Roberto

    2017-04-01

    The Pierre Auger Observatory, located in Malargüe (Argentina), is the largest facility (3000 kmq ) for the study of Ultra High Energy Cosmic Rays (E>0.3 EeV). The four sites of the Fluorescence Detector (FD) are continuously observing the night sky with moon fraction below 50% (13% duty cycle) with 100 ns time resolution and a space resolution below one degree. Since 2013, the Observatory has implemented a dedicated trigger for the study of ELVES events, produced by lightning activity in Northern Argentina during summer months. A network of ancillary devices (lidars, cloud cameras, weather stations, lightning sensors, E-field mills) complements the FD data to correct for the variation of atmospheric optical properties. This paper will report about the angular distribution of the light emission around the vertical above the lightning source and compare with existing models.

  10. Tug fleet and ground operations schedules and controls. Volume 2: part 2, addenda

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results of a study to assess the tug safing requirements at postlanding are presented. The study considered the normal (green light) conditions from orbiter landing to completion of preparations for the next launch. Normal tug ground turnaround operations include handling and transportation activities and the performance of inspections, tests, and checkout functions. These activities dictate that hazards to ground personnel, the tug, GSE, facilities, and ecology be reduced to the lowest practical level consistent with program objectives, cost, and schedules. During flight operations, the tug contains energy sources that constitute potential hazards but are required for mission accomplishment. These potential hazards have been reduced to an acceptable level for flight operation by design features and by providing for control of energy sources.

  11. Evaluation of beam halo from beam-gas scattering at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Yang, R.; Naito, T.; Bai, S.; Aryshev, A.; Kubo, K.; Okugi, T.; Terunuma, N.; Zhou, D.; Faus-Golfe, A.; Kubytskyi, V.; Liu, S.; Wallon, S.; Bambade, P.

    2018-05-01

    In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrate the influence of the beam-gas scattering process on the transverse halo distribution.

  12. Spectral responsivity-based calibration of photometer and colorimeter standards

    NASA Astrophysics Data System (ADS)

    Eppeldauer, George P.

    2013-08-01

    Several new generation transfer- and working-standard illuminance meters and tristimulus colorimeters have been developed at the National Institute of Standards and Technology (NIST) [1] to measure all kinds of light sources with low uncertainty. The spectral and broad-band (illuminance) responsivities of the photometer (Y) channels of two tristimulus meters were determined at both the Spectral Irradiance and Radiance Responsivity Calibrations using Uniform Sources (SIRCUS) facility and the Spectral Comparator Facility (SCF) [2]. The two illuminance responsivities agreed within 0.1% with an overall uncertainty of 0.2% (k = 2), which is a factor of two improvement over the present NIST photometric scale. The first detector-based tristimulus color scale [3] was realized. All channels of the reference tristimulus colorimeter were calibrated at the SIRCUS. The other tristimulus meters were calibrated at the SCF and also against the reference meter on the photometry bench in broad-band measurement mode. The agreement between detector- and source-based calibrations was within 3 K when a tungsten lamp-standard was measured at 2856 K and 3100 K [4]. The color-temperature uncertainty of tungsten lamp measurements was 4 K (k = 2) between 2300 K and 3200 K, which is a factor of two improvement over the presently used NIST source-based color temperature scale. One colorimeter was extended with an additional (fifth) channel to apply software implemented matrix corrections. With this correction, the spectral mismatch caused color difference errors were decreased by a factor of 20 for single-color LEDs.

  13. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    U˝Lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ~133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries. Additional funds to purchase components of the new ring and beamlines are being sought from the EU, the US, and other sources. SESAME has benefited greatly from offers by other light source facilities of equipment and training fellowships in both accelerator technology and applications of synchrotron radiation. Details of this, and other aspects of the training program, are given below. It is hoped that in the future fellowship offers will continue to be made by many light source laboratories to further increase the level of experience with accelerator technology and synchrotron light science in preparation for the start of operation of SESAME.

  14. SESAME — A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Űlkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ˜133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries. Additional funds to purchase components of the new ring and beamlines are being sought from the EU, the US, and other sources. SESAME has benefited greatly from offers by other light source facilities of equipment and training fellowships in both accelerator technology and applications of synchrotron radiation. Details of this, and other aspects of the training program, are given below. It is hoped that in the future fellowship offers will continue to be made by many light source laboratories to further increase the level of experience with accelerator technology and synchrotron light science in preparation for the start of operation of SESAME.

  15. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulkue, Dincer; Rahighi, Javad; Winick, Herman

    2007-01-19

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK,more » and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference {approx}133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries. Additional funds to purchase components of the new ring and beamlines are being sought from the EU, the US, and other sources. SESAME has benefited greatly from offers by other light source facilities of equipment and training fellowships in both accelerator technology and applications of synchrotron radiation. Details of this, and other aspects of the training program, are given below. It is hoped that in the future fellowship offers will continue to be made by many light source laboratories to further increase the level of experience with accelerator technology and synchrotron light science in preparation for the start of operation of SESAME.« less

  16. 9 CFR 3.102 - Facilities, indoor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... be ventilated by natural or artificial means to provide a flow of fresh air for the marine mammals... housing marine mammals, including pools of water. (c) Lighting. Indoor housing facilities for marine mammals shall have ample lighting, by natural or artificial means, or both, of a quality, distribution...

  17. 9 CFR 3.102 - Facilities, indoor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... be ventilated by natural or artificial means to provide a flow of fresh air for the marine mammals... housing marine mammals, including pools of water. (c) Lighting. Indoor housing facilities for marine mammals shall have ample lighting, by natural or artificial means, or both, of a quality, distribution...

  18. Method and apparatus for acquisition and tracking of light sources in a transient event rich environment

    NASA Technical Reports Server (NTRS)

    Bolin, Kenneth (Inventor); Flynn, David (Inventor); Fowski, Walter (Inventor); Miklus, Kenneth (Inventor); Kissh, Frank (Inventor); Abreu, Rene (Inventor)

    1993-01-01

    A method and apparatus for tracking a light source in a transient event rich environment locks on to a light source incident on a field-of-view 1 of a charge-coupled-device (CCD) array 6, validates the permanence of said light source and transmits data relating to the brilliance and location of said light source if said light source is determined to be permanent.

  19. Light fidelity (Li-Fi): An effective solution for data transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vaishali, E-mail: vaishalisharma202@gmail.com; Rajput, Shreya, E-mail: rajputshreya15@gmail.com; Sharma, Praveen Kumar, E-mail: psv.bkbiet@gmail.com

    The rapid advancement in the field of science has led to the development of many technologies, gadgets and equipment which in turn has hold pressure on Wi-Fi, modems, board band connections etc., to lessen this stress new revolution in this field has rooted on termed “LI-FI”. Li-Fi stands for light fidelity i.e. light is used for the transmission of data. The concept of Li-Fi is taking the fiber out of fiber optics sending information through an LED that varies in intensity faster than human eye can follow. Li-Fi offers an entirely new paradigm in wireless technology in term of communication,more » speed, flexibility, usability etc. The idea of data through illumination is similar to radio waves communication difference lies in the use of LED in LI-Fi, which made it superior than Wi-Fi. Hence Li-Fi is linked to the visible light communication network provision transmission which is looked upon as an advancement. Thus a new class of light with high intensity light source of solid state design bringing clean lighting solution to general and specialty lighting. With energy efficiency, long useful lifetime, full spectrum and dimming. Li-Fi is just not only confined to light and LED indeed it is a platform with versatile advantages and facilities. This paper gives a brief idea about the introduction of Li-Fi, its working, advantages, limitations etc.« less

  20. Non-contact pumping of light emitters via non-radiative energy transfer

    DOEpatents

    Klimov, Victor I.; Achermann, Marc

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  1. The transcriptional response of skin to fluorescent light exposure in viviparous (Xiphophorus) and oviparous (Danio, Oryzias) fishes.

    PubMed

    Boswell, Mikki; Boswell, William; Lu, Yuan; Savage, Markita; Mazurek, Zachary; Chang, Jordan; Muster, Jeanot; Walter, Ronald

    2018-06-01

    Differences in light sources are common in animal facilities and potentially can impact experimental results. Here, the potential impact of lighting differences on skin transcriptomes has been tested in three aquatic animal models commonly utilized in biomedical research, (Xiphophorus maculatus (platyfish), Oryzias latipes (medaka) and Danio rerio (zebrafish). Analysis of replicate comparative RNA-Seq data showed the transcriptional response to commonly utilized 4100K or "cool white" fluorescent light (FL) is much greater in platyfish and medaka than in zebrafish. FL induces genes associated with inflammatory and immune responses in both medaka and zebrafish; however, the platyfish exhibit suppression of genes involved with immune/inflammation, as well as genes associated with cell cycle progression. Furthermore, comparative analyses of gene expression data from platyfish UVB exposures, with medaka and zebrafish after exposure to 4100K FL, show comparable effects on the same stress pathways. We suggest the response to light is conserved, but that long-term adaptation to species specific environmental niches has resulted in a shifting of the wavelengths required to incite similar "genetic" responses in skin. We forward the hypothesis that the "genetic perception" of light may have evolved differently than ocular perception and suggest that light type (i.e., wavelengths emitted) is an important parameter to consider in experimental design. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. 77 FR 30888 - Heating, Cooling, and Lighting Standards for Bureau-Funded Dormitory Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ...As required by the No Child Left Behind Act of 2001, the Secretary of the Interior has developed regulations using negotiated rulemaking that address heating, cooling, and lighting standards for Bureau-funded dormitory facilities. These regulations also make a technical change to remove an obsolete reference.

  3. 40 CFR 52.1670 - Identification of plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... percent, by weight, for the Long Island Lighting Co.'s Northport Generating Facility (Units 1, 2, and 3... oil limitation to 1.0 percent, by weight, for the Long Island Lighting Company's Glenwood Generating... of New York, Inc. Arthur Kill generating facility, units 2 and 3, Staten Island, New York and...

  4. Interior Lighting Campaign Adds Luminaire Categories; Announces 2018 Recognition Event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandahl, Linda J.; Myer, Michael

    This article will be published in the November issue of the International Facility Management Association's sustainability newsletter. The article both informs facility managers of the Interior Lighting Campaign, and invites them to participate. Highlights include the new types of lamps recently included along with program details.

  5. 9 CFR 590.520 - Breaking room facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Breaking room facilities. 590.520 Section 590.520 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... least 30 foot-candles of light on all working surfaces except that light intensity shall be at least 50...

  6. National Ignition Facility main laser stray light analysis and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, R E; Miller, J L; Peterson, G

    1998-06-26

    Stray light analysis has been carried out for the main laser section of the National Ignition Facility main laser section using a comprehensive non-sequential ray trace model supplemented with additional ray trace and diffraction propagation modeling. This paper describes the analysis and control methodology, gives examples of ghost paths and required tilted lenses, baffles, absorbers, and beam dumps, and discusses analysis of stray light "pencil beams" in the system.

  7. Analysis of de-noising methods to improve the precision of the ILSF BPM electronic readout system

    NASA Astrophysics Data System (ADS)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2016-12-01

    In order to have optimum operation and precise control system at particle accelerators, it is required to measure the beam position with the precision of sub-μm. We developed a BPM electronic readout system at Iranian Light Source Facility and it has been experimentally tested at ALBA accelerator facility. The results show the precision of 0.54 μm in beam position measurements. To improve the precision of this beam position monitoring system to sub-μm level, we have studied different de-noising methods such as principal component analysis, wavelet transforms, filtering by FIR, and direct averaging method. An evaluation of the noise reduction was given to testify the ability of these methods. The results show that the noise reduction based on Daubechies wavelet transform is better than other algorithms, and the method is suitable for signal noise reduction in beam position monitoring system.

  8. Temperature dependent BRDF facility

    NASA Astrophysics Data System (ADS)

    Airola, Marc B.; Brown, Andrea M.; Hahn, Daniel V.; Thomas, Michael E.; Congdon, Elizabeth A.; Mehoke, Douglas S.

    2014-09-01

    Applications involving space based instrumentation and aerodynamically heated surfaces often require knowledge of the bi-directional reflectance distribution function (BRDF) of an exposed surface at high temperature. Addressing this need, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) developed a BRDF facility that features a multiple-port vacuum chamber, multiple laser sources covering the spectral range from the longwave infrared to the ultraviolet, imaging pyrometry and laser heated samples. Laser heating eliminates stray light that would otherwise be seen from a furnace and requires minimal sample support structure, allowing low thermal conduction loss to be obtained, which is especially important at high temperatures. The goal is to measure the BRDF of ceramic-coated surfaces at temperatures in excess of 1000°C in a low background environment. Most ceramic samples are near blackbody in the longwave infrared, thus pyrometry using a LWIR camera can be very effective and accurate.

  9. Laboratory Studies of Anomalous Entrainment in Cumulus Cloud Flows

    NASA Astrophysics Data System (ADS)

    Diwan, Sourabh S.; Narasimha, Roddam; Bhat, G. S.; Sreenivas, K. R.

    2011-12-01

    Entrainment in cumulus clouds has been a subject of investigation for the last sixty years, and continues to be a central issue in current research. The development of a laboratory facility that can simulate cumulus cloud evolution enables us to shed light on the problem. The apparatus for the purpose is based on a physical model of cloud flow as a plume with off-source diabatic heating that is dynamically similar to the effect of latent-heat release in natural clouds. We present a critical review of the experimental data so far obtained in such facilities on the variation of the entrainment coefficient in steady diabatic jets and plumes. Although there are some unexplained differences among different data sets, the dominant trend of the results compares favourably with recent numerical simulations on steady-state deep convection, and helps explain certain puzzles in the fluid dynamics of clouds.

  10. New In-Situ and Operando Facilities for Catalysis Science at NSLS-II: The Deployment of Real-Time, Chemical, and Structure-Sensitive X-ray Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomino, Robert M.; Stavitski, Eli; Waluyo, Iradwikanari

    The start of operations at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory heralded a new beginning for photon-science-based research capabilities in catalysis. This new facility builds on many years of pioneering work that was conducted at the NSLS synergistically by many scientists from academia, government labs, and industry. Over several decades, numerous discoveries in catalysis were driven through the emergence of an arsenal of tools at the NSLS that exploited the power of emerging X-ray methods encompassing scattering, spectroscopy, and imaging. Thus, in-situ and operando methodologies that coupled reactor environments directly with advanced analytical techniques pavedmore » a rapid path towards realizing an improved fundamental understanding at the frontiers of chemical science challenges of the day.« less

  11. Roadmap to MaRIE March 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Cris William

    Los Alamos National Laboratory’s proposed MaRIE facility is slated to introduce the world’s highest energy hard x-ray free electron laser (XFEL). As the light source for the Matter-Radiation Interactions in Extremes experimental facility (MaRIE), the 42-keV XFEL, with bursts of x-ray pulses at gigahertz repetition for studying fast dynamical processes, will help accelerate discovery and design of the advanced materials needed to meet 21st-century national security and energy security challenges. Yet the science of free-electron lasers has a long and distinguished history at Los Alamos National Laboratory (LANL), where for nearly four decades Los Alamos scientists have been performing research,more » design, development, and collaboration work in FEL science. The work at Los Alamos has evolved from low-gain amplifier and oscillator FEL development to highbrightness photoinjector development, and later, self-amplified spontaneous emission (SASE) and high-gain amplifier FEL development.« less

  12. Achieving Transformational Materials Performance in a New Era of Science

    ScienceCinema

    Sarrao, John

    2017-12-22

    The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

  13. New In-Situ and Operando Facilities for Catalysis Science at NSLS-II: The Deployment of Real-Time, Chemical, and Structure-Sensitive X-ray Probes

    DOE PAGES

    Palomino, Robert M.; Stavitski, Eli; Waluyo, Iradwikanari; ...

    2017-03-31

    The start of operations at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory heralded a new beginning for photon-science-based research capabilities in catalysis. This new facility builds on many years of pioneering work that was conducted at the NSLS synergistically by many scientists from academia, government labs, and industry. Over several decades, numerous discoveries in catalysis were driven through the emergence of an arsenal of tools at the NSLS that exploited the power of emerging X-ray methods encompassing scattering, spectroscopy, and imaging. Thus, in-situ and operando methodologies that coupled reactor environments directly with advanced analytical techniques pavedmore » a rapid path towards realizing an improved fundamental understanding at the frontiers of chemical science challenges of the day.« less

  14. Optical performance of prototype horn-coupled TES bolometer arrays for SAFARI

    NASA Astrophysics Data System (ADS)

    Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Hijmering, Richard; Ridder, Marcel L.

    2016-07-01

    The SAFARI Detector Test Facility is an ultra-low background optical testbed for characterizing ultra-sensitive prototype horn-coupled TES bolmeters for SAFARI, the grating spectrometer on board the proposed SPICA satellite. The testbed contains internal cold and hot black-body illuminators and a light-pipe for illumination with an external source. We have added reimaging optics to facilitate array optical measurements. The system is now being used for optical testing of prototype detector arrays read out with frequency-domain multiplexing. We present our latest optical measurements of prototype arrays and discuss these in terms of the instrument performance.

  15. Surface oxygen micropatterns on glow discharge polymer targets by photo irradiation

    DOE PAGES

    Reynolds, Hannah; Baxamusa, Salmaan; Haan, Steven W.; ...

    2016-02-24

    Recent simulations predict surface oxygen may be a significant source of disruptive perturbations in the implosion process of glow-discharge polymers (GDP) ablators at the National Ignition Facility. GDP material held in ambient atmospheric conditions showed an increase in mass when stored in light transparent containers, which suggests that photo exposure is a driving force for oxygen absorption. To investigate if surface oxygen is a contributing factor of disruptive perturbations during implosion, we developed a method to imprint a periodic micropattern of oxygen on the surface of GDP and used it to fabricate a flat sample for empirical testing.

  16. NSLS-II beamline scattered gas bremsstrahlung radiation shielding calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Razvan; Xia, Zhenghua, E-mail: xiazhenghuacn@hotmail.com; Job, Panakkal

    2016-07-27

    National Synchrotron Light Source II (NSLS-II) is a new state-of-the-art 3rd generation synchrotron. The NSLS-II facility is shielded up to 3 GeV electron beam energy at 500 mA. When the gas bremsstrahlung (GB) from the storage ring is scattered by the beamline components in the first optical enclosure (FOE), the scattered radiation will pose additional radiation hazard (bypassing primary GB collimators and stops) and challenge the FOE shielding. The scattered GB radiation hazard can be mitigated by supplementary shielding or with an exclusion zone downstream of the FOE.

  17. Microbes to Biomes at Berkeley Lab

    ScienceCinema

    None

    2018-06-21

    Microbes are the Earth's most abundant and diverse form of life. Berkeley Lab's Microbes to Biomes initiative -- which will take advantage of research expertise at the Joint Genome Institute, Advanced Light Source, Molecular Foundry, and the new computational science facility -- is designed to explore and reveal the interactions of microbes with one another and with their environment. Microbes power our planet’s biogeochemical cycles, provide nutrients to our plants, purify our water and are integral components in keeping the human body free of disease and may hold the key to the Earth’s future.

  18. Innovative signal processing for Johnson Noise thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezell, N. Dianne Bull; Britton, Jr, Charles L.; Roberts, Michael

    This report summarizes the newly developed algorithm that subtracted the Electromagnetic Interference (EMI). The EMI performance is very important to this measurement because any interference in the form on pickup from external signal sources from such as fluorescent lighting ballasts, motors, etc. can skew the measurement. Two methods of removing EMI were developed and tested at various locations. This report also summarizes the testing performed at different facilities outside Oak Ridge National Laboratory using both EMI removal techniques. The first EMI removal technique reviewed in previous milestone reports and therefore this report will detail the second method.

  19. Calibration strategy and optics for ARGOS at the LBT

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Peter, Diethard; Aigner, Simon

    2010-07-01

    Effective calibration procedures play an important role for the efficiency and performance of astronomical instrumentation. We report on the calibration scheme for ARGOS, the Laser Guide Star (LGS) facility at the LBT. An artificial light source is used to feign the real laser beacons and perform extensive testing of the system, independent of the time of day and weather conditions, thereby greatly enhancing the time available for engineering. Fibre optics and computer generated holograms (CGHs) are used to generate the necessary wavefront. We present the optomechanical design, and discuss the expected accuracy, as well as tolerances in assembly and alignment.

  20. Evaluation of an automated ultraviolet-C light disinfection device and patient hand hygiene for reduction of pathogen transfer from interactive touchscreen computer kiosks.

    PubMed

    Alhmidi, Heba; Cadnum, Jennifer L; Piedrahita, Christina T; John, Amrita R; Donskey, Curtis J

    2018-04-01

    Touchscreens are a potential source of pathogen transmission. In our facility, patients and visitors rarely perform hand hygiene after using interactive touchscreen computer kiosks. An automated ultraviolet-C touchscreen disinfection device was effective in reducing bacteriophage MS2, bacteriophage ϕX174, methicillin-resistant Staphylococcus aureus, and Clostridium difficile spores inoculated onto a touchscreen. In simulations, an automated ultraviolet-C touchscreen disinfection device alone or in combination with hand hygiene reduced transfer of the viruses from contaminated touchscreens to fingertips. Published by Elsevier Inc.

  1. KSC-2009-3291

    NASA Image and Video Library

    2009-05-27

    CAPE CANAVERAL, Fla. – Gathering on stage for the groundbreaking ceremony for the joint NASA and Florida Power & Light, or FPL, solar power project at NASA's Kennedy Space Center are Florida Rep. Bill Posey, Eric Draper, deputy director of Audubon of Florida, Sen. Bill Nelson, Florida Rep. Suzanne Kosmas, Armando Olivera, president and CEO of FPL, Center Director Bob Cabana and Pam Rauch, vice president of External Affairs for FPL. FPL, Florida's largest electric utility, will build and maintain two solar photovoltaic power generation systems at Kennedy. One will produce an estimated 10 megawatts of emissions-free power for FPL customers, which is enough energy to serve roughly 1,100 homes. The second is a one-megawatt solar power facility that will provide renewable energy directly to Kennedy. The FPL facilities at NASA will help provide Florida residents and America's space program with new sources of clean energy that will cut reliance on fossil fuels and improve the environment by reducing greenhouse gas emissions. The one megawatt facility also will help NASA meet its goal for use of power generated from renewable energy. Photo credit: NASA/Kim Shiflett

  2. US Department of Energy education programs catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    Missions assigned to DOE by Congress include fundamental scientific research, research and development of energy technologies, energy conservation, strategic weapons development and production, energy regulation, energy data collection and analysis, federal power marketing, and education in science and technology. Contributing to mathematics and science education initiatives are nine DOE national laboratories and more than 30 additional specialized research facilities. Within their walls, some of the most exciting research in contemporary science is conducted. The Synchrotron Light Source at Brookhaven National Laboratory, the Intense Pulsed Neutron Source at Argonne National Laboratory, lasers, electron microscopes, advanced robotics and supercomputers are examples ofmore » some of the unique tools that DOE employs in exploring research frontiers. Nobel laureates and other eminent scientists employed by DOE laboratories have accomplished landmark work in physics, chemistry, biology, materials science, and other disciplines. The Department oversees an unparalleled collection of scientific and technical facilities and equipment with extraordinary potential for kindling in students and the general public a sense of excitement about science and increasing public science literacy. During 1991, programs funded by DOE and its contractors reached more than one million students and educators. This document is a catalog of these education programs.« less

  3. US Department of Energy education programs catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    Missions assigned to DOE by Congress include fundamental scientific research, research and development of energy technologies, energy conservation, strategic weapons development and production, energy regulation, energy data collection and analysis, federal power marketing, and education in science and technology. Contributing to mathematics and science education initiatives are nine DOE national laboratories and more than 30 additional specialized research facilities. Within their walls, some of the most exciting research in contemporary science is conducted. The Synchrotron Light Source at Brookhaven National Laboratory, the Intense Pulsed Neutron Source at Argonne National Laboratory, lasers, electron microscopes, advanced robotics and supercomputers are examples ofmore » some of the unique tools that DOE employs in exploring research frontiers. Nobel laureates and other eminent scientists employed by DOE laboratories have accomplished landmark work in physics, chemistry, biology, materials science, and other disciplines. The Department oversees an unparalleled collection of scientific and technical facilities and equipment with extraordinary potential for kindling in students and the general public a sense of excitement about science and increasing public science literacy. During 1991, programs funded by DOE and its contractors reached more than one million students and educators. This document is a catalog of these education programs.« less

  4. Making Advanced Scientific Algorithms and Big Scientific Data Management More Accessible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatakrishnan, S. V.; Mohan, K. Aditya; Beattie, Keith

    2016-02-14

    Synchrotrons such as the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory are known as user facilities. They are sources of extremely bright X-ray beams, and scientists come from all over the world to perform experiments that require these beams. As the complexity of experiments has increased, and the size and rates of data sets has exploded, managing, analyzing and presenting the data collected at synchrotrons has been an increasing challenge. The ALS has partnered with high performance computing, fast networking, and applied mathematics groups to create a"super-facility", giving users simultaneous access to the experimental, computational, and algorithmic resourcesmore » to overcome this challenge. This combination forms an efficient closed loop, where data despite its high rate and volume is transferred and processed, in many cases immediately and automatically, on appropriate compute resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beam-time. In this paper, We will present work done on advanced tomographic reconstruction algorithms to support users of the 3D micron-scale imaging instrument (Beamline 8.3.2, hard X-ray micro-tomography).« less

  5. Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst

    NASA Astrophysics Data System (ADS)

    Han, Lei; Wang, Ping; Zhu, Chengzhou; Zhai, Yueming; Dong, Shaojun

    2011-07-01

    In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability.In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability. Electronic supplementary information (ESI) available: SEM images of the AgCl samples synthesized by changing the addition amount of PVP and AgNO3. See DOI: 10.1039/c1nr10247h

  6. Effects of color temperatures (Kelvin) of LED bulbs on blood physiological variables of broilers grown to heavy weights.

    PubMed

    Olanrewaju, H A; Purswell, J L; Collier, S D; Branton, S L

    2015-08-01

    Light-emitting diode (LED) lighting is being used in the poultry industry to reduce energy usage in broiler production facilities. However, limited data are available comparing efficacy of different spectral distribution of LED bulbs on blood physiological variables of broilers grown to heavy weights (>3 kg). The present study evaluated the effects of color temperature (Kelvin) of LED bulbs on blood physiological variables of heavy broilers in 2 trials with 4 replicates/trial. The study was a randomized complete block design. Four light treatments consisted of 3 LED light bulbs [2,700 K, (Warm-LED); 5,000 K, (Cool-LED-#1); 5,000 K, (Cool-LED-#2)] and incandescent light (ICD, standard) from 1 to 56 d age. A total of 960 1-day-old Ross × Ross 708 chicks (30 males/room 30 females/room) were equally and randomly distributed among 16 environmentally controlled rooms at 50% RH. Each of the 4 treatments was represented by 4 rooms. Feed and water were provided ad libitum. All treatment groups were provided the same diet. Venous blood samples were collected on d 21, 28, 42, and 56 for immediate analysis of selected physiological variables and plasma collection. In comparison with ICD, Cool-LED-#1 had greater (P < 0.05) effects on pH, partial pressure of CO₂(pCO₂), partial pressure of O₂(pO₂), saturated O₂(sO₂), and K⁺. However, all these acid-base changes remained within the normal venous acid-base homeostasis and physiological ranges. In addition, no effect of treatments was observed on HCO(3)(-), hematocrit (Hct), hemoglobin (Hb), Na⁺, Ca²⁺, Cl⁻, mean corpuscular hemoglobin concentration (McHc), osmolality, and anion gap. Moreover, blood glucose concentrations were not affected by treatments. This study shows that the 3 LED light bulbs evaluated in this study may be suitable for replacement of ICD light sources in commercial poultry facilities to reduce energy cost and optimize production efficiency without inducing physiological stress on broilers grown to heavy weights. © 2015 Poultry Science Association Inc.

  7. Exotic X-ray Sources from Intermediate Energy Electron Beams

    NASA Astrophysics Data System (ADS)

    Chouffani, K.; Wells, D.; Harmon, F.; Jones, J. L.; Lancaster, G.

    2003-08-01

    High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, "novel" x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic "structure" of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR).

  8. Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances.

    PubMed

    Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu

    2015-12-28

    We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO(4) photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.

  9. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... composites production facility is a new affected source or an existing affected source? 63.5795 Section 63... for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or...

  10. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prost, L. R.

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  11. 40 CFR 52.1689 - Original Identification of plan section.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... percent, by weight, for the Long Island Lighting Co.'s Northport Generating Facility (Units 1, 2, and 3... oil limitation to 1.0 percent, by weight, for the Long Island Lighting Company's Glenwood Generating... of New York, Inc. Arthur Kill generating facility, units 2 and 3, Staten Island, New York and...

  12. 40 CFR 52.1689 - Original Identification of plan section.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... percent, by weight, for the Long Island Lighting Co.'s Northport Generating Facility (Units 1, 2, and 3... oil limitation to 1.0 percent, by weight, for the Long Island Lighting Company's Glenwood Generating... of New York, Inc. Arthur Kill generating facility, units 2 and 3, Staten Island, New York and...

  13. 40 CFR 52.1689 - Original identification of plan section.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... percent, by weight, for the Long Island Lighting Co.'s Northport Generating Facility (Units 1, 2, and 3... oil limitation to 1.0 percent, by weight, for the Long Island Lighting Company's Glenwood Generating... of New York, Inc. Arthur Kill generating facility, units 2 and 3, Staten Island, New York and...

  14. 77 FR 60041 - Heating, Cooling, and Lighting Standards for Bureau-Funded Dormitory Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs 25 CFR Part 36 [Docket ID BIA-2012-0001] RIN 1076-AF10 Heating, Cooling, and Lighting Standards for Bureau-Funded Dormitory Facilities AGENCY: Bureau of Indian Affairs, Interior. ACTION: Final rule. SUMMARY: The Bureau of Indian Affairs (BIA) is...

  15. Heating device for semiconductor wafers

    DOEpatents

    Vosen, Steven R.

    1999-01-01

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  16. Heating device for semiconductor wafers

    DOEpatents

    Vosen, S.R.

    1999-07-27

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  17. The Light Microscopy Module: An On-Orbit Multi-User Microscope Facility

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Snead, John H.

    2002-01-01

    The Light Microscopy Module (LMM) is planned as a remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and operation of fluids and biology experiments within the Fluids and Combustion Facility (FCF) Fluids Integrated Rack (FIR) on the International Space Station (ISS). The LMM will be the first integrated payload with the FIR to conduct four fluid physics experiments. A description of the LMM diagnostic capabilities, including video microscopy, interferometry, laser tweezers, confocal, and spectrophotometry, will be provided.

  18. 40 CFR 63.5692 - How do I know if my boat manufacturing facility is a new source or an existing source?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false How do I know if my boat manufacturing... Pollutants for Boat Manufacturing What the Subpart Covers § 63.5692 How do I know if my boat manufacturing facility is a new source or an existing source? (a) A boat manufacturing facility is a new source if it...

  19. 40 CFR 63.5692 - How do I know if my boat manufacturing facility is a new source or an existing source?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false How do I know if my boat manufacturing... Pollutants for Boat Manufacturing What the Subpart Covers § 63.5692 How do I know if my boat manufacturing facility is a new source or an existing source? (a) A boat manufacturing facility is a new source if it...

  20. 40 CFR 63.5692 - How do I know if my boat manufacturing facility is a new source or an existing source?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I know if my boat manufacturing... Pollutants for Boat Manufacturing What the Subpart Covers § 63.5692 How do I know if my boat manufacturing facility is a new source or an existing source? (a) A boat manufacturing facility is a new source if it...

  1. Site-specific standard request for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the rust garage facility buildings 9754-1 and 9720-15: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-01

    This document represents a Site-specific Standard Request for underground storage tanks (USTs) 1219-U,1222-U and 2082-U previously located at former Building 9754-1, and tank 2086-U previously located at Building 9720-15, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The tanks previously contained petroleum products. For the purposes of this report, the two building sites will be regarded as a single UST site and will be referred to as the Rust Garage Facility. The current land use associated with the Y-12 Plant is light industrial and the operational period of the plant is projected to be at least 30 years. Thus, potential futuremore » residential exposures are not expected to occur for at least 30 years. Based on the degradation coefficient for benzene (the only carcinogenic petroleum constituent detected in soils or groundwater at the Rust Garage Facility), it is expected that the benzene and other contaminants at the site will likely be reduced prior to expiration of the 30-year plant operational period. As the original sources of petroleum contamination have been removed, and the area of petroleum contamination is limited, a site-specific standard is therefore being requested for the Rust Garage Facility.« less

  2. Measurements of the Optical Performance of Prototype TES Bolometers for SAFARI

    NASA Astrophysics Data System (ADS)

    Audley, M. D.; de Lange, G.; Ranjan, M.; Gao, J.-R.; Khosropanah, P.; Ridder, M. L.; Mauskopf, P. D.; Morozov, D.; Doherty, S.; Trappe, N.; Withington, S.

    2014-09-01

    We have measured the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays, coupled with a Fourier transform spectrometer, will provide images of a 2'×2' field of view with spectral information over the wavelength range 34-210 μm. Each horn-coupled bolometer consists of a transition edge sensor (TES), with a transition temperature close to 100 mK, and a thin-film Ta absorber on a thermally-isolated silicon nitride membrane. SAFARI requires extremely sensitive detectors ( NEP˜2×10-19 W/), with correspondingly low saturation powers (˜5 fW), to take advantage of SPICA's cooled optics. To meet the challenge of testing such sensitive detectors we have constructed an ultra-low background test facility based on a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion, shielding, and vibration isolation. For optical measurements the system contains internal cold (3-30 K) and hot (˜300 K) black-body calibration sources, as well as a light pipe for external illumination. We discuss our measurements of high optical efficiency in prototype SAFARI detectors and describe recent improvements to the test facility that will enable us to test the full SAFARI focal-plane arrays.

  3. Process simulations for the LCLS-II cryogenic systems

    NASA Astrophysics Data System (ADS)

    Ravindranath, V.; Bai, H.; Heloin, V.; Fauve, E.; Pflueckhahn, D.; Peterson, T.; Arenius, D.; Bevins, M.; Scanlon, C.; Than, R.; Hays, G.; Ross, M.

    2017-12-01

    Linac Coherent Light Source II (LCLS-II), a 4 GeV continuous-wave (CW) superconducting electron linear accelerator, is to be constructed in the existing two mile Linac facility at the SLAC National Accelerator Laboratory. The first light from the new facility is scheduled to be in 2020. The LCLS-II Linac consists of thirty-five 1.3 GHz and two 3.9 GHz superconducting cryomodules. The Linac cryomodules require cryogenic cooling for the super-conducting niobium cavities at 2.0 K, low temperature thermal intercept at 5.5-7.5 K, and a thermal shield at 35-55 K. The equivalent 4.5 K refrigeration capacity needed for the Linac operations range from a minimum of 11 kW to a maximum of 24 kW. Two cryogenic plants with 18 kW of equivalent 4.5 K refrigeration capacity will be used for supporting the Linac cryogenic cooling requirements. The cryogenic plants are based on the Jefferson Lab’s CHL-II cryogenic plant design which uses the “Floating Pressure” design to support a wide variation in the cooling load. In this paper, the cryogenic process for the integrated LCLS-II cryogenic system and the process simulation for a 4.5 K cryoplant in combination with a 2 K cold compressor box, and the Linac cryomodules are described.

  4. From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation

    NASA Astrophysics Data System (ADS)

    Remington, Bruce A.; Rudd, Robert E.; Wark, Justin S.

    2015-09-01

    Over the past 3 decades, there has been an exponential increase in work done in the newly emerging field of matter at extreme states of deformation and compression. This accelerating progress is due to the confluence of new experimental facilities, experimental techniques, theory, and simulations. Regimes of science hitherto thought out of reach in terrestrial settings are now being accessed routinely. High-pressure macroscopic states of matter are being experimentally studied on high-power lasers and pulsed power facilities, and next-generation light sources are probing the quantum response of matter at the atomic level. Combined, this gives experimental access to the properties and dynamics of matter from femtoseconds to microseconds in time scale and from kilobars to gigabars in pressure. There are a multitude of new regimes of science that are now accessible in laboratory settings. Examples include planetary formation dynamics, asteroid and meteor impact dynamics, space hardware response to hypervelocity dust and debris impacts, nuclear reactor component response to prolonged exposure to radiation damage, advanced research into light weight armor, capsule dynamics in inertial confinement fusion research, and the basic high energy density properties of matter. We review highlights and advances in this rapidly developing area of science and research.

  5. Intramural Comparison of NIST Laser and Optical Fiber Power Calibrations.

    PubMed

    Lehman, John H; Vayshenker, Igor; Livigni, David J; Hadler, Joshua

    2004-01-01

    The responsivity of two optical detectors was determined by the method of direct substitution in four different NIST measurement facilities. The measurements were intended to demonstrate the determination of absolute responsivity as provided by NIST calibration services at laser and optical-communication wavelengths; nominally 633 nm, 850 nm, 1060 nm, 1310 nm, and 1550 nm. The optical detectors have been designated as checks standards for the purpose of routine intramural comparison of our calibration services and to meet requirements of the NIST quality system, based on ISO 17025. The check standards are two optical-trap detectors, one based on silicon and the other on indium gallium arsenide photodiodes. The four measurement services are based on: (1) the laser optimized cryogenic radiometer (LOCR) and free field collimated laser light; (2) the C-series isoperibol calorimeter and free-field collimated laser light; (3) the electrically calibrated pyroelectric radiometer and fiber-coupled laser light; (4) the pyroelectric wedge trap detector, which measures light from a lamp source and monochromator. The results indicate that the responsivity of the check standards, as determined independently using the four services, agree to within the published expanded uncertainty ranging from approximately 0.02 % to 1.24 %.

  6. Technology to Establish a Factory for High QE Alkali Antimonide Photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheiss, Thomas

    2015-11-16

    Intense electron beams are key to a large number of scientific endeavors, including electron cooling of hadron beams, electron-positron colliders, secondary-particle beams such as photons and positrons, sub-picosecond ultrafast electron diffraction (UED), and new high gradient accelerators that use electron-driven plasmas. The last decade has seen a considerable interest in pursuit and realization of novel light sources such as Free Electron Lasers [1] and Energy Recovery Linacs [2] that promise to deliver unprecedented quality x-ray beams. Many applications for high-intensity electron beams have arisen in recent years in high-energy physics, nuclear physics and energy sciences, such as recent designs formore » an electron-hadron collider at CERN (LHeC) [3], and beam coolers for hadron beams at LHC and eRHIC [4,5]. Photoinjectors are used at the majority of high-brightness electron linacs today, due to their efficiency, timing structure flexibility and ability to produce high power, high brightness beams. The performance of light source machines is strongly related to the brightness of the electron beam used for generating the x-rays. The brightness of the electron beam itself is mainly limited by the physical processes by which electrons are generated. For laser based photoemission sources this limit is ultimately related to the properties of photocathodes [6]. Most facilities are required to expend significant manpower and money to achieve a workable, albeit often non-ideal, compromise photocathode solution. If entirely fabricated in-house, the photocathode growth process itself is laborious and not always reproducible: it involves the human element while requiring close adherence to recipes and extremely strict control of deposition parameters. Lack of growth reliability and as a consequence, slow adoption of viable photoemitter types, can be partly attributed to the absence of any centralized facility or commercial entity to routinely provide high peak current capable, low emittance, visible-light sensitive photocathodes to the myriad of source systems in use and under development. Successful adoption of photocathodes requires strict adherence to proper fabrication, operation, and maintenance methodologies, necessitating specialized knowledge and skills. Key issues include the choice of photoemitter material, development of a more streamlined growth process to minimize human operator uncertainties, accommodation of varying photoemitter substrate materials and geometries, efficient transport and insertion mechanisms preserving the photo-yield, and properly conveyed photoemitter operational and maintenance methodologies. AES, in collaboration with Cornell University in a Phase I STTR, developed an on-demand industrialized growth and centralized delivery system for high-brightness photocathodes focused upon the alkali antimonide photoemitters. To the end user, future photoemitter sourcing will become as simple as other readily available consumables, rather than a research project requiring large investments in time and personnel.« less

  7. MHD-EMP protection guidelines

    NASA Astrophysics Data System (ADS)

    Barnes, P. R.; Vance, E. F.

    A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after an exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.

  8. Surgical instrument biocontaminant fluorescence detection in ambient lighting conditions for hospital reprocessing and sterilization department (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Baribeau, François; Bubel, Annie; Dumont, Guillaume; Vachon, Carl; Lépine, André; Rochefort, Stéphane; Massicotte, Martin; Buteau-Vaillancourt, Louis; Gallant, Pascal; Mermut, Ozzy

    2017-03-01

    Hospitals currently rely on simple human visual inspection for assessing cleanliness of surgical instruments. Studies showed that surgical site infections are in part attributed to inadequate cleaning of medical devices. Standards groups recognize the need to objectively quantify the amount of residues on surgical instruments and establish guidelines. We developed a portable technology for the detection of contaminants on surgical instruments through fluorescence following cleaning. Weak fluorescence signals are usually detected in the obscurity only with the lighting of the excitation source. The key element of this system is that it works in ambient lighting conditions, a requirement to not disturb the normal workflow of hospital reprocessing facilities. A biocompatible fluorescent dye is added to the detergent and labels the proteins of organic residues. It is resistant to the harsh environment in a washer-disinfector. Two inspection devices have been developed with a 488nm laser as the excitation source: a handheld scanner and a tabletop station using spectral-domain and time-domain ambient light cancellation schemes. The systems are eye safe and equipped with image processing and interfacing software to provide visual or audible warnings to the operator based on a set of adjustable signal thresholds. Micron-scale residues are detected by the system which can also evaluate soil size and mass. Unlike swabbing, it can inspect whole tools in real-time. The technology has been validated in an independent hospital decontamination research laboratory. It also has potential applications in the forensics, agro-food, and space fields. Technical aspects and results will be presented and discussed.

  9. 40 CFR 160.45 - Test system supply facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aquatic plants. (2) Facilities for plant growth, including, but not limited to greenhouses, growth chambers, light banks, and fields. (c) When appropriate, facilities for aquatic animal tests shall be... preserved by appropriate means. (b) When appropriate, plant supply facilities shall be provided. As...

  10. Nonimaging Optical Illumination System

    DOEpatents

    Winston, Roland

    1994-08-02

    A nonimaging illumination optical device for producing selected intensity output over an angular range. The device includes a light reflecting surface (24, 26) around a light source (22) which is disposed opposite the aperture opening of the light reflecting surface (24, 26). The light source (22) has a characteristic dimension which is small relative to one or more of the distance from the light source (22) to the light reflecting surface (24, 26) or the angle subtended by the light source (22) at the light reflecting surface (24, 26).

  11. Characterization of Stormwater Runoff from a Light Rail Transit Area.

    PubMed

    Sajjad, Raja Umer; Kim, Kyoung Jin; Memon, Sheeraz; Sukhbaatar, Chinzorig; Paule, Ma Cristina; Lee, Bum-Yeon; Lee, Chang-Hee

    2015-09-01

    The monitoring of stormwater runoff from Light Rail Transit (LRT) facilities is insufficient in many regions around the world. In this study, runoff quality and quantity were monitored during operational and non-operational LRT phases during 2010-2013. The event mean concentration (EMC) of pollutants showed little statistical variability during both phases. The antecedent dry day (ADD) showed a strong to moderate positive correlation with most pollutant EMCs during the non-operational phase. The existence and magnitude of the first flush from LRT runoff was found to be similar to those from other transportation land uses. The comparison of LRT runoff data with an adjacent road bridge site showed that the pollutant EMC and unit load were 2 to 9 times higher from the road bridge. It was suggested that LRT automated operation and the elevated track makes this transportation mode a viable option for the management of non-point source pollution.

  12. Development of a circadian light source

    NASA Astrophysics Data System (ADS)

    Nicol, David B.; Ferguson, Ian T.

    2002-11-01

    Solid state lighting presents a new paradigm for lighting - controllability. Certain characteristics of the lighting environment can be manipulated, because of the possibility of using multiple LEDs of different emission wavelengths as the illumination source. This will provide a new, versatile, general illumination source due to the ability to vary the spectral power distribution. New effects beyond the visual may be achieved that are not possible with conventional light sources. Illumination has long been the primary function of lighting but as the lighting industry has matured the psychological aspects of lighting have been considered by designers; for example, choosing a particular lighting distribution or color variation in retail applications. The next step in the evolution of light is to consider the physiological effects of lighting that cause biological changes in a person within the environment. This work presents the development of a source that may have important bearing on this area of lighting. A circadian light source has been developed to provide an illumination source that works by modulating its correlated color temperature to mimic the changes in natural daylight through the day. In addition, this source can cause or control physiological effects for a person illuminated by it. The importance of this is seen in the human circadian rhythm's peak response corresponding to blue light at ~460 nm which corresponds to the primary spectral difference in increasing color temperature. The device works by adding blue light to a broadband source or mixing polychromatic light to mimic the variation of color temperature observed for the Planckian Locus on the CIE diagram. This device can have several applications including: a tool for researchers in this area, a general illumination lighting technology, and a light therapy device.

  13. Setting up a Rayleigh Scattering Based Flow Measuring System in a Large Nozzle Testing Facility

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Gomez, Carlos R.

    2002-01-01

    A molecular Rayleigh scattering based air density measurement system has been built in a large nozzle testing facility at NASA Glenn Research Center. The technique depends on the light scattering by gas molecules present in air; no artificial seeding is required. Light from a single mode, continuous wave laser was transmitted to the nozzle facility by optical fiber, and light scattered by gas molecules, at various points along the laser beam, is collected and measured by photon-counting electronics. By placing the laser beam and collection optics on synchronized traversing units, the point measurement technique is made effective for surveying density variation over a cross-section of the nozzle plume. Various difficulties associated with dust particles, stray light, high noise level and vibration are discussed. Finally, a limited amount of data from an underexpanded jet are presented and compared with expected variations to validate the technique.

  14. A tuneable approach to uniform light distribution for artificial daylight photodynamic therapy.

    PubMed

    O'Mahoney, Paul; Haigh, Neil; Wood, Kenny; Brown, C Tom A; Ibbotson, Sally; Eadie, Ewan

    2018-06-16

    Implementation of daylight photodynamic therapy (dPDT) is somewhat limited by variable weather conditions. Light sources have been employed to provide artificial dPDT indoors, with low irradiances and longer treatment times. Uniform light distribution across the target area is key to ensuring effective treatment, particularly for large areas. A novel light source is developed with tuneable direction of light emission in order to meet this challenge. Wavelength composition of the novel light source is controlled such that the protoporphyrin-IX (PpIX) weighed spectra of both the light source and daylight match. The uniformity of the light source is characterised on a flat surface, a model head and a model leg. For context, a typical conventional PDT light source is also characterised. Additionally, the wavelength uniformity across the treatment site is characterised. The PpIX-weighted spectrum of the novel light source matches with PpIX-weighted daylight spectrum, with irradiance values within the bounds for effective dPDT. By tuning the direction of light emission, improvements are seen in the uniformity across large anatomical surfaces. Wavelength uniformity is discussed. We have developed a light source that addresses the challenges in uniform, multiwavelength light distribution for large area artificial dPDT across curved anatomical surfaces. Copyright © 2018. Published by Elsevier B.V.

  15. Advice on the setting up of a workshop for treating tritium gas light sources at 527 ecw at Dongen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-05-01

    Tritium occurs in light sources mainly in the form of hydrogen gas, but also a certain amount in the form of tritiated water vapor. From a radiation-hygienic standpoint, the latter form determines the safety regulations to be taken, because this radioactive water vapor is absorbed to a considerable amount by the human body via inhalation and via the skin. The work space must satisfy various demands. The distances over which the apparatus and accessories are transported must be as short as possible. The floors must be seamless, the walls must be decontaminated. There must be storage in the work roommore » for radioactive materials and this facility must be fireproof. The apparatus must work on a seamless and well decontaminated working surface. The air velocity in the opening on the front side must amount to approximately 40 cm/sec with normal use. A ventilator can be placed in the ceiling with a water-tight design. The air supply in the space must be regulated in such a way that the whole space is provided with fresh air.« less

  16. Numerical simulations of the hard X-ray pulse intensity distribution at the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardini, Tom; Aquila, Andrew; Boutet, Sebastien

    Numerical simulations of the current and future pulse intensity distributions at selected locations along the Far Experimental Hall, the hard X-ray section of the Linac Coherent Light Source (LCLS), are provided. Estimates are given for the pulse fluence, energy and size in and out of focus, taking into account effects due to the experimentally measured divergence of the X-ray beam, and measured figure errors of all X-ray optics in the beam path. Out-of-focus results are validated by comparison with experimental data. Previous work is expanded on, providing quantitatively correct predictions of the pulse intensity distribution. Numerical estimates in focus aremore » particularly important given that the latter cannot be measured with direct imaging techniques due to detector damage. Finally, novel numerical estimates of improvements to the pulse intensity distribution expected as part of the on-going upgrade of the LCLS X-ray transport system are provided. As a result, we suggest how the new generation of X-ray optics to be installed would outperform the old one, satisfying the tight requirements imposed by X-ray free-electron laser facilities.« less

  17. Numerical simulations of the hard X-ray pulse intensity distribution at the Linac Coherent Light Source

    DOE PAGES

    Pardini, Tom; Aquila, Andrew; Boutet, Sebastien; ...

    2017-06-15

    Numerical simulations of the current and future pulse intensity distributions at selected locations along the Far Experimental Hall, the hard X-ray section of the Linac Coherent Light Source (LCLS), are provided. Estimates are given for the pulse fluence, energy and size in and out of focus, taking into account effects due to the experimentally measured divergence of the X-ray beam, and measured figure errors of all X-ray optics in the beam path. Out-of-focus results are validated by comparison with experimental data. Previous work is expanded on, providing quantitatively correct predictions of the pulse intensity distribution. Numerical estimates in focus aremore » particularly important given that the latter cannot be measured with direct imaging techniques due to detector damage. Finally, novel numerical estimates of improvements to the pulse intensity distribution expected as part of the on-going upgrade of the LCLS X-ray transport system are provided. As a result, we suggest how the new generation of X-ray optics to be installed would outperform the old one, satisfying the tight requirements imposed by X-ray free-electron laser facilities.« less

  18. International lighting in controlled environments workshop: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    Lighting is a central and critical aspect of control in environmental research for plant research and is gaining recognition as a significant factor to control carefully for animal and human research. Thus this workshop was convened to reevaluate the technology that is available today and to work toward developing guidelines for the most effective use of lighting in controlled environments with emphasis on lighting for plants but also to initiate interest in the development of improved guidelines for human and animal research. There are a number of established guidelines for lighting in human and animal environments. Development of new lightingmore » guidelines is necessary for three reasons: (1) recent scientific discoveries show that in addition to supporting the sensation of vision, light has profound nonvisual biological and behavioral effects in both animals and humans; (2) federal regulations (EPACT 1992) are requiring all indoor environments to become more energy efficient with a specific emphasis on energy conservation in lighting; (3) lighting engineers and manufacturers have developed a wealth of new light sources and lighting products that can be applied in animal and human environments. The workshop was aimed at bringing together plant scientists and physical scientists to interact in the discussions. It involved participation of biological scientists involved in studying mechanisms of light reactions and those involved in utilizing lighting for production of plants and maintenance of animals in controlled environments. It included participation of physical scientists from universities and government involved in research as well as those from industry involved in producing lamps and in construction of controlled growth facilities. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  19. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1997-01-01

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

  20. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1994-01-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

  1. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1997-05-06

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

  2. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1994-11-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

  3. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  4. Ground-based plasma contractor characterization

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Aadland, Randall S.

    1987-01-01

    Presented are recent NASA Lewis Research Center (LeRC) plasma contractor experimental results, as well as a description of the plasma contractor test facility. The operation of a 24 cm diameter plasma source with hollow cathode was investigated in the lighted-mode regime of electron current collection from 0.1 to 7.0 A. These results are compared to those obtained with a 12 cm plasma source. Full two-dimensional plasma potential profiles were constructed from emissive probe traces of the contractor plume. The experimentally measured dimensions of the plume sheaths were then compared to those theoretically predicted using a model of a spherical double sheath. Results are consistent for currents up to approximately 1.0 A. For currents above 1.0 A, substantial deviations from theory occur. These deviations are due to sheath asphericity, and possibly volume ionization in the double-sheath region.

  5. 33 CFR 127.109 - Lighting systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  6. 33 CFR 127.109 - Lighting systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  7. 33 CFR 127.109 - Lighting systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  8. 33 CFR 127.109 - Lighting systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  9. 33 CFR 127.109 - Lighting systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  10. LED intense headband light source for fingerprint analysis

    DOEpatents

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  11. 33 CFR 126.15 - What conditions must a designated waterfront facility meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NFPA 307, chapter 5. (2) Containers. Containers packed with dangerous cargo that are vertically stacked... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES... facility transfers dangerous cargo between sunset and sunrise, it must have outdoor lighting that...

  12. 33 CFR 126.15 - What conditions must a designated waterfront facility meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NFPA 307, chapter 5. (2) Containers. Containers packed with dangerous cargo that are vertically stacked... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES... facility transfers dangerous cargo between sunset and sunrise, it must have outdoor lighting that...

  13. 33 CFR 126.15 - What conditions must a designated waterfront facility meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... NFPA 307, chapter 5. (2) Containers. Containers packed with dangerous cargo that are vertically stacked... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES... facility transfers dangerous cargo between sunset and sunrise, it must have outdoor lighting that...

  14. 33 CFR 126.15 - What conditions must a designated waterfront facility meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NFPA 307, chapter 5. (2) Containers. Containers packed with dangerous cargo that are vertically stacked... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES... facility transfers dangerous cargo between sunset and sunrise, it must have outdoor lighting that...

  15. 33 CFR 126.15 - What conditions must a designated waterfront facility meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NFPA 307, chapter 5. (2) Containers. Containers packed with dangerous cargo that are vertically stacked... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES... facility transfers dangerous cargo between sunset and sunrise, it must have outdoor lighting that...

  16. 76 FR 77024 - In the Matter of Carolina Power & Light Company North Carolina Eastern, Municipal Power Agency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... Licenses I Carolina Power & Light Company (CP&L, the licensee) and North Carolina Eastern Municipal Power... operating licenses authorize CP&L to possess, use, and operate the Brunswick facility. II By application... indirect transfer of control of the facility operating licenses for Brunswick, to the extent held by CP&L...

  17. The Impact of Pollution Prevention on Toxic Environmental Releases from U.S. Manufacturing Facilities.

    PubMed

    Ranson, Matthew; Cox, Brendan; Keenan, Cheryl; Teitelbaum, Daniel

    2015-11-03

    Between 1991 and 2012, the facilities that reported to the U.S. Environmental Protection Agency's Toxic Release Inventory (TRI) Program conducted 370,000 source reduction projects. We use this data set to conduct the first quasi-experimental retrospective evaluation of how implementing a source reduction (pollution prevention) project affects the quantity of toxic chemicals released to the environment by an average industrial facility. We use a differences-in-differences methodology, which measures how implementing a source reduction project affects a facility's releases of targeted chemicals, relative to releases of (a) other untargeted chemicals from the same facility, or (b) the same chemical from other facilities in the same industry. We find that the average source reduction project causes a 9-16% decrease in releases of targeted chemicals in the year of implementation. Source reduction techniques vary in effectiveness: for example, raw material modification causes a large decrease in releases, while inventory control has no detectable effect. Our analysis suggests that in aggregate, the source reduction projects carried out in the U.S. since 1991 have prevented between 5 and 14 billion pounds of toxic releases.

  18. Putting tools in the toolbox: Development of a free, open-source toolbox for quantitative image analysis of porous media.

    NASA Astrophysics Data System (ADS)

    Iltis, G.; Caswell, T. A.; Dill, E.; Wilkins, S.; Lee, W. K.

    2014-12-01

    X-ray tomographic imaging of porous media has proven to be a valuable tool for investigating and characterizing the physical structure and state of both natural and synthetic porous materials, including glass bead packs, ceramics, soil and rock. Given that most synchrotron facilities have user programs which grant academic researchers access to facilities and x-ray imaging equipment free of charge, a key limitation or hindrance for small research groups interested in conducting x-ray imaging experiments is the financial cost associated with post-experiment data analysis. While the cost of high performance computing hardware continues to decrease, expenses associated with licensing commercial software packages for quantitative image analysis continue to increase, with current prices being as high as $24,000 USD, for a single user license. As construction of the Nation's newest synchrotron accelerator nears completion, a significant effort is being made here at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory (BNL), to provide an open-source, experiment-to-publication toolbox that reduces the financial and technical 'activation energy' required for performing sophisticated quantitative analysis of multidimensional porous media data sets, collected using cutting-edge x-ray imaging techniques. Implementation focuses on leveraging existing open-source projects and developing additional tools for quantitative analysis. We will present an overview of the software suite that is in development here at BNL including major design decisions, a demonstration of several test cases illustrating currently available quantitative tools for analysis and characterization of multidimensional porous media image data sets and plans for their future development.

  19. Parabolic single-crystal diamond lenses for coherent x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terentyev, Sergey; Blank, Vladimir; Polyakov, Sergey

    2015-09-14

    We demonstrate parabolic single-crystal diamond compound refractive lenses designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic with a similar or equal to 1 mu m precision and surface roughness. A compound refractive lens comprised of six lenses with a radius of curvature R = 200 mu m at the vertex of the parabola and amore » geometrical aperture A = 900 mu m focuses 10 keV x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of similar or equal to 20 x 90 mu m(2) with a gain factor of similar or equal to 50 - 100. (C) 2015 Author(s).« less

  20. Predicting induced radioactivity for the accelerator operations at the Taiwan Photon Source.

    PubMed

    Sheu, R J; Jiang, S H

    2010-12-01

    This study investigates the characteristics of induced radioactivity due to the operations of a 3-GeV electron accelerator at the Taiwan Photon Source (TPS). According to the beam loss analysis, the authors set two representative irradiation conditions for the activation analysis. The FLUKA Monte Carlo code has been used to predict the isotope inventories, residual activities, and remanent dose rates as a function of time. The calculation model itself is simple but conservative for the evaluation of induced radioactivity in a light source facility. This study highlights the importance of beam loss scenarios and demonstrates the great advantage of using FLUKA in comparing the predicted radioactivity with corresponding regulatory limits. The calculated results lead to the conclusion that, due to fairly low electron consumption, the radioactivity induced in the accelerator components and surrounding concrete walls of the TPS is rather moderate and manageable, while the possible activation of air and cooling water in the tunnel and their environmental releases are negligible.

  1. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  2. Velocity Distributions of Interplanetary Dust Derived from Astronomical Sky Spectra

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Ali, S.; Cosby, P. C.; Slanger, T. G.

    2001-11-01

    Characterization of interplanetary dust is important for understanding the creation by accretion of planets and moons, the development of planetary atmospheres, and, potentially, for the initiation of prebiotic chemistry. The recent COBE mission has provided a profile in ecliptic coordinates of the distribution of interplanetary dust particles through their thermal infrared emission. Additional information about interplanetary dust can be extracted from its visible spectrum of scattered sunlight, called Zodiacal Light. Night sky spectra taken at large-aperture telescopes using high-resolution echelle spectrographs reveal Fraunhofer absorption features in the Zodiacal Light spectrum of scattered sunlight, a nuisance in subtraction from the spectrum of the extraterrestrial object under investigation. We are analyzing the intensity modulations and Doppler shifts of solar Fraunhofer absorption lines in the Zodiacal Light component of sky spectra, donated by collaborating astronomers using Keck/HIRES and other high-performance astronomical facilities. Our objectives include velocity distributions of interplanetary dust and improved separation of terrestrial and extraterrestrial sources in sky spectra. Participation of S. Ali was made possible by a grant from the NSF Physics Research Experiences for Undergraduates (REU) program.

  3. Studying radiation hardness of a cadmium tungstate crystal based radiation detector

    NASA Astrophysics Data System (ADS)

    Shtein, M. M.; Smekalin, L. F.; Stepanov, S. A.; Zatonov, I. A.; Tkacheva, T. V.; Usachev, E. Yu

    2016-06-01

    The given article considers radiation hardness of an X-ray detector used in production of non-destructive testing instruments and inspection systems. In the course of research, experiments were carried out to estimate radiation hardness of a detector based on cadmium tungstate crystal and its structural components individually. The article describes a layout of an experimental facility that was used for measurements of radiation hardness. The radiation dose dependence of the photodiode current is presented, when it is excited by a light flux of a scintillator or by an external light source. Experiments were carried out to estimate radiation hardness of two types of optical glue used in detector production; they are based on silicon rubber and epoxy. With the help of a spectrophotometer and cobalt gun, each of the glue samples was measured for a relative light transmission factor with different wavelengths, depending on the radiation dose. The obtained data are presented in a comprehensive analysis of the results. It was determined, which of the glue samples is most suitable for production of detectors working under exposure to strong radiation.

  4. Cyber Security for Lighting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Fact sheet discusses cyber threats unique to lighting control systems in buildings and helps facility managers identify the types of lighting control systems that could introduce cybersecurity risks. Download the fact sheet.

  5. Spectral design flexibility of LED brings better life

    NASA Astrophysics Data System (ADS)

    Ou, Haiyan; Corell, Dennis; Ou, Yiyu; Poulsen, Peter B.; Dam-Hansen, Carsten; Petersen, Paul-Michael

    2012-03-01

    Light-emitting diodes (LEDs) are penetrating into the huge market of general lighting because they are energy saving and environmentally friendly. The big advantage of LED light sources, compared to traditional incandescent lamps and fluorescent light tubes, is the flexible spectral design to make white light using different color mixing schemes. The spectral design flexibility of white LED light sources will promote them for novel applications to improve the life quality of human beings. As an initial exploration to make use of the spectral design flexibility, we present an example: 'no blue' white LED light source for sufferers of disease Porphyria. An LED light source prototype, made of high brightness commercial LEDs applying an optical filter, was tested by a patient suffering from Porphyria. Preliminary results have shown that the sufferer could withstand the light source for much longer time than the standard light source. At last future perspectives on spectral design flexibility of LED light sources improving human being's life will be discussed, with focus on the light and health. The good health is ensured by the spectrum optimized so that vital hormones (melatonin and serotonin) are produced during times when they support human daily rhythm.

  6. The total spectral radiant flux calibration using a spherical spectrometer at National Institute of Metrology China

    NASA Astrophysics Data System (ADS)

    Zhao, Weiqiang; Liu, Hui; Liu, Jian

    2016-11-01

    At present day, in the field of lighting the incandescent lamps are phasing out. The solid state lighting products, i.e. LED, and the related market are developing very fast in China for its promising application, due to the energy-saving and the colorful features. For the quality control and the commercial trade purpose, it is highly necessary to measure the optical parameters of LED light sources with a fast, easy and affordable facility. Therefore, more test labs use the spherical spectrometer to measure LED. The quasi- monochrome of LED and the V(lambda) of silicon photodetector mismatch problem is reduced or avoided, because the total spectral radiant flux (TSRF) is measured, and all the optical parameters are calculate from the TSRF. In such a way, the spherical spectrometer calibration requires TSRF standard lamps instead of the traditional total flux standard lamps. National Institute of Metrology China (NIM) has studied and developed the facilities for TSRF measurement and provides related calibration services. This paper shows the TSRF standard lamp calibration procedure using a spherical spectrometer in every-day calibration and its traceable link to the primary SI unit at NIM. The sphere is of 1.5 m diameter, and installed with a spectrometer and a silicon photodetector. It also shows the detail of data process, such as the spectral absorption correction method and the calculation of the result derived from the spectral readings. The TSRF calibration covers the spectra range of 350 nm to 1050 nm, with a measurement uncertainty of 3.6% 1.8% (k=2).

  7. Light Emitting Diode Flashlights as Effective and Inexpensive Light Sources for Fluorescence Microscopy

    PubMed Central

    Robertson, J. Brian; Zhang, Yunfei; Johnson, Carl Hirschie

    2009-01-01

    Summary Light-emitting diodes (LEDs) are becoming more commonly used as light sources for fluorescence microscopy. We describe the adaptation of a commercially available LED flashlight for use as a source for fluorescence excitation. This light source is long-lived, inexpensive, and is effective for excitation in the range of 440–600 nm. PMID:19772530

  8. 9 CFR 354.226 - Lighting and ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSPECTION AND CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Buildings and Plant Facilities § 354.226 Lighting and ventilation. There shall be ample light, either natural or artificial or...

  9. Composite analysis E-area vaults and saltstone disposal facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potentialmore » sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.« less

  10. Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of Brassica microgreens

    USDA-ARS?s Scientific Manuscript database

    Multi-layer vertical production systems using sole-source (SS) lighting can be used for microgreen production; however, traditional SS lighting can consume large amounts of electrical energy. Light-emitting diodes (LEDs) offer many advantages over conventional light sources including: high photoelec...

  11. 40 CFR 63.11407 - Am I subject to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources: Chromium... this subpart if you own or operate a chromium compounds manufacturing facility that is an area source... source. The affected source is each chromium compounds manufacturing facility. (1) An affected source is...

  12. 40 CFR 63.11407 - Am I subject to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources: Chromium... this subpart if you own or operate a chromium compounds manufacturing facility that is an area source... source. The affected source is each chromium compounds manufacturing facility. (1) An affected source is...

  13. 40 CFR 63.11407 - Am I subject to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources: Chromium... this subpart if you own or operate a chromium compounds manufacturing facility that is an area source... source. The affected source is each chromium compounds manufacturing facility. (1) An affected source is...

  14. 40 CFR 63.11407 - Am I subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources: Chromium... this subpart if you own or operate a chromium compounds manufacturing facility that is an area source... source. The affected source is each chromium compounds manufacturing facility. (1) An affected source is...

  15. 40 CFR 63.11407 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources: Chromium... this subpart if you own or operate a chromium compounds manufacturing facility that is an area source... source. The affected source is each chromium compounds manufacturing facility. (1) An affected source is...

  16. LED lamp

    DOEpatents

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  17. Photonic crystal light source

    DOEpatents

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  18. 76 FR 77021 - In the Matter of Carolina Power & Light Company, North Carolina Eastern Municipal Power Agency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... & Light Company (CP&L, the licensee) and North Carolina Eastern Municipal Power Agency are the owners of... facility operating license authorizes CP&L to possess, use, and operate the Harris facility. II By..., to the extent held by CP&L. The proposed indirect transfer of control of the Harris license results...

  19. A compact, coherent light source system architecture

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Dattoli, G.; DiPalma, E.; Einstein, J.; Milton, S. V.; Petrillo, V.; Rau, J. V.; Sabia, E.; Spassovsky, I. P.; van der Slot, P. J. M.

    2016-09-01

    Our team has been examining several architectures for short-wavelength, coherent light sources. We are presently exploring the use and role of advanced, high-peak power lasers for both accelerating the electrons and generating a compact light source with the same laser. Our overall goal is to devise light sources that are more accessible by industry and in smaller laboratory settings. Although we cannot and do not want to compete directly with sources such as third-generation light sources or that of national-laboratory-based free-electron lasers, we have several interesting schemes that could bring useful and more coherent, short-wavelength light source to more researchers. Here, we present and discuss several results of recent simulations and our future steps for such dissemination.

  20. NSLS II Vacuum System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, M.; Doom, L.; Hseuh, H.

    2009-09-13

    National Synchrotron Light Source II, being constructed at Brookhaven, is a 3-GeV, 500 mA, 3rd generation synchrotron radiation facility with ultra low emittance electron beams. The storage ring vacuum system has a circumference of 792 m and consists of over 250 vacuum chambers with a simulated average operating pressure of less than 1 x 10{sup -9} mbar. A summary of the update design of the vacuum system including girder supports of the chambers, gauges, vacuum pumps, bellows, beam position monitors and simulation of the average pressure will be shown. A brief description of the techniques and procedures for cleaning andmore » mounting the chambers are given.« less

  1. Advanced X-ray Astrophysics Facility (AXAF) science instruments

    NASA Technical Reports Server (NTRS)

    Winkler, Carl E.; Dailey, Carroll C.; Cumings, Nesbitt P.

    1991-01-01

    The overall AXAF program is summarized, with particular emphasis given to its science instruments. The science objectives established for AXAF are to determine the nature of celestial objects, from normal stars to quasars, to elucidate the nature of the physical processes which take place in and between astronomical objects, and to shed light on the history and evolution of the universe. Attention is given to the AXAF CCD imaging spectrometer, which is to provide spectrally and temporally resolved imaging, or, in conjunction with transmission grating, high-resolution dispersed spectral images of celestial sources. A high-resolution camera, an X-ray spectrometer, and the Bragg Crystal Spectrometer are also discussed.

  2. A Window into Longer Lasting Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-11-29

    There’s a new tool in the push to engineer rechargeable batteries that last longer and charge more quickly. An X-ray microscopy technique recently developed at Berkeley Lab has given scientists the ability to image nanoscale changes inside lithium-ion battery particles as they charge and discharge. The real-time images provide a new way to learn how batteries work, and how to improve them. The method was developed at Berkeley Lab’s Advanced Light Source, a DOE Office of Science User Facility, by a team of researchers from the Department of Energy’s SLAC National Accelerator Laboratory, Berkeley Lab, Stanford University, and other institutions.

  3. MaRIE: Probing Dynamic Processes in Soft Materials Using Advanced Light Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sykora, Milan; Kober, Edward Martin

    Los Alamos National Laboratory has developed a concept for a new research facility, MaRIE: Matter-Radiation Interactions in Extremes. The key motivation for MaRIE is to develop new experimental capabilities needed to fill the existing gaps in our fundamental understanding of materials important for key National Nuclear Security Agency (NNSA) goals. MaRIE will bring two major new capabilities: (a) the ability to characterize the meso- and microstructure of materials in bulk as well as local dynamic response characteristics, and (b) the ability to characterize how this microstructure evolves under NNSA-relevant conditions and impacts the material’s performance in this regime.

  4. High-resolution synchrotron infrared spectroscopy of acrolein: The vibrational levels between 700 and 820 cm-1

    NASA Astrophysics Data System (ADS)

    McKellar, A. R. W.; Billinghurst, B. E.

    2015-09-01

    The weak combination bands ν12 + ν18 and ν17 + ν18 of trans-acrolein in the 700-760 cm-1 region are observed at high resolution (<0.001 cm-1) using spectra obtained at the Canadian Light Source synchrotron radiation facility. A detailed rotational analysis of the 121181 and 171181 upper states is made which includes the nearby perturbing states 185, 132181, and 131183. Taking the results of this 5-state fit, together with earlier results on lower lying vibrations, we now have experimental characterization for all 15 excited vibrational states of acrolein lying below 820 cm-1.

  5. Intense X-ray and EUV light source

    DOEpatents

    Coleman, Joshua; Ekdahl, Carl; Oertel, John

    2017-06-20

    An intense X-ray or EUV light source may be driven by the Smith-Purcell effect. The intense light source may utilize intense electron beams and Bragg crystals. This may allow the intense light source to range from the extreme UV range up to the hard X-ray range.

  6. Carambola optics for recycling of light.

    PubMed

    Leutz, Ralf; Fu, Ling; Ries, Harald

    2006-04-20

    Recycling of light allows the luminance (radiance) emitted by a light source to be increased at the cost of reducing the total luminous flux (radiant power). Recycling of light means returning part of the emitted light to the source, where part of it will escape absorption. An optical design that is suitable for multiple and controlled recycling is described. Carambola optics is named for its resemblance to star fruit. Several pairs of mirrors or prisms redirect light repeatedly onto the source, thus achieving multiple transits of the light through the source. This recycled light exits the carambola in the same phase space as light directly emitted and not recycled.

  7. Lighting system with thermal management system

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2015-02-24

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  8. Lighting system with thermal management system

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2015-08-25

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  9. Lighting system with thermal management system

    DOEpatents

    Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2013-05-07

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  10. Lighting system with thermal management system

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr, Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2016-10-11

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  11. Assessment of the actual light dose in photodynamic therapy.

    PubMed

    Schaberle, Fabio A

    2018-06-09

    Photodynamic therapy (PDT) initiates with the absorption of light, which depends on the spectral overlap between the light source emission and the photosensitizer absorption, resulting in the number of photons absorbed, the key parameter starting PDT processes. Most papers report light doses regardless if the light is only partially absorbed or shifted relatively to the absorption peak, misleading the actual light dose value and not allowing quantitative comparisons between photosensitizers and light sources. In this manuscript a method is presented to calculate the actual light dose delivered by any light source for a given photosensitizer. This method allows comparing light doses delivered for any combination of light source (broad or narrow band or daylight) and photosensitizer. Copyright © 2018. Published by Elsevier B.V.

  12. An assessment of potential CO2 Sources throughout the Illinois Basin Subtask 5.1 – CO2 Source Assessment Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Vinodkumar; O?Brien, Kevin; Korose, Christopher

    Large-scale anthropogenic CO2 sources (>100,000 tonnes/year) were catalogued and assessed for the Illinois East Sub-Basin project area. The portfolio of sources is quite diverse, and contains not only fossil-based power generation facilities but also ethanol, chemical, and refinery facilities. Over 60% of the facilities are relatively new (i.e. post year 2000 construction) hence increasing the likelihood that retrofitting the facility with a carbon capture plant is feasible. Two of the facilities have indicated interest in being “early adopters” should the CarbonSAFE project eventually transition to a build and operate phase: the Prairie State Generating Company’s electricity generation facility near Marissa,more » Illinois, and Quasar Syngas, LLC’s Wabash ammonia/direct-reduced iron plant, currently in development north of Terre Haute, Indiana.« less

  13. The potential for optical beam shaping of UV laser sources for mass scale quarantine disinfection applications

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    Recent events concerning H1N1 "swine flu", have demonstrated to the world the significant potential of rapid increases in death and illness among all age groups and even among the healthy population [1] when a highly infectious influenza virus is introduced. In terms of mass casualties due to a pandemic, preparedness and response planning must be done. One course of action to prevent a pandemic outbreak or reduce the impact of a bioterrorist event is the use of isolation or quarantine facilities. The first level of isolation or quarantine is within the personal residence of the person exposed or infected. In the case where, the specific virus is extremely contagious and its onset of symptoms is rapid and severe, there will be a need for the deployment and setup of larger self contained quarantine facilities. Such facilities are used to house infectious individuals to minimize the exposure of susceptible individuals to contagious individuals, especially when specialized care or treatment is required and during the viral shedding period (5 to 7 days). These types of facilities require non-shared air conditioning, heating and ventilating systems where 100% of air is vented to the outside through a series of disinfection systems and staged filters. Although chemical disinfection is possible, there is a desire to incorporate intense UV radiation as a means to deactivate and disinfect airborne virus within hospital settings and isolated mass scale quarantine facilities. UV radiation is also being considered for disinfection of contaminated surfaces, such as table tops, walls and floors in hospitals and temporary quarantine facilities. In such applications the use of UV bulb technology can create many problems, for instance bulb technology requires numerous bulbs to treat a large volume of air, generates significant heat, uses significant power and does not produce large fluxes of UV light efficiently. This paper provides several methods of creating quarantine level disinfection systems using high intensity UV laser sources instead of UV bulb techniques by using laser beam shaping optics in conjunction with traditional optical laser beam delivery techniques.

  14. Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source.

    PubMed

    Ahmad, Azeem; Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Mehta, Dalip Singh

    2016-04-01

    In this Letter, we demonstrate quantitative phase imaging of biological samples, such as human red blood cells (RBCs) and onion cells using narrow temporal frequency and wide angular frequency spectrum light source. This type of light source was synthesized by the combined effect of spatial, angular, and temporal diversity of speckle reduction technique. The importance of using low spatial and high temporal coherence light source over the broad band and narrow band light source is that it does not require any dispersion compensation mechanism for biological samples. Further, it avoids the formation of speckle or spurious fringes which arises while using narrow band light source.

  15. Evaluation of renewable energy alternatives for highway maintenance facilities.

    DOT National Transportation Integrated Search

    2013-12-01

    A considerable annual energy budget is used for heating, lighting, cooling and operating ODOT : maintenance facilities. Such facilities contain vehicle repair and garage bays, which are large open : spaces with high heating demand in winter. The main...

  16. A novel amblyopia treatment system based on LED light source

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling

    2011-05-01

    A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.

  17. A novel amblyopia treatment system based on LED light source

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling

    2010-12-01

    A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.

  18. X-ray diffraction diagnostic design for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ahmed, Maryum F.; House, Allen; Smith, R. F.; Ayers, Jay; Lamb, Zachary S.; Swift, David W.

    2013-09-01

    This paper describes the design considerations for Target Diffraction In-Situ (TARDIS), an x-ray diffraction diagnostic at the National Ignition Facility. A crystal sample is ramp-compressed to peak pressures between 10 and 30 Mbar and, during a pressure hold period, is probed with quasi-monochromatic x-rays emanating from a backlighter source foil. The crystal spectrography diffraction lines are recorded onto image plates. The crystal sample, filter, and image plates are packaged into one assembly, allowing for accurate and repeatable target to image plate registration. Unconverted laser light impinges upon the device, generating debris, the effects of which have been mitigated. Dimpled blast shields, high strength steel alloy, and high-z tungsten are used to shield and protect the image plates. A tapered opening was designed to provide adequate thickness of shielding materials without blocking the drive beams or x-ray source from reaching the crystal target. The high strength steel unit serves as a mount for the crystal target and x-ray source foil. A tungsten body contains the imaging components. Inside this sub-assembly, there are three image plates: a 160 degree field of view curved plate directly opposite the target opening and two flat plates for the top and bottom. A polycarbonate frame, coated with the appropriate filter material and embedded with registration features for image plate location, is inserted into the diagnostic body. The target assembly is metrologized and then the diagnostic assembly is attached.

  19. Development of a high average current polarized electron source with long cathode operational lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and havemore » often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.« less

  20. Source inventory for Department of Energy solid low-level radioactive waste disposal facilities: What it means and how to get one of your own

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.A.

    1991-12-31

    In conducting a performance assessment for a low-level waste (LLW) disposal facility, one of the important considerations for determining the source term, which is defined as the amount of radioactivity being released from the facility, is the quantity of radioactive material present. This quantity, which will be referred to as the source inventory, is generally estimated through a review of historical records and waste tracking systems at the LLW facility. In theory, estimating the total source inventory for Department of Energy (DOE) LLW disposal facilities should be possible by reviewing the national data base maintained for LLW operations, the Solidmore » Waste Information Management System (SWIMS), or through the annual report that summarizes the SWIMS data, the Integrated Data Base (IDB) report. However, in practice, there are some difficulties in making this estimate. This is not unexpected, since the SWIMS and the IDB were not developed with the goal of developing a performance assessment source term in mind. The practical shortcomings using the existing data to develop a source term for DOE facilities will be discussed in this paper.« less

  1. The Inverse-Square Law with Data Loggers

    ERIC Educational Resources Information Center

    Bates, Alan

    2013-01-01

    The inverse-square law for the intensity of light received at a distance from a light source has been verified using various experimental techniques. Typical measurements involve a manual variation of the distance between a light source and a light sensor, usually by sliding the sensor or source along a bench, measuring the source-sensor distance…

  2. Colors of attraction: Modeling insect flight to light behavior.

    PubMed

    Donners, Maurice; van Grunsven, Roy H A; Groenendijk, Dick; van Langevelde, Frank; Bikker, Jan Willem; Longcore, Travis; Veenendaal, Elmar

    2018-06-26

    Light sources attract nocturnal flying insects, but some lamps attract more insects than others. The relation between the properties of a light source and the number of attracted insects is, however, poorly understood. We developed a model to quantify the attractiveness of light sources based on the spectral output. This model is fitted using data from field experiments that compare a large number of different light sources. We validated this model using two additional datasets, one for all insects and one excluding the numerous Diptera. Our model facilitates the development and application of light sources that attract fewer insects without the need for extensive field tests and it can be used to correct for spectral composition when formulating hypotheses on the ecological impact of artificial light. In addition, we present a tool allowing the conversion of the spectral output of light sources to their relative insect attraction based on this model. © 2018 Wiley Periodicals, Inc.

  3. Geometrical analysis of an optical fiber bundle displacement sensor

    NASA Astrophysics Data System (ADS)

    Shimamoto, Atsushi; Tanaka, Kohichi

    1996-12-01

    The performance of a multifiber optical lever was geometrically analyzed by extending the Cook and Hamm model [Appl. Opt. 34, 5854-5860 (1995)] for a basic seven-fiber optical lever. The generalized relationships between sensitivity and the displacement detection limit to the fiber core radius, illumination irradiance, and coupling angle were obtained by analyses of three various types of light source, i.e., a parallel beam light source, an infinite plane light source, and a point light source. The analysis of the point light source was confirmed by a measurement that used the light source of a light-emitting diode. The sensitivity of the fiber-optic lever is inversely proportional to the fiber core radius, whereas the receiving light power is proportional to the number of illuminating and receiving fibers. Thus, the bundling of the finer fiber with the larger number of illuminating and receiving fibers is more effective for improving sensitivity and the displacement detection limit.

  4. EPICS controlled sample mounting robots at the GM/CA CAT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, O. A.; Benn, R.; Corcoran, S.

    2007-11-11

    GM/CA CAT at Sector 23 of the advanced photon source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction [R.F. Fischetti, et al., GM/CA canted undulator beamlines for protein crystallography, Acta Crystallogr. A 61 (2005) C139]. The facility consists of three beamlines; two based on canted undulators and one on a bending magnet. The scientific and technical goals of the CAT emphasize streamlined, efficient throughput for a variety of sample types, sizes and qualities, representing the cutting edge of structural biology research. For this purpose all three beamlines are equipped with the ALS-stylemore » robots [C.W.Cork, et al. Status of the BCSB automated sample mounting and alignment system for macromolecular crystallography at the Advanced Light Source, SRI-2003, San-Francisco, CA, USA, August 25-29, 2003] for an automated mounting of cryo-protected macromolecular crystals. This report summarizes software and technical solutions implemented with the first of the three operational robots at beamline 23-ID-B. The automounter's Dewar can hold up to 72 or 96 samples residing in six Rigaku ACTOR magazines or ALS-style pucks, respectively. Mounting of a crystal takes approximately 2 s, during which time the temperature of the crystal is maintained near that of liquid nitrogen.« less

  5. The Second SIMBIOS Radiometric Intercomparison (SIMRIC-2), March-November 2002. Volume 2

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Abel, Peter; Carder, Kendall; Chapin, Albert; Clark, Dennis; Cooper, John; Davis, Curtis; English, David; Fargion, Giulietta; Feinholz, Michael; hide

    2003-01-01

    The second SIMBIOS (Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies) Radiometric Intercomparison (SIMRIC-2) was carried out in 2002. The purpose of the SIMRIC's was to ensure a common radiometric scale among the calibration facilities that are engaged in calibrating in-situ radiometrics used for ocean color-related research and to document the calibration procedures and protocols. The SeaWIFS Transfer Radiometer (SXR-II) measured the calibration radiances at six wavelengths from 411nm to 777nm in the ten laboratories participating in the SIMRIC-2. The measured radiances were compared with the radiances expected by the laboratories. The agreement was within the combined uncertainties for all but two laboratories. Likely error sources were identified in these laboratories and corrective measures were implemented. NIST calibrations in December 2001 and January 2003 showed changes ranging from -0.6% to +0.7% for the six SXR-II channels. Two independent light sources were used to monitor changes in the SXR-II responsivity between the NIST calibrations. A 2% variation of the responsivity of channel 1 of the SXR-II was detected, and the SXR-II responsivity was corrected using the monitoring data. This report also compared directional reflectance calibrations of a Spectralon plaque by different calibration facilities

  6. KSC-2009-3289

    NASA Image and Video Library

    2009-05-27

    CAPE CANAVERAL, Fla. – Armando Olivera, president and CEO of Florida Power & Light, or FPL, speaks to guests at the groundbreaking ceremony for the joint NASA and FPL solar power project at NASA's Kennedy Space Center. Others on the stage are, from left, Ed Smeloff with SunPower Corporation, Florida Rep. Suzanne Kosmas, Sen. Bill Nelson, Center Director Bob Cabana, Florida Rep. Bill Posey, Eric Draper, deputy director of Audubon of Florida, and Pam Rauch, vice president of External Affairs for FPL. FPL, Florida's largest electric utility, will build and maintain two solar photovoltaic power generation systems at Kennedy. One will produce an estimated 10 megawatts of emissions-free power for FPL customers, which is enough energy to serve roughly 1,100 homes. The second is a one-megawatt solar power facility that will provide renewable energy directly to Kennedy. The FPL facilities at NASA will help provide Florida residents and America's space program with new sources of clean energy that will cut reliance on fossil fuels and improve the environment by reducing greenhouse gas emissions. The one megawatt facility also will help NASA meet its goal for use of power generated from renewable energy. Photo credit: NASA/Kim Shiflett

  7. KSC-2009-3288

    NASA Image and Video Library

    2009-05-27

    CAPE CANAVERAL, Fla. – Pam Rauch, vice president of External Affairs for Florida Power & Light, or FPL, speaks to guests at the groundbreaking ceremony for the joint NASA and FPL solar power project at NASA's Kennedy Space Center. Others on the stage are Ed Smeloff with SunPower Corporation, Florida Rep. Suzanne Kosmas, Sen. Bill Nelson, Center Director Bob Cabana, Armando Olivera, president and CEO of FPL, Florida Rep. Bill Posey and Eric Draper, deputy director of Audubon of Florida. FPL, Florida's largest electric utility, will build and maintain two solar photovoltaic power generation systems at Kennedy. One will produce an estimated 10 megawatts of emissions-free power for FPL customers, which is enough energy to serve roughly 1,100 homes. The second is a one-megawatt solar power facility that will provide renewable energy directly to Kennedy. The FPL facilities at NASA will help provide Florida residents and America's space program with new sources of clean energy that will cut reliance on fossil fuels and improve the environment by reducing greenhouse gas emissions. The one megawatt facility also will help NASA meet its goal for use of power generated from renewable energy. Photo credit: NASA/Kim Shiflett

  8. KSC-2009-3290

    NASA Image and Video Library

    2009-05-27

    CAPE CANAVERAL, Fla. – Center Director of NASA's Kennedy Space Center in Florida, Bob Cabana addresses guests at the groundbreaking ceremony for the joint NASA and Florida Power & Light, or FPL, solar power project at Kennedy. Others on the stage are (from left) Ed Smeloff with SunPower Corporation, Florida Rep. Suzanne Kosmas, Sen. Bill Nelson, Armando Olivera, president and CEO of FPL, Florida Rep. Bill Posey, Eric Draper, deputy director of Audubon of Florida, and Pam Rauch, vice president of External Affairs for FPL. FPL, Florida's largest electric utility, will build and maintain two solar photovoltaic power generation systems at Kennedy. One will produce an estimated 10 megawatts of emissions-free power for FPL customers, which is enough energy to serve roughly 1,100 homes. The second is a one-megawatt solar power facility that will provide renewable energy directly to Kennedy. The FPL facilities at NASA will help provide Florida residents and America's space program with new sources of clean energy that will cut reliance on fossil fuels and improve the environment by reducing greenhouse gas emissions. The one megawatt facility also will help NASA meet its goal for use of power generated from renewable energy. Photo credit: NASA/Kim Shiflett

  9. KSC-2009-3286

    NASA Image and Video Library

    2009-05-27

    CAPE CANAVERAL, Fla. – An aerial view of the site in the Industrial Area of NASA's Kennedy Space Center in Florida where a solar power system will be built. The solar power systems are being constructed by NASA and Florida Power & Light Company as part of a public-private partnership that promotes a clean-energy future. A groundbreaking ceremony took place on May 27 at the Kennedy Space Center Visitor Complex. FPL, Florida's largest electric utility, will build and maintain two solar photovoltaic power generation systems at Kennedy. One will produce an estimated 10 megawatts of emissions-free power for FPL customers, which is enough energy to serve roughly 1,100 homes. The second, which will be built on the pictured location, is a one-megawatt solar power facility that will provide renewable energy directly to Kennedy. The FPL facilities at NASA will help provide Florida residents and America's space program with new sources of clean energy that will cut reliance on fossil fuels and improve the environment by reducing greenhouse gas emissions. The one megawatt facility also will help NASA meet its goal for use of power generated from renewable energy. Photo credit: NASA/Kim Shiflett

  10. KSC-2009-3287

    NASA Image and Video Library

    2009-05-27

    CAPE CANAVERAL, Fla. – An aerial view of the site on S.R. 3 on NASA's Kennedy Space Center in Florida where a solar power system will be built. The solar power systems are being constructed by NASA and Florida Power & Light Company as part of a public-private partnership that promotes a clean-energy future. A groundbreaking ceremony took place on May 27 at the Kennedy Space Center Visitor Complex. FPL, Florida's largest electric utility, will build and maintain two solar photovoltaic power generation systems at Kennedy. One, which will be built on the pictured location, will produce an estimated 10 megawatts of emissions-free power for FPL customers, which is enough energy to serve roughly 1,100 homes. The second is a one-megawatt solar power facility that will provide renewable energy directly to Kennedy. The FPL facilities at NASA will help provide Florida residents and America's space program with new sources of clean energy that will cut reliance on fossil fuels and improve the environment by reducing greenhouse gas emissions. The one megawatt facility also will help NASA meet its goal for use of power generated from renewable energy. Photo credit: NASA/Kim Shiflett

  11. Behavioural responses of krill and cod to artificial light in laboratory experiments

    PubMed Central

    Løkkeborg, S.; Humborstad, O-B.

    2018-01-01

    Most fishes and crustaceans respond to light, and artificial light sources may therefore be an efficient stimulus to manipulate behaviours in aquatic animals. It has been hypothesised that the catch efficiency of pots could be increased if prey, for example krill, can be attracted into the pots providing a visual stimulus and a source of live bait. To find which light characteristics are most attractive to krill, we tested the effects of light intensity and wavelength composition on Northern krill’s (Meganyctiphanes norvegica) behavioural response to an artificial light source. The most attractive individual wavelength was 530 nm (green light), while broadband (425–750 nm) white light was an equally attractive light source. The intensity of the emitted light did not appear to have a direct effect on attraction to the light source, however it did significantly increase swimming activity among the observed krill. The most promising light stimuli for krill were tested to determine whether they would have a repulsive or attractive effect on cod (Gadus morhua); These light stimuli appeared to have a slightly repulsive, but non-significant, effect on cod. However, we suggest that a swarm of krill attracted to an artificial light source may produce a more effective visual stimulus to foraging cod. PMID:29370231

  12. Behavioural responses of krill and cod to artificial light in laboratory experiments.

    PubMed

    Utne-Palm, A C; Breen, M; Løkkeborg, S; Humborstad, O-B

    2018-01-01

    Most fishes and crustaceans respond to light, and artificial light sources may therefore be an efficient stimulus to manipulate behaviours in aquatic animals. It has been hypothesised that the catch efficiency of pots could be increased if prey, for example krill, can be attracted into the pots providing a visual stimulus and a source of live bait. To find which light characteristics are most attractive to krill, we tested the effects of light intensity and wavelength composition on Northern krill's (Meganyctiphanes norvegica) behavioural response to an artificial light source. The most attractive individual wavelength was 530 nm (green light), while broadband (425-750 nm) white light was an equally attractive light source. The intensity of the emitted light did not appear to have a direct effect on attraction to the light source, however it did significantly increase swimming activity among the observed krill. The most promising light stimuli for krill were tested to determine whether they would have a repulsive or attractive effect on cod (Gadus morhua); These light stimuli appeared to have a slightly repulsive, but non-significant, effect on cod. However, we suggest that a swarm of krill attracted to an artificial light source may produce a more effective visual stimulus to foraging cod.

  13. NSLS-II Preliminary Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dierker, S.

    2007-11-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configurationmore » to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES&H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and functions with a spatial resolution of {approx}1 nm, an energy resolution of {approx}0.1 meV, and the ultra high sensitivity required to perform spectroscopy on a single atom. In order to meet this need, NSLS-II has been designed to provide world-leading brightness and flux and exceptional beam stability. The brightness is defined as the number of photons emitted per second, per photon energy bandwidth, per solid angle, and per unit source size. Brightness is important because it determines how efficiently an intense flux of photons can be refocused to a small spot size and a small divergence. It scales as the ring current and the number of total periods of the undulator field (both of which contribute linearly to the total flux), as well as eing nversely proportional to the horizontal and vertical emittances (the product of beam size and divergence) of the electron beam. Raising the current in the storage ring to obtain even brighter beams is ultimately limited by beam-driven, collective instabilities in the accelerator. Thus, to maximize the brightness, the horizontal and vertical emittances must be made as small as possible. With the concept of using damping wigglers, low-field bending magnets, and a large number of lattice cells to achieve ultra small emittance, the performance of NSLS-II will be nearly at the ultimate limit of storage ring light sources, set by the intrinsic properties of the synchrotron radiation process. The facility will produce x-rays more than 10,000 times brighter than those produced at NSLS today. The facility, with various insertion devices, including three-pole-wigglers and low-field dipole radiations, has the capability of covering a broad range of radiation spectra, from hard x-ray to far infra-red. The superlative character and combination of capabilities will have broad impact on a wide range of disciplines and scientific initiatives in the coming decades, including new studies of small crystals in structural biology, a wide range of nanometer-resolution probes for nanoscience, coherent imaging of the structure and dynamics of disordered materials, greatly increased applicability of inelastic x-ray scattering, and properties of materials under extreme conditions. Commissioned in 1982, the existing National Synchrotron Light Source (NSLS) provides essential scientific tools for 2,300 scientists per year from more than 400 academic, industrial, and government institutions. Their myriad research programs produce about 800 publications per year, with more than 130 appearing in premier journals. It was designed in the 1970s and is now in its third decade of service. It has been continually upgraded over the years, with the brightness increasing fully five orders of magnitude. However, it has reached the theoretical limits of performance given its small circumference and small periodicity, and only a small number of insertion devices are possible.« less

  14. Budget-Minded Renovation Lights Up Students' Learning.

    ERIC Educational Resources Information Center

    McDaniel, Craig

    1998-01-01

    Provides considerations for educational facility lighting designs that support student learning while controlling costs. Lighting design decision factors include the types of classroom activities involved, the importance of properly using artificial and indirect lighting, the importance of color rendering, the positioning of windows and skylights,…

  15. High efficiency light source using solid-state emitter and down-conversion material

    DOEpatents

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  16. Characterization and use of the spent beam for serial operation of LCLS

    DOE PAGES

    Boutet, Sébastien; Foucar, Lutz; Barends, Thomas R. M.; ...

    2015-04-11

    X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for amore » particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps.« less

  17. Characterization and use of the spent beam for serial operation of LCLS

    PubMed Central

    Boutet, Sébastien; Foucar, Lutz; Barends, Thomas R. M.; Botha, Sabine; Doak, R. Bruce; Koglin, Jason E.; Messerschmidt, Marc; Nass, Karol; Schlichting, Ilme; Seibert, M. Marvin; Shoeman, Robert L.; Williams, Garth J.

    2015-01-01

    X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for a particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps. PMID:25931079

  18. Overlapped optics induced perfect coherent effects.

    PubMed

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-20

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  19. A spectrally tunable LED sphere source enables accurate calibration of tristimulus colorimeters

    NASA Astrophysics Data System (ADS)

    Fryc, I.; Brown, S. W.; Ohno, Y.

    2006-02-01

    The Four-Color Matrix method (FCM) was developed to improve the accuracy of chromaticity measurements of various display colors. The method is valid for each type of display having similar spectra. To develop the Four-Color correction matrix, spectral measurements of primary red, green, blue, and white colors of a display are needed. Consequently, a calibration facility should be equipped with a number of different displays. This is very inconvenient and expensive. A spectrally tunable light source (STS) that can mimic different display spectral distributions would eliminate the need for maintaining a wide variety of displays and would enable a colorimeter to be calibrated for a number of different displays using the same setup. Simulations show that an STS that can create red, green, blue and white distributions that are close to the real spectral power distribution (SPD) of a display works well with the FCM for the calibration of colorimeters.

  20. Fission products and nuclear fuel behaviour under severe accident conditions part 2: Fuel behaviour in the VERDON-1 sample

    NASA Astrophysics Data System (ADS)

    Geiger, E.; Le Gall, C.; Gallais-During, A.; Pontillon, Y.; Lamontagne, J.; Hanus, E.; Ducros, G.

    2017-11-01

    Within the framework of the International Source Term Programme (ISTP), the VERDON programme aims at quantifying the source term of radioactive materials in case of a hypothetical severe accident in a light water reactor (LWR). Tests were performed in a new experimental laboratory (VERDON) built in the LECA-STAR facility (CEA Cadarache). The VERDON-1 test was devoted to the study of a high burn-up UO2 fuel and FP releases at very high temperature (≈2873 K) in a reducing atmosphere. Post-test qualitative and quantitative characterisations of the VERDON-1 sample led to the proposal of a scenario explaining the phenomena occurring during the experimental sequence. Hence, the fuel and the cladding may have interacted which led to the melting of UO2-ZrO2 alloy. Although no relocation was observed during the test, it may have been imminent.

  1. The laser and optical system for the RIBF-PALIS experiment

    NASA Astrophysics Data System (ADS)

    Sonoda, T.; Iimura, H.; Reponen, M.; Wada, M.; Katayama, I.; Sonnenschein, V.; Takamatsu, T.; Tomita, H.; Kojima, T. M.

    2018-01-01

    This paper describes the laser and optical system for the Parasitic radioactive isotope (RI) beam production by Laser Ion-Source (PALIS) in the RIKEN fragment separator facility. This system requires an optical path length of 70 m for transporting the laser beam from the laser light source to the place for resonance ionization. To accomplish this, we designed and implemented a simple optical system consisting of several mirrors equipped with compact stepping motor actuators, lenses, beam spot screens and network cameras. The system enables multi-step laser resonance ionization in the gas cell and gas jet via overlap with a diameter of a few millimeters, between the laser photons and atomic beam. Despite such a long transport distance, we achieved a transport efficiency for the UV laser beam of about 50%. We also confirmed that the position stability of the laser beam stays within a permissible range for dedicated resonance ionization experiments.

  2. Facile one-pot synthesis of flower-like AgCl microstructures and enhancing of visible light photocatalysis

    PubMed Central

    2013-01-01

    Flower-like AgCl microstructures with enhanced visible light-driven photocatalysis are synthesized by a facile one-pot hydrothermal process for the first time. The evolution process of AgCl from dendritic structures to flower-like octagonal microstructures is investigated quantitatively. Furthermore, the flower-like AgCl microstructures exhibit enhanced ability of visible light-assisted photocatalytic degradation of methyl orange. The enhanced photocatalytic activity of the flower-like AgCl microstructure is attributed to its three-dimensional hierarchical structure exposing with [100] facets. This work provides a fresh view into the insight of electrochemical process and the application area of visible light photocatalysts. PMID:24153176

  3. Silicon micromachined broad band light source

    NASA Technical Reports Server (NTRS)

    George, Thomas (Inventor); Jones, Eric (Inventor); Tuma, Margaret L. (Inventor); Eastwood, Michael (Inventor); Hansler, Richard (Inventor)

    2004-01-01

    A micro electromechanical system (MEMS) broad band incandescent light source includes three layers: a top transmission window layer; a middle filament mount layer; and a bottom reflector layer. A tungsten filament with a spiral geometry is positioned over a hole in the middle layer. A portion of the broad band light from the heated filament is reflective off the bottom layer. Light from the filament and the reflected light of the filament are transmitted through the transmission window. The light source may operate at temperatures of 2500 K or above. The light source may be incorporated into an on board calibrator (OBC) for a spectrometer.

  4. A two-metric proposal to specify the color-rendering properties of light sources for retail lighting

    NASA Astrophysics Data System (ADS)

    Freyssinier, Jean Paul; Rea, Mark

    2010-08-01

    Lighting plays an important role in supporting retail operations, from attracting customers, to enabling the evaluation of merchandise, to facilitating the completion of the sale. Lighting also contributes to the identity, comfort, and visual quality of a retail store. With the increasing availability and quality of white LEDs, retail lighting specifiers are now considering LED lighting in stores. The color rendering of light sources is a key factor in supporting retail lighting goals and thus influences a light source's acceptance by users and specifiers. However, there is limited information on what consumers' color preferences are, and metrics used to describe the color properties of light sources often are equivocal and fail to predict preference. The color rendering of light sources is described in the industry solely by the color rendering index (CRI), which is only indirectly related to human perception. CRI is intended to characterize the appearance of objects illuminated by the source and is increasingly being challenged because new sources are being developed with increasingly exotic spectral power distributions. This paper discusses how CRI might be augmented to better use it in support of the design objectives for retail merchandising. The proposed guidelines include the use of gamut area index as a complementary metric to CRI for assuring good color rendering.

  5. Effect of laser speckle on light from laser diode-pumped phosphor-converted light sources.

    PubMed

    Aquino, Felipe; Jadwisienczak, Wojciech M; Rahman, Faiz

    2017-01-10

    Laser diode (LD) pumped white light sources are being developed as an alternative to light-emitting diode-pumped sources for high efficiency and/or high brightness applications. While several performance metrics of laser-pumped phosphor-converted light sources have been investigated, the effect of laser speckle has not been sufficiently explored. This paper describes our experimental studies on how laser speckle affects the behavior of light from laser-excited phosphor lamps. A single LD pumping a phosphor plate was the geometry explored in this work. Overall, our findings are that the down-converted light did not exhibit any speckle, whereas speckle was present in the residual pump light but much reduced from that in direct laser light. Furthermore, a thicker coating of small-grained phosphors served to effectively reduce speckle through static pump light diffusion in the phosphor coating. Our investigations showed that speckle is not of concern in illumination from LD-pumped phosphor-converted light sources.

  6. Exploiting Photo-induced Reactions in Polymer Blends to Create Hierarchically Ordered, Defect-free Materials

    ScienceCinema

    Balazs, Anna [University of Pittsburgh, Pittsburgh, Pennsylvania, United States

    2017-12-09

    Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.

  7. National Synchrotron Light Source 2010 Activity Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, M.; Snyder, K. J.

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biologymore » department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3) high-temperature superconducting materials that carry electricity with no loss for efficient power transmission lines; and (4) materials for solid-state lighting with half of the present power consumption. Excitement about NSLS-II is evident in many ways, most notably the extraordinary response we had to the 2010 call for beamline development proposals for the anticipated 60 or more beamlines that NSLS-II will ultimately host. A total of 54 proposals were submitted and, after extensive review, 34 were approved. Funding from both the Department of Energy and the National Institutes of Health has already been secured to support the design and construction of a number of these beamlines. FY11 is a challenging and exciting year for the NSLS-II Project as we reach the peak of our construction activity. We remain on track to complete the project by March 2014, a full 15 months ahead of schedule and with even more capabilities than originally planned. The Photon Sciences Directorate is well on its way to fulfilling our vision of being a provider of choice for world-class photon sciences and facilities.« less

  8. Defense Energy Support Center Fact Book, Fiscal Year 1999, Twenty-Second Edition

    DTIC Science & Technology

    1999-01-01

    numbers SOURCE: FACILITIES AND DISTRIBUTION MANAGEMENT COMMODITY BUSINESS UNIT 11 OCONUS COCO 10 8,717,850...GOCO 7 1,518,905 SOURCE: FACILITIES AND DISTRIBUTION MANAGEMENT COMMODITY BUSINESS UNIT DLA MANAGED STORAGE...FY 95 FY 96 FY 97 FY 98 FY 99 SOURCE: FACILITIES AND DISTRIBUTION MANAGEMENT COMMODITY BUSINESS UNIT 13 0 20 40 60 80 100 120 140 160 180 200 220

  9. Evaluating white LEDs for outdoor landscape lighting application

    NASA Astrophysics Data System (ADS)

    Shakir, Insiya; Narendran, Nadarajah

    2002-11-01

    A laboratory experiment was conducted to understand the acceptability of different white light emitting diodes (LEDs) for outdoor landscape lighting. The study used a scaled model setup. The scene was designed to replicate the exterior of a typical upscale suburban restaurant including the exterior facade of the building, an approach with steps, and a garden. The lighting was designed to replicate light levels commonly found in nighttime outdoor conditions. The model had a central dividing partition with symmetrical scenes on both sides for side-by-side evaluations of the two scenes with different light sources. While maintaining equal luminance levels and distribution between the two scenes, four types of light sources were evaluated. These include, halogen, phosphor white LED, and two white light systems using RGB LEDs. These light sources were tested by comparing two sources at a time placed side-by-side and by individual assessment of each lighting condition. The results showed that the RGB LEDs performed equal or better than the most widely used halogen light source in this given setting. A majority of the subjects found slightly dimmer ambient lighting to be more typical for restaurants and therefore found RGB LED and halogen light sources to be more inviting. The phosphor white LEDs made the space look brighter, however a majority of the subjects disliked them.

  10. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron; Slowing, Igor

    Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/ molecular catalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through trans-formative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to attack scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appoint-ments at a university and a National Laboratory.« less

  11. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.

    Catalysis research at the U.S. Department of Energy’s (DOE’s) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to tackle scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appointments at a university and a National Laboratory.« less

  12. Study on Formulation of Optimum Lighting-system for Purchasing Power at Stores

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroki; Nakashima, Yoshio; Takamatsu, Mamoru; Oota, Masaaki; Sawa, Kazuhiro

    In store lighting, difference in the look-and-feel of foods gives effects on the purchasing power of customers. This study conducted the digitalization and quantification on the effects of the variation of light-source color and illuminance used for lighting foods on image recognition on foods. As a result, it was clarified that when meat was illuminated with the light source of “pink” or “faint pink,” image evaluation on foods became higher. In addition, when illuminance increase was applied to these two light-source colors, image evaluation on “faint pink” became further higher. The reason is supposed to be that the redness of meat increased, which may have enhanced fresher impression. From this study, it has been clarified that the light-source color and illuminance optimum for each food are variant. The results show that lighting foods with the optimum light-source color and illuminance can make foods look better.

  13. Light source comprising a common substrate, a first led device and a second led device

    DOEpatents

    Choong, Vi-En

    2010-02-23

    At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

  14. Review on heavy ion radiotherapy facilities and related ion sources (invited)a)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.; Drentje, A. G.

    2010-02-01

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.

  15. Improving Robotic Assembly of Planar High Energy Density Targets

    NASA Astrophysics Data System (ADS)

    Dudt, D.; Carlson, L.; Alexander, N.; Boehm, K.

    2016-10-01

    Increased quantities of planar assemblies for high energy density targets are needed with higher shot rates being implemented at facilities such as the National Ignition Facility and the Matter in Extreme Conditions station of the Linac Coherent Light Source. To meet this growing demand, robotics are used to reduce assembly time. This project studies how machine vision and force feedback systems can be used to improve the quantity and quality of planar target assemblies. Vision-guided robotics can identify and locate parts, reducing laborious manual loading of parts into precision pallets and associated teaching of locations. On-board automated inspection can measure part pickup offsets to correct part drop-off placement into target assemblies. Force feedback systems can detect pickup locations and apply consistent force to produce more uniform glue bond thickness, thus improving the performance of the targets. System designs and performance evaluations will be presented. Work supported in part by the US DOE under the Science Undergraduate Laboratory Internships Program (SULI) and ICF Target Fabrication DE-NA0001808.

  16. Inviscid Limit for Damped and Driven Incompressible Navier-Stokes Equations in mathbb R^2

    NASA Astrophysics Data System (ADS)

    Ramanah, D.; Raghunath, S.; Mee, D. J.; Rösgen, T.; Jacobs, P. A.

    2007-08-01

    Experiments to demonstrate the use of the background-oriented schlieren (BOS) technique in hypersonic impulse facilities are reported. BOS uses a simple optical set-up consisting of a structured background pattern, an electronic camera with a high shutter speed and a high intensity light source. The visualization technique is demonstrated in a small reflected shock tunnel with a Mach 4 conical nozzle, nozzle supply pressure of 2.2 MPa and nozzle supply enthalpy of 1.8 MJ/kg. A 20° sharp circular cone and a model of the MUSES-C re-entry body were tested. Images captured were processed using PIV-style image analysis to visualize variations in the density field. The shock angle on the cone measured from the BOS images agreed with theoretical calculations to within 0.5°. Shock standoff distances could be measured from the BOS image for the re-entry body. Preliminary experiments are also reported in higher enthalpy facilities where flow luminosity can interfere with imaging of the background pattern.

  17. Design of a nondestructive two-in-one instrument for measuring the polarization and energy spectrum at an X-ray FEL facility

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmin; Deng, Bangjie; Chen, Yuanmiaoliang; Liu, Bochao; Chen, Shaofei; Fan, Jinquan; Feng, Lie; Deng, Haixiao; Liu, Bo; Wang, Dong

    2017-10-01

    The free electron laser (FEL), as a next-generation light source, is an attractive tool in scientific frontier research because of its advantages of full coherence, ultra-short pulse duration, and controllable polarization. Owing to the demand of real-time bunch diagnosis during FEL experiments, precise nondestructive measurements of the polarization and X-ray energy spectrum using one instrument are preferred. In this paper, such an instrument based on the electron time-of-flight technique is proposed. By considering the complexity and nonlinearity, a numerical model in the framework of Geant4 has been developed for optimization. Taking the Shanghai Soft X-ray FEL user facility as an example, its measurement performances' dependence on the critical parameters was studied systematically, and, finally, an optimal design was obtained, achieving resolutions of 0.5% for the polarization degree and 0.3 eV for the X-ray energy spectrum.

  18. Environmental management of construction and demolition waste in Kuwait.

    PubMed

    Kartam, Nabil; Al-Mutairi, Nayef; Al-Ghusain, Ibrahim; Al-Humoud, Jasem

    2004-01-01

    There is an increasing pressure on the construction industry to reduce costs and improve the quality of our environment. The fact is that both of these goals can be achieved at the same time. Although construction and demolition (C&D) constitutes a major source of waste in terms of volume and weight, its management and recycling efforts have not yet seen the light in Kuwait. This study focuses on recycling efforts leading to the minimization of the total C&D waste that is currently landfilled in Kuwait. This paper presents the current status of C&D waste disposal system in Kuwait and identifies the potential problems to the environment, people and economy. Then, it investigates alternative solutions to manage and control this major type of waste in an economically efficient and environmentally safe manner. Next, the paper describes the feasibility of establishing a C&D waste recycling facility in Kuwait. It concludes by highlighting the major benefits and bottleneck problems with such a recycling facility.

  19. Specific factors influencing information system/information and communication technology sourcing strategies in healthcare facilities.

    PubMed

    Potančok, Martin; Voříšek, Jiří

    2016-09-01

    Healthcare facilities use a number of information system/information and communication technologies. Each healthcare facility faces a need to choose sourcing strategies most suitable to ensure provision of information system/information and communication technology services, processes and resources. Currently, it is possible to observe an expansion of sourcing possibilities in healthcare informatics, which creates new requirements for sourcing strategies. Thus, the aim of this article is to identify factors influencing information system/information and communication technology sourcing strategies in healthcare facilities. The identification was based on qualitative research, namely, a case study. This study provides a set of internal and external factors with their impact levels. The findings also show that not enough attention is paid to these factors during decision-making. © The Author(s) 2015.

  20. Lighting Efficiency Changes On Horizon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richman, Eric E.; Rosenberg, Michael I.

    2017-04-03

    This article answers four questions posed by Facility Executive Magazine regarding the new 2016 edition of ASHRAE Standard 90.1. The discussion centers on new lighting power limits, lighting controls, and the new simulation based performance path in the standard.

  1. Shedding Some Light.

    ERIC Educational Resources Information Center

    Whitney, Tim

    1998-01-01

    Discusses the basics of designing natural and artificial light in an indoor athletic facility. Also examines individual lighting requirements of typical rooms such as weight and fitness rooms, aerobics and multipurpose rooms, gymnasiums, field houses, pools, and racquetball and squash courts. (GR)

  2. Evaluation damage threshold of optical thin-film using an amplified spontaneous emission source

    NASA Astrophysics Data System (ADS)

    Zhou, Qiong; Sun, Mingying; Zhang, Zhixiang; Yao, Yudong; Peng, Yujie; Liu, Dean; Zhu, Jianqiang

    2014-10-01

    An accurate evaluation method with an amplified spontaneous emission (ASE) as the irradiation source has been developed for testing thin-film damage threshold. The partial coherence of the ASE source results in a very smooth beam profile in the near-field and a uniform intensity distribution of the focal spot in the far-field. ASE is generated by an Nd: glass rod amplifier in SG-II high power laser facility, with pulse duration of 9 ns and spectral width (FWHM) of 1 nm. The damage threshold of the TiO2 high reflection film is 14.4J/cm2 using ASE as the irradiation source, about twice of 7.4 J/cm2 that tested by a laser source with the same pulse duration and central wavelength. The damage area induced by ASE is small with small-scale desquamation and a few pits, corresponding to the defect distribution of samples. Large area desquamation is observed in the area damaged by laser, as the main reason that the non-uniformity of the laser light. The ASE damage threshold leads to more accurate evaluations of the samples damage probability by reducing the influence of hot spots in the irradiation beam. Furthermore, the ASE source has a great potential in the detection of the defect distribution of the optical elements.

  3. From microjoules to megajoules and kilobars to gigabars: probing matter at extreme states of deformation

    NASA Astrophysics Data System (ADS)

    Remington, Bruce A.

    2014-10-01

    Over the past 3 decades there has been an exponential increase in the newly emerging field of matter at extreme states of deformation and compression. This has been due to the confluence of new experimental facilities, new experimental techniques, new theory, and new multiscale simulation techniques. Regimes of science and research hitherto thought out of reach in terrestrial settings are now being accessed routinely. High energy lasers and pulsed power facilities are accessing high pressure macroscopic states of matter, and next generation light sources combined with smaller drive lasers are probing the quantum response of matter at the atomistic level. Combined, this gives multiscale experimental access of the properties and dynamics of matter from femtoseconds to microseconds and from kilobars to gigabars of pressure. There are a multitude of new regimes of science and research that these new developments make possible. Examples include planetary formation dynamics, asteroid and meteor impact dynamics, space hardware response to hypervelocity interplanetary dust impacts, reactor component response to prolonged exposure to radiation damage, advanced research into light weight armor, and capsule dynamics in inertial confinement fusion (ICF). I will review highlights and advances in this rapidly developing field of science and research, touching on experiments at a wide range of facilities (NIF, Z, Omega, Jupiter, Trident, Vulcan, Orion, LULI, LIL, Gekko, Shenguang, LCLS, DCS). I will also review a wide variety of sophisticated new experimental techniques being developed and new developments in theory and multiscale modeling. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. DUV light source availability improvement via further enhancement of gas management technologies

    NASA Astrophysics Data System (ADS)

    Riggs, Daniel J.; O'Brien, Kevin; Brown, Daniel J. W.

    2011-04-01

    The continuous evolution of the semiconductor market necessitates ever-increasing improvements in DUV light source uptime as defined in the SEMI E10 standard. Cymer is developing technologies to exceed current and projected light source availability requirements via significant reduction in light source downtime. As an example, consider discharge chamber gas management functions which comprise a sizable portion of DUV light source downtime. Cymer's recent introduction of Gas Lifetime Extension (GLXTM) as a productivity improvement technology for its DUV lithography light sources has demonstrated noteworthy reduction in downtime. This has been achieved by reducing the frequency of full gas replenishment events from once per 100 million pulses to as low as once per 2 billion pulses. Cymer has continued to develop relevant technologies that target further reduction in downtime associated with light source gas management functions. Cymer's current subject is the development of technologies to reduce downtime associated with gas state optimization (e.g. total chamber gas pressure) and gas life duration. Current gas state optimization involves execution of a manual procedure at regular intervals throughout the lifetime of light source core components. Cymer aims to introduce a product enhancement - iGLXTM - that eliminates the need for the manual procedure and, further, achieves 4 billion pulse gas lives. Projections of uptime on DUV light sources indicate that downtime associated with gas management will be reduced by 70% when compared with GLX2. In addition to reducing downtime, iGLX reduces DUV light source cost of operation by constraining gas usage. Usage of fluorine rich Halogen gas mix has been reduced by 20% over GLX2.

  5. Design and evaluation of excitation light source device for fluorescence endoscope

    NASA Astrophysics Data System (ADS)

    Lim, Hyun Soo

    2009-06-01

    This study aims at designing and evaluating light source devices that can stably generate light with various wavelengths in order to make possible PDD using a photosensitizer and diagnosis using auto-fluorescence. The light source was a Xenon lamp and filter wheel, composed of an optical output control through Iris and filters with several wavelength bands. It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-420nm, 430-480nm, and 480-560nm. The transmission part of the light source was developed to enhance the efficiency of light transmission. To evaluate this light source, the characteristics of light output and wavelength band were verified. To validate the capability of this device as PDD, the detection of auto-fluorescence using mouse models was performed.

  6. Modeling of an Adjustable Beam Solid State Light Project

    NASA Technical Reports Server (NTRS)

    Clark, Toni

    2015-01-01

    This proposal is for the development of a computational model of a prototype variable beam light source using optical modeling software, Zemax Optics Studio. The variable beam light source would be designed to generate flood, spot, and directional beam patterns, while maintaining the same average power usage. The optical model would demonstrate the possibility of such a light source and its ability to address several issues: commonality of design, human task variability, and light source design process improvements. An adaptive lighting solution that utilizes the same electronics footprint and power constraints while addressing variability of lighting needed for the range of exploration tasks can save costs and allow for the development of common avionics for lighting controls.

  7. An experiment on the color rendering of different light sources

    NASA Astrophysics Data System (ADS)

    Fumagalli, Simonetta; Bonanomi, Cristian; Rizzi, Alessandro

    2013-02-01

    The color rendering index (CRI) of a light source attempts to measure how much the color appearance of objects is preserved when they are illuminated by the given light source. This problem is of great importance for various industrial and scientific fields, such as lighting architecture, design, ergonomics, etc. Usually a light source is specified through the Correlated Color Temperature or CCT. However two (or more) light sources with the same CCT but different spectral power distribution can exist. Therefore color samples viewed under two light sources with equal CCTs can appear different. Hence, the need for a method to assess the quality of a given illuminant in relation to color. Recently CRI has had a renewed interest because of the new LED-based lighting systems. They usually have a color rendering index rather low, but good preservation of color appearance and a pleasant visual appearance (visual appeal). Various attempts to develop a new color rendering index have been done so far, but still research is working for a better one. This article describes an experiment performed by human observers concerning the appearance preservation of color under some light sources, comparing it with a range of available color rendering indices.

  8. EGR distribution and fluctuation probe based on CO.sub.2 measurements

    DOEpatents

    Parks, II, James E; Partridge, Jr., William P; Yoo, Ji Hyung

    2015-04-07

    A diagnostic system having a single-port EGR probe and a method for using the same. The system includes a light source, an EGR probe, a detector and a processor. The light source may provide a combined light beam composed of light from a mid-infrared signal source and a mid-infrared reference source. The signal source may be centered at 4.2 .mu.m and the reference source may be centered at 3.8 .mu.m. The EGR probe may be a single-port probe with internal optics and a sampling chamber with two flow cells arranged along the light path in series. The optics may include a lens for focusing the light beam and a mirror for reflecting the light beam received from a pitch optical cable to a catch optical cable. The signal and reference sources are modulated at different frequencies, thereby allowing them to be separated and the signal normalized by the processor.

  9. Reduction of background clutter in structured lighting systems

    DOEpatents

    Carlson, Jeffrey J.; Giles, Michael K.; Padilla, Denise D.; Davidson, Jr., Patrick A.; Novick, David K.; Wilson, Christopher W.

    2010-06-22

    Methods for segmenting the reflected light of an illumination source having a characteristic wavelength from background illumination (i.e. clutter) in structured lighting systems can comprise pulsing the light source used to illuminate a scene, pulsing the light source synchronously with the opening of a shutter in an imaging device, estimating the contribution of background clutter by interpolation of images of the scene collected at multiple spectral bands not including the characteristic wavelength and subtracting the estimated background contribution from an image of the scene comprising the wavelength of the light source and, placing a polarizing filter between the imaging device and the scene, where the illumination source can be polarized in the same orientation as the polarizing filter. Apparatus for segmenting the light of an illumination source from background illumination can comprise an illuminator, an image receiver for receiving images of multiple spectral bands, a processor for calculations and interpolations, and a polarizing filter.

  10. Summary of 2016 Light Microscopy Module (LMM) Physical Science Experiments on ISS. Update of LMM Science Experiments and Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Meyer, William V.; Foster, William M.; Fletcher, William A.; Williams, Stuart J.; Lee, Chang-Soo

    2016-01-01

    This presentation will feature a series of short, entertaining, and informative videos that describe the current status and science support for the Light Microscopy Module (LMM) facility on the International Space Station. These interviews will focus on current experiments and provide an overview of future capabilities. The recently completed experiments include nano-particle haloing, 3-D self-assembly with Janus particles and a model system for nano-particle drug delivery. The videos will share perspectives from the scientists, engineers, and managers working with the NASA Light Microscopy program.

  11. Light Source Matters--Students' Explanations about the Behavior of Light When Different Light Sources Are Used in Task Assignments of Optics

    ERIC Educational Resources Information Center

    Kesonen, Mikko Henri Petteri; Asikainen, Mervi Anita; Hirvonen, Pekka Emil

    2017-01-01

    In the present article, the context-dependency of student reasoning is studied in a context of optics. We investigated introductory students' explanations about the behavior of light when different light sources, namely a small light bulb and a laser, were used in otherwise identical task assignments. The data was gathered with the aid of pretest…

  12. 9 CFR 354.226 - Lighting and ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Lighting and ventilation. 354.226 Section 354.226 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Facilities § 354.226 Lighting and ventilation. There shall be ample light, either natural or artificial or...

  13. 33 CFR 143.15 - Lights and warning devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Lights and warning devices. 143... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT General § 143.15 Lights and warning devices. (a) OCS facilities must meet the lights and warning devices requirements under part 67 of this...

  14. 33 CFR 143.15 - Lights and warning devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Lights and warning devices. 143... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT General § 143.15 Lights and warning devices. (a) OCS facilities must meet the lights and warning devices requirements under part 67 of this...

  15. 33 CFR 143.15 - Lights and warning devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Lights and warning devices. 143... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT General § 143.15 Lights and warning devices. (a) OCS facilities must meet the lights and warning devices requirements under part 67 of this...

  16. 33 CFR 143.15 - Lights and warning devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Lights and warning devices. 143... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT General § 143.15 Lights and warning devices. (a) OCS facilities must meet the lights and warning devices requirements under part 67 of this...

  17. 33 CFR 143.15 - Lights and warning devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Lights and warning devices. 143... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT General § 143.15 Lights and warning devices. (a) OCS facilities must meet the lights and warning devices requirements under part 67 of this...

  18. Nuclear data measurements at the new NFS facility at GANIL

    NASA Astrophysics Data System (ADS)

    Gustavsson, C.; Pomp, S.; Scian, G.; Lecolley, F.-R.; Tippawan, U.; Watanabe, Y.

    2012-10-01

    The NFS (Neutrons For Science) facility is part of the SPRIAL 2 project at GANIL, Caen, France. The facility is currently under construction and the first beam is expected in early 2013. NFS will have a white neutron source covering the 1-40 MeV energy range with a neutron flux higher than comparable facilities. A quasi-mono-energetic neutron beam will also be available. In these energy ranges, especially above 14 MeV, there is a large demand for neutron-induced data for a wide range of applications involving dosimetry, medical therapy, single-event upsets in electronics and nuclear energy. Today, there are a few or no cross section data on reactions such as (n, fission), (n, xn), (n, p), (n, d) and (n, α). We propose to install experimental equipment for measuring neutron-induced light-charged particle production and fission relative to the H(n, p) cross section. Both the H(n, p) cross section and the fission cross section for 238U are important reference cross sections used as standards for many other experiments. Nuclear data for certain key elements, such as closed shell nuclei, are also of relevance for the development of nuclear reaction models. Our primary intention is to measure charged particle production (protons, deuterons and alphas) from 12C, 16O, 28Si and 56Fe and neutron-induced fission cross sections from 238U and 232Th.

  19. The national ignition facility and atomic data

    NASA Astrophysics Data System (ADS)

    Crandall, David H.

    1998-07-01

    The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today's inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds.

  20. Gain Evaluation of Micro-Channel-Plate Photomultipliers in the Upgraded High-B Test Facility at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Barber, Corinne; DIRC at EIC Collaboration

    2015-10-01

    The High-B test facility at Thomas Jefferson National Accelerator Facility allows researchers to evaluate the gain of compact photon sensors, such as Micro-Channel-Plate Photomultipliers (MCP-PMTs), in magnetic fields up to 5 T. These ongoing studies support the development of a Detector of Internally Reflected Cherenkov light (DIRC) to be used in an Electron Ion Collider (EIC). Here, we present our summer 2015 activities to upgrade and improve the facility, and we show results for MCP-PMT gain changes in high B-fields. To monitor the light stability delivered to the MCP-PMTs being tested, we implemented a Silicon Photomultiplier (SiPM) in the setup and calibrated the ADC reading this sensor. A 405-nm Light-Emitting Diode (LED) housed in an optical tube compatible with neutral density filters was also installed. The filters provide an alternative way of reducing the light output of the LED to operate the MCP-PMTs in a single-photon mode. We calibrated a set of filters by means of a photodiode and measured the photon flux at multiple positions relative to the LED. This information helped us to design 3D-printed holders unique to each MCP-PMT so that the photocathode receives the greatest amount of light. The improvements to the setup allow for more precise PMT gain evaluation. This team includes 7 collaborators/co-authors besides myself: Yordanka Ilieva, Kijun Park, Greg Kalicy, Carl Zorn, Pawel Nadel-Turonski, Tongtong Cao, and Lee.

  1. 40 CFR 792.45 - Test system supply facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... maintaining algae and aquatic plants. (2) Facilities, as specified in the protocol, for plant growth, including but not limited to, greenhouses, growth chambers, light banks, and fields. (c) When appropriate... supplies shall be preserved by appropriate means. (b) When appropriate, plant supply facilities shall be...

  2. 40 CFR 792.45 - Test system supply facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... maintaining algae and aquatic plants. (2) Facilities, as specified in the protocol, for plant growth, including but not limited to, greenhouses, growth chambers, light banks, and fields. (c) When appropriate... supplies shall be preserved by appropriate means. (b) When appropriate, plant supply facilities shall be...

  3. 40 CFR 792.45 - Test system supply facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... maintaining algae and aquatic plants. (2) Facilities, as specified in the protocol, for plant growth, including but not limited to, greenhouses, growth chambers, light banks, and fields. (c) When appropriate... supplies shall be preserved by appropriate means. (b) When appropriate, plant supply facilities shall be...

  4. 94 Mo(γ,n) and 90Zr(γ,n) cross-section measurements towards understanding the origin of p-nuclei

    NASA Astrophysics Data System (ADS)

    Meekins, E.; Banu, A.; Karwowski, H.; Silano, J.; Zimmerman, W.; Muller, J.; Rich, G.; Bhike, M.; Tornow, W.; McClesky, M.; Travaglio, C.

    2014-09-01

    The nucleosynthesis beyond iron of the rarest stable isotopes in the cosmos, the so-called p-nuclei, is one of the forefront topics in nuclear astrophysics. Recently, a stellar source was found that, for the first time, was able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the most debated 92,94Mo and 96,98Ru; it was also found that there is an important contribution from the p-process nucleosynthesis to the neutron magic nucleus 90Zr. We focus here on constraining the origin of p-nuclei through nuclear physics by studying two key astrophysical photoneutron reaction cross sections for 94Mo(γ,n) and 90Zr(γ,n). Their energy dependencies were measured using quasi-monochromatic photon beams from Duke University's High Intensity Gamma-ray Source facility at the respective neutron threshold energies up to 18 MeV. Preliminary results of these experimental cross sections will be presented along with their comparison to predictions by a statistical model based on the Hauser-Feshbach formalism implemented in codes like TALYS and SMARAGD. The nucleosynthesis beyond iron of the rarest stable isotopes in the cosmos, the so-called p-nuclei, is one of the forefront topics in nuclear astrophysics. Recently, a stellar source was found that, for the first time, was able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the most debated 92,94Mo and 96,98Ru; it was also found that there is an important contribution from the p-process nucleosynthesis to the neutron magic nucleus 90Zr. We focus here on constraining the origin of p-nuclei through nuclear physics by studying two key astrophysical photoneutron reaction cross sections for 94Mo(γ,n) and 90Zr(γ,n). Their energy dependencies were measured using quasi-monochromatic photon beams from Duke University's High Intensity Gamma-ray Source facility at the respective neutron threshold energies up to 18 MeV. Preliminary results of these experimental cross sections will be presented along with their comparison to predictions by a statistical model based on the Hauser-Feshbach formalism implemented in codes like TALYS and SMARAGD. This research was supported by the Research Corporation for Science Advancement.

  5. A compact high brightness laser synchrotron light source for medical applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    1999-07-01

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.

  6. Advanced Instrumentation for Ultrafast Science at the LCLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berrah, Nora

    2015-10-13

    This grant supported a Single Investigator and Small Group Research (SISGR) application to enable multi-user research in Ultrafast Science using the Linac Coherent Light Source (LCLS), the world’s first hard x-ray free electron laser (FEL) which lased for the first time at 1.5 Å on April 20, 2009. The goal of our proposal was to enable a New Era of Science by requesting funds to purchase and build Advanced Instrumentation for Ultrafast Science (AIUS), to utilize the intense, short x-ray pulses produced by the LCLS. The proposed instrumentation will allow peer review selected users to probe the ultrasmall and capture themore » ultrafast. These tools will expand on the investment already made in the construction of the light source and its instrumentation in both the LCLS and LUSI projects. The AIUS will provide researchers in the AMO, Chemical, Biological and Condensed Matter communities with greater flexibility in defining their scientific agenda at the LCLS. The proposed instrumentation will complement and significantly augment the present AMO instrument (funded through the LCLS project) through detectors and capabilities not included in the initial suite of instrumentation at the facility. We have built all of the instrumentations and they have been utilized by scientists. Please see report attached.« less

  7. System implications of aperture-shade design for the SIRTF Observatory

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Brooks, W. F.; Maa, S.

    1987-01-01

    The 1-m-aperture Space Infrared Telescope Facility (SIRTF) will operate with a sensitivity limited only by the zodiacal background. This sensitivity requirement places severe restrictions on the amount of stray light which can reach the focal plane from off-axis sources such as the sun or earth limb. In addition, radiation from these sources can degrade the lifetime of the telescope and instrument cryogenic system which is now planned for two years before the first servicing. Since the aperture of the telescope represents a break in the telescope insulation system and is effectively the first element in the optical train, the aperture shade is a key system component. The mass, length, and temperature of the shade should be minimized to reduce system cost while maximizing the telescope lifetime and stray light performance. The independent geometric parameters that characterize an asymmetrical shade for a 600 km, 28 deg orbit were identified, and the system sensitivity to the three most important shade parameters were explored. Despite the higher heat loads compared to previously studied polar orbit missions, the analysis determined that passive radiators of a reasonable size are sufficient to meet the system requirements. An optimized design for the SIRTF mission, based on the sensitivity analysis, is proposed.

  8. Dynamic performance of the beam position monitor support at the SSRF.

    PubMed

    Wang, Xiao; Cao, Yun; Du, Hanwen; Yin, Lixin

    2009-01-01

    Electron beam stability is very important for third-generation light sources, especially for the Shanghai Synchrotron Radiation Facility whose ground vibrations are much larger than those for other light sources. Beam position monitors (BPMs), used to monitor the position of the electron beam, require a greater stability than other mechanical structures. This paper concentrates on an investigation of the dynamic performance of the BPM support prototype. Modal and response analyses have been carried out by finite-element (FE) calculations and vibration measurements. Inconsistent results between calculation and measurement have motivated a change in the soft connections between the support and the ground from a ground bolt in the initial design to full grout. As a result the mechanical stability of the BPM support is greatly improved, showing an increase in the first eigenfrequency from 20.2 Hz to 50.2 Hz and a decrease in the ratio of the root-mean-square displacement (4-50 Hz) between the ground and the top of the support from 4.36 to 1.23 in the lateral direction. An example is given to show how FE analysis can guide the mechanical design and dynamic measurements (i.e. it is not just used as a verification method). Similar ideas can be applied to improve the stability of other mechanical structures.

  9. Enhancing Three-dimensional Movement Control System for Assemblies of Machine-Building Facilities

    NASA Astrophysics Data System (ADS)

    Kuzyakov, O. N.; Andreeva, M. A.

    2018-01-01

    Aspects of enhancing three-dimensional movement control system are given in the paper. Such system is to be used while controlling assemblies of machine-building facilities, which is a relevant issue. The base of the system known is three-dimensional movement control device with optical principle of action. The device consists of multi point light emitter and light receiver matrix. The processing of signals is enhanced to increase accuracy of measurements by switching from discrete to analog signals. Light receiver matrix is divided into four areas, and the output value of each light emitter in each matrix area is proportional to its luminance level. Thus, determing output electric signal value of each light emitter in corresponding area leads to determing position of multipoint light emitter and position of object tracked. This is done by using Case-based reasoning method, the precedent in which is described as integral signal value of each matrix area, coordinates of light receivers, which luminance level is high, and decision to be made in this situation.

  10. Multiwavelength Study of Gamma-Ray Bright Blazars

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.

    2011-01-01

    We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  11. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    ERIC Educational Resources Information Center

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  12. Light Source

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Research on food growth for long duration spacecraft has resulted in a light source for growing plants indoors known as Qbeam, a solid state light source consisting of a control unit and lamp. The light source, manufactured by Quantum Devices, Inc., is not very hot, although it generates high intensity radiation. When Ron Ignatius, an industrial partner of WCSAR, realized that terrestrial plant research lighting was not energy efficient enough for space use, he and WCSAR began to experiment with light emitting diodes. A line of LED products was developed, and QDI was formed to market the technology. An LED-based cancer treatment device is currently under development.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riza, Nabeel Agha; Perez, Frank

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector tomore » calculate a temperature of the device.« less

  14. Carbon and nitrogen co-doped bowl-like Au/TiO2 nanostructures with tunable size for enhanced visible-light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Li, Yayuan; Cao, Shubo; Zhang, Ang; Zhang, Chen; Qu, Ting; Zhao, Yongbin; Chen, Aihua

    2018-07-01

    It is of great importance to extend the UV response of anatase TiO2 into the visible light range for the practical applications. Here, a facile rout to carbon and nitrogen co-doped, Au loaded bowl-like TiO2 nanostructures with tunable size are proposed by using self-assembled polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) spherical micelles as templates. Amphiphilic PS-b-P4VP self-assembles to form PS@P4VP core-shell spherical micelles with P4VP as the out layer in an evaporable mixed solvents of ethanol/tetrahydrofuran (THF). The size of uniform PS@P4VP spherical micelles can be precisely tuned in the range of a few nm to several hundred nm by controlling the molecular composition of the BCPs. Bowl-like TiO2 nanostructures with a replicate size loaded with highly dispersed Au nanoparticles (NPs) of ∼5 nm in diameter are fabricated from these spherical micelles because of strong complex ability of pyridine groups. PS-b-P4VP provides carbon and nitrogen sources to dope the resulting samples simultaneously. The special carbon and nitrogen co-doped bowl-like Au/TiO2 nanostructures exhibit much higher photocatalytic activity in the photodegradation of rhodamine B (RhB) compared to Au/P25 under visible light irradiation. Furthermore, the photocatalytic activity is significantly influenced by the BCP molecular composition due to different surface area and loading capacity of the resulting samples. This study provides a facile way to synthesize multi-element doped hollow or bowl-like nanoparticles with tunable size in the nanometer range which have potential application at photocatalysis, oxygen reduction reaction, etc.

  15. Illumination control apparatus for compensating solar light

    NASA Technical Reports Server (NTRS)

    Owens, L. J. (Inventor)

    1978-01-01

    An illumination control apparatus is presented for supplementing light from solar radiation with light from an artificial light source to compensate for periods of insufficient levels of solar light. The apparatus maintains a desired illumination level within an interior space comprising an artificial light source connected to an electrical power source with a switch means for selectively energizing said light source. An actuator means for controlling the on-off operation of the switch means is connected to a light sensor which responses to the illumination level of the interior space. A limit switch carried adjacent to the actuator limits the movement of the actuator within a predetermined range so as to prevent further movement thereof during detection of erroneous illumination conditions.

  16. Bioaerosol releases from compost facilities: Evaluating passive and active source terms at a green waste facility for improved risk assessments

    NASA Astrophysics Data System (ADS)

    Taha, M. P. M.; Drew, G. H.; Longhurst, P. J.; Smith, R.; Pollard, S. J. T.

    The passive and active release of bioaerosols during green waste composting, measured at source is reported for a commercial composting facility in South East (SE) England as part of a research programme focused on improving risk assessments at composting facilities. Aspergillus fumigatus and actinomycetes concentrations of 9.8-36.8×10 6 and 18.9-36.0×10 6 cfu m -3, respectively, measured during the active turning of green waste compost, were typically 3-log higher than previously reported concentrations from static compost windrows. Source depletion curves constructed for A. fumigatus during compost turning and modelled using SCREEN3 suggest that bioaerosol concentrations could reduce to background concentrations of 10 3 cfu m -3 within 100 m of this site. Authentic source term data produced from this study will help to refine the risk assessment methodologies that support improved permitting of compost facilities.

  17. 40 CFR 51.301 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...

  18. 40 CFR 51.301 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...

  19. 40 CFR 51.301 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...

  20. 40 CFR 51.301 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...

Top