Sample records for light source first-phase

  1. Directly Phase-Modulated Light Source

    NASA Astrophysics Data System (ADS)

    Yuan, Z. L.; Fröhlich, B.; Lucamarini, M.; Roberts, G. L.; Dynes, J. F.; Shields, A. J.

    2016-07-01

    The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost-effective method. However, the simultaneous changes in intensity, frequency, and phase have prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity-enhanced electro-optic effect enables the first example of subvolt half-wave phase modulation at high signal rates. The source is compact, stable, and versatile, and we show its potential to become the standard transmitter for future quantum communication networks based on attenuated laser pulses.

  2. Noncoherent Detection of Coherent Optical Heterodyne Signals Corrupted by Laser Phase Noise

    DTIC Science & Technology

    1991-03-01

    replicated speech at the receiving end through the photoelectric effect . Bell’s photophone was the first practical use of light as a transmission...source dominates system performance. An analyti- cal expression representing the effect of laser phase noise on system performance is derived based on a...decision threshold analysis illustrates which noise source dominates system performance. An analytical expression representing the effect of laser phase

  3. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources.

    PubMed

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-03-29

    Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.

  4. Verification of quantum entanglement of two-mode squeezed light source towards quantum radar and imaging

    NASA Astrophysics Data System (ADS)

    Masada, Genta

    2017-08-01

    Two-mode squeezed light is an effective resource for quantum entanglement and shows a non-classical correlation between each optical mode. We are developing a two-mode squeezed light source to explore the possibility of quantum radar based on the quantum illumination theory. It is expected that the error probability for discrimination of target presence or absence is improved even in a lossy and noisy environment. We are also expecting to apply two-mode squeezed light source to quantum imaging. In this work we generated two-mode squeezed light and verify its quantum entanglement property towards quantum radar and imaging. Firstly we generated two independent single-mode squeezed light beams utilizing two sub-threshold optical parametric oscillators which include periodically-polled potassium titanyl phosphate crystals for the second order nonlinear interaction. Two single-mode squeezed light beams are combined using a half mirror with the relative optical phase of 90° between each optical field. Then entangled two-mode squeezed light beams can be generated. We observes correlation variances between quadrature phase amplitudes in entangled two-mode fields by balanced homodyne measurement. Finally we verified quantum entanglement property of two-mode squeezed light source based on Duan's and Simon's inseparability criterion.

  5. Two-mode squeezed light source for quantum illumination and quantum imaging

    NASA Astrophysics Data System (ADS)

    Masada, Genta

    2015-09-01

    We started to research quantum illumination radar and quantum imaging by utilizing high quality continuous-wave two-mode squeezed light source as a quantum entanglement resource. Two-mode squeezed light is a macroscopic quantum entangled state of the electro-magnetic field and shows strong correlation between quadrature phase amplitudes of each optical field. One of the most effective methods to generate two-mode squeezed light is combining two independent single-mode squeezed lights by using a beam splitter with relative phase of 90 degrees between each optical field. As a first stage of our work we are developing two-mode squeezed light source for exploring the possibility of quantum illumination radar and quantum imaging. In this article we introduce current development of experimental investigation of single-mode squeezed light. We utilize a sub-threshold optical parametric oscillator with bow-tie configuration which includes a periodically-polled potassium titanyl phosphate crystal as a nonlinear optical medium. We observed the noise level of squeezed quadrature -3.08+/-0.13 dB and anti-squeezed quadrature at 9.29+/-0.13 dB, respectively. We also demonstrated the remote tuning of squeezing level of the light source which leads to the technology for tuning the quantum entanglement in order to adapt to the actual environmental condition.

  6. Beam shaping to improve the free-electron laser performance at the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Y.; Bane, K. L. F.; Colocho, W.

    2016-10-27

    A new operating mode has been developed for the Linac Coherent Light Source (LCLS) in which we shape the longitudinal phase space of the electron beam. This mode of operation is realized using a horizontal collimator located in the middle of the first bunch compressor to truncate the head and tail of the beam. With this method, the electron beam longitudinal phase space and current profile are reshaped, and improvement in lasing performance can be realized. As a result, we present experimental studies at the LCLS of the beam shaping effects on the free-electron laser performance.

  7. Growth distribution during phototropism of Arabidopsis thaliana seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orbovic, V.; Poff, K.L.

    1993-09-01

    The elongation rates of two opposite sides of hypocotyls of Arabidopsis thaliana seedlings were measured during phototropism by using an infrared imaging system. In first positive phototropism, second positive phototropism, and red light-enhanced first positive phototropism, curvature toward the light source was the result of an increase in the rate of elongation of the shaded side and a decrease in the rate of elongation of the lighted side of the seedlings. The phase of straightening that followed maximum curvature resulted from a decrease in the elongation rate of the shaded side and an increase in the elongation rate of themore » lighted side. These data for the three types of blue light-induced phototropism tested in this study and for the phase of straightening are all clearly consistent with the growth rate changes predicted by the Cholodny-Went theory. 31 refs., 7 figs.« less

  8. Optical Techniques for the Remote Detection of Biological Aerosols

    DTIC Science & Technology

    1974-08-01

    1) Laboratory exneriments (2) Remote detection experiments. In the first phase , the optical characteristics of several selected biological...the-art optical sensor system. The estimates were favorable, and a second research phase was initiated. Remote detection experiments were conducted...that of phase fluorometry. The fluorescence is excited by 3. continuous light source, the output of which is modulated at a high freeuency by an optical

  9. Digital image profilers for detecting faint sources which have bright companions, phase 2

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham

    1991-01-01

    A breadboard image profiling system developed for the first phase of this project demonstrated the potential for detecting extremely faint optical sources in the presence of light companions. Experimental data derived from laboratory testing of the device supports the theory that image profilers of this type may approach the theoretical limit imposed by photon statistics. The objective of Phase 2 of this program is the development of a ground-based multichannel image profiling system capable of detecting faint stellar objects slightly displaced from brighter stars. We have finalized the multichannel image profiling system and attempted three field tests.

  10. Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source.

    PubMed

    Ahmad, Azeem; Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Mehta, Dalip Singh

    2016-04-01

    In this Letter, we demonstrate quantitative phase imaging of biological samples, such as human red blood cells (RBCs) and onion cells using narrow temporal frequency and wide angular frequency spectrum light source. This type of light source was synthesized by the combined effect of spatial, angular, and temporal diversity of speckle reduction technique. The importance of using low spatial and high temporal coherence light source over the broad band and narrow band light source is that it does not require any dispersion compensation mechanism for biological samples. Further, it avoids the formation of speckle or spurious fringes which arises while using narrow band light source.

  11. Longitudinal spatial coherence gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination

    NASA Astrophysics Data System (ADS)

    Mehta, Dalip Singh; Ahmad, Azeem; Dubey, Vishesh; Singh, Veena; Butola, Ankit; Mohanty, Tonmoy; Nandi, Sreyankar

    2018-02-01

    We report longitudinal spatial coherence (LSC) gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination using laser as a light source. To accomplish this a pseudo thermal light source was synthesized by passing laser beams through an optical system, which is basically a speckle reduction system with combined effect of spatial, temporal, angular and polarisation diversity. The longitudinal spatial coherence length of such light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular and temporal diversity. This results in a low spatially coherent (i.e., broad angular frequency spectrum) light source with narrow temporal frequency spectrum. Light from such a pseudo thermal light source was passed through an interference microscope with varying magnification, such as, 10X and 50X. The interference microscope was used for full-field OCT imaging of multilayer objects and topography of industrial objects. Experimental results of optical sectioning of multilayer biological objects with high axial-resolution less than 10μm was achieved which is comparable to broadband white light source. The synthesized light source with reduced speckles having uniform illumination on the sample, which can be very useful for fluorescence microscopy as well as quantitative phase microscopy with less phase noise. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.

  12. A technique for phase correction in Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Artsang, P.; Pongchalee, P.; Palawong, K.; Buisset, C.; Meemon, P.

    2018-03-01

    Fourier transform spectroscopy (FTS) is a type of spectroscopy that can be used to analyze components in the sample. The basic setup that is commonly used in this technique is "Michelson interferometer". The interference signal obtained from interferometer can be Fourier transformed into the spectral pattern of the illuminating light source. To experimentally study the concept of the Fourier transform spectroscopy, the project started by setup the Michelson interferometer in the laboratory. The implemented system used a broadband light source in near infrared region (0.81-0.89 μm) and controlled the movable mirror by using computer controlled motorized translation stage. In the early study, there is no sample the interference path. Therefore, the theoretical spectral results after the Fourier transformation of the captured interferogram must be the spectral shape of the light source. One main challenge of the FTS is to retrieve the correct phase information of the inferferogram that relates with the correct spectral shape of the light source. One main source of the phase distortion in FTS that we observed from our system is the non-linear movement of the movable reference mirror of the Michelson interferometer. Therefore, to improve the result, we coupled a monochromatic light source to the implemented interferometer. We simultaneously measured the interferograms of the monochromatic and broadband light sources. The interferogram of the monochromatic light source was used to correct the phase of the interferogram of the broadband light source. The result shows significant improvement in the computed spectral shape.

  13. Light source distribution and scattering phase function influence light transport in diffuse multi-layered media

    NASA Astrophysics Data System (ADS)

    Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine

    2017-06-01

    Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.

  14. Soft-tissue and phase-contrast imaging at the Swiss Light Source

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Mohan, Nishant; Stampanoni, Marco; Muller, Ralph

    2004-05-01

    Recent results show that bone vasculature is a major contributor to local tissue porosity, and therefore can be directly linked to the mechanical properties of bone tissue. With the advent of third generation synchrotron radiation (SR) sources, micro-computed tomography (μCT) with resolutions in the order of 1 μm and better has become feasible. This technique has been employed frequently to analyze trabecular architecture and local bone tissue properties, i.e. the hard or mineralized bone tissue. Nevertheless, less is known about the soft tissues in bone, mainly due to inadequate imaging capabilities. Here, we discuss three different methods and applications to visualize soft tissues. The first approach is referred to as negative imaging. In this case the material around the soft tissue provides the absorption contrast necessary for X-ray based tomography. Bone vasculature from two different mouse strains was investigated and compared qualitatively. Differences were observed in terms of local vessel number and vessel orientation. The second technique represents corrosion casting, which is principally adapted for imaging of vascular systems. The technique of corrosion casting has already been applied successfully at the Swiss Light Source. Using the technology we were able to show that pathological features reminiscent of Alzheimer"s disease could be distinguished in the brain vasculature of APP transgenic mice. The third technique discussed here is phase contrast imaging exploiting the high degree of coherence of third generation synchrotron light sources, which provide the necessary physical conditions for phase contrast. The in-line approach followed here for phase contrast retrieval is a modification of the Gerchberg-Saxton-Fienup type. Several measurements and theoretical thoughts concerning phase contrast imaging are presented, including mathematical phase retrieval. Although up-to-now only phase images have been computed, the approach is now ready to retrieve the phase for a large number of angular positions of the specimen allowing application of holotomography, which is the three-dimensional reconstruction of phase images.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry

    This article for a building trade magazine describes a national design competition for energy efficient lighting sponsored by the U.S. Department of Energy, the American Lighting Association, and the Consortium for Energy Efficiency, with winners announced at ALA's Annual Conference May 14, 2004, in Tucson. The Lighting for Tomorrow competition was the first national lighting fixture design competition focusing on energy-efficient residential lighting. The competition invited fixture manufacturers and designers to come up with beautiful, functional lighting fixtures that also happen to be energy efficient. Fixtures were required to use a ''dedicated'' energy-efficient light source, such as a pin-based fluorescentmore » lamp that cannot be replaced with a screw-in incandescent bulb. Fixtures also had to meet a minimum energy efficiency level that eliminated use of incandescent and halogen lamps, leaving the door open only to fluorescent sources and LEDs. More than 150 paper designs were submitted in the first phase of the competition, in 2003. Of those, 24 finalists were invited to submit working prototypes in 2004, and the winners were announced in May. The Grand Prize of $10,000 went to American Fluorescent of Waukegan, Illinois, for its ''Salem'' chandelier. Some winning fixtures are already available through Lowe's Home Improvement Centers.« less

  16. Lighting for Tomorrow: Building on the results of the first national energy-efficient lighting fixture design competition in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry

    2005-05-09

    Lighting for Tomorrow was the first residential lighting fixture design competition conducted in the United States to focus on energy-efficient light sources. Sponsored by the American Lighting Association, the Consortium for Energy Efficiency, and the U.S. Department of Energy, the competition was carried out in two phases between 2002 and 2004. Five winning fixture designs were selected from a field of 24 finalists. The paper describes the competition in detail, including its origins, sponsors, structure and rules, timeline, prizes, selection criteria, and judges. The paper describes the results of the competition, including industry response, promotion and publicity efforts, technical andmore » design innovations demonstrated by the winners, and retail placements to date. Finally, the paper offers several lessons learned that are instructive for future efforts to promote high-efficiency lighting through the design competition approach.« less

  17. Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor

    NASA Astrophysics Data System (ADS)

    Ma, Rong; Liu, Wei; Qin, Zhongzhong; Su, Xiaolong; Jia, Xiaojun; Zhang, Junxiang; Gao, Jiangrui

    2018-03-01

    Using a nondegenerate four-wave mixing (FWM) process based on a double-{\\Lambda} scheme in hot cesium vapor, we demonstrate a compact diode-laser-pumped quantum light source for the generation of quantum correlated twin beams with a maximum squeezing of 6.5 dB. The squeezing is observed at a Fourier frequency in the audio band down to 0.7 kHz which, to the best of our knowledge, is the first observation of sub-kilohertz intensity-difference squeezing in an atomic system so far. A phase-matching condition is also investigated in our system, which confirms the spatial-multi-mode characteristics of the FWM process. Our compact low-frequency squeezed light source may find applications in quantum imaging, quantum metrology, and the transfer of optical squeezing onto a matter wave.

  18. Target recognition and phase acquisition by using incoherent digital holographic imaging

    NASA Astrophysics Data System (ADS)

    Lee, Munseob; Lee, Byung-Tak

    2017-05-01

    In this study, we proposed the Incoherent Digital Holographic Imaging (IDHI) for recognition and phase information of dedicated target. Although recent development of a number of target recognition techniques such as LIDAR, there have limited success in target discrimination, in part due to low-resolution, low scanning speed, and computation power. In the paper, the proposed system consists of the incoherent light source, such as LED, Michelson interferometer, and digital CCD for acquisition of four phase shifting image. First of all, to compare with relative coherence, we used a source as laser and LED, respectively. Through numerical reconstruction by using the four phase shifting method and Fresnel diffraction method, we recovered the intensity and phase image of USAF resolution target apart from about 1.0m distance. In this experiment, we show 1.2 times improvement in resolution compared to conventional imaging. Finally, to confirm the recognition result of camouflaged targets with the same color from background, we carry out to test holographic imaging in incoherent light. In this result, we showed the possibility of a target detection and recognition that used three dimensional shape and size signatures, numerical distance from phase information of obtained holographic image.

  19. Two spatial light modulator system for laboratory simulation of random beam propagation in random media.

    PubMed

    Wang, Fei; Toselli, Italo; Korotkova, Olga

    2016-02-10

    An optical system consisting of a laser source and two independent consecutive phase-only spatial light modulators (SLMs) is shown to accurately simulate a generated random beam (first SLM) after interaction with a stationary random medium (second SLM). To illustrate the range of possibilities, a recently introduced class of random optical frames is examined on propagation in free space and several weak turbulent channels with Kolmogorov and non-Kolmogorov statistics.

  20. Pilot-aided feedforward data recovery in optical coherent communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Bing

    2017-09-19

    A method and a system for pilot-aided feedforward data recovery are provided. The method and system include a receiver including a strong local oscillator operating in a free running mode independent of a signal light source. The phase relation between the signal light source and the local oscillator source is determined based on quadrature measurements on pilot pulses from the signal light source. Using the above phase relation, information encoded in an incoming signal can be recovered, optionally for use in communication with classical coherent communication protocols and quantum communication protocols.

  1. Time-resolved imaging of the microbunching instability and energy spread at the Linac Coherent Light Source

    DOE PAGES

    Ratner, D.; Behrens, C.; Ding, Y.; ...

    2015-03-09

    The microbunching instability (MBI) is a well known problem for high brightness electron beams and has been observed at accelerator facilities around the world. Free-electron lasers (FELs) are particularly susceptible to MBI, which can distort the longitudinal phase space and increase the beam’s slice energy spread (SES). Past studies of MBI at the Linac Coherent Light Source (LCLS) relied on optical transition radiation to infer the existence of microbunching. With the development of the x-band transverse deflecting cavity (XTCAV), we can for the first time directly image the longitudinal phase space at the end of the accelerator and complete amore » comprehensive study of MBI, revealing both detailed MBI behavior as well as insights into mitigation schemes. The fine time resolution of the XTCAV also provides the first LCLS measurements of the final SES, a critical parameter for many advanced FEL schemes. As a result, detailed MBI and SES measurements can aid in understanding MBI mechanisms, benchmarking simulation codes, and designing future high- brightness accelerators.« less

  2. Optical readout of a two phase liquid argon TPC using CCD camera and THGEMs

    NASA Astrophysics Data System (ADS)

    Mavrokoridis, K.; Ball, F.; Carroll, J.; Lazos, M.; McCormick, K. J.; Smith, N. A.; Touramanis, C.; Walker, J.

    2014-02-01

    This paper presents a preliminary study into the use of CCDs to image secondary scintillation light generated by THick Gas Electron Multipliers (THGEMs) in a two phase LAr TPC. A Sony ICX285AL CCD chip was mounted above a double THGEM in the gas phase of a 40 litre two-phase LAr TPC with the majority of the camera electronics positioned externally via a feedthrough. An Am-241 source was mounted on a rotatable motion feedthrough allowing the positioning of the alpha source either inside or outside of the field cage. Developed for and incorporated into the TPC design was a novel high voltage feedthrough featuring LAr insulation. Furthermore, a range of webcams were tested for operation in cryogenics as an internal detector monitoring tool. Of the range of webcams tested the Microsoft HD-3000 (model no:1456) webcam was found to be superior in terms of noise and lowest operating temperature. In ambient temperature and atmospheric pressure 1 ppm pure argon gas, the THGEM gain was ≈ 1000 and using a 1 msec exposure the CCD captured single alpha tracks. Successful operation of the CCD camera in two-phase cryogenic mode was also achieved. Using a 10 sec exposure a photograph of secondary scintillation light induced by the Am-241 source in LAr has been captured for the first time.

  3. Quark-novae Occurring in Massive Binaries : A Universal Energy Source in Superluminous Supernovae with Double-peaked Light Curves

    NASA Astrophysics Data System (ADS)

    Ouyed, Rachid; Leahy, Denis; Koning, Nico

    2016-02-01

    A quark-nova (QN; the sudden transition from a neutron star into a quark star), which occurs in the second common envelope (CE) phase of a massive binary, gives excellent fits to superluminous, hydrogen-poor, supernovae (SLSNe) with double-peaked light curves, including DES13S2cmm, SN 2006oz, and LSQ14bdq (http://www.quarknova.ca/LCGallery.html). In our model, the H envelope of the less massive companion is ejected during the first CE phase, while the QN occurs deep inside the second, He-rich, CE phase after the CE has expanded in size to a radius of a few tens to a few thousands of solar radii; this yields the first peak in our model. The ensuing merging of the quark star with the CO core leads to black hole formation and accretion, explaining the second long-lasting peak. We study a sample of eight SLSNe Ic with double-humped light curves. Our model provides good fits to all of these, with a universal explosive energy of 2 × 1052 erg (which is the kinetic energy of the QN ejecta) for the first hump. The late-time emissions seen in iPTF13ehe and LSQ14bdq are fit with a shock interaction between the outgoing He-rich (I.e., second) CE and the previously ejected H-rich (I.e., first) CE.

  4. Controllable Planar Optical Focusing System

    NASA Technical Reports Server (NTRS)

    Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2016-01-01

    An optical device has a first metasurface disposed over a substrate. A high-contrast pattern of the first metasurface is operable for modifying, over a first phase profile, a phase front of an incident light beam. A second metasurface, is disposed over a plane parallel to the first metasurface with a second high-contrast pattern and operable for shaping, over a second phase profile, the modified phase front of the incident light beam into a converging spherical phase front. A spacer layer, in which the modified phase front of the incident light beam diffracts, is disposed in a controllably changeable separation between the first and second metasurfaces. Controllably changing the separation between the first and the second metasurfaces by a first distance correspondingly changes the position of the focus point of the converging spherical phase front by a second distance significantly greater than the first distance.

  5. Compact laser accelerators for X-ray phase-contrast imaging

    PubMed Central

    Najmudin, Z.; Kneip, S.; Bloom, M. S.; Mangles, S. P. D.; Chekhlov, O.; Dangor, A. E.; Döpp, A.; Ertel, K.; Hawkes, S. J.; Holloway, J.; Hooker, C. J.; Jiang, J.; Lopes, N. C.; Nakamura, H.; Norreys, P. A.; Rajeev, P. P.; Russo, C.; Streeter, M. J. V.; Symes, D. R.; Wing, M.

    2014-01-01

    Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300 TW laser, which allowed the energy of the synchrotron source to be extended to the 10–100 keV range. PMID:24470414

  6. Spectrally resolved laser interference microscopy

    NASA Astrophysics Data System (ADS)

    Butola, Ankit; Ahmad, Azeem; Dubey, Vishesh; Senthilkumaran, P.; Singh Mehta, Dalip

    2018-07-01

    We developed a new quantitative phase microscopy technique, namely, spectrally resolved laser interference microscopy (SR-LIM), with which it is possible to quantify multi-spectral phase information related to biological specimens without color crosstalk using a color CCD camera. It is a single shot technique where sequential switched on/off of red, green, and blue (RGB) wavelength light sources are not required. The method is implemented using a three-wavelength interference microscope and a customized compact grating based imaging spectrometer fitted at the output port. The results of the USAF resolution chart while employing three different light sources, namely, a halogen lamp, light emitting diodes, and lasers, are discussed and compared. The broadband light sources like the halogen lamp and light emitting diodes lead to stretching in the spectrally decomposed images, whereas it is not observed in the case of narrow-band light sources, i.e. lasers. The proposed technique is further successfully employed for single-shot quantitative phase imaging of human red blood cells at three wavelengths simultaneously without color crosstalk. Using the present technique, one can also use a monochrome camera, even though the experiments are performed using multi-color light sources. Finally, SR-LIM is not only limited to RGB wavelengths, it can be further extended to red, near infra-red, and infra-red wavelengths, which are suitable for various biological applications.

  7. Achromatic phase-matching second harmonic generation for a tunable laser

    DOEpatents

    Jacobson, A.G.; Bisson, S.; Trebino, R.

    1998-01-20

    An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency. 6 figs.

  8. Achromatic phase-matching second harmonic generation for a tunable laser

    DOEpatents

    Jacobson, Alexander Gerson; Bisson, Scott; Trebino, Rick

    1998-01-01

    An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency.

  9. Lighting theory and luminous characteristics of white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Uchida, Yuji; Taguchi, Tsunemasa

    2005-12-01

    A near-ultraviolet (UV)-based white light-emitting diode (LED) lighting system linked with a semiconductor InGaN LED and compound phosphors for general lighting applications is proposed. We have developed for the first time a novel type of high-color rendering index (Ra) white LED light source, which is composed of near-UV LED and multiphosphor materials showing orange (O), yellow (Y), green (G), and blue (B) emissions. The white LED shows the superior characteristics of luminous efficacy and high Ra to be about 40 lm/W and 93, respectively. Luminous and chromaticity characteristics, and their spectral distribution of the present white LED can be evaluated using the multipoint LED light source theory. It is revealed that the OYGB white LED can provide better irradiance properties than that of conventional white LEDs. Near-UV white LED technologies, in conjunction with phosphor blends, can offer superior color uniformity, high Ra, and excellent light quality. Consequently we are carrying out a "white LEDs for medical applications" program in the second phase of this national project from 2004 to 2009.

  10. Effective increase in beam emittance by phase-space expansion using asymmetric Bragg diffraction.

    PubMed

    Chu, Chia-Hung; Tang, Mau-Tsu; Chang, Shih-Lin

    2015-08-24

    We propose an innovative method to extend the utilization of the phase space downstream of a synchrotron light source for X-ray transmission microscopy. Based on the dynamical theory of X-ray diffraction, asymmetrically cut perfect crystals are applied to reshape the position-angle-wavelength space of the light source, by which the usable phase space of the source can be magnified by over one hundred times, thereby "phase-space-matching" the source with the objective lens of the microscope. The method's validity is confirmed using SHADOW code simulations, and aberration through an optical lens such as a Fresnel zone plate is examined via matrix optics for nano-resolution X-ray images.

  11. Linac coherent light source (LCLS) undulator RF BPM system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lill, R.; Waldschmidt, G.; Morrison, L.

    2006-01-01

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, andmore » prototype test results.« less

  12. Linac Coherent Light Source Undulator RF BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lill, R.M.; Morrison, L.H.; Waldschmidt, G.J.

    2007-04-17

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, andmore » prototype test results.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Manvendra; Aiken, Allison; Berg, Larry K.

    We deployed Aerodyne Research Inc.’s first Cavity Attenuated Phase Shift extinction (CAPS PMex) monitor (built by Aerodyne) that measures light extinction by using a visible-light-emitting diode (LED) as a light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector in Cape Cod in 2012/13 for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Two-Column Aerosol Project (TCAP). The efficacy of this instrument is based on the fact that aerosols are broadband scatterers and absorbers of light. The input LED is square-wave modulated and passedmore » through the sample cell that distorts it due to exponential decay by aerosol light absorption and scattering; this is measured at the detector. The amount of phase shift of the light at the detector is used to determine the light extinction. This extinction measurement provides an absolute value, requiring no calibration. The goal was to compare the CAPS performance with direct measurements of absorption with ARM’s baseline photoacoustic soot spectrometer (PASS-3) and nephelometer instruments to evaluate its performance.« less

  14. White-Light Phase-Conjugate Mirrors as Distortion Correctors

    NASA Technical Reports Server (NTRS)

    Frazier, Donald; Smith, W. Scott; Abdeldayem, Hossin; Banerjee, Partha

    2010-01-01

    White-light phase-conjugate mirrors would be incorporated into some optical systems, according to a proposal, as means of correcting for wavefront distortions caused by imperfections in large optical components. The proposal was given impetus by a recent demonstration that white, incoherent light can be made to undergo phase conjugation, whereas previously, only coherent light was known to undergo phase conjugation. This proposal, which is potentially applicable to almost any optical system, was motivated by a need to correct optical aberrations of the primary mirror of the Hubble Space telescope. It is difficult to fabricate large optical components like the Hubble primary mirror and to ensure the high precision typically required of such components. In most cases, despite best efforts, the components as fabricated have small imperfections that introduce optical aberrations that adversely affect imaging quality. Correcting for such aberrations is difficult and costly. The proposed use of white-light phase conjugate mirrors offers a relatively simple and inexpensive solution of the aberration-correction problem. Indeed, it should be possible to simplify the entire approach to making large optical components because there would be no need to fabricate those components with extremely high precision in the first place: A white-light phase-conjugate mirror could correct for all the distortions and aberrations in an optical system. The use of white-light phase-conjugate mirrors would be essential for ensuring high performance in optical systems containing lightweight membrane mirrors, which are highly deformable. As used here, "phase-conjugate mirror" signifies, more specifically, an optical component in which incident light undergoes time-reversal phase conjugation. In practice, a phase-conjugate mirror would typically be implemented by use of a suitably positioned and oriented photorefractive crystal. In the case of a telescope comprising a primary and secondary mirror (see figure) white light from a distant source would not be brought to initial focus on one or more imaging scientific instrument(s) as in customary practice. Instead, the light would be brought to initial focus on a phase-conjugate mirror. The phase-conjugate mirror would send a phase-conjugate image back, along the path of the incoming light, to the primary mirror. A transparent, highly efficient diffractive thin film deposited on the primary mirror would direct the phase-conjugate image to the imaging instrument(s).

  15. X-ray phase-contrast tomosynthesis of a human ex vivo breast slice with an inverse Compton x-ray source

    NASA Astrophysics Data System (ADS)

    Eggl, E.; Schleede, S.; Bech, M.; Achterhold, K.; Grandl, S.; Sztrókay, A.; Hellerhoff, K.; Mayr, D.; Loewen, R.; Ruth, R. D.; Reiser, M. F.; Pfeiffer, F.

    2016-12-01

    While the performance of conventional x-ray tube sources often suffers from the broad polychromatic spectrum, synchrotrons that could provide highly brilliant x-rays are restricted to large research facilities and impose high investment and maintenance costs. Lately, a new type of compact synchrotron sources has been investigated. These compact light sources (CLS) based on inverse Compton scattering provide quasi-monochromatic hard x-rays. The flux and brilliance yielded by a CLS currently lie between x-ray tube sources and third-generation synchrotrons. The relatively large partially coherent x-ray beam is well suited for the investigation of preclinical applications of grating-based phase-contrast and dark-field imaging. Here we present the first grating-based multimodal tomosynthesis images of a human breast slice acquired at a CLS to investigate the possibilities of improved breast cancer diagnostics.

  16. Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.

  17. Comparison of atom interferometers and light interferometers as space-based gravitational wave detectors.

    PubMed

    Baker, John G; Thorpe, J I

    2012-05-25

    We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.

  18. High throughput optical scanner

    DOEpatents

    Basiji, David A.; van den Engh, Gerrit J.

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  19. Deciphering Periodic Methanol Masers

    NASA Astrophysics Data System (ADS)

    Stecklum, Bringfried; Caratti o Garatti, Alessio; Henning, Thomas; Hodapp, Klaus; Hopp, Ulrich; Kraus, Alex; Linz, Hendrik; Sanna, Alberto; Sobolev, Andrej; Wolf, Verena

    2018-05-01

    Impressive progress has been made in recent years on massive star formation, yet the involved high optical depths even at submm/mm wavelengths make it difficult to reveal its details. Recently, accretion bursts of massive YSOs have been identified to cause flares of Class II methanol masers (methanol masers for short) due to enhanced mid-IR pumping. This opens a new window to protostellar accretion variability, and implies that periodic methanol masers hint at cyclic accretion. Pinning down the cause of the periodicity requires joint IR and radio monitoring. We derived the first IR light curve of a periodic maser host from NEOWISE data. The source, G107.298+5.639, is an intermediate-mass YSO hosting methanol and water masers which flare every 34.5 days. Our recent joint K-band and radio observations yielded first but marginal evidence for a phase lag between the rise of IR and maser emission, respectively, and revealed that both NEOWISE and K-band light curves are strongly affected by the light echo from the ambient dust. Both the superior resolution of IRAC over NEOWISE and the longer wavelengths compared to our ground-based imaging are required to inhibit the distractive contamination by the light echo. Thus, we ask for IRAC monitoring of G107 to cover one flare cycle, in tandem with 100-m Effelsberg and 2-m Wendelstein radio and NIR observations to obtain the first high-quality synoptic measurements of this kind of sources. The IR-maser phase lag, the intrinsic shape of the IR light curves and their possible color variation during the cycle allow us to constrain models for the periodic maser excitation. Since methanol masers are signposts of intermediate-mass and massive YSOs, deciphering their variability offers a clue to the dynamics of the accretion-mediated growth of massive stars and their feedback onto the immediate natal environment. The Spitzer light curve of such a maser-hosting YSO would be a legacy science product of the mission.

  20. Process for improving soluble coal yield in a coal deashing process

    DOEpatents

    Rhodes, Donald E.

    1980-01-01

    Coal liquefaction products are contacted with a deashing solvent and introduced into a first separation zone. The first separation zone is maintained at an elevated temperature and pressure, determined to maximize the recovery of soluble coal products, to cause said coal liquefaction products to separate into a first light phase and a first heavy phase. Under these conditions the heavy phase while still fluid-like in character is substantially non-flowable. Flowability is returned to the fluid-like heavy phase by the introduction of an additional quantity of deashing solvent into the first separation zone at a location below the interface between the first light and heavy phases or into the heavy phase withdrawal conduit during withdrawal of the first heavy phase and prior to any substantial pressure reduction. The first heavy phase then is withdrawn from the first separation zone for additional downstream processing without plugging either the withdrawal conduit or the downstream apparatus. The first light phase comprising the soluble coal products is withdrawn and recovered in an increased yield to provide a more economical coal deashing process.

  1. Diagnostic Systems Plan for the Advanced Light Source Top-OffUpgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, Walter; Chin, Mike; Robin, David

    2005-05-10

    The Advanced Light Source (ALS) will soon be upgraded to enable top-off operations [1], in which electrons are quasi-continuously injected to produce constant stored beam current. The upgrade is structured in two phases. First, we will upgrade our injector from 1.5 GeV to 1.9 GeV to allow full energy injection and will start top-off operations. In the second phase, we will upgrade the Booster Ring (BR) with a bunch cleaning system to allow high bunch purity top-off injection. A diagnostics upgrade will be crucial for success in both phases of the top-off project, and our plan for it is describedmore » in this paper. New booster ring diagnostics will include updated beam position monitor (BPM) electronics, a tune monitoring system, and a new scraper. Two new synchrotron light monitors and a beam stop will be added to the booster-to-storage ring transfer line (BTS), and all the existing beam current monitors along the accelerator chain will be integrated into a single injection efficiency monitoring application. A dedicated bunch purity monitor will be installed in the storage ring (SR). Together, these diagnostic upgrades will enable smooth commissioning of the full energy injector and a quick transition to high quality top-off operation at the ALS.« less

  2. Apparatus and Method for Focusing a Light Beam in a Three-Dimensional Recording Medium by a Dynamic Holographic Device

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    1998-01-01

    An apparatus is disclosed for reading and/or writing information or to from an optical recording medium having a plurality of information storage layers. The apparatus includes a dynamic holographic optical element configured to focus light on the optical recording medium. a control circuit arranged to supply a drive signal to the holographic optical element, and a storage device in communication with the control circuit and storing at least a first drive signal and a second drive signal. The holographic optical element focusses light on a first one of the plurality of information storage layers when driven by the first drive signal on a second one of the plurality of information storage layers when driven by the second drive signal. An optical switch is also disclosed for connecting at least one light source in a source array to at least one light receiver in a receiver array. The switch includes a dynamic holographic optical element configured to receive light from the source array and to transmit light to the receiver array, a control circuit arranged to supply a drive signal to the holographic optical element, and a storage device in communication with the control circuit and storing at least a first drive signal and a second drive signal. The holographic optical element connects a first light source in the source array to a first light receiver in the receiver array when driven by the first drive signal and the holographic optical element connects the first light source with the first light receiver and a second light receiver when driven by the second drive signal.

  3. Carambola optics for recycling of light.

    PubMed

    Leutz, Ralf; Fu, Ling; Ries, Harald

    2006-04-20

    Recycling of light allows the luminance (radiance) emitted by a light source to be increased at the cost of reducing the total luminous flux (radiant power). Recycling of light means returning part of the emitted light to the source, where part of it will escape absorption. An optical design that is suitable for multiple and controlled recycling is described. Carambola optics is named for its resemblance to star fruit. Several pairs of mirrors or prisms redirect light repeatedly onto the source, thus achieving multiple transits of the light through the source. This recycled light exits the carambola in the same phase space as light directly emitted and not recycled.

  4. A Mach-Zehnder interferometer based on orbital angular momentum for improved vortex coronagraph efficiency

    NASA Astrophysics Data System (ADS)

    Piron, P.; Delacroix, C.; Huby, E.; Mawet, D.; Karlsson, M.; Ruane, G.; Habraken, S.; Absil, O.; Surdej, J.

    2015-09-01

    The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a π phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relatively poor. To solve this problem, we propose to add a birefringent wave-plate in each arm to compensate this birefringence. In this paper, we will develop the mathematical model of the wave front using the Jones formalism. The performance of the interferometer is at first computed for the simple version without the birefringent plate. Then the effect of the birefringent plate is be mathematically described and the performance is re-computed.

  5. Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging.

    PubMed

    Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert

    2009-03-10

    In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.

  6. Schlieren with a laser diode source

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Franke, J. M.

    1981-01-01

    The use of a laser diode as a light source for a schlieren system designed to study phase objects such as a wind-tunnel flow is explored. A laser diode schlieren photograph and a white light schlieren photograph (zirconium arc source) are presented for comparison. The laser diode has increased sensitivity, compared with light schlieren, without appreciable image degradiation, and is an acceptable source for schlieren flow visualization.

  7. Two-Column Aerosol Project: Aerosol Light Extinction Measurements Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Manvendra; Aiken, Allison; Berg, Larry

    We deployed Aerodyne Research Inc.’s first Cavity Attenuated Phase Shift extinction (CAPS PMex) monitor (built by Aerodyne) that measures light extinction by using a visible-light-emitting diode (LED) as a light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector in Cape Cod in 2012/13 for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Two-Column Aerosol Project (TCAP). The efficacy of this instrument is based on the fact that aerosols are broadband scatterers and absorbers of light. The input LED is square-wave modulated and passedmore » through the sample cell that distorts it due to exponential decay by aerosol light absorption and scattering; this is measured at the detector. The amount of phase shift of the light at the detector is used to determine the light extinction. This extinction measurement provides an absolute value, requiring no calibration. The goal was to compare the CAPS performance with direct measurements of absorption with ARM’s baseline photoacoustic soot spectrometer (PASS-3) and nephelometer instruments to evaluate its performance.« less

  8. Effects of light sources and intensity on broilers grown to heavy weights: Hematophysiological and biochemical assessment.

    USDA-ARS?s Scientific Manuscript database

    Most governments around the world including the USA have passed measures to phase out incandescent light bulbs in favor of more energy-efficient lighting alternatives. Research is limited on blood physiological variables of broilers grown to heavy weights (> 3 kg) under these new light sources to en...

  9. Reflector system for a lighting fixture

    DOEpatents

    Siminovitch, Michael J.; Page, Erik; Gould, Carl T.

    1998-01-01

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.

  10. Reflector system for a lighting fixture

    DOEpatents

    Siminovitch, Michael J.; Page, Erik; Gould, Carl T.

    2001-01-01

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.

  11. Living cell dry mass measurement using quantitative phase imaging with quadriwave lateral shearing interferometry: an accuracy and sensitivity discussion.

    PubMed

    Aknoun, Sherazade; Savatier, Julien; Bon, Pierre; Galland, Frédéric; Abdeladim, Lamiae; Wattellier, Benoit; Monneret, Serge

    2015-01-01

    Single-cell dry mass measurement is used in biology to follow cell cycle, to address effects of drugs, or to investigate cell metabolism. Quantitative phase imaging technique with quadriwave lateral shearing interferometry (QWLSI) allows measuring cell dry mass. The technique is very simple to set up, as it is integrated in a camera-like instrument. It simply plugs onto a standard microscope and uses a white light illumination source. Its working principle is first explained, from image acquisition to automated segmentation algorithm and dry mass quantification. Metrology of the whole process, including its sensitivity, repeatability, reliability, sources of error, over different kinds of samples and under different experimental conditions, is developed. We show that there is no influence of magnification or spatial light coherence on dry mass measurement; effect of defocus is more critical but can be calibrated. As a consequence, QWLSI is a well-suited technique for fast, simple, and reliable cell dry mass study, especially for live cells.

  12. Effects of different light intensities in the morning on dim light melatonin onset.

    PubMed

    Kozaki, Tomoaki; Toda, Naohiro; Noguchi, Hiroki; Yasukouchi, Akira

    2011-01-01

    The present study evaluated the effects of exposure to light intensity in the morning on dim light melatonin onset (DLMO). The tested light intensities were 750 lux, 150 lux, 3000 lux, 6000 lux and 12,000 lux (horizontal illuminance at cornea), using commercial 5000 K fluorescent lamps. Eleven healthy males aged 21-31 participated in 2-day experiments for each light condition. On the first experimental day (day 1), subjects were exposed to dim light (<30 lux) for 3 h in the morning (09:00-12:00). On the same day, saliva samples were taken in dim light (<30 lux) every 30 min from 21:00 to 01:00 to determine the DLMO phase. The subjects were allowed to sleep from 01:00 to 08:00. On the second experimental day (day 2), the subjects were exposed to experimental light conditions for 3 h in the morning. The experimental schedule after light exposure was the same as on day 1. On comparing day 2 with day 1, significant phase advances of DLMO were obtained at 3000 lux, 6000 lux and 12,000 lux. These findings indicate that exposure to a necessary intensity from an ordinary light source, such as a fluorescent lamp, in the morning within one day affects melatonin secretion.

  13. Sleep patterns in Amazon rubber tappers with and without electric light at home.

    PubMed

    Moreno, C R C; Vasconcelos, S; Marqueze, E C; Lowden, A; Middleton, B; Fischer, F M; Louzada, F M; Skene, D J

    2015-09-11

    Today's modern society is exposed to artificial electric lighting in addition to the natural light-dark cycle. Studies assessing the impact of electric light exposure on sleep and its relation to work hours are rare due to the ubiquitous presence of electricity. Here we report a unique study conducted in two phases in a homogenous group of rubber tappers living and working in a remote area of the Amazon forest, comparing those living without electric light (n = 243 in first phase; n = 25 in second phase) to those with electric light at home (n = 97 in first phase; n = 17 in second phase). Questionnaire data (Phase 1) revealed that rubber tappers with availability of electric light had significantly shorter sleep on work days (30 min/day less) than those without electric light. Analysis of the data from the Phase 2 sample showed a significant delay in the timing of melatonin onset in workers with electric light compared to those without electric light (p < 0.01). Electric lighting delayed sleep onset and reduced sleep duration during the work week and appears to interfere with alignment of the circadian timing system to the natural light/dark cycle.

  14. Characterization of Stormwater Runoff from a Light Rail Transit Area.

    PubMed

    Sajjad, Raja Umer; Kim, Kyoung Jin; Memon, Sheeraz; Sukhbaatar, Chinzorig; Paule, Ma Cristina; Lee, Bum-Yeon; Lee, Chang-Hee

    2015-09-01

    The monitoring of stormwater runoff from Light Rail Transit (LRT) facilities is insufficient in many regions around the world. In this study, runoff quality and quantity were monitored during operational and non-operational LRT phases during 2010-2013. The event mean concentration (EMC) of pollutants showed little statistical variability during both phases. The antecedent dry day (ADD) showed a strong to moderate positive correlation with most pollutant EMCs during the non-operational phase. The existence and magnitude of the first flush from LRT runoff was found to be similar to those from other transportation land uses. The comparison of LRT runoff data with an adjacent road bridge site showed that the pollutant EMC and unit load were 2 to 9 times higher from the road bridge. It was suggested that LRT automated operation and the elevated track makes this transportation mode a viable option for the management of non-point source pollution.

  15. Comparative Sensitivities of Gravitational Wave Detectors Based on Atom Interferometers and Light Interferometers

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Thorpe, J. I.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.

  16. Computer Generated Holography with Intensity-Graded Patterns

    PubMed Central

    Conti, Rossella; Assayag, Osnath; de Sars, Vincent; Guillon, Marc; Emiliani, Valentina

    2016-01-01

    Computer Generated Holography achieves patterned illumination at the sample plane through phase modulation of the laser beam at the objective back aperture. This is obtained by using liquid crystal-based spatial light modulators (LC-SLMs), which modulate the spatial phase of the incident laser beam. A variety of algorithms is employed to calculate the phase modulation masks addressed to the LC-SLM. These algorithms range from simple gratings-and-lenses to generate multiple diffraction-limited spots, to iterative Fourier-transform algorithms capable of generating arbitrary illumination shapes perfectly tailored on the base of the target contour. Applications for holographic light patterning include multi-trap optical tweezers, patterned voltage imaging and optical control of neuronal excitation using uncaging or optogenetics. These past implementations of computer generated holography used binary input profile to generate binary light distribution at the sample plane. Here we demonstrate that using graded input sources, enables generating intensity graded light patterns and extend the range of application of holographic light illumination. At first, we use intensity-graded holograms to compensate for LC-SLM position dependent diffraction efficiency or sample fluorescence inhomogeneity. Finally we show that intensity-graded holography can be used to equalize photo evoked currents from cells expressing different levels of chanelrhodopsin2 (ChR2), one of the most commonly used optogenetics light gated channels, taking into account the non-linear dependence of channel opening on incident light. PMID:27799896

  17. Nonlinear optical coupler using a doped optical waveguide

    DOEpatents

    Pantell, Richard H.; Sadowski, Robert W.; Digonnet, Michel J. F.; Shaw, Herbert J.

    1994-01-01

    An optical mode coupling apparatus includes an Erbium-doped optical waveguide in which an optical signal at a signal wavelength propagates in a first spatial propagation mode and a second spatial propagation mode of the waveguide. The optical signal propagating in the waveguide has a beat length. The coupling apparatus includes a pump source of perturbational light signal at a perturbational wavelength that propagates in the waveguide in the first spatial propagation mode. The perturbational signal has a sufficient intensity distribution in the waveguide that it causes a perturbation of the effective refractive index of the first spatial propagation mode of the waveguide in accordance with the optical Kerr effect. The perturbation of the effective refractive index of the first spatial propagation mode of the optical waveguide causes a change in the differential phase delay in the optical signal propagating in the first and second spatial propagation modes. The change in the differential phase delay is detected as a change in the intensity distribution between two lobes of the optical intensity distribution pattern of an output signal. The perturbational light signal can be selectively enabled and disabled to selectively change the intensity distribution in the two lobes of the optical intensity distribution pattern.

  18. Violet/blue light activates Nrf2 signaling and modulates the inflammatory response of THP-1 monocytes.

    PubMed

    Trotter, L A; Patel, D; Dubin, S; Guerra, C; McCloud, V; Lockwood, P; Messer, R; Wataha, J C; Lewis, J B

    2017-06-14

    Several studies suggest that light in the UVA range (320-400 nm) activates signaling pathways that are anti-inflammatory and antioxidative. These effects have been attributed to Nrf2-mediated upregulation of "phase 2" genes such as heme oxygenase-1 (HO-1) that neutralize oxidative stress and metabolize electrophiles. Proteomics analysis previously had shown that small doses of blue light (400-500 nm) increased levels of peroxiredoxin phase 2 proteins in THP-1 monocytes, which led to our hypothesis that blue light activates Nrf2 signaling and thus may serve as an anti-inflammatory agent. THP-1 monocytes were treated with doses of blue light with and without lipopolysaccharide (LPS) inflammatory challenge. Cell lysates were tested for Nrf2 activation and HO-1 production. Treated cells were assessed for viability/mitochondrial activity via trypan blue exclusion and MTT assay, and secretion of two major pro-inflammatory cytokines, interleukin 8 (IL8) and tumor necrosis factor alpha (TNFα) was measured using ELISA. Blue light activated the phase 2 response in cultured THP-1 cells and was protective against LPS-induced cytotoxicity. Light pre-treatment also significantly reduced cytokine secretion in response to 0.1 μg ml -1 LPS, but had no anti-inflammatory effect at high LPS levels. This study is the first to report these effects using a light source that is approved for routine use on dental patients. Cellular responses to these light energies are worth further study and may provide therapeutic interventions for inflammation.

  19. Wideband tunable laser phase noise reduction using single sideband modulation in an electro-optical feed-forward scheme.

    PubMed

    Aflatouni, Firooz; Hashemi, Hossein

    2012-01-15

    A wideband laser phase noise reduction scheme is introduced where the optical field of a laser is single sideband modulated with an electrical signal containing the discriminated phase noise of the laser. The proof-of-concept experiments on a commercially available 1549 nm distributed feedback laser show linewidth reduction from 7.5 MHz to 1.8 kHz without using large optical cavity resonators. This feed-forward scheme performs wideband phase noise cancellation independent of the light source and, as such, it is compatible with the original laser source tunability without requiring tunable optical components. By placing the proposed phase noise reduction system after a commercial tunable laser, a tunable coherent light source with kilohertz linewidth over a tuning range of 1530-1570 nm is demonstrated.

  20. Reflector system for a lighting fixture

    DOEpatents

    Siminovitch, M.J.; Page, E.; Gould, C.T.

    1998-09-08

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope. 5 figs.

  1. Light-Induced resetting of the circadian pacemaker: quantitative analysis of transient versus steady-state phase shifts.

    PubMed

    Watanabe, K; Deboer, T; Meijer, J H

    2001-12-01

    The suprachiasmatic nuclei of the hypothalamus contain the major circadian pacemaker in mammals, driving circadian rhythms in behavioral and physiological functions. This circadian pacemaker's responsiveness to light allows synchronization to the light-dark cycle. Phase shifting by light often involves several transient cycles in which the behavioral activity rhythm gradually shifts to its steady-state position. In this article, the authors investigate in Syrian hamsters whether a phase-advancing light pulse results in immediate shifts of the PRC at the next circadian cycle. In a first series of experiments, the authors aimed a light pulse at CT 19 to induce a phase advance. It appeared that the steady-state phase advances were highly correlated with activity onset in the first and second transient cycle. This enabled them to make a reliable estimate of the steady-state phase shift induced by a phase-advancing light pulse on the basis of activity onset in the first transient cycle. In the next series of experiments, they presented a light pulse at CT 19, which was followed by a second light pulse aimed at the delay zone of the PRC on the next circadian cycle. The immediate and steady-state phase delays induced by the second light pulse were compared with data from a third experiment in which animals received a phase-delaying light pulse only. The authors observed that the waveform of the phase-delay part of the PRC (CT 12-16) obtained in Experiment 2 was virtually identical to the phase-delay part of the PRC for a single light pulse (obtained in Experiment 3). This finding allowed for a quantitative assessment of the data. The analysis indicates that the delay part of the PRC-between CT 12 and CT 16-is rapidly reset following a light pulse at CT 19. These findings complement earlier findings in the hamster showing that after a light pulse at CT 19, the phase-advancing part of the PRC is immediately shifted. Together, the data indicate that the basis for phase advancing involves rapid resetting of both advance and delay components of the PRC.

  2. Improved Phase-Mask Fabrication of Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Wang, Ying; Sharma, Anup

    2004-01-01

    An improved method of fabrication of Bragg gratings in optical fibers combines the best features of two prior methods: one that involves the use of a phase mask and one that involves interference between the two coherent laser beams. The improved method affords flexibility for tailoring Bragg wavelengths and bandwidths over wide ranges. A Bragg grating in an optical fiber is a periodic longitudinal variation in the index of refraction of the fiber core. The spatial period (Bragg wavelength) is chosen to obtain enhanced reflection of light of a given wavelength that would otherwise propagate relatively unimpeded along the core. Optionally, the spatial period of the index modulation can be made to vary gradually along the grating (such a grating is said to be chirped ) in order to obtain enhanced reflection across a wavelength band, the width of which is determined by the difference between the maximum and minimum Bragg wavelengths. In the present method as in both prior methods, a Bragg grating is formed by exposing an optical fiber to an ultraviolet-light interference field. The Bragg grating coincides with the pattern of exposure of the fiber core to ultraviolet light; in other words, the Bragg grating coincides with the interference fringes. Hence, the problem of tailoring the Bragg wavelength and bandwidth is largely one of tailoring the interference pattern and the placement of the fiber in the interference pattern. In the prior two-beam interferometric method, a single laser beam is split into two beams, which are subsequently recombined to produce an interference pattern at the location of an optical fiber. In the prior phase-mask method, a phase mask is used to diffract a laser beam mainly into two first orders, the interference between which creates the pattern to which an optical fiber is exposed. The prior two-beam interferometric method offers the advantage that the period of the interference pattern can be adjusted to produce gratings over a wide range of Bragg wavelengths, but offers the disadvantage that success depends on precise alignment and high mechanical stability. The prior phase-mask method affords the advantages of compactness of equipment and relative insensitivity to both misalignment and vibration, but does not afford adjustability of the Bragg wavelength. The present method affords both the flexibility of the prior two-beam interferometric method and the compactness and stability of the prior phase-mask method. In this method (see figure), a laser beam propagating along the x axis is normally incident on a phase mask that lies in the (y,z) plane. The phase of light propagating through the mask is modulated with a spatial periodicity, p, along the y axis chosen to diffract the laser light primarily to first order at the angle . (The zero-order laser light propagating along the x axis can be used for alignment and thereafter suppressed during exposure of the fiber.) The diffracted light passes through a concave cylindrical lens, which converts the flat diffracted wave fronts to cylindrical ones, as though the light emanated from a line source. Then two parallel flat mirrors recombine the diffracted beams to form an interference field equivalent to that of two coherent line sources at positions A and B (virtual sources). The interference pattern is a known function of the parameters of the apparatus and of position (x,y) in the interference field. Hence, the tilt, wavelength, and chirp of the Bragg grating can be chosen through suitable adjustments of the apparatus and/or of the position and orientation of the optical fiber. In particular, the Bragg wavelength can be adjusted by moving the fiber along the x axis, and the bandwidth can be modified over a wide range by changing the fiber tilt angle or by moving the phase mask and/or the fiber. Alignment is easy because the zero-order beam defines the x axis. The interference is relatively stable and insensitive to the mechanical vibration because of the gh symmetry and compactness of the apparatus, the fixed positions of the mirrors and lens, and the consequent fixed positions of the two virtual line sources, which are independent of the translations of the phase mask and the laser relative to the lens.

  3. Intensity noise limit in a phase-sensitive optical time-domain reflectometer with a semiconductor laser source

    NASA Astrophysics Data System (ADS)

    E Alekseev, A.; Tezadov, Ya A.; Potapov, V. T.

    2017-05-01

    In the present paper we perform, for the first time, the analysis of the average intensity noise power level at the output of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source. The origin of the considered intensity noise lies in random phase fluctuations of a semiconductor laser source field. These phase fluctuations are converted to intensity noise in the process of interference of backscattered light. This intensity noise inevitably emerges in every phase-OTDR spatial channel and limits its sensitivity to external phase actions. The analysis of intensity noise in a phase-OTDR was based on the study of a fiber scattered-light interferometer (FSLI) which is treated as the constituent part of OTDR. When considered independently, FSLI has a broad intensity noise spectrum at its output; when FSLI is treated as a part of a phase-OTDR, due to aliasing effect, the wide FSLI noise spectrum is folded within the spectral band, determined by the probe pulse repetition frequency. In the analysis one of the conventional phase-OTDR schemes with rectangular dual-pulse probe signal was considered, the FSLI, which corresponds to this OTDR scheme, has two scattering fiber segments with additional time delay introduced between backscattered fields. The average intensity noise power and resulting noise spectrum at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments and by the additional time delay between the scattering segments. The average intensity noise characteristics at the output of the corresponding phase-OTDR are determined by the analogous parameters: the source coherence, the lengths of the parts constituting the dual-pulse and the time interval which separates the parts of the dual-pulse. In the paper the expression for the average noise power spectral density (NPSD) at the output of FSLI was theoretically derived and experimentally verified. Based on the found average NPSD of FSLI, a simple relation connecting the phase-OTDR parameters and the limiting level of full average intensity noise power at its output was derived. This relation was verified by experimental measurement of the average noise power at the output of phase-OTDR. The limiting noise level, considered in the paper, determines the fundamental noise floor for the phase-OTDR with given parameters of the source coherence, probe pulse length and time delay between two pulses constituting the dual-pulse.

  4. New Directions in X-Ray Light Sources

    ScienceCinema

    Falcone, Roger

    2017-12-09

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  5. Soft x-ray coherent diffraction imaging on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team

    2014-03-01

    Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).

  6. Dual-Wavelength Interferometry and Light Emission Study for Experimental Support of Dual-Wire Ablation Experiments

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew; Caplinger, James; Sotnikov, Vladimir; Sarkisov, Gennady; Leland, John

    2017-10-01

    In the Plasma Physics and Sensors Laboratory, located at Wright Patterson Air Force Base, we utilize a pulsed power source to create plasma through a wire ablation process of metallic wires. With a parallel arrangement of wires the azimuthal magnetic fields generated around each wire, along with the Ohmic current dissipation and heating occurring upon wire evaporation, launch strong radial outflows of magnetized plasmas towards the centralized stagnation region. It is in this region that we investigate two phases of the wire ablation process. Observations in the first phase are collsionless and mostly comprised of light ions ejected from the initial corona. The second phase is observed when the wire core is ablated and heavy ions dominate collisions in the stagnation region. In this presentation we will show how dual-wavelength interferometric techniques can provide information about electron and atomic densities from experiments. Additionally, we expect white-light emission to provide a qualitative confirmation of the instabilities observed from our experiments. The material is based upon work supported by the Air Force Office of Scientific Research under Award Number 16RYCOR289.

  7. Imaging arrangement and microscope

    DOEpatents

    Pertsinidis, Alexandros; Chu, Steven

    2015-12-15

    An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.

  8. LED lamp

    DOEpatents

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  9. OLED lighting devices having multi element light extraction and luminescence conversion layer

    DOEpatents

    Krummacher, Benjamin Claus; Antoniadis, Homer

    2010-11-16

    An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  10. Generation of 46 W green-light by frequency doubling of 96 W picosecond unpolarized Yb-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Qi, Yaoyao; Yu, Haijuan; Zhang, Jingyuan; Zhang, Ling; He, Chaojian; Lin, Xuechun

    2018-05-01

    We demonstrated a high efficiency and high average power picosecond green light source based on SHG (second harmonic generation) of an unpolarized ytterbium-doped fiber amplifier chain. Using single-pass frequency doubling in two temperature-tuned type-I phase-matching LBO crystals, we were able to generate 46 W, >70 ps pulses at 532 nm from a fundamental beam at 1064 nm, whose output is 96 W, 4.8 μJ, with a repetition frequency of 20 MHz and nearly diffraction limited. The optical conversion efficiency was ∼48% in a highly compact design. To the best of our knowledge, this is the first reported on ps green source through SHG of an unpolarized fiber laser with such a high output and high efficiency.

  11. Large-field high-contrast hard x-ray Zernike phase-contrast nano-imaging beamline at Pohang Light Source.

    PubMed

    Lim, Jun; Park, So Yeong; Huang, Jung Yun; Han, Sung Mi; Kim, Hong-Tae

    2013-01-01

    We developed an off-axis-illuminated zone-plate-based hard x-ray Zernike phase-contrast microscope beamline at Pohang Light Source. Owing to condenser optics-free and off-axis illumination, a large field of view was achieved. The pinhole-type Zernike phase plate affords high-contrast images of a cell with minimal artifacts such as the shade-off and halo effects. The setup, including the optics and the alignment, is simple and easy, and allows faster and easier imaging of large bio-samples.

  12. Characterization of edge effects in precision low-coherence interferometry using broadband light sources

    NASA Astrophysics Data System (ADS)

    Taudt, Ch.; Baselt, T.; Nelsen, B.; Assmann, H.; Greiner, A.; Koch, E.; Hartmann, P.

    2017-06-01

    Within this work an alternative approach to precision surface profilometry based on a low-coherence interferometer is presented. Special emphasis is placed on the characterization of edge effects, which influence the measurement result on sharp edges and steep slopes. In contrast to other works, this examination focuses on the comparison of very broadband light sources such as a supercontinuum white-light source (SC; 380 - 1100 nm) and a laser-driven plasma light source (LDP; 200 - 1100 nm) and their influence on the formation of these effects. The interferometer is equipped with one of these broadband light sources and a defined dispersion over a given spectral range. The spectral width of the light sources in combination with the dispersive element defines the possible measurement range and resolution. Instead of detecting the signals only in a one-dimensional manner, an imaging spectrometer on the basis of a high resolution CMOS-camera is set-up. Through the introduction of a defined dispersion, a controlled phase variation in the spectral domain is created. This phase variation is dependent on the optical path difference between both arms and can therefore be used as a measure for the height of a structure which is present in one arm. The results of measurements on a 100 nm height standard with both selected light sources have been compared. Under consideration of the coherence length of both light sources of 1.58 μm for the SC source and 1.81 m for the LDP source differences could be recorded. Especially at sharp edges, the LDP light source could record height changes with slopes twice as steep as the SC source. Furthermore, it became obvious, that measurements with the SC source tend to show edge effects like batwings due to diffraction. Additional effects on the measured roughness and the flatness of the profile were investigated and discussed.

  13. The R/D of high power proton accelerator technology in China

    NASA Astrophysics Data System (ADS)

    Xialing, Guan

    2002-12-01

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.

  14. Amplitude-phase cross talk as a deterioration factor of signal-to-noise ratio in phase-detection noise-cancellation technique for spectral pump/probe measurements and compensation of the amplitude-phase cross talk

    NASA Astrophysics Data System (ADS)

    Seto, Keisuke; Tarumi, Takashi; Tokunaga, Eiji

    2018-06-01

    Noise cancellation of the light source is an important method to enhance the signal-to-noise ratio (SNR) and facilitate high-speed detection in pump/probe measurements. We developed a method to eliminate the noise for the multichannel spectral pump/probe measurements with a spectral dispersion of a white probe pulse light. In this method, the sample-induced intensity modulation is converted to the phase modulation of the pulse repetition irrespective of the intensity noise of the light source. The SNR is enhanced through the phase detection of the observed signal with the signal synchronized to the pulse repetition serving as the phase reference (synchronized signal). However, the shot-noise limited performance is not achieved with an intense probe light. In this work, we demonstrate that the performance limitation below the shot noise limit is caused by the amplitude-phase cross talk. It converts the amplitude noise into the phase noise and is caused by the space-charge effect in the photodetector, the reverse bias voltage drop across the load impedance, and the phase detection circuit. The phase delay occurs with an intense light at a PIN photodiode, whereas the phase is advanced in an avalanche photodiode. Although the amplitude distortion characteristics also reduce the performance, the distortion effect is equivalent to the amplitude-phase cross talk. We also propose possible ways to compensate the cross talk effect by using the phase modulation of the synchronized signal for the phase detection based on the instantaneous amplitude.

  15. Device structure for OLED light device having multi element light extraction and luminescence conversion layer

    DOEpatents

    Antoniadis,; Homer, Krummacher [Mountain View, CA; Claus, Benjamin [Regensburg, DE

    2008-01-22

    An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  16. Selectivity enhancement in photoacoustic gas analysis via phase-sensitive detection at high modulation frequency

    NASA Technical Reports Server (NTRS)

    Kosterev, Anatoliy (Inventor)

    2010-01-01

    A method for detecting a target fluid in a fluid sample comprising a first fluid and the target fluid using photoacoustic spectroscopy (PAS), comprises a) providing a light source configured to introduce an optical signal having at least one wavelength into the fluid sample; b) modulating the optical signal at a desired modulation frequency such that the optical signal generates an acoustic signal in the fluid sample; c) measuring the acoustic signal in a resonant acoustic detector; and d) using the phase of the acoustic signal to detect the presence of the target fluid.

  17. Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED

    NASA Astrophysics Data System (ADS)

    Guo, Rongli; Wang, Fan; Hu, Xiaoying; Yang, Wenqian

    2017-11-01

    Off-axis digital holographic interferometry with the light source of a light emitting diode (LED) is presented and its application for quantitative phase imaging in a large range with low noise is demonstrated. The scheme is implemented in a grating based Mach-Zehnder interferometer. To achieve off-axis interferometry, firstly, the collimated beam emitted from an LED is diffracted into multiple orders by a grating and they are split into two copies by a beam splitter; secondly, in the object arm the zero order of one copy is filtered in the Fourier plane and is reshaped to illuminate the sample, while in the reference arm one of its first order of another copy is selected to serve as the reference beam, and then an off-axis hologram can be obtained at the image plane. The main advantage stemming from an LED illumination is its high spatial phase resolution, due to the subdued speckle effect. The off-axis geometry enables one-shot recording of the hologram in the millisecond scale. The utility of the proposed setup is illustrated with measurements of a resolution target and part of a wing of green-lacewing, and dynamic evaporation process of an ethanol film.

  18. Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through phase-domain sampling

    PubMed Central

    Wang, Haomin; Wang, Le; Xu, Xiaoji G.

    2016-01-01

    Scattering-type scanning near-field optical microscopy (s-SNOM) allows spectroscopic imaging with spatial resolution below the diffraction limit. With suitable light sources, s-SNOM is instrumental in numerous discoveries at the nanoscale. So far, the light sources have been limited to continuous wave or high-repetition-rate pulsed lasers. Low-repetition-rate pulsed sources cannot be used, due to the limitation of the lock-in detection mechanism that is required for current s-SNOM techniques. Here, we report a near-field signal extraction method that enables low-repetition-rate pulsed light sources. The method correlates scattering signals from pulses with the mechanical phases of the oscillating s-SNOM probe to obtain near-field signal, by-passing the apparent restriction imposed by the Nyquist–Shannon sampling theorem on the repetition rate. The method shall enable s-SNOM with low-repetition-rate pulses with high-peak-powers, such as femtosecond laser amplifiers, to facilitate investigations of strong light–matter interactions and nonlinear processes at the nanoscale. PMID:27748360

  19. Cavity Attenuated Phase Shift (CAPS) Monitor Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlacek, Arthur J.

    2016-04-01

    The CAPS PMex monitor is a cavity attenuated phase shift extinction instrument. It operates as an optical extinction spectrometer, using a visible-light-emitting diode (LED) as the light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector. Its efficacy is based on the fact that aerosols are broadband scatterers and absorbers of light.

  20. An interferometer having fused optical fibers, and apparatus and method using the interferometer

    NASA Technical Reports Server (NTRS)

    Hellbaum, Richard F. (Inventor); Claus, Richard O. (Inventor); Murphy, Kent A. (Inventor); Gunther, Michael F. (Inventor)

    1992-01-01

    An interferometer includes a first optical fiber coupled to a second optical fiber by fusing. At a fused portion, the first and second optical fibers are cut to expose respective cores. The cut or fused end of the first and second optical fibers is arranged to oppose a diaphragm or surface against which a physical phenomenon such as pressure or stress, is applied. In a first embodiment, a source light which is generally single-mode monochromatic, coherent light, is input to the first optical fiber and by evanescence, effectively crosses to the second optical fiber at the fused portion. Source light from the second optical fiber is reflected by the diaphragm or surface, and received at the second optical fiber to generate an output light which has an intensity which depends upon interference of reference light based on the source light, and the reflected light reflected from the diaphragm or surface. The intensity of the output light represents a positional relationship or displacement between the interferometer and the diaphragm or surface.

  1. The Design and Use of Planetary Science Video Games to Teach Content while Enhancing Spatial Reasoning Skills

    NASA Astrophysics Data System (ADS)

    Ziffer, Julie; Nadirli, Orkhan; Rudnick, Benjamin; Pinkham, Sunny; Montgomery, Benjamin

    2016-10-01

    Traditional teaching of Planetary Science requires students to possess well developed spatial reasoning skills (SRS). Recent research has demonstrated that SRS, long known to be crucial to math and science success, can be improved among students who lack these skills (Sorby et al., 2009). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their abilities (Hill et al., 2010). To address SRS deficiencies, our team is developing video games that embed SRS training into Planetary Science content. Our first game, on Moon Phases, addresses the two primary challenges faced by students trying to understand the Sun-Earth-Moon system: 1) visualizing the system (specifically the difference between the Sun-Earth orbital plane and the Earth-Moon orbital plane) and 2) comprehending the relationship between time and the position-phase of the Moon. In our second video game, the student varies an asteroid's rotational speed, shape, and orientation to the light source while observing how these changes effect the resulting light curve. To correctly pair objects to their light curves, students use spatial reasoning skills to imagine how light scattering off a three dimensional rotating object is imaged on a sensor plane and is then reduced to a series of points on a light curve plot. These two games represent the first of our developing suite of high-interest video games designed to teach content while increasing the student's competence in spatial reasoning.

  2. Multi-port, optically addressed RAM

    NASA Technical Reports Server (NTRS)

    Johnston, Alan R. (Inventor); Nixon, Robert H. (Inventor); Bergman, Larry A. (Inventor); Esener, Sadik (Inventor)

    1989-01-01

    A random access memory addressing system utilizing optical links between memory and the read/write logic circuits comprises addressing circuits including a plurality of light signal sources, a plurality of optical gates including optical detectors associated with the memory cells, and a holographic optical element adapted to reflect and direct the light signals to the desired memory cell locations. More particularly, it is a multi-port, binary computer memory for interfacing with a plurality of computers. There are a plurality of storage cells for containing bits of binary information, the storage cells being disposed at the intersections of a plurality of row conductors and a plurality of column conductors. There is interfacing logic for receiving information from the computers directing access to ones of the storage cells. There are first light sources associated with the interfacing logic for transmitting a first light beam with the access information modulated thereon. First light detectors are associated with the storage cells for receiving the first light beam, for generating an electrical signal containing the access information, and for conducting the electrical signal to the one of the storage cells to which it is directed. There are holographic optical elements for reflecting the first light beam from the first light sources to the first light detectors.

  3. Method and apparatus for dispensing small quantities of mercury from evacuated and sealed glass capsules

    DOEpatents

    Grossman, Mark W.; George, William A.; Pai, Robert Y.

    1985-01-01

    A technique for opening an evacuated and sealed glass capsule containing a material that is to be dispensed which has a relatively high vapor pressure such as mercury. The capsule is typically disposed in a discharge tube envelope. The technique involves the use of a first light source imaged along the capsule and a second light source imaged across the capsule substantially transversely to the imaging of the first light source. Means are provided for constraining a segment of the capsule along its length with the constraining means being positioned to correspond with the imaging of the second light source. These light sources are preferably incandescent projection lamps. The constraining means is preferably a multiple looped wire support.

  4. Progress on PEEM3 -- An Aberration Corrected X-Ray Photoemission Electron Microscope at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDowell, A. A.; Feng, J.; DeMello, A.

    2007-01-19

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less

  5. Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDowell, Alastair A.; Feng, J.; DeMello, A.

    2006-05-20

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less

  6. Long-wavelength macromolecular crystallography - First successful native SAD experiment close to the sulfur edge

    NASA Astrophysics Data System (ADS)

    Aurelius, O.; Duman, R.; El Omari, K.; Mykhaylyk, V.; Wagner, A.

    2017-11-01

    Phasing of novel macromolecular crystal structures has been challenging since the start of structural biology. Making use of anomalous diffraction of natively present elements, such as sulfur and phosphorus, for phasing has been possible for some systems, but hindered by the necessity to access longer X-ray wavelengths in order to make most use of the anomalous scattering contributions of these elements. Presented here are the results from a first successful experimental phasing study of a macromolecular crystal structure at a wavelength close to the sulfur K edge. This has been made possible by the in-vacuum setup and the long-wavelength optimised experimental setup at the I23 beamline at Diamond Light Source. In these early commissioning experiments only standard data collection and processing procedures have been applied, in particular no dedicated absorption correction has been used. Nevertheless the success of the experiment demonstrates that the capability to extract phase information can be even further improved once data collection protocols and data processing have been optimised.

  7. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase II Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzey, B. R.; Davis, R. G.

    2014-09-30

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase II report documents longer-term performance of the LED lighting system that was installed in 2008, and is the first report on the longer-term performance of LED lighting in the field.

  8. New Directions in X-Ray Light Sources or Fiat Lux: what's under the dome and watching atoms with x-rays (LBNL Summer Lecture Series)

    ScienceCinema

    Falcone, Roger [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Univ. of California, Berkeley, CA (United States). Dept. of Physics

    2018-05-04

    Summer Lecture Series 2008: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  9. Peculiar Outburst of A 0535+26 Observed with INTEGRAL, RXTE and Suzaku

    NASA Technical Reports Server (NTRS)

    Caballero, I.; Pottschmidt, K.; Barragan, L.; Ferrigno, C.; Kretschmar, P.; Suchy, S.; Wilms, J.; Santangelo, A.; Kreykenbohm, I.; Rothschild, R.; hide

    2009-01-01

    A normal outburst of the Be/X-ray binary system A0535+26 has taken place in August 2009. It is the fourth in a series of normal outbursts that have occurred around the periastron passage of the source. but is unusual by starting at an earlier orbital phase and by presenting a peculiar double-peaked light curve. A first "flare" (lasting about 9 days from M.ID 55043 on) reached a flux of 440 mCrab. The flux then decreased to less than 220 mCrab. and increased again reaching 440 mCrab around the periastron at MJD 55057. Target of Opportunity observations have been performed with INTEGRAL. RXTE and Suzaku. First results of these observations are presented. with special emphasis on the cyclotron lines present in the X-ray spectrum of the source. as well as in the pulse period and energy dependent pulse profiles of the source

  10. Optical π phase shift created with a single-photon pulse.

    PubMed

    Tiarks, Daniel; Schmidt, Steffen; Rempe, Gerhard; Dürr, Stephan

    2016-04-01

    A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing.

  11. White-light optical vortex coronagraph

    NASA Astrophysics Data System (ADS)

    Kanburapa, Prachyathit

    An optical vortex is characterized by a dark core of destructive interference in a light beam. One of the methods commonly employed to create an optical vortex is by using a computer-generated hologram. A vortex hologram pattern is computed from the interference pattern between a reference plane wave and a vortex wave, resulting in a forked grating pattern. In astronomy, an optical vortex coronagraph is one of the most promising high contrast imaging techniques for the direct imaging of extra-solar planets. Direct imaging of extra-solar planets is a challenging task since the brightness of the parent star is extremely high compared to its orbiting planets. The on-axis light from the parent star gets diffracted in the coronagraph, forming a "ring of fire" pattern, whereas the slightly off-axis light from the planet remains intact. Lyot stop can then be used to block the ring of fire pattern, thus allowing only the planetary light to get through to the imaging camera. Contrast enhancements of 106 or more are possible, provided the vortex lens (spiral phase plate) has exceptional optical quality. By using a vortex hologram with a 4 microm pitch, and an f/300 focusing lens, we were able to demonstrate the creation of a "ring of fire" using a white light emitting diode as a source. A dispersion compensating linear diffraction grating of 4 microm pitch was used to bring the rings together to form a single white light ring of fire. To our knowledge, this is the first time a vortex hologram based OVC has been demonstrated, resulting in a well-formed white light ring of fire. Experimental results show measured power contrast of 1/515 when HeNe laser source was used as a light source and 1/77 when using a white light emitting diode.

  12. Non-invasive three-dimension control of light between turbid layers using a surface quasi-point light source for precorrection.

    PubMed

    Qiao, Mu; Liu, Honglin; Pang, Guanghui; Han, Shensheng

    2017-08-29

    Manipulating light non-invasively through inhomogeneous media is an attractive goal in many disciplines. Wavefront shaping and optical phase conjugation can focus light to a point. Transmission matrix method can control light on multiple output modes simultaneously. Here we report a non-invasive approach which enables three-dimension (3D) light control between two turbid layers. A digital optical phase conjugation mirror measured and conjugated the diffused wavefront, which originated from a quasi-point source on the front turbid layer and passed through the back turbid layer. And then, because of memory effect, the phase-conjugated wavefront could be used as a carrier wave to transport a pre-calculated wavefront through the back turbid layer. The pre-calculated wavefront could project a desired 3D light field inside the sample, which, in our experiments, consisted of two 220-grid ground glass plates spaced by a 20 mm distance. The controllable range of light, according to the memory effect, was calculated to be 80 mrad in solid angle and 16 mm on z-axis. Due to the 3D light control ability, our approach may find applications in photodynamic therapy and optogenetics. Besides, our approach can also be combined with ghost imaging or compressed sensing to achieve 3D imaging between turbid layers.

  13. Precision phase estimation based on weak-value amplification

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaodong; Xie, Linguo; Liu, Xiong; Luo, Lan; Li, Zhaoxue; Zhang, Zhiyou; Du, Jinglei

    2017-02-01

    In this letter, we propose a precision method for phase estimation based on the weak-value amplification (WVA) technique using a monochromatic light source. The anomalous WVA significantly suppresses the technical noise with respect to the intensity difference signal induced by the phase delay when the post-selection procedure comes into play. The phase measured precision of this method is proportional to the weak-value of a polarization operator in the experimental range. Our results compete well with the wide spectrum light phase weak measurements and outperform the standard homodyne phase detection technique.

  14. Programmable Spectral Source and Design Tool for 3D Imaging Using Complementary Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam (Inventor); Korniski, Ronald J. (Inventor); Ream, Allen (Inventor); Shearn, Michael J. (Inventor); Shahinian, Hrayr Karnig (Inventor); Fritz, Eric W. (Inventor)

    2017-01-01

    An endoscopic illumination system for illuminating a subject for stereoscopic image capture, includes a light source which outputs light; a first complementary multiband bandpass filter (CMBF) and a second CMBF, the first and second CMBFs being situated in first and second light paths, respectively, where the first CMBF and the second CMBF filter the light incident thereupon to output filtered light; and a camera which captures video images of the subject and generates corresponding video information, the camera receiving light reflected from the subject and passing through a pupil CMBF pair and a detection lens. The pupil CMBF includes a first pupil CMBF and a second pupil CMBF, the first pupil CMBF being identical to the first CMBF and the second pupil CMBF being identical to the second CMBF, and the detection lens includes one unpartitioned section that covers both the first pupil CMBF and the second pupil CMBF.

  15. Light source comprising a common substrate, a first led device and a second led device

    DOEpatents

    Choong, Vi-En

    2010-02-23

    At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

  16. Method and apparatus for dispensing small quantities of mercury from evacuated and sealed glass capsules

    DOEpatents

    Grossman, M.W.; George, W.A.; Pai, R.Y.

    1985-08-13

    A technique is disclosed for opening an evacuated and sealed glass capsule containing a material that is to be dispensed which has a relatively high vapor pressure such as mercury. The capsule is typically disposed in a discharge tube envelope. The technique involves the use of a first light source imaged along the capsule and a second light source imaged across the capsule substantially transversely to the imaging of the first light source. Means are provided for constraining a segment of the capsule along its length with the constraining means being positioned to correspond with the imaging of the second light source. These light sources are preferably incandescent projection lamps. The constraining means is preferably a multiple looped wire support. 6 figs.

  17. Modulated Source Interferometry with Combined Amplitude and Frequency Modulation

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor)

    1998-01-01

    An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.

  18. Automated phase mapping with AgileFD and its application to light absorber discovery in the V–Mn–Nb oxide system

    DOE PAGES

    Suram, Santosh K.; Xue, Yexiang; Bai, Junwen; ...

    2016-11-21

    Rapid construction of phase diagrams is a central tenet of combinatorial materials science with accelerated materials discovery efforts often hampered by challenges in interpreting combinatorial X-ray diffraction data sets, which we address by developing AgileFD, an artificial intelligence algorithm that enables rapid phase mapping from a combinatorial library of X-ray diffraction patterns. AgileFD models alloying-based peak shifting through a novel expansion of convolutional nonnegative matrix factorization, which not only improves the identification of constituent phases but also maps their concentration and lattice parameter as a function of composition. By incorporating Gibbs’ phase rule into the algorithm, physically meaningful phase mapsmore » are obtained with unsupervised operation, and more refined solutions are attained by injecting expert knowledge of the system. The algorithm is demonstrated through investigation of the V–Mn–Nb oxide system where decomposition of eight oxide phases, including two with substantial alloying, provides the first phase map for this pseudoternary system. This phase map enables interpretation of high-throughput band gap data, leading to the discovery of new solar light absorbers and the alloying-based tuning of the direct-allowed band gap energy of MnV 2O 6. Lastly, the open-source family of AgileFD algorithms can be implemented into a broad range of high throughput workflows to accelerate materials discovery.« less

  19. Automated phase mapping with AgileFD and its application to light absorber discovery in the V–Mn–Nb oxide system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suram, Santosh K.; Xue, Yexiang; Bai, Junwen

    Rapid construction of phase diagrams is a central tenet of combinatorial materials science with accelerated materials discovery efforts often hampered by challenges in interpreting combinatorial X-ray diffraction data sets, which we address by developing AgileFD, an artificial intelligence algorithm that enables rapid phase mapping from a combinatorial library of X-ray diffraction patterns. AgileFD models alloying-based peak shifting through a novel expansion of convolutional nonnegative matrix factorization, which not only improves the identification of constituent phases but also maps their concentration and lattice parameter as a function of composition. By incorporating Gibbs’ phase rule into the algorithm, physically meaningful phase mapsmore » are obtained with unsupervised operation, and more refined solutions are attained by injecting expert knowledge of the system. The algorithm is demonstrated through investigation of the V–Mn–Nb oxide system where decomposition of eight oxide phases, including two with substantial alloying, provides the first phase map for this pseudoternary system. This phase map enables interpretation of high-throughput band gap data, leading to the discovery of new solar light absorbers and the alloying-based tuning of the direct-allowed band gap energy of MnV 2O 6. Lastly, the open-source family of AgileFD algorithms can be implemented into a broad range of high throughput workflows to accelerate materials discovery.« less

  20. A new broadly tunable (7.4-10.2 eV) laser based VUV light source and its first application to aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hanna, S. J.; Campuzano-Jost, P.; Simpson, E. A.; Robb, D. B.; Burak, I.; Blades, M. W.; Hepburn, J. W.; Bertram, A. K.

    2009-01-01

    A laser based vacuum ultraviolet (VUV) light source using resonance enhanced four wave difference mixing in xenon gas was developed for near threshold ionization of organics in atmospheric aerosol particles. The source delivers high intensity pulses of VUV light (in the range of 1010 to 1013 photons/pulse depending on wavelength, 5 ns FWHM) with a continuously tunable wavelength from 122 nm (10.2 eV) to 168 nm (7.4 eV)E The setup allows for tight (<1 mm2) and precise focusing ([mu]rad pointing angle adjustability), attributes required for single particle detection. The generated VUV is separated from the pump wavelengths by a custom monochromator which ensures high spectral purity and minimizes absorptive losses. The performance of the source was characterized using organic molecules in the gas phase and optimal working conditions are reported. In the gas phase measurements, photoionization efficiency (PIE) curves were collected for seven different organic species with ionization energies spanning the full wavelength range of the VUV source. The measured appearance energies are very close to the literature values of the ionization energies for all seven species. The effectiveness of the source for single particle studies was demonstrated by analysis of individual caffeine aerosols vaporized by a pulsed CO2 laser in an ion trap mass spectrometer. Mass spectra from single particles down to 300 nm in diameter were collected. Excellent signal to noise characteristics for these small particles give a caffeine detection limit of 8 × 105 molecules which is equivalent to a single 75 nm aerosol, or approximately 1.5% of a 300 nm particleE The appearance energy of caffeine originating from the aerosol was also measured and found to be 7.91 ± 0.05 eV, in good agreement with literature values.

  1. Light-Addressable Measurement of in Vivo Tissue Oxygenation in an Unanesthetized Zebrafish Embryo via Phase-Based Phosphorescence Lifetime Detection

    PubMed Central

    Huang, Shih-Hao; Yu, Chu-Hung; Chien, Yi-Lung

    2015-01-01

    We have developed a digital light modulation system that utilizes a modified commercial projector equipped with a laser diode as a light source for quantitative measurements of in vivo tissue oxygenation in an unanesthetized zebrafish embryo via phase-based phosphorescence lifetime detection. The oxygen-sensitive phosphorescent probe (Oxyphor G4) was first inoculated into the bloodstream of 48 h post-fertilization (48 hpf) zebrafish embryos via the circulation valley to rapidly disperse probes throughout the embryo. The unanesthetized zebrafish embryo was introduced into the microfluidic device and immobilized on its lateral side by using a pneumatically actuated membrane. By controlling the illumination pattern on the digital micromirror device in the projector, the modulated excitation light can be spatially projected to illuminate arbitrarily-shaped regions of tissue of interest for in vivo oxygen measurements. We have successfully measured in vivo oxygen changes in the cardiac region and cardinal vein of a 48 hpf zebrafish embryo that experience hypoxia and subsequent normoxic conditions. Our proposed platform provides the potential for the real-time investigation of oxygen distribution in tissue microvasculature that relates to physiological stimulation and diseases in a developing organism. PMID:25856326

  2. Multi-spectral digital holographic microscopy for enhanced quantitative phase imaging of living cells

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Kastl, Lena; Schnekenburger, Jürgen; Ketelhut, Steffi

    2018-02-01

    Main restrictions of using laser light in digital holographic microscopy (DHM) are coherence induced noise and parasitic reflections in the experimental setup which limit resolution and measurement accuracy. We explored, if coherence properties of partial coherent light sources can be generated synthetically utilizing spectrally tunable lasers. The concept of the method is demonstrated by label-free quantitative phase imaging of living pancreatic tumor cells and utilizing an experimental configuration including a commercial microscope and a laser source with a broad tunable spectral range of more than 200 nm.

  3. Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)

    2001-01-01

    Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.

  4. Liquid-crystal projection image depixelization by spatial phase scrambling

    NASA Astrophysics Data System (ADS)

    Yang, Xiangyang; Jutamulia, Suganda; Li, Nan

    1996-08-01

    A technique that removes the pixel structure by scrambling the relative phases among multiple spatial spectra is described. Because of the pixel structure of the liquid-crystal-display (LCD) panel, multiple spectra are generated at the Fourier-spectrum plane (usually at the back focal plane of the imaging lens). A transparent phase mask is placed at the Fourier-spectrum plane such that each spectral order is modulated by one of the subareas of the phase mask, and the phase delay resulting from each pair of subareas is longer than the coherent length of the light source, which is approximately 1 m for the wideband white light sources used in most of LCD s. Such a phase-scrambling technique eliminates the coherence between different spectral orders; therefore, the reconstructed images from the multiple spectra will superimpose incoherently, and the pixel structure will not be observed in the projection image.

  5. Particle and chemical control using tunnel flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chilese, Frank; Delgado, Gildardo R.; Wack, Daniel

    An apparatus for contaminant control, having: a first optical assembly including: a first light homogenizer tunnel with: a first end connected to an extreme ultra-violet light source, a second end in communication with a destination chamber, a first enclosed space, and, a first gas input arranged to introduce a first gas such that the first gas flows in a first direction toward the first end and in a second direction toward the second end. The apparatus alternately having: a second optical assembly including: a second light homogenizer tunnel with: a third end connected to an extreme ultra-violet light source, amore » fourth end in communication with a destination chamber, a second enclosed space, a diffusion barrier tube including: a fifth end facing the fourth end and a sixth end in communication with a destination chamber, and a second gas input between the second light homogenizer tunnel and the diffusion tube.« less

  6. Rare earth patterns in shergottite phosphates and residues

    NASA Technical Reports Server (NTRS)

    Laul, J. C.

    1987-01-01

    Leaching experiments with 1M HCl on ALHA 77005 powder show that rare earth elements (REE) are concentrated in accessory phosphate phases (whitlockite, apatite) that govern the REE patterns of bulk shergottites. The REE patterns of whitlockite are typically light REE-depleted with a negative Eu anomaly and show a hump at the heavy REE side, while the REE pattern of apatite (in Shergotty) is light REE-enriched. Parent magmas are calculated from the modal compositions of residues of ALHA 77005, Shergotty, and EETA 79001. The parent magmas lack a Eu anomaly, indicating that plagioclase was a late-stage crystallizing phase and that it probably crystallized before the phosphates. The parent magmas of ALHA 77005 and Shergotty have similar REE patterns, with a subchondritic Nd/Sm ratio. However, the Sm/Nd isotopoics require a light REE-depleted source for ALHA 77005 (if the crystallization age is less than 600 Myr) and a light REE-enriched source for Shergotty. Distant Nd and Sr isotopic signatures may suggest different source regions for shergottites.

  7. Multiwavelength study of the low-luminosity outbursting young star HBC 722

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Ábrahám, P.; Acosta-Pulido, J. A.; Dunham, M. M.; García-Álvarez, D.; Hogerheijde, M. R.; Kun, M.; Moór, A.; Farkas, A.; Hajdu, G.; Hodosán, G.; Kovács, T.; Kriskovics, L.; Marton, G.; Molnár, L.; Pál, A.; Sárneczky, K.; Sódor, Á.; Szakáts, R.; Szalai, T.; Szegedi-Elek, E.; Szing, A.; Tóth, I.; Vida, K.; Vinkó, J.

    2016-11-01

    Context. HBC 722 (V2493 Cyg) is a young eruptive star in outburst since 2010. Spectroscopic evidence suggests that the source is an FU Orionis-type object, with an atypically low outburst luminosity. Aims: Because it was well characterized in the pre-outburst phase, HBC 722 is one of the few FUors from which we can learn about the physical changes and processes associated with the eruption, including the role of the circumstellar environment. Methods: We monitored the source in the BVRIJHKS bands from the ground and at 3.6 and 4.5 μm from space with the Spitzer Space Telescope. We analyzed the light curves and studied the evolving spectral energy distribution by fitting a series of steady accretion disk models at many epochs covering the outburst. We also analyzed the spectral properties of the source based on our new optical and infrared spectra, comparing our line inventory with those published in the literature for other epochs. We also mapped HBC 722 and its surroundings at millimeter wavelengths. Results: From the light-curve analysis we conclude that the first peak of the outburst in 2010 September was mainly due to an abrupt increase in the accretion rate in the innermost part of the system. This was followed after a few months by a long-term process, when the brightening of the source was mainly due to a gradual increase in the accretion rate and the emitting area. Our new observations show that the source is currently in a constant plateau phase. We found that the optical spectrum was similar in the first peak and following periods, but around the peak the continuum was bluer and the Hα profile changed significantly between 2012 and 2013. The source was not detected in the millimeter continuum, but we discovered a flattened molecular gas structure with a diameter of 1700 au and mass of 0.3 M⊙ centered on HBC 722. Conclusions: While the first brightness peak might be interpreted as a rapid fall of piled-up material from the inner disk onto the star, the later monotonic flux rise suggests the outward expansion of a hot component according to a previously described theory. Our study of HBC 722 demonstrates that accretion-related outbursts can occur in young stellar objects even with very low-mass disks in the late Class II phase. This work is based on observations made with the Spitzer Space Telescope. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  8. Evaluation of expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with light source-stepping method

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Toshimasa; Fujigaki, Motoharu; Murata, Yorinobu

    2015-03-01

    Accurate and wide-range shape measurement method is required in industrial field. The same technique is possible to be used for a shape measurement of a human body for the garment industry. Compact 3D shape measurement equipment is also required for embedding in the inspection system. A shape measurement by a phase shifting method can measure the shape with high spatial resolution because the coordinates can be obtained pixel by pixel. A key-device to develop compact equipment is a grating projector. Authors developed a linear LED projector and proposed a light source stepping method (LSSM) using the linear LED projector. The shape measurement euipment can be produced with low-cost and compact without any phase-shifting mechanical systems by using this method. Also it enables us to measure 3D shape in very short time by switching the light sources quickly. A phase unwrapping method is necessary to widen the measurement range with constant accuracy for phase shifting method. A general phase unwrapping method with difference grating pitches is often used. It is one of a simple phase unwrapping method. It is, however, difficult to apply the conventional phase unwrapping algorithm to the LSSM. Authors, therefore, developed an expansion unwrapping algorithm for the LSSM. In this paper, an expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with the LSSM was evaluated.

  9. Noninterleaved round beam lattice for light sources

    NASA Astrophysics Data System (ADS)

    Agapov, Ilya; Brinkmann, Reinhard; Keil, Joachim; Wanzenberg, Rainer

    2018-05-01

    A conceptual design and performance of a round beam lattice for synchrotron light sources based on the phase space exchange principle and the noninterleaved sextupole distribution is presented. Optics design is performed for an approximately 30 pm emittance 6 GeV machine of 2300 m circumference which combines cells with and without straight sections for the insertion devices.

  10. Broadband near-field infrared spectroscopy with a high temperature plasma light source.

    PubMed

    Lahneman, D J; Huffman, T J; Xu, Peng; Wang, S L; Grogan, T; Qazilbash, M M

    2017-08-21

    Scattering-type scanning near-field optical microscopy (S-SNOM) has enormous potential as a spectroscopy tool in the infrared spectral range where it can probe phonon resonances and carrier dynamics at the nanometer lengths scales. However, its applicability is limited by the lack of practical and affordable table-top light sources emitting intense broadband infrared radiation in the 100 cm -1 to 2,500 cm -1 spectral range. This paper introduces a high temperature plasma light source that is both ultra-broadband and has much more radiant power in the infrared spectral range than conventional, table-top thermal light sources such as the globar. We implement this plasma lamp in our near-field optical spectroscopy set up and demonstrate its capability as a broadband infrared nano-spectroscopy light source by obtaining near-field infrared amplitude and phase spectra of the phonon resonances of SiO 2 and SrTiO 3 .

  11. Reference-free direct digital lock-in method and apparatus

    NASA Technical Reports Server (NTRS)

    Henry, James E. (Inventor); Leonard, John A. (Inventor)

    2000-01-01

    A reference-free direct digital lock-in system (RDDL 10) has a first input coupled to a periodic electrical signal and an output for outputting an indication of a magnitude of a desired periodic signal component. The RDDL also has a second input for receiving a signal (9) that specifies a reference period value, and operates to autonomously generate a lock-in reference signal having a specified period and a phase that is adjusted to maximize a magnitude of the outputted desired periodic signal component. In an embodiment of a measurement system that includes the RDDL 10 an optical source provides a chopped light beam having wavelengths within a predetermined range of wavelengths, and the periodic electrical signal is generated by at least one photodetector that is illuminated by the chopped light beam. In this embodiment the measurement system characterizes, for at least one wavelength of light that is generated by the optical source, a spectral response of the at least one photodetector. The RDDL can operate in nonreal-time upon previously generated and stored digital equivalent values of the periodic electrical signal or signals.

  12. Short nights reduce light-induced circadian phase delays in humans.

    PubMed

    Burgess, Helen J; Eastman, Charmane I

    2006-01-01

    Short sleep episodes are common in modern society. We recently demonstrated that short nights reduce phase advances to light. Here we show that short nights also reduce phase delays to light. Two weeks of 6-hour sleep episodes in the dark (short nights) and 2 weeks of long 9-hour sleep episodes (long nights) in counterbalanced order, separated by 7 days. Following each series of nights, there was a dim-light phase assessment to assess baseline phase. Three days later, subjects were exposed to a phase-delaying light stimulus for 2 days, followed by a final phase assessment. Subjects slept at home in dark bedrooms but came to the laboratory for the phase assessments and light stimulus. Seven young healthy subjects. The 3.5-hour light stimulus was four 30-minute pulses of bright light (-5000 lux) separated by 30-minute intervals of room light. The stimulus began 2.5 hours after each subject's dim-light melatonin onset, followed by a 6- or 9-hour sleep episode. On the second night, the bright light and sleep episode began 1 hour later. The dim-light melatonin onset and dimlight melatonin offset phase delayed 1.4 and 0.7 hours less in the short nights, respectively (both p < or = .015). These results indicate for the first time that short nights can reduce circadian phase delays, that long nights can increase phase delays to light, or both. People who curtail their sleep may inadvertently reduce their circadian responsiveness to evening light.

  13. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris.

    PubMed

    Woodworth, Benjamin D; Mead, Rebecca L; Nichols, Courtney N; Kolling, Derrick R J

    2015-03-01

    Microalgae are an attractive biofuel feedstock because of their high lipid to biomass ratios, lipid compositions that are suitable for biodiesel production, and the ability to grow on varied carbon sources. While algae can grow autotrophically, supplying an exogenous carbon source can increase growth rates and allow heterotrophic growth in the absence of light. Time course analyses of dextrose-supplemented Chlorella vulgaris batch cultures demonstrate that light availability directly influences growth rate, chlorophyll production, and total lipid accumulation. Parallel photomixotrophic and heterotrophic cultures grown to stationary phase reached the same amount of biomass, but total lipid content was higher for algae grown in the presence of light (an average of 1.90 mg/mL vs. 0.77 mg/mL over 5 days of stationary phase growth). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Design of a magnetic circuit for a cryogenic undulator in Taiwan photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jui-Che, E-mail: huang.juiche@nsrrc.org.tw; Kuo, Cheng-Ying; Yang, Chin-Kang

    2016-07-27

    The plan for beamlines in Phase II at Taiwan Photon Source is to construct two new BioSAXS and nano-ARPES beamlines. A highly brilliant light source can be produced with a cryogenic undulator, and many synchrotron facilities have been developed and operated with these in their storage rings. The development of a cryogenic undulator became a target for a light source in TPS phase II. A cryogenic undulator with period of length 15 mm will be made in a hybrid magnetic structure, and use PrFeB permanent-magnet materials. A maximum magnetic field 1.31 T is estimated at gap 4 mm and temperaturemore » about 100 K. The spectral performance of a TPS cryogenic undulator is presented in this paper.« less

  15. Atomic physics research with second and third generation synchrotron light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B.M.

    1990-10-01

    This contribution to these proceedings is intended to provide an introduction and overview for other contributions on atomic (and related) physics research at existing and planned synchrotron light sources. The emphasis will be on research accomplishments and future opportunities, but a comparison will be given of operating characteristics for first, second, and third generation machines. First generation light sources were built to do research with the primary electron and positron beams, rather than with the synchrotron radiation itself. Second generation machines were specifically designed to be dedicated synchrotron-radiation facilities, with an emphasis on the use of bending-magnet radiation. The newmore » third generation light sources are being designed to optimize radiation from insertion devices, such as undulators and wigglers. Each generation of synchrotron light source offers useful capabilities for forefront research in atomic physics and many other disciplines. 27 refs., 1 fig., 3 tabs.« less

  16. Method of making self-aligned lightly-doped-drain structure for MOS transistors

    DOEpatents

    Weiner, Kurt H.; Carey, Paul G.

    2001-01-01

    A process for fabricating lightly-doped-drains (LDD) for short-channel metal oxide semiconductor (MOS) transistors. The process utilizes a pulsed laser process to incorporate the dopants, thus eliminating the prior oxide deposition and etching steps. During the process, the silicon in the source/drain region is melted by the laser energy. Impurities from the gas phase diffuse into the molten silicon to appropriately dope the source/drain regions. By controlling the energy of the laser, a lightly-doped-drain can be formed in one processing step. This is accomplished by first using a single high energy laser pulse to melt the silicon to a significant depth and thus the amount of dopants incorporated into the silicon is small. Furthermore, the dopants incorporated during this step diffuse to the edge of the MOS transistor gate structure. Next, many low energy laser pulses are used to heavily dope the source/drain silicon only in a very shallow region. Because of two-dimensional heat transfer at the MOS transistor gate edge, the low energy pulses are inset from the region initially doped by the high energy pulse. By computer control of the laser energy, the single high energy laser pulse and the subsequent low energy laser pulses are carried out in a single operational step to produce a self-aligned lightly-doped-drain-structure.

  17. Tunable pulsed narrow bandwidth light source

    DOEpatents

    Powers, Peter E.; Kulp, Thomas J.

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  18. Fast wavelength tuning techniques for external cavity lasers

    DOEpatents

    Wysocki, Gerard [Princeton, NJ; Tittel, Frank K [Houston, TX

    2011-01-11

    An apparatus comprising a laser source configured to emit a light beam along a first path, an optical beam steering component configured to steer the light beam from the first path to a second path at an angle to the first path, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path, wherein the angle determines an external cavity length. Included is an apparatus comprising a laser source configured to emit a light beam along a first path, a beam steering component configured to redirect the light beam to a second path at an angle to the first path, wherein the optical beam steering component is configured to change the angle at a rate of at least about one Kilohertz, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path.

  19. Diffraction spectral filter for use in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Tichenor, Daniel A.; Bernardez, Luis J.

    2002-01-01

    A condenser system for generating a beam of radiation includes a source of radiation light that generates a continuous spectrum of radiation light; a condenser comprising one or more first optical elements for collecting radiation from the source of radiation light and for generating a beam of radiation; and a diffractive spectral filter for separating first radiation light having a particular wavelength from the continuous spectrum of radiation light. Cooling devices can be employed to remove heat generated. The condenser system can be used with a ringfield camera in projection lithography.

  20. The Linac Coherent Light Source

    DOE PAGES

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-05-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  1. Phased-array sources based on nonlinear metamaterial nanocavities

    PubMed Central

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal

    2015-01-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879

  2. Inverse lithography using sparse mask representations

    NASA Astrophysics Data System (ADS)

    Ionescu, Radu C.; Hurley, Paul; Apostol, Stefan

    2015-03-01

    We present a novel optimisation algorithm for inverse lithography, based on optimization of the mask derivative, a domain inherently sparse, and for rectilinear polygons, invertible. The method is first developed assuming a point light source, and then extended to general incoherent sources. What results is a fast algorithm, producing manufacturable masks (the search space is constrained to rectilinear polygons), and flexible (specific constraints such as minimal line widths can be imposed). One inherent trick is to treat polygons as continuous entities, thus making aerial image calculation extremely fast and accurate. Requirements for mask manufacturability can be integrated in the optimization without too much added complexity. We also explain how to extend the scheme for phase-changing mask optimization.

  3. The Four-Quadrant Phase-Mask Coronagraph. I. Principle

    NASA Astrophysics Data System (ADS)

    Rouan, D.; Riaud, P.; Boccaletti, A.; Clénet, Y.; Labeyrie, A.

    2000-11-01

    We describe a new type of coronagraph, based on the principle of a phase mask as proposed by Roddier and Roddier a few years ago but using an original mask design found by one of us (D. R.), a four-quadrant binary phase mask (0, π) covering the full field of view at the focal plane. The mutually destructive interferences of the coherent light from the main source produce a very efficient nulling. The computed rejection rate of this coronagraph appears to be very high since, when perfectly aligned and phase-error free, it could in principle reduce the total amount of light from the bright source by a factor of 108, corresponding to a gain of 20 mag in brightness at the location of the first Airy ring, relative to the Airy peak. In the real world the gain is of course reduced by a strong factor, but nulling is still performing quite well, provided that the perturbation of the phase, for instance, due to the Earth's atmosphere, is efficiently corrected by adaptive optics. We show from simulations that a detection at a contrast of 10 mag between a star and a faint companion is achievable in excellent conditions, while 8 mag appears routinely feasible. This coronagraph appears less sensitive to atmospheric turbulence and has a larger dynamic range than other recently proposed nulling techniques: the phase-mask coronagraph (by Roddier and Roddier) or the Achromatic Interfero-Coronagraph (by Gay and Rabbia). We present the principle of the four-quadrant coronagraph and results of a first series of simulations. We compare those results with theoretical performances of other devices. We briefly analyze the different limitations in space or ground-based observations, as well as the issue of manufacturing the device. We also discuss several ways to improve the detection of a faint companion around a bright object. We conclude that, with respect to previous techniques, an instrument equipped with this coronagraph should have better performance and even enable the imaging of extrasolar giant planets at a young stage, when coupled with additional cleaning techniques.

  4. Energy-saving quality road lighting with colloidal quantum dot nanophosphors

    NASA Astrophysics Data System (ADS)

    Erdem, Talha; Kelestemur, Yusuf; Soran-Erdem, Zeliha; Ji, Yun; Demir, Hilmi Volkan

    2014-12-01

    Here the first photometric study of road-lighting white light-emitting diodes (WLEDs) integrated with semiconductor colloidal quantum dots (QDs) is reported enabling higher luminance than conventional light sources, specifically in mesopic vision regimes essential to street lighting. Investigating over 100 million designs uncovers that quality road-lighting QD-WLEDs, with a color quality scale and color rendering index ≥85, enables 13-35% higher mesopic luminance than the sources commonly used in street lighting. Furthermore, these QD-WLEDs were shown to be electrically more efficient than conventional sources with power conversion efficiencies ≥16-29%. Considering this fact, an experimental proof-of-concept QD-WLED was demonstrated, which is the first account of QD based color conversion custom designed for street lighting applications. The obtained white LED achieved the targeted mesopic luminance levels in accordance with the road lighting standards of the USA and the UK. These results indicate that road-lighting QD-WLEDs are strongly promising for energy-saving quality road lighting.

  5. Long-Term Spectral and Timing Behavior of the Black Hole Candidate XTE J1908+094

    NASA Technical Reports Server (NTRS)

    Gogus, Ersin; Finger, Mark H.; Kouveliotou, Chryssa; Woods, Peter M.; Patel, Sandeep K.; Ruppen, Michael; Swank, Jean H.; Markwardt, Craig B.; VanDerKlis, Michiel

    2004-01-01

    We present the long-term X-ray light curves and detailed spectral and timing analyses of XTE J1908+094 using the Rossi X-Ray Timing Explorer Proportional Counter Array observations covering two outbursts in 2002 and early 2003. At the onset of the first outburst, the source was found in a spectrally low/hard state lasting for approx.40 days, followed by a 3 day long transition to the high/soft state. The source flux (in 2- 10 keV) reached approx.100 mcrab on 2002 April 6, then decayed rapidly. In power spectra, we detect strong band-limited noise and varying low- frequency quasi-periodic oscillations that evolved from approx.0.5 to approx.5 Hz during the initial low/hard state of the source. We find that the second outburst closely resembled the spectral evolution of the first. The X-ray transient s overall outburst characteristics led us to classify XTE J1908+094 as a black hole candidate. Here we also derive precise X-ray position of the source using Chandra observations that were performed during the decay phase of the first outburst and following the second outburst.

  6. Optical multi-species gas monitoring sensor and system

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Polzin, Kurt A. (Inventor)

    2012-01-01

    The system includes at least one light source generating light energy having a corresponding wavelength. The system's sensor is based on an optical interferometer that receives light energy from each light source. The interferometer includes a free-space optical path disposed in an environment of interest. The system's sensor includes an optical device disposed in the optical path that causes light energy of a first selected wavelength to continue traversing the optical path whereas light energy of at least one second selected wavelength is directed away from the optical path. The interferometer generates an interference between the light energy of the first selected wavelength so-traversing the optical path with the light energy at the corresponding wavelength incident on the optical interferometer. A first optical detector detects the interference. At least one second detector detects the light energy at the at least one second selected wavelength directed away from the optical path.

  7. Facile preparation of N-doped TiO2 at ambient temperature and pressure under UV light with 4-nitrophenol as the nitrogen source and its photocatalytic activities.

    PubMed

    Horikoshi, Satoshi; Shirasaka, Yutaro; Uchida, Hiroshi; Horikoshi, Natsuko; Serpone, Nick

    2016-08-04

    To date syntheses of nitrogen-doped TiO2 photocatalysts (TiO2-xNx) have been carried out under high temperatures and high pressures with either NH3 or urea as the nitrogen sources. This article reports for the first time the facile preparation of N-doped TiO2 (P25 titania) in aqueous media at ambient temperature and pressure under inert conditions (Ar- and N2-purged dispersions) with 4-nitrophenol (or 4-nitrobenzaldehyde) as the nitrogen source. The resulting N-doped P25 TiO2 materials were characterized by UV/Vis and X-ray photoelectron spectroscopies (XPS) that confirmed the presence of nitrogen within the photocatalyst; X-ray diffraction (XRD) techniques confirmed the crystalline phases of the doped material. The photocatalytic activity of N-doped TiO2 was assessed through examining the photodegradation of 4-chlorophenol in aqueous media and iso-propanol as a volatile pollutant under UV/Vis and visible-light irradiation. Under visible light irradiation, undoped P25 was inactive contrary to N-doped P25 that successfully degraded 95% of the 4-chlorophenol (after 10 h) and 23% of iso-propanol (after 2.5 h).

  8. Tunable light source for use in photoacoustic spectrometers

    DOEpatents

    Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.

    2005-12-13

    The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.

  9. Bright Linearly and Circularly Polarized Extreme Ultraviolet and Soft X-ray High Harmonics for Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fan, Tingting

    High harmonic generation (HHG) is an extreme nonlinear optical process. When implemented in a phase-matched geometry, HHG coherent upconverts femtosecond laser light into coherent "X-ray laser" beams, while retaining excellent spatial and temporal coherence, as well as the polarization state of the driving laser. HHG has a tabletop footprint, with femtosecond to attosecond time resolution, combined with nanometer spatial resolution. As a consequence of these unique capabilities, HHG is now being widely adopted for use in molecular spectroscopy and imaging, materials science, as well as nanoimaging in general. In the first half of this thesis, I demonstrate high flux linearly polarized soft X-ray HHG, driven by a single-stage 10-mJ Ti:sapphire regenerative amplifier at a repetition rate of 1 kHz. I first down-converted the laser to 1.3 mum using an optical parametric amplifier, before up-converting it into the soft X-ray region using HHG in a high-pressure, phase-matched, hollow waveguide geometry. The resulting optimally phase-matched broadband spectrum extends to 200 eV, with a soft X-ray photon flux of > 106 photons/pulse/1% bandwidth at 1 kHz, corresponding to > 109 photons/s/1% bandwidth, or approximately a three orders-of-magnitude increase compared with past work. Using this broad bandwidth X-ray source, I demonstrated X-ray absorption spectroscopy of multiple elements and transitions in molecules in a single spectrum, with a spectral resolution of 0.25 eV, and with the ability to resolve the near edge fine structure. In the second half of this thesis, I discuss how to generate the first bright circularly polarized (CP) soft X-ray HHG and also use them to implement the first tabletop X-ray magnetic circular dichroism (XMCD) measurements. Using counter-rotating CP lasers at 1.3 mum and 0.79 mum, I generated CPHHG with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right CP peaks, with energies determined by conservation of energy and spin angular momentum. I explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase matching conditions. The first advanced propagation simulations for CPHHG reveal the influence of the finite phase matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. The first tabletop XMCD measurements at the N4,5 absorption edges of Gd using this light source validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum and temporal shape of soft X-ray HHG by manipulating the driving laser waveform. Finally, I present the first bright phase-matched CPHHG driven by lasers at wavelengths of 2 mum and 0.79 mum, which extends CPHHG to a broader wavelength combination and confirms the universal nature of this generation scheme. By analyzing the helicity dependent intensity asymmetry of CPHHG generated using different wavelengths and different gas targets, I show that the helicity dependent intensity asymmetry was mostly caused by the helicity dependent single-atom physics, which exhibits different behaviors for different gas targets. Moreover, the asymmetry can reverse and very interestingly, CPHHG from Ar exhibits a single helicity in the high-photon-energy region of the spectrum, which provide a convenient way to generate CPHHG with a single helicity and CP attosecond pulse trains. Finally, simple simulations and cutoff analysis of CPHHG provide guidance for generating CPHHG at higher photon energies.

  10. Enhancing Conceptual Change in Preschool Children's Representations of Light: A Sociocognitive Approach

    NASA Astrophysics Data System (ADS)

    Ravanis, Konstantinos; Christidou, Vasilia; Hatzinikita, Vassilia

    2013-12-01

    The aim of this study is to investigate the effect of a sociocognitive teaching strategy on young children's understanding of light. It explores their understanding of the concept of light as an entity that is transmitted independently of the light source and the final receiver. The study was conducted in three phases: pretest, teaching intervention, and post-tests. The sample consisted of 170 preschool children who were assigned to two groups. The children in the first group participated in activities which adopted a sociocognitive approach. In the context of this approach, a familiar metaphor was introduced in order to facilitate children to construct a "precursor model" about light. The children in the second group participated in activities with the same teaching objectives, but adopting an empiricist perspective. Statistical analysis using the Mann-Whitney U test indicated that the cognitive progress of the sociocognitive group was more significant than the progress of the empiricist group. This provides evidence for the effect of the sociocognitive strategy on enhancing children in constructing a "precursor model" for the concept of light.

  11. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    DOEpatents

    Welchko, Brian A [Torrance, CA

    2012-02-14

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  12. Phase lags of quasi-periodic oscillations across source states in the low-mass X-ray binary 4U 1636-53

    NASA Astrophysics Data System (ADS)

    de Avellar, Marcio G. B.

    2017-06-01

    The majority of attempts to explain the origin and phenomenology of the quasi-periodic oscillations (QPOs) detected in low-mass X-ray binaries invoke dynamical models, and it was just in recent years that renewed attention has been given on how radiative processes occurring in these extreme environments gives rise to the variability features observed in the X-ray light curves of these systems. The study of the dependence of the phase lags upon the energy and frequency of the QPOs is a step towards this end. The methodology we developed here allowed us to study for the first time these dependencies for all QPOs detected in the range of 1 to 1300 Hz in the low-mass X-ray binary 4U 1636-53 as the source changes its state during its cycle in the colour-colour diagram. Our results suggest that within the context of models of up-scattering Comptonization, the phase lags dependencies upon frequency and energy can be used to extract size scales and physical conditions of the medium that produces the lags.

  13. Shearing interference microscope for step-height measurements.

    PubMed

    Trịnh, Hưng-Xuân; Lin, Shyh-Tsong; Chen, Liang-Chia; Yeh, Sheng-Lih; Chen, Chin-Sheng; Hoang, Hong-Hai

    2017-05-01

    A shearing interference microscope using a Savart prism as the shear plate is proposed for inspecting step-heights. Where the light beam propagates through the Savart prism and microscopic system to illuminate the sample, it then turns back to re-pass through the Savart prism and microscopic system to generate a shearing interference pattern on the camera. Two measurement modes, phase-shifting and phase-scanning, can be utilized to determine the depths of the step-heights on the sample. The first mode, which employs a narrowband source, is based on the five-step phase-shifting algorithm and has a measurement range of a quarter-wavelength. The second mode, which adopts a broadband source, is based on peak-intensity identification technology and has a measurement range up to a few micrometres. This paper is to introduce the configuration and measurement theory of this microscope, perform a setup used to implement it, and present the experimental results from the uses of the setup. The results not only verify the validity but also confirm the high measurement repeatability of the proposed microscope. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  14. Structure of the cyanobactin oxidase ThcOx from Cyanothece sp. PCC 7425, the first structure to be solved at Diamond Light Source beamline I23 by means of S-SAD.

    PubMed

    Bent, Andrew F; Mann, Greg; Houssen, Wael E; Mykhaylyk, Vitaliy; Duman, Ramona; Thomas, Louise; Jaspars, Marcel; Wagner, Armin; Naismith, James H

    2016-11-01

    Determination of protein crystal structures requires that the phases are derived independently of the observed measurement of diffraction intensities. Many techniques have been developed to obtain phases, including heavy-atom substitution, molecular replacement and substitution during protein expression of the amino acid methionine with selenomethionine. Although the use of selenium-containing methionine has transformed the experimental determination of phases it is not always possible, either because the variant protein cannot be produced or does not crystallize. Phasing of structures by measuring the anomalous diffraction from S atoms could in theory be almost universal since almost all proteins contain methionine or cysteine. Indeed, many structures have been solved by the so-called native sulfur single-wavelength anomalous diffraction (S-SAD) phasing method. However, the anomalous effect is weak at the wavelengths where data are normally recorded (between 1 and 2 Å) and this limits the potential of this method to well diffracting crystals. Longer wavelengths increase the strength of the anomalous signal but at the cost of increasing air absorption and scatter, which degrade the precision of the anomalous measurement, consequently hindering phase determination. A new instrument, the long-wavelength beamline I23 at Diamond Light Source, was designed to work at significantly longer wavelengths compared with standard synchrotron beamlines in order to open up the native S-SAD method to projects of increasing complexity. Here, the first novel structure, that of the oxidase domain involved in the production of the natural product patellamide, solved on this beamline is reported using data collected to a resolution of 3.15 Å at a wavelength of 3.1 Å. The oxidase is an example of a protein that does not crystallize as the selenium variant and for which no suitable homology model for molecular replacement was available. Initial attempts collecting anomalous diffraction data for native sulfur phasing on a standard macromolecular crystallography beamline using a wavelength of 1.77 Å did not yield a structure. The new beamline thus has the potential to facilitate structure determination by native S-SAD phasing for what would previously have been regarded as very challenging cases with modestly diffracting crystals and low sulfur content.

  15. Uniform Laser Excitation And Detection In Capillary Array Electrophoresis System And Method.

    DOEpatents

    Li, Qingbo; Zhou, Songsan; Liu, Changsheng

    2003-10-07

    A capillary electrophoresis system comprises capillaries positioned in parallel to each other forming a plane. The capillaries are configured to allow samples to migrate. A light source is configured to illuminate the capillaries and the samples therein. This causes the samples to emit light. A lens is configured to receive the light emitted by the samples and positioned directly over a first group of the capillaries and obliquely over a second group of the capillaries. The light source is further configured to illuminate the second group of capillaries more than the first group of the capillaries such that amount of light received by the lens from the first group of capillaries is substantially identical to amount of light received from the second group of capillaries when an identical amount of the samples is migrating through the first and second group capillaries.

  16. A compensation method for the full phase retardance nonuniformity in phase-only liquid crystal on silicon spatial light modulators.

    PubMed

    Teng, Long; Pivnenko, Mike; Robertson, Brian; Zhang, Rong; Chu, Daping

    2014-10-20

    A simple and efficient compensation method for the full correction of both the anisotropic and isotropic nonuniformity of the light phase retardance in a liquid crystal (LC) layer is presented. This is achieved by accurate measurement of the spatial variation of the LC layer's thickness with the help of a calibrated liquid crystal wedge, rather than solely relying on the light intensity profile recorded using two crossed polarizers. Local phase retardance as a function of the applied voltage is calculated with its LC thickness and a set of reference data measured from the intensity of the reflected light using two crossed polarizers. Compensation of the corresponding phase nonuniformity is realized by applying adjusted local voltage signals for different grey levels. To demonstrate its effectiveness, the proposed method is applied to improve the performance of a phase-only liquid crystal on silicon (LCOS) spatial light modulator (SLM). The power of the first diffraction order measured with the binary phase gratings compensated by this method is compared with that compensated by the conventional crossed-polarizer method. The results show that the phase compensation method proposed here can increase the dynamic range of the first order diffraction power significantly from 15~21 dB to over 38 dB, while the crossed-polarizer method can only increase it to 23 dB.

  17. Diffraction-based optical correlator

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan M. (Inventor); Fuhr, Peter L. (Inventor); Schipper, John F. (Inventor)

    2005-01-01

    Method and system for wavelength-based processing of a light beam. A light beam, produced at a chemical or physical reaction site and having at least first and second wavelengths, ?1 and ?2, is received and diffracted at a first diffraction grating to provide first and second diffracted beams, which are received and analyzed in terms of wavelength and/or time at two spaced apart light detectors. In a second embodiment, light from first and second sources is diffracted and compared in terms of wavelength and/or time to determine if the two beams arise from the same source. In a third embodiment, a light beam is split and diffracted and passed through first and second environments to study differential effects. In a fourth embodiment, diffracted light beam components, having first and second wavelengths, are received sequentially at a reaction site to determine whether a specified reaction is promoted, based on order of receipt of the beams. In a fifth embodiment, a cylindrically shaped diffraction grating (uniform or chirped) is rotated and translated to provide a sequence of diffracted beams with different wavelengths. In a sixth embodiment, incident light, representing one or more symbols, is successively diffracted from first and second diffraction gratings and is received at different light detectors, depending upon the wavelengths present in the incident light.

  18. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, George R.

    1996-01-01

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  19. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, G.R.

    1996-07-30

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  20. Using Deep Space Climate Observatory Measurements to Study the Earth as an Exoplanet

    NASA Astrophysics Data System (ADS)

    Jiang, Jonathan H.; Zhai, Albert J.; Herman, Jay; Zhai, Chengxing; Hu, Renyu; Su, Hui; Natraj, Vijay; Li, Jiazheng; Xu, Feng; Yung, Yuk L.

    2018-07-01

    Even though it was not designed as an exoplanetary research mission, the Deep Space Climate Observatory ( DSCOVR ) has been opportunistically used for a novel experiment in which Earth serves as a proxy exoplanet. More than 2 yr of DSCOVR Earth images were employed to produce time series of multiwavelength, single-point light sources in order to extract information on planetary rotation, cloud patterns, surface type, and orbit around the Sun. In what follows, we assume that these properties of the Earth are unknown and instead attempt to derive them from first principles. These conclusions are then compared with known data about our planet. We also used the DSCOVR data to simulate phase-angle changes, as well as the minimum data collection rate needed to determine the rotation period of an exoplanet. This innovative method of using the time evolution of a multiwavelength, reflected single-point light source can be deployed for retrieving a range of intrinsic properties of an exoplanet around a distant star.

  1. Hilbert and Blaschke phases in the temporal coherence function of stationary broadband light.

    PubMed

    Fernández-Pousa, Carlos R; Maestre, Haroldo; Torregrosa, Adrián J; Capmany, Juan

    2008-10-27

    We show that the minimal phase of the temporal coherence function gamma (tau) of stationary light having a partially-coherent symmetric spectral peak can be computed as a relative logarithmic Hilbert transform of its amplitude with respect to its asymptotic behavior. The procedure is applied to experimental data from amplified spontaneous emission broadband sources in the 1.55 microm band with subpicosecond coherence times, providing examples of degrees of coherence with both minimal and non-minimal phase. In the latter case, the Blaschke phase is retrieved and the position of the Blaschke zeros determined.

  2. Generation of five phase-locked harmonics in the continuous wave regime and its potential application to arbitrary optical waveform synthesis

    NASA Astrophysics Data System (ADS)

    Suhaimi, N. Sheeda; Ohae, C.; Gavara, T.; Nakagawa, K.; Hong, F.-L.; Katsuragawa, M.

    2017-08-01

    We have successfully generated a new broadband coherent light source in the continuous wave (CW) regime which is an ensemble of multi-harmonic radiations (2403, 1201, 801, 600 and 480 nm) by implementing a frequency dividing technology. The system is uniquely designed that all the harmonics are generated and propagate coaxially which gives the advantage of robustly maintaining the phase coherence among the harmonics. The highlight is its huge potential for the arbitrary optical waveform synthesis in the CW regime which has not been performed yet due to the limitation of the existing light source.

  3. A single dose of alcohol does not meaningfully alter circadian phase advances and phase delays to light in humans

    PubMed Central

    Rizvydeen, Muneer; Fogg, Louis F.; Keshavarzian, Ali

    2016-01-01

    Central circadian timing influences mental and physical health. Research in nocturnal rodents has demonstrated that when alcohol is consumed, it reaches the central hypothalamic circadian pacemaker (suprachiasmatic nuclei) and can directly alter circadian phase shifts to light. In two separate studies, we examined, for the first time, the effects of a single dose of alcohol on circadian phase advances and phase delays to light in humans. Two 23-day within-subjects placebo-controlled counterbalanced design studies were conducted. Both studies consisted of 6 days of fixed baseline sleep to stabilize circadian timing, a 2-day laboratory session, a 6-day break, and a repeat of 6 days of fixed sleep and a 2-day laboratory session. In the phase advance study (n = 10 light drinkers, 24–45 yr), the laboratory sessions consisted of a baseline dim light phase assessment, sleep episode, alcohol (0.6 g/kg) or placebo, 2-h morning bright light pulse, and final phase assessment. In the phase-delay study (n = 14 light drinkers, 22–44 yr), the laboratory sessions consisted of a baseline phase assessment, alcohol (0.8 g/kg) or placebo, 2-h late night bright light pulse, sleep episode, and final phase assessment. In both studies, alcohol either increased or decreased the observed phase shifts to light (interaction P ≥ 0.46), but the effect of alcohol vs. placebo on phase shifts to light was always on average smaller than 30 min. Thus, no meaningful effects of a single dose of alcohol vs. placebo on circadian phase shifts to light in humans were observed. PMID:26936778

  4. A single dose of alcohol does not meaningfully alter circadian phase advances and phase delays to light in humans.

    PubMed

    Burgess, Helen J; Rizvydeen, Muneer; Fogg, Louis F; Keshavarzian, Ali

    2016-04-15

    Central circadian timing influences mental and physical health. Research in nocturnal rodents has demonstrated that when alcohol is consumed, it reaches the central hypothalamic circadian pacemaker (suprachiasmatic nuclei) and can directly alter circadian phase shifts to light. In two separate studies, we examined, for the first time, the effects of a single dose of alcohol on circadian phase advances and phase delays to light in humans. Two 23-day within-subjects placebo-controlled counterbalanced design studies were conducted. Both studies consisted of 6 days of fixed baseline sleep to stabilize circadian timing, a 2-day laboratory session, a 6-day break, and a repeat of 6 days of fixed sleep and a 2-day laboratory session. In the phase advance study (n= 10 light drinkers, 24-45 yr), the laboratory sessions consisted of a baseline dim light phase assessment, sleep episode, alcohol (0.6 g/kg) or placebo, 2-h morning bright light pulse, and final phase assessment. In the phase-delay study (n= 14 light drinkers, 22-44 yr), the laboratory sessions consisted of a baseline phase assessment, alcohol (0.8 g/kg) or placebo, 2-h late night bright light pulse, sleep episode, and final phase assessment. In both studies, alcohol either increased or decreased the observed phase shifts to light (interaction P≥ 0.46), but the effect of alcohol vs. placebo on phase shifts to light was always on average smaller than 30 min. Thus, no meaningful effects of a single dose of alcohol vs. placebo on circadian phase shifts to light in humans were observed. Copyright © 2016 the American Physiological Society.

  5. Systems and Methods for Correcting Optical Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Yang, Ye (Inventor); Shear, Michael A. (Inventor); Soller, Babs R. (Inventor); Soyemi, Olusola O. (Inventor)

    2014-01-01

    We disclose measurement systems and methods for measuring analytes in target regions of samples that also include features overlying the target regions. The systems include: (a) a light source; (b) a detection system; (c) a set of at least first, second, and third light ports which transmit light from the light source to a sample and receive and direct light reflected from the sample to the detection system, generating a first set of data including information corresponding to both an internal target within the sample and features overlying the internal target, and a second set of data including information corresponding to features overlying the internal target; and (d) a processor configured to remove information characteristic of the overlying features from the first set of data using the first and second sets of data to produce corrected information representing the internal target.

  6. Systems and methods for correcting optical reflectance measurements

    NASA Technical Reports Server (NTRS)

    Yang, Ye (Inventor); Soller, Babs R. (Inventor); Soyemi, Olusola O. (Inventor); Shear, Michael A. (Inventor)

    2009-01-01

    We disclose measurement systems and methods for measuring analytes in target regions of samples that also include features overlying the target regions. The systems include: (a) a light source; (b) a detection system; (c) a set of at least first, second, and third light ports which transmit light from the light source to a sample and receive and direct light reflected from the sample to the detection system, generating a first set of data including information corresponding to both an internal target within the sample and features overlying the internal target, and a second set of data including information corresponding to features overlying the internal target; and (d) a processor configured to remove information characteristic of the overlying features from the first set of data using the first and second sets of data to produce corrected information representing the internal target.

  7. Compact OPO-based RGB source

    NASA Astrophysics Data System (ADS)

    Lee, Dicky; Moulton, Peter F.

    2001-03-01

    In this paper we discuss our red, green, and blue (RGB) optical parametric oscillator (OPO) light source for projection display applications. Our source consists of a diode-pumped pump laser and a LBO-based OPO. Based on our Nd:YLF gain-module design, the pump laser is frequency doubled to serve as the pump source for the OPO. The unconverted pump power is recycled as the green light for projection. The singly resonant, non-critically phase- matched OPO has, to date, generated 13 W of 898-nm signal power and an estimated 9.3 W of intra-cavity idler power at 1256 nm. With approximately 76% of pump depletion, the power of the residual green light for projection is about 5.8 W. We have extra-cavity doubled the signal to produce approximately 3.5 W of 449-nm blue light and intra-cavity doubled the idler to produce approximately 6 W of 628-nm red light. The OPO-based RGB source generates about 4000 lumens of D65-balanced white light. The overall electrical power luminous efficiency (diodes only) is about 14.6 lumens/Watt.

  8. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.

  9. Potential Sources of Polarized Light from a Plant Canopy

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Field measurements have demonstrated that sunlight polarized during a first surface reflection by shiny leaves dominates the optical polarization of the light reflected by shiny-leafed plant canopies having approximately spherical leaf angle probability density functions ("Leaf Angle Distributions" - LAD). Yet for other canopies - specifically those without shiny leaves and/or spherical LADs - potential sources of optically polarized light may not always be obvious. Here we identify possible sources of polarized light within those other canopies and speculate on the ecologically important information polarization measurements of those sources might contain.

  10. New generation attosecond light sources

    NASA Astrophysics Data System (ADS)

    Chang, Zenghu

    2017-04-01

    Millijoule level, few-cycle, carrier-envelope phase (CEP) stable Ti:Sapphire lasers centered at 800 nm have been the workhorse for the first generation attosecond light sources in the last 16 years. The spectral range of isolated attosecond pulses with sufficient photon flux for time-resolved pump-probe experiments has been limited to extreme ultraviolet (10 to 150 eV). The shortest pulses achieved are 67 as. It was demonstrated in 2001 that the cutoff photon energy of the high harmonic spectrum could be extended by increasing the center wavelength of the driving lasers. In recent years, mJ level, two-cycle, carrier-envelope phase stabilized lasers at 1.6 to 2.1 micron have been developed by implementing Optical Parametric Chirped Pulse Amplification (OPCPA) techniques. Recently, when long wavelength driving was combined with polarization gating, isolated soft x-rays in the water window (280-530 eV) were generated in our laboratory. The number of x-ray photons in the 120-400 eV range is comparable to that generated with Ti:Sapphire lasers in the 50 to 150 eV range. The ultrabroadband isolated x-ray pulses with 53 as duration were characterized by attosecond streaking measurements. The new generation attosecond soft X-ray sources open the door for studying electron dynamics with element specificity through core to valence transitions. NSF (1068604), ARO (W911NF-14-1-0383), AFOSR (FA9550-15-1-0037, FA9550-16-1-0013), DARPA-PULSE (W31P4Q1310017).

  11. Development of a pepper-pot device to determine the emittance of an ion beam generated by electron cyclotron resonance ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strohmeier, M.; University of Applied Sciences Karlsruhe, Moltkestr. 30, 76133 Karlsruhe; Benitez, J. Y.

    2010-02-15

    This paper describes the recent development and commissioning of a pepper-pot emittance meter at the Lawrence Berkeley National Laboratory (LBNL). It is based on a potassium bromide (KBr) scintillator screen in combination with a charged coupled device camera. Pepper-pot scanners record the full four-dimensional transverse phase space emittances which are particularly interesting for electron cyclotron resonance ion sources. The strengths and limitations of evaluating emittances using optical pepper-pot scanners are described and systematic errors induced by the optical data acquisition system will be presented. Light yield tests of KBr exposed to different ion species and first emittance measurement data usingmore » ion beams extracted from the 6.4 GHz LBNL electron cyclotron resonance ion source are presented and discussed.« less

  12. PDF neuron firing phase-shifts key circadian activity neurons in Drosophila

    PubMed Central

    Guo, Fang; Cerullo, Isadora; Chen, Xiao; Rosbash, Michael

    2014-01-01

    Our experiments address two long-standing models for the function of the Drosophila brain circadian network: a dual oscillator model, which emphasizes the primacy of PDF-containing neurons, and a cell-autonomous model for circadian phase adjustment. We identify five different circadian (E) neurons that are a major source of rhythmicity and locomotor activity. Brief firing of PDF cells at different times of day generates a phase response curve (PRC), which mimics a light-mediated PRC and requires PDF receptor expression in the five E neurons. Firing also resembles light by causing TIM degradation in downstream neurons. Unlike light however, firing-mediated phase-shifting is CRY-independent and exploits the E3 ligase component CUL-3 in the early night to degrade TIM. Our results suggest that PDF neurons integrate light information and then modulate the phase of E cell oscillations and behavioral rhythms. The results also explain how fly brain rhythms persist in constant darkness and without CRY. DOI: http://dx.doi.org/10.7554/eLife.02780.001 PMID:24939987

  13. PDF neuron firing phase-shifts key circadian activity neurons in Drosophila.

    PubMed

    Guo, Fang; Cerullo, Isadora; Chen, Xiao; Rosbash, Michael

    2014-06-17

    Our experiments address two long-standing models for the function of the Drosophila brain circadian network: a dual oscillator model, which emphasizes the primacy of PDF-containing neurons, and a cell-autonomous model for circadian phase adjustment. We identify five different circadian (E) neurons that are a major source of rhythmicity and locomotor activity. Brief firing of PDF cells at different times of day generates a phase response curve (PRC), which mimics a light-mediated PRC and requires PDF receptor expression in the five E neurons. Firing also resembles light by causing TIM degradation in downstream neurons. Unlike light however, firing-mediated phase-shifting is CRY-independent and exploits the E3 ligase component CUL-3 in the early night to degrade TIM. Our results suggest that PDF neurons integrate light information and then modulate the phase of E cell oscillations and behavioral rhythms. The results also explain how fly brain rhythms persist in constant darkness and without CRY.

  14. Positive matrix factorization of PM2.5 - eliminating the effects of gas/particle partitioning of semivolatile organic compounds.

    PubMed

    Xie, M; Barsanti, K C; Hannigan, M P; Dutton, S J; Vedal, S

    2013-01-01

    Gas-phase concentrations of semi-volatile organic compounds (SVOCs) were calculated from gas/particle (G/P) partitioning theory using their measured particle-phase concentrations. The particle-phase data were obtained from an existing filter measurement campaign (27 January 2003-2 October 2005) as a part of the Denver Aerosol Sources and Health (DASH) study, including 970 observations of 71 SVOCs (Xie et al., 2013). In each compound class of SVOCs, the lighter species (e.g. docosane in n alkanes, fluoranthene in PAHs) had higher total concentrations (gas + particle phase) and lower particle-phase fractions. The total SVOC concentrations were analyzed using positive matrix factorization (PMF). Then the results were compared with source apportionment results where only particle-phase SVOC concentrations were used (particle only-based study; Xie et al., 2013). For the particle only-based PMF analysis, the factors primarily associated with primary or secondary sources ( n alkane, EC/sterane and inorganic ion factors) exhibit similar contribution time series ( r = 0.92-0.98) with their corresponding factors ( n alkane, sterane and nitrate+sulfate factors) in the current work. Three other factors (light n alkane/PAH, PAH and summer/odd n alkane factors) are linked with pollution sources influenced by atmospheric processes (e.g. G/P partitioning, photochemical reaction), and were less correlated ( r = 0.69-0.84) with their corresponding factors (light SVOC, PAH and bulk carbon factors) in the current work, suggesting that the source apportionment results derived from particle-only SVOC data could be affected by atmospheric processes. PMF analysis was also performed on three temperature-stratified subsets of the total SVOC data, representing ambient sampling during cold (daily average temperature < 10 °C), warm (≥ 10 °C and ≤ 20 °C) and hot (> 20 °C) periods. Unlike the particle only-based study, in this work the factor characterized by the low molecular weight (MW) compounds (light SVOC factor) exhibited strong correlations ( r = 0.82-0.98) between the full data set and each sub-data set solution, indicating that the impacts of G/P partitioning on receptor-based source apportionment could be eliminated by using total SVOC concentrations.

  15. Surface plasmon-mediated energy transfer of electrically-pumped excitons

    DOEpatents

    An, Kwang Hyup; Shtein, Max; Pipe, Kevin P.

    2015-08-25

    An electrically pumped light emitting device emits a light when powered by a power source. The light emitting device includes a first electrode, a second electrode including an outer surface, and at least one active organic semiconductor disposed between the first and second electrodes. The device also includes a dye adjacent the outer surface of the second electrode such that the second electrode is disposed between the dye and the active organic semiconductor. A voltage applied by the power source across the first and second electrodes causes energy to couple from decaying dipoles into surface plasmon polariton modes, which then evanescently couple to the dye to cause the light to be emitted.

  16. Phased-array sources based on nonlinear metamaterial nanocavities

    DOE PAGES

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; ...

    2015-07-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization.more » As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.« less

  17. Invited Article: Mask-modulated lensless imaging with multi-angle illuminations

    NASA Astrophysics Data System (ADS)

    Zhang, Zibang; Zhou, You; Jiang, Shaowei; Guo, Kaikai; Hoshino, Kazunori; Zhong, Jingang; Suo, Jinli; Dai, Qionghai; Zheng, Guoan

    2018-06-01

    The use of multiple diverse measurements can make lensless phase retrieval more robust. Conventional diversity functions include aperture diversity, wavelength diversity, translational diversity, and defocus diversity. Here we discuss a lensless imaging scheme that employs multiple spherical-wave illuminations from a light-emitting diode array as diversity functions. In this scheme, we place a binary mask between the sample and the detector for imposing support constraints for the phase retrieval process. This support constraint enforces the light field to be zero at certain locations and is similar to the aperture constraint in Fourier ptychographic microscopy. We use a self-calibration algorithm to correct the misalignment of the binary mask. The efficacy of the proposed scheme is first demonstrated by simulations where we evaluate the reconstruction quality using mean square error and structural similarity index. The scheme is then experimentally tested by recovering images of a resolution target and biological samples. The proposed scheme may provide new insights for developing compact and large field-of-view lensless imaging platforms. The use of the binary mask can also be combined with other diversity functions for better constraining the phase retrieval solution space. We provide the open-source implementation code for the broad research community.

  18. Efficient visibility encoding for dynamic illumination in direct volume rendering.

    PubMed

    Kronander, Joel; Jönsson, Daniel; Löw, Joakim; Ljung, Patric; Ynnerman, Anders; Unger, Jonas

    2012-03-01

    We present an algorithm that enables real-time dynamic shading in direct volume rendering using general lighting, including directional lights, point lights, and environment maps. Real-time performance is achieved by encoding local and global volumetric visibility using spherical harmonic (SH) basis functions stored in an efficient multiresolution grid over the extent of the volume. Our method enables high-frequency shadows in the spatial domain, but is limited to a low-frequency approximation of visibility and illumination in the angular domain. In a first pass, level of detail (LOD) selection in the grid is based on the current transfer function setting. This enables rapid online computation and SH projection of the local spherical distribution of visibility information. Using a piecewise integration of the SH coefficients over the local regions, the global visibility within the volume is then computed. By representing the light sources using their SH projections, the integral over lighting, visibility, and isotropic phase functions can be efficiently computed during rendering. The utility of our method is demonstrated in several examples showing the generality and interactive performance of the approach.

  19. Dark goggles and bright light improve circadian rhythm adaptation to night-shift work.

    PubMed

    Eastman, C I; Stewart, K T; Mahoney, M P; Liu, L; Fogg, L F

    1994-09-01

    We compared the contributions of bright light during the night shift and dark goggles during daylight for phase shifting the circadian rhythm of temperature to realign with a 12-hour shift of sleep. After 10 baseline days there were 8 night-work/day-sleep days. Temperature was continuously recorded from 50 subjects. There were four groups in a 2 x 2 design: light (bright, dim), goggles (yes, no). Subjects were exposed to bright light (about 5,000 lux) for 6 hours on the first 2 night shifts. Dim light was < 500 lux. Both bright light and goggles were significant factors for producing circadian rhythm phase shifts. The combination of bright light plus goggles was the most effective, whereas the combination of dim light and no goggles was the least effective. The temperature rhythm either phase advanced or phase delayed when it aligned with daytime sleep. However, when subjects did not have goggles only phase advances occurred. Goggles were necessary for producing phase delays. The most likely explanation is that daylight during the travel-home window after a night shift inhibits phase-delay shifts, and goggles can prevent this inhibition. Larger temperature-rhythm phase shifts were associated with better subjective daytime sleep, less subjective fatigue and better mood.

  20. Light-driven phase shifter

    DOEpatents

    Early, James W.

    1990-01-01

    A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.

  1. New Magnetic Materials and Phenomena for Radar and Microwave Signal Processing Devices - Bulk and Thin Film Ferrites and Metallic Films

    DTIC Science & Technology

    2009-02-15

    Magnon scattered light generally experiences a 90° rotation in polarization from the incident beam. The wave- vector selective BLS measurements...filters, phase locked microwave pulse sources, microwave and millimeter wave devices such as isolators, circulators, phase shifters, secure signal...Wave vector selective Brillouin light scattering measurements and analysis, " C. L. Ordofiez-Romero, B. A. Kalinikos, P. Krivosik, Wei Tong, P

  2. Apparatus and method for phase fronts based on superluminal polarization current

    DOEpatents

    Singleton, John [Los Alamos, NM; Ardavan, Houshang [Cambridge, GB; Ardavan, Arzhang [Cambridge, GB

    2012-02-28

    An apparatus and method for a radiation source involving phase fronts emanating from an accelerated, oscillating polarization current whose distribution pattern moves superluminally (that is, faster than light in vacuo). Theoretical predictions and experimental measurements using an existing prototype superluminal source show that the phase fronts from such a source can be made to be very complex. Consequently, it will be very difficult for an aircraft imaged by such a radiation to detect where this radiation has come from. Moreover, the complexity of the phase fronts makes it almost impossible for electronics on an aircraft to synthesize a rogue reflection. A simple directional antenna and timing system should, on the other hand, be sufficient for the radar operators to locate the aircraft, given knowledge of their own source's speed and modulation pattern.

  3. Laser technologies for ultrasensitive groundwater dating using long-lived isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, Sterling

    In this phase I work, we propose to construct and demonstrate a 103 nm laser based on resonantly enhanced and phase matched fifth harmonic generation in hollow waveguides driven by a high power, low cost and compact ultrafast fiber laser. (Figure 4) This VUV laser source can potentially produce >100 milliwatts of VUV light at 103 nm with pulse repetition-rates of 100 kHz to 100 MHz, ideal for the above-mentioned applications. This technology is state-of-the-art and potentially compact, fieldable, low-cost, and of broad interest for a variety of science and technology applications. Laser-based VUV sources in the past have exhibitedmore » low repetition rate, low efficiency, low beam quality, and are based on expensive laser sources. Our approch is to combine ultrafast fiber laser drive technology, ultrafast pulses, and our proven waveguide technology, to create a high repetition rate, high average power VUV source for producing high yield metastable Krypton. At KMLabs we have been offering EUV light sources employing the high harmonic generation (HHG) process driven by high-power femtosecond lasers for >5 years now. Recently, we have developed much smaller scale (briefcase size), but still high average power femtosecond fiber laser sources to supply other markets, and create new ones. By combining these new laser sources with our patented waveguide frequency upconversion technology, we expect to be able to obtain >20mW average power initially, with potentially much higher powers depending on wavelength, in an affordable VUV product. For comparison, our current EUV light sources based on ti:sapphire generate an average power of ~5 µW (albeit at shorter 29 nm wavelength), and we are aware of one other supplier that has developed a VUV (112 nm) light source with ~10-20 µW power.« less

  4. Opportunistic traffic sensing using existing video sources (phase II).

    DOT National Transportation Integrated Search

    2017-02-01

    The purpose of the project reported on here was to investigate methods for automatic traffic sensing using traffic surveillance : cameras, red light cameras, and other permanent and pre-existing video sources. Success in this direction would potentia...

  5. Lau phase interferometer for the measurement of the temperature and temperature profile of a gaseous flame

    NASA Astrophysics Data System (ADS)

    Shakher, Chandra; Thakur, Madhuri

    2001-05-01

    In this paper we have investigated the utility of Lau phase interferometer with white light source and circular gratings to measure temperature and temperature profile of an axisymmetric flame. In Lau phase interferometer the two gratings are separated by infinite distance. The third grating is placed at a distance Z equals n.p2(lambda) , (where n is an integer, d is the pitch of the grating and (lambda) is the wavelength of the white light source). The sensitivity of the system is determined by the pitch 'p' of the grating and the distance Z between the gratings. If the distance Z between the two gratings is increased to enhance the sensitivity, the accuracy of measurement is reduced because of the reduction in the fringe contrast. In white light Lau phase interferometer the fringe contrast can be improved by optimizing the self-image plane and the pitch of the grating. From the recorded interferogram the angle of deflection ((phi) ) is measured and temperature at a different point of the flame is calculated. The temperature measured using Lau phase interferometer is in good agreement with the temperature measured by thermocouple and dataloger. Details of the theoretical analysis and experimental results are presented.

  6. Ghost imaging with bucket detection and point detection

    NASA Astrophysics Data System (ADS)

    Zhang, De-Jian; Yin, Rao; Wang, Tong-Biao; Liao, Qing-Hua; Li, Hong-Guo; Liao, Qinghong; Liu, Jiang-Tao

    2018-04-01

    We experimentally investigate ghost imaging with bucket detection and point detection in which three types of illuminating sources are applied: (a) pseudo-thermal light source; (b) amplitude modulated true thermal light source; (c) amplitude modulated laser source. Experimental results show that the quality of ghost images reconstructed with true thermal light or laser beam is insensitive to the usage of bucket or point detector, however, the quality of ghost images reconstructed with pseudo-thermal light in bucket detector case is better than that in point detector case. Our theoretical analysis shows that the reason for this is due to the first order transverse coherence of the illuminating source.

  7. Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme.

    PubMed

    Peramuna, Anantha; Summers, Michael L

    2014-12-01

    Inclusions of neutral lipids termed lipid droplets (LDs) located throughout the cell were identified in the cyanobacterium Nostoc punctiforme by staining with lipophylic fluorescent dyes. LDs increased in number upon entry into stationary phase and addition of exogenous fructose indicating a role for carbon storage, whereas high-light stress did not increase LD numbers. LD accumulation increased when nitrate was used as the nitrogen source during exponential growth as compared to added ammonia or nitrogen-fixing conditions. Analysis of isolated LDs revealed enrichment of triacylglycerol (TAG), α-tocopherol, and C17 alkanes. LD TAG from exponential phase growth contained mainly saturated C16 and C18 fatty acids, whereas stationary phase LD TAG had additional unsaturated fatty acids characteristic of whole cells. This is the first characterization of cyanobacterial LD composition and conditions leading to their production. Based upon their abnormally large size and atypical location, these structures represent a novel sub-organelle in cyanobacteria.

  8. Phase-stepping fiber-optic projected fringe system for surface topography measurements

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor); Beheim, Glenn (Inventor)

    1992-01-01

    A projected fringe interferometer for measuring the topography of an object is presented. The interferometer periodically steps the phase angle between a pair of light beams emanating from a common source. The steps are pi/2 radians (90 deg) apart, and at each step a video image of the fringes is recorded and stored. Photodetectors measure either the phase and theta of the beams or 2(theta). Either of the measures can be used to control one of the light beams so that the 90 deg theta is accurately maintained. A camera, a computer, a phase controller, and a phase modulator established closed-loop control of theta. Measuring the phase map of a flat surface establishes a calibration reference.

  9. 78 FR 64916 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ...., light to heat), crystallization, melting, phase transformations, fracture, and other dynamic events. The... Sciences University, 1120 15th Street, Augusta, GA 30912. Instrument: Imaging System/Digital Microscope... the instrument include fast wavelength change, a dichromotome system, and two different light sources...

  10. Detection of a Novel Mechanism of Acousto-Optic Modulation of Incoherent Light

    PubMed Central

    Jarrett, Christopher W.; Caskey, Charles F.; Gore, John C.

    2014-01-01

    A novel form of acoustic modulation of light from an incoherent source has been detected in water as well as in turbid media. We demonstrate that patterns of modulated light intensity appear to propagate as the optical shadow of the density variations caused by ultrasound within an illuminated ultrasonic focal zone. This pattern differs from previous reports of acousto-optical interactions that produce diffraction effects that rely on phase shifts and changes in light directions caused by the acoustic modulation. Moreover, previous studies of acousto-optic interactions have mainly reported the effects of sound on coherent light sources via photon tagging, and/or the production of diffraction phenomena from phase effects that give rise to discrete sidebands. We aimed to assess whether the effects of ultrasound modulation of the intensity of light from an incoherent light source could be detected directly, and how the acoustically modulated (AOM) light signal depended on experimental parameters. Our observations suggest that ultrasound at moderate intensities can induce sufficiently large density variations within a uniform medium to cause measurable modulation of the intensity of an incoherent light source by absorption. Light passing through a region of high intensity ultrasound then produces a pattern that is the projection of the density variations within the region of their interaction. The patterns exhibit distinct maxima and minima that are observed at locations much different from those predicted by Raman-Nath, Bragg, or other diffraction theory. The observed patterns scaled appropriately with the geometrical magnification and sound wavelength. We conclude that these observed patterns are simple projections of the ultrasound induced density changes which cause spatial and temporal variations of the optical absorption within the illuminated sound field. These effects potentially provide a novel method for visualizing sound fields and may assist the interpretation of other hybrid imaging methods. PMID:25105880

  11. Free space and waveguide Talbot effect: phase relations and planar light circuit applications

    NASA Astrophysics Data System (ADS)

    Nikkhah, H.; Zheng, Q.; Hasan, I.; Abdul-Majid, S.; Hall, T. J.

    2012-10-01

    Optical fields that are periodic in the transverse plane self-image periodically as they propagate along the optical axis: a phenomenon known as the Talbot effect. A transfer matrix may be defined that relates the amplitude and phase of point sources placed on a particular grid at the input to their respective multiple images at an image plane. The free-space Talbot effect may be mapped to the waveguide Talbot effect. Applying this mapping to the transfer matrix enables the prediction of the phase and amplitude relations between the ports of a Multimode Interference (MMI) coupler- a planar waveguide device. The transfer matrix approach has not previously been applied to the free-space case and its mapping to the waveguide case provides greater clarity and physical insight into the phase relationships than previous treatments. The paper first introduces the underlying physics of the Talbot effect in free space with emphasis on the positions along the optical axis at which images occur; their multiplicity; and their relative phase relations determined by the Gauss Quadratic Sum of number theory. The analysis is then adapted to predict the phase relationships between the ports of an MMI. These phase relationships are critical to planar light circuit (PLC) applications such as 90° optical hybrids for coherent optical receiver front-ends, external optical I-Q modulators for coherent optical transmitters; and optical phased array switches. These applications are illustrated by results obtained from devices that have been fabricated and tested by the PTLab in Si micro-photonic integration platforms.

  12. Fermi Large Area Telescope Second Source Catalog

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M; Allafort, A.; Antolini, E; Bonnell, J.; Cannon, A.; Celik O.; Corbet, R.; hide

    2012-01-01

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-month period. The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in 5 energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 11eV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely gamma-ray-producing source classes.

  13. Fundamental characteristics of a synthesized light source for optical coherence tomography.

    PubMed

    Sato, Manabu; Wakaki, Ichiro; Watanabe, Yuuki; Tanno, Naohiro

    2005-05-01

    We describe the fundamental characteristics of a synthesized light source (SLS) consisting of two low-coherence light sources to enhance the spatial resolution for optical coherence tomography (OCT). The axial resolution of OCT is given by half the coherence length of the light source. We fabricated a SLS with a coherence length of 2.3 microm and a side-lobe intensity of 45% with an intensity ratio of LED1:LED2 = 1:0.5 by combining two light sources, LED1, with a central wavelength of 691 nm and a spectral bandwidth of 99 nm, and LED2, with a central wavelength of 882 nm and a spectral bandwidth of 76 nm. The coherence length of 2.3 microm was 56% of the shorter coherence length in the two LEDs, which indicates that the axial resolution is 1.2 microm. The lateral resolution was measured at less than 4.4 microm by use of the phase-shift method and with a test pattern as a sample. The measured rough surfaces of a coin are illustrated and discussed.

  14. Coherent white light amplification

    DOEpatents

    Jovanovic, Igor; Barty, Christopher P.

    2004-05-25

    A system for coherent simultaneous amplification of a broad spectral range of light that includes an optical parametric amplifier and a source of a seed pulse is described. A first angular dispersive element is operatively connected to the source of a seed pulse. A first imaging telescope is operatively connected to the first angular dispersive element and operatively connected to the optical parametric amplifier. A source of a pump pulse is operatively connected to the optical parametric amplifier. A second imaging telescope is operatively connected to the optical parametric amplifier and a second angular dispersive element is operatively connected to the second imaging telescope.

  15. Achromatic vector vortex beams from a glass cone

    PubMed Central

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-01-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams. PMID:26861191

  16. Achromatic vector vortex beams from a glass cone

    NASA Astrophysics Data System (ADS)

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-02-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams.

  17. Hybrid shearing and phase-shifting point diffraction interferometer

    DOEpatents

    Goldberg, Kenneth Alan; Naulleau, Patrick P.

    2003-06-03

    A new interferometry configuration combines the strengths of two existing interferometry methods, improving the quality and extending the dynamic range of both. On the same patterned mask, placed near the image-plane of an optical system under test, patterns for phase-shifting point diffraction interferometry and lateral shearing interferometry coexist. The former giving verifiable high accuracy for the measurement of nearly diffraction-limited optical systems. The latter enabling the measurement of optical systems with more than one wave of aberration in the system wavefront. The interferometry configuration is a hybrid shearing and point diffraction interferometer system for testing an optical element that is positioned along an optical path including: a source of electromagnetic energy in the optical path; a first beam splitter that is secured to a device that includes means for maneuvering the first beam splitter in a first position wherein the first beam splitter is in the optical path dividing light from the source into a reference beam and a test beam and in a second position wherein the first beam splitter is outside the optical path: a hybrid mask which includes a first section that defines a test window and at least one reference pinhole and a second section that defines a second beam splitter wherein the hybrid mask is secured to a device that includes means for maneuvering either the first section or the second section into the optical path positioned in an image plane that is created by the optical element, with the proviso that the first section of the hybrid mask is positioned in the optical path when first beam splitter is positioned in the optical path; and a detector positioned after the hybrid mask along the optical path.

  18. Thin display optical projector

    DOEpatents

    Veligdan, James T.

    1999-01-01

    An optical system (20) projects light into a planar optical display (10). The display includes laminated optical waveguides (12) defining an inlet face (14) at one end and an outlet screen (16) at an opposite end. A first mirror (26) collimates light from a light source (18) along a first axis, and distributes the light along a second axis. A second mirror (28) collimates the light from the first mirror along the second axis to illuminate the inlet face and produce an image on the screen.

  19. Computational diffraction tomographic microscopy with transport of intensity equation using a light-emitting diode array

    NASA Astrophysics Data System (ADS)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zuo, Chao

    2017-10-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of +/-37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ˜ 0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  20. Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array

    NASA Astrophysics Data System (ADS)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zhang, Zhao; Zhang, Yan; Zuo, Chao

    2017-08-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of ±37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ∼0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  1. Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm.

    PubMed

    Sun, Peng; Chang, Shengqian; Liu, Siqi; Tao, Xiao; Wang, Chang; Zheng, Zhenrong

    2018-04-16

    In this paper, a method is proposed to implement noises reduced three-dimensional (3D) holographic near-eye display by phase-only computer-generated hologram (CGH). The CGH is calculated from a double-convergence light Gerchberg-Saxton (GS) algorithm, in which the phases of two virtual convergence lights are introduced into GS algorithm simultaneously. The first phase of convergence light is a replacement of random phase as the iterative initial value and the second phase of convergence light will modulate the phase distribution calculated by GS algorithm. Both simulations and experiments are carried out to verify the feasibility of the proposed method. The results indicate that this method can effectively reduce the noises in the reconstruction. Field of view (FOV) of the reconstructed image reaches 40 degrees and experimental light path in the 4-f system is shortened. As for 3D experiments, the results demonstrate that the proposed algorithm can present 3D images with 180cm zooming range and continuous depth cues. This method may provide a promising solution in future 3D augmented reality (AR) realization.

  2. A photochemical kinetic model for solid dosage forms.

    PubMed

    Carvalho, Thiago C; La Cruz, Thomas E; Tábora, Jose E

    2017-11-01

    Photochemical kinetic models to describe the solution phase degradation of pharmaceutical compounds have been extensively reported, but formalisms applicable to the solid phase under polychromatic light have not received as much attention. The objective of this study was to develop a mathematical model to describe the solid state photodegradation of pharmaceutical powder materials under different area/volumetric scales and light exposure conditions. The model considered the previous formalism presented for photodegradation kinetics in solution phase with important elements applied to static powder material being irradiated with a polychromatic light source. The model also included the influence of optical phenomena (i.e. reflectance, scattering factors, etc.) by applying Beer-Lambert law to light attenuation, including effects of powder density. Drug substance and drug product intermediates (blends and tablet cores) were exposed to different light sources and intensities. The model reasonably predicted the photodegradation levels of powder beds of drug substance and drug product intermediates under white and yellow lights with intensities around 5-11kLux. Importantly, the model estimates demonstrated that the reciprocity law for photoreactions was held. Further model evaluation showed that, due to light attenuation, the powder bed is in virtual darkness at cake depths greater than 500μm. At 100μm, the photodegradation of the investigated compound is expected to be close to 100% in 10days under white fluorescent halophosphate light at 9.5kLux. For tablets, defining the volume over exposed surface area ratio is more challenging. Nevertheless, the model can consider a bracket between worst and best cases to provide a reasonable photodegradation estimate. This tool can be significantly leveraged to simulate different light exposure scenarios while assessing photostability risk in order to define appropriate control strategy in manufacturing. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Light-Emitting Diode (LED) Traps Improve the Light-Trapping of Anopheline Mosquitoes.

    PubMed

    Costa-Neta, B M; da Silva, A A; Brito, J M; Moraes, J L P; Rebêlo, J M M; Silva, F S

    2017-11-07

    Numerous advantages over the standard incandescent lamp favor the use of light-emitting diodes (LEDs) as an alternative and inexpensive light source for sampling medically important insects in surveillance studies. Previously published studies examined the response of mosquitoes to different wavelengths, but data on anopheline mosquito LED attraction are limited. Center for Disease Control and Prevention-type light traps were modified by replacing the standard incandescent lamp with 5-mm LEDs, one emitting at 520 nm (green) and the other at 470 nm (blue). To test the influence of moon luminosity on LED catches, the experiments were conducted during the four lunar phases during each month of the study period. A total of 1,845 specimens representing eight anopheline species were collected. Anopheles (Nyssorhynchus) evansae (35.2%) was the most frequently collected, followed by An. (Nys.) triannulatus (21.9%), An. (Nys.) goeldii (12.9%), and An. (Nys.) argyritarsis (11.5%). The green LED was the most attractive light source, accounting for 43.3% of the individuals collected, followed by the blue (31.8%) and control (24.9%) lights. The LED traps were significantly more attractive than the control, independent of the lunar phase. Light trapping of anopheline mosquitoes was more efficient when the standard incandescent lamp was replaced with LEDs, regardless of the moon phase. The efficiency of LEDs improves light trapping results, and it is suggested that the use of LEDs as an attractant for anopheline mosquitoes should be taken into consideration when sampling anopheline mosquitoes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Commissioning and Early Operation for the NSLS-II Booster RF System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marques, C.; Cupolo, J.; Davila, P.

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL) is a third generation 3GeV, 500mA synchrotron light source. We discuss the booster synchrotron RF system responsible for providing power to accelerate an electron beam from 200MeV to 3GeV. The RF system design and construction are complete and is currently in the operational phase of the NSLS-II project. Preliminary operational data is also discussed.

  5. Influence of light and darkness on the behaviour of Dermanyssus gallinae on layer farms.

    PubMed

    Sokół, R; Szkamelski, A; Barski, D

    2008-01-01

    The behaviour of Dermanyssus gallinae was investigated on two layer farms where two different light programs were introduced in the 40th week of hen life. In layer house No. 1, light was applied continuously for 16 hours during the day, while layer house No. 2 was subjected to 4 hours of light and 2 hours of darkness applied alternately during the day. To monitor the level of red mite infestation, 30 tube traps were placed in every layer house corridor at a height of 1.5 m above the floor. In the first layer house, 280 Dermanyssus gallinae females, 50 nymph larvae and 198 eggs were found in 100 mg of tube trap material during 16 hours of the light phase, while during the 8-hour darkness phase, 1240 females, 70 nymph larvae and 110 eggs were collected. In the other layer house (with an alternating light phase of 4 hours and a darkness phase of 2 hours per day), 387 Dermanyssus gallinae females, 401 nymph larvae and 1060 eggs were found in trap tubes over the 8-hour dark phase, while 343 females, 202 nymph larvae and 1106 eggs were discovered over the 16-hour light phase.

  6. Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μm

    NASA Astrophysics Data System (ADS)

    Zhao, Yifan; Du, Jing; Zhang, Jinrun; Shen, Li; Wang, Jian

    2018-04-01

    Mid-infrared (2-20 μm) light has been attracting great attention in many areas of science and technology. Beyond the extended wavelength range from visible and near-infrared to mid-infrared, shaping spatial structures may add opportunities to grooming applications of mid-infrared photonics. Here, we design and fabricate a reflection-enhanced plasmonic metasurface and demonstrate efficient generation of structured light with the phase helix and intensity helix at 2 μm. This work includes two distinct aspects. First, structured light (phase helix, intensity helix) generation at 2 μm, which is far beyond the ability of conventional spatial light modulators, is enabled by the metasurface with sub-wavelength engineered structures. Second, the self-referenced intensity helix against environmental noise is generated without using a spatially separated light. The demonstrations may open up advanced perspectives to structured light applications at 2 μm, such as phase helix for communications and non-communications (imaging, sensing) and intensity helix for enhanced microscopy and advanced metrology.

  7. Fermi Large Area Telescope First Source Catalog

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-05-25

    Here, we present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4σ. The 1FGL catalog includes source location regions,more » defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. In conclusion, care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.« less

  8. Cold temperature effects on speciated MSAT emissions from light duty vehicles operating on gasoline and ethanol blends

    EPA Science Inventory

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty gasoline vehicles. Vehicle testing was conducted using a three phase LA92 driving cycle on a temperature controlled chassis...

  9. LIGHT NONAQUEOUS-PHASE LIQUID HYDROCARBON WEATHERING AT SOME JP-4 FUEL RELEASE SITES

    EPA Science Inventory

    A fuel weathering study was conducted for database entries to estimate natural light, nonaqueousphase
    liquid weathering and source-term reduction rates for use in natural attenuation models. A range of BTEX
    weathering rates from mobile LNAPL plumes at eight field sites with...

  10. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratner, D.; Behrens, C.; Ding, Y.

    The microbunching instability (MBI) is a well known problem for high brightness electron beams and has been observed at accelerator facilities around the world. Free-electron lasers (FELs) are particularly susceptible to MBI, which can distort the longitudinal phase space and increase the beam’s slice energy spread (SES). Past studies of MBI at the Linac Coherent Light Source (LCLS) relied on optical transition radiation to infer the existence of microbunching. With the development of the x-band transverse deflecting cavity (XTCAV), we can for the first time directly image the longitudinal phase space at the end of the accelerator and complete amore » comprehensive study of MBI, revealing both detailed MBI behavior as well as insights into mitigation schemes. The fine time resolution of the XTCAV also provides the first LCLS measurements of the final SES, a critical parameter for many advanced FEL schemes. As a result, detailed MBI and SES measurements can aid in understanding MBI mechanisms, benchmarking simulation codes, and designing future high- brightness accelerators.« less

  12. Radical production from photosensitization of imidazoles

    NASA Astrophysics Data System (ADS)

    Corral Arroyo, P.; Gonzalez, L.; Steimer, S.; Aellig, R.; Volkamer, R. M.; George, C.; Bartels-Rausch, T.; Ammann, M.

    2015-12-01

    Reactions promoted by light are key in atmospheric chemistry. Some of them occur in the condensed phase of aerosols containing light absorbing organic compounds (George et al., 2015). This work explores the radical reactions initiated by near-UV light in mixtures of citric acid (CA) and imidazole-2-carboxaldehyde (IC) using NO as a probe molecule for HO2, by means of coated wall flow tube experiments. Citric acid may act as H atom or electron donor in condensed phase radical cycles. IC may act as a photosensitizer. The loss of NO was measured by a chemiluminescence detector. The dependence of the NO loss on the NO concentration, the IC/CA ratio in the film, relative humidity, light intensity, oxygen molar fraction were investigated as well as the HONO and NO2 yields. We also added halide salts to investigate the effect of a competing electron donor in the system and the output of halogens to the gas phase. We found a correlation between the loss of NO above the film and the molar ratio of IC/CA and the light intensity. The variation of the NO loss with oxygen corroborates a mechanism, in which the triplet excited state of IC is reduced by citric acid, to a reduced ketyl radical that transfers an electron to molecular oxygen, which in turn leads to production of HO2 radicals. Therefore, the NO loss in the gas phase is related to the production of HO2 radicals. Relative humidity had a strong impact on the HO2 output, which shows a maximum production rate at around 30%. The addition of halide ions (X- = Cl-, Br-, I-) increases the HO2 output at low concentration and decrease it at higher concentration when X2- radical ions likely scavenge HO2. We could preliminarily quantify for the first time the contribution of these processes to the oxidative capacity in the atmosphere and conclude that their role is significant for aerosol aging and potentially a significant source of halogen compounds to the gas phase.

  13. Status report of the Gerda Phase II startup

    NASA Astrophysics Data System (ADS)

    D'Andrea, Valerio; Gerda Collaboration

    2017-01-01

    The GERmanium Detector Array (GERDA) experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, searches for 0νββ of 76Ge . Germanium diodes enriched to ˜ 86 % in the double beta emitter 76Ge ( enrGe are exposed being both source and detector of 0νββ decay. This process is considered a powerful probe to address still open issues in the neutrino sector of the (beyond) Standard Model of particle Physics. Since 2013, at the completion of the first experimental phase (Phase I), the GERDA setup has been upgraded to perform its next step (Phase II). The aim is to reach a sensitivity to the 0νββ decay half-life larger than 10^{26} yr in about 3 years of physics data taking, exposing a detector mass of about 35 kg of enrGe with a background index of about 10^{-3} cts/(keV . kg . yr). One of the main new implementations is the liquid argon (LAr) scintillation light read-out, to veto those events that only partially deposit their energy both in Ge and in the surrounding LAr. In this paper the GERDA Phase II expected goals, the upgraded items and few selected features from the first 2016 physics and calibration runs will be presented. The main Phase I achievements will be also reviewed.

  14. Programmable phase plate for tool modification in laser machining applications

    DOEpatents

    Thompson Jr., Charles A.; Kartz, Michael W.; Brase, James M.; Pennington, Deanna; Perry, Michael D.

    2004-04-06

    A system for laser machining includes a laser source for propagating a laser beam toward a target location, and a spatial light modulator having individual controllable elements capable of modifying a phase profile of the laser beam to produce a corresponding irradiance pattern on the target location. The system also includes a controller operably connected to the spatial light modulator for controlling the individual controllable elements. By controlling the individual controllable elements, the phase profile of the laser beam may be modified into a desired phase profile so as to produce a corresponding desired irradiance pattern on the target location capable of performing a machining operation on the target location.

  15. On the use of video projectors for three-dimensional scanning

    NASA Astrophysics Data System (ADS)

    Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.; Robledo-Sanchez, Carlos; Diaz-Gonzalez, Gerardo

    2017-08-01

    Structured light projection is one of the most useful methods for accurate three-dimensional scanning. Video projectors are typically used as the illumination source. However, because video projectors are not designed for structured light systems, some considerations such as gamma calibration must be taken into account. In this work, we present a simple method for gamma calibration of video projectors. First, the experimental fringe patterns are normalized. Then, the samples of the fringe patterns are sorted in ascending order. The sample sorting leads to a simple three-parameter sine curve that is fitted using the Gauss-Newton algorithm. The novelty of this method is that the sorting process removes the effect of the unknown phase. Thus, the resulting gamma calibration algorithm is significantly simplified. The feasibility of the proposed method is illustrated in a three-dimensional scanning experiment.

  16. Stray light calibration of the Dawn Framing Camera

    NASA Astrophysics Data System (ADS)

    Kovacs, Gabor; Sierks, Holger; Nathues, Andreas; Richards, Michael; Gutierrez-Marques, Pablo

    2013-10-01

    Sensitive imaging systems with high dynamic range onboard spacecrafts are susceptible to ghost and stray-light effects. During the design phase, the Dawn Framing Camera was laid out and optimized to minimize those unwanted, parasitic effects. However, the requirement of low distortion to the optical design and use of a front-lit focal plane array induced an additional stray light component. This paper presents the ground-based and in-flight procedures characterizing the stray-light artifacts. The in-flight test used the Sun as the stray light source, at different angles of incidence. The spacecraft was commanded to point predefined solar elongation positions, and long exposure images were recorded. The PSNIT function was calculated by the known illumination and the ground based calibration information. In the ground based calibration, several extended and point sources were used with long exposure times in dedicated imaging setups. The tests revealed that the major contribution to the stray light is coming from the ghost reflections between the focal plan array and the band pass interference filters. Various laboratory experiments and computer modeling simulations were carried out to quantify the amount of this effect, including the analysis of the diffractive reflection pattern generated by the imaging sensor. The accurate characterization of the detector reflection pattern is the key to successfully predict the intensity distribution of the ghost image. Based on the results, and the properties of the optical system, a novel correction method is applied in the image processing pipeline. The effect of this correction procedure is also demonstrated with the first images of asteroid Vesta.

  17. Sensing device and method for measuring emission time delay during irradiation of targeted samples utilizing variable phase tracking

    NASA Technical Reports Server (NTRS)

    Danielson, J. D. Sheldon (Inventor)

    2006-01-01

    An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.

  18. Optical nulling apparatus and method for testing an optical surface

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene (Inventor); Hannon, John J. (Inventor); Dey, Thomas W. (Inventor); Jensen, Arthur E. (Inventor)

    2008-01-01

    An optical nulling apparatus for testing an optical surface includes an aspheric mirror having a reflecting surface for imaging light near or onto the optical surface under test, where the aspheric mirror is configured to reduce spherical aberration of the optical surface under test. The apparatus includes a light source for emitting light toward the aspheric mirror, the light source longitudinally aligned with the aspheric mirror and the optical surface under test. The aspheric mirror is disposed between the light source and the optical surface under test, and the emitted light is reflected off the reflecting surface of the aspheric mirror and imaged near or onto the optical surface under test. An optical measuring device is disposed between the light source and the aspheric mirror, where light reflected from the optical surface under test enters the optical measuring device. An imaging mirror is disposed longitudinally between the light source and the aspheric mirror, and the imaging mirror is configured to again reflect light, which is first reflected from the reflecting surface of the aspheric mirror, onto the optical surface under test.

  19. Parallel phase-sensitive three-dimensional imaging camera

    DOEpatents

    Smithpeter, Colin L.; Hoover, Eddie R.; Pain, Bedabrata; Hancock, Bruce R.; Nellums, Robert O.

    2007-09-25

    An apparatus is disclosed for generating a three-dimensional (3-D) image of a scene illuminated by a pulsed light source (e.g. a laser or light-emitting diode). The apparatus, referred to as a phase-sensitive 3-D imaging camera utilizes a two-dimensional (2-D) array of photodetectors to receive light that is reflected or scattered from the scene and processes an electrical output signal from each photodetector in the 2-D array in parallel using multiple modulators, each having inputs of the photodetector output signal and a reference signal, with the reference signal provided to each modulator having a different phase delay. The output from each modulator is provided to a computational unit which can be used to generate intensity and range information for use in generating a 3-D image of the scene. The 3-D camera is capable of generating a 3-D image using a single pulse of light, or alternately can be used to generate subsequent 3-D images with each additional pulse of light.

  20. Controlled patterns of daytime light exposure improve circadian adjustment in simulated night work.

    PubMed

    Dumont, Marie; Blais, Hélène; Roy, Joanie; Paquet, Jean

    2009-10-01

    Circadian misalignment between the endogenous circadian signal and the imposed rest-activity cycle is one of the main sources of sleep and health troubles in night shift workers. Timed bright light exposure during night work can reduce circadian misalignment in night workers, but this approach is limited by difficulties in incorporating bright light treatment into most workplaces. Controlled light and dark exposure during the daytime also has a significant impact on circadian phase and could be easier to implement in real-life situations. The authors previously described distinctive light exposure patterns in night nurses with and without circadian adaptation. In the present study, the main features of these patterns were used to design daytime light exposure profiles. Profiles were then tested in a laboratory simulation of night work to evaluate their efficacy in reducing circadian misalignment in night workers. The simulation included 2 day shifts followed by 4 consecutive night shifts (2400-0800 h). Healthy subjects (15 men and 23 women; 20-35 years old) were divided into 3 groups to test 3 daytime light exposure profiles designed to produce respectively a phase delay (delay group, n=12), a phase advance (advance group, n=13), or an unchanged circadian phase (stable group, n=13). In all 3 groups, light intensity was set at 50 lux during the nights of simulated night work. Salivary dim light melatonin onset (DLMO) showed a significant phase advance of 2.3 h (+/-1.3 h) in the advance group and a significant phase delay of 4.1 h (+/-1.3 h) in the delay group. The stable group showed a smaller but significant phase delay of 1.7 h (+/-1.6 h). Urinary 6-sulfatoxymelatonin (aMT6s) acrophases were highly correlated to salivary DLMOs. Urinary aMT6s acrophases were used to track daily phase shifts. They showed that phase shifts occurred rapidly and differed between the 3 groups by the 3rd night of simulated night work. These results show that significant phase shifts can be achieved in night workers by controlling daytime light exposure, with no nighttime intervention.

  1. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles

    Treesearch

    L.-W. Anthony Chen; Hans Moosmuller; W. Patrick Arnott; Judith C. Chow; John G. Watson; Ronald A. Susott; Ronald E. Babbitt; Cyle E. Wold; Emily N. Lincoln; Wei Min Hao

    2007-01-01

    Combustion of wildland fuels represents a major source of particulate matter (PM) and light-absorbing elemental carbon (EC) on a national and global scale, but the emission factors and source profiles have not been well characterized with respect to different fuels and combustion phases. These uncertainties limit the accuracy of current emission inventories, smoke...

  2. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites.

    PubMed

    Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng

    2015-12-16

    To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.

  3. Linking Light Exposure and Subsequent Sleep: A Field Polysomnography Study in Humans

    PubMed Central

    Woelders, Tom; Marring, Irene; van Rosmalen, Laura; Beersma, Domien G M; Gordijn, Marijke C M; Hut, Roelof A

    2017-01-01

    Abstract Study objectives To determine the effect of light exposure on subsequent sleep characteristics under ambulatory field conditions. Methods Twenty healthy participants were fitted with ambulatory polysomnography (PSG) and wrist-actigraphs to assess light exposure, rest–activity, sleep quality, timing, and architecture. Laboratory salivary dim-light melatonin onset was analyzed to determine endogenous circadian phase. Results Later circadian clock phase was associated with lower intensity (R2 = 0.34, χ2(1) = 7.19, p < .01), later light exposure (quadratic, controlling for daylength, R2 = 0.47, χ2(3) = 32.38, p < .0001), and to later sleep timing (R2 = 0.71, χ2(1) = 20.39, p < .0001). Those with later first exposure to more than 10 lux of light had more awakenings during subsequent sleep (controlled for daylength, R2 = 0.36, χ2(2) = 8.66, p < .05). Those with later light exposure subsequently had a shorter latency to first rapid eye movement (REM) sleep episode (R2 = 0.21, χ2(1) = 5.77, p < .05). Those with less light exposure subsequently had a higher percentage of REM sleep (R2 = 0.43, χ2(2) = 13.90, p < .001) in a clock phase modulated manner. Slow-wave sleep accumulation was observed to be larger after preceding exposure to high maximal intensity and early first light exposure (p < .05). Conclusions The quality and architecture of sleep is associated with preceding light exposure. We propose that light exposure timing and intensity do not only modulate circadian-driven aspects of sleep but also homeostatic sleep pressure. These novel ambulatory PSG findings are the first to highlight the direct relationship between light and subsequent sleep, combining knowledge of homeostatic and circadian regulation of sleep by light. Upon confirmation by interventional studies, this hypothesis could change current understanding of sleep regulation and its relationship to prior light exposure. Clinical trial details This study was not a clinical trial. The study was ethically approved and nationally registered (NL48468.042.14). PMID:29040758

  4. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  5. Teaching Image Formation by Extended Light Sources: The Use of a Model Derived from the History of Science

    ERIC Educational Resources Information Center

    Dedes, Christos; Ravanis, Konstantinos

    2009-01-01

    This research, carried out in Greece on pupils aged 12-16, focuses on the transformation of their representations concerning light emission and image formation by extended light sources. The instructive process was carried out in two stages, each one having a different, distinct target set. During the first stage, the appropriate conflict…

  6. Nanotechnology in lithium niobate for integrated optic frequency conversion in the UV

    NASA Astrophysics Data System (ADS)

    Busacca, Alessandro C.; Santini, Claudia; Oliveri, Luigi; Riva-Sanseverino, Stefano; Parisi, Antonino; Cino, Alfonso C.; Assanto, Gaetano

    2017-11-01

    In the domain of Earth Explorer satellites nanoengineered nonlinear crystals can optimize UV tunable solid-state laser converters. Lightweight sources can be based on Lithium Niobate (LN) domain engineering by electric field poling and guided wave interactions. In this Communication we report the preliminary experimental results and the very first demonstration of UltraViolet second-harmonic generation by first-order quasi-phase-matching in a surface-periodically-poled proton-exchanged LN waveguide. The pump source was a Ti-Sapphire laser with a tunability range of 700- 980 nm and a 40 GHz linewidth. We have measured UV continuous-wave light at 390 nm by means of a lock-in amplifier and of a photodiode with enhanced response in the UV. Measured conversion efficiency was about 1%W-1cm-2. QPM experiments show good agreement with theory and pave the way for a future implementation of the technique in materials less prone to photorefractive damage and wider transparency in the UV, such as Lithium Tantalate.

  7. Proposal of AAA-battery-size one-shot ATR Fourier spectroscopic imager for on-site analysis: Simultaneous measurement of multi-components with high accuracy

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Qi, Wei; Sato, Shun; Suzuki, Yo; Fujiwara, Masaru; Hiramatsu, Hiroyuki; Suzuki, Satoru; Abeygunawardhana, P. K. W.; Wada, Kenji; Nishiyama, Akira; Ishimaru, Ichiro

    2015-03-01

    For simultaneous measurement of multi-components on-site like factories, the ultra-compact (diameter: 9[mm], length: 45[mm], weight: 200[g]) one-shot ATR (Attenuated Total Reflection) Fourier spectroscopic imager was proposed. Because the proposed one-shot Fourier spectroscopic imaging is based on spatial-phase-shift interferometer, interferograms could be obtained with simple optical configurations. We introduced the transmission-type relativeinclined phase-shifter, that was constructed with a cuboid prism and a wedge prism, onto the optical Fourier transform plane of infinity corrected optical systems. And also, small light-sources and cameras in the mid-infrared light region, whose size are several millimeter on a side, are essential components for the ultra-compact spectroscopic configuration. We selected the Graphite light source (light source area: 1.7×1.7[mm], maker: Hawkeye technologies) whose radiation factor was high. Fortunately, in these days we could apply the cost-effective 2-dimensional light receiving device for smartphone (e.g. product name: LEPTON, maker: FLIR, price: around 400USD). In the case of alcoholic drinks factory, conventionally workers measure glucose and ethanol concentrations by bringing liquid solution back to laboratories every day. The high portable spectroscopy will make it possible to measure multi-components simultaneously on manufacturing scene. But we found experimentally that absorption spectrum of glucose and water and ethanol were overlapped each other in near infrared light region. But for mid-infrared light region, we could distinguish specific absorption peaks of glucose (@10.5[μm]) and ethanol (@11.5[μm]) independently from water absorption. We obtained standard curve between absorption (@9.6[μm]) and ethanol concentration with high correlation coefficient 0.98 successfully by ATR imaging-type 2-dimensional Fourier spectroscopy (wavelength resolution: 0.057[μm]) with the graphite light source (maker: Hawkeye technologies, type: IR-75).

  8. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  9. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  10. Gas-phase broadband spectroscopy using active sources: progress, status, and applications

    PubMed Central

    Cossel, Kevin C.; Waxman, Eleanor M.; Finneran, Ian A.; Blake, Geoffrey A.; Ye, Jun; Newbury, Nathan R.

    2017-01-01

    Broadband spectroscopy is an invaluable tool for measuring multiple gas-phase species simultaneously. In this work we review basic techniques, implementations, and current applications for broadband spectroscopy. We discuss components of broad-band spectroscopy including light sources, absorption cells, and detection methods and then discuss specific combinations of these components in commonly-used techniques. We finish this review by discussing potential future advances in techniques and applications of broad-band spectroscopy. PMID:28630530

  11. Doubling The Intensity Of An ERL Based Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Hutton

    2005-05-01

    A light source based on an Energy Recovered Linac (ERL) [1] consists of a superconducting linac and a transfer line that includes wigglers and undulators to produce the synchrotron light. The transfer line brings the electron bunches back to the beginning of the linac so that their energy can be recovered when they traverse the linac a second time, {lambda}/2 out of RF phase. There is another interesting condition when the length of the transfer line is (n {+-} 1/4) {lambda}. In this case, the electrons drift through on the zero RF crossing, and make a further pass around themore » transfer line, effectively doubling the circulating current in the wigglers and undulators. On the third pass through the linac, they will be decelerated and their energy recovered. The longitudinal focusing at the zero crossing is a problem, but it can be canceled if the drifting beam sees a positive energy gradient for the first half of the linac and a negative gradient for the second half (or vice versa). This paper presents a proposal to use a double chicane at the center of the linac to provide this focusing inversion for the drifting beam while leaving the accelerating and decelerating beams on crest. [1] G. R. Neil, et al, Phys. Rev. Let. 84, 662 2000« less

  12. Power inverter implementing phase skipping control

    DOEpatents

    Somani, Utsav; Amirahmadi, Ahmadreza; Jourdan, Charles; Batarseh, Issa

    2016-10-18

    A power inverter includes a DC/AC inverter having first, second and third phase circuitry coupled to receive power from a power source. A controller is coupled to a driver for each of the first, second and third phase circuitry (control input drivers). The controller includes an associated memory storing a phase skipping control algorithm, wherein the controller is coupled to receive updating information including a power level generated by the power source. The drivers are coupled to control inputs of the first, second and third phase circuitry, where the drivers are configured for receiving phase skipping control signals from the controller and outputting mode selection signals configured to dynamically select an operating mode for the DC/AC inverter from a Normal Control operation and a Phase Skipping Control operation which have different power injection patterns through the first, second and third phase circuitry depending upon the power level.

  13. Sensing device and method for measuring emission time delay during irradiation of targeted samples

    NASA Technical Reports Server (NTRS)

    Danielson, J. D. Sheldon (Inventor)

    2000-01-01

    An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.

  14. Modeling atmospheric mineral aerosol chemistry to predict heterogeneous photooxidation of SO2

    NASA Astrophysics Data System (ADS)

    Yu, Zechen; Jang, Myoseon; Park, Jiyeon

    2017-08-01

    The photocatalytic ability of airborne mineral dust particles is known to heterogeneously promote SO2 oxidation, but prediction of this phenomenon is not fully taken into account by current models. In this study, the Atmospheric Mineral Aerosol Reaction (AMAR) model was developed to capture the influence of air-suspended mineral dust particles on sulfate formation in various environments. In the model, SO2 oxidation proceeds in three phases including the gas phase, the inorganic-salted aqueous phase (non-dust phase), and the dust phase. Dust chemistry is described as the absorption-desorption kinetics of SO2 and NOx (partitioning between the gas phase and the multilayer coated dust). The reaction of absorbed SO2 on dust particles occurs via two major paths: autoxidation of SO2 in open air and photocatalytic mechanisms under UV light. The kinetic mechanism of autoxidation was first leveraged using controlled indoor chamber data in the presence of Arizona Test Dust (ATD) particles without UV light, and then extended to photochemistry. With UV light, SO2 photooxidation was promoted by surface oxidants (OH radicals) that are generated via the photocatalysis of semiconducting metal oxides (electron-hole theory) of ATD particles. This photocatalytic rate constant was derived from the integration of the combinational product of the dust absorbance spectrum and wave-dependent actinic flux for the full range of wavelengths of the light source. The predicted concentrations of sulfate and nitrate using the AMAR model agreed well with outdoor chamber data that were produced under natural sunlight. For seven consecutive hours of photooxidation of SO2 in an outdoor chamber, dust chemistry at the low NOx level was attributed to 55 % of total sulfate (56 ppb SO2, 290 µg m-3 ATD, and NOx less than 5 ppb). At high NOx ( > 50 ppb of NOx with low hydrocarbons), sulfate formation was also greatly promoted by dust chemistry, but it was suppressed by the competition between NO2 and SO2, which both consume the dust-surface oxidants (OH radicals or ozone).

  15. Super sensitive UV detector using polymer functionalized nanobelts

    DOEpatents

    Wang, Zhong L; Lao, Changshi; Zhou, Jun

    2012-10-23

    An ultraviolet light sensor includes an elongated metal oxide nanostructure, a layer of an ultraviolet light-absorbing polymer, a current source and a current detector. The elongated metal oxide nanostructure has a first end and an opposite second end. The layer of an ultraviolet light-absorbing polymer is disposed about at least a portion of the metal oxide nanostructure. The current source is configured to provide electrons to the first end of the metal oxide nanostructure. The current detector is configured to detect an amount of current flowing through the metal oxide nanostructure. The amount of current flowing through the metal oxide nanostructure corresponds to an amount of ultraviolet light impinging on the metal oxide nanostructure.

  16. Fermi large area telescope second source catalog

    DOE PAGES

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; ...

    2012-03-28

    Here, we present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are fluxmore » measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. Furthermore, we provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. Finally, the 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes.« less

  17. FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolan, P. L.; Ajello, M.; Allafort, A.

    We present the second catalog of high-energy {gamma}-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurementsmore » in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely {gamma}-ray-producing source classes.« less

  18. IRMPD Spectroscopy Sheds New (Infrared) Light on the Sulfate Pattern of Carbohydrates.

    PubMed

    Schindler, B; Barnes, L; Gray, C J; Chambert, S; Flitsch, S L; Oomens, J; Daniel, R; Allouche, A R; Compagnon, I

    2017-03-16

    IR spectroscopy of gas-phase ions is proposed to resolve positional isomers of sulfated carbohydrates. Mass spectrometric fingerprints and gas-phase vibrational spectra in the near and mid-IR regions were obtained for sulfated monosaccharides, yielding unambiguous signatures of sulfated isomers. We report the first systematic exploration of the biologically relevant but notoriously challenging deprotonated state in the near IR region. Remarkably, anions displayed very atypical vibrational profiles, which challenge the well-established DFT (Density Functionnal Theory) modeling. The proposed approach was used to elucidate the sulfate patterns in glycosaminoglycans, a ubiquitous class of mammalian carbohydrates, which is regarded as a major challenge in carbohydrate structural analysis. Isomeric glycosaminoglycan disaccharides from heparin and chondroitin sources were resolved, highlighting the potential of infrared multiple photon dissociation spectroscopy as a novel structural tool for carbohydrates.

  19. X-ray induced damage observations in ZERODUR mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takacs, P.Z.; Furenlid, K.; Furenlid, L.

    1997-07-01

    Catastrophic damage has been observed in some ZERODUR mirrors used as first mirrors in two beam lines at the National Synchrotron Light Source (NSLS). Despite the high reflectivity of the coatings used on these mirrors, a significant flux of high energy photons penetrates below the coating and is absorbed in the substrate. Although model calculations indicate that the local temperature does not increase significantly, the authors suspect that over long time periods the absorbed flux produces structural changes in the material, leading to a build-up of surface stress, gross figure changes, and growth of fractures. These changes are probably relatedmore » to the nature of the two-phase glass-ceramic composition of the ZERODUR material. Metal mirrors and single-phase materials do not exhibit such catastrophic damage under similar exposure conditions.« less

  20. Methods, systems, and apparatus for storage, transfer and/or control of information via matter wave dynamics

    NASA Technical Reports Server (NTRS)

    Vestergaard Hau, Lene (Inventor)

    2012-01-01

    Methods, systems and apparatus for generating atomic traps, and for storing, controlling and transferring information between first and second spatially separated phase-coherent objects, or using a single phase-coherent object. For plural objects, both phase-coherent objects have a macroscopic occupation of a particular quantum state by identical bosons or identical BCS-paired fermions. The information may be optical information, and the phase-coherent object(s) may be Bose-Einstein condensates, superfluids, or superconductors. The information is stored in the first phase-coherent object at a first storage time and recovered from the second phase-coherent object, or the same first phase-coherent object, at a second revival time. In one example, an integrated silicon wafer-based optical buffer includes an electrolytic atom source to provide the phase-coherent object(s), a nanoscale atomic trap for the phase-coherent object(s), and semiconductor-based optical sources to cool the phase-coherent object(s) and provide coupling fields for storage and transfer of optical information.

  1. Emissions of organic carbon and methane from petroleum and dairy operations in California’s San Joaquin Valley

    EPA Science Inventory

    Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. It is essential to understand the emissions and air quality impacts of these relatively understudied sources, especially for oil/gas operations in light of incr...

  2. Rapid Optical Shutter, Chopper, Modulator and Deflector

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M. (Inventor)

    2017-01-01

    An optical device with a light source and a detector is provided. A digital micromirror device positioned between the detector and the light source may deflect light beams projected from the light source. An aperture in front of the detector may block an incoming light beam from the detector when the incoming light beam is incident on the detector outside of a passable incident range and including an aperture opening configured to pass the incoming light beam to the detector when the incoming light beam is incident on the detector within a passable incident range. The digital micromirror device may rotate between a first position causing the light beam to pass through the aperture opening and a second position causing the light beam to be blocked by the aperture. The optical device may be configured to operate as a shutter, chopper, modulator and/or deflector.

  3. Defect Engineering and Phase Junction Architecture of Wide-Bandgap ZnS for Conflicting Visible Light Activity in Photocatalytic H₂ Evolution.

    PubMed

    Fang, Zhibin; Weng, Sunxian; Ye, Xinxin; Feng, Wenhui; Zheng, Zuyang; Lu, Meiliang; Lin, Sen; Fu, Xianzhi; Liu, Ping

    2015-07-01

    ZnS is among the superior photocatalysts for H2 evolution, whereas the wide bandgap restricts its performance to only UV region. Herein, defect engineering and phase junction architecture from a controllable phase transformation enable ZnS to achieve the conflicting visible-light-driven activities for H2 evolution. On the basis of first-principle density functional theory calculations, electron spin resonance and photoluminescence results, etc., it is initially proposed that the regulated sulfur vacancies in wurtzite phase of ZnS play the key role of photosensitization units for charge generation in visible light and active sites for effective electron utilization. The symbiotic sphalerite-wurtzite phase junctions that dominate the charge-transfer kinetics for photoexciton separation are the indispensable configuration in the present systems. Neither ZnS samples without phase junction nor those without enough sulfur vacancies conduct visible-light photocatalytic H2 evolution, while the one with optimized phase junctions and maximum sulfur vacancies shows considerable photocatalytic activity. This work will not only contribute to the realization of visible light photocatalysis for wide-bandgap semiconductors but also broaden the vision on the design of highly efficient transition metal sulfide photocatalysts.

  4. Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces

    PubMed Central

    Hashemi, Mohammed Reza M.; Yang, Shang-Hua; Wang, Tongyu; Sepúlveda, Nelson; Jarrahi, Mona

    2016-01-01

    Engineered metamaterials offer unique functionalities for manipulating the spectral and spatial properties of electromagnetic waves in unconventional ways. Here, we report a novel approach for making reconfigurable metasurfaces capable of deflecting electromagnetic waves in an electronically controllable fashion. This is accomplished by tilting the phase front of waves through a two-dimensional array of resonant metasurface unit-cells with electronically-controlled phase-change materials embedded inside. Such metasurfaces can be placed at the output facet of any electromagnetic radiation source to deflect electromagnetic waves at a desired frequency, ranging from millimeter-wave to far-infrared frequencies. Our design does not use any mechanical elements, external light sources, or reflectarrays, creating, for the first time, a highly robust and fully-integrated beam-steering device solution. We demonstrate a proof-of-concept beam-steering metasurface optimized for operation at 100 GHz, offering up to 44° beam deflection in both horizontal and vertical directions. Dynamic control of electromagnetic wave propagation direction through this unique platform could be transformative for various imaging, sensing, and communication applications, among others. PMID:27739471

  5. Passive decoy-state quantum key distribution with practical light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curty, Marcos; Ma, Xiongfeng; Qi, Bing

    2010-02-15

    Decoy states have been proven to be a very useful method for significantly enhancing the performance of quantum key distribution systems with practical light sources. Although active modulation of the intensity of the laser pulses is an effective way of preparing decoy states in principle, in practice passive preparation might be desirable in some scenarios. Typical passive schemes involve parametric down-conversion. More recently, it has been shown that phase-randomized weak coherent pulses (WCP) can also be used for the same purpose [M. Curty et al., Opt. Lett. 34, 3238 (2009).] This proposal requires only linear optics together with a simplemore » threshold photon detector, which shows the practical feasibility of the method. Most importantly, the resulting secret key rate is comparable to the one delivered by an active decoy-state setup with an infinite number of decoy settings. In this article we extend these results, now showing specifically the analysis for other practical scenarios with different light sources and photodetectors. In particular, we consider sources emitting thermal states, phase-randomized WCP, and strong coherent light in combination with several types of photodetectors, like, for instance, threshold photon detectors, photon number resolving detectors, and classical photodetectors. Our analysis includes as well the effect that detection inefficiencies and noise in the form of dark counts shown by current threshold detectors might have on the final secret key rate. Moreover, we provide estimations on the effects that statistical fluctuations due to a finite data size can have in practical implementations.« less

  6. Probing Photoinduced Structural Phase Transitions by Fast or Ultra-Fast Time-Resolved X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Cailleau, Hervé Collet, Eric; Buron-Le Cointe, Marylise; Lemée-Cailleau, Marie-Hélène Koshihara, Shin-Ya

    A new frontier in the field of structural science is the emergence of the fast and ultra-fast X-ray science. Recent developments in time-resolved X-ray diffraction promise direct access to the dynamics of electronic, atomic and molecular motions in condensed matter triggered by a pulsed laser irradiation, i.e. to record "molecular movies" during the transformation of matter initiated by light pulse. These laser pump and X-ray probe techniques now provide an outstanding opportunity for the direct observation of a photoinduced structural phase transition as it takes place. The use of X-ray short-pulse of about 100ps around third-generation synchrotron sources allows structural investigations of fast photoinduced processes. Other new X-ray sources, such as laser-produced plasma ones, generate ultra-short pulses down to 100 fs. This opens the way to femtosecond X-ray crystallography, but with rather low X-ray intensities and more limited experimental possibilities at present. However this new ultra-fast science rapidly progresses around these sources and new large-scale projects exist. It is the aim of this contribution to overview the state of art and the perspectives of fast and ultra-fast X-ray scattering techniques to study photoinduced phase transitions (here, the word ultra-fast is used for sub-picosecond time resolution). In particular we would like to largely present the contribution of crystallographic methods in comparison with optical methods, such as pump-probe reflectivity measurements, the reader being not necessary familiar with X-ray scattering. Thus we want to present which type of physical information can be obtained from the positions of the Bragg peaks, their intensity and their shape, as well as from the diffuse scattering beyond Bragg peaks. An important physical feature is to take into consideration the difference in nature between a photoinduced phase transition and conventional homogeneous photoinduced chemical or biochemical processes where molecules transform in an independent way each other. Actually the photoinduced phase transition with the establishment of the new electronic and structural oscopic order is preceded by precursor co-operative phenomena due to the formation of nano-scale correlated objects. These are the counterpart of pre-transitional fluctuations at thermal equilibrium which take place above the transition temperature (short range order preceding long range one). Moreover ultra-fast X-ray scattering will play a central role within the fascinating field of manipulating coherence, for instance to directly observe coherent atomic motions induced by a light pulse, such as optical phonons. In the first part of this contribution we present what experimental features are accessible by X-ray scattering to describe the physical picture for a photoinduced structural phase transition. The second part shows how a time-resolved X-ray scattering experiment can be performed with regards to the different pulsed X-ray sources. The first time-resolved X-ray diffraction experiments on photoinduced phase transitions are described and discussed in the third part. Finally some challenges for future are briefly indicated in the conclusion.

  7. Optical Phase Recovery and Locking in a PPM Laser Communication Link

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Yu, Nan; Farr, William H.

    2012-01-01

    Free-space optical communication holds great promise for future space missions requiring high data rates. For data communication in deep space, the current architecture employs pulse position modulation (PPM). In this scheme, the light is transmitted and detected as pulses within an array of time slots. While the PPM method is efficient for data transmission, the phase of the laser light is not utilized. The phase coherence of a PPM optical signal has been investigated with the goal of developing a new laser communication and ranging scheme that utilizes optical coherence within the established PPM architecture and photon-counting detection (PCD). Experimental measurements of a PPM modulated optical signal were conducted, and modeling code was developed to generate random PPM signals and simulate spectra via FFT (Fast Fourier Transform) analysis. The experimental results show very good agreement with the simulations and confirm that coherence is preserved despite modulation with high extinction ratios and very low duty cycles. A real-time technique has been developed to recover the phase information through the mixing of a PPM signal with a frequency-shifted local oscillator (LO). This mixed signal is amplified, filtered, and integrated to generate a voltage proportional to the phase of the modulated signal. By choosing an appropriate time constant for integration, one can maintain a phase lock despite long dark times between consecutive pulses with low duty cycle. A proof-of-principle demonstration was first achieved with an RF-based PPM signal and test setup. With the same principle method, an optical carrier within a PPM modulated laser beam could also be tracked and recovered. A reference laser was phase-locked to an independent pulsed laser signal with low-duty-cycle pseudo-random PPM codes. In this way, the drifting carrier frequency in the primary laser source is tracked via its phase change in the mixed beat note, while the corresponding voltage feedback maintains the phase lock between the two laser sources. The novelty and key significance of this work is that the carrier phase information can be harnessed within an optical communication link based on PPM-PCD architecture. This technology development could lead to quantum-limited efficient performance within the communication link itself, as well as enable high-resolution optical tracking capabilities for planetary science and spacecraft navigation.

  8. The Thomson scattering diagnostic at Wendelstein 7-X and its performance in the first operation phase

    NASA Astrophysics Data System (ADS)

    Bozhenkov, S. A.; Beurskens, M.; Dal Molin, A.; Fuchert, G.; Pasch, E.; Stoneking, M. R.; Hirsch, M.; Höfel, U.; Knauer, J.; Svensson, J.; Trimino Mora, H.; Wolf, R. C.

    2017-10-01

    The optimized stellarator Wendelstein 7-X started operation in December 2015 with a 10 week limiter campaign. Divertor experiments will begin in the second half of 2017. The W7-X Thomson scattering system is an essential diagnostic for electron density and temperature profiles. In this paper the Thomson scattering diagnostic is described in detail, including its design, calibration, data evaluation and first experimental results. Plans for further development are also presented. The W7-X Thomson system is a Nd:YAG setup with up to five lasers, two sets of light collection lenses viewing the entire plasma cross-section, fiber bundles and filter based polychromators. To reduce hardware costs, two or three scattering volumes are measured with a single polychromator. The relative spectral calibration is carried out with the aid of a broadband supercontinuum light source. The absolute calibration is performed by observing Raman scattering in nitrogen. The electron temperatures and densities are recovered by Bayesian modelling. In the first campaign, the diagnostic was equipped for 10 scattering volumes. It provided temperature profiles comparable to those measured using an electron cyclotron emission diagnostic and line integrated densities within 10% of those from a dispersion interferometer.

  9. Method and apparatus for measuring birefringent particles

    DOEpatents

    Bishop, James K.; Guay, Christopher K.

    2006-04-18

    A method and apparatus for measuring birefringent particles is provided comprising a source lamp, a grating, a first polarizer having a first transmission axis, a sample cell and a second polarizer having a second polarization axis. The second polarizer has a second polarization axis that is set to be perpendicular to the first polarization axis, and thereby blocks linearly polarized light with the orientation of the beam of light passing through the first polarizer. The beam of light passing through the second polarizer is measured using a detector.

  10. Impact of laser phase and amplitude noises on streak camera temporal resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wlotzko, V., E-mail: wlotzko@optronis.com; Optronis GmbH, Ludwigstrasse 2, 77694 Kehl; Uhring, W.

    2015-09-15

    Streak cameras are now reaching sub-picosecond temporal resolution. In cumulative acquisition mode, this resolution does not entirely rely on the electronic or the vacuum tube performances but also on the light source characteristics. The light source, usually an actively mode-locked laser, is affected by phase and amplitude noises. In this paper, the theoretical effects of such noises on the synchronization of the streak system are studied in synchroscan and triggered modes. More precisely, the contribution of band-pass filters, delays, and time walk is ascertained. Methods to compute the resulting synchronization jitter are depicted. The results are verified by measurement withmore » a streak camera combined with a Ti:Al{sub 2}O{sub 3} solid state laser oscillator and also a fiber oscillator.« less

  11. Evaluation of Current Practice for Illumination at Roundabouts : Safety and Illumination of Roundabouts (Phase I)

    DOT National Transportation Integrated Search

    2016-03-01

    This report is for the first phase of a two-phase research program to develop recommended practices for GDOT for lighting rural roundabouts. Phase I of the study was designed to improve our understanding of the relationship between roundabout illumin...

  12. Sensitivity of a phase-sensitive optical time-domain reflectometer with a semiconductor laser source

    NASA Astrophysics Data System (ADS)

    Alekseev, A. E.; Tezadov, Ya A.; Potapov, V. T.

    2018-06-01

    In the present paper we perform, for the first time, an analysis of the average sensitivity of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source to external actions. The sensitivity of this OTDR can be defined in a conventional manner via average SNR at its output, which in turn is defined by the average useful signal power and the average intensity noise power in the OTDR spatial channels in the bandwidth defined by the OTDR sampling frequency. The average intensity noise power is considered in detail in a previous paper. In the current paper we examine the average useful signal power at the output of a phase-OTDR. The analysis of the average useful signal power of a phase-OTDR is based on the study of a fiber scattered-light interferometer (FSLI) which is treated as a constituent part of a phase- OTDR. In the analysis, one of the conventional phase-OTDR schemes with a rectangular dual-pulse probe signal is considered. The FSLI which corresponds to this OTDR scheme has two scattering fiber segments with additional time delay, introduced between backscattered fields. The average useful signal power and the resulting average SNR at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments, and by the additional time delay between the scattering fiber segments. The average useful signal power characteristic of the corresponding phase-OTDR is determined by analogous parameters: the source coherence, the time durations of the parts constituting the dual-pulse, and the time interval which separates these parts. In the paper an expression for the average useful signal power of a phase-OTDR is theoretically derived and experimentally verified. Based on the found average useful signal power of a phase-OTDR and the average intensity noise power, derived in the previous paper, the average SNR of a phase-OTDR is defined. Setting the average signal SNR to 1, at a defined spectral band the minimum detectable external action amplitude for our particular phase-OTDR setup is determined. We also derive a simple relation for the average useful signal power and the average SNR which results when making the assumption that the laser source coherence is high. The results of the paper can serve as the basis for further development of the concept of phase-OTDR sensitivity.

  13. Shaping the light for the investigation of depth-extended scattering media

    NASA Astrophysics Data System (ADS)

    Osten, W.; Frenner, K.; Pedrini, G.; Singh, A. K.; Schindler, J.; Takeda, M.

    2018-02-01

    Scattering media are an ongoing challenge for all kind of imaging technologies including coherent and incoherent principles. Inspired by new approaches of computational imaging and supported by the availability of powerful computers, spatial light modulators, light sources and detectors, a variety of new methods ranging from holography to time-of-flight imaging, phase conjugation, phase recovery using iterative algorithms and correlation techniques have been introduced and applied to different types of objects. However, considering the obvious progress in this field, several problems are still matter of investigation and their solution could open new doors for the inspection and application of scattering media as well. In particular, these open questions include the possibility of extending the 2d-approach to the inspection of depth-extended objects, the direct use of a scattering media as a simple tool for imaging of complex objects and the improvement of coherent inspection techniques for the dimensional characterization of incoherently radiating spots embedded in scattering media. In this paper we show our recent findings in coping with these challenges. First we describe how to explore depth-extended objects by means of a scattering media. Afterwards, we extend this approach by implementing a new type of microscope making use of a simple scatter plate as a kind of flat and unconventional imaging lens. Finally, we introduce our shearing interferometer in combination with structured illumination for retrieving the axial position of fluorescent light emitting spots embedded in scattering media.

  14. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-02-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.

  15. Observation of superradiant synchrotron radiation in the terahertz region

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Dallin, L.; de Jong, M.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2013-06-01

    We report the first high-resolution measurement of superradiance, using coherent synchrotron radiation in the terahertz region from the Canadian Light Source synchrotron and a Michelson interferometer with a nominal frequency resolution of 0.00096cm-1. Superradiance arises when a high degree of phase coherence exists between the radiation fields of the individual electron bunches, and manifests itself as a series of narrow spectral peaks at harmonics of the bunch frequency. We observe an enhancement factor of 16 at the spectral peaks, limited by the interferometer resolution. The spectral distribution and relative amplitudes of the superradiant peaks are modified by altering the pattern of bunches along the bunch train.

  16. Semiconductor Laser with a Self-Pumped Phase Conjugate External Cavity

    DTIC Science & Technology

    1992-10-01

    laser light is considered planar. In actuality, the HLP 1400 laser diode used in this experiment has a gaussian profile. This approximation is frequently...return beam is in phase with either the light transmitted through or reflected off the rear facet of the diode laser. In Fig. 3.2, E, is the light ...In the first case an anti-reflection coated laser diode was used. It emitted a broadband spectrum without the feedback. The PCM just lowered the

  17. Inductive Position Sensor

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Simmons, Stephen M. (Inventor)

    2015-01-01

    An inductive position sensor uses three parallel inductors, each of which has an axial core that is an independent magnetic structure. A first support couples first and second inductors and separate them by a fixed distance. A second support coupled to a third inductor disposed between the first and second inductors. The first support and second support are configured for relative movement as distance changes from the third inductor to each of the first and second inductors. An oscillating current is supplied to the first and second inductors. A device measures a phase component of a source voltage generating the oscillating current and a phase component of voltage induced in the third inductor when the oscillating current is supplied to the first and second inductors such that the phase component of the voltage induced overlaps the phase component of the source voltage.

  18. Phase unwrapping method for three-dimensional stress analysis by scattered-light photoelasticity with unpolarized light. 2. Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kihara, Toshiki

    2007-09-01

    A phase unwrapping method that employs scattered-light photoelasticity with unpolarized light was proposed for automated three-dimensional stress analysis [Appl. Opt. 45, 8848 (2006)]. I now demonstrate the validity of this method by performing nondestructive measurements at three different wavelengths of the secondary principal stress direction {psi}j and the total relative phase retardation {rho}jtot in the plane that contains the rotated principal stress directions in a spherical frozen stress model and compare the results obtained with mechanically sliced models. The parameters {psi}j and {rho}jtot were measured nondestructively over the entire field of view for the first time, to the best ofmore » my knowledge.« less

  19. Optical nonclassicality test based on third-order intensity correlations

    NASA Astrophysics Data System (ADS)

    Rigovacca, L.; Kolthammer, W. S.; Di Franco, C.; Kim, M. S.

    2018-03-01

    We develop a nonclassicality criterion for the interference of three delayed, but otherwise identical, light fields in a three-mode Bell interferometer. We do so by comparing the prediction of quantum mechanics with those of a classical framework in which independent sources emit electric fields with random phases. In particular, we evaluate third-order correlations among output intensities as a function of the delays, and show how the presence of a correlation revival for small delays cannot be explained by the classical model of light. The observation of a revival is thus a nonclassicality signature, which can be achieved only by sources with a photon-number statistics that is highly sub-Poissonian. Our analysis provides strong evidence for the nonclassicality of the experiment discussed by Menssen et al. [Phys. Rev. Lett. 118, 153603 (2017), 10.1103/PhysRevLett.118.153603], and shows how a collective "triad" phase affects the interference of any three or more light fields, irrespective of their quantum or classical character.

  20. Spectral matching research for light-emitting diode-based neonatal jaundice therapeutic device light source

    NASA Astrophysics Data System (ADS)

    Gan, Ruting; Guo, Zhenning; Lin, Jieben

    2015-09-01

    To decrease the risk of bilirubin encephalopathy and minimize the need for exchange transfusions, we report a novel design for light source of light-emitting diode (LED)-based neonatal jaundice therapeutic device (NJTD). The bilirubin absorption spectrum in vivo was regarded as target. Based on spectral constructing theory, we used commercially available LEDs with different peak wavelengths and full width at half maximum as matching light sources. Simple genetic algorithm was first proposed as the spectral matching method. The required LEDs number at each peak wavelength was calculated, and then, the commercial light source sample model of the device was fabricated to confirm the spectral matching technology. In addition, the corresponding spectrum was measured and the effect was analyzed finally. The results showed that fitted spectrum was very similar to the target spectrum with 98.86 % matching degree, and the actual device model has a spectrum close to the target with 96.02 % matching degree. With higher fitting degree and efficiency, this matching algorithm is very suitable for light source matching technology of LED-based spectral distribution, and bilirubin absorption spectrum in vivo will be auspicious candidate for the target spectrum of new LED-based NJTD light source.

  1. New Light Sources and Concepts for Electro-Optic Sampling

    DTIC Science & Technology

    1994-03-01

    Research to improve electro - optic sampling led to the development of several high performance optical phase modulators. These phase modulators serve...method of optical pulse shape measurement was demonstrated with 3 ps time resolution, excellent power sensitivity and relative system simplicity. These experiments have opened up the field of temporal optics. Electro - optic sampling.

  2. OLED area illumination source

    DOEpatents

    Foust, Donald Franklin [Scotia, NY; Duggal, Anil Raj [Niskayuna, NY; Shiang, Joseph John [Niskayuna, NY; Nealon, William Francis [Gloversville, NY; Bortscheller, Jacob Charles [Clifton Park, NY

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  3. Artificial light sources for simulating natural daylight and skylight.

    PubMed

    Grum, F

    1968-01-01

    A review of the literature reveals the need for reliable and stable artificial light sources that can be used as simulators of daylight and skylight. In quest of such simulators a first requirement is quantitative information on the average spectral distributions of natural sources such as daylight and skylight. Recent investigations of the spectral energy characteristics of natural daylight and skylight made it possible to determine such average conditions. With these conditions established, a search was undertaken for an artificial light source that would simulate these average natural distributions with a minimum of filtering. Certain fluorescent lamps and combinations of them were considered first, but, although it was possible to achieve fairly good visual matches of daylight and skylight, the spectral characteristics and the variability of such combinations are drawbacks to their use in critical scientific work. For this purpose, therefore, xenon arc lamps were found to be superior.

  4. Time-resolved two-window measurement of Wigner functions for coherent backscatter from a turbid medium

    NASA Astrophysics Data System (ADS)

    Reil, Frank; Thomas, John E.

    2002-05-01

    For the first time we are able to observe the time-resolved Wigner function of enhanced backscatter from a random medium using a novel two-window technique. This technique enables us to directly verify the phase-conjugating properties of random media. An incident divergent beam displays a convergent enhanced backscatter cone. We measure the joint position and momentum (x, p) distributions of the light field as a function of propagation time in the medium. The two-window technique allows us to independently control the resolutions for position and momentum, thereby surpassing the uncertainty limit associated with Fourier transform pairs. By using a low-coherence light source in a heterodyne detection scheme, we observe enhanced backscattering resolved by path length in the random medium, providing information about the evolution of optical coherence as a function of penetration depth in the random medium.

  5. Imaging of Biological Tissues by Visible Light CDI

    NASA Astrophysics Data System (ADS)

    Karpov, Dmitry; Dos Santos Rolo, Tomy; Rich, Hannah; Fohtung, Edwin

    Recent advances in the use of synchrotron and X-ray free electron laser (XFEL) based coherent diffraction imaging (CDI) with application to material sciences and medicine proved the technique to be efficient in recovering information about the samples encoded in the phase domain. The current state-of-the-art algorithms of reconstruction are transferable to optical frequencies, which makes laser sources a reasonable milestone both in technique development and applications. Here we present first results from table-top laser CDI system for imaging of biological tissues and reconstruction algorithms development and discuss approaches that are complimenting the data quality improvement that is applicable to visible light frequencies due to it's properties. We demonstrate applicability of the developed methodology to a wide class of soft bio-matter and condensed matter systems. This project is funded by DOD-AFOSR under Award No FA9550-14-1-0363 and the LANSCE Professorship at LANL.

  6. White light velocity interferometer

    DOEpatents

    Erskine, D.J.

    1999-06-08

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  7. White light velocity interferometer

    DOEpatents

    Erskine, David J.

    1997-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  8. White light velocity interferometer

    DOEpatents

    Erskine, David J.

    1999-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  9. White light velocity interferometer

    DOEpatents

    Erskine, D.J.

    1997-06-24

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  10. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  11. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.

    1983-11-08

    A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.

  12. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, Edward G.; Winefordner, James D.; Jurgensen, Arthur R.

    1983-01-01

    A liquid-phase chromatography detector comprising a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focussing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof.

  13. Optical magnetic mirrors without metals

    DOE PAGES

    Liu, Sheng; Sinclair, Michael B.; Mahony, Thomas S.; ...

    2014-01-01

    The reflection of an optical wave from metal, arising from strong interactions between the optical electric field and the free carriers of the metal, is accompanied by a phase reversal of the reflected electric field. A far less common route to achieving high reflectivity exploits strong interactions between the material and the optical magnetic field to produce a “magnetic mirror” that does not reverse the phase of the reflected electric field. At optical frequencies, the magnetic properties required for strong interaction can be achieved only by using artificially tailored materials. Here, we experimentally demonstrate, for the first time to themore » best of our knowledge, the magnetic mirror behavior of a low-loss all-dielectric metasurface at infrared optical frequencies through direct measurements of the phase and amplitude of the reflected optical wave. The enhanced absorption and emission of transverse-electric dipoles placed close to magnetic mirrors can lead to exciting new advances in sensors, photodetectors, and light sources.« less

  14. Two-nucleon higher partial-wave scattering from lattice QCD

    DOE PAGES

    Berkowitz, Evan; Kurth, Thorsten; Nicholson, Amy; ...

    2016-12-14

    Here, we present a determination of nucleon-nucleon scattering phase shifts for L>0. The S,P,D and F phase shifts for both the spin-triplet and spin-singlet channels are computed for the first time with lattice Quantum ChromoDynamics. This required the design and implementation of novel lattice methods involving displaced sources and momentum-space cubic sinks. In order to demonstrate the utility of our approach, the calculations were performed in the SU(3)-flavor limit where the light quark masses have been tuned to the physical strange quark mass, corresponding to m π=m K≈800~MeV. Two spatial volumes of V ≈ (3.5 fm) 3 and V ≈more » (4.6 fm) 3 were used. Furthermore, the finite-volume spectrum is extracted from the exponential falloff of the correlation functions. Said spectrum is mapped onto the infinite volume phase shifts using the generalization of the Luscher formalism for two-nucleon systems.« less

  15. Probing radical kinetics in the afterglow of pulsed discharges by absorption spectroscopy with light emitting diodes: Application to BCl radical

    NASA Astrophysics Data System (ADS)

    Vempaire, D.; Cunge, G.

    2009-01-01

    Measuring decay rates of radical densities in the afterglow of pulsed plasmas is a powerful approach to determine their gas phase and surface loss kinetics. We show that this measurement can be achieved by absorption spectroscopy with low cost and simple apparatus by using light emitting diodes as a light source. The feasibility is demonstrated by monitoring BCl radicals in pulsed low pressure high-density BCl3 plasmas. It is shown that BCl is lost both in the gas phase by reacting with Cl2 with a cross section of 9 Å2 and in the chamber walls with a sticking coefficient of about 0.3.

  16. Synthesis and visible light photoactivity of anatase Ag, and garlic loaded TiO2 nanocrystalline catalyst

    EPA Science Inventory

    An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...

  17. Synchrotron radiation and diffusive shock acceleration - A short review and GRB perspective

    NASA Astrophysics Data System (ADS)

    Karlica, Mile

    2015-12-01

    In this talk we present the sponge" model and its possible implications on the GRB afterglow light curves. "Sponge" model describes source of GRB afterglow radiation as fragmented GRB ejecta where bubbles move through the rarefied medium. In the first part of the talk a short introduction to synchrotron radiation and Fermi acceleration was presented. In the assumption that X-ray luminosity of GRB afterglow phase comes from the kinetic energy losses of clouds in ejecta medium radiated as synchrotron radiation we solved currently very simple equation of motion to find which combination of cloud and medium regime describes the afterglow light curve the best. We proposed for the first step to watch simple combinations of expansion regimes for both bubbles and surrounding medium. The closest case to the numerical fit of GRB 150403A with time power law index k = 1.38 is the combination of constant bubbles and Sedov like expanding medium with time power law index k = 1.25. Of course the question of possible mixture of variuos regime combinations is still open within this model.

  18. Optical high acidity sensor

    DOEpatents

    Jorgensen, Betty S.; Nekimken, Howard L.; Carey, W. Patrick; O'Rourke, Patrick E.

    1997-01-01

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.

  19. Optical high acidity sensor

    DOEpatents

    Jorgensen, B.S.; Nekimken, H.L.; Carey, W.P.; O`Rourke, P.E.

    1997-07-22

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber. 10 figs.

  20. An image processing study of a reentrant discotic cholesteric - biaxial cholesteric phase transition

    NASA Astrophysics Data System (ADS)

    Luders, D. D.; Zoner, G. A.; Santos, O. R.; Braga, W. S.; Sampaio, A. R.; Kimura, N. M.; Palangana, A. J.; Simões, M.

    2018-04-01

    In this work, we study and characterize the cholesteric sequence of phases (ChDr - ChB - ChD), where the first ChDr is the reentrant cholesteric discotic phase, ChB is the cholesteric biaxial phase and the second ChD is the cholesteric discotic phase. This sequence of phases is studied through polarized light microscopy and image processing technique, where, for the first time, the domains and borders of these transitions are established and characterized. They are also investigated and optically characterized throughout their textures.

  1. Effects on subjective and objective alertness and sleep in response to evening light exposure in older subjects

    PubMed Central

    Münch, M; Scheuermaier, KD; Zhang, R; Dunne, SP; Guzik, AM; Silva, EJ; Ronda, JM; Duffy, JF

    2011-01-01

    Evening bright light exposure is reported to ameliorate daytime sleepiness and age-related sleep complaints, and also delays the timing of circadian rhythms. We tested whether evening light exposure given to older adults with sleep-wake complaints would delay the timing of their circadian rhythms with respect to their sleep timing, thereby reducing evening sleepiness and improving subsequent sleep quality. We examined the impact of evening light exposure from two different light sources on subjective alertness, EEG activity during wakefulness, and sleep stages. Ten healthy older adults with sleep complaints (mean age=63.3 yrs; 6F) participated in a 13-day study. After three baseline days, circadian phase was assessed. On the evening of days 5–8 the subjects were exposed for 2 h to either polychromatic blue-enriched white light or standard white fluorescent light, and on the following day circadian phase was re-assessed. Subjects were allowed to leave the laboratory during all but the two days when the circadian phase assessment took place. Evening assessments of subjective alertness, and wake and sleep EEG data were analyzed. Subjective alertness and wake EEG activity in the alpha range (9.75–11.25 Hz) were significantly higher during light exposures when compared to the pre-light exposure evening (p<0.05). The light exposures produced circadian phase shifts and significantly prolonged latency to rapid eye-movement (REM) sleep for both light groups (p<0.05). The increase in wake EEG alpha activity during the light exposures was negatively correlated with REM sleep duration (p<0.05). Evening light exposure could benefit older adults with early evening sleepiness, without negatively impacting the subsequent sleep episode. PMID:21664380

  2. Nanosecond liquid crystalline optical modulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borshch, Volodymyr; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.

    2016-07-26

    An optical modulator includes a liquid crystal cell containing liquid crystal material having liquid crystal molecules oriented along a quiescent director direction in the unbiased state, and a voltage source configured to apply an electric field to the liquid crystal material wherein the direction of the applied electric field does not cause the quiescent director direction to change. An optical source is arranged to transmit light through or reflect light off the liquid crystal cell with the light passing through the liquid crystal material at an angle effective to undergo phase retardation in response to the voltage source applying themore » electric field. The liquid crystal material may have negative dielectric anisotropy, and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is transverse to the quiescent director direction. Alternatively, the liquid crystal material may have positive dielectric anisotropy and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is parallel with the quiescent director direction.« less

  3. Duration of skin photosensitivity and incidence of photosensitivity reactions after administration of verteporfin.

    PubMed

    Houle, Jean-Marie; Strong, H Andrew

    2002-12-01

    Verteporfin (Visudyne, Novartis AG) is a light-activated drug that reduces the risk of vision loss in patients with certain types of choroidal neovascularization (CNV). Because photosensitivity can occur with photosensitizers, it is important for ophthalmologists providing verteporfin therapy to understand its time course and duration, as well as the incidence of photosensitivity reactions. Data were obtained from three sources: 1) the time course of skin photosensitivity in 17 volunteers by measuring erythema/edema over time after verteporfin, using red light exposure; 2) the duration of skin photosensitivity in 30 patients with skin cancer by exposing skin to simulated solar light and calculating the daily minimal erythematous dose; and 3) the incidences of photosensitivity reactions as recorded in three phase III trials in patients with CNV secondary to age-related macular degeneration or pathologic myopia who received the regimen of verteporfin therapy currently approved by regulatory authorities (infusion of 6 mg/m(2) body surface area). 1) Skin photosensitivity was high at the first timepoint of 1.5 hours after dosing and decreased rapidly thereafter; 2) the duration of skin photosensitivity was dose dependent, ranging from 2.0 to 6.7 days at 6 to 20 mg/m(2), respectively (mean of 2 days at a dose of 6 mg/m(2)); and 3) photosensitivity reactions occurred in only 2.2% of patients in the phase III trials, including two severe events, one secondary to extravasation. All treatment-related reactions in the phase III trials occurred within the first 2 days after dosing, with the exception of two mild reactions and one moderate reaction that occurred 3 days after treatment. Verteporfin is associated with short-lived photosensitivity and a low incidence of photosensitivity reactions in clinical trials, most of which could probably have been avoided by adherence to protocol instructions for skin protection.

  4. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.

  5. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, J.; Cease, H.; Jaskierny, W. F.

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used amore » conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.« less

  6. Estimation of error on the cross-correlation, phase and time lag between evenly sampled light curves

    NASA Astrophysics Data System (ADS)

    Misra, R.; Bora, A.; Dewangan, G.

    2018-04-01

    Temporal analysis of radiation from Astrophysical sources like Active Galactic Nuclei, X-ray Binaries and Gamma-ray bursts provides information on the geometry and sizes of the emitting regions. Establishing that two light-curves in different energy bands are correlated, and measuring the phase and time-lag between them is an important and frequently used temporal diagnostic. Generally the estimates are done by dividing the light-curves into large number of adjacent intervals to find the variance or by using numerically expensive simulations. In this work we have presented alternative expressions for estimate of the errors on the cross-correlation, phase and time-lag between two shorter light-curves when they cannot be divided into segments. Thus the estimates presented here allow for analysis of light-curves with relatively small number of points, as well as to obtain information on the longest time-scales available. The expressions have been tested using 200 light curves simulated from both white and 1 / f stochastic processes with measurement errors. We also present an application to the XMM-Newton light-curves of the Active Galactic Nucleus, Akn 564. The example shows that the estimates presented here allow for analysis of light-curves with relatively small (∼ 1000) number of points.

  7. Critically evaluated/distributed database of IRAS LRS spectra

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.

    1993-01-01

    Accomplishments under this grant effort include: successful scientific utilization of the IRAS Low Resolution Spectrometer (LRS) database of over 150,000 scans of 7-23 micron spectra for over 50,000 celestial sources; publication in refereed journal of an additional 486 critically evaluated spectra of sources brighter than 20 Jy, completing the LRS ATLAS (Olnon and Raimond 1986 A&A) uniformly to that level, and production of an additional 1,830 critically evaluated spectra of sources brighter than 10 Jy; creation and maintenance of on-line, remotely accessible LRS spectra of over 7500 sources; cooperation with Astrophysics Data System personnel for transitioning this LRS database to the ADS access system after funding for this project expires; and publication of research highlights, which include a systematic variation of the shapes of LRS silicate features among stars of differing IRAS broad-band colors, maser characteristics and light curve asymmetries, all correlated with the chemical and physical development and processing of solid phase materials, and preliminary evidence for silicate profile variations in individual stars as a function of visual light curve phase.

  8. Sensitivity of a fibre scattered-light interferometer to external phase perturbations in an optical fibre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, A E; Potapov, V T; Gorshkov, B G

    2015-10-31

    Sensitivity of a fibre scattered-light interferometer to external phase perturbations is studied for the first time. An expression is derived for an average power of a useful signal at the interferometer output under external harmonic perturbations in a signal fibre of the interferometer. It is shown that the maximum sensitivity of the scattered-light interferometer depends on the dispersion of the interferogram intensity. An average signal-to-noise ratio is determined theoretically and experimentally at the output of the interferometer at different amplitudes of external perturbations. Using the measured dependences of the signal-to-noise ratio, the threshold sensitivity of the fibre scattered-light interferometer tomore » external phase perturbations is found. The results obtained can be used to optimise characteristics of optical time-domain reflectometers and to design individual phase-sensitive fibre-optic sensors. (laser applications and other topics in quantum electronics)« less

  9. Time-dependent effects of dim light at night on re-entrainment and masking of hamster activity rhythms.

    PubMed

    Frank, David W; Evans, Jennifer A; Gorman, Michael R

    2010-04-01

    Bright light has been established as the most ubiquitous environmental cue that entrains circadian timing systems under natural conditions. Light equivalent in intensity to moonlight (<1 lux), however, also strongly modulates circadian function in a number of entrainment paradigms. For example, compared to completely dark nights, dim nighttime illumination accelerated re-entrainment of hamster activity rhythms to 4-hour phase advances and delays of an otherwise standard laboratory photocycle. The purpose of this study was to determine if a sensitive period existed in the night during which dim illumination had a robust influence on speed of re-entrainment. Male Siberian hamsters were either exposed to dim light throughout the night, for half of the night, or not at all. Compared to dark nights, dim illumination throughout the entire night decreased by 29% the time for the midpoint of the active phase to re-entrain to a 4-hour phase advance and by 26% for a 4-hour delay. Acceleration of advances and delays were also achieved with 5 hours of dim light per night, but effects depended on whether dim light was present in the first half, second half, or first and last quarters of the night. Both during phase shifting and steady-state entrainment, partially lit nights also produced strong positive and negative masking effects, as well as entrainment aftereffects in constant darkness. Thus, even in the presence of a strong zeitgeber, light that might be encountered under a natural nighttime sky potently modulates the circadian timing system of hamsters.

  10. Pulsing blue light through closed eyelids: effects on acute melatonin suppression and phase shifting of dim light melatonin onset.

    PubMed

    Figueiro, Mariana G; Plitnick, Barbara; Rea, Mark S

    2014-01-01

    Circadian rhythm disturbances parallel the increased prevalence of sleep disorders in older adults. Light therapies that specifically target regulation of the circadian system in principle could be used to treat sleep disorders in this population. Current recommendations for light treatment require the patients to sit in front of a bright light box for at least 1 hour daily, perhaps limiting their willingness to comply. Light applied through closed eyelids during sleep might not only be efficacious for changing circadian phase but also lead to better compliance because patients would receive light treatment while sleeping. Reported here are the results of two studies investigating the impact of a train of 480 nm (blue) light pulses presented to the retina through closed eyelids on melatonin suppression (laboratory study) and on delaying circadian phase (field study). Both studies employed a sleep mask that provided narrowband blue light pulses of 2-second duration every 30 seconds from arrays of light-emitting diodes. The results of the laboratory study demonstrated that the blue light pulses significantly suppressed melatonin by an amount similar to that previously shown in the same protocol at half the frequency (ie, one 2-second pulse every minute for 1 hour). The results of the field study demonstrated that blue light pulses given early in the sleep episode significantly delayed circadian phase in older adults; these results are the first to demonstrate the efficacy and practicality of light treatment by a sleep mask aimed at adjusting circadian phase in a home setting.

  11. Security authentication with a three-dimensional optical phase code using random forest classifier: an overview

    NASA Astrophysics Data System (ADS)

    Markman, Adam; Carnicer, Artur; Javidi, Bahram

    2017-05-01

    We overview our recent work [1] on utilizing three-dimensional (3D) optical phase codes for object authentication using the random forest classifier. A simple 3D optical phase code (OPC) is generated by combining multiple diffusers and glass slides. This tag is then placed on a quick-response (QR) code, which is a barcode capable of storing information and can be scanned under non-uniform illumination conditions, rotation, and slight degradation. A coherent light source illuminates the OPC and the transmitted light is captured by a CCD to record the unique signature. Feature extraction on the signature is performed and inputted into a pre-trained random-forest classifier for authentication.

  12. Performance analysis of stationary Hadamard matrix diffusers in free-space optical communication links

    NASA Astrophysics Data System (ADS)

    Burrell, Derek J.; Middlebrook, Christopher T.

    2017-08-01

    Wireless communication systems that employ free-space optical links in place of radio/microwave technologies carry substantial benefits in terms of data throughput, network security and design efficiency. Along with these advantages comes the challenge of counteracting signal degradation caused by atmospheric turbulence in free-space environments. A fully coherent laser source experiences random phase delays along its traversing path in turbulent conditions forming a speckle pattern and lowering the received signal-to-noise ratio upon detection. Preliminary research has shown that receiver-side speckle contrast may be significantly reduced and signal-to-noise ratio increased accordingly through the use of a partially coherent light source. While dynamic diffusers and adaptive optics solutions have been proven effective, they also add expense and complexity to a system that relies on accessibility and robustness for successful implementation. A custom Hadamard diffractive matrix design is used to statically induce partial coherence in a transmitted beam to increase signal-to-noise ratio for experimental turbulence scenarios. Atmospheric phase screens are generated using an open-source software package and subsequently loaded into a spatial light modulator using nematic liquid crystals to modulate the phase.

  13. Ikeda-like chaos on a dynamically filtered supercontinuum light source

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.; Jacquot, Maxime; Dudley, John M.; Larger, Laurent

    2016-08-01

    We demonstrate temporal chaos in a color-selection mechanism from the visible spectrum of a supercontinuum light source. The color-selection mechanism is governed by an acousto-optoelectronic nonlinear delayed-feedback scheme modeled by an Ikeda-like equation. Initially motivated by the design of a broad audience live demonstrator in the framework of the International Year of Light 2015, the setup also provides a different experimental tool to investigate the dynamical complexity of delayed-feedback dynamics. Deterministic hyperchaos is analyzed here from the experimental time series. A projection method identifies the delay parameter, for which the chaotic strange attractor originally evolving in an infinite-dimensional phase space can be revealed in a two-dimensional subspace.

  14. Optimization of Compton Source Performance through Electron Beam Shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander; Yampolsky, Nikolai

    2016-09-26

    We investigate a novel scheme for significantly increasing the brightness of x-ray light sources based on inverse Compton scattering (ICS) - scattering laser pulses off relativistic electron beams. The brightness of ICS sources is limited by the electron beam quality since electrons traveling at different angles, and/or having different energies, produce photons with different energies. Therefore, the spectral brightness of the source is defined by the 6d electron phase space shape and size, as well as laser beam parameters. The peak brightness of the ICS source can be maximized then if the electron phase space is transformed in a waymore » so that all electrons scatter off the x-ray photons of same frequency in the same direction, arriving to the observer at the same time. We describe the x-ray photon beam quality through the Wigner function (6d photon phase space distribution) and derive it for the ICS source when the electron and laser rms matrices are arbitrary.« less

  15. Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation

    NASA Astrophysics Data System (ADS)

    Yang, Jiamiao; Shen, Yuecheng; Liu, Yan; Hemphill, Ashton S.; Wang, Lihong V.

    2017-11-01

    Optical scattering prevents light from being focused through thick biological tissue at depths greater than ˜1 mm. To break this optical diffusion limit, digital optical phase conjugation (DOPC) based wavefront shaping techniques are being actively developed. Previous DOPC systems employed spatial light modulators that modulated either the phase or the amplitude of the conjugate light field. Here, we achieve optical focusing through scattering media by using polarization modulation based generalized DOPC. First, we describe an algorithm to extract the polarization map from the measured scattered field. Then, we validate the algorithm through numerical simulations and find that the focusing contrast achieved by polarization modulation is similar to that achieved by phase modulation. Finally, we build a system using an inexpensive twisted nematic liquid crystal based spatial light modulator (SLM) and experimentally demonstrate light focusing through 3-mm thick chicken breast tissue. Since the polarization modulation based SLMs are widely used in displays and are having more and more pixel counts with the prevalence of 4 K displays, these SLMs are inexpensive and valuable devices for wavefront shaping.

  16. Phase and period responses of the circadian system of mice (Mus musculus) to light stimuli of different duration.

    PubMed

    Comas, M; Beersma, D G M; Spoelstra, K; Daan, S

    2006-10-01

    To understand entrainment of circadian systems to different photoperiods in nature, it is important to know the effects of single light pulses of different durations on the free-running system. The authors studied the phase and period responses of laboratory mice (C57BL6J//OlaHsd) to single light pulses of 7 different durations (1, 3, 4, 6, 9, 12, and 18 h) given once per 11 days in otherwise constant darkness. Light-pulse duration affected both amplitude and shape of the phase response curve. Nine-hour light pulses yielded the maximal amplitude PRC. As in other systems, the circadian period slightly lengthened following delays and shortened following advances. The authors aimed to understand how different parts of the light signal contribute to the eventual phase shift. When PRCs were plotted using the onset, midpoint, and end of the pulse as a phase reference, they corresponded best with each other when using the mid-pulse. Using a simple phase-only model, the authors explored the possibility that light affects oscillator velocity strongly in the 1st hour and at reduced strength in later hours of the pulse due to photoreceptor adaptation. They fitted models based on the 1-h PRC to the data for all light pulses. The best overall correspondence between PRCs was obtained when the effect of light during all hours after the first was reduced by a factor of 0.22 relative to the 1st hour. For the predicted PRCs, the light action centered on average at 38% of the light pulse. This is close to the reference phase yielding best correspondence at 36% of the pulses. The result is thus compatible with an initial major contribution of the onset of the light pulse followed by a reduced effect of light responsible for the differences between PRCs for different duration pulses. The authors suggest that the mid-pulse is a better phase reference than lights-on to plot and compare PRCs of different light-pulse durations.

  17. Cavity ring-down spectroscopy in the liquid phase

    NASA Astrophysics Data System (ADS)

    Xu, Shucheng; Sha, Guohe; Xie, Jinchun

    2002-02-01

    A new application for cavity ring-down spectroscopic (CRDS) technique using a pulsed polarized light source has been developed in the absorption measurement of liquids for "colorless" organic compounds using both a single sample cell and double sample cells inserted in an optical cavity at Brewster angle. At present an experimental capability of measuring absorption coefficients as small as 2-5×10-7 cm-1 has been demonstrated by measurement of the absorption baselines. The first spectra for CRDS in the liquid phase, the C-H stretching fifth vibrational overtones of benzene in the pure liquid and hexane solution are obtained. The optical absorption length for liquids in both a single sample cell and double sample cells of 1 cm length is up to 900 cm due to multipass of light within an optical cavity. Compared to the thermal lens and optoacoustic spectroscopic techniques, the sensitivity for CRDS mainly depends on the optical absorption path of the sample (single passing path of the sample times multipass times), is not determined by the laser power and the length of the sample cell. The absolute absorption coefficient and band intensity for the sample are determined directly by the spectroscopy.

  18. Fiber optic device for sensing the presence of a gas

    DOEpatents

    Benson, David K.; Bechinger, Clemens S.; Tracy, C. Edwin

    1998-01-01

    A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material's optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment.

  19. Pump-probe STM light emission spectroscopy for detection of photo-induced semiconductor-metal phase transition of VO2

    NASA Astrophysics Data System (ADS)

    Sakai, Joe; Katano, Satoshi; Kuwahara, Masashi; Uehara, Yoichi

    2017-10-01

    We attempted to observe pump-probe scanning tunneling microscopy (STM)-light emission (LE) from a VO2 thin film grown on a rutile TiO2(0 0 1) substrate, with an Ag tip fixed over a semiconducting domain. Laser pulses from a Ti:sapphire laser (wavelength 920 nm pulse width less than 1.5 ps) irradiated the tip-sample gap as pump and probe light sources. With a photon energy of 2.7 eV, suggesting phase transition from semiconducting monoclinic (M) to metallic rutile (R) phases in relation to the electronic band structure, faint LE was observed roughly 30 ps after the irradiation of the pump pulse, followed by retention for roughly 20 ps. The incident energy fluence of the pump pulse at the gap was five orders of magnitude lower than the threshold value for reported photo-induced M-R phase transition. The mechanism that makes it possible to reduce the threshold fluence is discussed.

  20. Pump-probe STM light emission spectroscopy for detection of photo-induced semiconductor-metal phase transition of VO2.

    PubMed

    Sakai, Joe; Katano, Satoshi; Kuwahara, Masashi; Uehara, Yoichi

    2017-10-11

    We attempted to observe pump-probe scanning tunneling microscopy (STM)-light emission (LE) from a VO 2 thin film grown on a rutile TiO 2 (0 0 1) substrate, with an Ag tip fixed over a semiconducting domain. Laser pulses from a Ti:sapphire laser (wavelength 920 nm; pulse width less than 1.5 ps) irradiated the tip-sample gap as pump and probe light sources. With a photon energy of 2.7 eV, suggesting phase transition from semiconducting monoclinic (M) to metallic rutile (R) phases in relation to the electronic band structure, faint LE was observed roughly 30 ps after the irradiation of the pump pulse, followed by retention for roughly 20 ps. The incident energy fluence of the pump pulse at the gap was five orders of magnitude lower than the threshold value for reported photo-induced M-R phase transition. The mechanism that makes it possible to reduce the threshold fluence is discussed.

  1. Analytical characteristics of a continuum-source tungsten coil atomic absorption spectrometer.

    PubMed

    Rust, Jennifer A; Nóbrega, Joaquim A; Calloway, Clifton P; Jones, Bradley T

    2005-08-01

    A continuum-source tungsten coil electrothermal atomic absorption spectrometer has been assembled, evaluated, and employed in four different applications. The instrument consists of a xenon arc lamp light source, a tungsten coil atomizer, a Czerny-Turner high resolution monochromator, and a linear photodiode array detector. This instrument provides simultaneous multi-element analyses across a 4 nm spectral window with a resolution of 0.024 nm. Such a device might be useful in many different types of analyses. To demonstrate this broad appeal, four very different applications have been evaluated. First of all, the temperature of the gas phase was measured during the atomization cycle of the tungsten coil, using tin as a thermometric element. Secondly, a summation approach for two absorption lines for aluminum falling within the same spectral window (305.5-309.5 nm) was evaluated. This approach improves the sensitivity without requiring any additional preconcentration steps. The third application describes a background subtraction technique, as it is applied to the analysis of an oil emulsion sample. Finally, interference effects caused by Na on the atomization of Pb were studied. The simultaneous measurements of Pb and Na suggests that negative interference arises at least partially from competition between Pb and Na atoms for H2 in the gas phase.

  2. Planned Closeout of the Cf-252 Loan/Lease Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Steven R; Patton, Bradley D

    2012-09-01

    New funding is sought to pursue planned closeout of the Cf-252 Loan Program. The work will be performed in phases. In the initial phase, users will be surveyed to determine whether they wish to take ownership of sources in their possession, or return them. In the second phase, sources will be recalled from non-DOE entities, and source ownership transfers will be performed. In the third phase, the remaining sources from DOE entities will be recalled. Initial funding of $350K is sought to fund the first phase, and to plan execution of the remaining phases given information collected from user surveys.

  3. In-situ spectrophotometric probe

    DOEpatents

    Prather, William S.

    1992-01-01

    A spectrophotometric probe for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and coterminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focussing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid.

  4. Optical detector calibrator system

    NASA Technical Reports Server (NTRS)

    Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)

    1996-01-01

    An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.

  5. SOX: search for short baseline neutrino oscillations with Borexino

    NASA Astrophysics Data System (ADS)

    Vivier, M.; Agostini, M.; Altenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Durero, M.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffliot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, T.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquàres, N.; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Veyssiére, C.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.; Borexino Collaboration

    2016-05-01

    The Borexino detector has convincingly shown its outstanding performances in the low energy regime through its accomplishments in the observation and study of the solar and geo neutrinos. It is then an ideal tool to perform a state of the art source-based experiment for testing the longstanding hypothesis of a fourth sterile neutrino with ~ eV2 mass, as suggested by several anomalies accumulated over the past three decades in source, reactor, and accelerator-based experiments. The SOX project aims at successively deploying two intense radioactive sources, made of Cerium (antineutrino) and Chromium (neutrino), respectively, in a dedicated pit located beneath the detector. The existence of such an ~ eV2 sterile neutrino would then show up as an unambiguous spatial and energy distortion in the count rate of neutrinos interacting within the active detector volume. This article reports on the latest developments about the first phase of the SOX experiment, namely CeSOX, and gives a realistic projection of CeSOX sensitivity to light sterile neutrinos in a simple (3+1) model.

  6. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Vasily; Hall, Gregory

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  7. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE PAGES

    Goncharov, Vasily; Hall, Gregory

    2016-08-25

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  8. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH3CFCl2

    NASA Technical Reports Server (NTRS)

    Fahr, A.; Braun, W.; Kurylo, M. J.

    1993-01-01

    Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.

  9. Design, fabrication and characterization of Computer Generated Holograms for anti-counterfeiting applications using OAM beams as light decoders.

    PubMed

    Ruffato, Gianluca; Rossi, Roberto; Massari, Michele; Mafakheri, Erfan; Capaldo, Pietro; Romanato, Filippo

    2017-12-21

    In this paper, we present the design, fabrication and optical characterization of computer-generated holograms (CGH) encoding information for light beams carrying orbital angular momentum (OAM). Through the use of a numerical code, based on an iterative Fourier transform algorithm, a phase-only diffractive optical element (PO-DOE) specifically designed for OAM illumination has been computed, fabricated and tested. In order to shape the incident beam into a helicoidal phase profile and generate light carrying phase singularities, a method based on transmission through high-order spiral phase plates (SPPs) has been used. The phase pattern of the designed holographic DOEs has been fabricated using high-resolution Electron-Beam Lithography (EBL) over glass substrates coated with a positive photoresist layer (polymethylmethacrylate). To the best of our knowledge, the present study is the first attempt, in a comprehensive work, to design, fabricate and characterize computer-generated holograms encoding information for structured light carrying OAM and phase singularities. These optical devices appear promising as high-security optical elements for anti-counterfeiting applications.

  10. Stage 2 Report for Reformulation Phase I General Design Memorandum, Cleveland Harbor, Ohio. Volume II. Appendices. Revision.

    DTIC Science & Technology

    1983-02-01

    Harbor Lighthouse Pointe Betsie Light Station Pennsylvania Port Sanilac Light Station Presque Isle Light Station Presque Isle Light Rock of Ages Light...Marquette, MI : 0.6 : 0.4 0.1 0 : 0 : 0 : 0 : : 0 : 0 : - Presque Isle , MI: 2.4 1.4 1.4 1.3 : 1.4 1.5 1.0 : 0.9 : 0.4 1.3 8.6 Silver Bay, MN 5.0 : 4.1...conditions. The long distance sourcing patterns of Outer Harbor iron ore (Silver Bay, Duluth-Superior, Escanaba, Presque Isle ) also favors the use of

  11. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyzemore » theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.« less

  13. Dynamic coherent backscattering mirror

    NASA Astrophysics Data System (ADS)

    Zeylikovich, I.; Xu, M.

    2016-02-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  14. Label-free imaging of intracellular motility by low-coherent quantitative phase microscope in reflection geometry

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka

    2011-11-01

    We demonstrate tomographic imaging of intracellular activity of living cells by a low-coherent quantitative phase microscope. The intracellular organelles, such as the nucleus, nucleolus, and mitochondria, are moving around inside living cells, driven by the cellular physiological activity. In order to visualize the intracellular motility in a label-free manner we have developed a reflection-type quantitative phase microscope which employs the phase shifting interferometric technique with a low-coherent light source. The phase shifting interferometry enables us to quantitatively measure the intensity and phase of the optical field, and the low-coherence interferometry makes it possible to selectively probe a specific sectioning plane in the cell volume. The results quantitatively revealed the depth-resolved fluctuations of intracellular surfaces so that the plasma membrane and the membranes of intracellular organelles were independently measured. The transversal and the vertical spatial resolutions were 0.56 μm and 0.93 μm, respectively, and the mechanical sensitivity of the phase measurement was 1.2 nanometers. The mean-squared displacement was applied as a statistical tool to analyze the temporal fluctuation of the intracellular organelles. To the best of our knowledge, our system visualized depth-resolved intracellular organelles motion for the first time in sub-micrometer resolution without contrast agents.

  15. Modeling Lunar Phases in the Classroom: A Hands-On Interactive Lesson

    NASA Astrophysics Data System (ADS)

    Sarrazine, Angela R.

    2007-12-01

    Using Power-Point technology and hands-on materials, a 45 minute lesson has been created to allow students to explore the cause of lunar phases. Students work in cooperative pairs to model the different phases of the moon. In addition, this lesson does not require a bright light source. Using a partially painted Styrofoam ball, a small cup of Play-dough, a simple, protractor, and a data collection sheet, students observe the lunar phases and measure the angle between the sun and the moon. Students place the moon model in eight different positions simulating its orbit around the earth and record the observed changes. The Power-Point presentation contains three segments. The first section allows the teacher to determine the students’ level of prior knowledge about the moon and to uncover possible misconceptions. The second section facilitates the students’ learning by displaying the proper alignment of the model and the proper viewing position for the students. Finally, the presentation culminates in a review of what the students have just observed. This lesson has been created to meet Georgia Performance Standards (GPS) for 4th grade science regarding the cause of lunar phases. Teacher and student responses to this lesson have been extremely positive.

  16. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    DOE PAGES

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; ...

    2015-11-03

    Here, we demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantummore » trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N 4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.« less

  17. Identifying equivalent sound sources from aeroacoustic simulations using a numerical phased array

    NASA Astrophysics Data System (ADS)

    Pignier, Nicolas J.; O'Reilly, Ciarán J.; Boij, Susann

    2017-04-01

    An application of phased array methods to numerical data is presented, aimed at identifying equivalent flow sound sources from aeroacoustic simulations. Based on phased array data extracted from compressible flow simulations, sound source strengths are computed on a set of points in the source region using phased array techniques assuming monopole propagation. Two phased array techniques are used to compute the source strengths: an approach using a Moore-Penrose pseudo-inverse and a beamforming approach using dual linear programming (dual-LP) deconvolution. The first approach gives a model of correlated sources for the acoustic field generated from the flow expressed in a matrix of cross- and auto-power spectral values, whereas the second approach results in a model of uncorrelated sources expressed in a vector of auto-power spectral values. The accuracy of the equivalent source model is estimated by computing the acoustic spectrum at a far-field observer. The approach is tested first on an analytical case with known point sources. It is then applied to the example of the flow around a submerged air inlet. The far-field spectra obtained from the source models for two different flow conditions are in good agreement with the spectra obtained with a Ffowcs Williams-Hawkings integral, showing the accuracy of the source model from the observer's standpoint. Various configurations for the phased array and for the sources are used. The dual-LP beamforming approach shows better robustness to changes in the number of probes and sources than the pseudo-inverse approach. The good results obtained with this simulation case demonstrate the potential of the phased array approach as a modelling tool for aeroacoustic simulations.

  18. Light yield and energy resolution studies for SoLid phase 1

    NASA Astrophysics Data System (ADS)

    Boursette, Delphine; SoLid Collaboration

    2017-09-01

    The SoLid experiment is searching for sterile neutrinos at a nuclear research reactor. It looks for inverse beta decays (producing a positron and a neutron in delayed coincidence) with a very segmented detector made of thousands of scintillating cubes. SoLid has a very innovative hybrid technology with two different scintillators which have different light emissions: polyvynil-toluene cubes (PVT) to detect the positrons and 6LiF:ZnS sheets on two faces of each PVT cube to detect the neutrons. It allows us to do an efficient pulse shape analysis to identify the signals from neutrons and positrons. The 288 kg detector prototype (SM1) took data in 2015. It demonstrated the detection principle and background rejection efficiency. The construction of SoLid phase I (˜ 1.5 t) has now started. To improve the energy resolution of SoLid phase I, we have tried to increase the light yield studying separately the two scintillators: PVT and ZnS. A test bench has been built to fully characterize and improve the neutron detection with the ZnS using an AmBe source. To study the positron light yield on the PVT, we have built another test bench with a 207Bi source. We have improved the design of the cubes, their wrapping or the type and the configuration of the fibers. We managed to increase the PVT light yield by about 66 % and improve the resolution of the positron energy on the test bench from 21 % to 16 % at 1 MeV.

  19. A phase coherence approach to identifying co-located earthquakes and tremor

    NASA Astrophysics Data System (ADS)

    Hawthorne, J. C.; Ampuero, J.-P.

    2018-05-01

    We present and use a phase coherence approach to identify seismic signals that have similar path effects but different source time functions: co-located earthquakes and tremor. The method used is a phase coherence-based implementation of empirical matched field processing, modified to suit tremor analysis. It works by comparing the frequency-domain phases of waveforms generated by two sources recorded at multiple stations. We first cross-correlate the records of the two sources at a single station. If the sources are co-located, this cross-correlation eliminates the phases of the Green's function. It leaves the relative phases of the source time functions, which should be the same across all stations so long as the spatial extent of the sources are small compared with the seismic wavelength. We therefore search for cross-correlation phases that are consistent across stations as an indication of co-located sources. We also introduce a method to obtain relative locations between the two sources, based on back-projection of interstation phase coherence. We apply this technique to analyse two tremor-like signals that are thought to be composed of a number of earthquakes. First, we analyse a 20 s long seismic precursor to a M 3.9 earthquake in central Alaska. The analysis locates the precursor to within 2 km of the mainshock, and it identifies several bursts of energy—potentially foreshocks or groups of foreshocks—within the precursor. Second, we examine several minutes of volcanic tremor prior to an eruption at Redoubt Volcano. We confirm that the tremor source is located close to repeating earthquakes identified earlier in the tremor sequence. The amplitude of the tremor diminishes about 30 s before the eruption, but the phase coherence results suggest that the tremor may persist at some level through this final interval.

  20. EUSO-TA prototype telescope

    NASA Astrophysics Data System (ADS)

    Bisconti, Francesca; JEM-EUSO Collaboration

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  1. Source phase shift - A new phenomenon in wave propagation due to anelasticity. [in free oscillations of earth model

    NASA Technical Reports Server (NTRS)

    Buland, R.; Yuen, D. A.; Konstanty, K.; Widmer, R.

    1985-01-01

    The free oscillations of an anelastic earth model due to earthquakes were calculated directly by means of the correspondence principle from wave propagation theory. The formulation made it possible to find the source phase which is not predictable using first order perturbation theory. The predicted source phase was largest for toroidal modes with source components proportional to the radial strain scalar instead of the radial displacement scalar. The source phase increased in relation to the overtone number. In addition, large relative differences were found in the excitation modulus and the phase when the elastic excitation was small. The effect was sufficient to bias estimates of source properties and elastic structure.

  2. Luminescent Solar Concentrators in the Algal Industry

    NASA Astrophysics Data System (ADS)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  3. A scheiner-principle vernier optometer

    NASA Astrophysics Data System (ADS)

    Cushman, William B.

    1989-06-01

    A method and optometer apparatus is disclosed for measuring the dark focus of accommodation. In a preferred embodiment, the optometer apparatus includes: a pinhole aperture plate having first and second horizontally positioned apertures disposed on opposite sides of a first optical axis; first and second orthogonally-oriented polarizing filters respectively covering the first and second horizontally positioned apertures; a positive lens having an optical axis on the first optical axis and being positioned at a distance of approximately one focal length from the pinhole aperture plate; a lens system having an optical axis on the first optical axis; a slit aperture plate having a vertical slit and being disposed on the first optical axis and between the positive lens and the lens system; third and fourth vertically positioned polarizing filters selectively disposed adjacent to the slit aperture plate to divide the slit vertically, a monochromatic light source for propagating light along the first optical axis through the lens system; and movable means attached to the slit aperture plate, the lens system and the monochromatic light source for moving the slit aperture plate.

  4. AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source

    NASA Astrophysics Data System (ADS)

    Nightingale, J. W.; Dye, S.; Massey, Richard J.

    2018-05-01

    This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

  5. Structure function monitor

    DOEpatents

    McGraw, John T [Placitas, NM; Zimmer, Peter C [Albuquerque, NM; Ackermann, Mark R [Albuquerque, NM

    2012-01-24

    Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.

  6. Polychromatic SSVEP stimuli with subtle flickering adapted to brain-display interactions

    NASA Astrophysics Data System (ADS)

    Chien, Yu-Yi; Lin, Fang-Cheng; Zao, John K.; Chou, Ching-Chi; Huang, Yi-Pai; Kuo, Heng-Yuan; Wang, Yijun; Jung, Tzyy-Ping; Shieh, Han-Ping D.

    2017-02-01

    Objective. Interactive displays armed with natural user interfaces (NUIs) will likely lead the next breakthrough in consumer electronics, and brain-computer interfaces (BCIs) are often regarded as the ultimate NUI-enabling machines to respond to human emotions and mental states. Steady-state visual evoked potentials (SSVEPs) are a commonly used BCI modality due to the ease of detection and high information transfer rates. However, the presence of flickering stimuli may cause user discomfort and can even induce migraines and seizures. With the aim of designing visual stimuli that can be embedded into video images, this study developed a novel approach to induce detectable SSVEPs using a composition of red/green/blue flickering lights. Approach. Based on the opponent theory of colour vision, this study used 32 Hz/40 Hz rectangular red-green or red-blue LED light pulses with a 50% duty cycle, balanced/equal luminance and 0°/180° phase shifts as the stimulating light sources and tested their efficacy in producing SSVEP responses with high signal-to-noise ratios (SNRs) while reducing the perceived flickering sensation. Main results. The empirical results from ten healthy subjects showed that dual-colour lights flickering at 32 Hz/40 Hz with a 50% duty cycle and 180° phase shift achieved a greater than 90% detection accuracy with little or no flickering sensation. Significance. As a first step in developing an embedded SSVEP stimulus in commercial displays, this study provides a foundation for developing a combination of three primary colour flickering backlights with adjustable luminance proportions to create a subtle flickering polychromatic light that can elicit SSVEPs at the basic flickering frequency.

  7. Sources of background light on space based laser communications links

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas C.

    2018-05-01

    We discuss the sources and levels of background light that should be expected on space based laser communication (lasercom) crosslinks and uplinks, as well as on downlinks to ground stations. The analyses are valid for both Earth orbiting satellites and inter-planetary links. Fundamental equations are derived suitable for first order system engineering analyses of potential lasercom systems. These divide sources of background light into two general categories: extended sources which fill the field of view of a receiver's optics, and point sources which cannot be resolved by the optics. Specific sources of background light are discussed, and expected power levels are estimated. For uplinks, reflected sunlight and blackbody radiation from the Earth dominates. For crosslinks, depending on specific link geometry, sources of background light may include the Sun in the field of view (FOV), reflected sunlight and blackbody radiation from planets and other bodies in the solar system, individual bright stars in the FOV, the amalgam of dim stars in the FOV, zodiacal light, and reflected sunlight off of the transmitting spacecraft. For downlinks, all of these potentially come into play, and the effects of the atmosphere, including turbulence, scattering, and absorption contribute as well. Methods for accounting for each of these are presented. Specific examples are presented to illustrate the relative contributions of each source for various link geometries.

  8. Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source.

    PubMed

    Töpperwien, Mareike; Gradl, Regine; Keppeler, Daniel; Vassholz, Malte; Meyer, Alexander; Hessler, Roland; Achterhold, Klaus; Gleich, Bernhard; Dierolf, Martin; Pfeiffer, Franz; Moser, Tobias; Salditt, Tim

    2018-03-21

    We demonstrate that phase retrieval and tomographic imaging at the organ level of small animals can be advantageously carried out using the monochromatic radiation emitted by a compact x-ray light source, without further optical elements apart from source and detector. This approach allows to carry out microtomography experiments which - due to the large performance gap with respect to conventional laboratory instruments - so far were usually limited to synchrotron sources. We demonstrate the potential by mapping the functional soft tissue within the guinea pig and marmoset cochlea, including in the latter case an electrical cochlear implant. We show how 3d microanatomical studies without dissection or microscopic imaging can enhance future research on cochlear implants.

  9. Using machine-learning to optimize phase contrast in a low-cost cellphone microscope

    PubMed Central

    Wartmann, Rolf; Schadwinkel, Harald; Heintzmann, Rainer

    2018-01-01

    Cellphones equipped with high-quality cameras and powerful CPUs as well as GPUs are widespread. This opens new prospects to use such existing computational and imaging resources to perform medical diagnosis in developing countries at a very low cost. Many relevant samples, like biological cells or waterborn parasites, are almost fully transparent. As they do not exhibit absorption, but alter the light’s phase only, they are almost invisible in brightfield microscopy. Expensive equipment and procedures for microscopic contrasting or sample staining often are not available. Dedicated illumination approaches, tailored to the sample under investigation help to boost the contrast. This is achieved by a programmable illumination source, which also allows to measure the phase gradient using the differential phase contrast (DPC) [1, 2] or even the quantitative phase using the derived qDPC approach [3]. By applying machine-learning techniques, such as a convolutional neural network (CNN), it is possible to learn a relationship between samples to be examined and its optimal light source shapes, in order to increase e.g. phase contrast, from a given dataset to enable real-time applications. For the experimental setup, we developed a 3D-printed smartphone microscope for less than 100 $ using off-the-shelf components only such as a low-cost video projector. The fully automated system assures true Koehler illumination with an LCD as the condenser aperture and a reversed smartphone lens as the microscope objective. We show that the effect of a varied light source shape, using the pre-trained CNN, does not only improve the phase contrast, but also the impression of an improvement in optical resolution without adding any special optics, as demonstrated by measurements. PMID:29494620

  10. Focal Spot and Wavefront Sensing of an X-Ray Free Electron laser using Ronchi shearing interferometry

    DOE PAGES

    Nagler, Bob; Aquila, Andrew; Boutet, Sebastien; ...

    2017-10-20

    The Linac Coherent Light Source (LCLS) is an X-ray source of unmatched brilliance, that is advancing many scientific fields at a rapid pace. The highest peak intensities that are routinely produced at LCLS take place at the Coherent X-ray Imaging (CXI) instrument, which can produce spotsize at the order of 100 nm, and such spotsizes and intensities are crucial for experiments ranging from coherent diffractive imaging, non-linear x-ray optics and high field physics, and single molecule imaging. Nevertheless, a full characterisation of this beam has up to now not been performed. In this paper we for the first time characterisemore » this nanofocused beam in both phase and intensity using a Ronchi Shearing Interferometric technique. The method is fast, in-situ, uses a straightforward optimization algoritm, and is insensitive to spatial jitter.« less

  11. Refining the chemical composition of the inner core with multicomponent alloys: from first-principles to thermodynamics and seismology

    NASA Astrophysics Data System (ADS)

    Caracas, R.; Asimow, P. D.; Wolf, A. S.; Harvey, J. P.; Martin, A.; Torrent, M.

    2015-12-01

    We compute the solubility limits of Si in the hexagonal-close packed (hcp) phase of iron using standard thermodynamical treatment of solid solutions with data obtained from first-principles calculations. For this, we consider the system with end-members hcp Fe and the B2 phase of FeSi. Si and Fe enter both structures in substitution of one another. The system is characterized by an immiscibility gap, which according to our results widens with pressure. At core conditions about 5 wt.% Si can be dissolved into the hcp phase of Fe. Comparatively there is much more Fe that can enter the FeSi B2 phase. In a second step we start with the hcp Fe-Si alloys and add the most probable light elements found in the core: H, C, O, and S. The light elements can enter the hcp structure either as interstitial impurities, in case of H, C, O, or in substitution of Fe, in case of S. We consider several insertion patterns with the light elements both adjacent and far apart. For each of these new phases we compute the elastic constants tensors and the seismic properties. Based on our theoretical results and the comparisons with PREM we discuss in detail the possible composition of the Earth's inner core, we rule out certain light elements, like H, and we show that the distribution pattern is not important. This is also the first time the elastic constants tensor is computed from lattice dynamics using the response function in the Planar Augmented Wavefunction approach of the Density Functional Theory [1]. [1] A. Martin, M. Torrent, R. Caracas, submitted (2015); A. Martin, PhD thesis (2015).

  12. Disparity in Cutaneous Pigmentary Response to LED vs Halogen Incandescent Visible Light: Results from a Single Center, Investigational Clinical Trial Determining a Minimal Pigmentary Visible Light Dose.

    PubMed

    Soleymani, Teo; Cohen, David E; Folan, Lorcan M; Okereke, Uchenna R; Elbuluk, Nada; Soter, Nicholas A

    2017-11-01

    Background: While most of the attention regarding skin pigmentation has focused on the effects of ultraviolet radiation, the cutaneous effects of visible light (400 to 700nm) are rarely reported. The purpose of this study was to investigate the cutaneous pigmentary response to pure visible light irradiation, examine the difference in response to different sources of visible light irradiation, and determine a minimal pigmentary dose of visible light irradiation in melanocompetent subjects with Fitzpatrick skin type III - VI. The study was designed as a single arm, non-blinded, split-side dual intervention study in which subjects underwent visible light irradiation using LED and halogen incandescent light sources delivered at a fluence of 0.14 Watts/cm2 with incremental dose progression from 20 J/cm2 to 320 J/cm2. Pigmentation was assessed by clinical examination, cross-polarized digital photography, and analytic colorimetry. Immediate, dose-responsive pigment darkening was seen with LED light exposure in 80% of subjects, beginning at 60 Joules. No pigmentary changes were seen with halogen incandescent light exposure at any dose in any subject. This study is the first to report a distinct difference in cutaneous pigmentary response to different sources of visible light, and the first to demonstrate cutaneous pigment darkening from visible LED light exposure. Our findings raise the concern that our increasing daily artificial light surroundings may have clandestine effects on skin biology.

    J Drugs Dermatol. 2017;16(11):1105-1110.

    .

  13. The method for measuring the groove density of variable-line-space gratings with elimination of the eccentricity effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qingbo; Liu, Zhengkun, E-mail: zhkliu@ustc.edu.cn; Chen, Huoyao

    2015-02-15

    To eliminate the eccentricity effect, a new method for measuring the groove density of a variable-line-space grating was adapted. Based on grating equation, groove density is calculated by measuring the internal angles between zeroth-order and first-order diffracted light for two different wavelengths with the same angle of incidence. The measurement system mainly includes two laser sources, a phase plate, plane mirror, and charge coupled device. The measurement results of a variable-line-space grating demonstrate that the experiment data agree well with theoretical values, and the value of measurement error (ΔN/N) is less than 2.72 × 10{sup −4}.

  14. Real-time emission factor measurements of isocyanic acid from light duty gasoline vehicles.

    PubMed

    Brady, James M; Crisp, Timia A; Collier, Sonya; Kuwayama, Toshihiro; Forestieri, Sara D; Perraud, Véronique; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D; Bertram, Timothy H

    2014-10-07

    Exposure to gas-phase isocyanic acid (HNCO) has been previously shown to be associated with the development of atherosclerosis, cataracts and rheumatoid arthritis. As such, accurate emission inventories for HNCO are critical for modeling the spatial and temporal distribution of HNCO on a regional and global scale. To date, HNCO emission rates from light duty gasoline vehicles, operated under driving conditions, have not been determined. Here, we present the first measurements of real-time emission factors of isocyanic acid from a fleet of eight light duty gasoline-powered vehicles (LDGVs) tested on a chassis dynamometer using the Unified Driving Cycle (UC) at the California Air Resources Board (CARB) Haagen-Smit test facility, all of which were equipped with three-way catalytic converters. HNCO emissions were observed from all vehicles, in contrast to the idealized laboratory measurements. We report the tested fleet averaged HNCO emission factors, which depend strongly on the phase of the drive cycle; ranging from 0.46 ± 0.13 mg kg fuel(-1) during engine start to 1.70 ± 1.77 mg kg fuel(-1) during hard acceleration after the engine and catalytic converter were warm. The tested eight-car fleet average fuel based HNCO emission factor was 0.91 ± 0.58 mg kg fuel(-1), within the range previously estimated for light duty diesel-powered vehicles (0.21-3.96 mg kg fuel(-1)). Our results suggest that HNCO emissions from LDGVs represent a significant emission source in urban areas that should be accounted for in global and regional models.

  15. Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2

    PubMed Central

    Kim, Youngmin; Hwang, Hee Min; Wang, Luyang; Kim, Ikjoon; Yoon, Yeoheung; Lee, Hyoyoung

    2016-01-01

    A generation of reactive oxygen species (ROS) from TiO2 under solar light has been long sought since the ROS can disinfect organic pollutants. We found that newly developed crystalline/amorphous reduced TiO2 (rTiO2) that has low energy bandgap can effectively generate ROS under solar light and successfully remove a bloom of algae. The preparation of rTiO2 is a one-pot and mass productive solution-process reduction using lithium-ethylene diamine (Li-EDA) at room temperature. Interestingly only the rutile phase of TiO2 crystal was reduced, while the anatase phase even in case of both anatase/rutile phased TiO2 was not reduced. Only reduced TiO2 materials can generate ROS under solar light, which was confirmed by electron spin resonance. Among the three different types of Li-EDA treated TiO2 (anatase, rutile and both phased TiO2), the both phased rTiO2 showed the best performance to produce ROS. The generated ROS effectively removed the common green algae Chlamydomonas. This is the first report on algae degradation under solar light, proving the feasibility of commercially available products for disinfection. PMID:27121120

  16. Streak camera imaging of single photons at telecom wavelength

    NASA Astrophysics Data System (ADS)

    Allgaier, Markus; Ansari, Vahid; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Donohue, John Matthew; Czerniuk, Thomas; Aßmann, Marc; Bayer, Manfred; Brecht, Benjamin; Silberhorn, Christine

    2018-01-01

    Streak cameras are powerful tools for temporal characterization of ultrafast light pulses, even at the single-photon level. However, the low signal-to-noise ratio in the infrared range prevents measurements on weak light sources in the telecom regime. We present an approach to circumvent this problem, utilizing an up-conversion process in periodically poled waveguides in Lithium Niobate. We convert single photons from a parametric down-conversion source in order to reach the point of maximum detection efficiency of commercially available streak cameras. We explore phase-matching configurations to apply the up-conversion scheme in real-world applications.

  17. In-situ spectrophotometric probe

    DOEpatents

    Prather, W.S.

    1992-12-15

    A spectrophotometric probe is described for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and co-terminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focusing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid. 5 figs.

  18. Interferometric apparatus for ultra-high precision displacement measurement

    NASA Technical Reports Server (NTRS)

    Zhao, Feng (Inventor)

    2004-01-01

    A high-precision heterodyne interferometer measures relative displacement by creating a thermally-insensitive system generally not subject to polarization leakage. By using first and second light beams separated by a small frequency difference (.DELTA.f), beams of light at the first frequency (f.sub.0) are reflected by co-axial mirrors, the first mirror of which has a central aperture through which the light is transmitted to and reflected by the second mirror. Prior to detection, the light beams from the two mirrors are combined with light of the second and slightly different frequency. The combined light beams are separated according to the light from the mirrors. The change in phase (.DELTA..phi.) with respect to the two signals is proportional to the change in distance of Fiducial B by a factor of wavelength (.lambda.) divided by 4.pi. (.DELTA.L=.lambda..DELTA..phi.1/(4.pi.)). In a second embodiment, a polarizing beam splitting system can be used.

  19. Spatial light modulators for full cross-connections in optical networks

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    2004-01-01

    A polarization-independent optical switch is disclosed for switching at least one incoming beam from at least one input source to at least one output drain. The switch includes a polarizing beam splitter to split each of the at least one incoming beam into a first input beam and a second input beam, wherein the first input beam and the second input beams are independently polarized; a wave plate optically coupled to the second input beam for converting the polarization of the second input beam to an appropriately polarized second input beam; a beam combiner optically coupled to the first input beam and the modified second input beam, wherein the beam combiner accepts the first input beam and the modified second input beam to produce a combined beam; the combined beam is invariant to the polarization state of the input source's polarization; and a controllable spatial light modulator optically coupled to the combined beam, wherein the combined beam is diffracted by the controllable spatial light modulator to place light at a plurality of output locations.

  20. A Mathematical Model of the Circadian Phase-Shifting Effects of Exogenous Melatonin

    PubMed Central

    Breslow, Emily R.; Phillips, Andrew J.K.; Huang, Jean M.; St. Hilaire, Melissa A.; Klerman, Elizabeth B.

    2013-01-01

    Melatonin is endogenously produced and released in humans during nighttime darkness and is suppressed by ocular light exposure. Exogenous melatonin is used to induce circadian phase shifts and sleep. The circadian phase-shifting ability of a stimulus (e.g., melatonin or light) relative to its timing may be displayed as a phase response curve (PRC). Published PRCs to exogenous melatonin show a transition from phase advances to delays approximately 1 h after dim light melatonin onset. A previously developed mathematical model simulates endogenous production and clearance of melatonin as a function of circadian phase, light-induced suppression, and resetting of circadian phase by light. We extend this model to include the pharmacokinetics of oral exogenous melatonin and phase-shifting effects via melatonin receptors in the suprachiasmatic nucleus of the mammalian hypothalamus. Model parameters are fit using 2 data sets: (1) blood melatonin concentration following a 0.3- or 5.0-mg dose, and (2) a PRC to a 3.0-mg dose of melatonin. After fitting to the 3.0-mg PRC, the model correctly predicts that, by comparison, the 0.5-mg PRC is slightly decreased in amplitude and shifted to a later circadian phase. This model also reproduces blood concentration profiles of various melatonin preparations that differ only in absorption rate and percentage degradation by first-pass hepatic metabolism. This model can simulate experimental protocols using oral melatonin, with potential application to guide dose size and timing to optimally shift and entrain circadian rhythms. PMID:23382594

  1. Fiber optic device for sensing the presence of a gas

    DOEpatents

    Benson, D.K.; Bechinger, C.S.; Tracy, C.E.

    1998-01-13

    A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material`s optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment. 5 figs.

  2. Light Absorbers and Catalysts for Solar to Fuel Conversion

    NASA Astrophysics Data System (ADS)

    Kornienko, Nikolay I.

    Increasing fossil fuel consumption and the resulting consequences to the environment has propelled research into means of utilizing alternative, clean energy sources. Solar power is among the most promising of renewable energy sources but must be converted into an energy dense medium such as chemical bonds to render it useful for transport and energy storage. Photoelectrochemistry (PEC), the splitting of water into oxygen and hydrogen fuel or reducing CO 2 to hydrocarbon fuels via sunlight is a promising approach towards this goal. Photoelectrochemical systems are comprised of several components, including light absorbers and catalysts. These parts must all synergistically function in a working device. Therefore, the continual development of each component is crucial for the overall goal. For PEC systems to be practical for large scale use, the must be efficient, stable, and composed of cost effective components. To this end, my work focused on the development of light absorbing and catalyst components of PEC solar to fuel converting systems. In the direction of light absorbers, I focused of utilizing Indium Phosphide (InP) nanowires (NWs) as photocathodes. I first developed synthetic techniques for InP NW solution phase and vapor phase growth. Next, I developed light absorbing photocathodes from my InP NWs towards PEC water splitting cells. I studied cobalt sulfide (CoSx) as an earth abundant catalyst for the reductive hydrogen evolution half reaction. Using in situ spectroscopic techniques, I elucidated the active structure of this catalyst and offered clues to its high activity. In addition to hydrogen evolution catalysts, I established a new generation of earth abundant catalysts for CO2 reduction to CO fuel/chemical feedstock. I first worked with molecularly tunable homogeneous catalysts that exhibited high selectivity for CO2 reduction in non-aqueous media. Next, in order to retain molecular tunability while achieving stability and efficiency in aqueous solvents, I aimed to heterogenize a class of molecular porphyrin catalysts into a 3D mesoscopic porous catalytic structure in the form of a metal-organic framework (MOF). To do so, I initially developed a growth for thin film MOFs that were embedded with catalytic groups in their linkers. Next, I utilized these thin film MOFs grown on conductive substrates and functionalized with cobalt porphyrin units as 3D porous CO2 reduction catalysts. This new class of catalyst exhibited high efficiency, selectivity, and stability in neutral pH aqueous electrolytes. Finally, as a last chapter of my work, I explored hybrid inorganic/biological CO2 reduction pathways. Specifically, I used time-resolved spectroscopic and biochemical techniques to investigate charge transfer pathways from light absorber to CO2-derived acetate in acetogenic self-sensitized bacteria.

  3. Security proof of a three-state quantum-key-distribution protocol without rotational symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fung, C.-H.F.; Lo, H.-K.

    2006-10-15

    Standard security proofs of quantum-key-distribution (QKD) protocols often rely on symmetry arguments. In this paper, we prove the security of a three-state protocol that does not possess rotational symmetry. The three-state QKD protocol we consider involves three qubit states, where the first two states |0{sub z}> and |1{sub z}> can contribute to key generation, and the third state |+>=(|0{sub z}>+|1{sub z}>)/{radical}(2) is for channel estimation. This protocol has been proposed and implemented experimentally in some frequency-based QKD systems where the three states can be prepared easily. Thus, by founding on the security of this three-state protocol, we prove that thesemore » QKD schemes are, in fact, unconditionally secure against any attacks allowed by quantum mechanics. The main task in our proof is to upper bound the phase error rate of the qubits given the bit error rates observed. Unconditional security can then be proved not only for the ideal case of a single-photon source and perfect detectors, but also for the realistic case of a phase-randomized weak coherent light source and imperfect threshold detectors. Our result in the phase error rate upper bound is independent of the loss in the channel. Also, we compare the three-state protocol with the Bennett-Brassard 1984 (BB84) protocol. For the single-photon source case, our result proves that the BB84 protocol strictly tolerates a higher quantum bit error rate than the three-state protocol, while for the coherent-source case, the BB84 protocol achieves a higher key generation rate and secure distance than the three-state protocol when a decoy-state method is used.« less

  4. Spectral characteristics of light sources for S-cone stimulation.

    PubMed

    Schlegelmilch, F; Nolte, R; Schellhorn, K; Husar, P; Henning, G; Tornow, R P

    2002-11-01

    Electrophysiological investigations of the short-wavelength sensitive pathway of the human eye require the use of a suitable light source as a S-cone stimulator. Different light sources with their spectral distribution properties were investigated and compared with the ideal S-cone stimulator. First, the theoretical background of the calculation of relative cone energy absorption from the spectral distribution function of the light source is summarized. From the results of the calculation, the photometric properties of the ideal S-cone stimulator will be derived. The calculation procedure was applied to virtual light sources (computer generated spectral distribution functions with different medium wavelengths and spectrum widths) and to real light sources (blue and green light emitting diodes, blue phosphor of CRT-monitor, multimedia projector, LCD monitor and notebook display). The calculated relative cone absorbencies are compared to the conditions of an ideal S-cone stimulator. Monochromatic light sources with wavelengths of less than 456 nm are close to the conditions of an ideal S-cone stimulator. Spectrum widths up to 21 nm do not affect the S-cone activation significantly (S-cone activation change < 0.2%). Blue light emitting diodes with peak wavelength at 448 nm and spectrum bandwidth of 25 nm are very useful for S-cone stimulation (S-cone activation approximately 95%). A suitable display for S-cone stimulation is the Trinitron computer monitor (S-cone activation approximately 87%). The multimedia projector has a S-cone activation up to 91%, but their spectral distribution properties depends on the selected intensity. LCD monitor and notebook displays have a lower S-cone activation (< or = 74%). Carefully selecting the blue light source for S-cone stimulation can reduce the unwanted L-and M-cone activation down to 4% for M-cones and 1.5% for L-cones.

  5. 360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation.

    PubMed

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-01-11

    360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details.

  6. Laser-irradiated Kondo insulators: Controlling the Kondo effect and topological phases

    NASA Astrophysics Data System (ADS)

    Takasan, Kazuaki; Nakagawa, Masaya; Kawakami, Norio

    2017-09-01

    We investigate theoretically the nature of laser-irradiated Kondo insulators. Using Floquet theory and the slave-boson approach, we study a periodic Anderson model and derive an effective model that describes laser-irradiated Kondo insulators. In this model, we find two generic effects induced by laser light. One is dynamical localization, which suppresses hopping and hybridization. The other is laser-induced hopping and hybridization, which can be interpreted as synthetic spin-orbit coupling or a magnetic field. The first effect drastically changes the behavior of the Kondo effect. In particular, the Kondo effect under laser light qualitatively changes its character depending on whether the hybridization is on-site or off-site. The second effect triggers topological phase transitions. In topological Kondo insulators, linearly polarized laser light realizes phase transitions between trivial, weak topological, and strong topological Kondo insulators. Moreover, circularly polarized laser light breaks time-reversal symmetry and induces Weyl semimetallic phases. Our results make it possible to dynamically control the Kondo effect and topological phases in heavy-fermion systems. We also discuss experimental setups to detect the signatures.

  7. Thermal trim for luminaire

    DOEpatents

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  8. Thermal trim for a luminaire

    DOEpatents

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-02-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidane, Getnet S; Desilva, Upul P.; He, Chengli

    A gas turbine includes first and second parts having outer surfaces located adjacent to each other to create an interface where wear occurs. A wear probe is provided for monitoring wear of the outer surface of the first part, and includes an optical guide having first and second ends, wherein the first end is configured to be located flush with the outer surface of the first part. A fiber bundle includes first and second ends, the first end being located proximate to the second end of the optical guide. The fiber bundle includes a transmit fiber bundle comprising a firstmore » plurality of optical fibers coupled to a light source, and a receive fiber bundle coupled to a light detector and configured to detect reflected light. A processor is configured to determine a length of the optical guide based on the detected reflected light.« less

  10. Light sources and output couplers for a backlight with switchable emission angles

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Imai, Keita; Takagi, Yoshihiko

    2007-09-01

    For switching viewing angles of a liquid crystal display, we proposed to place a liquid crystal device between an LED and a light-guide of a backlight. The first key component for this configuration is a light source with electronically-controlled emission angles. Here, we construct such a device by stacking an optical film and a polymer-network liquid crystal (PNLC) cell on top of a chip-type LED. The optical film contains opaque parallel plates that limit the LED output in a narrow angular range. The PNLC cell either transmits or scatters the light emerging from the optical film. Experiment using a 15μm-thick PNLC cell shows that the angular distribution becomes 2.3 times wider by turning off the PNLC cell. We place this light source at one end of a light-guide so that the angular distribution of the light propagating inside is controlled. The second key component is some types of micro-strucrures built on the light-guide to out-couple the propagating light. We first attached various optical films on a light-guide surface. Although the angular distribution of the extracted light was switched successfully, light was mostly emitted into an oblique direction, approximately 60° from the plane normal. Next, we used a half-cylinder in place of the optical films. The curved surface of the cylinder was attached to the light-guide with a small amount of matching oil, which constituted an optical window. We measured that the angular distribution of the extracted light decreased to 35° FWHM from 62° FWHM by turning on the PNLC cell.

  11. Mesoscopic effect of spectral modulation for the light transmitted by a SNOM tip

    NASA Astrophysics Data System (ADS)

    Rähn, M.; Pärs, M.; Palm, V.; Jaaniso, R.; Hizhnyakov, V.

    2010-06-01

    The effect of a tapered metal-coated optical fiber terminated by a sub-wavelength aperture (SWA) on the spectrum of the transmitted light is investigated experimentally. Under certain conditions a remarkable spectral modulation of the transmitted light can be observed. This effect is of a mesoscopic origin, occurring only for a certain interval of SWA diameters. One can conclude that a noticeable modulation appears when the number of the transmitted fiber modes is small but exceeds unity, thus indicating the presence of a phase shift between different modes. To discern between two possible sources of such phase shift, the fiber length dependence of the output spectrum has been studied. According to the results obtained for the used sample of 200 nm SNOM tip, the observed phase shift is mostly caused rather by the inherent modal dispersion of the multimode fiber than by the mode-dependent light slowdown in the tapered region close to SWA due to the coupling to surface plasmons of the metal coating. The SWA acts here mainly as an effective mode filter.

  12. Illusion optics in chaotic light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Suheng; Gan Shu; Xiong Jun

    2010-08-15

    The time-reversal process provides the possibility to counteract the time evolution of a physical system. Recent research has shown that such a process can occur in the first-order field correlation of chaotic light and result in the spatial interference and phase-reversal diffraction in an unbalanced interferometer. Here we report experimental investigations on the invisibility cloak and illusion phenomena in chaotic light. In an unbalanced interferometer illuminated by thermal light, we have observed the cloak effect and the optical transformation of one object into another object. The experimental results can be understood by the phase-reversal diffraction, and they demonstrate the theoreticalmore » proposal of similar effects in complementary media.« less

  13. Home dim light melatonin onsets with measures of compliance in delayed sleep phase disorder.

    PubMed

    Burgess, Helen J; Park, Margaret; Wyatt, James K; Fogg, Louis F

    2016-06-01

    The dim light melatonin onset (DLMO) assists with the diagnosis and treatment of circadian rhythm sleep disorders. Home DLMOs are attractive for cost savings and convenience, but can be confounded by home lighting and sample timing errors. We developed a home saliva collection kit with objective measures of light exposure and sample timing. We report on our first test of the kit in a clinical population. Thirty-two participants with delayed sleep phase disorder (DSPD; 17 women, aged 18-52 years) participated in two back-to-back home and laboratory phase assessments. Most participants (66%) received at least one 30-s epoch of light >50 lux during the home phase assessments, but for only 1.5% of the time. Most participants (56%) collected every saliva sample within 5 min of the scheduled time. Eighty-three per cent of home DLMOs were not affected by light or sampling errors. The home DLMOs occurred, on average, 10.2 min before the laboratory DLMOs, and were correlated highly with the laboratory DLMOs (r = 0.93, P < 0.001). These results indicate that home saliva sampling with objective measures of light exposure and sample timing, can assist in identifying accurate home DLMOs. © 2016 European Sleep Research Society.

  14. Gallium nitride light sources for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goldberg, Graham R.; Ivanov, Pavlo; Ozaki, Nobuhiko; Childs, David T. D.; Groom, Kristian M.; Kennedy, Kenneth L.; Hogg, Richard A.

    2017-02-01

    The advent of optical coherence tomography (OCT) has permitted high-resolution, non-invasive, in vivo imaging of the eye, skin and other biological tissue. The axial resolution is limited by source bandwidth and central wavelength. With the growing demand for short wavelength imaging, super-continuum sources and non-linear fibre-based light sources have been demonstrated in tissue imaging applications exploiting the near-UV and visible spectrum. Whilst the potential has been identified of using gallium nitride devices due to relative maturity of laser technology, there have been limited reports on using such low cost, robust devices in imaging systems. A GaN super-luminescent light emitting diode (SLED) was first reported in 2009, using tilted facets to suppress lasing, with the focus since on high power, low speckle and relatively low bandwidth applications. In this paper we discuss a method of producing a GaN based broadband source, including a passive absorber to suppress lasing. The merits of this passive absorber are then discussed with regards to broad-bandwidth applications, rather than power applications. For the first time in GaN devices, the performance of the light sources developed are assessed though the point spread function (PSF) (which describes an imaging systems response to a point source), calculated from the emission spectra. We show a sub-7μm resolution is possible without the use of special epitaxial techniques, ultimately outlining the suitability of these short wavelength, broadband, GaN devices for use in OCT applications.

  15. Modeling the light-travel-time effect on the far-infrared size of IRC +10216

    NASA Technical Reports Server (NTRS)

    Wright, Edward L.; Baganoff, Frederick K.

    1995-01-01

    Models of the far-infrared emission from the large circumstellar dust envelope surrounding the carbon star IRC +10216 are used to assess the importance of the light-travel-time effect (LTTE) on the observed size of the source. The central star is a long-period variable with an average period of 644 +/- 17 days and a peak-to-peak amplitude of two magnituds, so a large light-travel-time effect is seen at 1 min radius. An attempt is made to use the LTTE to reconcile the discrepancy between the observations of Fazio et al. and Lester et al. regarding the far-infrared source size. This discrepancy is reviewed in light of recent, high-spatial-resolution observations at 11 microns by Danchi et al. We conclude that IRC +10216 has been resolved on the arcminute scale by Fazio et al. Convolution of the model intensity profile at 61 microns with the 60 sec x 90 sec Gaussian beam of Fazio et al. yields an observed source size full width at half maximum (FWHM) that ranges from approximately 67 sec to 75 sec depending on the phase of the star and the assumed distance to the source. Using a simple r(exp -2) dust distribution and the 106 deg phase of the Fazio et al. observations, the LTTE model reaches a peak size of 74.3 sec at a distance of 300 pc. This agrees favorably with the 78 sec x 6 sec size measured by Fazio et al. Finally, a method is outlined for using the LTTE as a distance indicator to IRC +10216 and other stars with extended mass outflows.

  16. The application of UV LEDs for differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Geiko, Pavel P.; Smirnov, Sergey S.; Samokhvalov, Ignatii V.

    2018-04-01

    Modern UV LEDs represent a potentially very advantageous alternative to thermal light sources, in particular xenon arc lamps, which are the most common light sources in trace gas-analyzers. So, the light-emitting diodes are very attractive for use of as light sources for Long Path Differential Optical Absorption Spectroscopy (DOAS) measurements of trace gases in the open atmosphere. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes have now allowed us to construct a portable, long path DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. First of all, we are talking about the measurement of sulphur dioxide, carbon disulphide and, oxides of chlorine and bromine. The parallel measurements of sulfur dioxide using a certified gas analyzer, were conducted and showed good correlation.

  17. Light yield in DarkSide-10: A prototype two-phase argon TPC for dark matter searches

    NASA Astrophysics Data System (ADS)

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cline, D.; Cocco, A. G.; Condon, C.; D'Angelo, D.; Davini, S.; De Haas, E.; Derbin, A.; Di Pietro, G.; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghag, C.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Shields, E.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Maricic, J.; Martoff, C. J.; Meng, Y.; Meroni, E.; Meyers, P. D.; Mohayai, T.; Montanari, D.; Montuschi, M.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, N.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Teymourian, A.; Thompson, J.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-09-01

    As part of the DarkSide program of direct dark matter searches using two-phase argon TPCs, a prototype detector with an active volume containing 10 kg of liquid argon, DarkSide-10, was built and operated underground in the Gran Sasso National Laboratory in Italy. A critically important parameter for such devices is the scintillation light yield, as photon statistics limits the rejection of electron-recoil backgrounds by pulse shape discrimination. We have measured the light yield of DarkSide-10 using the readily-identifiable full-absorption peaks from gamma ray sources combined with single-photoelectron calibrations using low-occupancy laser pulses. For gamma lines of energies in the range 122-1275 keV, we get light yields averaging 8.887±0.003(stat)±0.444(sys) p.e./keVee. With additional purification, the light yield measured at 511 keV increased to 9.142±0.006(stat) p.e./keVee.

  18. Measuring joint cartilage thickness using reflectance spectroscopy non-invasively and in real-time

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkceken, Tuba; Karagol, Cosar; Aydin, Ahmet T.

    2011-03-01

    Joint cartilage thickness has been estimated using spatially resolved steady-state reflectance spectroscopy noninvasively and in-real time. The system consists of a miniature UV-VIS spectrometer, a halogen tungsten light source, and an optical fiber probe with six 400 um diameter fibers. The first fiber was used to deliver the light to the cartilage and the other five were used to detect back-reflected diffused light. Distances from the detector fibers to the source fiber were 0.8 mm, 1.6 mm, 2.4 mm, 3.2 mm and 4 mm. Spectra of back-reflected diffused light were taken on 40 bovine patella cartilages. The samples were grouped into four; the first group was the control group with undamaged cartilages, in the 2nd, 3rd and 4th groups cartilage thickness was reduced approximately 25%, 50% and 100%, respectively. A correlation between cartilage thicknesses and hemoglobin absorption of light in the wavelength range of 500 nm- 600 nm for source-detector pairs was found. The proposed system with an optical fiber probe less than 4 mm in diameter has the potential for cartilage thickness assessment through an arthroscopy channel in real-time without damaging the cartilage.

  19. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.

    2018-03-01

    We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.

  20. First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation.

    PubMed

    Larsson, Daniel H; Lundström, Ulf; Westermark, Ulrica K; Arsenian Henriksson, Marie; Burvall, Anna; Hertz, Hans M

    2013-02-01

    Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga∕In∕Sn alloy and the other an In∕Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with ∼7 μm x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. High-resolution absorption imaging is demonstrated on mice with CT, showing 50 μm bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.

  1. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockett, Mark H., E-mail: stockett@phys.au.dk; Houmøller, Jørgen; Støchkel, Kristian

    2016-05-15

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g.,more » 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.« less

  2. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy.

    PubMed

    Stockett, Mark H; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen

    2016-05-01

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

  3. Wave refraction in negative-index media: always positive and very inhomogeneous.

    PubMed

    Valanju, P M; Walser, R M; Valanju, A P

    2002-05-06

    We present the first treatment of the refraction of physical electromagnetic waves in newly developed negative index media (NIM), also known as left-handed media (LHM). The NIM dispersion relation implies that group fronts refract positively even when phase fronts refract negatively. This difference results in rapidly dispersing, very inhomogeneous waves. In fact, causality and finite signal speed always prevent negative wave signal (not phase) refraction. Earlier interpretations of phase refraction as "negative light refraction" and "light focusing by plane slabs" are therefore incorrect, and published NIM experiments can be explained without invoking negative signal refraction.

  4. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  5. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles.

    PubMed

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-13

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm 2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  6. An integrated optical CO2 sensor. Phase 0: Design and fabrication of critical elements

    NASA Technical Reports Server (NTRS)

    Murphy, Michael C.; Kelly, Kevin W.; Li, B. Q.; Ma, EN; Wang, Wanjun; Vladimirsky, Yuli; Vladimirsky, Olga

    1994-01-01

    Significant progress has been made toward all of the goals for the first phase of the project short of actual fabrication of a light path. Two alternative approaches to fabricating gold mirrors using the basic LIGA process were developed, one using electroplated solid gold mirrors and the second using gold plated over a nickel base. A new method of fabrication, the transfer mask process, was developed and demonstrated. Analysis of the projected surface roughness and beam divergence effects was completed. With gold surface with low surface roughness scattering losses are expected to be insignificant. Beam divergence due to diffraction will require a modification of the original design, but should be eliminated by fabricating mirrors 1000 mu m in height by 1000 mu m in width and using a source with an initial beam radius greater than 300 mu m. This may eliminate any need for focusing optics. Since the modified design does not affect the mask layout, ordering of the mask and fabrication of the test structures can begin immediately at the start of Phase 1.

  7. A real-time 3D range image sensor based on a novel tip-tilt-piston micromirror and dual frequency phase shifting

    NASA Astrophysics Data System (ADS)

    Skotheim, Øystein; Schumann-Olsen, Henrik; Thorstensen, Jostein; Kim, Anna N.; Lacolle, Matthieu; Haugholt, Karl-Henrik; Bakke, Thor

    2015-03-01

    Structured light is a robust and accurate method for 3D range imaging in which one or more light patterns are projected onto the scene and observed with an off-axis camera. Commercial sensors typically utilize DMD- or LCD-based LED projectors, which produce good results but have a number of drawbacks, e.g. limited speed, limited depth of focus, large sensitivity to ambient light and somewhat low light efficiency. We present a 3D imaging system based on a laser light source and a novel tip-tilt-piston micro-mirror. Optical interference is utilized to create sinusoidal fringe patterns. The setup allows fast and easy control of both the frequency and the phase of the fringe patterns by altering the axes of the micro-mirror. For 3D reconstruction we have adapted a Dual Frequency Phase Shifting method which gives robust range measurements with sub-millimeter accuracy. The use of interference for generating sine patterns provides high light efficiency and good focusing properties. The use of a laser and a bandpass filter allows easy removal of ambient light. The fast response of the micro-mirror in combination with a high-speed camera and real-time processing on the GPU allows highly accurate 3D range image acquisition at video rates.

  8. Human phase response curve to intermittent blue light using a commercially available device

    PubMed Central

    Revell, Victoria L; Molina, Thomas A; Eastman, Charmane I

    2012-01-01

    Light shifts the timing of the circadian clock according to a phase response curve (PRC). To date, all human light PRCs have been to long durations of bright white light. However, melanopsin, the primary photopigment for the circadian system, is most sensitive to short wavelength blue light. Therefore, to optimise light treatment it is important to generate a blue light PRC. We used a small, commercially available blue LED light box, screen size 11.2 × 6.6 cm at ∼50 cm, ∼200 μW cm−2, ∼185 lux. Subjects participated in two 5 day laboratory sessions 1 week apart. Each session consisted of circadian phase assessments to obtain melatonin profiles before and after 3 days of free-running through an ultradian light–dark cycle (2.5 h wake in dim light, 1.5 h sleep in the dark), forced desynchrony protocol. During one session subjects received intermittent blue light (three 30 min pulses over 2 h) once a day for the 3 days of free-running, and in the other session (control) they remained in dim room light, counterbalanced. The time of blue light was varied among subjects to cover the entire 24 h day. For each individual, the phase shift to blue light was corrected for the free-run determined during the control session. The blue light PRC had a broad advance region starting in the morning and extending through the afternoon. The delay region started a few hours before bedtime and extended through the night. This is the first PRC to be constructed to blue light and to a stimulus that could be used in the real world. PMID:22753544

  9. Human phase response curve to intermittent blue light using a commercially available device.

    PubMed

    Revell, Victoria L; Molina, Thomas A; Eastman, Charmane I

    2012-10-01

    Light shifts the timing of the circadian clock according to a phase response curve (PRC). To date, all human light PRCs have been to long durations of bright white light. However, melanopsin, the primary photopigment for the circadian system, is most sensitive to short wavelength blue light. Therefore, to optimise light treatment it is important to generate a blue light PRC.We used a small, commercially available blue LED light box, screen size 11.2 × 6.6 cm at ∼50 cm, ∼200 μW cm(−2), ∼185 lux. Subjects participated in two 5 day laboratory sessions 1 week apart. Each session consisted of circadian phase assessments to obtain melatonin profiles before and after 3 days of free-running through an ultradian light–dark cycle (2.5 h wake in dim light, 1.5 h sleep in the dark), forced desynchrony protocol. During one session subjects received intermittent blue light (three 30 min pulses over 2 h) once a day for the 3 days of free-running, and in the other session (control) they remained in dim room light, counterbalanced. The time of blue light was varied among subjects to cover the entire 24 h day. For each individual, the phase shift to blue light was corrected for the free-run determined during the control session. The blue light PRC had a broad advance region starting in the morning and extending through the afternoon. The delay region started a few hours before bedtime and extended through the night. This is the first PRC to be constructed to blue light and to a stimulus that could be used in the real world.

  10. Scannerless laser range imaging using loss modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandusky, John V

    2011-08-09

    A scannerless 3-D imaging apparatus is disclosed which utilizes an amplitude modulated cw light source to illuminate a field of view containing a target of interest. Backscattered light from the target is passed through one or more loss modulators which are modulated at the same frequency as the light source, but with a phase delay .delta. which can be fixed or variable. The backscattered light is demodulated by the loss modulator and detected with a CCD, CMOS or focal plane array (FPA) detector to construct a 3-D image of the target. The scannerless 3-D imaging apparatus, which can operate inmore » the eye-safe wavelength region 1.4-1.7 .mu.m and which can be constructed as a flash LADAR, has applications for vehicle collision avoidance, autonomous rendezvous and docking, robotic vision, industrial inspection and measurement, 3-D cameras, and facial recognition.« less

  11. Scannerless laser range imaging using loss modulation

    DOEpatents

    Sandusky, John V [Albuquerque, NM

    2011-08-09

    A scannerless 3-D imaging apparatus is disclosed which utilizes an amplitude modulated cw light source to illuminate a field of view containing a target of interest. Backscattered light from the target is passed through one or more loss modulators which are modulated at the same frequency as the light source, but with a phase delay .delta. which can be fixed or variable. The backscattered light is demodulated by the loss modulator and detected with a CCD, CMOS or focal plane array (FPA) detector to construct a 3-D image of the target. The scannerless 3-D imaging apparatus, which can operate in the eye-safe wavelength region 1.4-1.7 .mu.m and which can be constructed as a flash LADAR, has applications for vehicle collision avoidance, autonomous rendezvous and docking, robotic vision, industrial inspection and measurement, 3-D cameras, and facial recognition.

  12. COLLABORATIVE RESEARCH: Study of Aerosol Sources and Processing at the GVAX Pantnagar Supersite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Joel A.; Worsnop, Douglas

    2016-09-22

    This project was part of a collaborative campaign, including the participation of scientists from seven research groups as part of the Winter Intensive Operating Period (January-February 2012) of the Clean Air for London (ClearfLo) campaign at a rural site in Detling, UK, 45 km southeast of central London to study wintertime sources of urban particulate matter. The UW contribution by PI Thornton’s group was to make the first deployment of a chemical ionization mass spectrometer instrument (MOVI-CI-ToFMS) to measure both particle and gas phase organic acids. The new instrument ran nearly continuously during the ClearfLo WINTER IOP at the Detlingmore » site, producing a first-ever data set of molecular composition information that can be used for source apportionment and process studies. The UW group published a paper in Environmental Science and Technology and contributed to another (Bohnenstengel et al BAMS 2015) detailing a direct molecular connection between biomass/biofuel burning particles and aerosol light absorption. The ES&T paper (Mohr, et al ES&T 2013) has received 42 citations in just 3 years indicative of its significant impact on the field. These measurements of urban and rural aerosol properties will contribute to improved modeling of regional aerosol emissions, and of atmospheric aging and removal.« less

  13. Preliminary evaluation of the diffraction behind the PROBA 3/ASPIICS optimized occulter

    NASA Astrophysics Data System (ADS)

    Baccani, Cristian; Landini, Federico; Romoli, Marco; Taccola, Matteo; Schweitzer, Hagen; Fineschi, Silvano; Bemporad, Alessandro; Loreggia, Davide; Capobianco, Gerardo; Pancrazzi, Maurizio; Focardi, Mauro; Noce, Vladimiro; Thizy, Cédric; Servaye, Jean-Sébastien; Renotte, Etienne

    2016-07-01

    PROBA-3 is a technological mission of the European Space Agency (ESA), devoted to the in-orbit demon- stration of formation flying (FF) techniques and technologies. ASPIICS is an externally occulted coronagraph approved by ESA as payload in the framework of the PROBA-3 mission and is currently in its C/D phase. FF offers a solution to investigate the solar corona close the solar limb using a two-component space system: the external occulter on one spacecraft and the optical instrument on the other, separated by a large distance and kept in strict alignment. ASPIICS is characterized by an inter-satellite distance of ˜144 m and an external occulter diameter of 1.42 m. The stray light due to the diffraction by the external occulter edge is always the most critical offender to a coronagraph performance: the designer work is focused on reducing the stray light and carefully evaluating the residuals. In order to match this goal, external occulters are usually characterized by an optimized shape along the optical axis. Part of the stray light evaluation process is based on the diffraction calculation with the optimized occulter and with the whole solar disk as a source. We used the field tracing software VirtualLabTM Fusion by Wyrowski Photonics [1] to simulate the diffraction. As a first approach and in order to evaluate the software, we simulated linear occulters, through as portions of the flight occulter, in order to make a direct comparison with the Phase-A measurements [2].

  14. Position indicator

    DOEpatents

    Tanner, David E.

    1981-01-01

    A nuclear reactor system is described in which a position indicator is provided for detecting and indicating the position of a movable element inside a pressure vessel. The movable element may be a valve element or similar device which moves about an axis. Light from a light source is transmitted from a source outside the pressure vessel to a first region inside the pressure vessel in alignment with the axis of the movable element. The light is redirected by a reflector prism to a second region displaced radially from the first region. The reflector prism moves in response to movement of the movable element about its axis such that the second region moves arcuately with respect to the first region. Sensors are arrayed in an arc corresponding to the arc of movement of the second region and signals are transmitted from the sensors to the exterior of the reactor vessel to provide indication of the position of the movable element.

  15. Source attribution of black carbon in Arctic snow.

    PubMed

    Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D

    2009-06-01

    Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon.

  16. The potential of ill-nitride laser diodes for solid-state lighting [Advantages of III-Nitride Laser Diodes in Solid-State Lighting

    DOE PAGES

    Wierer, Jonathan; Tsao, Jeffrey Y.

    2014-09-01

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less

  17. The Far-Infrared Beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant; May, Tim

    2009-06-01

    The far-infrared beamline at the Canadian Light Source. is a state of the art facility, which offers significantly more far-infrared brightness than conventional globar sources. While there is the potential to direct this advantage to many research areas, to date most of the effort has been directed toward high-resolution gas phase studies. The infrared radiation is collected from a bending magnet through a 55 X 37 mrad^{2} port to a Bruker IFS 125 HR spectrometer, which is equipped with a nine compartment scanning arm, allowing it to achieve spectral resolution better than 0.001 cm^{-1}. Currently the beamline can achieve signal to noise ratios up to 8 times that which can be achieved using a traditional thermal source. Data from the recently completed commissioning experiments will be presented along with a general overview of the beamline.

  18. A Strong X-ray Flare in TeV-detected blazar 1ES 1959+650

    NASA Astrophysics Data System (ADS)

    Kapanadze, Bidzina

    2017-06-01

    Since 2015 August, the nearby TeV-detected HBL source 1ES 1959+650 (z=0.048) is in a phase of enhanced X-ray activity compared to the previous years (Kapanadze et al. 2016, MNRAS, 461, L26; ATel #8014, #8289, #8342, #8468, #9121, #9205, #9694, #9949, #10430 and http://www.swift.psu.edu/monitoring/source.php?source=1ES1959+650 for the historical 0.3-10 keV light curve).

  19. Another X-ray Flare in TeV-detected blazar 1ES 1959+650

    NASA Astrophysics Data System (ADS)

    Kapanadze, Bidzina

    2017-05-01

    Since 2015 August, the nearby TeV-detected HBL source 1ES 1959+650 (z=0.048) is in a phase of enhanced X-ray activity compared to the previous years (Kapanadze et al. 2016, MNRAS, 461, L26; ATel #8014, #8289, #8342, #8468, #9121, #9205, #9694, #9949, and http://www.swift.psu.edu/monitoring/source.php?source=1ES1959+650 for the historical 0.3-10 keV light curve).

  20. Integrated reformer and shift reactor

    DOEpatents

    Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.

    2006-06-27

    A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.

  1. Only lasers can be used for low level laser therapy

    PubMed Central

    Moskvin, Sergey Vladimirovich

    2017-01-01

    The question of lasers' exclusivity, as well as the degree of influence of special properties of low-intensity laser illumination (LILI), such as coherence, polarity and monochromaticity, on the effectiveness of low level laser therapy (LLLT) continues to cause arguments. The study analyzes publications from 1973 to 2016, in which laser and conventional light sources are compared, and the following conclusions are drawn. First, there are a lot of publications with incorrect comparison or unfounded statements. Secondly, other sources of light are often meant by LILI without any justification. Thirdly, all studies, in which the comparison is carried out correctly and close parameters of the impact and the model are used, have a firm conclusion that laser light is much more effective. Fourthly, it is uniquely identified that the most important parameter that determines the efficiency of lasers is monochromaticity, i.e., a much narrower spectral width than for all other light sources. Only laser light sources can be used for LLLT! PMID:29130447

  2. Construction and Application of a Terahertz Scanning Near-Field Microscope for Study of Correlated Electron Materials at Cryogenic Temperatures and Nanometer Length Scales

    NASA Astrophysics Data System (ADS)

    Stinson, Harry Theodore, III

    This dissertation describes the design and construction of the world's first cryogenic apertureless near-field microscope designed for terahertz sources and detectors. I first provide motivation for the creation of this instrument in the context of spectroscopy of correlated electron materials, and background information on the two techniques that the instrument combines, scanning near-field optical microscopy and terahertz time-domain spectroscopy. I then detail key components of the instrument design, including proof-of-principle results obtained at room and cryogenic temperatures. Following this, I discuss an imaging experiment performed with this instrument on vanadium dioxide, an insulator-metal transition material, which sheds new light on the nature of the phase transition and provides support for a new model Hamiltonian for the system. Finally, I discuss a theoretical proposal for the study of cuprate superconductors using this instrument.

  3. Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device.

    PubMed

    Hoffmann, Maximilian; Papadopoulos, Ioannis N; Judkewitz, Benjamin

    2018-01-01

    The controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation, or patterned photostimulation. For most of these applications, it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator but is inherently an amplitude modulator. Furthermore, spatial dispersion caused by DMD diffraction complicates its use with pulsed laser sources, such as those used in nonlinear microscopy. Here we introduce a DMD-based optical design that overcomes these limitations and achieves dispersion-free high-speed binary phase modulation. We show that this phase modulation can be used to switch through binary phase patterns at the rate of 20 kHz in two-photon excitation fluorescence applications.

  4. Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Hoffmann, Maximilian; Papadopoulos, Ioannis N.; Judkewitz, Benjamin

    2018-01-01

    The controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation or patterned photostimulation. For most of these applications it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator, but is inherently an amplitude modulator. Furthermore, spatial dispersion caused by DMD diffraction complicates its use with pulsed laser sources, such as those used in nonlinear microscopy. Here we introduce a DMD-based optical design that overcomes these limitations and achieves dispersion-free high-speed binary phase modulation. We show that this phase modulation can be used to switch through binary phase patterns at the rate of 20 kHz in two-photon excitation fluorescence applications.

  5. Radical production from photosensitization of imidazoles, benzophenone and 4-benzoylbenzoic acid

    NASA Astrophysics Data System (ADS)

    Corral Arroyo, Pablo; González, Laura; Steimer, Sarah; Volkamer, Rainer; George, Christian; Bartels-Rausch, Thorsten; Ammann, Markus

    2016-04-01

    Reactions promoted by light are key in atmospheric chemistry. Some of them occur in the condensed phase of aerosols which may contain light absorbing organic compounds that provoke photochemical reactions such as humic like material (GEORGE 2005). Our aim is to understand the role these reactions play in atmospheric photochemistry. This work explores the radical reactions initiated by UV light in mixtures of citric acid (CA) and imidazole-2-carboxaldehyde (IC), benzophenone and 4-Benzoylbenzoic acid (BBA) using NO as a probe molecule for HO2, by means of coated wall flow tube experiments. The loss of NO was measured by a chemiluminescence detector (CLD), also configured for the distinction of the products (HONO or NO2). The dependence of the NO loss on the initial NO concentration, the photosensitizer concentration in the film, relative humidity, light intensity, oxygen molar fraction were investigated as well as the HONO and NO2 yields. We found a clear correlation between the loss of NO above the film and the molar ratio of photosensitizer/CA, and also between the NO loss and the light intensity. The variation of the observed NO loss with oxygen corroborates a mechanism, in which the triplet excited state of the photosensitizer is reduced likely by the predominant donor in the system, citric acid, to a reduced ketyl radical. This reactive species is transferring an electron to molecular oxygen, which in turn leads to production of HO2 radicals, which are released to the gas phase. Therefore, in absence of gas phase oxidants, the loss of NO in the gas phase could be related to the production of HO2 radicals in the condensed phase. Relative humidity had a strong impact on the HO2 output, which shows a maximum value at intermediate humidity around 30%, likely due to different competing effects of dilution and reactant mobility. The observed NO2/HONO ratio was around 1.4 consistent with the secondary chemistry of HO2 in presence of NO in the gas phase, indicating no additional direct release of OH to the gas phase nor direct conversion of NO2 to HONO at the film surface. IC and BBA showed similar HO2 production rates, while the HO2 yield with benzophenone was around 50 times higher. We could preliminary quantify for the first time the contribution of these processes to the oxidative capacity in the atmosphere and conclude that their role is significant for aerosol aging. References George, C., Strekowski, R. S., Kleffmann, J., Stemmler, K., and Ammann, M.: Photoenhanced uptake of gaseous NO2 on solid organic compounds: a photochemical source of HONO?, Faraday Discussions, 130, 195, 2005.

  6. White-light Interferometry using a Channeled Spectrum: II. Calibration Methods, Numerical and Experimental Results

    NASA Technical Reports Server (NTRS)

    Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.; Best, Paul K.

    2007-01-01

    In the companion paper, [Appl. Opt. 46, 5853 (2007)] a highly accurate white light interference model was developed from just a few key parameters characterized in terms of various moments of the source and instrument transmission function. We develop and implement the end-to-end process of calibrating these moment parameters together with the differential dispersion of the instrument and applying them to the algorithms developed in the companion paper. The calibration procedure developed herein is based on first obtaining the standard monochromatic parameters at the pixel level: wavenumber, phase, intensity, and visibility parameters via a nonlinear least-squares procedure that exploits the structure of the model. The pixel level parameters are then combined to obtain the required 'global' moment and dispersion parameters. The process is applied to both simulated scenarios of astrometric observations and to data from the microarcsecond metrology testbed (MAM), an interferometer testbed that has played a prominent role in the development of this technology.

  7. Every factor helps: Rapid Ptychographic Reconstruction

    NASA Astrophysics Data System (ADS)

    Nashed, Youssef

    2015-03-01

    Recent advances in microscopy, specifically higher spatial resolution and data acquisition rates, require faster and more robust phase retrieval reconstruction methods. Ptychography is a phase retrieval technique for reconstructing the complex transmission function of a specimen from a sequence of diffraction patterns in visible light, X-ray, and electron microscopes. As technical advances allow larger fields to be imaged, computational challenges arise for reconstructing the correspondingly larger data volumes. Waiting to postprocess datasets offline results in missed opportunities. Here we present a parallel method for real-time ptychographic phase retrieval. It uses a hybrid parallel strategy to divide the computation between multiple graphics processing units (GPUs). A final specimen reconstruction is then achieved by different techniques to merge sub-dataset results into a single complex phase and amplitude image. Results are shown on a simulated specimen and real datasets from X-ray experiments conducted at a synchrotron light source.

  8. Ultraviolet light propagation under low visibility atmospheric conditions and its application to aircraft landing aid.

    PubMed

    Lavigne, Claire; Durand, Gérard; Roblin, Antoine

    2006-12-20

    Light scattering in the atmosphere by particles and molecules gives rise to an aureole surrounding the source image that tends to reduce the contrast of the source with respect to the background. However, UV scattering phase functions of the haze droplets present a very important forward peak. The spreading of a detected signal in the UV is not as important as in the case of a clear atmosphere where Rayleigh scattering predominates. This physical property has to be taken into account to evaluate the potential of UV radiation as an aircraft landing aid under low visibility conditions. Different results characterizing UV runway lights, simulations of UV radiation propagation in the atmosphere, and the use of a simple detection algorithm applied to one particular sensor are presented.

  9. Effects of the Carrier-Envelope Phase in the Multiphoton Ionization Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Takashi; Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581; Watanabe, Shuntaro

    2006-06-02

    We theoretically investigate the effects of the carrier-envelope phase of few-cycle laser pulses in the multiphoton ionization regime. For atoms with low ionization potential, total ionization yield barely exhibits phase dependence, as expected. However, population of some bound states clearly shows phase dependence. This implies that the measurement of the carrier-envelope phase would be possible through the photoemission between bound states without energy-and-angle-resolved photoelectron detection. The considered scheme could be particularly useful to measure the carrier-envelope phase for a light source without an amplifier, such as a laser oscillator, which cannot provide sufficient pulse energy to induce tunneling ionization.

  10. An all-silicon optical PC-to-PC link utilizing USB

    NASA Astrophysics Data System (ADS)

    Goosen, Marius E.; Alberts, Antonie C.; Venter, Petrus J.; du Plessis, Monuko; Rademeyer, Pieter

    2013-02-01

    An integrated silicon light source still remains the Holy Grail for integrated optical communication systems. Hot carrier luminescent light sources provide a way to create light in a standard CMOS process, potentially enabling cost effective optical communication between CMOS integrated circuits. In this paper we present a 1 Mb/s integrated silicon optical link for information transfer, targeting a real-world integrated solution by connecting two PCs via a USB port while transferring data optically between the devices. This realization represents the first optical communication product prototype utilizing a CMOS light emitter. The silicon light sources which are implemented in a standard 0.35 μm CMOS technology are electrically modulated and detected using a commercial silicon avalanche photodiode. Data rates exceeding 10 Mb/s using silicon light sources have previously been demonstrated using raw bit streams. In this work data is sent in two half duplex streams accompanied with the separate transmission of a clock. Such an optical communication system could find application in high noise environments where data fidelity, range and cost are a determining factor.

  11. Evaluation of Lighting Systems, Carbon Sources, and Bacteria Cultures on Photofermentative Hydrogen Production.

    PubMed

    Hu, Chengcheng; Choy, Sing-Ying; Giannis, Apostolos

    2018-05-01

    Fluorescent and incandescent lighting systems were applied for batch photofermentative hydrogen production by four purple non-sulfur photosynthetic bacteria (PNSB). The hydrogen production efficiency of Rhodopseudomonas palustris, Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodospirillum rubrum was evaluated using different carbon sources (acetate, butyrate, lactate, and malate). Incandescent light was found to be more effective for bacteria cell growth and hydrogen production. It was observed that PNSB followed substrate selection criteria for hydrogen production. Only R. palustris was able to produce hydrogen using most carbon sources. Cell density was almost constant, but cell growth rate and hydrogen production were significantly varied under the different lighting systems. The kinetics study suggested that initial substrate concentration had a positive correlation with lag phase duration. Among the PNSB, R. palustris grew faster and had higher hydrogen yields of 1.58, 4.92, and 2.57 mol H 2 /mol using acetate, butyrate, and lactate, respectively. In the integrative approach with dark fermentation effluents rich in organic acids, R. palustris should be enriched in the phototrophic microbial consortium of the continuous hydrogen production system.

  12. Applications of laser wakefield accelerator-based light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Felicie; Thomas, Alec G. R.

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  13. Applications of laser wakefield accelerator-based light sources

    DOE PAGES

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  14. The Chaotic Light Curves of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2007-01-01

    We present model light curves for accreting Black Hole Candidates (BHC) based on a recently developed model of these sources. According to this model, the observed light curves and aperiodic variability of BHC are due to a series of soft photon injections at random (Poisson) intervals and the stochastic nature of the Comptonization process in converting these soft photons to the observed high energy radiation. The additional assumption of our model is that the Comptonization process takes place in an extended but non-uniform hot plasma corona surrounding the compact object. We compute the corresponding Power Spectral Densities (PSD), autocorrelation functions, time skewness of the light curves and time lags between the light curves of the sources at different photon energies and compare our results to observation. Our model reproduces the observed light curves well, in that it provides good fits to their overall morphology (as manifest by the autocorrelation and time skewness) and also to their PSDs and time lags, by producing most of the variability power at time scales 2 a few seconds, while at the same time allowing for shots of a few msec in duration, in accordance with observation. We suggest that refinement of this type of model along with spectral and phase lag information can be used to probe the structure of this class of high energy sources.

  15. Analysis of phase conjugation in a turbid medium

    NASA Astrophysics Data System (ADS)

    Hollmann, Joseph L.; Cantero, Sergio; Tseng, Snow; DiMarzio, Charles A.

    2014-03-01

    The ability to focus light in most tissue degrades quickly with depth due to high optical scattering. Recently, researchers have found they can concentrate light tightly despite these scattering effects by using a guidestar and optical phase conjugation to focus light to greater distances in tissue. An optical or probe signal is transmitted through a scattering medium and its resulting wavefront is detected. The wavefront is then conjugated and utilized as a new optical source or delivery wave that focuses back to the guidestar's location with minimal scattering. The power in the delivery wave may be greatly increased for enhanced energy delivery at the focus. Modulation by an ultrasound (US) beam may be utilized to generate the guidestar dynamically and allow for US-resolution at depths of several millimeters. The delivery wave is successful at focusing light back at the guidestar because it creates constructive interference at the desired focus. However, if the phases of the field contributions change, we expect the delivered power at the focus to be reduced. This paper will analyze the robustness of this method when the probe beam is at one wavelength and the delivery wave is at another. This will allow us to characterize the deleterious effects of varying the phase contributions at the focus.

  16. Identification of the Infrared Counterpart of SGR 1935+2154 with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Levan, Andrew; Kouveliotou, Chryssa; Fruchter, Andrew

    2018-02-01

    We present deep Hubble Space Telescope observations of a new magnetar source, the soft gamma-repeater SGR 1935+2154, discovered by Swift. We obtained three epochs of observations: while the source was active in 2015 March, during a quiescent period in 2015 August, and during a further active phase in 2016 May. Close to the center of the X-ray error region identified by Chandra, we find a faint (F140W(AB) = 25.3) source, which fades by a factor of ∼2 over the course of 5 months between the first two epochs of observations, before rebrightening during the second active period. If this source is indeed the counterpart to SGR 1935+2154, then it is among the faintest yet located for a magnetar. Our observations are spaced over 1.3 years and enable us to place limits on the source velocity of μ = (60 ± 40) km s‑1 kpc‑1 observations on timescales of a decade can hence probe proper motion limits smaller than the velocities observed for the majority of pulsars. The comparison of the optical/IR and X-ray light curves of the source suggests that emission in the two regimes is associated but not directly correlated, offering support for a magnetospheric versus a fallback disk origin.

  17. Laboratory Demonstration of Axicon-Lens Coronagraph

    NASA Astrophysics Data System (ADS)

    Choi, Jaeho; Jea, Geonho

    2018-01-01

    The results of laboratory based experiments of the proposed coronagraph using axicon-lenses that is conjunction with a method of noninterferometric quantitative phase imaging for direct imaging of exoplanets is will present. The light source is passing through tiny holes drilled on the thin metal plate is used as the simulated stellar and its companions. Those diffracted light at the edge of the holes bears a similarity to the light from the bright stellar. Those images are evaginated about the optical axis after the maximum focal length of the first axicon lens. Then the evaginated images of have cut off using the motorized iris which means the suppressed the central stellar light preferentially. Various length between the holes which represent the angular distance are examined. The laboratory experimental results are shown that the axicon-lens coronagraph has feature of ability to achieve the smaller IWA than l/D and high-contrast direct imaging. The laboratory based axicon-lens coronagraph imaging support the symbolic computation results which has potential in direct imaging for finding exoplanet and various astrophysical activities. The setup of the coronagraph is simple to build and is durable to operate. Moreover it can be transported the planets images to a broadband spectrometric instrument that able to investigate the constituent of the planetary system.

  18. System for stabilizing cable phase delay utilizing a coaxial cable under pressure

    NASA Technical Reports Server (NTRS)

    Clements, P. A. (Inventor)

    1974-01-01

    Stabilizing the phase delay of signals passing through a pressurizable coaxial cable is disclosed. Signals from an appropriate source at a selected frequency, e.g., 100 MHz, are sent through the controlled cable from a first cable end to a second cable end which, electrically, is open or heavily mismatched at 100 MHz, thereby reflecting 100 MHz signals back to the first cable end. Thereat, the phase difference between the reflected-back signals and the signals from the source is detected by a phase detector. The output of the latter is used to control the flow of gas to or from the cable, thereby controlling the cable pressure, which in turn affects the cable phase delay.

  19. Enhancement of efficiency in the use of light for cultivation of plants in controlled ecological systems

    NASA Technical Reports Server (NTRS)

    Mashinsky, A. L.; Oreshkin, V. I.; Nechitailo, G. S.

    1994-01-01

    The problems of plant cultivation with the use of artificial lighting are related to energetics and, initially, to the lack of effective sources for photosynthesis, secondly to the necessity to supply a system with a considerable power in the form of light energy and to remove transformed thermal energy, and finally to economic considerations. These problems are solved by three ways: by the choice of effective radiation sources, design approaches, and technological methods of cultivation. Here we shall consider the first two ways.

  20. Apparent Explosion Moments from Rg Waves Recorded on SPE

    DOE PAGES

    Larmat, Carene; Rougier, Esteban; Patton, Howard John

    2016-11-29

    Seismic moments for the first four chemical tests making up phase I of the Source Physics Experiments (SPE) are estimated from 6-Hz Rg waves recorded along a single radial line of geophones under the assumption that the tests are pure explosions. These apparent explosion moments are compared with moments determined from the reduced displacement potential method applied to free-field data. Light detection and ranging (lidar) observations, strong ground motions on the free surface in the vicinity of ground zero, and moment tensor inversion results are evidence that the fourth test SPE-4P is a pure explosion, and the moments show goodmore » agreement, 8×10 10 N·m for free-field data versus 9×10 10 N·m for Rg waves. In stark contrast, apparent moments for the first three tests are smaller than near-field moments by factors of 3–4. Relative amplitudes for the three tests determined from Rg interferometry using SPE-4P as an empirical Green’s function indicate that radiation patterns are cylindrically symmetric within a factor of 1.25 (25%). This fact assures that the apparent moments are reliable even though they were measured on just one azimuth. Spallation occurred on the first three tests, and ground-based lidar detected permanent deformations. As such, the source medium suffered late-time damage. In conclusion, destructive interference between Rg waves radiated by explosion and damage sources will reduce amplitudes and explain why apparent moments are smaller than near-field moments based on compressional energy emitted directly from the source.« less

  1. Apparent Explosion Moments from Rg Waves Recorded on SPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larmat, Carene; Rougier, Esteban; Patton, Howard John

    Seismic moments for the first four chemical tests making up phase I of the Source Physics Experiments (SPE) are estimated from 6-Hz Rg waves recorded along a single radial line of geophones under the assumption that the tests are pure explosions. These apparent explosion moments are compared with moments determined from the reduced displacement potential method applied to free-field data. Light detection and ranging (lidar) observations, strong ground motions on the free surface in the vicinity of ground zero, and moment tensor inversion results are evidence that the fourth test SPE-4P is a pure explosion, and the moments show goodmore » agreement, 8×10 10 N·m for free-field data versus 9×10 10 N·m for Rg waves. In stark contrast, apparent moments for the first three tests are smaller than near-field moments by factors of 3–4. Relative amplitudes for the three tests determined from Rg interferometry using SPE-4P as an empirical Green’s function indicate that radiation patterns are cylindrically symmetric within a factor of 1.25 (25%). This fact assures that the apparent moments are reliable even though they were measured on just one azimuth. Spallation occurred on the first three tests, and ground-based lidar detected permanent deformations. As such, the source medium suffered late-time damage. In conclusion, destructive interference between Rg waves radiated by explosion and damage sources will reduce amplitudes and explain why apparent moments are smaller than near-field moments based on compressional energy emitted directly from the source.« less

  2. Preliminary evidence that light through the eyelids can suppress melatonin and phase shift dim light melatonin onset

    PubMed Central

    2012-01-01

    Background A previous study reported a method for measuring the spectral transmittance of individual human eyelids. A prototype light mask using narrow-band “green” light (λmax = 527 nm) was used to deliver light through closed eyelids in two within-subjects studies. The first study investigated whether an individual-specific light dose could suppress melatonin by 40% through the closed eyelid without disrupting sleep. The light doses were delivered at three times during the night: 1) beginning (while subjects were awake), 2) middle (during rapid eye movement (REM) sleep), and 3) end (during non-REM sleep). The second study investigated whether two individual-specific light doses expected to suppress melatonin by 30% and 60% and delivered through subjects’ closed eyelids before the time of their predicted minimum core body temperature would phase delay the timing of their dim light melatonin onset (DLMO). Findings Compared to a dark control night, light delivered through eyelids suppressed melatonin by 36% (p = 0.01) after 60-minute light exposure at the beginning, 45% (p = 0.01) at the middle, and 56% (p < 0.0001) at the end of the night. In the second study, compared to a dark control night, melatonin was suppressed by 25% (p = 0.03) and by 45% (p = 0.009) and circadian phase, as measured by DLMO, was delayed by 17 minutes (p = 0.03) and 71 minutes (ns) after 60-minute exposures to light levels 1 and 2, respectively. Conclusions These studies demonstrate that individual-specific doses of light delivered through closed eyelids can suppress melatonin and phase shift DLMO and may be used to treat circadian sleep disorders. PMID:22564396

  3. Preliminary evidence that light through the eyelids can suppress melatonin and phase shift dim light melatonin onset.

    PubMed

    Figueiro, Mariana G; Rea, Mark S

    2012-05-07

    A previous study reported a method for measuring the spectral transmittance of individual human eyelids. A prototype light mask using narrow-band "green" light (λmax = 527 nm) was used to deliver light through closed eyelids in two within-subjects studies. The first study investigated whether an individual-specific light dose could suppress melatonin by 40% through the closed eyelid without disrupting sleep. The light doses were delivered at three times during the night: 1) beginning (while subjects were awake), 2) middle (during rapid eye movement (REM) sleep), and 3) end (during non-REM sleep). The second study investigated whether two individual-specific light doses expected to suppress melatonin by 30% and 60% and delivered through subjects' closed eyelids before the time of their predicted minimum core body temperature would phase delay the timing of their dim light melatonin onset (DLMO). Compared to a dark control night, light delivered through eyelids suppressed melatonin by 36% (p = 0.01) after 60-minute light exposure at the beginning, 45% (p = 0.01) at the middle, and 56% (p < 0.0001) at the end of the night. In the second study, compared to a dark control night, melatonin was suppressed by 25% (p = 0.03) and by 45% (p = 0.009) and circadian phase, as measured by DLMO, was delayed by 17 minutes (p = 0.03) and 71 minutes (ns) after 60-minute exposures to light levels 1 and 2, respectively. These studies demonstrate that individual-specific doses of light delivered through closed eyelids can suppress melatonin and phase shift DLMO and may be used to treat circadian sleep disorders.

  4. Control over high peak-power laser light and laser-driven X-rays

    NASA Astrophysics Data System (ADS)

    Zhao, Baozhen; Banerjee, Sudeep; Yan, Wenchao; Zhang, Ping; Zhang, Jun; Golovin, Grigory; Liu, Cheng; Fruhling, Colton; Haden, Daniel; Chen, Shouyuan; Umstadter, Donald

    2018-04-01

    An optical system was demonstrated that enables continuous control over the peak power level of ultrashort duration laser light. The optical characteristics of amplified and compressed femtosecond-duration light from a chirped-pulse amplification laser are shown to remain invariant and maintain high-fidelity using this system. When the peak power was varied by an order-of-magnitude, up to its maximum attainable value, the phase, spectral bandwidth, polarization state, and focusability of the light remained constant. This capability led to precise control of the focused laser intensity and enabled a correspondingly high level of control over the power of an all-laser-driven Thomson X-ray light source.

  5. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris.

    PubMed

    Kim, Dae Geun; Lee, Changsu; Park, Seung-Moon; Choi, Yoon-E

    2014-05-01

    LEDs light offer several advantages over the conventional lamps, thereby being considered as the optimal light sources for microalgal cultivation. In this study, various light-emitting diodes (LEDs) especially red and blue color with different light wavelengths were employed to explore the effects of light source on phototrophic cultivation of Chlorella vulgaris. Blue light illumination led to significantly increased cell size, whereas red light resulted in small-sized cell with active divisions. Based on the discovery of the effect of light wavelengths on microalgal biology, we then applied appropriate wavelength at different growth stages; blue light was illuminated first and then shifted to red light. By doing so, biomass and lipid productivity of C. vulgaris could be significantly increased, compared to that in the control. These results will shed light on a novel approach using LED light for microalgal biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Narrowly peaked forward light scattering on particulate media: II. Angular spreading of light scattered by polystyrene microspheres

    NASA Astrophysics Data System (ADS)

    Turcu, Ioan; Bratfalean, Radu; Neamtu, Silvia

    2008-07-01

    The adequacy of the effective phase function (EPF) used to describe the light scattered at small angles was tested on aqueous suspensions of polystyrene microspheres. Angular resolved light scattering measurements were performed on two types of latex suspension, which contained polystyrene spheres of 3 µm and 5 µm diameters, respectively. The experimental data were fitted with two EPF approximants. If the polystyrene spheres are at least 3 µm in diameter the quasi-ballistic light scattering process can be described relatively well by the EPF in a small angular range centered in the forward direction. The forward light scattering by macroscopic samples containing microspheres can be modeled relatively well if the true Mie single particle scattering phase function is replaced by a simpler Henyey-Greenstein dependence having the same width at half-height as the first scattering lobe.

  7. Monolithic mm-wave phase shifter using optically activated superconducting switches

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Bhasin, Kul B. (Inventor)

    1992-01-01

    A phase shifter is disclosed having a reference path and a delay path, light sources, and superconductive switches. Each of the superconductive switches is terminated in a virtual short circuit, which may be a radial stub. Switching between the reference path and delayed path is accomplished by illuminating the superconductive switches connected to the desired path, while not illuminating the superconductive switches connected to the other path.

  8. Phosphors containing boron and metals of Group IIIA and IIIB

    DOEpatents

    Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-10-31

    A phosphor comprises: (a) at least a first metal selected from the group consisting of yttrium and elements of lanthanide series other than europium; (b) at least a second metal selected from the group consisting of aluminum, gallium, indium, and scandium; (c) boron; and (d) europium. The phosphor is used in light source that comprises a UV radiation source to convert UV radiation to visible light.

  9. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Longhi, E. C.; Bencok, P.; Dobrynin, A.; Rial, E. C. M.; Rose, A.; Steadman, P.; Thompson, C.; Thomson, A.; Wang, H.

    2013-03-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  10. X-Ray Structure determination of the Glycine Cleavage System Protein H of Mycobacterium tuberculosis Using An Inverse Compton Synchrotron X-Ray Source

    PubMed Central

    Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.

    2010-01-01

    Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333

  11. Ultraviolet Communication for Medical Applications

    DTIC Science & Technology

    2013-06-01

    sky was clear and no moonlight was visible during testing. There was light fog and high pollen count (9 grains per m3), and relative humidity was...improved LED light source was evaluated outdoors using the test bench system at a range of 50 m, and received photon counts were consistent with...bench system at a range of 50 m, and received photon counts were consistent with medium data rate communication. Future Phase II efforts will develop

  12. The health risks associated with energy efficient fluorescent, LEDs, and artificial lighting

    NASA Astrophysics Data System (ADS)

    Panahi, Allen

    2014-09-01

    With the phasing out of incandescent lamps in many countries, the introduction of new LED based light sources and luminaries sometimes raise the question of whether the spectral characteristics of the LED and other energy savings Fluorescent lights including the popular CFLs are suitable to replace the traditional incandescent lamps. These concerns are sometimes raised particularly for radiation emissions in the UV and Blue parts of the spectrum. This paper aims to address such concerns for the common `white light' sources typically used in household and other general lighting used in the work place. Recent studies have shown that women working the night shift have an increased probability of developing breast cancer. We like to report on the findings of many studies done by medical professionals, in particular the recent announcement of AMA in the US and many studies conducted in the UK, as well as the European community to increase public awareness on the long term health risks of the optical and opto-biological effects on the human health caused by artificial lighting.

  13. Multimodal imaging of the human knee down to the cellular level

    NASA Astrophysics Data System (ADS)

    Schulz, G.; Götz, C.; Müller-Gerbl, M.; Zanette, I.; Zdora, M.-C.; Khimchenko, A.; Deyhle, H.; Thalmann, P.; Müller, B.

    2017-06-01

    Computed tomography reaches the best spatial resolution for the three-dimensional visualization of human tissues among the available nondestructive clinical imaging techniques. Nowadays, sub-millimeter voxel sizes are regularly obtained. Regarding investigations on true micrometer level, lab-based micro-CT (μCT) has become gold standard. The aim of the present study is firstly the hierarchical investigation of a human knee post mortem using hard X-ray μCT and secondly a multimodal imaging using absorption and phase contrast modes in order to investigate hard (bone) and soft (cartilage) tissues on the cellular level. After the visualization of the entire knee using a clinical CT, a hierarchical imaging study was performed using the lab-system nanotom® m. First, the entire knee was measured with a pixel length of 65 μm. The highest resolution with a pixel length of 3 μm could be achieved after extracting cylindrically shaped plugs from the femoral bones. For the visualization of the cartilage, grating-based phase contrast μCT (I13-2, Diamond Light Source) was performed. With an effective voxel size of 2.3 μm it was possible to visualize individual chondrocytes within the cartilage.

  14. Progress on the superconducting undulator for ANKA and on the instrumentation for R and D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casalbuoni, Sara; Baumbach, Tilo; Grau, Andreas

    2010-06-23

    Superconducting undulators show a larger magnetic field strength for the same gap and period length, as compared to permanent magnet devices, which allows to generate X-ray beams of higher brilliance and with harder spectrum. The worldwide first short period length superconducting undulator is in operation since 2005 at the synchrotron light source ANKA in Karlsruhe [1]. To further drive the development in this field a research and development program is being carried out. In this contribution we report on the last progress of the construction of a 1.5 m long superconducting undulator with a period length of 15 mm, plannedmore » to be installed in ANKA beginning 2010 to be the light source of the new beamline NANO for high resolution X-ray scattering. The key specifications of the system are an undulator parameter K higher than 2 (with a magnetic gap of 5 mm) and a phase error smaller than 3.5 degrees. Cryocoolers will keep the coils at 4.2 K for a beam heat load of 4 W. The ongoing R and D includes improvements in understanding of the magnetic field properties and of the beam heat load mechanisms. The tools and instruments under development to fulfill these tasks are also discussed.« less

  15. Progress on the superconducting undulator for ANKA and on the instrumentation for R&D

    NASA Astrophysics Data System (ADS)

    Casalbuoni, Sara; Baumbach, Tilo; Grau, Andreas; Hagelstein, Michael; de Jauregui, David Saez; Boffo, Cristian; Borlein, Markus; Walter, Wolfgang; Magerl, Andreas; Mashkina, Elena; Vassiljev, Nikita

    2010-06-01

    Superconducting undulators show a larger magnetic field strength for the same gap and period length, as compared to permanent magnet devices, which allows to generate X-ray beams of higher brilliance and with harder spectrum. The worldwide first short period length superconducting undulator is in operation since 2005 at the synchrotron light source ANKA in Karlsruhe [1]. To further drive the development in this field a research and development program is being carried out. In this contribution we report on the last progress of the construction of a 1.5 m long superconducting undulator with a period length of 15 mm, planned to be installed in ANKA beginning 2010 to be the light source of the new beamline NANO for high resolution X-ray scattering. The key specifications of the system are an undulator parameter K higher than 2 (with a magnetic gap of 5 mm) and a phase error smaller than 3.5 degrees. Cryocoolers will keep the coils at 4.2 K for a beam heat load of 4 W. The ongoing R&D includes improvements in understanding of the magnetic field properties and of the beam heat load mechanisms. The tools and instruments under development to fulfill these tasks are also discussed.

  16. VO2 microcrystals as an advanced smart window material at semiconductor to metal transition

    NASA Astrophysics Data System (ADS)

    Basu, Raktima; Magudapathy, P.; Sardar, Manas; Pandian, Ramanathaswamy; Dhara, Sandip

    2017-11-01

    Textured VO2(0 1 1) microcrystals are grown in the monoclinic, M1 phase which undergoes a reversible first order semiconductor to metal transition (SMT) accompanied by a structural phase transition to rutile tetragonal, R phase. Around the phase transition, VO2 also experiences noticeable change in its optical and electrical properties. A change in color of the VO2 micro crystals from white to cyan around the transition temperature is observed, which is further understood by absorption of red light using temperature dependent ultraviolet-visible spectroscopic analysis and photoluminescence studies. The absorption of light in the red region is explained by the optical transition between Hubbard states, confirming the electronic correlation as the driving force for SMT in VO2. The thermochromism in VO2 has been studied for smart window applications so far in the IR region, which supports the opening of the band gap in semiconducting phase; whereas there is hardly any report in the management of visible light. The filtering of blue light along with reflection of infrared above the semiconductor to metal transition temperature make VO2 applicable as advanced smart windows for overall heat management of a closure.

  17. Phase elements by means of a photolithographic system employing a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Aubrecht, Ivo; Miler, Miroslav; Pala, Jan

    2003-07-01

    The system employs a spatial light modulator (SLM), between a pair of crossed polarizers, and an electronic shutter. Transmission of the SLM with the polarizers is controlled by graphical software that defines which pixels are fully transparent and which are fully opaque. While a particular binary graphics is on the SLM the electronic shutter allows light to pass for a certain time. The graphics is imaged, by an objective, onto a photoresist plate. A mercury lamp is used as a light source. The graphics changes after each exposition and the whole sequence of images determines the resultant surface-relief modulation.

  18. AMS+ALS: Kinetic and Product Studies of the Heterogeneous Oxidation of Organic Aerosol at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Kroll, J. H.; Wilson, K. R.; Kessler, S. H.; Browne, E. C.; Nah, T.; Smith, J.; Worsnop, D. R.

    2014-12-01

    The atmospheric oxidation of condensed-phase organic species can have a major influence on the composition, properties, and impacts of organic aerosol (OA); however the rates and products of such "aging" reactions are poorly constrained. Here we describe a series of laboratory experiments aimed at better understanding one class of aging reactions, the heterogeneous oxidation of OA by gas-phase oxidants. Central to these experiments is the availability of vacuum ultraviolet (VUV) light at the Chemical Dynamics Beamline of the Advanced Light Source at LBNL, which enables the implementation of VUV photoionization aerosol mass spectrometry. This technique allows for the real-time, speciated measurement of OA composition, yielding molecular information that is highly complementary to ensemble data from electron-impact ionization. OA composition is measured with both ionization schemes as a function of oxidant exposure within a flow reactor, providing detailed information on the kinetics and products of heterogeneous oxidation over multiple generations of oxidation. Specific topics investigated include the branching between functionalization and fragmentation of OA components, the formation of secondary organic aerosol from photolytically-generated radical species, and the heterogeneous aging of soot-associated organic species.

  19. Ambiguity resolving based on cosine property of phase differences for 3D source localization with uniform circular array

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wang, Shuhong; Liu, Zhen; Wei, Xizhang

    2017-07-01

    Localization of a source whose half-wavelength is smaller than the array aperture would suffer from serious phase ambiguity problem, which also appears in recently proposed phase-based algorithms. In this paper, by using the centro-symmetry of fixed uniform circular array (UCA) with even number of sensors, the source's angles and range can be decoupled and a novel ambiguity resolving approach is addressed for phase-based algorithms of source's 3-D localization (azimuth angle, elevation angle, and range). In the proposed method, by using the cosine property of unambiguous phase differences, ambiguity searching and actual-value matching are first employed to obtain actual phase differences and corresponding source's angles. Then, the unambiguous angles are utilized to estimate the source's range based on a one dimension multiple signal classification (1-D MUSIC) estimator. Finally, simulation experiments investigate the influence of step size in search and SNR on performance of ambiguity resolution and demonstrate the satisfactory estimation performance of the proposed method.

  20. Theoretical Models of Optical Transients. I. A Broad Exploration of the Duration-Luminosity Phase Space

    NASA Astrophysics Data System (ADS)

    Villar, V. Ashley; Berger, Edo; Metzger, Brian D.; Guillochon, James

    2017-11-01

    The duration-luminosity phase space (DLPS) of optical transients is used, mostly heuristically, to compare various classes of transient events, to explore the origin of new transients, and to influence optical survey observing strategies. For example, several observational searches have been guided by intriguing voids and gaps in this phase space. However, we should ask, do we expect to find transients in these voids given our understanding of the various heating sources operating in astrophysical transients? In this work, we explore a broad range of theoretical models and empirical relations to generate optical light curves and to populate the DLPS. We explore transients powered by adiabatic expansion, radioactive decay, magnetar spin-down, and circumstellar interaction. For each heating source, we provide a concise summary of the basic physical processes, a physically motivated choice of model parameter ranges, an overall summary of the resulting light curves and their occupied range in the DLPS, and how the various model input parameters affect the light curves. We specifically explore the key voids discussed in the literature: the intermediate-luminosity gap between classical novae and supernovae, and short-duration transients (≲ 10 days). We find that few physical models lead to transients that occupy these voids. Moreover, we find that only relativistic expansion can produce fast and luminous transients, while for all other heating sources events with durations ≲ 10 days are dim ({M}{{R}}≳ -15 mag). Finally, we explore the detection potential of optical surveys (e.g., Large Synoptic Survey Telescope) in the DLPS and quantify the notion that short-duration and dim transients are exponentially more difficult to discover in untargeted surveys.

  1. LY2033298, a positive allosteric modulator at muscarinic M₄ receptors, enhances inhibition by oxotremorine of light-induced phase shifts in hamster circadian activity rhythms.

    PubMed

    Gannon, Robert L; Millan, Mark J

    2012-11-01

    Entrainment of circadian rhythms to the light-dark cycle is essential for restorative sleep, and abnormal sleep timing is implicated in central nervous system (CNS) disorders like depression, schizophrenia, and Alzheimer's disease. Many transmitters, including acetylcholine, that exerts its actions via muscarinic receptors modulate the suprachiasmatic nucleus, the master pacemaker. Since positive allosteric modulators of muscarinic M(4) receptors are candidates for treatment of mood and cognitive deficits of CNS disorders, it is important to evaluate their circadian actions. The effects of intraperitoneally applied muscarinic agents on circadian wheel-running rhythms were measured employing hamsters, a model organism for studying activity rhythms. Systemic administration of the muscarinic receptor agonist oxotremorine (0.01-0.04 mg/kg) inhibited light-induced phase delays and advances of hamster circadian wheel-running rhythms. The M₄ positive allosteric modulator, LY2033298 (10-40 mg/kg), had no effect on light-induced phase shifts when administered alone, yet significantly enhanced (at 20 mg/kg) the inhibitory influence of oxotremorine on light-induced phase delays. In addition, the muscarinic receptor antagonist, scopolamine, which was without effect on light-induced phase shifts when administered alone (0.001-0.1 mg/kg), antagonized (at 0.1 mg/kg) the inhibitory effect of oxotremorine and LY2033298 on light-induced phase delays. These results are the first to demonstrate that systemically applied muscarinic receptor agonists modulate circadian activity rhythms, and they also reveal a specific role for M₄ receptors. It will be of importance to evaluate circadian actions of psychotropic drugs acting via M₄ receptors, since they may display beneficial properties under pathological conditions.

  2. The Initial Development of Transient Volcanic Plumes as a Function of Source Conditions

    NASA Astrophysics Data System (ADS)

    Tournigand, Pierre-Yves; Taddeucci, Jacopo; Gaudin, Damien; Peña Fernández, Juan José; Del Bello, Elisabetta; Scarlato, Piergiorgio; Kueppers, Ulrich; Sesterhenn, Jörn; Yokoo, Akihiko

    2017-12-01

    Transient volcanic plumes, having similar eruption duration and rise timescales, characterize many unsteady Strombolian to Vulcanian eruptions. Despite being more common, such plumes are less studied than their steady state counterpart from stronger eruptions. Here we investigate the initial dynamics of transient volcanic plumes using high-speed (visible light and thermal) and high-resolution (visible light) videos from Strombolian to Vulcanian eruptions of Stromboli (Italy), Fuego (Guatemala), and Sakurajima (Japan) volcanoes. Physical parameterization of the plumes has been performed by defining their front velocity, velocity field, volume, and apparent surface temperature. We also characterized the ejection of the gas-pyroclast mixture at the vent, in terms of number, location, duration, and frequency of individual ejection pulses and of time-resolved mass eruption rate of the ejecta's ash fraction. Front velocity evolves along two distinct trends related to the initial gas-thrust phase and later buoyant phase. Plumes' velocity field, obtained via optical flow analysis, highlights different features, including initial jets and the formation and/or merging of ring vortexes at different scales. Plume volume increases over time following a power law trend common to all volcanoes and affected by discharge history at the vent. Time-resolved ash eruption rates range between 102 and 107 kg/s and may vary up to 2 orders of magnitude within the first seconds of eruption. Our results help detailing how the number, location, angle, duration, velocity, and time interval between ejection pulses at the vents crucially control the initial (first tens of second), and possibly later, evolution of transient volcanic plumes.

  3. Phase-shifting interference microscope with extendable field of measurement

    NASA Astrophysics Data System (ADS)

    Lin, Shyh-Tsong; Hsu, Wei-Feng; Wang, Ming-Shiang

    2018-04-01

    An innovative phase-shifting interference microscope aimed at extending the field of measurement is proposed in this paper. The microscope comprises a light source module, a phase modulation module, and an interferometric module, which reconstructs the micro-structure contours of samples using the five-step phase-shifting algorithm. This paper discusses the measurement theory and outlines the configuration, experimental setup, and experimental results obtained using the proposed interference microscope. The results confirm the efficacy of the microscope, achieving a standard deviation of 2.4 nm from a step height of 86.2 nm in multiple examinations.

  4. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Strum, R.; Stiles, D.

    In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.

  5. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    DOE PAGES

    Liu, Y.; Strum, R.; Stiles, D.; ...

    2017-11-20

    In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.

  6. Synthesis and Characterization of the First Liquid Single Source Precursors for the Deposition of Ternary Chalcopyrite (CuInS2) Thin Film Materials

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Cowen, Jonathan; Hepp, Aloysius

    2002-01-01

    Molecular engineering of ternary single source precursors based on the [{PBu3}2Cu(SR')2In(SR')2] architecture have afforded the first liquid CIS ternary single source precursors (when R = Et, n-Pr), which are suitable for low temperature deposition (< 350 C). Thermogravimetric analyses (TGA) and modulated-differential scanning calorimetry (DSC) confirm their liquid phase and reduced stability. X-ray diffraction studies, energy dispersive analyzer (EDS), and scanning electron microscopy (SEM) support the formation of the single-phase chalcopyrite CuInS2 at low temperatures.

  7. Pulp Chamber Heating: An In Vitro Study Evaluating Different Light Sources and Resin Composite Layers.

    PubMed

    Andreatta, Lígia Maria Lima; Furuse, Adilson Yoshio; Prakki, Anuradha; Bombonatti, Juliana Fraga Soares; Mondelli, Rafael Francisco Lia

    2016-01-01

    The aim of the present in vitro study was to evaluate the temperature variation inside the pulp chamber during light-activation of the adhesive and resin composite layers with different light sources. Cavities measuring 8x10 mm were prepared on the buccal surface of bovine incisors, leaving a remaining dentin thickness of 1 mm. Specimens were placed in a 37±1 °C water bath to standardize the temperature. The temperature in the pulp chamber was measured every 10 s during 40 s of light activation of the adhesive system (SBMP-3M/ESPE) and in the three consecutive 1-mm-thick layers of resin composite (Z250-3M/ESPE). Three light source devices were evaluated: Elipar 2500 (QTH), LD Max (LED low irradiance) and VALO (LED high irradiance). The results were submitted to one-way ANOVA with repeated measures and Tukey's test, both with p<0.001. The exothermic reaction warming was observed in the Z250 increments, but not in the SBMP. The high irradiance LED showed a higher temperature average (42.7±1.56 °C), followed by the quartz-tungsten-halogen light (40.6±0.67 °C) and the lower irradiance LED (37.8±0.12 °C). Higher temperature increases were observed with the adhesive and the first resin composite increment light-activation, regardless of the employed light source. From the second increment of Z250, the restorative material acted as a dispersive structure of heat, reducing temperature increases. Regardless the light source and restorative step, the temperature increased with the irradiation time. It may be concluded that the light source, irradiation time and resin composite thickness interfered in the temperature variation inside the pulp chamber.

  8. Plant Chemiluminescence

    PubMed Central

    Abeles, Fred B.; Leather, Gerald R.; Forrence, Leonard E.

    1978-01-01

    Light production by plants was confirmed by measuring chemiluminescence from root and stem tissue of peas (Pisum sativum), beans (Phaseolus vulgaris), and corn (Zea mays) in a modified scintillation spectrophotometer. Chemiluminescence was inhibited by treating pea roots with boiling ethanol or by placing them in a N2 gas phase. Chemiluminescence was increased by an O2 gas phase or by the addition of luminol. NaN3 and NaCN blocked both in vitro and in vivo chemiluminescence. It is postulated that the source of light is the hydrogen peroxide-peroxidase enzyme system. It is known that this system is responsible for chemiluminescence in leukocytes and it seems likely that a similar system occurs in plants. PMID:16660587

  9. Scannerless loss modulated flash color range imaging

    DOEpatents

    Sandusky, John V [Albuquerque, NM; Pitts, Todd Alan [Rio Rancho, NM

    2008-09-02

    Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

  10. Scannerless loss modulated flash color range imaging

    DOEpatents

    Sandusky, John V [Albuquerque, NM; Pitts, Todd Alan [Rio Rancho, NM

    2009-02-24

    Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

  11. Contrast features of breast cancer in frequency-domain laser scanning mammography

    NASA Astrophysics Data System (ADS)

    Moesta, K. Thomas; Fantini, Sergio; Jess, Helge; Totkas, Susan; Franceschini, Maria-Angela; Kaschke, Michael; Schlag, Peter M.

    1998-04-01

    Frequency-domain optical mammography has been advocated to improve contrast and thus cancer detectability in breast transillumination. To the best of our knowledge, this report provides the first systematic clinical results of a frequency-domain laser scanning mammograph (FLM). The instrument provides monochromatic light at 690 and 810 nm, whose intensity is modulated at 110.0008 MHz, respectively. The breast is scanned by stepwise positioning of source and detector, and amplitude and phase for both wavelengths are measured by a photomultiplier tube using heterodyne detection. Images are formed representing amplitude or phase data on linear gray scales. Furthermore, various algorithms carrying on more than one signal were essayed. Twenty visible cancers out of 25 cancers in the first 59 investigations were analyzed for their quantitative contrast with respect to the whole breast or to defined reference areas. Contrast definitions refer to the signal itself, to the signal noise, or were based on nonparametric comparison. The amplitude signal provides better contrast than the phase signal. Ratio images between red and IR amplitudes gave variable results; in some cases the tumor contrast was canceled. The algorithms to determine (mu) a and (mu) sPRM from amplitude and phase data did not significantly improve upon objective contrast. The N algorithm, using the phase signal to flatten the amplitude signal did significantly improve upon contrast according to contrast definitions 1 and 2, however, did not improve upon nonparametric contrast. Thus, with the current instrumentation, the phase signal is helpful to correct for the complex and variable geometry of the breast. However, an independent informational content for tumor differentiation could not be determined. The flat field algorithm did greatly enhance optical contrast in comparison with amplitude or amplitude ratio images. Further evaluation of FLM will have to be based on the N-algorithm images.

  12. FERMI LARGE AREA TELESCOPE DETECTION OF PULSED gamma-RAYS FROM THE VELA-LIKE PULSARS PSR J1048-5832 AND PSR J2229+6114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ackermann, M.; Ajello, M.

    2009-12-01

    We report the detection of gamma-ray pulsations (>=0.1 GeV) from PSR J2229+6114 and PSR J1048-5832, the latter having been detected as a low-significance pulsar by EGRET. Data in the gamma-ray band were acquired by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope, while the radio rotational ephemerides used to fold the gamma-ray light curves were obtained using the Green Bank Telescope, the Lovell telescope at Jodrell Bank, and the Parkes Telescope. The two young radio pulsars, located within the error circles of the previously unidentified EGRET sources 3EG J1048-5840 and 3EG J2227+6122, present spin-down characteristics similar tomore » the Vela pulsar. PSR J1048-5832 shows two sharp peaks at phases 0.15 +- 0.01 and 0.57 +- 0.01 relative to the radio pulse confirming the EGRET light curve, while PSR J2229+6114 presents a very broad peak at phase 0.49 +- 0.01. The gamma-ray spectra above 0.1 GeV of both pulsars are fit with power laws having exponential cutoffs near 3 GeV, leading to integral photon fluxes of (2.19 +- 0.22 +- 0.32) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J1048-5832 and (3.77 +- 0.22 +- 0.44) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J2229+6114. The first uncertainty is statistical and the second is systematic. PSR J1048-5832 is one of the two LAT sources which were entangled together as 3EG J1048-5840. These detections add to the growing number of young gamma-ray pulsars that make up the dominant population of GeV gamma-ray sources in the Galactic plane.« less

  13. Fermi LAT Detection of Pulsed Gamma-Rays From the Vela-Like Pulsars PSR J1048-5832 and PSR J2229+6114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.

    We report the detection of {gamma}-ray pulsations ({ge}0.1 GeV) from PSR J2229+6114 and PSR J1048-5832, the latter having been detected as a low-significance pulsar by EGRET. Data in the {gamma}-ray band were acquired by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope, while the radio rotational ephemerides used to fold the {gamma}-ray light curves were obtained using the Green Bank Telescope, the Lovell telescope at Jodrell Bank, and the Parkes Telescope. The two young radio pulsars, located within the error circles of the previously unidentified EGRET sources 3EG J1048-5840 and 3EG J2227+6122, present spin-down characteristics similar tomore » the Vela pulsar. PSR J1048-5832 shows two sharp peaks at phases 0.15 {+-} 0.01 and 0.57 {+-} 0.01 relative to the radio pulse confirming the EGRET light curve, while PSR J2229+6114 presents a very broad peak at phase 0.49 {+-} 0.01. The {gamma}-ray spectra above 0.1 GeV of both pulsars are fit with power laws having exponential cutoffs near 3 GeV, leading to integral photon fluxes of (2.19 {+-} 0.22 {+-} 0.32) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J1048-5832 and (3.77 {+-} 0.22 {+-} 0.44) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J2229+6114. The first uncertainty is statistical and the second is systematic. PSR J1048-5832 is one of the two LAT sources which were entangled together as 3EG J1048-5840. These detections add to the growing number of young {gamma}-ray pulsars that make up the dominant population of GeV {gamma}-ray sources in the Galactic plane.« less

  14. OPO-based compact laser projection display

    NASA Astrophysics Data System (ADS)

    Lee, Dicky; Moulton, Peter F.; Bergstedt, Robert; Flint, Graham W.

    2001-09-01

    In this paper we discuss our red, green, and blue (RGB) optical parametric oscillator (OPO) based laser projection display. The complete project display consists of two subsystems, the RGB-OPO laser head and the light modulation unit. The RGB lights from rack-mounted laser head are fibers coupled to the projection unit for independent placement. The light source consists of a diode-pumped pump laser and a LBO-based OPO. Based on our Nd:YLF gain module design, the pump laser is frequency doubled to serve as the pump source for the OPO. The unconverted pump power is recycled as the green light for projection. The singly resonant, non- critically phase-matched (NCPM) OPO has, to date, generated 13 W of 898-nm signal power and an estimated 9.3 W of intra- cavity idler power at 1256 nm. With approximately 76% of pump depletion, the power of the residual green light for projection is about 5.8 W. We have extra-cavity doubled the signal to produce approximately 3.5 W of 449-nm blue light and intra-cavity doubled the idler to produce approximately 6 W of 628-nm red light. The OPO-based RGB source generates about 4000 lumens of D65-balanced white light. The overall electrical power on a commercially available JVC's three- panel D-ILA (reflective LCD) projector with the arc-lamp removed and extensive modifications. The projector has a native resolution of 1365 x 1024 and the expected on screen lumens from our laser display is about 1200 lumens.

  15. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOEpatents

    Tavlarides, Lawrence L.; Bae, Jae-Heum

    1991-01-01

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes.

  16. A three pulse phase response curve to three milligrams of melatonin in humans

    PubMed Central

    Burgess, Helen J; Revell, Victoria L; Eastman, Charmane I

    2008-01-01

    Exogenous melatonin is increasingly used for its phase shifting and soporific effects. We generated a three pulse phase response curve (PRC) to exogenous melatonin (3 mg) by administering it to free-running subjects. Young healthy subjects (n = 27) participated in two 5 day laboratory sessions, each preceded by at least a week of habitual, but fixed sleep. Each 5 day laboratory session started and ended with a phase assessment to measure the circadian rhythm of endogenous melatonin in dim light using 30 min saliva samples. In between were three days in an ultradian dim light (< 150 lux)–dark cycle (LD 2.5 : 1.5) during which each subject took one pill per day at the same clock time (3 mg melatonin or placebo, double blind, counterbalanced). Each individual's phase shift to exogenous melatonin was corrected by subtracting their phase shift to placebo (a free-run). The resulting PRC has a phase advance portion peaking about 5 h before the dim light melatonin onset, in the afternoon. The phase delay portion peaks about 11 h after the dim light melatonin onset, shortly after the usual time of morning awakening. A dead zone of minimal phase shifts occurred around the first half of habitual sleep. The fitted maximum advance and delay shifts were 1.8 h and 1.3 h, respectively. This new PRC will aid in determining the optimal time to administer exogenous melatonin to achieve desired phase shifts and demonstrates that using exogenous melatonin as a sleep aid at night has minimal phase shifting effects. PMID:18006583

  17. First Structural Steel Erected at NSLS-II

    ScienceCinema

    None

    2017-12-09

    Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.

  18. Gamma-Ray Light Curves And Variability Of Bright Fermi -Detected Blazars

    DOE PAGES

    Abdo, A. A.

    2010-09-22

    This paper presents light curves as well as the first systematic characterization of variability of the 106 objects in the high-confidence Fermi Large Area Telescope Bright AGN Sample (LBAS). Weekly light curves of this sample, obtained during the first 11 months of the Fermi survey (2008 August 4-2009 July 4), are tested for variability and their properties are quantified through autocorrelation function and structure function analysis. For the brightest sources, 3 or 4 day binned light curves are extracted in order to determine power density spectra (PDSs) and to fit the temporal structure of major flares. More than 50% ofmore » the sources are found to be variable with high significance, where high states do not exceed 1/4 of the total observation range. Variation amplitudes are larger for flat spectrum radio quasars and low/intermediate synchrotron frequency peaked BL Lac objects. Autocorrelation timescales derived from weekly light curves vary from four to a dozen of weeks. Variable sources of the sample have weekly and 3-4 day bin light curves that can be described by 1/f α PDS, and show two kinds of gamma-ray variability: (1) rather constant baseline with sporadic flaring activity characterized by flatter PDS slopes resembling flickering and red noise with occasional intermittence and (2)—measured for a few blazars showing strong activity—complex and structured temporal profiles characterized by long-term memory and steeper PDS slopes, reflecting a random walk underlying mechanism. The average slope of the PDS of the brightest 22 FSRQs and of the 6 brightest BL Lacs is 1.5 and 1.7, respectively. The study of temporal profiles of well-resolved flares observed in the 10 brightest LBAS sources shows that they generally have symmetric profiles and that their total duration vary between 10 and 100 days. Results presented here can assist in source class recognition for unidentified sources and can serve as reference for more detailed analysis of the brightest gamma-ray blazars.« less

  19. Application of bacteriorhodopsin films in an adaptive-focusing schlieren system

    NASA Astrophysics Data System (ADS)

    Downie, John D.

    1995-09-01

    The photochromic property of bacteriorhodopsin films is exploited in the application of a focusing schlieren optical system for the visualization of optical phase information. By encoding an image on the film with light of one wavelength and reading out with a different wavelength, the readout beam can effectively see the photographic negative of the original image. The potential advantage of this system over previous focusing schlieren systems is that the updatable nature of the bacteriorhodopsin film allows system adaptation. I discuss two image encoding and readout techniques for the bacteriorhodopsin and use film transmission characteristics to choose the more appropriate method. I demonstrate the system principle with experimental results using argon-ion and He-Cd lasers as the two light sources of different wavelengths, and I discuss current limitations to implementation with a white-light source.

  20. Application of Bacteriorhodopsin Films in an Adaptive-Focusing Schlieren System

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1995-01-01

    The photochromic property of bacteriorhodopsin films is exploited in the application of a focusing schlieren optical system for the visualization of optical phase information. By encoding an image on the film with light of one wavelength and reading out with a different wavelength, the readout beam can effectively see the photographic negative of the original image. The potential advantage of this system over previous focusing schlieren systems is that the updatable nature of the bacteriorhodopsin film allows system adaptation. I discuss two image encoding and readout techniques for the bacteriorhodopsin and use film transmission characteristics to choose the more appropriate method. I demonstrate the system principle with experimental results using argon-ion and He-Cd lasers as the two light sources of different wavelengths, and I discuss current limitations to implementation with a white-light source.

  1. The Advanced Light Source Elliptically Polarizing Undulator

    NASA Astrophysics Data System (ADS)

    Marks, Steve; Cortopassi, Christopher; Devries, Jan; Hoyer, Egon; Leinbach, Robert; Minamihara, Yoshi; Padmore, Howard; Pipersky, Paul; Plate, Dave; Schlueter, Ross; Young, Anthony

    1997-05-01

    An elliptically polarizing undulator for the Advanced Light Source has been designed and is currently under construction. The magnetic design is a four quadrant pure permanent magnet structure featuring moveable magnets to correct phase errors and on axis field integrals. The device is designed with a 5.0 cm period and will produce variably polarized light of any ellipticity, including pure circular and linear. The spectral range at 1.9 GeV for typical elliptical polarization with a degree of circular polarization greater than 0.8 will be from 100 eV to 1500 eV, using the third and fifth spectral harmonics. The device will be switchabe between left and right circular modes at a frequency of up to 0.1 Hz. The 1.95 m long overall length will allow two such devices in a single ALS straight sector.

  2. Microscopy imaging system and method employing stimulated raman spectroscopy as a contrast mechanism

    DOEpatents

    Xie, Xiaoliang Sunney [Lexington, MA; Freudiger, Christian [Boston, MA; Min, Wei [Cambridge, MA

    2011-09-27

    A microscopy imaging system includes a first light source for providing a first train of pulses at a first center optical frequency .omega..sub.1, a second light source for providing a second train of pulses at a second center optical frequency .omega..sub.2, a modulator system, an optical detector, and a processor. The modulator system is for modulating a beam property of the second train of pulses at a modulation frequency f of at least 100 kHz. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of the first train of pulses from the common focal volume by blocking the second train of pulses being modulated. The processor is for detecting, a modulation at the modulation frequency f, of the integrated intensity of the optical frequency components of the first train of pulses to provide a pixel of an image for the microscopy imaging system.

  3. Light extraction block with curved surface

    DOEpatents

    Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.

    2016-03-22

    Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.

  4. Cost-effective bidirectional digitized radio-over-fiber systems employing sigma delta modulation

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Woon; Jung, HyunDo; Park, Jung Ho

    2016-11-01

    We propose a cost effective digitized radio-over-fiber (D-RoF) system employing a sigma delta modulation (SDM) and a bidirectional transmission technique using phase modulated downlink and intensity modulated uplink. SDM is transparent to different radio access technologies and modulation formats, and more suitable for a downlink of wireless system because a digital to analog converter (DAC) can be avoided at the base station (BS). Also, Central station and BS share the same light source by using a phase modulation for the downlink and an intensity modulation for the uplink transmission. Avoiding DACs and light sources have advantages in terms of cost reduction, power consumption, and compatibility with conventional wireless network structure. We have designed a cost effective bidirectional D-RoF system using a low pass SDM and measured the downlink and uplink transmission performance in terms of error vector magnitude, signal spectra, and constellations, which are based on the 10MHz LTE 64-QAM standard.

  5. Resolving multiple propagation paths in time of flight range cameras using direct and global separation methods

    NASA Astrophysics Data System (ADS)

    Whyte, Refael; Streeter, Lee; Cree, Michael J.; Dorrington, Adrian A.

    2015-11-01

    Time of flight (ToF) range cameras illuminate the scene with an amplitude-modulated continuous wave light source and measure the returning modulation envelopes: phase and amplitude. The phase change of the modulation envelope encodes the distance travelled. This technology suffers from measurement errors caused by multiple propagation paths from the light source to the receiving pixel. The multiple paths can be represented as the summation of a direct return, which is the return from the shortest path length, and a global return, which includes all other returns. We develop the use of a sinusoidal pattern from which a closed form solution for the direct and global returns can be computed in nine frames with the constraint that the global return is a spatially lower frequency than the illuminated pattern. In a demonstration on a scene constructed to have strong multipath interference, we find the direct return is not significantly different from the ground truth in 33/136 pixels tested; where for the full-field measurement, it is significantly different for every pixel tested. The variance in the estimated direct phase and amplitude increases by a factor of eight compared with the standard time of flight range camera technique.

  6. High-power LED light sources for optical measurement systems operated in continuous and overdriven pulsed modes

    NASA Astrophysics Data System (ADS)

    Stasicki, Bolesław; Schröder, Andreas; Boden, Fritz; Ludwikowski, Krzysztof

    2017-06-01

    The rapid progress of light emitting diode (LED) technology has recently resulted in the availability of high power devices with unprecedented light emission intensities comparable to those of visible laser light sources. On this basis two versatile devices have been developed, constructed and tested. The first one is a high-power, single-LED illuminator equipped with exchangeable projection lenses providing a homogenous light spot of defined diameter. The second device is a multi-LED illuminator array consisting of a number of high-power LEDs, each integrated with a separate collimating lens. These devices can emit R, G, CG, B, UV or white light and can be operated in pulsed or continuous wave (CW) mode. Using an external trigger signal they can be easily synchronized with cameras or other devices. The mode of operation and all parameters can be controlled by software. Various experiments have shown that these devices have become a versatile and competitive alternative to laser and xenon lamp based light sources. The principle, design, achieved performances and application examples are given in this paper.

  7. Advantages of III-nitride laser diodes in solid-state lighting: Advantages of III-nitride laser diodes in solid-state lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierer, Jonathan J.; Tsao, Jeffrey Y.

    2015-01-14

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from color mixed emitters is equally challenging formore » both LEDs and LDs, with neither source having a direct advantage. Fourth, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. Finally, the smaller area and higher current density operation of LDs provides them with a potential cost advantage over LEDs. These advantages make LDs a compelling source for future SSL.« less

  8. Fusion pumped light source

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  9. Tracheal intubation by novice staff: the direct vision laryngoscope or the lighted stylet (Trachlight)?

    PubMed Central

    Soh, C; Kong, C; Kong, C; Ip-Yam, P; Chin, E; Goh, M

    2002-01-01

    Objective: To compare the ease of use of the direct vision laryngoscope and the lighted stylet (Trachlight) by novice staff. Methods: Ten novice medical officers (MOs) performed orotracheal intubations using either the conventional direct vision laryngoscope (DL) or a lighted stylet device (Trachlight). They performed their DL intubations during the first phase of the study, followed by the Trachlight intubations in the subsequent phase. Results: 51 of 54 (94%) of the DL intubation attempts were successful compared with 36 of 54 (67%) of the Trachlight intubations (p<0.001). The mean (SEM) time for intubation was 44 (7) seconds in the DL group and 66 (13) seconds in the Trachlight group (p=0.004). In addition 45 of 54 (83%) of the DL intubations were successful at the first attempt versus 15 of 54 (28%) in the Trachlight group (p<0.001). Conclusion: The results show that the use of the conventional direct vision laryngoscope in novices is associated with significantly shorter mean intubation times and higher success rates on the first attempt compared with the Trachlight. PMID:12101133

  10. Method and apparatus for remote sensing of molecular species at nanoscale utilizing a reverse photoacoustic effect

    DOEpatents

    Su, Ming [Oviedo, FL; Thundat, Thomas G [Knoxville, TN; Hedden, David [Lenoir City, TN

    2010-02-23

    A method and apparatus for identifying a sample, involves illuminating the sample with light of varying wavelengths, transmitting an acoustic signal against the sample from one portion and receiving a resulting acoustic signal on another portion, detecting a change of phase in the acoustic signal corresponding to the light of varying wavelengths, and analyzing the change of phase in the acoustic signal for the varying wavelengths of illumination to identify the sample. The apparatus has a controlled source for illuminating the sample with light of varying wavelengths, a transmitter for transmitting an acoustic wave, a receiver for receiving the acoustic wave and converting the acoustic wave to an electronic signal, and an electronic circuit for detecting a change of phase in the acoustic wave corresponding to respective ones of the varying wavelengths and outputting the change of phase for the varying wavelengths to allow identification of the sample. The method and apparatus can be used to detect chemical composition or visual features. A transmission mode and a reflection mode of operation are disclosed. The method and apparatus can be applied at nanoscale to detect molecules in a biological sample.

  11. Hypericin-mediated photocytotoxic effect on HT-29 adenocarcinoma cells is reduced by light fractionation with longer dark pause between two unequal light doses.

    PubMed

    Sacková, Veronika; Kuliková, Lucia; Mikes, Jaromír; Kleban, Ján; Fedorocko, Peter

    2005-01-01

    The present study demonstrates the in vitro effect of hypericin-mediated PDT with fractionated light delivery. Cells were photosensitized with unequal light fractions separated by dark intervals (1 or 6 h). We compared the changes in viability, cell number, survival, apoptosis and cell cycle on HT-29 cells irradiated with a single light dose (12 J/cm(2)) to the fractionated light delivery (1 + 11 J/cm(2)) 24 and 48 h after photodynamic treatment. We found that a fractionated light regime with a longer dark period resulted in a decrease of hypericin cytotoxicity. Both cell number and survival were higher after light sensitization with a 6-h dark interval. DNA fragmentation occurred after a single light-dose application, but in contrast no apoptotic DNA formation was detected with a 6-h dark pause. After fractionation the percentage of cells in the G1 phase of the cell cycle was increased, while the proportion of cells in the G2 phase decreased as compared to a single light-dose application, i.e. both percentage of cells in the G1 and G2 phase of the cell cycle were near control levels. We presume that the longer dark interval after the irradiation of cells by first light dose makes them resistant to the effect of the second illumination. These findings confirm that the light application scheme together with other photodynamic protocol components is crucial for the photocytotoxicity of hypericin.

  12. Only lasers can be used for low level laser therapy.

    PubMed

    Moskvin, Sergey Vladimirovich

    2017-12-01

    The question of lasers' exclusivity, as well as the degree of influence of special properties of low-intensity laser illumination (LILI), such as coherence, polarity and monochromaticity, on the effectiveness of low level laser therapy (LLLT) continues to cause arguments. The study analyzes publications from 1973 to 2016, in which laser and conventional light sources are compared, and the following conclusions are drawn. First, there are a lot of publications with incorrect comparison or unfounded statements. Secondly, other sources of light are often meant by LILI without any justification. Thirdly, all studies, in which the comparison is carried out correctly and close parameters of the impact and the model are used, have a firm conclusion that laser light is much more effective. Fourthly, it is uniquely identified that the most important parameter that determines the efficiency of lasers is monochromaticity, i.e., a much narrower spectral width than for all other light sources. Only laser light sources can be used for LLLT! © Author(s) 2017. This article is published with open access by China Medical University.

  13. Effects of evening bright light exposure on melatonin, body temperature and sleep.

    PubMed

    Bunnell; Treiber; Phillips; Berger

    1992-03-01

    Five male subjects were exposed to a single 2-h period of bright (2500 lux) or dim (<100 lux) light prior to sleep on two consecutive nights. The two conditions were repeated the following week in opposite order. Bright light significantly suppressed salivary melatonin and raised rectal temperature 0.3 degrees C (which remained elevated during the first 1.5 h of sleep), without affecting tympanic temperature. Bright light also increased REM latency, NREM period length, EEG spectral power in low frequency, 0.75-8 Hz and sigma, 12-14 Hz (sleep spindle) bandwidths during the first hour of sleep, and power of all frequency bands (0.5-32 Hz) within the first NREMP. Potentiation of EEG slow wave activity (0.5-4.0 Hz) by bright light persisted through the end of the second NREMP. The enhanced low-frequency power and delayed REM sleep after bright light exposure could represent a circadian phase-shift and/or the effect of an elevated rectal temperature, possibly mediated by the suppression of melatonin.

  14. Laser Light Scattering by Shock Waves

    NASA Technical Reports Server (NTRS)

    Panda, J.; Adamovsky, G.

    1995-01-01

    Scattering of coherent light as it propagates parallel to a shock wave, formed in front of a bluff cylindrical body placed in a supersonic stream, is studied experimentally and numerically. Two incident optical fields are considered. First, a large diameter collimated beam is allowed to pass through the shock containing flow. The light intensity distribution in the resultant shadowgraph image, measured by a low light CCD camera, shows well-defined fringes upstream and downstream of the shadow cast by the shock. In the second situation, a narrow laser beam is brought to a grazing incidence on the shock and the scattered light, which appears as a diverging sheet from the point of interaction, is visualized and measured on a screen placed normal to the laser path. Experiments are conducted on shocks formed at various free-stream Mach numbers, M, and total pressures, P(sub 0). It is found that the widths of the shock shadows in a shadowgraph image become independent of M and P(sub 0) when plotted against the jump in the refractive index, (Delta)n, created across the shock. The total scattered light measured from the narrow laser beam and shock interaction also follows the same trend. In the numerical part of the study, the shock is assumed to be a 'phase object', which introduces phase difference between the upstream and downstream propagating parts of the light disturbances. For a given shape and (Delta)n of the bow shock the phase and amplitude modulations are first calculated by ray tracing. The wave front is then propagated to the screen using the Fresnet diffraction equation. The calculated intensity distribution, for both of the incident optical fields, shows good agreement with the experimental data.

  15. Computerized lateral-shear interferometer

    NASA Astrophysics Data System (ADS)

    Hasegan, Sorin A.; Jianu, Angela; Vlad, Valentin I.

    1998-07-01

    A lateral-shear interferometer, coupled with a computer for laser wavefront analysis, is described. A CCD camera is used to transfer the fringe images through a frame-grabber into a PC. 3D phase maps are obtained by fringe pattern processing using a new algorithm for direct spatial reconstruction of the optical phase. The program describes phase maps by Zernike polynomials yielding an analytical description of the wavefront aberration. A compact lateral-shear interferometer has been built using a laser diode as light source, a CCD camera and a rechargeable battery supply, which allows measurements in-situ, if necessary.

  16. The CENNS-10 liquid argon detector to measure CEvNS at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Tayloe, R.

    2018-04-01

    The COHERENT collaboration is deploying a suite of low-energy detectors in a low-background corridor of the ORNL Spallation Neutron Source (SNS) to measure coherent elastic neutrino-nucleus scattering (CEvNS) on an array of nuclear targets employing different detector technologies. A measurement of CEvNS on different nuclei will test the N2-dependence of the CEvNS cross section and further the physics reach of the COHERENT effort. The first step of this program has been realized recently with the observation of CEvNS in a 14.6 kg CsI detector. Operation and deployment of Ge and NaI detectors are also underway. A 22 kg, single-phase, liquid argon detector (CENNS-10) started data-taking in Dec. 2016 and will provide results on CEvNS from a lighter nucleus. Initial results indicate that light output, pulse-shape discrimination, and background suppression are sufficient for a measurement of CEvNS on argon.

  17. An intraocular micro light-emitting diode device for endo-illumination during pars plana vitrectomy.

    PubMed

    Koelbl, Philipp S; Lingenfelder, Christian; Spraul, Christoph W; Kampmeier, Juergen; Koch, Frank Hj; Kim, Yong Keun; Hessling, Martin

    2018-03-01

    Development of a new, fiber-free, single-use endo-illuminator for pars plana vitrectomy as a replacement for fiber-based systems with external light sources. The hand-guided intraocularly placed white micro light-emitting diode is evaluated for its illumination properties and potential photochemical and thermal hazards. A micro light-emitting diode was used to develop a single-use intraocular illumination system. The light-source-on-tip device was implemented in a prototype with 23G trocar compatible outer diameter of 0.6 mm. The experimental testing was performed on porcine eyes. All calculations of possible photochemical and thermal hazards during the application of the intraocular micro light-emitting diode were calculated according to DIN EN ISO 15007-2: 2014. The endo-illuminator generated a homogeneous and bright illumination of the intraocular space. The color impression was physiologic and natural. Contrary to initial apprehension, the possible risk caused by inserting a light-emitting diode into the intraocular vitreous was much smaller when compared to conventional fiber-based illumination systems. The photochemical and thermal hazards allowed a continuous exposure time to the retina of at least 4.7 h. This first intraocular light source showed that a light-emitting diode can be introduced into the eye. The system can be built as single-use illumination system. This light-source-on-tip light-emitting diode-endo-illumination combines a chandelier wide-angle illumination with an adjustable endo-illuminator.

  18. ASPHERICITY, INTERACTION, AND DUST IN THE TYPE II-P/II-L SUPERNOVA 2013EJ IN MESSIER 74

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauerhan, Jon C.; Graham, Melissa L.; Filippenko, Alexei V.

    2017-01-10

    SN 2013ej is a well-studied core-collapse supernova (SN) that stemmed from a directly identified red supergiant (RSG) progenitor in galaxy M74. The source exhibits signs of substantial geometric asphericity, X-rays from persistent interaction with circumstellar material (CSM), thermal emission from warm dust, and a light curve that appears intermediate between supernovae of Types II-P and II-L. The proximity of this source motivates a close inspection of these physical characteristics and their potential interconnection. We present multiepoch spectropolarimetry of SN 2013ej during the first 107 days and deep optical spectroscopy and ultraviolet through infrared photometry past ∼800 days. SN 2013ej exhibitsmore » the strongest and most persistent continuum and line polarization ever observed for a SN of its class during the recombination phase. Modeling indicates that the data are consistent with an oblate ellipsoidal photosphere, viewed nearly edge-on and probably augmented by optical scattering from circumstellar dust. We suggest that interaction with an equatorial distribution of CSM, perhaps the result of binary evolution, is responsible for generating the photospheric asphericity. Relatedly, our late-time optical imaging and spectroscopy show that asymmetric CSM interaction is ongoing, and the morphology of broad H α emission from shock-excited ejecta provides additional evidence that the geometry of the interaction region is ellipsoidal. Alternatively, a prolate ellipsoidal geometry from an intrinsically bipolar explosion is also a plausible interpretation of the data but would probably require a ballistic jet of radioactive material capable of penetrating the hydrogen envelope early in the recombination phase. Finally, our latest space-based optical imaging confirms that the late interaction-powered light curve dropped below the stellar progenitor level, confirming the RSG star’s association with the explosion.« less

  19. From The Ground Up I: Light Pollution Sources in Flagstaff, Arizona

    DTIC Science & Technology

    2009-02-01

    0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing...Lighting Codes The 1989 lighting codes for the first time anywhere estab- lished overall limits on the amount of outdoor lighting. Origin- ally, four...fiducial time . It is important to note at least one category of lighting that we did not include or study, which may be a substantial contributor to the

  20. Honeybee navigation: following routes using polarized-light cues

    PubMed Central

    Kraft, P.; Evangelista, C.; Dacke, M.; Labhart, T.; Srinivasan, M. V.

    2011-01-01

    While it is generally accepted that honeybees (Apis mellifera) are capable of using the pattern of polarized light in the sky to navigate to a food source, there is little or no direct behavioural evidence that they actually do so. We have examined whether bees can be trained to find their way through a maze composed of four interconnected tunnels, by using directional information provided by polarized light illumination from the ceilings of the tunnels. The results show that bees can learn this task, thus demonstrating directly, and for the first time, that bees are indeed capable of using the polarized-light information in the sky as a compass to steer their way to a food source. PMID:21282174

  1. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    DOEpatents

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  2. Interactive optical panel

    DOEpatents

    Veligdan, J.T.

    1995-10-03

    An interactive optical panel assembly includes an optical panel having a plurality of ribbon optical waveguides stacked together with opposite ends thereof defining panel first and second faces. A light source provides an image beam to the panel first face for being channeled through the waveguides and emitted from the panel second face in the form of a viewable light image. A remote device produces a response beam over a discrete selection area of the panel second face for being channeled through at least one of the waveguides toward the panel first face. A light sensor is disposed across a plurality of the waveguides for detecting the response beam therein for providing interactive capability. 10 figs.

  3. Developments in suspended particle devices (SPD)

    NASA Astrophysics Data System (ADS)

    Yu, Byung-Seok; Kim, Eung-Soo; Lee, Young-Woo

    1997-10-01

    Light valve using suspended particles was invented first by Edwin H. Land. But it could not be made to large area because it was a liquid cell containing a suspension of the particles between both transparent conductive layers. For several years, so many trials have been to make a large size of light valve. Recently we could make the light valve of large size which is film type by phase separation and/or emulsification methods. In this paper, we are introducing the light valve film made by HGI.

  4. Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bing; Tan, Dongyue; Lee, Tung Lik

    Ultrasound processing of metal alloys is an environmental friendly and promising green technology for liquid metal degassing and microstructural refinement. However many fundamental issues in this field are still not fully understood, because of the difficulties in direct observation of the dynamic behaviours caused by ultrasound inside liquid metal and semisolid metals during the solidification processes. In this paper, we report a systematic study using the ultrafast synchrotron X-ray imaging (up to 271,554 frame per second) technique available at the Advanced Photon Source, USA and Diamond Light Source, UK to investigate the dynamic interactions between the ultrasonic bubbles/acoustic flow andmore » the solidifying phases in a Bi-8%Zn alloy. The experimental results were complimented by numerical modelling. The chaotic bubble implosion and dynamic bubble oscillations were revealed in-situ for the first time in liquid metal and semisolid metal. The fragmentation of the solidifying Zn phases and breaking up of the liquid-solid interface by ultrasonic bubbles and enhanced acoustic flow were clearly demonstrated and agreed very well with the theoretical calculations. The research provides unambiguous experimental evidence and robust theoretical interpretation in elucidating the dominant mechanisms of microstructure fragmentation and refinement in solidification under ultrasound.« less

  5. Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound

    DOE PAGES

    Wang, Bing; Tan, Dongyue; Lee, Tung Lik; ...

    2017-11-03

    Ultrasound processing of metal alloys is an environmental friendly and promising green technology for liquid metal degassing and microstructural refinement. However many fundamental issues in this field are still not fully understood, because of the difficulties in direct observation of the dynamic behaviours caused by ultrasound inside liquid metal and semisolid metals during the solidification processes. In this paper, we report a systematic study using the ultrafast synchrotron X-ray imaging (up to 271,554 frame per second) technique available at the Advanced Photon Source, USA and Diamond Light Source, UK to investigate the dynamic interactions between the ultrasonic bubbles/acoustic flow andmore » the solidifying phases in a Bi-8%Zn alloy. The experimental results were complimented by numerical modelling. The chaotic bubble implosion and dynamic bubble oscillations were revealed in-situ for the first time in liquid metal and semisolid metal. The fragmentation of the solidifying Zn phases and breaking up of the liquid-solid interface by ultrasonic bubbles and enhanced acoustic flow were clearly demonstrated and agreed very well with the theoretical calculations. The research provides unambiguous experimental evidence and robust theoretical interpretation in elucidating the dominant mechanisms of microstructure fragmentation and refinement in solidification under ultrasound.« less

  6. PREFACE: Diagnostics for electrical discharge light sources: pushing the limits Diagnostics for electrical discharge light sources: pushing the limits

    NASA Astrophysics Data System (ADS)

    Zissis, Georges; Haverlag, Marco

    2010-06-01

    Light sources play an indispensable role in the daily life of any human being. Quality of life, health and urban security related to traffic and crime prevention depend on light and on its quality. In fact, every day approximately 30 billion electric light sources operate worldwide. These electric light sources consume almost 19% of worldwide electricity production. Finding new ways to light lamps is a challenge where the stakes are scientific, technological, economic and environmental. The production of more efficient light sources is a sustainable solution for humanity. There are many opportunities for not only enhancing the efficiency and reliability of lighting systems but also for improving the quality of light as seen by the end user. This is possible through intelligent use of new technologies, deep scientific understanding of the operating principles of light sources and knowledge of the varied human requirements for different types of lighting in different settings. A revolution in the domain of light source technology is on the way: high brightness light emitting diodes arriving in the general lighting market, together with organic LEDs (OLEDs), are producing spectacular advances. However, unlike incandescence, electrical discharge lamps are far from disappearing from the market. In addition, new generations of discharge lamps based on molecular radiators are becoming a reality. There are still many scientific and technological challenges to be raised in this direction. Diagnostics are important for understanding the fundamental mechanisms taking place in the discharge plasma. This understanding is an absolute necessity for system optimization leading to more efficient and high quality light sources. The studied medium is rather complex, but new diagnostic techniques coupled to innovative ideas and powerful tools have been developed in recent years. This cluster issue of seven papers illustrates these efforts. The selected papers cover all domains, from high to low pressure and dielectric barrier lamps, from breakdown to acoustic resonance. Especially in the domain of high pressure lamps, J J Curry shows how coherent and incoherent x-ray scattering can be used as an imaging technique adapted to lamps. J Hirsch et al treat the acoustic resonance phenomenon that seriously limits the frequency domain for high pressure lamp operation. M Jinno et al illustrate a method that allows for measuring Xe buffer gas pressure in Hg-free metal halide lamps for automotive applications. In the domain of low pressure lamps, M Gendre et al investigate the breakdown phase by means of optical and electrical diagnostic tools. The similarity rules used a long time ago for simulating plasma behaviour based on invariants are now serving as diagnostic tools, as shown in the paper by D Michael et al. N Dagang et al show how impurities can be detected in Hg-free electrodeless lamps and more particularly in dielectric barrier discharges emitting excimer radiation. The quality of light is illustrated by a final example by R Kozakov et al on how to qualify the light output from the lamp with respect to biological effects on humans.

  7. A model-based analysis of extinction ratio effects on phase-OTDR distributed acoustic sensing system performance

    NASA Astrophysics Data System (ADS)

    Aktas, Metin; Maral, Hakan; Akgun, Toygar

    2018-02-01

    Extinction ratio is an inherent limiting factor that has a direct effect on the detection performance of phase-OTDR based distributed acoustics sensing systems. In this work we present a model based analysis of Rayleigh scattering to simulate the effects of extinction ratio on the received signal under varying signal acquisition scenarios and system parameters. These signal acquisition scenarios are constructed to represent typically observed cases such as multiple vibration sources cluttered around the target vibration source to be detected, continuous wave light sources with center frequency drift, varying fiber optic cable lengths and varying ADC bit resolutions. Results show that an insufficient ER can result in high optical noise floor and effectively hide the effects of elaborate system improvement efforts.

  8. Recent Beam Measurements and New Instrumentation at the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, F.; Baptiste, K.; Barry, W.

    2012-04-11

    The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and usedmore » in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.« less

  9. RECENT BEAM MEASUREMENTS AND NEW INSTRUMENTATION AT THE ADVANCED LIGHT SOURCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, Fernando; Baptiste, Kenneth; Barry, Walter

    2008-05-05

    The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and usedmore » in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.« less

  10. Signature of phase singularities in diffusive regimes in disordered waveguide lattices: interplay and qualitative analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath

    2018-05-01

    Co-existence and interplay between mesoscopic light dynamics with singular optics in spatially random but temporally coherent disordered waveguide lattices is reported. Two CW light beams of 1.55 micron operating wavelength are launched as inputs to 1D waveguide lattices with controllable weak disorder in refractive index profile. Direct observation of phase singularities in the speckle pattern along the length is numerically demonstrated. Quantitative analysis of onset of such singular behavior and diffusive wave propagation is analyzed for the first time.

  11. The Variable Warm Absorber in Circinus X-1

    NASA Astrophysics Data System (ADS)

    Schulz, N. S.; Kallman, T. E.; Galloway, D. K.; Brandt, W. N.

    2008-01-01

    We observed Circinus X-1 twice during a newly reached low-flux phase near zero orbital phase using the High-Energy Transmission Grating Spectrometer (HETGS) onboard Chandra. In both observations the source did not show the P Cygni lines we observed during the high-flux phases of the source in 2000 and 2001. During the prezero phase the source did not exhibit significant variability but did exhibit an emission-line spectrum rich in H- and He-like lines from high-Z elements such as Si, S, Ar, and Ca. The light curve in the postdip observation showed quiescent and flaring episodes. Only in these flaring episodes was the source luminosity significantly higher than observed during the prezero phase. We analyzed all high-resolution X-ray spectra by fitting photoionization and absorption models from the most recent version of the XSTAR code. The prezero-phase spectrum could be fully modeled with a very hot photoionized plasma with an ionization parameter of log ξ = 3.0, down from log ξ = 4.0 in the high-flux state. The ionization balances we measure from the spectra during the postzero-phase episodes are significantly different. Both episodes feature absorbers with variable high columns, ionization parameters, and luminosity. While cold absorption remains at levels quite similar to that observed in previous years, the new observations show unprecedented levels of variable warm absorption. The line emissivities also indicate that the observed low source luminosity is inconsistent with a static hot accretion disk corona (ADC), an effect that seems common to other near-edge-on ADC sources as well. We conclude that unless there exists some means of coronal heating other than X-rays, the true source luminosity is likely much higher, and we observe obscuration in analogy to the extragalactic Seyfert 2 sources. We discuss possible consequences and relate cold, lukewarm, warm, and hot absorbers to dynamic accretion scenarios.

  12. Universal fiber-optic C.I.E. colorimeter

    DOEpatents

    Kronberg, James W.

    1992-01-01

    Apparatus for color measurements according to the C.I.E. system comprises a first fiber optic cable for receiving and linearizing light from a light source, a lens system for spectrally displaying the linearized light and focusing the light on one end of a trifurcated fiber optic assembly that integrates and separates the light according to the three C.I.E. tristimulus functions. The separated light is received by three photodiodes and electronically evaluated to determine the magnitude of the light corresponding to the tristimulus functions. The fiber optic assembly is made by forming, at one end, a bundle of optic fibers to match the contours of one of the tristimulus functions, encapsulating that bundle, adding a second bundle that, together with the first bundle, will match the contours of the first plus one other tristimulus function, encapsulating that second bundle, then adding a third bundle which together with the first and second bundles, has contours matching the sum of all three tristimulus functions. At the other end of the assembly the three bundles are separated and aligned with their respective photodiodes.

  13. Nighttime image dehazing using local atmospheric selection rule and weighted entropy for visible-light systems

    NASA Astrophysics Data System (ADS)

    Park, Dubok; Han, David K.; Ko, Hanseok

    2017-05-01

    Optical imaging systems are often degraded by scattering due to atmospheric particles, such as haze, fog, and mist. Imaging under nighttime haze conditions may suffer especially from the glows near active light sources as well as scattering. We present a methodology for nighttime image dehazing based on an optical imaging model which accounts for varying light sources and their glow. First, glow effects are decomposed using relative smoothness. Atmospheric light is then estimated by assessing global and local atmospheric light using a local atmospheric selection rule. The transmission of light is then estimated by maximizing an objective function designed on the basis of weighted entropy. Finally, haze is removed using two estimated parameters, namely, atmospheric light and transmission. The visual and quantitative comparison of the experimental results with the results of existing state-of-the-art methods demonstrates the significance of the proposed approach.

  14. Investigation of the polarization state of dual APPLE-II undulators.

    PubMed

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S; Sawhney, Kawal

    2016-01-01

    The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  15. Prolonged exposure to a low-dose of bisphenol A increases spontaneous motor activity in adult male rats.

    PubMed

    Nojima, Kazuo; Takata, Tomoyo; Masuno, Hiroshi

    2013-07-01

    We investigated the effects of bisphenol A (BPA), an environmental endocrine-disrupting chemical, on spontaneous motor activity in adult male rats. The rats were implanted intraperitoneally with mini-osmotic pumps containing either BPA (50 μg/kg body weight per day) in sesame oil (BPA-treated group) or sesame oil only (vehicle-treated group). Spontaneous motor activity during a 24-h period was measured over 5 days from day 9 to day 13 after implantation using an animal movement analysis system. Spontaneous motor activity during the last 2 h of the dark phase and during the first 1-h of the light phase was increased in the BPA-treated group. Total spontaneous motor activity during the 12-h light phase, but not the 12-h dark phase, was higher in the BPA-treated group than in the vehicle-treated group. These findings suggest that BPA may induce hyperactivity in adult male rats during the 12-h light phase, especially during the 2 h immediately preceding sleep-onset and 1 h immediately following sleep-onset.

  16. Optical antenna for a visible light communications receiver

    NASA Astrophysics Data System (ADS)

    Valencia-Estrada, Juan Camilo; García-Márquez, Jorge; Topsu, Suat; Chassagne, Luc

    2018-01-01

    Visible Light Communications (VLC) receivers adapted to be used in high transmission rates will eventually use either, high aperture lenses or non-linear optical elements capable of converting light arriving to the receiver into an electric signal. The high aperture lens case, reveals a challenge from an optical designers point-of-view. As a matter of fact, the lens must collect a wide aperture intensity flux using a limited aperture as its use is intended to portable devices. This last also limits both, lens thickness and its focal length. Here, we show a first design to be adapted to a VLC receiver that take these constraints into account. This paper describes a method to design catadioptric and monolithic lenses to be used as an optical collector of light entering from a near point light source as a spherical fan L with a wide acceptance angle α° and high efficiency. These lenses can be mass produced and therefore one can find many practical applications in VLC equipped devices. We show a first design for a near light source without magnification, and second one with a detector's magnification in a meridional section. We utilize rigorous geometric optics, vector analysis and ordinary differential equations.

  17. Influence of environmental enrichment vs. time-of-day on behavioral repertoire of male albino Swiss mice.

    PubMed

    Loss, Cássio Morais; Binder, Luisa Bandeira; Muccini, Eduarda; Martins, Wagner Carbolin; de Oliveira, Paulo Alexandre; Vandresen-Filho, Samuel; Prediger, Rui Daniel; Tasca, Carla Inês; Zimmer, Eduardo R; Costa-Schmidt, Luiz Ernesto; de Oliveira, Diogo Losch; Viola, Giordano Gubert

    2015-11-01

    Environmental enrichment (EE) is a non-pharmacological manipulation that promotes diverse forms of benefits in the central nervous system of captive animals. It is thought that EE influences animal behavior in a specie-(strain)-specific manner. Since rodents in general present different behaviors during distinct periods of the day, in this study we aimed to investigate the influence of time-of-day on behavioral repertoire of Swiss mice that reared in EE. Forty male Swiss mice (21days old) were housed in standard (SC) or enriched conditions (EC) for 60days. Behavioral assessments were conducted during the light phase (in presence of light) or dark phase (in absence of light) in the following tasks: open field, object recognition and elevated plus maze. First, we observed that the locomotor and exploratory activities are distinct between SC and EC groups only during the light phase. Second, we observed that "self-protective behaviors" were increased in EC group only when mice were tested during the light phase. However, "less defensive behaviors" were not affected by both housing conditions and time-of-day. Third, we showed that the performance of EE animals in object recognition task was improved in both light and dark conditions. Our findings highlight that EE-induced alterations in exploratory and emotional behaviors are just evident during light conditions. However, EE-induced cognitive benefits are remarkable even during dark conditions, when exploratory and emotional behaviors were similar between groups. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Optimization of Nanocomposite Solar Cell/Liquid Crystal Matrix to Diminish High Intensity Laser Light Relevant to Aviation Safety Applications

    NASA Astrophysics Data System (ADS)

    Hofmann, James A.

    An increasing threat to the aviation industry is laser light illumination on airplanes during critical phases of flight. If a laser hits the cockpit, it not only distracts the pilots, but it can cause flash blindness or permanently damage the vision of the pilots. This research attempts to mitigate these lasers illuminations through the application of both liquid crystal (LC's) technologies and dye sensitized solar cell (DSSC) technologies. The LC of choice is N-(4-Methoxybenzylidene)-4-butylaniline, or MBBA, because it has special optical properties including the ability to undergo phase transitions when exposed to an electric field. By applying an external electric field, MBBA switches from its transparent nematic phase, to its non-transparent crystalline phase, blocking the laser light. This research optimized the application of MBBA by reducing the triggering voltage and relaxation time of the LC using spacer thicknesses and scratching techniques. The liquid to solid phase transition was reduced to a 3V differential, and the time required for the crystals to relax into its transparent liquid phase was reduced to less than ten seconds. The phase transition was studied using an external electric field generated by DSSCs constructed from a titanium dioxide (TiO2) nanocomposite layer coated with dye. To maximize the voltage output by the DSSCs, layer thickness and dye sensitizer were studied to investigate their impact on the performance of the DSSC when illuminated by solar lamps and green light (532nm). Three different layer thicknesses and five different dyes were tested: Eosin Y, Eriochrome Black, Congo Red, Fast Green, and Alizarine Yellow. The experimental results showed a thin layer of nanocomposite sensitized with Eosin Y dye produced the most efficient DSSCs for the scope of this research. Experimental testing showed the DSSCs can generate 381 +/- 10mV under solar lamp exposure, 356 +/- 10mV under laser light exposure, and a voltage increase of 60 +/- 16mV when exposed to both light sources. Additionally, the performance of the DSSCs were correlated to molecular modeling predictions using Spartan software. The stability of TiO2-dye interactions indicated that dye adsorption to the surface of the nanocomposite directly impacted the performance of the DSSCs. Implementation of a LC and DSSC system forces the LCs to transition between its nematic and crystalline phases depending on the wavelength of light that is illuminating the DSSC. This research explores the practicality of using LCs and DSSCs as a preliminary approach to mitigating green laser light illumination on aircraft. Experimental results have shown that DSSCs alone are not capable of forcing a phase transitions in LCs which can entirely mitigate incoming laser light. The intense laser light required to generate substantial voltage (3V) from the DSSCs penetrates the crystalline phase of the LC with minimal attenuation of 5%.

  19. Evaluation of Vickers hardness of bulk-fill composites cured by different light sources

    NASA Astrophysics Data System (ADS)

    Bakhsh, Turki A.; Yagmoor, Mohammed A.; Alsadi, Fahad M.; Jamleh, Ahmad

    2016-02-01

    [Objective] The current in vitro study was performed to evaluate Vickers hardness (VHN) of two different composite resins that were cured by using two different light curing units. [Materials and Methods] Porcelain tube samplers were used to fabricate composite cylinders from either Tetric Evoceram BulkFill (BF; Ivoclar/Vivadent, USA) or SonicFill composite (SF; Kerr, USA). Each composite type had 12 cylindrical specimens, and each specimen was cured with either Blue-phase N light-cure (Bp; Polywave, Ivoclar/Vivadent, USA) or Elipar S10 (El; Monowave, 3M ESPE, Germany). The VHN data were analyzed and tested by using Mann-Whitney U test at a significance level of 5%. [Results] Statistical analyses demonstrated an interaction between the type of composite and the type of light curing source. Significant differences (P<0.05) were recorded for all groups with higher VHN hardness of SF-El and lowest for BF-El. [Conclusions] It can be concluded that the surface hardness of bulk-fill composite is not dependent on the type of light-cure. This research was supported by King Abdulaziz University.

  20. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, A. R.; Mansell, G. L.; McRae, T. G., E-mail: Terry.Mcrae@anu.edu.au

    With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass opticalmore » parametric oscillator that has been operated under a vacuum of 10{sup −6} mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.« less

  1. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light

    NASA Astrophysics Data System (ADS)

    Wade, A. R.; Mansell, G. L.; McRae, T. G.; Chua, S. S. Y.; Yap, M. J.; Ward, R. L.; Slagmolen, B. J. J.; Shaddock, D. A.; McClelland, D. E.

    2016-06-01

    With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10-6 mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.

  2. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light.

    PubMed

    Wade, A R; Mansell, G L; McRae, T G; Chua, S S Y; Yap, M J; Ward, R L; Slagmolen, B J J; Shaddock, D A; McClelland, D E

    2016-06-01

    With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10(-6) mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.

  3. 600 eV falcon-linac thomson x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, J K; LeSage, G P; Ditmire, T

    2000-12-15

    The advent of 3rd generation light sources such as the Advanced Light Source (ALS) at LBL, and the Advanced Photon Source at Argonne, have produced a revolution in x-ray probing of dense matter during the past decade. These machines use electron-synchrotrons in conjunction with undulator stages to produce 100 psec x-ray pulses with photon energies of several kiloelectronvolts (keV). The applications for x-ray probing of matter are numerous and diverse with experiments in medicine and biology, semiconductors and materials science, and plasma and solid state physics. In spite of the success of the 3rd generation light sources there is strongmore » motivation to push the capabilities of x-ray probing into new realms, requiring shorter pulses, higher brightness and harder x-rays. A 4th generation light source, the Linac Coherent Light Source (LCLS), is being considered at the Stanford Linear Accelerator [1]. The LCLS will produce multi-kilovolt x-rays of subpicosecond duration that are 10 orders of magnitude brighter than today's 3rd generation light sources.[1] Although the LCLS will provide unprecedented capability for performing time-resolved x-ray probing of ultrafast phenomena at solid densities, this machine will not be completed for many years. In the meantime there is a serious need for an ultrashort-pulse, high-brightness, hard x-ray source that is capable of probing deep into high-Z solid materials to measure dynamic effects that occur on picosecond time scales. Such an instrument would be ideal for probing the effects of shock propagation in solids using Bragg and Laue diffraction. These techniques can be used to look at phase transitions, melting and recrystallization, and the propagation of defects and dislocations well below the surface in solid materials. [2] These types of dynamic phenomena undermine the mechanical properties of metals and are of general interest in solid state physics, materials science, metallurgy, and have specific relevance to stockpile stewardship. Another x-ray diagnostic technique, extended x-ray absorption fine structure (EXAFS) spectroscopy, can be used to measure small-scale structural changes to understand the underlying atomic physics associated with the formation of defects. [2]« less

  4. Coherent beam combining in atmospheric channels using gated backscatter.

    PubMed

    Naeh, Itay; Katzir, Abraham

    2016-02-01

    This paper introduces the concept of atmospheric channels and describes a possible approach for the coherent beam combining of lasers of an optical phased array (OPA) in a turbulent atmosphere. By using the recently introduced sparse spectrum harmonic augmentation method, a comprehensive simulative investigation was performed and the exceptional properties of the atmospheric channels were numerically demonstrated. Among the interesting properties are the ability to guide light in a confined manner in a refractive channel, the ability to gather different sources to the same channel, and the ability to maintain a constant relative phase within the channel between several sources. The newly introduced guiding properties combined with a suggested method for channel probing and phase measurement by aerosol backscattered radiation allows coherence improvement of the phased array's elements and energy refocusing at the location of the channel in order to increase power in the bucket without feedback from the target. The method relies on the electronic focusing, electronic scanning, and time gating of the OPA, combined with elements of the relative phase measurements.

  5. From classical to quantum plasmonics: Classical emitter and SPASER

    NASA Astrophysics Data System (ADS)

    Balykin, V. I.

    2018-02-01

    The key advantage of plasmonics is in pushing our control of light down to the nanoscale. It is possible to envision lithographically fabricated plasmonic devices for future quantum information processing or cryptography at the nanoscale in two dimensions. A first step in this direction is a demonstration of a highly efficient nanoscale light source. Here we demonstrate two types of nanoscale sources of optical fields: 1) the classical metallic nanostructure emitter and 2) the plasmonic nanolaser - SPASER.

  6. Fiber optical assembly for fluorescence spectrometry

    DOEpatents

    Carpenter, II, Robert W.; Rubenstein, Richard; Piltch, Martin; Gray, Perry

    2010-12-07

    A system for analyzing a sample for the presence of an analyte in a sample. The system includes a sample holder for containing the sample; an excitation source, such as a laser, and at least one linear array radially disposed about the sample holder. Radiation from the excitation source is directed to the sample, and the radiation induces fluorescent light in the sample. Each linear array includes a plurality of fused silica optical fibers that receive the fluorescent light and transmits a fluorescent light signal from the first end to an optical end port of the linear array. An end port assembly having a photo-detector is optically coupled to the optical end port. The photo-detector detects the fluorescent light signal and converts the fluorescent light signal into an electrical signal.

  7. Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation

    NASA Astrophysics Data System (ADS)

    Peter, Simon; Leine, Remco I.

    2017-11-01

    Phase resonance testing is one method for the experimental extraction of nonlinear normal modes. This paper proposes a novel method for nonlinear phase resonance testing. Firstly, the issue of appropriate excitation is approached on the basis of excitation power considerations. Therefore, power quantities known from nonlinear systems theory in electrical engineering are transferred to nonlinear structural dynamics applications. A new power-based nonlinear mode indicator function is derived, which is generally applicable, reliable and easy to implement in experiments. Secondly, the tuning of the excitation phase is automated by the use of a Phase-Locked-Loop controller. This method provides a very user-friendly and fast way for obtaining the backbone curve. Furthermore, the method allows to exploit specific advantages of phase control such as the robustness for lightly damped systems and the stabilization of unstable branches of the frequency response. The reduced tuning time for the excitation makes the commonly used free-decay measurements for the extraction of backbone curves unnecessary. Instead, steady-state measurements for every point of the curve are obtained. In conjunction with the new mode indicator function, the correlation of every measured point with the associated nonlinear normal mode of the underlying conservative system can be evaluated. Moreover, it is shown that the analysis of the excitation power helps to locate sources of inaccuracies in the force appropriation process. The method is illustrated by a numerical example and its functionality in experiments is demonstrated on a benchmark beam structure.

  8. ODERACS 2 White Spheres Optical Calibration Report

    NASA Technical Reports Server (NTRS)

    Culp, Robert D.; Gravseth, Ian; Gloor, Jason; Wantuch, Todd

    1995-01-01

    This report documents the status of the Orbital Debris Radar Calibration Spheres (ODERACS) 2 white spheres optical calibration study. The purpose of this study is to determine the spectral reflectivity and scattering characteristics in the visible wavelength region for the white spheres that were added to the project in the fall, 1994. Laboratory measurements were performed upon these objects and an analysis of the resulting data was conducted. These measurements are performed by illuminating the objects with a collimated beam of light and measuring the reflected light versus the phase angle. The phase angle is defined as the angle between the light source and the sensor, as viewed from the object. By measuring the reflected signal at the various phase angles, one is able to estimate the reflectance properties of the object. The methodology used in taking the measurements and reducing the data are presented. The results of this study will be used to support the calibration of ground-based optical instruments used in support of space debris research. Visible measurements will be made by the GEODDS, NASA and ILADOT telescopes.

  9. [The dangers of blue light: True story!].

    PubMed

    Renard, G; Leid, J

    2016-05-01

    The dangers of the blue light are the object of numerous publications, for both the scientific community and the general public. The new prolific development of light sources emitting potentially toxic blue light (415-455nm) ranges from LED (Light Emitting Diodes) lamps for interior lighting to television screens, computers, digital tablets and smartphones using OLED (Organic Light Emitting Diode) or AMOLED (Active-Matrix Organic Light Emitting Diode) technology. First we will review some technical terms and the main characteristics of light perceived by the human eye. Then we will discuss scientific proof of the toxicity of blue light to the eye, which may cause cataract or macular degeneration. Analysis of the light spectra of several light sources, from natural light to LED lamps, will allow us to specify even better the dangers related to each light source. LED lamps, whether used as components for interior lighting or screens, are of concern if they are used for extended viewing times and at short distance. While we can protect ourselves from natural blue light by wearing colored glasses which filter out, on both front and back surfaces, the toxic wavelengths, it is more difficult to protect oneself from LED lamps in internal lighting, the use of which should be restricted to "white warmth" lamps (2700K). As far as OLED or AMOLED screens are concerned, the only effective protection consists of using them occasionally and only for a short period of time. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Wide-field phase imaging for the endoscopic detection of dysplasia and early-stage esophageal cancer

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, C. R. M.; Gordon, G. S. D.; Sawyer, T. W.; Wilkinson, T. D.; Bohndiek, S. E.

    2018-02-01

    Esophageal cancer has a 5-year survival rate below 20%, but can be curatively resected if it is detected early. At present, poor contrast for early lesions in white light imaging leads to a high miss rate in standard-of- care endoscopic surveillance. Early lesions in the esophagus, referred to as dysplasia, are characterized by an abundance of abnormal cells with enlarged nuclei. This tissue has a different refractive index profile to healthy tissue, which results in different light scattering properties and provides a source of endogenous contrast that can be exploited for advanced endoscopic imaging. For example, point measurements of such contrast can be made with scattering spectroscopy, while optical coherence tomography generates volumetric data. However, both require specialist interpretation for diagnostic decision making. We propose combining wide-field phase imaging with existing white light endoscopy in order to provide enhanced contrast for dysplasia and early-stage cancer in an image format that is familiar to endoscopists. Wide-field phase imaging in endoscopy can be achieved using coherent illumination combined with phase retrieval algorithms. Here, we present the design and simulation of a benchtop phase imaging system that is compatible with capsule endoscopy. We have undertaken preliminary optical modelling of the phase imaging setup, including aberration correction simulations and an investigation into distinguishing between different tissue phantom scattering coefficients. As our approach is based on phase retrieval rather than interferometry, it is feasible to realize a device with low-cost components for future clinical implementation.

  11. Determining the wedge angle and optical homogeneity of a glass plate by statistically analyzing the deformation in the wavefront surface.

    PubMed

    Yang, Pao-Keng

    2017-08-01

    By using a light-emitting diode as the probing light source and a Shack-Hartmann wavefront sensor as the recorder for the wavefront surface to execute a relative measurement, we present a useful method for determining the small wedge angle and optical homogeneity of a nominally planar glass plate from the wavefront measurements. The measured wavefront surface from the light source was first calibrated to be a horizontal plane before the plate under test was inserted. The wedge angle of the plate can be determined from the inclining angle of the regression plane of the measured wavefront surface after the plate was inserted between the light source and the wavefront sensor. Despite the annoying time-dependent altitude fluctuation in measured wavefront topography, the optical homogeneity of the plate can be estimated from the increment on the average variance of the wavefront surface to its regression plane after the light passes through it by using the Bienaymé formula.

  12. Energy storage crystalline gel materials for 3D printing application

    NASA Astrophysics Data System (ADS)

    Mao, Yuchen; Miyazaki, Takuya; Gong, Jin; Zhu, Meifang

    2017-04-01

    Phase change materials (PCMs) are considered one of the most reliable latent heat storage and thermoregulation materials. In this paper, a vinyl monomer is used to provide energy storage capacity and synthesize gel with phase change property. The side chain of copolymer form crystal microcell to storage/release energy through phase change. The crosslinking structure of the copolymer can protect the crystalline micro-area maintaining the phase change stable in service and improving the mechanical strength. By selecting different monomers and adjusting their ratios, we design the chemical structure and the crystallinity of gels, which in further affect their properties, such as strength, flexibility, thermal absorb/release transition temperature, transparency and the water content. Using the light-induced polymerization 3D printing techniques, we synthesize the energy storage gel and shape it on a 3D printer at the same time. By optimizing the 3D printing conditions, including layer thickness, curing time and light source, etc., the 3D printing objects are obtained.

  13. Mask technology for EUV lithography

    NASA Astrophysics Data System (ADS)

    Bujak, M.; Burkhart, Scott C.; Cerjan, Charles J.; Kearney, Patrick A.; Moore, Craig E.; Prisbrey, Shon T.; Sweeney, Donald W.; Tong, William M.; Vernon, Stephen P.; Walton, Christopher C.; Warrick, Abbie L.; Weber, Frank J.; Wedowski, Marco; Wilhelmsen, Karl C.; Bokor, Jeffrey; Jeong, Sungho; Cardinale, Gregory F.; Ray-Chaudhuri, Avijit K.; Stivers, Alan R.; Tejnil, Edita; Yan, Pei-yang; Hector, Scott D.; Nguyen, Khanh B.

    1999-04-01

    Extreme UV Lithography (EUVL) is one of the leading candidates for the next generation lithography, which will decrease critical feature size to below 100 nm within 5 years. EUVL uses 10-14 nm light as envisioned by the EUV Limited Liability Company, a consortium formed by Intel and supported by Motorola and AMD to perform R and D work at three national laboratories. Much work has already taken place, with the first prototypical cameras operational at 13.4 nm using low energy laser plasma EUV light sources to investigate issues including the source, camera, electro- mechanical and system issues, photoresists, and of course the masks. EUV lithograph masks are fundamentally different than conventional photolithographic masks as they are reflective instead of transmissive. EUV light at 13.4 nm is rapidly absorbed by most materials, thus all light transmission within the EUVL system from source to silicon wafer, including EUV reflected from the mask, is performed by multilayer mirrors in vacuum.

  14. Light scattering regimes along the optical axis in turbid media

    NASA Astrophysics Data System (ADS)

    Campbell, S. D.; O'Connell, A. K.; Menon, S.; Su, Q.; Grobe, R.

    2006-12-01

    We inject an angularly collimated laser beam into a scattering medium of a nondairy creamer-water solution and examine the distribution of the scattered light along the optical axis as a function of the source-detector spacing. The experimental and simulated data obtained from a Monte Carlo simulation suggest four regimes characterizing the transition from unscattered to diffusive light. We compare the data also with theoretical predictions based on a first-order scattering theory for regions close to the source, and with diffusionlike theories for larger source-detector spacings. We demonstrate the impact of the measurement process and the effect of the unavoidable absorption of photons by the detection fiber on the light distribution inside the medium. We show that the range of validity of these theories can depend on the experimental parameters such as the diameter and acceptance angle of the detection fiber.

  15. Optical Polarization of Light from a Sorghum Canopy Measured Under Both a Clear and an Overcast Sky

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Biehl, Larry; Dahlgren, Robert

    2014-01-01

    Introduction: We tested the hypothesis that the optical polarization of the light reflected by a sorghum canopy is due to a Fresnel-type redirection, by sorghum leaf surfaces, of light from an unpolarized light source, the sun or overcast sky, toward the measuring sensor. If it can be shown that the source of the polarization of the light scattered by the sorghum canopy is a first surface, Fresnel-type reflection, then removing this surface reflected light from measurements of canopy reflectance presumably would allow better insight into the biochemical processes such as photosynthesis and metabolism that occur in the interiors of sorghum canopy leaves. Methods: We constructed a tower 5.9m tall in the center of a homogenous sorghum field. We equipped two Barnes MMR radiometers with polarization analyzers on the number 1, 3 and 7 Landsat TM wavelength bands. Positioning the radiometers atop the tower, we collected radiance data in 44 view directions on two days, one day with an overcast sky and the other, clear and sunlit. From the radiance data we calculated the linear polarization of the reflected light for each radiometer wavelength channel and view direction. Results and Discussion: Our experimental results support our hypothesis, showing that the amplitude of the linearly polarized portion of the light reflected by the sorghum canopy varied dramatically with view azimuth direction under a point source, the sun, but the amplitude varied little with view azimuth direction under the hemispherical source, the overcast sky. Under the clear sky, the angle of polarization depended upon the angle of incidence of the sunlight on the leaf, while under the overcast sky the angle of polarization depended upon the zenith view angle. These results support a polarized radiation transport model of the canopy that is based upon a first surface, Fresnel reflection from leaves in the sorghum canopy.

  16. Suppression of contrast-related artefacts in phase-measuring structured light techniques

    NASA Astrophysics Data System (ADS)

    Burke, Jan; Zhong, Liang

    2017-06-01

    Optical metrology using phase measurements has benefited significantly from the introduction of phase-shifting methods, first in interferometry, then also in fringe projection and fringe reflection. As opposed to interferometry, the latter two techniques generally use a spatiotemporal phase-shifting approach: A sequence of fringe patterns with varying spacing is used, and a phase map of each is generated by temporal phase shifting, to allow unique assignments of projector or screen pixels to camera pixels. One ubiquitous problem with phase-shifting structured-light techniques is that phase artefacts appear near regions of the image where the modulation amplitude of the projected or reflected fringes changes abruptly, e.g. near dirt/dust particles on the surface in deflectometry or bright-dark object colour transitions in fringe projection. Near the bright-dark boundaries, responses in the phase maps appear that are not plausible as actual surface features. The phenomenon has been known for a long time but is usually ignored because it does not compromise the overall reliability of results. In deflectometry, however, often the objective is to find and classify small defects, and of course it is then important to distinguish between bogus phase responses caused by fringe modulation changes, and actual surface defects. We present, for what we believe is the first time, an analytical derivation of the error terms, study the parameters influencing the phase artefacts (in particular the fringe period), and suggest some simple algorithms to minimise them.

  17. Coherent control schemes for the photoionization of neon and helium in the Extreme Ultraviolet spectral region.

    PubMed

    Giannessi, Luca; Allaria, Enrico; Prince, Kevin C; Callegari, Carlo; Sansone, Giuseppe; Ueda, Kiyoshi; Morishita, Toru; Liu, Chien Nan; Grum-Grzhimailo, Alexei N; Gryzlova, Elena V; Douguet, Nicolas; Bartschat, Klaus

    2018-05-17

    The seeded Free-Electron Laser (FEL) FERMI is the first source of short-wavelength light possessing the full coherence of optical lasers, together with the extreme power available from FELs. FERMI provides longitudinally coherent radiation in the Extreme Ultraviolet and soft x-ray spectral regions, and therefore opens up wide new fields of investigation in physics. We first propose experiments exploiting this property to provide coherent control of the photoionization of neon and helium, carry out numerical calculations to find optimum experimental parameters, and then describe how these experiments may be realized. The approach uses bichromatic illumination of a target and measurement of the products of the interaction, analogous to previous Brumer-Shapiro-type experiments in the optical spectral range. We describe operational schemes for the FERMI FEL, and simulate the conditions necessary to produce light at the fundamental and second or third harmonic frequencies, and to control the phase with respect to the fundamental. We conclude that a quantitative description of the phenomena is extremely challenging for present state-of-the-art theoretical and computational methods, and further development is necessary. Furthermore, the intensity available may already be excessive for the experiments proposed on helium. Perspectives for further development are discussed.

  18. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, Scott; Walko, Robert J.; Ashley, Carol S.; Brinker, C. Jeffrey

    1994-01-01

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

  19. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  20. Design methodology for micro-discrete planar optics with minimum illumination loss for an extended source.

    PubMed

    Shim, Jongmyeong; Park, Changsu; Lee, Jinhyung; Kang, Shinill

    2016-08-08

    Recently, studies have examined techniques for modeling the light distribution of light-emitting diodes (LEDs) for various applications owing to their low power consumption, longevity, and light weight. The energy mapping technique, a design method that matches the energy distributions of an LED light source and target area, has been the focus of active research because of its design efficiency and accuracy. However, these studies have not considered the effects of the emitting area of the LED source. Therefore, there are limitations to the design accuracy for small, high-power applications with a short distance between the light source and optical system. A design method for compensating for the light distribution of an extended source after the initial optics design based on a point source was proposed to overcome such limits, but its time-consuming process and limited design accuracy with multiple iterations raised the need for a new design method that considers an extended source in the initial design stage. This study proposed a method for designing discrete planar optics that controls the light distribution and minimizes the optical loss with an extended source and verified the proposed method experimentally. First, the extended source was modeled theoretically, and a design method for discrete planar optics with the optimum groove angle through energy mapping was proposed. To verify the design method, design for the discrete planar optics was achieved for applications in illumination for LED flash. In addition, discrete planar optics for LED illuminance were designed and fabricated to create a uniform illuminance distribution. Optical characterization of these structures showed that the design was optimal; i.e., we plotted the optical losses as a function of the groove angle, and found a clear minimum. Simulations and measurements showed that an efficient optical design was achieved for an extended source.

  1. Using a fast dual-wavelength imaging ellipsometric system to measure the flow thickness profile of an oil thin film

    NASA Astrophysics Data System (ADS)

    Kuo, Chih-Wei; Han, Chien-Yuan; Jhou, Jhe-Yi; Peng, Zeng-Yi

    2017-11-01

    Dual-wavelength light sources with stroboscopic illumination technique were applied in a process of photoelastic modulated ellipsometry to retrieve two-dimensional ellipsometric parameters of thin films on a silicon substrate. Two laser diodes were alternately switched on and modulated by a programmable pulse generator to generate four short pulses at specific temporal phase angles in a modulation cycle, and short pulses were used to freeze the intensity variation of the PEM modulated signal that allows ellipsometric images to be captured by a charge-coupled device. Although the phase retardation of a photoelastic modulator is related to the light wavelength, we employed an equivalent phase retardation technique to avoid any setting from the photoelastic modulator. As a result, the ellipsometric parameters of different wavelengths may be rapidly obtained using this dual-wavelength ellipsometric system every 4 s. Both static and dynamic experiments are demonstrated in this work.

  2. AUTOMATIC COUNTER

    DOEpatents

    Robinson, H.P.

    1960-06-01

    An automatic counter of alpha particle tracks recorded by a sensitive emulsion of a photographic plate is described. The counter includes a source of mcdulated dark-field illumination for developing light flashes from the recorded particle tracks as the photographic plate is automatically scanned in narrow strips. Photoelectric means convert the light flashes to proportional current pulses for application to an electronic counting circuit. Photoelectric means are further provided for developing a phase reference signal from the photographic plate in such a manner that signals arising from particle tracks not parallel to the edge of the plate are out of phase with the reference signal. The counting circuit includes provision for rejecting the out-of-phase signals resulting from unoriented tracks as well as signals resulting from spurious marks on the plate such as scratches, dust or grain clumpings, etc. The output of the circuit is hence indicative only of the tracks that would be counted by a human operator.

  3. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOEpatents

    Tavlarides, L.L.; Bae, J.H.

    1991-12-24

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes. 17 figures.

  4. Orbital Ordering Transition in La_4Ru_2O_10 probed by O K-edge X-ray Absorption

    NASA Astrophysics Data System (ADS)

    Denlinger, J. D.; Rossnagel, Kai; Allen, J. W.; Khalifah, P.; Mandrus, D.; Cava, R. J.

    2004-03-01

    The layered ruthenate compound La_4Ru_2O_10 undergoes a first order monoclinic-to-triclinic structural phase transition at 160 K. An accompanying loss of the Ru local moment gives evidence for a full orbital ordering transition in which the Ru d_yz orbitals become completely unoccupied in the low temperature phase.(P. Khalifah et al.), Science 297, 2237 (2002). Via hybridization of Ru t_2g and O 2p orbitals this temperature-dependent Ru orbital ordering can be indirectly probed using polarized O K-edge x-ray absorption spectroscopy (XAS). O 1s core-level energy shifts allow O site-specific separation of Ru t_2g hybridizations. Identification of O sites is accomplished using polarized XAS angular dependence as well as by O 2p valence PDOS obtained from site-selective soft x-ray emission. Distinct XAS energy and intensity changes are observed upon cooling through the phase transition and are rationalized within the framework of the complete orbital ordering scenario. Supported by the U.S. NSF at U. Mich. (DMR-03-02825) and by the DOE at the Advanced Light Source (DE-AC03-76SF00098).

  5. Electro-Optic Analog/Digital Converter.

    DTIC Science & Technology

    electro - optic material and a source of linearly polarized light is arranged to transmit its light energy along each of the optical waveguides. Electrodes are disposed contiguous to the optical waveguides for impressing electric fields thereacross. An input signal potential is applied to the electrodes to produce electric fields of intensity relative to each of the waveguides such that causes phase shift and resultant change of polarization which can be detected as representative of a binary ’one’ or binary ’zero’ for each of the channel optical

  6. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.

    2001-01-01

    An electrodeless microwave discharge lamp includes an envelope with a discharge forming fill disposed therein which emits light, the fill being capable of absorbing light at one wavelength and re-emitting the absorbed light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill, a source of microwave energy coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed within the microwave cavity and configured to reflect at least some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length.

  7. Adaptive Nulling for Interferometric Detection of Planets

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Peters, Robert D.

    2010-01-01

    An adaptive-nulling method has been proposed to augment the nulling-optical- interferometry method of detection of Earth-like planets around distant stars. The method is intended to reduce the cost of building and aligning the highly precise optical components and assemblies needed for nulling. Typically, at the mid-infrared wavelengths used for detecting planets orbiting distant stars, a star is millions of times brighter than an Earth-sized planet. In order to directly detect the light from the planet, it is necessary to remove most of the light coming from the star. Nulling interferometry is one way to suppress the light from the star without appreciably suppressing the light from the planet. In nulling interferometry in its simplest form, one uses two nominally identical telescopes aimed in the same direction and separated laterally by a suitable distance. The light collected by the two telescopes is processed through optical trains and combined on a detector. The optical trains are designed such that the electric fields produced by an on-axis source (the star) are in anti-phase at the detector while the electric fields from the planet, which is slightly off-axis, combine in phase, so that the contrast ratio between the star and the planet is greatly decreased. If the electric fields from the star are exactly equal in amplitude and opposite in phase, then the star is effectively nulled out. Nulling is effective only if it is complete in the sense that it occurs simultaneously in both polarization states and at all wavelengths of interest. The need to ensure complete nulling translates to extremely tight demands upon the design and fabrication of the complex optical trains: The two telescopes must be highly symmetric, the reflectivities of the many mirrors in the telescopes and other optics must be carefully tailored, the optical coatings must be extremely uniform, sources of contamination must be minimized, optical surfaces must be nearly ideal, and alignments must be extremely precise. Satisfaction of all of these requirements entails substantial cost.

  8. Dispersion of Sound in Marine Sediments

    DTIC Science & Technology

    2014-09-30

    to broadband data from a light bulb sound source deployed in the SW06 experiment. The signal range was ~7 km, and the data were received on the MPL ...the next phase of experiments. The research is connected with research projects of the following: W. S. Hodgkiss and P. Gerstoft ( MPL , SCRIPPS

  9. Noncritical generation of nonclassical frequency combs via spontaneous rotational symmetry breaking

    NASA Astrophysics Data System (ADS)

    Navarrete-Benlloch, Carlos; Patera, Giuseppe; de Valcárcel, Germán J.

    2017-10-01

    Synchronously pumped optical parametric oscillators (SPOPOs) are optical cavities driven by mode-locked lasers, and containing a nonlinear crystal capable of down-converting a frequency comb to lower frequencies. SPOPOs have received a lot of attention lately because their intrinsic multimode nature makes them compact sources of quantum correlated light with promising applications in modern quantum information technologies. In this work we show that SPOPOs are also capable of accessing the challenging and interesting regime where spontaneous symmetry breaking confers strong nonclassical properties to the emitted light, which has eluded experimental observation so far. Apart from opening the possibility of studying experimentally this elusive regime of dissipative phase transitions, our predictions will have a practical impact, since we show that spontaneous symmetry breaking provides a specific spatiotemporal mode with large quadrature squeezing for any value of the system parameters, turning SPOPOs into robust sources of highly nonclassical light above threshold.

  10. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Vasily V.; Hall, Gregory E., E-mail: gehall@bnl.gov

    We demonstrate a method of combining a supercontinuum light source with a commercial Fourier transform spectrometer, using a novel approach to dual-beam balanced detection, implemented with phase-sensitive detection on a single light detector. A 40 dB reduction in the relative intensity noise is achieved for broadband light, analogous to conventional balanced detection methods using two matched photodetectors. Unlike conventional balanced detection, however, this method exploits the time structure of the broadband source to interleave signal and reference pulse trains in the time domain, recording the broadband differential signal at the fundamental pulse repetition frequency of the supercontinuum. The method ismore » capable of real-time correction for instability in the supercontinuum spectral structure over a broad range of wavelengths and is compatible with commercially designed spectrometers. A proof-of-principle experimental setup is demonstrated for weak absorption in the 1500-1600 nm region.« less

  11. Frequency-domain phase fluorometry in the presence of dark states: A numerical study

    NASA Astrophysics Data System (ADS)

    Zhu, Xinxin; Min, Wei

    2011-11-01

    Fluorescence anomalous phase advance (FAPA) is a newly discovered spectroscopy phenomenon: instead of lagging behind the modulated light, fluorescence signal can exhibit FAPA as if it precedes the excitation source in time. While FAPA offers a promising technique for probing dark state lifetime, the underlying mechanism is not fully elucidated. Herein we investigate frequency-domain phase fluorometry as a result of intricate interplay between a short-lived fluorescent state and a long-lived dark state. In particular, the quantitative dependence on modulation frequency, excitation intensity, nonradiative decay, intersystem crossing and dark-state lifetime are explored respectively. A comprehensive view of phase fluorometry emerges consequently.

  12. Cooperative scattering and radiation pressure force in dense atomic clouds

    NASA Astrophysics Data System (ADS)

    Bachelard, R.; Piovella, N.; Courteille, Ph. W.

    2011-07-01

    Atomic clouds prepared in “timed Dicke” states, i.e. states where the phase of the oscillating atomic dipole moments linearly varies along one direction of space, are efficient sources of superradiant light emission [Scully , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.96.010501 96, 010501 (2006)]. Here, we show that, in contrast to previous assertions, timed Dicke states are not the states automatically generated by incident laser light. In reality, the atoms act back on the driving field because of the finite refraction of the cloud. This leads to nonuniform phase shifts, which, at higher optical densities, dramatically alter the cooperative scattering properties, as we show by explicit calculation of macroscopic observables, such as the radiation pressure force.

  13. Development of excitation light source for photodynamic diagnosis

    NASA Astrophysics Data System (ADS)

    Lim, Hyun Soo

    2008-02-01

    Photodynamic diagnosis (PDD) is a method to diagnose the possibility of cancer, both by the principle that if a photosensitizer is injected into an organic tissue, it is accumulated in the tissue of a malignant tumor selectively after a specific period, and by a comparison of the intensity of the fluorescence of normal tissue with abnormal tissue after investigating the excitation light of a tissue with accumulated photosensitizer. Currently, there are two methods of PDD: The first is a way to acquire incitement fluorescence by using a photosensitizer, and the second is a way to use auto-fluorescence by green fluorescence protein (GFP) and red fluorescence protein (RFP) such as NADH+ active factors within the organic body. Since the selection of the wavelength band of excitation light has an interrelation with fluorescence generation according to the selection of a photosensitizer, it plays an important role in PDD. This study aims at designing and evaluating light source devices that can stably generate light with various kinds of wavelengths in order to make possible PDD using a photosensitizer and diagnosis using auto-fluorescence. The light source was a Xenon lamp and filter wheel, composed of an optical output control through Iris and filters with several wavelength bands. It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-420nm, 430-480nm, 480-560nm. The transmission part of the light source was developed to enhance the efficiency of light transmission. To evaluate this light source, the characteristics of light output and wavelength band were verified. To validate the capability of this device as PDD, the detection of auto-fluorescence using mouse models was performed.

  14. Extremely simple holographic projection of color images

    NASA Astrophysics Data System (ADS)

    Makowski, Michal; Ducin, Izabela; Kakarenko, Karol; Suszek, Jaroslaw; Kolodziejczyk, Andrzej; Sypek, Maciej

    2012-03-01

    A very simple scheme of holographic projection is presented with some experimental results showing good quality image projection without any imaging lens. This technique can be regarded as an alternative to classic projection methods. It is based on the reconstruction real images from three phase iterated Fourier holograms. The illumination is performed with three laser beams of primary colors. A divergent wavefront geometry is used to achieve an increased throw angle of the projection, compared to plane wave illumination. Light fibers are used as light guidance in order to keep the setup as simple as possible and to provide point-like sources of high quality divergent wave-fronts at optimized position against the light modulator. Absorbing spectral filters are implemented to multiplex three holograms on a single phase-only spatial light modulator. Hence color mixing occurs without any time-division methods, which cause rainbow effects and color flicker. The zero diffractive order with divergent illumination is practically invisible and speckle field is effectively suppressed with phase optimization and time averaging techniques. The main advantages of the proposed concept are: a very simple and highly miniaturizable configuration; lack of lens; a single LCoS (Liquid Crystal on Silicon) modulator; a strong resistance to imperfections and obstructions of the spatial light modulator like dead pixels, dust, mud, fingerprints etc.; simple calculations based on Fast Fourier Transform (FFT) easily processed in real time mode with GPU (Graphic Programming).

  15. Exploring the ionic strength effects on the photochemical degradation of pyruvic acid in atmospheric deliquescent aerosol particles

    NASA Astrophysics Data System (ADS)

    Mekic, Majda; Brigante, Marcello; Vione, Davide; Gligorovski, Sasho

    2018-07-01

    There is increasing evidence that aqueous-phase atmospheric chemistry is an important source of secondary organic aerosols (SOA), but the related processes are currently not adequately represented in atmospheric chemistry models. Here we show that the absorption spectrum of pyruvic acid (PA) exhibits both an increase of the absorption intensity and a red shift of 13 nm while going from a dilute aqueous phase to a solution containing the inert salt sodium perchlorate (5M NaClO4). If this phenomenon turns out to be more general, many compounds that do not absorb actinic light in clouds and fog could become light absorbers at elevated salt concentrations in aerosol deliquescent particles. Compared to the direct photolysis of PA in dilute aqueous solution, the photolysis rate is increased by three times at high ionic strength (5M NaClO4). Such a considerable enhancement can be rationalized in the framework of the Debye-McAulay approach for reactions of ionic + neutral (or neutral + neutral) species, considering that the PA direct photolysis likely involves interaction between the photogenerated triplet state and water. This is, to our knowledge, the first report of a significant effect of the ionic strength on the rate of an atmospheric photochemical reaction. The phenomenon has important implications for the fate of PA and, potentially, of other organic compounds in atmospheric aerosol deliquescent particles.

  16. Interim Joint Technical Assessment Report: Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards for Model Years 2017-2025

    EPA Pesticide Factsheets

    EPA and the NHTSA collaborated with CARB on this joint Technical Assessment Report to build on the success of the first phase of the National Program to regulate fuel economy and greenhouse gas (GHG) emissions from U.S. light-duty vehicles.

  17. Light nuclei production as a probe of the QCD phase diagram

    NASA Astrophysics Data System (ADS)

    Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming; Pu, Jie; Xu, Zhangbu

    2018-06-01

    It is generally believed that the quark-hadron transition at small values of baryon chemical potentials μB is a crossover but changes to a first-order phase transition with an associated critical endpoint (CEP) as μB increases. Such a μB-dependent quark-hadron transition is expected to result in a double-peak structure in the collision energy dependence of the baryon density fluctuation in heavy-ion collisions with one at lower energy due to the spinodal instability during the first-order phase transition and another at higher energy due to the critical fluctuations in the vicinity of the CEP. By analyzing the data on the p, d and 3H yields in central heavy-ion collisions within the coalescence model for light nuclei production, we find that the relative neutron density fluctuation Δρn = 〈(δρn) 2 〉 /〈ρn 〉 2 at kinetic freeze-out indeed displays a clear peak at √{sNN } = 8.8GeV and a possible strong re-enhancement at √{sNN } = 4.86GeV. Our findings thus provide a strong support for the existence of a first-order phase transition at large μB and its critical endpoint at a smaller μB in the temperature versus baryon chemical potential plane of the QCD phase diagram.

  18. Light-emitting Ga-oxide nanocrystals in glass: a new paradigm for low-cost and robust UV-to-visible solar-blind converters and UV emitters.

    PubMed

    Sigaev, Vladimir N; Golubev, Nikita V; Ignat'eva, Elena S; Paleari, Alberto; Lorenzi, Roberto

    2014-01-01

    Wide-bandgap nanocrystals are an inexhaustible source of tuneable functions potentially addressing most of the demand for new light emitting systems. However, the implementation of nanocrystal properties in real devices is not straightforward if a robust and stable optical component is required as a final result. The achievement of efficient light emission from dense dispersions of Ga-oxide nanocrystals in UV-grade glass can be a breakthrough in this regard. Such a result would permit the fabrication of low cost UV-to-visible converters for monitoring UV-emitting events on a large-scale - from invisible hydrogen flames to corona dispersions. From this perspective, γ-Ga₂O₃ nanocrystals are developed by phase separation in Ga-alkali-germanosilicate glasses, obtaining optical materials based on a UV transparent matrix. Band-to-band UV-excitation of light emission from donor-acceptor pair (DAP) recombination is investigated for the first time in embedded γ-Ga₂O₃. The analysis of the decay kinetics gives unprecedented evidence that nanosized confinement of DAP recombination can force a nanophase to the efficient response of exactly balanced DAPs. The results, including a proof of concept of UV-to-visible viewer, definitely demonstrate the feasibility of workable glass-based fully inorganic nanostructured materials with emission properties borrowed from Ga₂O₃ single-crystals and tailored by the nanocrystal size.

  19. Study of the second-order relativistic light deflection of the Sun using long-baseline fibre-linked interferometers: Laser-Interferometric Solar Relativity (LISOR) test

    NASA Technical Reports Server (NTRS)

    Ni, Wei-Tou; Shy, Jow-Tsong; Tseng, Shiao-Min; Shao, Michael

    1992-01-01

    A propasal to study the second order light deflection in the solar gravitational field is presented. It is proposed to use 1 to 2 W frequency stabilized lasers on two microspacecraft about 0.25 degree apart in the sky with apparent positions near the Sun, and observe the relative angle of two spacecraft using ground based fiber linked interferometers with 10 km baseline to determine the second order relativistic light deflection effects. The first two years of work would emphasize the establishment of a prototype stabilized laser system and fiber linked interferometer. The first year, a prototype fiber linked interferometer would be set up to study the phase noise produced by external perturbations to fiber links. The second year, a second interferometer would be set up. The cancellation of phase drift due to fiber links of both interferometers in the same environment would be investigated.

  20. Attosecond light sources in the water window

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming; Li, Jie; Yin, Yanchun; Zhao, Kun; Chew, Andrew; Wang, Yang; Hu, Shuyuan; Cheng, Yan; Cunningham, Eric; Wu, Yi; Chini, Michael; Chang, Zenghu

    2018-02-01

    As a compact and burgeoning alternative to synchrotron radiation and free-electron lasers, high harmonic generation (HHG) has proven its superiority in static and time-resolved extreme ultraviolet spectroscopy for the past two decades and has recently gained many interests and successes in generating soft x-ray emissions covering the biologically important water window spectral region. Unlike synchrotron and free-electron sources, which suffer from relatively long pulse width or large time jitter, soft x-ray sources from HHG could offer attosecond time resolution and be synchronized with their driving field to investigate time-resolved near edge absorption spectroscopy, which could reveal rich structural and dynamical information of the interrogated samples. In this paper, we review recent progresses on generating and characterizing attosecond light sources in the water window region. We show our development of an energetic, two-cycle, carrier-envelope phase stable laser source at 1.7 μm and our achievement in producing a 53 as soft x-ray pulse covering the carbon K-edge in the water window. Such source paves the ways for the next generation x-ray spectroscopy with unprecedented temporal resolution.

Top