OLED lighting devices having multi element light extraction and luminescence conversion layer
Krummacher, Benjamin Claus; Antoniadis, Homer
2010-11-16
An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.
Antoniadis,; Homer, Krummacher [Mountain View, CA; Claus, Benjamin [Regensburg, DE
2008-01-22
An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.
Non-contact pumping of light emitters via non-radiative energy transfer
Klimov, Victor I.; Achermann, Marc
2010-01-05
A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.
Utility and safety of a novel surgical microscope laser light source
Bakhit, Mudathir S.; Suzuki, Kyouichi; Sakuma, Jun; Fujii, Masazumi; Murakami, Yuta; Ito, Yuhei; Sugano, Tetsuo; Saito, Kiyoshi
2018-01-01
Objective Tissue injuries caused by the thermal effects of xenon light microscopes have previously been reported. Due to this, the development of a safe microscope light source became a necessity. A newly developed laser light source is evaluated regarding its effectiveness and safety as an alternative to conventional xenon light source. Methods We developed and tested a new laser light source for surgical microscopes. Four experiments were conducted to compare xenon and laser lights: 1) visual luminance comparison, 2) luminous and light chromaticity measurements, 3) examination and analysis of visual fatigue, and 4) comparison of focal temperature elevation due to light source illumination using porcine muscle samples. Results Results revealed that the laser light could be used at a lower illumination value than the xenon light (p < 0.01). There was no significant difference in visual fatigue status between the laser light and the xenon light. The laser light was superior to the xenon light regarding luminous intensity and color chromaticity. The focal temperature elevation of the muscle samples was significantly higher when irradiated with xenon light in vitro than with laser light (p < 0.01). Conclusion The newly developed laser light source is more efficient and safer than a conventional xenon light source. It lacks harmful ultraviolet waves, has a longer lifespan, a lower focal temperature than that of other light sources, a wide range of brightness and color production, and improved safety for the user’s vision. Further clinical trials are necessary to validate the impact of this new light source on the patient’s outcome and prognosis. PMID:29390016
Backscatter absorption gas imaging systems and light sources therefore
Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA
2006-12-19
The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.
Position Index for the Matrix Light Source
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Kobayashi, Yoshinori; Onda, Shou; Irikura, Takashi
It is expected that in the future white LEDs will be widely used in practical applications including replacing conventional lighting in offices and homes. The white LED light source of matrix arrangement is also considered in it. On the other hand, although now the unified glare rating (UGR) is widely used for evaluation of the discomfort glare of the interior lighting, UGR is a thing for a uniform light source, and its application to the matrix light sources that have non-uniform luminance has not been considered. The aim of this study is to clarify the position index which is one of element of UGR for the matrix light source. In this case, to apply the position index for a matrix light source to UGR, the concept of the revised position index is invented. As the preliminary experiment, method for measuring the position index was conducted, and as the experiment, position index for the matrix light source was conducted and compared with the uniform light source. The results of the experiments show that the position index is decided by the relative angle between line of sight and light source. It is also found that the matrix light source have larger position index than uniform light source. Furthermore, it is shown that the discomfort glare caused by a matrix light source can be evaluated by applying the revised position index to the UGR.
Driver circuit for solid state light sources
Palmer, Fred; Denvir, Kerry; Allen, Steven
2016-02-16
A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.
Galvez, Miguel; Grossman, Kenneth; Betts, David
2013-11-12
There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.
NASA Technical Reports Server (NTRS)
Bolin, Kenneth (Inventor); Flynn, David (Inventor); Fowski, Walter (Inventor); Miklus, Kenneth (Inventor); Kissh, Frank (Inventor); Abreu, Rene (Inventor)
1993-01-01
A method and apparatus for tracking a light source in a transient event rich environment locks on to a light source incident on a field-of-view 1 of a charge-coupled-device (CCD) array 6, validates the permanence of said light source and transmits data relating to the brilliance and location of said light source if said light source is determined to be permanent.
High efficiency light source using solid-state emitter and down-conversion material
Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul
2010-10-26
A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.
Nonimaging Optical Illumination System
Winston, Roland
1994-08-02
A nonimaging illumination optical device for producing selected intensity output over an angular range. The device includes a light reflecting surface (24, 26) around a light source (22) which is disposed opposite the aperture opening of the light reflecting surface (24, 26). The light source (22) has a characteristic dimension which is small relative to one or more of the distance from the light source (22) to the light reflecting surface (24, 26) or the angle subtended by the light source (22) at the light reflecting surface (24, 26).
Development of a circadian light source
NASA Astrophysics Data System (ADS)
Nicol, David B.; Ferguson, Ian T.
2002-11-01
Solid state lighting presents a new paradigm for lighting - controllability. Certain characteristics of the lighting environment can be manipulated, because of the possibility of using multiple LEDs of different emission wavelengths as the illumination source. This will provide a new, versatile, general illumination source due to the ability to vary the spectral power distribution. New effects beyond the visual may be achieved that are not possible with conventional light sources. Illumination has long been the primary function of lighting but as the lighting industry has matured the psychological aspects of lighting have been considered by designers; for example, choosing a particular lighting distribution or color variation in retail applications. The next step in the evolution of light is to consider the physiological effects of lighting that cause biological changes in a person within the environment. This work presents the development of a source that may have important bearing on this area of lighting. A circadian light source has been developed to provide an illumination source that works by modulating its correlated color temperature to mimic the changes in natural daylight through the day. In addition, this source can cause or control physiological effects for a person illuminated by it. The importance of this is seen in the human circadian rhythm's peak response corresponding to blue light at ~460 nm which corresponds to the primary spectral difference in increasing color temperature. The device works by adding blue light to a broadband source or mixing polychromatic light to mimic the variation of color temperature observed for the Planckian Locus on the CIE diagram. This device can have several applications including: a tool for researchers in this area, a general illumination lighting technology, and a light therapy device.
Heating device for semiconductor wafers
Vosen, Steven R.
1999-01-01
An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.
Heating device for semiconductor wafers
Vosen, S.R.
1999-07-27
An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.
A tuneable approach to uniform light distribution for artificial daylight photodynamic therapy.
O'Mahoney, Paul; Haigh, Neil; Wood, Kenny; Brown, C Tom A; Ibbotson, Sally; Eadie, Ewan
2018-06-16
Implementation of daylight photodynamic therapy (dPDT) is somewhat limited by variable weather conditions. Light sources have been employed to provide artificial dPDT indoors, with low irradiances and longer treatment times. Uniform light distribution across the target area is key to ensuring effective treatment, particularly for large areas. A novel light source is developed with tuneable direction of light emission in order to meet this challenge. Wavelength composition of the novel light source is controlled such that the protoporphyrin-IX (PpIX) weighed spectra of both the light source and daylight match. The uniformity of the light source is characterised on a flat surface, a model head and a model leg. For context, a typical conventional PDT light source is also characterised. Additionally, the wavelength uniformity across the treatment site is characterised. The PpIX-weighted spectrum of the novel light source matches with PpIX-weighted daylight spectrum, with irradiance values within the bounds for effective dPDT. By tuning the direction of light emission, improvements are seen in the uniformity across large anatomical surfaces. Wavelength uniformity is discussed. We have developed a light source that addresses the challenges in uniform, multiwavelength light distribution for large area artificial dPDT across curved anatomical surfaces. Copyright © 2018. Published by Elsevier B.V.
Assessment of the actual light dose in photodynamic therapy.
Schaberle, Fabio A
2018-06-09
Photodynamic therapy (PDT) initiates with the absorption of light, which depends on the spectral overlap between the light source emission and the photosensitizer absorption, resulting in the number of photons absorbed, the key parameter starting PDT processes. Most papers report light doses regardless if the light is only partially absorbed or shifted relatively to the absorption peak, misleading the actual light dose value and not allowing quantitative comparisons between photosensitizers and light sources. In this manuscript a method is presented to calculate the actual light dose delivered by any light source for a given photosensitizer. This method allows comparing light doses delivered for any combination of light source (broad or narrow band or daylight) and photosensitizer. Copyright © 2018. Published by Elsevier B.V.
Carambola optics for recycling of light.
Leutz, Ralf; Fu, Ling; Ries, Harald
2006-04-20
Recycling of light allows the luminance (radiance) emitted by a light source to be increased at the cost of reducing the total luminous flux (radiant power). Recycling of light means returning part of the emitted light to the source, where part of it will escape absorption. An optical design that is suitable for multiple and controlled recycling is described. Carambola optics is named for its resemblance to star fruit. Several pairs of mirrors or prisms redirect light repeatedly onto the source, thus achieving multiple transits of the light through the source. This recycled light exits the carambola in the same phase space as light directly emitted and not recycled.
USDA-ARS?s Scientific Manuscript database
Multi-layer vertical production systems using sole-source (SS) lighting can be used for microgreen production; however, traditional SS lighting can consume large amounts of electrical energy. Light-emitting diodes (LEDs) offer many advantages over conventional light sources including: high photoelec...
Spectral design flexibility of LED brings better life
NASA Astrophysics Data System (ADS)
Ou, Haiyan; Corell, Dennis; Ou, Yiyu; Poulsen, Peter B.; Dam-Hansen, Carsten; Petersen, Paul-Michael
2012-03-01
Light-emitting diodes (LEDs) are penetrating into the huge market of general lighting because they are energy saving and environmentally friendly. The big advantage of LED light sources, compared to traditional incandescent lamps and fluorescent light tubes, is the flexible spectral design to make white light using different color mixing schemes. The spectral design flexibility of white LED light sources will promote them for novel applications to improve the life quality of human beings. As an initial exploration to make use of the spectral design flexibility, we present an example: 'no blue' white LED light source for sufferers of disease Porphyria. An LED light source prototype, made of high brightness commercial LEDs applying an optical filter, was tested by a patient suffering from Porphyria. Preliminary results have shown that the sufferer could withstand the light source for much longer time than the standard light source. At last future perspectives on spectral design flexibility of LED light sources improving human being's life will be discussed, with focus on the light and health. The good health is ensured by the spectrum optimized so that vital hormones (melatonin and serotonin) are produced during times when they support human daily rhythm.
Behavioural responses of krill and cod to artificial light in laboratory experiments
Løkkeborg, S.; Humborstad, O-B.
2018-01-01
Most fishes and crustaceans respond to light, and artificial light sources may therefore be an efficient stimulus to manipulate behaviours in aquatic animals. It has been hypothesised that the catch efficiency of pots could be increased if prey, for example krill, can be attracted into the pots providing a visual stimulus and a source of live bait. To find which light characteristics are most attractive to krill, we tested the effects of light intensity and wavelength composition on Northern krill’s (Meganyctiphanes norvegica) behavioural response to an artificial light source. The most attractive individual wavelength was 530 nm (green light), while broadband (425–750 nm) white light was an equally attractive light source. The intensity of the emitted light did not appear to have a direct effect on attraction to the light source, however it did significantly increase swimming activity among the observed krill. The most promising light stimuli for krill were tested to determine whether they would have a repulsive or attractive effect on cod (Gadus morhua); These light stimuli appeared to have a slightly repulsive, but non-significant, effect on cod. However, we suggest that a swarm of krill attracted to an artificial light source may produce a more effective visual stimulus to foraging cod. PMID:29370231
Behavioural responses of krill and cod to artificial light in laboratory experiments.
Utne-Palm, A C; Breen, M; Løkkeborg, S; Humborstad, O-B
2018-01-01
Most fishes and crustaceans respond to light, and artificial light sources may therefore be an efficient stimulus to manipulate behaviours in aquatic animals. It has been hypothesised that the catch efficiency of pots could be increased if prey, for example krill, can be attracted into the pots providing a visual stimulus and a source of live bait. To find which light characteristics are most attractive to krill, we tested the effects of light intensity and wavelength composition on Northern krill's (Meganyctiphanes norvegica) behavioural response to an artificial light source. The most attractive individual wavelength was 530 nm (green light), while broadband (425-750 nm) white light was an equally attractive light source. The intensity of the emitted light did not appear to have a direct effect on attraction to the light source, however it did significantly increase swimming activity among the observed krill. The most promising light stimuli for krill were tested to determine whether they would have a repulsive or attractive effect on cod (Gadus morhua); These light stimuli appeared to have a slightly repulsive, but non-significant, effect on cod. However, we suggest that a swarm of krill attracted to an artificial light source may produce a more effective visual stimulus to foraging cod.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You
1997-01-01
This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You
1994-01-01
This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, R.; Tan, W.; Shi, Z.Y.
1997-05-06
This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, R.; Tan, W.; Shi, Z.Y.
1994-11-01
This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.
Lighting system with thermal management system
Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc
2015-02-24
Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.
Lighting system with thermal management system
Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc
2015-08-25
Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.
Lighting system with thermal management system
Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc
2013-05-07
Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.
Lighting system with thermal management system
Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr, Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc
2016-10-11
Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.
Effect of laser speckle on light from laser diode-pumped phosphor-converted light sources.
Aquino, Felipe; Jadwisienczak, Wojciech M; Rahman, Faiz
2017-01-10
Laser diode (LD) pumped white light sources are being developed as an alternative to light-emitting diode-pumped sources for high efficiency and/or high brightness applications. While several performance metrics of laser-pumped phosphor-converted light sources have been investigated, the effect of laser speckle has not been sufficiently explored. This paper describes our experimental studies on how laser speckle affects the behavior of light from laser-excited phosphor lamps. A single LD pumping a phosphor plate was the geometry explored in this work. Overall, our findings are that the down-converted light did not exhibit any speckle, whereas speckle was present in the residual pump light but much reduced from that in direct laser light. Furthermore, a thicker coating of small-grained phosphors served to effectively reduce speckle through static pump light diffusion in the phosphor coating. Our investigations showed that speckle is not of concern in illumination from LD-pumped phosphor-converted light sources.
LED intense headband light source for fingerprint analysis
Villa-Aleman, Eliel
2005-03-08
A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.
Particle measurement systems and methods
Steele, Paul T [Livermore, CA
2011-10-04
A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.
Robertson, J. Brian; Zhang, Yunfei; Johnson, Carl Hirschie
2009-01-01
Summary Light-emitting diodes (LEDs) are becoming more commonly used as light sources for fluorescence microscopy. We describe the adaptation of a commercially available LED flashlight for use as a source for fluorescence excitation. This light source is long-lived, inexpensive, and is effective for excitation in the range of 440–600 nm. PMID:19772530
Evaluating white LEDs for outdoor landscape lighting application
NASA Astrophysics Data System (ADS)
Shakir, Insiya; Narendran, Nadarajah
2002-11-01
A laboratory experiment was conducted to understand the acceptability of different white light emitting diodes (LEDs) for outdoor landscape lighting. The study used a scaled model setup. The scene was designed to replicate the exterior of a typical upscale suburban restaurant including the exterior facade of the building, an approach with steps, and a garden. The lighting was designed to replicate light levels commonly found in nighttime outdoor conditions. The model had a central dividing partition with symmetrical scenes on both sides for side-by-side evaluations of the two scenes with different light sources. While maintaining equal luminance levels and distribution between the two scenes, four types of light sources were evaluated. These include, halogen, phosphor white LED, and two white light systems using RGB LEDs. These light sources were tested by comparing two sources at a time placed side-by-side and by individual assessment of each lighting condition. The results showed that the RGB LEDs performed equal or better than the most widely used halogen light source in this given setting. A majority of the subjects found slightly dimmer ambient lighting to be more typical for restaurants and therefore found RGB LED and halogen light sources to be more inviting. The phosphor white LEDs made the space look brighter, however a majority of the subjects disliked them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riza, Nabeel Agha; Perez, Frank
A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector tomore » calculate a temperature of the device.« less
Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM
2004-07-27
A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.
Light source comprising a common substrate, a first led device and a second led device
Choong, Vi-En
2010-02-23
At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.
A novel amblyopia treatment system based on LED light source
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling
2011-05-01
A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.
A novel amblyopia treatment system based on LED light source
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling
2010-12-01
A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.
Silicon micromachined broad band light source
NASA Technical Reports Server (NTRS)
George, Thomas (Inventor); Jones, Eric (Inventor); Tuma, Margaret L. (Inventor); Eastwood, Michael (Inventor); Hansler, Richard (Inventor)
2004-01-01
A micro electromechanical system (MEMS) broad band incandescent light source includes three layers: a top transmission window layer; a middle filament mount layer; and a bottom reflector layer. A tungsten filament with a spiral geometry is positioned over a hole in the middle layer. A portion of the broad band light from the heated filament is reflective off the bottom layer. Light from the filament and the reflected light of the filament are transmitted through the transmission window. The light source may operate at temperatures of 2500 K or above. The light source may be incorporated into an on board calibrator (OBC) for a spectrometer.
Modeling of an Adjustable Beam Solid State Light Project
NASA Technical Reports Server (NTRS)
Clark, Toni
2015-01-01
This proposal is for the development of a computational model of a prototype variable beam light source using optical modeling software, Zemax Optics Studio. The variable beam light source would be designed to generate flood, spot, and directional beam patterns, while maintaining the same average power usage. The optical model would demonstrate the possibility of such a light source and its ability to address several issues: commonality of design, human task variability, and light source design process improvements. An adaptive lighting solution that utilizes the same electronics footprint and power constraints while addressing variability of lighting needed for the range of exploration tasks can save costs and allow for the development of common avionics for lighting controls.
Study on Formulation of Optimum Lighting-system for Purchasing Power at Stores
NASA Astrophysics Data System (ADS)
Fujita, Hiroki; Nakashima, Yoshio; Takamatsu, Mamoru; Oota, Masaaki; Sawa, Kazuhiro
In store lighting, difference in the look-and-feel of foods gives effects on the purchasing power of customers. This study conducted the digitalization and quantification on the effects of the variation of light-source color and illuminance used for lighting foods on image recognition on foods. As a result, it was clarified that when meat was illuminated with the light source of “pink” or “faint pink,” image evaluation on foods became higher. In addition, when illuminance increase was applied to these two light-source colors, image evaluation on “faint pink” became further higher. The reason is supposed to be that the redness of meat increased, which may have enhanced fresher impression. From this study, it has been clarified that the light-source color and illuminance optimum for each food are variant. The results show that lighting foods with the optimum light-source color and illuminance can make foods look better.
A two-metric proposal to specify the color-rendering properties of light sources for retail lighting
NASA Astrophysics Data System (ADS)
Freyssinier, Jean Paul; Rea, Mark
2010-08-01
Lighting plays an important role in supporting retail operations, from attracting customers, to enabling the evaluation of merchandise, to facilitating the completion of the sale. Lighting also contributes to the identity, comfort, and visual quality of a retail store. With the increasing availability and quality of white LEDs, retail lighting specifiers are now considering LED lighting in stores. The color rendering of light sources is a key factor in supporting retail lighting goals and thus influences a light source's acceptance by users and specifiers. However, there is limited information on what consumers' color preferences are, and metrics used to describe the color properties of light sources often are equivocal and fail to predict preference. The color rendering of light sources is described in the industry solely by the color rendering index (CRI), which is only indirectly related to human perception. CRI is intended to characterize the appearance of objects illuminated by the source and is increasingly being challenged because new sources are being developed with increasingly exotic spectral power distributions. This paper discusses how CRI might be augmented to better use it in support of the design objectives for retail merchandising. The proposed guidelines include the use of gamut area index as a complementary metric to CRI for assuring good color rendering.
Colors of attraction: Modeling insect flight to light behavior.
Donners, Maurice; van Grunsven, Roy H A; Groenendijk, Dick; van Langevelde, Frank; Bikker, Jan Willem; Longcore, Travis; Veenendaal, Elmar
2018-06-26
Light sources attract nocturnal flying insects, but some lamps attract more insects than others. The relation between the properties of a light source and the number of attracted insects is, however, poorly understood. We developed a model to quantify the attractiveness of light sources based on the spectral output. This model is fitted using data from field experiments that compare a large number of different light sources. We validated this model using two additional datasets, one for all insects and one excluding the numerous Diptera. Our model facilitates the development and application of light sources that attract fewer insects without the need for extensive field tests and it can be used to correct for spectral composition when formulating hypotheses on the ecological impact of artificial light. In addition, we present a tool allowing the conversion of the spectral output of light sources to their relative insect attraction based on this model. © 2018 Wiley Periodicals, Inc.
Geometrical analysis of an optical fiber bundle displacement sensor
NASA Astrophysics Data System (ADS)
Shimamoto, Atsushi; Tanaka, Kohichi
1996-12-01
The performance of a multifiber optical lever was geometrically analyzed by extending the Cook and Hamm model [Appl. Opt. 34, 5854-5860 (1995)] for a basic seven-fiber optical lever. The generalized relationships between sensitivity and the displacement detection limit to the fiber core radius, illumination irradiance, and coupling angle were obtained by analyses of three various types of light source, i.e., a parallel beam light source, an infinite plane light source, and a point light source. The analysis of the point light source was confirmed by a measurement that used the light source of a light-emitting diode. The sensitivity of the fiber-optic lever is inversely proportional to the fiber core radius, whereas the receiving light power is proportional to the number of illuminating and receiving fibers. Thus, the bundling of the finer fiber with the larger number of illuminating and receiving fibers is more effective for improving sensitivity and the displacement detection limit.
ERIC Educational Resources Information Center
Kesonen, Mikko Henri Petteri; Asikainen, Mervi Anita; Hirvonen, Pekka Emil
2017-01-01
In the present article, the context-dependency of student reasoning is studied in a context of optics. We investigated introductory students' explanations about the behavior of light when different light sources, namely a small light bulb and a laser, were used in otherwise identical task assignments. The data was gathered with the aid of pretest…
High temperature, minimally invasive optical sensing modules
Riza, Nabeel Agha [Oviedo, FL; Perez, Frank [Tujunga, CA
2008-02-05
A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.
Intense X-ray and EUV light source
Coleman, Joshua; Ekdahl, Carl; Oertel, John
2017-06-20
An intense X-ray or EUV light source may be driven by the Smith-Purcell effect. The intense light source may utilize intense electron beams and Bragg crystals. This may allow the intense light source to range from the extreme UV range up to the hard X-ray range.
Evaluation of OLED and edge-lit LED lighting panels
NASA Astrophysics Data System (ADS)
Mou, Xi; Narendran, Nadarajah; Zhu, Yiting; Freyssinier, Jean Paul
2016-09-01
Solid-state lighting (SSL) offers a new technology platform for lighting designers and end-users to illuminate spaces with low energy demand. Two types of SSL sources include organic light-emitting diodes (OLEDs) and light-emitting diodes (LEDs). OLED is an area light source, and its primary competing technology is the edge-lit LED panel. Generally, both of these technologies are considered similar in shape and appearance, but there is little understanding of how people perceive discomfort glare from large area light sources. The objective of this study was to evaluate discomfort glare for the two lighting technologies under similar operating conditions by gathering observers' reactions. The human factors study results showed no statistically significant difference in human response to discomfort glare between OLED and edge-lit LED panels when the two light sources produced the same lighting stimulus. This means both technologies appeared equally glary beyond a certain luminance.
A numerical experiment on light pollution from distant sources
NASA Astrophysics Data System (ADS)
Kocifaj, M.
2011-08-01
To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.
Design and evaluation of excitation light source device for fluorescence endoscope
NASA Astrophysics Data System (ADS)
Lim, Hyun Soo
2009-06-01
This study aims at designing and evaluating light source devices that can stably generate light with various wavelengths in order to make possible PDD using a photosensitizer and diagnosis using auto-fluorescence. The light source was a Xenon lamp and filter wheel, composed of an optical output control through Iris and filters with several wavelength bands. It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-420nm, 430-480nm, and 480-560nm. The transmission part of the light source was developed to enhance the efficiency of light transmission. To evaluate this light source, the characteristics of light output and wavelength band were verified. To validate the capability of this device as PDD, the detection of auto-fluorescence using mouse models was performed.
Hansen, A.D.
1988-01-25
An improved aethalometer having a single light source and a single light detector and two light paths from the light source to the light detector. A quartz fiber filter is inserted in the device, the filter having a collection area in one light path and a reference area in the other light path. A gas flow path through the aethalometer housing allows ambient air to flow through the collection area of the filter so that aerosol particles can be collected on the filter. A rotating disk with an opening therethrough allows light for the light source to pass alternately through the two light paths. The voltage output of the detector is applied to a VCO and the VCO pulses for light transmission separately through the two light paths, are counted and compared to determine the absorption coefficient of the collected aerosol particles. 5 figs.
Illumination control apparatus for compensating solar light
NASA Technical Reports Server (NTRS)
Owens, L. J. (Inventor)
1978-01-01
An illumination control apparatus is presented for supplementing light from solar radiation with light from an artificial light source to compensate for periods of insufficient levels of solar light. The apparatus maintains a desired illumination level within an interior space comprising an artificial light source connected to an electrical power source with a switch means for selectively energizing said light source. An actuator means for controlling the on-off operation of the switch means is connected to a light sensor which responses to the illumination level of the interior space. A limit switch carried adjacent to the actuator limits the movement of the actuator within a predetermined range so as to prevent further movement thereof during detection of erroneous illumination conditions.
A compact, coherent light source system architecture
NASA Astrophysics Data System (ADS)
Biedron, S. G.; Dattoli, G.; DiPalma, E.; Einstein, J.; Milton, S. V.; Petrillo, V.; Rau, J. V.; Sabia, E.; Spassovsky, I. P.; van der Slot, P. J. M.
2016-09-01
Our team has been examining several architectures for short-wavelength, coherent light sources. We are presently exploring the use and role of advanced, high-peak power lasers for both accelerating the electrons and generating a compact light source with the same laser. Our overall goal is to devise light sources that are more accessible by industry and in smaller laboratory settings. Although we cannot and do not want to compete directly with sources such as third-generation light sources or that of national-laboratory-based free-electron lasers, we have several interesting schemes that could bring useful and more coherent, short-wavelength light source to more researchers. Here, we present and discuss several results of recent simulations and our future steps for such dissemination.
Ahmad, Azeem; Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Mehta, Dalip Singh
2016-04-01
In this Letter, we demonstrate quantitative phase imaging of biological samples, such as human red blood cells (RBCs) and onion cells using narrow temporal frequency and wide angular frequency spectrum light source. This type of light source was synthesized by the combined effect of spatial, angular, and temporal diversity of speckle reduction technique. The importance of using low spatial and high temporal coherence light source over the broad band and narrow band light source is that it does not require any dispersion compensation mechanism for biological samples. Further, it avoids the formation of speckle or spurious fringes which arises while using narrow band light source.
The Inverse-Square Law with Data Loggers
ERIC Educational Resources Information Center
Bates, Alan
2013-01-01
The inverse-square law for the intensity of light received at a distance from a light source has been verified using various experimental techniques. Typical measurements involve a manual variation of the distance between a light source and a light sensor, usually by sliding the sensor or source along a bench, measuring the source-sensor distance…
Monolithic LED arrays, next generation smart lighting sources
NASA Astrophysics Data System (ADS)
Lagrange, Alexandre; Bono, Hubert; Templier, François
2016-03-01
LED have become the main light sources of the future as they open the path for intelligent use of light in time, intensity and color. In many usages, strong energy economy is done by adjusting these properties. The smart lighting has three dimensions, energy efficiency brought by GaN blue emitting LEDs, integration of electronics, sensors, microprocessors in the lighting system and development of new functionalities and services provided by the light. Monolithic LED arrays allow two major innovations, the spatial control of light emission and the adjustment of the electrical properties of the source.
NASA Technical Reports Server (NTRS)
Holley, Daniel C.; Heeke, D.; Mele, G.
1999-01-01
Currently, the light sources most commonly used in animal habitat lighting are cool white fluorescent or incandescent lamps. We evaluated a novel light-emitting diode (LED) light source for use in animal habitat lighting by comparing its effectiveness to cool white fluorescent light (CWF) in suppressing pineal gland melatonin and maintaining normal retinal physiology and morphology in the rat. Results of pineal melatonin suppression experiments showed equal suppression of pineal melatonin concentrations for LED light and CWF light at five different light illuminances (100, 40, 10, 1 and 0.1 lux). There were no significant differences in melatonin suppression between LED and CWF light when compared to unexposed controls. Retinal physiology was evaluated using electroretinography. Results show no differences in a-wave implicit times and amplitudes or b-wave implicit times and amplitudes between 100-lux LED-exposed rats and 100-lux CWF-exposed rats. Results of retinal histology assessment show no differences in retinal thickness rod outer segment length and number of rod nuclei between rats exposed to 100-lux LED and 100-lux CWF for days. Furthermore, the retinal pigmented epithelium and rod outer segments of all eyes observed were in good condition and of normal thickness. This study indicates that LED light does not cause retinal damage and can suppress pineal melatonin at similar intensities as a conventional CWF light source. These data suggest that LED light sources may be suitable replacements for conventional light sources used in the lighting of rodent vivariums while providing many mechanical and economical advantages.
The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.
ERIC Educational Resources Information Center
Jackson, David L.; And Others
1985-01-01
The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)
Optical nulling apparatus and method for testing an optical surface
NASA Technical Reports Server (NTRS)
Olczak, Eugene (Inventor); Hannon, John J. (Inventor); Dey, Thomas W. (Inventor); Jensen, Arthur E. (Inventor)
2008-01-01
An optical nulling apparatus for testing an optical surface includes an aspheric mirror having a reflecting surface for imaging light near or onto the optical surface under test, where the aspheric mirror is configured to reduce spherical aberration of the optical surface under test. The apparatus includes a light source for emitting light toward the aspheric mirror, the light source longitudinally aligned with the aspheric mirror and the optical surface under test. The aspheric mirror is disposed between the light source and the optical surface under test, and the emitted light is reflected off the reflecting surface of the aspheric mirror and imaged near or onto the optical surface under test. An optical measuring device is disposed between the light source and the aspheric mirror, where light reflected from the optical surface under test enters the optical measuring device. An imaging mirror is disposed longitudinally between the light source and the aspheric mirror, and the imaging mirror is configured to again reflect light, which is first reflected from the reflecting surface of the aspheric mirror, onto the optical surface under test.
An experiment on the color rendering of different light sources
NASA Astrophysics Data System (ADS)
Fumagalli, Simonetta; Bonanomi, Cristian; Rizzi, Alessandro
2013-02-01
The color rendering index (CRI) of a light source attempts to measure how much the color appearance of objects is preserved when they are illuminated by the given light source. This problem is of great importance for various industrial and scientific fields, such as lighting architecture, design, ergonomics, etc. Usually a light source is specified through the Correlated Color Temperature or CCT. However two (or more) light sources with the same CCT but different spectral power distribution can exist. Therefore color samples viewed under two light sources with equal CCTs can appear different. Hence, the need for a method to assess the quality of a given illuminant in relation to color. Recently CRI has had a renewed interest because of the new LED-based lighting systems. They usually have a color rendering index rather low, but good preservation of color appearance and a pleasant visual appearance (visual appeal). Various attempts to develop a new color rendering index have been done so far, but still research is working for a better one. This article describes an experiment performed by human observers concerning the appearance preservation of color under some light sources, comparing it with a range of available color rendering indices.
Internal heat gain from different light sources in the building lighting systems
NASA Astrophysics Data System (ADS)
Suszanowicz, Dariusz
2017-10-01
EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.
NASA Technical Reports Server (NTRS)
1993-01-01
Research on food growth for long duration spacecraft has resulted in a light source for growing plants indoors known as Qbeam, a solid state light source consisting of a control unit and lamp. The light source, manufactured by Quantum Devices, Inc., is not very hot, although it generates high intensity radiation. When Ron Ignatius, an industrial partner of WCSAR, realized that terrestrial plant research lighting was not energy efficient enough for space use, he and WCSAR began to experiment with light emitting diodes. A line of LED products was developed, and QDI was formed to market the technology. An LED-based cancer treatment device is currently under development.
NASA Astrophysics Data System (ADS)
Kenar, Necla; Lim, H. S.; Mirzaaghasi, Amin
2014-02-01
New design of the excitation light source that can stably generate light with center wavelengths of 450nm, 530nm, 632.8nm and white light for auto-fluorescence(AF) and photodynamic diagnosis(PDD) of cancer in clinics in a single system is presented in this study. The light source consists of Xenon Lamp (300W), light guide module including motorize filter wheel equipped with optical filters with corresponding to wavelength bands, servo motor, motorize iris, a cooling system, power supply and optical transmission part for the output light. The transmission part of the light source was developed to collimate the light with desired wavelength into input of fiber optic. Output powers are obtained average 99.91 mW for 450+/-40 nm, 111.01 mW for 530+/-10nm, and 78.50 mW for 632.8+/-10nm.
... can be exacerbated by light sources such as computer screens or fluorescent lights. Use a flicker-free ... cubicle shield Allow frequent breaks from tasks involving computer Provide alternative light sources: Replace fluorescent lights with ...
Reduction of background clutter in structured lighting systems
Carlson, Jeffrey J.; Giles, Michael K.; Padilla, Denise D.; Davidson, Jr., Patrick A.; Novick, David K.; Wilson, Christopher W.
2010-06-22
Methods for segmenting the reflected light of an illumination source having a characteristic wavelength from background illumination (i.e. clutter) in structured lighting systems can comprise pulsing the light source used to illuminate a scene, pulsing the light source synchronously with the opening of a shutter in an imaging device, estimating the contribution of background clutter by interpolation of images of the scene collected at multiple spectral bands not including the characteristic wavelength and subtracting the estimated background contribution from an image of the scene comprising the wavelength of the light source and, placing a polarizing filter between the imaging device and the scene, where the illumination source can be polarized in the same orientation as the polarizing filter. Apparatus for segmenting the light of an illumination source from background illumination can comprise an illuminator, an image receiver for receiving images of multiple spectral bands, a processor for calculations and interpolations, and a polarizing filter.
Discrete wavelength-locked external cavity laser
NASA Technical Reports Server (NTRS)
Pilgrim, Jeffrey S. (Inventor); Silver, Joel A. (Inventor)
2005-01-01
An external cavity laser (and method of generating laser light) comprising: a laser light source; means for collimating light output by the laser light source; a diffraction grating receiving collimated light; a cavity feedback mirror reflecting light received from the diffraction grating back to the diffraction grating; and means for reliably tuning the external cavity laser to discrete wavelengths.
Polarization Dependent Whispering Gallery Modes in Microspheres
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor); Wrbanek, Susan Y. (Inventor)
2016-01-01
A tunable resonant system is provided and includes a microsphere that receives an incident portion of a light beam generated via a light source, the light beam having a fundamental mode, a waveguide medium that transmits the light beam from the light source to the microsphere, and a polarizer disposed in a path of the waveguide between the light source and the microsphere. The incident portion of the light beam creates a fundamental resonance inside the microsphere. A change in a normalized frequency of the wavelength creates a secondary mode in the waveguide and the secondary mode creates a secondary resonance inside the microsphere.
Integrated LED-based luminaire for general lighting
Dowling, Kevin J.; Lys, Ihor A.; Williamson, Ryan C.; Roberge, Brian; Roberts, Ron; Morgan, Frederick; Datta, Michael Jay; Mollnow, Tomas Jonathan
2016-08-30
Lighting apparatus and methods employing LED light sources are described. The LED light sources are integrated with other components in the form of a luminaire or other general purpose lighting structure. Some of the lighting structures are formed as Parabolic Aluminum Reflector (PAR) luminaires, allowing them to be inserted into conventional sockets. The lighting structures display beneficial operating characteristics, such as efficient operation, high thermal dissipation, high output, and good color mixing.
Integrated LED-based luminare for general lighting
Dowling, Kevin J.; Lys, Ihor A.; Roberge, Brian; Williamson, Ryan C.; Roberts, Ron; Datta, Michael; Mollnow, Tomas; Morgan, Frederick M.
2013-03-05
Lighting apparatus and methods employing LED light sources are described. The LED light sources are integrated with other components in the form of a luminaire or other general purpose lighting structure. Some of the lighting structures are formed as Parabolic Aluminum Reflector (PAR) luminaires, allowing them to be inserted into conventional sockets. The lighting structures display beneficial operating characteristics, such as efficient operation, high thermal dissipation, high output, and good color mixing.
Northern Red Oak Seedling Growth Varies by Light Intensity and Seed Source
Charles E. McGee
1968-01-01
Northern red oak seedlings from each of three seed sources were subjected for one growing season to one of four intensities of light: full light, 70 percent light, 37 percent light, and 8 percent light. Seedlings grown in the open were taller than those grown in the shade and had more, generally heavier leaves. Height and leaf growth decreased as the amount of light...
Microelectromechanical Systems (MEMS) Broadband Light Source Developed
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.
2003-01-01
A miniature, low-power broadband light source has been developed for aerospace applications, including calibrating spectrometers and powering miniature optical sensors. The initial motivation for this research was based on flight tests of a Fabry-Perot fiberoptic temperature sensor system used to detect aircraft engine exhaust gas temperature. Although the feasibility of the sensor system was proven, the commercial light source optically powering the device was identified as a critical component requiring improvement. Problems with the light source included a long stabilization time (approximately 1 hr), a large amount of heat generation, and a large input electrical power (6.5 W). Thus, we developed a new light source to enable the use of broadband optical sensors in aerospace applications. Semiconductor chip-based light sources, such as lasers and light-emitting diodes, have a relatively narrow range of emission wavelengths in comparison to incandescent sources. Incandescent light sources emit broadband radiation from visible to infrared wavelengths; the intensity at each wavelength is determined by the filament temperature and the materials chosen for the filament and the lamp window. However, present commercial incandescent light sources are large in size and inefficient, requiring several watts of electrical power to obtain the desired optical power, and they emit a large percentage of the input power as heat that must be dissipated. The miniature light source, developed jointly by the NASA Glenn Research Center, the Jet Propulsion Laboratory, and the Lighting Innovations Institute, requires one-fifth the electrical input power of some commercial light sources, while providing similar output light power that is easily coupled to an optical fiber. Furthermore, it is small, rugged, and lightweight. Microfabrication technology was used to reduce the size, weight, power consumption, and potential cost-parameters critical to future aerospace applications. This chip-based light source has the potential for monolithic fabrication with on-chip drive electronics. Other uses for these light sources are in systems for vehicle navigation, remote sensing applications such as monitoring bridges for stress, calibration sources for spectrometers, light sources for space sensors, display lighting, addressable arrays, and industrial plant monitoring. Two methods for filament fabrication are being developed: wet-chemical etching and laser ablation. Both yield a 25-mm-thick tungsten spiral filament. The proof-of-concept filament shown was fabricated with the wet etch method. Then it was tested by heating it in a vacuum chamber using about 1.25 W of electrical power; it generated bright, blackbody radiation at approximately 2650 K. The filament was packaged in Glenn's clean-room facilities. This design uses three chips vacuum-sealed with glass tape. The bottom chip consists of a reflective film deposited on silicon, the middle chip contains a tungsten filament bonded to silicon, and the top layer is a transparent window. Lifetime testing on the package will begin shortly. The emitted optical power is expected to be approximately 1.0 W with the spectral peak at 1.1 mm.
DUV light source availability improvement via further enhancement of gas management technologies
NASA Astrophysics Data System (ADS)
Riggs, Daniel J.; O'Brien, Kevin; Brown, Daniel J. W.
2011-04-01
The continuous evolution of the semiconductor market necessitates ever-increasing improvements in DUV light source uptime as defined in the SEMI E10 standard. Cymer is developing technologies to exceed current and projected light source availability requirements via significant reduction in light source downtime. As an example, consider discharge chamber gas management functions which comprise a sizable portion of DUV light source downtime. Cymer's recent introduction of Gas Lifetime Extension (GLXTM) as a productivity improvement technology for its DUV lithography light sources has demonstrated noteworthy reduction in downtime. This has been achieved by reducing the frequency of full gas replenishment events from once per 100 million pulses to as low as once per 2 billion pulses. Cymer has continued to develop relevant technologies that target further reduction in downtime associated with light source gas management functions. Cymer's current subject is the development of technologies to reduce downtime associated with gas state optimization (e.g. total chamber gas pressure) and gas life duration. Current gas state optimization involves execution of a manual procedure at regular intervals throughout the lifetime of light source core components. Cymer aims to introduce a product enhancement - iGLXTM - that eliminates the need for the manual procedure and, further, achieves 4 billion pulse gas lives. Projections of uptime on DUV light sources indicate that downtime associated with gas management will be reduced by 70% when compared with GLX2. In addition to reducing downtime, iGLX reduces DUV light source cost of operation by constraining gas usage. Usage of fluorine rich Halogen gas mix has been reduced by 20% over GLX2.
Illuminating system and method for specialized and decorative lighting using liquid light guides
Zorn, C.J.; Kross, B.J.; Majewski, S.; Wojcik, R.F.
1998-08-25
The present invention comprises an illumination system for specialized decorative lighting including a light source, a flexible plastic tube sheath for distributing the light to a remote location, a transparent liquid core filling the tube that has an index of refraction greater than that of the plastic tube and an arrangement where light coupled from the light source is caused to leak from the liquid light guide at desired locations for the purposes of specialized lighting, such as underwater illumination in swimming pools. 5 figs.
Illuminating system and method for specialized and decorative lighting using liquid light guides
Zorn, Carl J.; Kross, Brian J.; Majewski, Stanislaw; Wojcik, Randolph F.
1998-01-01
The present invention comprises an illumination system for specialized decorative lighting including a light source, a flexible plastic tube sheath for distributing the light to a remote location, a transparent liquid core filling the tube that has an index of refraction greater than that of the plastic tube and an arrangement where light coupled from the light source is caused to leak from the liquid light guide at desired locations for the purposes of specialized lighting, such as underwater illumination in swimming pools.
Modelling of a laser-pumped light source for endoscopic surgery
NASA Astrophysics Data System (ADS)
Nadeau, Valerie J.; Elson, Daniel S.; Hanna, George B.; Neil, Mark A. A.
2008-09-01
A white light source, based on illumination of a yellow phosphor with a fibre-coupled blue-violet diode laser, has been designed and built for use in endoscopic surgery. This narrow light probe can be integrated into a standard laparoscope or inserted into the patient separately via a needle. We present a Monte Carlo model of light scattering and phosphorescence within the phosphor/silicone matrix at the probe tip, and measurements of the colour, intensity, and uniformity of the illumination. Images obtained under illumination with this light source are also presented, demonstrating the improvement in illumination quality over existing endoscopic light sources. This new approach to endoscopic lighting has the advantages of compact design, improved ergonomics, and more uniform illumination in comparison with current technologies.
Light use efficiency for vegetables production in protected and indoor environments
NASA Astrophysics Data System (ADS)
Cocetta, Giacomo; Casciani, Daria; Bulgari, Roberta; Musante, Fulvio; Kołton, Anna; Rossi, Maurizio; Ferrante, Antonio
2017-01-01
In recent years, there is a growing interest for vegetables production in indoor or disadvantaged climatic zones by using greenhouses. The main problem of crop growing indoor or in environment with limited light availability is the correct choice of light source and the quality of lighting spectrum. In greenhouse and indoor cultivations, plant density is higher than in the open field and plants have to compete for light and nutrients. Nowadays, advanced systems for indoor horticulture use light emitting diodes (LED) for improving crop growth, enhancing the plant productivity and favouring the best nutritional quality formation. In closed environments, as indoor growing modules, the lighting system represents the only source of light and its features are fundamental for obtaining the best lighting performances for plant and the most efficient solution. LED lighting engines are more efficient compared to the lighting sources used traditionally in horticulture and allow light spectrum and intensity modulations to enhance the light use efficiency for plants. The lighting distribution and the digital controls are fundamental for tailoring the spectral distribution on each plant in specific moments of its growth and play an important role for optimizing growth and produce high-quality vegetables. LED lights can increase plant growth and yield, but also nutraceutical quality, since some light intensities increase pigments biosynthesis and enhance the antioxidants content of leaves or fruits: in this regards the selection of LED primary light sources in relation to the peaks of the absorbance curve of the plants is important.
EGR distribution and fluctuation probe based on CO.sub.2 measurements
Parks, II, James E; Partridge, Jr., William P; Yoo, Ji Hyung
2015-04-07
A diagnostic system having a single-port EGR probe and a method for using the same. The system includes a light source, an EGR probe, a detector and a processor. The light source may provide a combined light beam composed of light from a mid-infrared signal source and a mid-infrared reference source. The signal source may be centered at 4.2 .mu.m and the reference source may be centered at 3.8 .mu.m. The EGR probe may be a single-port probe with internal optics and a sampling chamber with two flow cells arranged along the light path in series. The optics may include a lens for focusing the light beam and a mirror for reflecting the light beam received from a pitch optical cable to a catch optical cable. The signal and reference sources are modulated at different frequencies, thereby allowing them to be separated and the signal normalized by the processor.
Synchrotron Light Sources in Developing Countries
NASA Astrophysics Data System (ADS)
Winick, Herman; Pianetta, Piero
The more than 50 light sources in operation include facilities in Brazil, Korea, and Taiwan which started in the 1980's when they were developing countries. They came on line in the 1990's and have since trained hundreds of graduate students. They have attracted mid-career diaspora scientists to return. Growing user communities have demanded more advanced facilities, leading to higher performance new light sources that are now coming into operation. Light sources in the developing world now include the following: ∖textbf{SESAME}in the Middle East which is scheduled to start research in 2017 (∖underline {www.sesame.org}); ∖textbf{The African Light Source}, in the planning stage (∖underline {www.safricanlightsource.org}); and ∖textbf{The Mexican Light Source}, in the planning stage (∖underline {http://www.aps.org/units/fip/newsletters/201509/mexico.cfm}). See: http://wpj.sagepub.com/content/32/4/92.full.pdf +html; http://www.lightsources.org/press-release/2015/11/20/grenoble-resolutions-mark-historical-step-towards-african-light-source..
Scanning computed confocal imager
George, John S.
2000-03-14
There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.
Side-emitting illuminators using LED sources
NASA Astrophysics Data System (ADS)
Zhao, Feng; Van Derlofske, John F.
2003-11-01
This study investigates illuminators composed of light emitting diode (LED) array sources and side-emitting light guides to provide efficient general illumination. Specifically, new geometries are explored to increase the efficiency of current systems while maintaining desired light distribution. LED technology is already successfully applied in many illumination applications, such as traffic signals and liquid crystal display (LCD) backlighting. It provides energy-efficient, small-package, long-life, and color-adjustable illumination. However, the use of LEDs in general illumination is still in its early stages. Current side-emitting systems typically use a light guide with light sources at one end, an end-cap surface at the other end, and light releasing sidewalls. This geometry introduces efficiency loss that can be as high as 40%. The illuminators analyzed in this study use LED array sources along the longitude of a light guide to increase the system efficiency. These new geometries also provide the freedom of elongating the system without sacrificing system efficiency. In addition, alternative geometries can be used to create white light with monochromatic LED sources. As concluded by this study, the side-emitting illuminators using LED sources gives the possibility of an efficient, distribution-controllable linear lighting system.
Heussler, Carina D; Walter, Andreas; Oberkofler, Hannes; Insam, Heribert; Arthofer, Wolfgang; Schlick-Steiner, Birgit C; Steiner, Florian M
2018-01-01
Hermetia illucens (L.), the Black Soldier Fly, has received increased scientific attention for its potential in circular waste management where larvae can serve as feedstuff for livestock and for biodiesel production. The flies occur naturally in (sub)-tropical and warm-temperate climates, and their mating depends on space and sunlight. Small-scale indoor rearing of Black Soldier Flies has been challenging because they react sensitive to artificial light sources and cage sizes, but recent studies have shown that small-scale rearing under artificial light is feasible. Here, we test the influence of three artificial light sources (light-emitting diodes, fluorescent lamps, and halogen lamps) on small-scale indoor rearing. Three experiments were conducted to compare oviposition traits (pre-oviposition period, total oviposition-period, and egg mass per female) and half-life among the three light sources. Oviposition did not differ among the three light sources, but male and female half-life did. Based on the performance of the light-emitting diodes and their outstanding energy efficiency, we recommend this light source for small-scale indoor rearing of Black Soldier Flies.
Hartmann, Sébastien; Elsäßer, Wolfgang
2017-01-01
Initially, ghost imaging (GI) was demonstrated with entangled light from parametric down conversion. Later, classical light sources were introduced with the development of thermal light GI concepts. State-of-the-art classical GI light sources rely either on complex combinations of coherent light with spatially randomizing optical elements or on incoherent lamps with monochromating optics, however suffering strong losses of efficiency and directionality. Here, a broad-area superluminescent diode is proposed as a new light source for classical ghost imaging. The coherence behavior of this spectrally broadband emitting opto-electronic light source is investigated in detail. An interferometric two-photon detection technique is exploited in order to resolve the ultra-short correlation timescales. We thereby quantify the coherence time, the photon statistics as well as the number of spatial modes unveiling a complete incoherent light behavior. With a one-dimensional proof-of-principle GI experiment, we introduce these compact emitters to the field which could be beneficial for high-speed GI systems as well as for long range GI sensing in future applications. PMID:28150737
Effects of type of light on mouse circadian behaviour and stress levels.
Alves-Simoes, Marta; Coleman, Georgia; Canal, Maria Mercè
2016-02-01
Light is the principal synchronizing environmental factor for the biological clock. Light quantity (intensity), and light quality (type of light source) can have different effects. The aim of this study was to determine the effects of the type of light experienced from the time of birth on mouse growth, circadian behaviour and stress levels. We raised pigmented and albino mice under 24 h light-dark cycles of either fluorescent or white light-emitting diode (LED) light source during the suckling stage, and the animals were then exposed to various light environments after weaning and their growth rate, locomotor activity and plasma corticosterone concentration were measured. We found that the type of light the animals were exposed to did not affect the animals' growth rates or stress levels. However, we observed significant effects on the expression of the locomotor activity rhythm under low contrast light-dark cycles in pigmented mice, and under constant light in both albino and pigmented mice. These results highlight the importance of environmental light quality (light source) on circadian behavioural rhythms, and the need for close monitoring of light environments in animal facilities. © The Author(s) 2015.
Study of Selecting on Light Source Used for Micro-algae Cultivation in Space
NASA Astrophysics Data System (ADS)
Ai, Weidang; Ai, Weidang; Guo, Shuang-Sheng; Gao, Feng; Tang, Yong-Kang; Qin, Li-Feng
To select suitable light source for micro-algae cultivation in future space station, the selected Spirulina plastensis(No.7) were cultured under different lightening qualities, including six light sources that were made up of different combinations of red and blue light-emitting diode(LED). The growth, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the experiments, the red light may promote the cumulation of biomass of the Spirulina, and the cumulating rate was the highest under all red light source, but the syntheses of protein, phycobiliprotein, β-carotene, VE and other nutrients needs a certain portion of blue light; yet, the complete blue light condition is not favorable to the growth of Spirulina, and may bring pollution by chlorella and other kinds of micro-algae. It is concluded that the LEDs can be used as the light resource of micro-algae cultivation. The normal growth and development of microalgae need two light sources of both red and blue LEDs. The comprehensive analyses of the various factors that affect the growth of Spirulina, such as nutrition quality and photosynthetic activities, etc., showed that the combination of 80% red and 20% blue LED is the optimum one among those tested combinations. Key word: light-emitting diode; micro-algae; controlled ecological life support system (CELSS); space cultivation
Color-tunable lighting devices and methods of use
Davis, James Lynn
2017-02-07
A lighting device (100) includes a housing (104) enclosing a housing interior (108), a light source (132), a light converter (136), and a color tuning device. The light source is configured for emitting a primary light beam of a primary wavelength (140) through the housing interior. The light converter includes a luminescent material (144) facing the housing interior and configured for emitting secondary light (156, 158) of one or more wavelengths different from the primary wavelength, in response to excitation by the primary light beam. The housing includes a light exit (124) for outputting a combination of primary light and secondary light. The color tuning device is configured for adjusting a position of the primary light beam relative to the luminescent material.
Hansen, Anthony D.
1990-01-01
An improved aethalometer (10) having a single light source (18) and a single light detector (20) and two light paths (21, 22) from the light source (18) to the light detector (20). A quartz fiber filter (13) is inserted in the device, the filter (13) having a collection area (23) in one light path (21) and a reference area (24) in the other light path (22). A gas flow path (46) through the aethalometer housing (11) allows ambient air to flow through the collection area (23) of the filter (13) so that aerosol particles can be collected on the filter. A rotating disk (31) with an opening (33) therethrough allows light for the light source (18) to pass alternately through the two light paths (21, 22). The voltage output of the detector (20) is applied to a VCO (52) and the VCO pulses for light transmission separately through the two light paths (21, 22 ) are counted and compared to determine the absorption coefficient of the collected aerosol particles.
Collimating lens for light-emitting-diode light source based on non-imaging optics.
Wang, Guangzhen; Wang, Lili; Li, Fuli; Zhang, Gongjian
2012-04-10
A collimating lens for a light-emitting-diode (LED) light source is an essential device widely used in lighting engineering. Lens surfaces are calculated by geometrical optics and nonimaging optics. This design progress does not rely on any software optimization and any complex iterative process. This method can be used for any type of light source not only Lambertian. The theoretical model is based on point source. But the practical LED source has a certain size. So in the simulation, an LED chip whose size is 1 mm*1 mm is used to verify the feasibility of the model. The mean results show that the lenses have a very compact structure and good collimating performance. Efficiency is defined as the ratio of the flux in the illuminated plane to the flux from LED source without considering the lens material transmission. Just investigating the loss in the designed lens surfaces, the two types of lenses have high efficiencies of more than 90% and 99%, respectively. Most lighting area (possessing 80% flux) radii are no more than 5 m when the illuminated plane is 200 m away from the light source.
Rapid Optical Shutter, Chopper, Modulator and Deflector
NASA Technical Reports Server (NTRS)
Danehy, Paul M. (Inventor)
2017-01-01
An optical device with a light source and a detector is provided. A digital micromirror device positioned between the detector and the light source may deflect light beams projected from the light source. An aperture in front of the detector may block an incoming light beam from the detector when the incoming light beam is incident on the detector outside of a passable incident range and including an aperture opening configured to pass the incoming light beam to the detector when the incoming light beam is incident on the detector within a passable incident range. The digital micromirror device may rotate between a first position causing the light beam to pass through the aperture opening and a second position causing the light beam to be blocked by the aperture. The optical device may be configured to operate as a shutter, chopper, modulator and/or deflector.
Thumb-actuated two-axis controller
NASA Technical Reports Server (NTRS)
Hollow, R. H. (Inventor)
1986-01-01
A two axis joystick controller is described. It produces at least one output signal in relation to pivotal displacement of a member with respect to an intersection of the two axes. The member is pivotally movable on a support with respect to the two axes. The support has a centrally disposed aperture. A light source is mounted on the pivotally movable member above the aperture to direct light through the aperture. A light sensor is mounted below the aperture in the support at the intersection of the two axes to receive the light from the light source directed through the aperture. The light sensor produces at least one output signal related to a location on the sensor at which the light from the light source strikes the sensor.
Research on starlight hardware-in-the-loop simulator
NASA Astrophysics Data System (ADS)
Zhang, Ying; Gao, Yang; Qu, Huiyang; Liu, Dongfang; Du, Huijie; Lei, Jie
2016-10-01
The starlight navigation is considered to be one of the most important methods for spacecraft navigation. Starlight simulation system is a high-precision system with large fields of view, designed to test the starlight navigation sensor performance on the ground. A complete hardware-in-the-loop simulation of the system has been built. The starlight simulator is made up of light source, light source controller, light filter, LCD, collimator and control computer. LCD is the key display component of the system, and is installed at the focal point of the collimator. For the LCD cannot emit light itself, so light source and light source power controller is specially designed for the brightness demanded by the LCD. Light filter is designed for the dark background which is also needed in the simulation.
Comparative Study of Light Sources for Household
NASA Astrophysics Data System (ADS)
Pawlak, Andrzej; Zalesińska, Małgorzata
2017-03-01
The article describes test results that provided the ground to define and evaluate basic photometric, colorimetric and electric parameters of selected, widely available light sources, which are equivalent to a traditional incandescent 60-Watt light bulb. Overall, one halogen light bulb, three compact fluorescent lamps and eleven LED light sources were tested. In general, it was concluded that in most cases (branded products, in particular) the measured and calculated parameters differ from the values declared by manufacturers only to a small degree. LED sources prove to be the most beneficial substitute for traditional light bulbs, considering both their operational parameters and their price, which is comparable with the price of compact fluorescent lamps or, in some instances, even lower.
Frank, Alan M.; Edwards, William R.
1983-01-01
A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.
Energy-saving quality road lighting with colloidal quantum dot nanophosphors
NASA Astrophysics Data System (ADS)
Erdem, Talha; Kelestemur, Yusuf; Soran-Erdem, Zeliha; Ji, Yun; Demir, Hilmi Volkan
2014-12-01
Here the first photometric study of road-lighting white light-emitting diodes (WLEDs) integrated with semiconductor colloidal quantum dots (QDs) is reported enabling higher luminance than conventional light sources, specifically in mesopic vision regimes essential to street lighting. Investigating over 100 million designs uncovers that quality road-lighting QD-WLEDs, with a color quality scale and color rendering index ≥85, enables 13-35% higher mesopic luminance than the sources commonly used in street lighting. Furthermore, these QD-WLEDs were shown to be electrically more efficient than conventional sources with power conversion efficiencies ≥16-29%. Considering this fact, an experimental proof-of-concept QD-WLED was demonstrated, which is the first account of QD based color conversion custom designed for street lighting applications. The obtained white LED achieved the targeted mesopic luminance levels in accordance with the road lighting standards of the USA and the UK. These results indicate that road-lighting QD-WLEDs are strongly promising for energy-saving quality road lighting.
Apparatus and method for measuring the thickness of a semiconductor wafer
Ciszek, Theodoer F.
1995-01-01
Apparatus for measuring thicknesses of semiconductor wafers, comprising: housing means for supporting a wafer in a light-tight environment; a light source mounted to the housing at one side of the wafer to emit light of a predetermined wavelength to normally impinge the wafer; a light detector supported at a predetermined distance from a side of the wafer opposite the side on which a light source impinges and adapted to receive light transmitted through the wafer; and means for measuring the transmitted light.
NASA Astrophysics Data System (ADS)
Kwon, Hyeokjun; Kang, Yoojin; Jang, Junwoo
2017-09-01
Color fidelity has been used as one of indices to evaluate the performance of light sources. Since the Color Rendering Index (CRI) was proposed at CIE, many color fidelity metrics have been proposed to increase the accuracy of the metric. This paper focuses on a comparison of the color fidelity metrics in an aspect of accuracy with human visual assessments. To visually evaluate the color fidelity of light sources, we made a simulator that reproduces the color samples under lighting conditions. In this paper, eighteen color samples of the Macbeth color checker under test light sources and reference illuminant for each of them are simulated and displayed on a well-characterized monitor. With only a spectrum set of the test light source and reference illuminant, color samples under any lighting condition can be reproduced. In this paper, the spectrums of the two LED and two OLED light sources that have similar values of CRI are used for the visual assessment. In addition, the results of the visual assessment are compared with the two color fidelity metrics that include CRI and IES TM-30-15 (Rf), proposed by Illuminating Engineering Society (IES) in 2015. Experimental results indicate that Rf outperforms CRI in terms of the correlation with visual assessment.
Xu, P; Zhao, L N; Lv, X J; Lu, J; Yuan, Y; Zhao, G; Zhu, S N
2009-06-08
1W quasi-white-light source has been generated from a single lithium tantalate with cascaded domain modulation. The quasi-white-light is combined by proper proportion of the red, green and blue laser light. The red and the blue result from a compact self-sum frequency optical parametric oscillation when pumped by a single green laser. The efficiency of quasi-white-light from the green pump reaches 27%. This compact design can be employed not only as a stable and powerful RGB light source but also an effective blue laser generator.
Solid state lighting devices and methods with rotary cooling structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less
NASA Astrophysics Data System (ADS)
Mehta, Dalip Singh; Ahmad, Azeem; Dubey, Vishesh; Singh, Veena; Butola, Ankit; Mohanty, Tonmoy; Nandi, Sreyankar
2018-02-01
We report longitudinal spatial coherence (LSC) gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination using laser as a light source. To accomplish this a pseudo thermal light source was synthesized by passing laser beams through an optical system, which is basically a speckle reduction system with combined effect of spatial, temporal, angular and polarisation diversity. The longitudinal spatial coherence length of such light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular and temporal diversity. This results in a low spatially coherent (i.e., broad angular frequency spectrum) light source with narrow temporal frequency spectrum. Light from such a pseudo thermal light source was passed through an interference microscope with varying magnification, such as, 10X and 50X. The interference microscope was used for full-field OCT imaging of multilayer objects and topography of industrial objects. Experimental results of optical sectioning of multilayer biological objects with high axial-resolution less than 10μm was achieved which is comparable to broadband white light source. The synthesized light source with reduced speckles having uniform illumination on the sample, which can be very useful for fluorescence microscopy as well as quantitative phase microscopy with less phase noise. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.
A compact high brightness laser synchrotron light source for medical applications
NASA Astrophysics Data System (ADS)
Nakajima, Kazuhisa
1999-07-01
The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.
Status of Solid State Lighting Product Development and Future Trends for General Illumination.
Katona, Thomas M; Pattison, P Morgan; Paolini, Steve
2016-06-07
After decades of research and development on fabrication of efficient light-emitting diodes (LEDs) throughout the visible spectrum, LED-based lighting has reached unparalleled performance with respect to energy efficiency and has become the light source for virtually all new lighting products being designed today. The development of the core light sources and their subsequent integration into lighting systems continue to present unique challenges and opportunities for product designers. We review these systems and the current development status, as well as provide context for the trends in solid state lighting that are leading to the development of value-added lighting solutions that extend the domain of lighting beyond light generation, into fields as diverse as communications, healthcare, and agricultural production.
Spatially resolved imaging of opto-electrical property variations
Nikiforov, Maxim; Darling, Seth B; Suzer, Ozgun; Guest, Jeffrey; Roelofs, Andreas
2014-09-16
Systems and methods for opto electric properties are provided. A light source illuminates a sample. A reference detector senses light from the light source. A sample detector receives light from the sample. A positioning fixture allows for relative positioning of the sample or the light source with respect to each other. An electrical signal device measures the electrical properties of the sample. The reference detector, sample detector and electrical signal device provide information that may be processed to determine opto-electric properties of the same.
2010-11-01
Connecting the Medtronic MAST Quadrant Illumination System, Radiance Illumination System, or Radiance X Illumination System--all of which are specialized fiberoptic light cables used with the company's minimally invasive spinal products--to a high-power surgical light source significantly increases the risk of patient burns. Hospitals should ensure that the products are used only with 100 W light sources and 5 mm light cables, as prescribed in the product labeling.
Frank, A.M.; Edwards, W.R.
1983-10-11
A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision is disclosed. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode. 1 fig.
Frank, A.M.; Edwards, W.R.
1982-03-23
A long-lifetime light source is discussed with sufficiently low intensity to be used for reading a map or other writing at nightime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.
Spatial Light Modulators as Optical Crossbar Switches
NASA Technical Reports Server (NTRS)
Juday, Richard
2003-01-01
A proposed method of implementing cross connections in an optical communication network is based on the use of a spatial light modulator (SLM) to form controlled diffraction patterns that connect inputs (light sources) and outputs (light sinks). Sources would typically include optical fibers and/or light-emitting diodes; sinks would typically include optical fibers and/or photodetectors. The sources and/or sinks could be distributed in two dimensions; that is, on planes. Alternatively or in addition, sources and/or sinks could be distributed in three dimensions -- for example, on curved surfaces or in more complex (including random) three-dimensional patterns.
National Synchrotron Light Source
BNL
2017-12-09
A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.
NASA Astrophysics Data System (ADS)
Gan, Ruting; Guo, Zhenning; Lin, Jieben
2015-09-01
To decrease the risk of bilirubin encephalopathy and minimize the need for exchange transfusions, we report a novel design for light source of light-emitting diode (LED)-based neonatal jaundice therapeutic device (NJTD). The bilirubin absorption spectrum in vivo was regarded as target. Based on spectral constructing theory, we used commercially available LEDs with different peak wavelengths and full width at half maximum as matching light sources. Simple genetic algorithm was first proposed as the spectral matching method. The required LEDs number at each peak wavelength was calculated, and then, the commercial light source sample model of the device was fabricated to confirm the spectral matching technology. In addition, the corresponding spectrum was measured and the effect was analyzed finally. The results showed that fitted spectrum was very similar to the target spectrum with 98.86 % matching degree, and the actual device model has a spectrum close to the target with 96.02 % matching degree. With higher fitting degree and efficiency, this matching algorithm is very suitable for light source matching technology of LED-based spectral distribution, and bilirubin absorption spectrum in vivo will be auspicious candidate for the target spectrum of new LED-based NJTD light source.
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Inventor)
1998-01-01
An apparatus is disclosed for reading and/or writing information or to from an optical recording medium having a plurality of information storage layers. The apparatus includes a dynamic holographic optical element configured to focus light on the optical recording medium. a control circuit arranged to supply a drive signal to the holographic optical element, and a storage device in communication with the control circuit and storing at least a first drive signal and a second drive signal. The holographic optical element focusses light on a first one of the plurality of information storage layers when driven by the first drive signal on a second one of the plurality of information storage layers when driven by the second drive signal. An optical switch is also disclosed for connecting at least one light source in a source array to at least one light receiver in a receiver array. The switch includes a dynamic holographic optical element configured to receive light from the source array and to transmit light to the receiver array, a control circuit arranged to supply a drive signal to the holographic optical element, and a storage device in communication with the control circuit and storing at least a first drive signal and a second drive signal. The holographic optical element connects a first light source in the source array to a first light receiver in the receiver array when driven by the first drive signal and the holographic optical element connects the first light source with the first light receiver and a second light receiver when driven by the second drive signal.
Flicker Vision of Selected Light Sources
NASA Astrophysics Data System (ADS)
Otomański, Przemysław; Wiczyński, Grzegorz; Zając, Bartosz
2017-10-01
The results of the laboratory research concerning a dependence of flicker vision on voltage fluctuations are presented in the paper. The research was realized on a designed measuring stand, which included an examined light source, a voltage generator with amplitude modulation supplying the light source and a positioning system of the observer with respect to the observed surface. In this research, the following light sources were used: one incandescent lamp and four LED luminaires by different producers. The research results formulate a conclusion concerning the description of the influence of voltage fluctuations on flicker viewing for selected light sources. The research results indicate that LED luminaires are less susceptible to voltage fluctuations than incandescent bulbs and that flicker vision strongly depends on the type of LED source.
Microwave-driven ultraviolet light sources
Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.
2002-01-29
A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Lynn; Arquit Niederberger, Anne
Abstract— Lighting systems have the ability to transform the economic and educational infrastructure of disadvantaged communities, and eradicating “light poverty” has become one of the primary goals of the International Year of Light 2015. Solid-state lighting (SSL) technology, based on light-emitting diode (LED) light sources, has emerged as the next generation of lighting technology, with a current global market penetration of roughly 5%. This paper will report on recent research on understanding SSL lighting system reliability (failure modes, environmental stressors, electrical power quality); discuss the implications of SSL technology reliability for providing lighting services; and suggest practical approaches to ensuremore » SSL reliability to benefit humanity. Among the key findings from this work is that LED sources can be extremely reliable, withstanding a broad range of environmental stresses without failure. Nonetheless, SSL lighting systems can have a negative impact on electrical power reliability, as well as on the affordability of lighting services, without attention to the quality of the accompanying power infrastructure. It is therefore critical to ensure that the performance of the power supply electronics used in lighting systems is matched to the quality of the power source, when evaluating energy efficient lighting choices.« less
Noncoherent light for PDT of spontaneous animal tumors
NASA Astrophysics Data System (ADS)
Lucroy, Michael D.; Ridgway, Tisha D.; Higbee, Russell G.; Reeds, Kimberly
2004-07-01
Cultured 9L cells were incubated with graded doses of pheophorbide-a-hexyl ether (HPPH) and exposed to 665 nm red light from either a noncoherent light source or a KTP-pumped dye laser. Cell death was observed after irradiation using either light source, with the noncoherent light being most effective at the highest HPPH concentrations. To determing the practicality of using the noncoherent light source for clinical PDT, dogs and cats with spontaneous tumors were injected intravenously with 0.15 mg/kg HPPH one hour before their tumors were irradiated with 665 nm noncoherent light (50 mW cm-2, 100 J cm-2). Of the 9 tumors treated, 8 complete responses were observed, all of which occurred in animals with squamous cell carcinoma. After 68 weeks of follow up, the median initial disease free interval had not been reached. These data support the use of noncoherent light sources for PDT of spontaneous tumors in animals, representing a cost-effective alternative to medical lasers in both veterinary and human dermatology and oncology.
NASA Astrophysics Data System (ADS)
Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.
2018-03-01
In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.
Evaluation of light detector surface area for functional Near Infrared Spectroscopy.
Wang, Lei; Ayaz, Hasan; Izzetoglu, Meltem; Onaral, Banu
2017-10-01
Functional Near Infrared Spectroscopy (fNIRS) is an emerging neuroimaging technique that utilizes near infrared light to detect cortical concentration changes of oxy-hemoglobin and deoxy-hemoglobin non-invasively. Using light sources and detectors over the scalp, multi-wavelength light intensities are recorded as time series and converted to concentration changes of hemoglobin via modified Beer-Lambert law. Here, we describe a potential source for systematic error in the calculation of hemoglobin changes and light intensity measurements. Previous system characterization and analysis studies looked into various fNIRS parameters such as type of light source, number and selection of wavelengths, distance between light source and detector. In this study, we have analyzed the contribution of light detector surface area to the overall outcome. Results from Monte Carlo based digital phantoms indicated that selection of detector area is a critical system parameter in minimizing the error in concentration calculations. The findings here can guide the design of future fNIRS sensors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optical sensor of magnetic fields
Butler, M.A.; Martin, S.J.
1986-03-25
An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.
Spectral characteristics of light sources for S-cone stimulation.
Schlegelmilch, F; Nolte, R; Schellhorn, K; Husar, P; Henning, G; Tornow, R P
2002-11-01
Electrophysiological investigations of the short-wavelength sensitive pathway of the human eye require the use of a suitable light source as a S-cone stimulator. Different light sources with their spectral distribution properties were investigated and compared with the ideal S-cone stimulator. First, the theoretical background of the calculation of relative cone energy absorption from the spectral distribution function of the light source is summarized. From the results of the calculation, the photometric properties of the ideal S-cone stimulator will be derived. The calculation procedure was applied to virtual light sources (computer generated spectral distribution functions with different medium wavelengths and spectrum widths) and to real light sources (blue and green light emitting diodes, blue phosphor of CRT-monitor, multimedia projector, LCD monitor and notebook display). The calculated relative cone absorbencies are compared to the conditions of an ideal S-cone stimulator. Monochromatic light sources with wavelengths of less than 456 nm are close to the conditions of an ideal S-cone stimulator. Spectrum widths up to 21 nm do not affect the S-cone activation significantly (S-cone activation change < 0.2%). Blue light emitting diodes with peak wavelength at 448 nm and spectrum bandwidth of 25 nm are very useful for S-cone stimulation (S-cone activation approximately 95%). A suitable display for S-cone stimulation is the Trinitron computer monitor (S-cone activation approximately 87%). The multimedia projector has a S-cone activation up to 91%, but their spectral distribution properties depends on the selected intensity. LCD monitor and notebook displays have a lower S-cone activation (< or = 74%). Carefully selecting the blue light source for S-cone stimulation can reduce the unwanted L-and M-cone activation down to 4% for M-cones and 1.5% for L-cones.
Olds, Kelly; Byard, Roger W; Winskog, Calle; Langlois, Neil E I
2017-03-01
Bruising is frequently documented in cases of violence for use as forensic evidence. However, bruises can be overlooked if they are not visible to the naked eye. Alternate light sources such as ultraviolet, narrow band, and infrared have been used in an attempt to reveal the presence of bruising that is not otherwise apparent. However, there is a significant gap in knowledge surrounding this technique as it has not been validated against histology to confirm that bruising is genuinely being enhanced. A recent study evaluated the ability of alternate light sources to enhance visibility of bruises using a pigskin model. However, histological confirmation of bruising in humans using these light sources has not yet been performed. In this study, embalmed and non-embalmed human cadavers were used. Bodies were surveyed with alternate light sources, and enhanced regions that were unapparent under white light were photographed with the alternate light sources and sampled for histological assessment. Immunohistochemical staining for the red blood cell surface protein glycophorin was used determine if the enhanced area was a bruise (defined by the presence of extravasated erythrocytes). Photographs of areas confirmed to be bruises were analyzed using the program Fiji to measure enhancement, which was defined as an increase in the measured transverse diameter. In the non-embalmed and the embalmed cadavers violet alternate light produced the greatest enhancement of histologically confirmed bruises, followed by blue (both p < 0.0001). Regions that were not confirmed as bruises also enhanced, indicating that light sources may not be specific. This suggests that the use of light sources to enhance the visibility of bruising should be undertaken with caution and further studies are required.
Plant Growth Absorption Spectrum Mimicking Light Sources
Jou, Jwo-Huei; Lin, Ching-Chiao; Li, Tsung-Han; Li, Chieh-Ju; Peng, Shiang-Hau; Yang, Fu-Chin; Justin Thomas, K. R.; Kumar, Dhirendra; Chi, Yun; Hsu, Ban-Dar
2015-01-01
Plant factories have attracted increasing attention because they can produce fresh fruits and vegetables free from pesticides in all weather. However, the emission spectra from current light sources significantly mismatch the spectra absorbed by plants. We demonstrate a concept of using multiple broad-band as well as narrow-band solid-state lighting technologies to design plant-growth light sources. Take an organic light-emitting diode (OLED), for example; the resulting light source shows an 84% resemblance with the photosynthetic action spectrum as a twin-peak blue dye and a diffused mono-peak red dye are employed. This OLED can also show a greater than 90% resemblance as an additional deeper red emitter is added. For a typical LED, the resemblance can be improved to 91% if two additional blue and red LEDs are incorporated. The approach may facilitate either an ideal use of the energy applied for plant growth and/or the design of better light sources for growing different plants. PMID:28793503
Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source
NASA Astrophysics Data System (ADS)
Martínez-Verdú, Francisco; Perales, Esther; Chorro, Elisabet; de Fez, Dolores; Viqueira, Valentín; Gilabert, Eduardo
2007-06-01
We present a systematic algorithm capable of searching for optimal colors for any lightness L* (between 0 and 100), any illuminant (D65, F2, F7, F11, etc.), and any light source reported by CIE. Color solids are graphed in some color spaces (CIELAB, SVF, DIN99d, and CIECAM02) by horizontal (constant lightness) and transversal (constant hue angle) sections. Color solids plotted in DIN99d and CIECAM02 color spaces look more spherical or homogeneous than the ones plotted in CIELAB and SVF color spaces. Depending on the spectrum of the light source or illuminant, the shape of its color solid and its content (variety of distinguishable colors, with or without color correspondence) change drastically, particularly with sources whose spectrum is discontinuous and/or very peaked, with correlated color temperature lower than 5500 K. This could be used to propose an absolute colorimetric quality index for light sources comparing the volumes of their gamuts, in a uniform color space.
Superluminescent light emitting diodes: the best out of two worlds
NASA Astrophysics Data System (ADS)
Rossetti, M.; Napierala, J.; Matuschek, N.; Achatz, U.; Duelk, M.; Vélez, C.; Castiglia, A.; Grandjean, N.; Dorsaz, J.; Feltin, E.
2012-03-01
Since pico-projectors were starting to become the next electronic "must-have" gadget, the experts were discussing which light-source technology seems to be the best for the existing three major projection approaches for the optical scanning module such as digital light processing, liquid crystal on silica and laser beam steering. Both so-far used light source technologies have distinct advantages and disadvantages. Though laser-based pico-projectors are focus-free and deliver a wider color gamut, their major disadvantages are speckle noise, cost and safety issues. In contrast, projectors based on cheaper Light Emitting Diodes (LEDs) as light source are criticized for a lack of brightness and for having limited focus. Superluminescent Light Emitting Diodes (SLEDs) are temporally incoherent and spatially coherent light sources merging in one technology the advantages of both Laser Diodes (LDs) and LEDs. With almost no visible speckle noise, focus-free operation and potentially the same color gamut than LDs, SLEDs could potentially answer the question which light source to use in future projector applications. In this quest for the best light source, we realized visible SLEDs emitting both in the red and blue spectral region. While the technology required for the realization of red emitters is already well established, III-nitride compounds required for blue emission have experienced a major development only in relatively recent times and the technology is still under development. The present paper is a review of the status of development reached for the blue superluminescent diodes based on the GaN material system.
A non-laser light source for photodynamic therapy: in vitro effects on normal and malignant cells.
Kashtan, Hanoch; Haddad, Riad; Greenberg, Ron; Skornick, Yehuda; Kaplan, Ofer
2002-01-01
Photodynamic therapy (PDT) involves the use of photosensitizing drugs combined with light to treat tumors. Laser systems, the current source of light for PDT, have several inherent drawbacks: the spectrum is essentially monochromatic which may be problematic for second generation photosensitizers, the systems are bulky and nearly impossible to move between hospital locations and require complicated electrical and cooling installations, the cost of a typical system is enormous, and its maintenance and operation require highly trained personnel. We now introduce a new non-laser light system, Versa-Light, which appears to work as effectively and has none of the above drawbacks. A series of in vitro studies were performed using various murine and human normal and cancer cells which underwent PDT using aluminum phthalocyanine (AlPcS4) as a photosensitizer and Versa-Light as the light source. PDT of cancer cells at light energy levels of 50, 100 and 200 j/cm2 significantly decreased cell viability. PDT also decreased cell viability of normal murine splenocytes and normal human lymphocytes, but to a lesser extent. The observed significant hyperthermia was light dose-dependent. We believe that Versa-Light can replace laser systems as an enhanced light source for PDT. Further in vitro and pre-clinical studies are in progress.
Apparatus and method for measuring the thickness of a semiconductor wafer
Ciszek, T.F.
1995-03-07
Apparatus for measuring thicknesses of semiconductor wafers is discussed, comprising: housing means for supporting a wafer in a light-tight environment; a light source mounted to the housing at one side of the wafer to emit light of a predetermined wavelength to normally impinge the wafer; a light detector supported at a predetermined distance from a side of the wafer opposite the side on which a light source impinges and adapted to receive light transmitted through the wafer; and means for measuring the transmitted light. 4 figs.
Scintillation probe with photomultiplier tube saturation indicator
Ruch, Jeffrey F.; Urban, David J.
1996-01-01
A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Tao; Letoquin, Ronan; Keller, Bernd
An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and a remote planar phosphor carrier having at least one conversion material. The phosphor carrier can be remote to the light sources and mounted to the heat sink so that heat from the phosphor carrier spreads into the heat sink. The phosphor carrier can comprise a thermally conductive transparent material and a phosphor layer, with an LED based light source mounted to the heat sink such that light from the light source passes through the phosphor carrier. At least some of the LED lightmore » is converted by the phosphor carrier, with some lamp embodiments emitting a white light combination of LED and phosphor light. The phosphor arranged according to the present invention can operate at lower temperature to thereby operate at greater phosphor conversion efficiency and with reduced heat related damage to the phosphor.« less
In situ calibration of a light source in a sensor device
Okandan, Murat; Serkland, Darwin k.; Merchant, Bion J.
2015-12-29
A sensor device is described herein, wherein the sensor device includes an optical measurement system, such as an interferometer. The sensor device further includes a low-power light source that is configured to emit an optical signal having a constant wavelength, wherein accuracy of a measurement output by the sensor device is dependent upon the optical signal having the constant wavelength. At least a portion of the optical signal is directed to a vapor cell, the vapor cell including an atomic species that absorbs light having the constant wavelength. A photodetector captures light that exits the vapor cell, and generates an electrical signal that is indicative of intensity of the light that exits the vapor cell. A control circuit controls operation of the light source based upon the electrical signal, such that the light source emits the optical signal with the constant wavelength.
Rebec, Katja Malovrh; Klanjšek-Gunde, Marta; Bizjak, Grega; Kobav, Matej B
2015-01-01
Ergonomic science at work and living places should appraise human factors concerning the photobiological effects of lighting. Thorough knowledge on this subject has been gained in the past; however, few attempts have been made to propose suitable evaluation parameters. The blue light hazard and its influence on melatonin secretion in age-dependent observers is considered in this paper and parameters for its evaluation are proposed. New parameters were applied to analyse the effects of white light-emitting diode (LED) light sources and to compare them with the currently applied light sources. The photobiological effects of light sources with the same illuminance but different spectral power distribution were determined for healthy 4-76-year-old observers. The suitability of new parameters is discussed. Correlated colour temperature, the only parameter currently used to assess photobiological effects, is evaluated and compared to new parameters.
Low-energy light bulbs, computers, tablets and the blue light hazard.
O'Hagan, J B; Khazova, M; Price, L L A
2016-02-01
The introduction of low energy lighting and the widespread use of computer and mobile technologies have changed the exposure of human eyes to light. Occasional claims that the light sources with emissions containing blue light may cause eye damage raise concerns in the media. The aim of the study was to determine if it was appropriate to issue advice on the public health concerns. A number of sources were assessed and the exposure conditions were compared with international exposure limits, and the exposure likely to be received from staring at a blue sky. None of the sources assessed approached the exposure limits, even for extended viewing times.
Lighting system with thermal management system having point contact synthetic jets
Arik, Mehmet; Weaver, Stanton Earl; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Sharma, Rajdeep
2013-12-10
Lighting system having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system includes a plurality of synthetic jets. The synthetic jets are arranged within the lighting system such that they are secured at contact points.
Lighting system with thermal management system having point contact synthetic jets
Arik, Mehmet; Weaver, Stanton Earl; Kuenzler, Glenn Howard; Wolfe, Jr, Charles Franklin; Sharma, Rajdeep
2016-08-30
Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system includes a plurality of synthetic jets. The synthetic jets are arranged within the lighting system such that they are secured at contact points.
Lighting system with thermal management system having point contact synthetic jets
Arik, Mehmet; Weaver, Stanton Earl; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Sharma, Rajdeep
2016-08-23
Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system includes a plurality of synthetic jets. The synthetic jets are arranged within the lighting system such that they are secured at contact points.
Circadian Behavioral Study: LED vs Cool White Fluorescent - 0.1, 1, 10, 40, 80 lux. Part 2
NASA Technical Reports Server (NTRS)
Holley, Daniel C.; Syrkin, N.; Mele, G.
2000-01-01
Currently, the light source most commonly used in animal habitat lighting is cool white fluorescent (CWF) light. It was the objective of this study to evaluate a novel LED light source for use in animal habitat lighting by comparing its effectiveness to CWF light in producing and maintaining a normal circadian entrainment. The LED and CWF lights had similar spectral power distributions. Sprague-Dawley rats (175-350 g) were kept individually in metabolic cages, under a strict lighting control: 4 days of acclimation at 12:12 LD, 14 days of 12:12 LD, 14 days of 24:0 LD (free-run), and finally 12:12 LD. Food and water were provided ad libitum. Three behavioral parameters were monitored continuously: gross locomotor activity, drinking, and feeding. Combined mean free run periods (tau) were (mean +/- SEM): 24.6 +/- 0.1 and 24.7 +/- 0.2 at 0.1 lux, 25.5 +/- 0.1 and 25.7 +/- 0.1 at 1.0 lux, 25.3 +/- 0.2 and 25.4 +/- 0.2 at 10 lux, 25.8 +/- 0.1 and 25.9 +/- 0.1 at 40 lux, and 25.9 +/- 0.1 and 25.9 +/- 0.1 at 80 lux, CWF and LED respectively. ANOVA found a significant effect (p < 0.05) due to light level, but no difference in tau between rats exposed to constant CWF light and rats exposed to constant LED light. This study has shown that LED light can produce the same entrainment pattern as a conventional CWT light at similar intensities (0.1, 1, 10, 40, and 80 lux). LED light sources may be a suitable replacement for conventional light sources used in animal habitat lighting while providing many mechanical and economical advantages.
Hensman, C; Hanna, G B; Drew, T; Moseley, H; Cuschieri, A
1998-04-01
Skin burns and ignition of drapes have been reported with the use of cold light sources. The aim of the study was to document the temperature generated by cold light sources and to correlate this with the total radiated power and infrared output. The temperature, total radiated power, and infrared output were measured as a function of time at the end of the endoscope (which is inserted into the operative field) and the end of the fiber optic bundle of the light cable (which connects the cable to the light port of the endoscope) using halogen and xenon light sources. The highest temperature recorded at the end of the endoscope was 95 degrees C. The temperature measured at the optical fiber location of the endoscope was higher than at its lens surface (p < 0.0001). At the end of the fiber optic bundle of light cables, the temperature reached 225 degrees C within 15 s. The temperature recorded at the optical fiber location of all endoscopes and light cables studied rose significantly over a period of 10 min to reach its maximum (p <0.0001) and then leveled off for the duration of the study (30 min). The infrared output accounted only for 10% of the total radiated power. High temperatures are reached by 10 min at the end of fiber optic bundle of light cables and endoscopes with both halogen and xenon light sources. This heat generation is largely due to the radiated power in the visible light spectrum.
Apparatus and method for generating partially coherent illumination for photolithography
Sweatt, William C.
2001-01-01
The present invention introduces a novel scatter plate into the optical path of source light used for illuminating a replicated object. The scatter plate has been designed to interrupt a focused, incoming light beam by introducing between about 8 to 24 diffraction zones blazed onto the surface of the scatter plate which intercept the light and redirect it to a like number of different positions in the condenser entrance pupil each of which is determined by the relative orientation and the spatial frequency of the diffraction grating in each of the several zones. Light falling onto the scatter plate, therefore, generates a plurality of unphased sources of illumination as seen by the back half of the optical system. The system comprises a high brightness source, such as a laser, creating light which is taken up by a beam forming optic which focuses the incoming light into a condenser which in turn, focuses light into a field lens creating Kohler illumination image of the source in a camera entrance pupil. The light passing through the field lens illuminates a mask which interrupts the source light as either a positive or negative image of the object to be replicated. Light passing by the mask is focused into the entrance pupil of the lithographic camera creating an image of the mask onto a receptive media.
A Geometric Model for Specularity Prediction on Planar Surfaces with Multiple Light Sources.
Morgand, Alexandre; Tamaazousti, Mohamed; Bartoli, Adrien
2018-05-01
Specularities are often problematic in computer vision since they impact the dynamic range of the image intensity. A natural approach would be to predict and discard them using computer graphics models. However, these models depend on parameters which are difficult to estimate (light sources, objects' material properties and camera). We present a geometric model called JOLIMAS: JOint LIght-MAterial Specularity, which predicts the shape of specularities. JOLIMAS is reconstructed from images of specularities observed on a planar surface. It implicitly includes light and material properties, which are intrinsic to specularities. This model was motivated by the observation that specularities have a conic shape on planar surfaces. The conic shape is obtained by projecting a fixed quadric on the planar surface. JOLIMAS thus predicts the specularity using a simple geometric approach with static parameters (object material and light source shape). It is adapted to indoor light sources such as light bulbs and fluorescent lamps. The prediction has been tested on synthetic and real sequences. It works in a multi-light context by reconstructing a quadric for each light source with special cases such as lights being switched on or off. We also used specularity prediction for dynamic retexturing and obtained convincing rendering results. Further results are presented as supplementary video material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TVCG.2017.2677445.
Blue enhanced light sources: opportunities and risks
NASA Astrophysics Data System (ADS)
Lang, Dieter
2012-03-01
Natural daylight is characterized by high proportions of blue light. By proof of a third type of photoreceptor in the human eye which is only sensitive in this spectral region and by subsequent studies it has become obvious that these blue proportions are essential for human health and well being. In various studies beneficial effects of indoor lighting with higher blue spectral proportions have been proven. On the other hand with increasing use of light sources having enhanced blue light for indoor illumination questions are arising about potential health risks attributed to blue light. Especially LED are showing distinct emission characteristics in the blue. Recently the French agency for food, environmental and occupational health & safety ANSES have raised the question on health issues related to LED light sources and have claimed to avoid use of LED for lighting in schools. In this paper parameters which are relevant for potential health risks will be shown and their contribution to risk factors will quantitatively be discussed. It will be shown how to differentiate between photometric parameters for assessment of beneficial as well as hazardous effects. Guidelines will be discussed how blue enhanced light sources can be used in applications to optimally support human health and well being and simultaneously avoid any risks attributed to blue light by a proper design of lighting parameters. In the conclusion it will be shown that no inherent health risks are related to LED lighting with a proper lighting design.
Solid-State Laser Source of Tunable Narrow-Bandwidth Ultraviolet Radiation
NASA Technical Reports Server (NTRS)
Goldberg, Lew; Kliner, Dahv A.; Koplow, Jeffrey P.
1998-01-01
A solid-state laser source of tunable and narrow-bandwidth UV light is disclosed. The system relies on light from a diode laser that preferably generates light at infrared frequencies. The light from the seed diode laser is pulse amplified in a light amplifier, and converted into the ultraviolet by frequency tripling, quadrupling, or quintupling the infrared light. The narrow bandwidth, or relatively pure light, of the seed laser is preserved, and the pulse amplifier generates high peak light powers to increase the efficiency of the nonlinear crystals in the frequency conversion stage. Higher output powers may be obtained by adding a fiber amplifier to power amplify the pulsed laser light prior to conversion.
Method and Apparatus for Characterizing Pressure Sensors using Modulated Light Beam Pressure
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor)
2003-01-01
Embodiments of apparatuses and methods are provided that use light sources instead of sound sources for characterizing and calibrating sensors for measuring small pressures to mitigate many of the problems with using sound sources. In one embodiment an apparatus has a light source for directing a beam of light on a sensing surface of a pressure sensor for exerting a force on the sensing surface. The pressure sensor generates an electrical signal indicative of the force exerted on the sensing surface. A modulator modulates the beam of light. A signal processor is electrically coupled to the pressure sensor for receiving the electrical signal.
A technique for phase correction in Fourier transform spectroscopy
NASA Astrophysics Data System (ADS)
Artsang, P.; Pongchalee, P.; Palawong, K.; Buisset, C.; Meemon, P.
2018-03-01
Fourier transform spectroscopy (FTS) is a type of spectroscopy that can be used to analyze components in the sample. The basic setup that is commonly used in this technique is "Michelson interferometer". The interference signal obtained from interferometer can be Fourier transformed into the spectral pattern of the illuminating light source. To experimentally study the concept of the Fourier transform spectroscopy, the project started by setup the Michelson interferometer in the laboratory. The implemented system used a broadband light source in near infrared region (0.81-0.89 μm) and controlled the movable mirror by using computer controlled motorized translation stage. In the early study, there is no sample the interference path. Therefore, the theoretical spectral results after the Fourier transformation of the captured interferogram must be the spectral shape of the light source. One main challenge of the FTS is to retrieve the correct phase information of the inferferogram that relates with the correct spectral shape of the light source. One main source of the phase distortion in FTS that we observed from our system is the non-linear movement of the movable reference mirror of the Michelson interferometer. Therefore, to improve the result, we coupled a monochromatic light source to the implemented interferometer. We simultaneously measured the interferograms of the monochromatic and broadband light sources. The interferogram of the monochromatic light source was used to correct the phase of the interferogram of the broadband light source. The result shows significant improvement in the computed spectral shape.
Imaging System and Method for Biomedical Analysis
2013-03-11
biological particles and items of interest. Broadly, Padmanabhan et al. utilize the diffraction of a laser light source in flow cytometry to count...spread of light from multiple LED devices over the entire sample surface. Preferably, light source 308 projects a full spectrum white light. Light...for example, red blood cells, white blood cells (which may include lymphocytes which are relatively large and easily detectable), T-helper cells
Mousavinasab, Sayed Mostafa; Meyers, Ian
2011-07-01
To compare curing performance of a second generation LED curing light with a high power tungsten quartz halogen (QTH). A hybrid composite resin (Filtek Z 250, 3M, USA) was used as test material and cured using a second generation LED light (Translux Power Blue™, Heraus Kulzer ,Germany) or a very high power QTH light unit (EMS, Switzerland). A two split aluminum mold was used to prepare ten samples with LED light source cured for forty seconds and ten samples prepared using high power QTH light unit, cured for four or six seconds recommended exposure time. Hardness, depth of cure (DOC) and thermal rise during exposure time by these light sources were measured. The data submitted to analysis of variance (ANOVA), Tukey's and student's t tests at 5% significance level. Significant differences were found in hardness, DOC of samples cured by above mentioned light sources and also in thermal rises during exposure time. The curing performance of the tested QTH was not as well as the LED light. TPB light source produced the maximum hardness (81.25, 73.29, 65.49,55.83 and 24.53 for 0 mm, 1 mm, 2 mm, 3 mm and 4 mm intervals) and DOC (2.64 mm) values with forty seconds irradiation time and the high power (QTH) the least hardness (73.27, 61.51 and 31.59 for 0 mm, 1 mm and 2 mm, respectively) and DOC (2 mm) values with four seconds irradiation time. Thermal rises during 4 s and 6 s curing time using high power QTH and tested LED were 1.88°C, 3°C and 1.87°C, respectively. The used high power LED light produced greater hardness and depth of cure during forty seconds exposure time compared to high power QTH light with four or six seconds curing time. Thermal rise during 6 s curing time with QTH was greater compared to thermal changes occurred during 40 s curing time with tested LED light source. There was no difference seen in thermal changes caused by LED light with 40 s and QTH light with 4 s exposure time.
Electrical source of pseudothermal light
NASA Astrophysics Data System (ADS)
Kuusela, Tom A.
2018-06-01
We describe a simple and compact electrical version of a pseudothermal light source. The source is based on electrical white noise whose spectral properties are tailored by analog filters. This signal is used to drive a light-emitting diode. The type of second-order coherence of the output light can be either Gaussian or Lorentzian, and the intensity distribution can be either Gaussian or non-Gaussian. The output light field is similar in all viewing angles, and thus, there is no need for a small aperture or optical fiber in temporal coherence analysis.
NASA Astrophysics Data System (ADS)
Taudt, Ch.; Baselt, T.; Nelsen, B.; Assmann, H.; Greiner, A.; Koch, E.; Hartmann, P.
2017-06-01
Within this work an alternative approach to precision surface profilometry based on a low-coherence interferometer is presented. Special emphasis is placed on the characterization of edge effects, which influence the measurement result on sharp edges and steep slopes. In contrast to other works, this examination focuses on the comparison of very broadband light sources such as a supercontinuum white-light source (SC; 380 - 1100 nm) and a laser-driven plasma light source (LDP; 200 - 1100 nm) and their influence on the formation of these effects. The interferometer is equipped with one of these broadband light sources and a defined dispersion over a given spectral range. The spectral width of the light sources in combination with the dispersive element defines the possible measurement range and resolution. Instead of detecting the signals only in a one-dimensional manner, an imaging spectrometer on the basis of a high resolution CMOS-camera is set-up. Through the introduction of a defined dispersion, a controlled phase variation in the spectral domain is created. This phase variation is dependent on the optical path difference between both arms and can therefore be used as a measure for the height of a structure which is present in one arm. The results of measurements on a 100 nm height standard with both selected light sources have been compared. Under consideration of the coherence length of both light sources of 1.58 μm for the SC source and 1.81 m for the LDP source differences could be recorded. Especially at sharp edges, the LDP light source could record height changes with slopes twice as steep as the SC source. Furthermore, it became obvious, that measurements with the SC source tend to show edge effects like batwings due to diffraction. Additional effects on the measured roughness and the flatness of the profile were investigated and discussed.
Innovative design of parabolic reflector light guiding structure
NASA Astrophysics Data System (ADS)
Whang, Allen J.; Tso, Chun-Hsien; Chen, Yi-Yung
2008-02-01
Due to the idea of everlasting green architecture, it is of increasing importance to guild natural light into indoors. The advantages are multifold - to have better color rendering index, excellent energy savings from environments viewpoints and make humans more healthy, etc. Our search is to design an innovative structure, to convert outdoor sun light impinges on larger surfaces, into near linear light beam sources, later convert this light beam into near point sources which enters the indoor spaces then can be used as lighting sources indoors. We are not involved with the opto-electrical transformation, to the guild light into to the building, to perform the illumination, as well as the imaging function. Because non-imaging optics, well known for apply to the solar concentrators, that can use non-imaging structures to fulfill our needs, which can also be used as energy collectors in solar energy devices. Here, we have designed a pair of large and small parabolic reflector, which can be used to collect daylight and change area from large to small. Then we make a light-guide system that is been designed by us use of this parabolic reflector to guide the collection light, can pick up the performance for large surface source change to near linear source and a larger collection area.
Seeing "the Dress" in the Right Light: Perceived Colors and Inferred Light Sources.
Chetverikov, Andrey; Ivanchei, Ivan
2016-08-01
In the well-known "dress" photograph, people either see the dress as blue with black stripes or as white with golden stripes. We suggest that the perception of colors is guided by the scene interpretation and the inferred positions of light sources. We tested this hypothesis in two online studies using color matching to estimate the colors observers see, while controlling for individual differences in gray point bias and color discrimination. Study 1 demonstrates that the interpretation of the dress corresponds to differences in perceived colors. Moreover, people who perceive the dress as blue-and-black are two times more likely to consider the light source as frontal, than those who see the white-and-gold dress. The inferred light sources, in turn, depend on the circadian changes in ambient light. The interpretation of the scene background as a wall or a mirror is consistent with the perceived colors as well. Study 2 shows that matching provides reliable results on differing devices and replicates the findings on scene interpretation and light sources. Additionally, we show that participants' environmental lighting conditions are an important cue for perceiving the dress colors. The exact mechanisms of how environmental lighting and circadian changes influence the perceived colors of the dress deserve further investigation.
Photosynthetically supplemental lighting for vegetable crop production with super-bright laser diode
NASA Astrophysics Data System (ADS)
Hu, Yongguang; Li, Pingping; Shi, Jintong
2007-02-01
Although many artificial light sources like high-pressure sodium lamp, metal halide lamp, fluorescent lamp and so on are commonly used in horticulture, they are not widely applied because of the disadvantages of unreasonable spectra, high cost and complex control. Recently new light sources of light-emitting diode (LED) and laser diode (LD) are becoming more and more popular in the field of display and illumination with the improvement of material and manufacturing, long life-span and increasingly low cost. A new type of super-bright red LD (BL650, central wavelength is 650 nm) was selected to make up of the supplemental lighting panel, on which LDs were distributed with regular hexagon array. Drive circuit was designed to power it and adjust light intensity. System performance including temperature rise and light intensity distribution under different vertical/horizontal distances were tested. Photosynthesis of sweet pepper and eggplant leaf under LD was measured with LI-6400 to show the supplemental lighting effects. The results show that LD system can supply the maximum light intensity of 180 μmol/m2 •s at the distance of 50 mm below the panel and the temperature rise is little within 1 °C. Net photosynthetic rate became faster when LD system increased light intensity. Compared with sunlight and LED supplemental lighting system, LD's promotion on photosynthesis is in the middle. Thus it is feasible for LD light source to supplement light for vegetable crops. Further study would focus on the integration of LD and other artificial light sources.
LEDs as light source: examining quality of acquired images
NASA Astrophysics Data System (ADS)
Bachnak, Rafic; Funtanilla, Jeng; Hernandez, Jose
2004-05-01
Recent advances in technology have made light emitting diodes (LEDs) viable in a number of applications, including vehicle stoplights, traffic lights, machine-vision-inspection, illumination, and street signs. This paper presents the results of comparing images taken by a videoscope using two different light sources. One of the sources is the internal metal halide lamp and the other is a LED placed at the tip of the insertion tube. Images acquired using these two light sources were quantitatively compared using their histogram, intensity profile along a line segment, and edge detection. Also, images were qualitatively compared using image registration and transformation. The gray-level histogram, edge detection, image profile and image registration do not offer conclusive results. The LED light source, however, produces good images for visual inspection by an operator. The paper will present the results and discuss the usefulness and shortcomings of various comparison methods.
[The dangers of blue light: True story!].
Renard, G; Leid, J
2016-05-01
The dangers of the blue light are the object of numerous publications, for both the scientific community and the general public. The new prolific development of light sources emitting potentially toxic blue light (415-455nm) ranges from LED (Light Emitting Diodes) lamps for interior lighting to television screens, computers, digital tablets and smartphones using OLED (Organic Light Emitting Diode) or AMOLED (Active-Matrix Organic Light Emitting Diode) technology. First we will review some technical terms and the main characteristics of light perceived by the human eye. Then we will discuss scientific proof of the toxicity of blue light to the eye, which may cause cataract or macular degeneration. Analysis of the light spectra of several light sources, from natural light to LED lamps, will allow us to specify even better the dangers related to each light source. LED lamps, whether used as components for interior lighting or screens, are of concern if they are used for extended viewing times and at short distance. While we can protect ourselves from natural blue light by wearing colored glasses which filter out, on both front and back surfaces, the toxic wavelengths, it is more difficult to protect oneself from LED lamps in internal lighting, the use of which should be restricted to "white warmth" lamps (2700K). As far as OLED or AMOLED screens are concerned, the only effective protection consists of using them occasionally and only for a short period of time. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, R.A.
This paper reports that properly applied, light sources and lighting systems not only enhance a building's attractiveness and usability, they also create a secure environment. An effectively lighted area can minimize pedestrian hazards and auto accidents. Good security lighting also eliminates the darkness that vandals, thieves, and felons thrive on. Unfortunately, lighting quality has sometimes been sacrificed for the sake of energy efficiency, and resulting savings offset by poor aesthetics and user dissatisfaction. However, trade-offs in quality and efficiency are not necessary, thanks to recent developments in light source technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royer, Michael P.
2014-08-30
This document analyzes the optical, material, and photobiological hazards of LED light sources compared to conventional light sources. It documents that LEDs generally produce the same amount of blue light, which is the primary contributor to the risks, as other sources at the same CCT. Duv may have some effect on the amount of blue light, but CRI does not.
Impact of red versus blue light on tolerability and efficacy of PDT: a randomized controlled trial.
Gholam, Patrick; Bosselmann, Ina; Enk, Alexander; Fink, Christine
2018-06-01
Various light sources may be used for photodynamic therapy of actinic keratosis since photosensitizing agents are activated by different wavelengths. However, the relative impact of red and blue light irradiation on the efficacy and tolerability of therapy is controversial. The aim of this study is to compare the efficacy and tolerability of therapy with red versus blue light sources, as well as the patients' evaluation of cosmetic results, clinical response, painfulness and preferred light source for future photodynamic treatments. This is a prospective, single-center, randomized, controlled, open-label study with 28 patients undergoing elective photodynamic therapy. Red and blue light sources both showed very good results with a complete response rate of 84 % and 85 % respectively. Pain during photodynamic therapy was 6.1 vs. 5.4 (and 2.1 vs. 1.5 eight hours after therapy) on the visual analogue scale. Although these differences were statistically significant, the clinical relevance is low, since the number of therapy interruptions were equally distributed in both groups, and patients' subjective evaluation of the treatment showed no personal preference towards the light sources. Both light sources showed very good clinical results and satisfactory tolerability in this study. © 2018 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.
Grossman, Mark W.; George, William A.; Pai, Robert Y.
1985-01-01
A technique for opening an evacuated and sealed glass capsule containing a material that is to be dispensed which has a relatively high vapor pressure such as mercury. The capsule is typically disposed in a discharge tube envelope. The technique involves the use of a first light source imaged along the capsule and a second light source imaged across the capsule substantially transversely to the imaging of the first light source. Means are provided for constraining a segment of the capsule along its length with the constraining means being positioned to correspond with the imaging of the second light source. These light sources are preferably incandescent projection lamps. The constraining means is preferably a multiple looped wire support.
Updates on the African Synchrotron Light Source (AfLS) Project
NASA Astrophysics Data System (ADS)
Dobbins, Tabbetha; Mtingwa, Sekazi; Wague, Ahmadou; Connell, Simon; Masara, Brian; Ntsoane, Tshepo; Norris, Lawrence; Winick, Herman; Evans-Lutterodt, Kenneth; Hussein, Tarek; Maresha, Feene; McLaughlin, Krystle; Oladijo, Philip; Du Plessis, Esna; Murenzi, Romain; Reed, Kennedy; Sette, Francesco; Werin, Sverker; Dorfan, Jonathan; Yousef, Mohammad
Africa is the only habitable continent without a synchrotron light source. A full steering committee was elected at the African Light Source (AfLS) conference on November 16-20, 2015 at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The conference brought together African scientists, policy makers, and stakeholders to discuss a synchrotron light source in Africa. Firm outcomes of the Conference were a set of resolutions and a roadmap. Additionally, a collaborative proposal to promote Advanced Light Sources and crystallographic sciences in targeted regions of the world was submitted by the International Union of Pure and Applied Physics (IUPAP) and the International Union of Crystallography (IUCr) to the International Council for Science (ICSU). www.africanlightsource.org.
Investigation on RGB laser source applied to dynamic photoelastic experiment
NASA Astrophysics Data System (ADS)
Li, Songgang; Yang, Guobiao; Zeng, Weiming
2014-06-01
When the elastomer sustains the shock load or the blast load, its internal stress state of every point will change rapidly over time. Dynamic photoelasticity method is an experimental stress analysis method, which researches the dynamic stress and the stress wave propagation. Light source is one of very important device in dynamic photoelastic experiment system, and the RGB laser light source applied in dynamic photoelastic experiment system is innovative and evolutive to the system. RGB laser is synthesized by red laser, green laser and blue laser, either as a single wavelength laser light source, also as synthesized white laser light source. RGB laser as a light source for dynamic photoelastic experiment system, the colored isochromatic can be captured in dynamic photoelastic experiment, and even the black zero-level stripe can be collected, and the isoclinics can also be collected, which conducively analysis and study of transient stress and stress wave propagation. RGB laser is highly stable and continuous output, and its power can be adjusted. The three wavelengths laser can be synthesized by different power ratio. RGB laser light source used in dynamic photoelastic experiment has overcome a number of deficiencies and shortcomings of other light sources, and simplifies dynamic photoelastic experiment, which has achieved good results.
AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source
NASA Astrophysics Data System (ADS)
Nightingale, J. W.; Dye, S.; Massey, Richard J.
2018-05-01
This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.
Apparatus and method for generating partially coherent illumination for photolithography
Sweatt, W.C.
1999-07-06
The present invention relates an apparatus and method for creating a bright, uniform source of partially coherent radiation for illuminating a pattern, in order to replicate an image of said pattern with a high degree of acuity. The present invention introduces a novel scatter plate into the optical path of source light used for illuminating a replicated object. The scatter plate has been designed to interrupt a focused, incoming light beam by introducing between about 8 to 24 diffraction zones blazed onto the surface of the scatter plate which intercept the light and redirect it to a like number of different positions in the condenser entrance pupil each of which is determined by the relative orientation and the spatial frequency of the diffraction grating in each of the several zones. Light falling onto the scatter plate, therefore, generates a plurality of unphased sources of illumination as seen by the back half of the optical system. The system includes a high brightness source, such as a laser, creating light which is taken up by a beam forming optic which focuses the incoming light into a condenser which in turn, focuses light into a field lens creating Kohler illumination image of the source in a camera entrance pupil. The light passing through the field lens illuminates a mask which interrupts the source light as either a positive or negative image of the object to be replicated. Light passing by the mask is focused into the entrance pupil of the lithographic camera creating an image of the mask onto a receptive media. 7 figs.
Apparatus and method for generating partially coherent illumination for photolithography
Sweatt, William C.
1999-01-01
The present invention relates an apparatus and method for creating a bright, uniform source of partially coherent radiation for illuminating a pattern, in order to replicate an image of said pattern with a high degree of acuity. The present invention introduces a novel scatter plate into the optical path of source light used for illuminating a replicated object. The scatter plate has been designed to interrupt a focused, incoming light beam by introducing between about 8 to 24 diffraction zones blazed onto the surface of the scatter plate which intercept the light and redirect it to a like number of different positions in the condenser entrance pupil each of which is determined by the relative orientation and the spatial frequency of the diffraction grating in each of the several zones. Light falling onto the scatter plate, therefore, generates a plurality of unphased sources of illumination as seen by the back half of the optical system. The system includes a high brightness source, such as a laser, creating light which is taken up by a beam forming optic which focuses the incoming light into a condenser which in turn, focuses light into a field lens creating Kohler illumination image of the source in a camera entrance pupil. The light passing through the field lens illuminates a mask which interrupts the source light as either a positive or negative image of the object to be replicated. Light passing by the mask is focused into the entrance pupil of the lithographic camera creating an image of the mask onto a receptive media.
Conceptual design of a stray light facility for Earth observation satellites
NASA Astrophysics Data System (ADS)
Stockman, Y.; Hellin, M. L.; Marcotte, S.; Mazy, E.; Versluys, J.; François, M.; Taccola, M.; Zuccaro Marchi, A.
2017-11-01
With the upcoming of TMA or FMA (Three or Four Mirrors Anastigmat) telescope design in Earth Observation system, stray light is a major contributor to the degradation of the image quality. Numerous sources of stray light can be identified and theoretically evaluated. Nevertheless in order to build a stray light model of the instrument, the Point Spread Function(s) of the instrument, i.e., the flux response of the instrument to the flux received at the instrument entrance from an infinite distant point source needs to be determined. This paper presents a conceptual design of a facility placed in a vacuum chamber to eliminate undesired air particles scatter light sources. The specification of the clean room class or vacuum will depend on the required rejection to be measured. Once the vacuum chamber is closed, the stray light level from the external environment can be considered as negligible. Inside the chamber a dedicated baffle design is required to eliminate undesired light generated by the set up itself e.g. retro reflected light away from the instrument under test. This implies blackened shrouds all around the specimen. The proposed illumination system is a 400 mm off axis parabolic mirror with a focal length of 2 m. The off axis design suppresses the problem of stray light that can be generated by the internal obstruction. A dedicated block source is evaluated in order to avoid any stray light coming from the structure around the source pinhole. Dedicated attention is required on the selection of the source to achieve the required large measurement dynamic.
Apparatus and method for a light direction sensor
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
2011-01-01
The present invention provides a light direction sensor for determining the direction of a light source. The system includes an image sensor; a spacer attached to the image sensor, and a pattern mask attached to said spacer. The pattern mask has a slit pattern that as light passes through the slit pattern it casts a diffraction pattern onto the image sensor. The method operates by receiving a beam of light onto a patterned mask, wherein the patterned mask as a plurality of a slit segments. Then, diffusing the beam of light onto an image sensor and determining the direction of the light source.
Low Power Switching for Antenna Reconfiguration
NASA Technical Reports Server (NTRS)
Bauhahn, Paul E. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)
2008-01-01
Methods and systems for low power switching are provided. In one embodiment, an optical switching system is provided. The system comprises at least one optically controlled switch adapted to maintain one of an open state and a closed state based on an associated light signal; and at least one light source adapted to output the associated light signal to the at least one switch, wherein the at least one light source cycles the light signal on and off, wherein the at least one light source is cycled on for a sufficient duration of time and with a sufficient periodicity to maintain the optically controlled switch in one of an open state and a closed state.
Low-energy light bulbs, computers, tablets and the blue light hazard
O'Hagan, J B; Khazova, M; Price, L L A
2016-01-01
The introduction of low energy lighting and the widespread use of computer and mobile technologies have changed the exposure of human eyes to light. Occasional claims that the light sources with emissions containing blue light may cause eye damage raise concerns in the media. The aim of the study was to determine if it was appropriate to issue advice on the public health concerns. A number of sources were assessed and the exposure conditions were compared with international exposure limits, and the exposure likely to be received from staring at a blue sky. None of the sources assessed approached the exposure limits, even for extended viewing times. PMID:26768920
Lighting system with heat distribution face plate
Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri
2013-09-10
Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.
White LED sources for vehicle forward lighting
NASA Astrophysics Data System (ADS)
Van Derlofske, John F.; McColgan, Michele W.
2002-11-01
Considerations for the use of white light emitting diode (LED) sources to produce illumination for automotive forward lighting is presented. Due to their reliability, small size, lower consumption, and lower heat generation LEDs are a natural choice for automotive lighting systems. Currently, LEDs are being sucessfully employed in most vehicle lighting applications. In these applications the light levels, distributions, and colors needed are achievable by present LED technologies. However, for vehicle white light illumination applications LEDs are now only being considered for low light level applications, such as back-up lamps. This is due to the relatively low lumen output that has been available up to now in white LEDs. With the advent of new higher lumen packages, and with the promise of even higher light output in the near future, the use of white LEDs sources for all vehicle forward lighting applications is beginning to be considered. Through computer modeling and photometric evaluation this paper examines the possibilities of using currently available white LED technology for vehicle headlamps. It is apparent that optimal LED sources for vehicle forward lighting applications will be constructed with hereto undeveloped technology and packaging configurations. However, the intent here in exploring currently available products is to begin the discussion on the design possibilities and significant issues surrounding LEDs in order to aid in the design and development of future LED sources and systems. Considerations such as total light output, physical size, optical control, power consumption, color appearance, and the effects of white LED spectra on glare and peripheral vision are explored. Finally, conclusions of the feasibility of current LED technology being used in these applications and recommendations of technology advancements that may need to occur are made.
Milne, A D; Brousseau, P A; Brousseau, C A
2014-12-01
A bench-top study was performed to assess the effects of different laryngoscope handles on the light intensity delivered from disposable metal or plastic laryngoscope blades. The light intensity from both the handle light sources themselves and the combined handle and laryngoscope blade sets was measured using a custom-designed testing system and light meter. Five samples of each disposable blade type were tested and compared with a standard re-usable stainless steel blade using three different handle/light sources (Vital Signs LED, Heine 2.5 V Xenon and 3.5 V Xenon). The light intensity delivered by the disposable blades ranged from 790 to 3846 lux for the different handle types. Overall, the 3.5 V Heine handle delivered the highest light output (p < 0.007) in comparison with the other handles. For the disposable blades, the overall light output was significantly higher from the plastic than the metal blades (p < 0.001). © 2014 The Association of Anaesthetists of Great Britain and Ireland.
Cost and energy-efficient (LED, induction and plasma) roadway lighting.
DOT National Transportation Integrated Search
2013-11-01
There is an increasing interest in using new lighting technologies such as light emitting diode (LED), Induction, and Plasma light sources : in roadway lighting. The most commonly claimed benefits of the new lighting systems include increased reliabi...
Light extraction block with curved surface
Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.
2016-03-22
Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.
USDA-ARS?s Scientific Manuscript database
Most governments around the world including the USA have passed measures to phase out incandescent light bulbs in favor of more energy-efficient lighting alternatives. Research is limited on blood physiological variables of broilers grown to heavy weights (> 3 kg) under these new light sources to en...
USDA-ARS?s Scientific Manuscript database
Previous studies have investigated the interaction of different light sources and light intensity. Studies are lacking concerning the effect of different light sources and photoperiods on broiler growth and health. The results reported here are a part of a larger study to evaluate the interaction of...
Effect of UV irradiation on the apoptosis and necrosis of Jurkat cells using UV LEDs
NASA Astrophysics Data System (ADS)
Inada, Shunko A.; Amano, Hiroshi; Akasaki, Isamu; Morita, Akimichi; Kobayashi, Keiko
2009-02-01
Phototherapy is a very effective method for treating most of the incurable skin diseases. A fluorescent light bulb is used as a conventional UV light source for this type of therapy. However, infrared radiation from the light source sometimes causes serious problems on patient's health. In addition, the normal part of the skin is irradiated when a large fluorescent light bulb is used. Moreover, a conventional UV irradiation system is heavy and has a short lifetime and a high electrical power consumption. Therefore, a new UV light source for solving the problems of phototherapy is required. To realize low-power-consumption, lightweight and long-lifetime systems, group III nitride-based UV-A1 light-emitting diodes (LEDs) were investigated. We examined the UV LED irradiation of Jurkat cell, which is a tumor cell and more sensitive to UV light than a healthy cell. The numbers of apoptotic and necrotic cells were confirmed to be the same using a UV LED and a conventional lamp system. The UV LED showed the possibility of realizing a new UV light source for phototherapy.
Ag nanocluster-based color converters for white organic light-emitting devices
NASA Astrophysics Data System (ADS)
Nishikitani, Yoshinori; Takizawa, Daisuke; Uchida, Soichi; Lu, Yue; Nishimura, Suzushi; Oyaizu, Kenichi; Nishide, Hiroyuki
2017-11-01
The authors present Ag nanocluster-based color converters (Ag NC color converters), which convert part of the blue light from a light source to yellow light so as to create white organic light-emitting devices that could be suitable for lighting systems. Ag NCs synthesized by poly(methacrylic acid) template methods have a statistical size distribution with a mean diameter of around 4.5 nm, which is larger than the Fermi wavelength of around 2 nm. Hence, like free electrons in metals, the Ag NC electrons are thought to form a continuous energy band, leading to the formation of surface plasmons by photoexcitation. As for the fluorescence emission mechanism, the fact that the photoluminescence is excitation wavelength dependent suggests that the fluorescence originates from surface plasmons in Ag NCs of different sizes. By using Ag NC color converters and suitable blue light sources, white organic light-emitting devices can be fabricated based on the concept of light-mixing. For our blue light sources, we used polymer light-emitting electrochemical cells (PLECs), which, like organic light-emitting diodes, are area light sources. The PLECs were fabricated with a blue fluorescent π-conjugated polymer, poly[(9,9-dihexylfluoren-2,7-diyl)-co-(anthracen-9,10-diyl)] (PDHFA), and a polymeric solid electrolyte composed of poly(ethylene oxide) and KCF3SO3. In this device structure, the Ag NC color converter absorbs blue light from the PDHFA-based PLEC (PDHFA-PLEC) and then emits yellow light. When the PDHFA-PLEC is turned on by applying an external voltage, pure white light emission can be produced with Commission Internationale de l'Eclairage coordinates of (x = 0.32, y = 0.33) and a color rendering index of 93.6. This study shows that utilization of Ag NC color converters and blue PLECs is a very promising and highly effective method for realizing white organic light-emitting devices.
Reflector system for a lighting fixture
Siminovitch, Michael J.; Page, Erik; Gould, Carl T.
1998-01-01
Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.
Reflector system for a lighting fixture
Siminovitch, Michael J.; Page, Erik; Gould, Carl T.
2001-01-01
Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.
Optimization approach to LED crop illumination inside a controlled ecological life support system
NASA Astrophysics Data System (ADS)
Avercheva, Olga; Berkovich, Yuliy A.; Bassarskaya, Elizaveta; Zhigalova, Tatiana; Smolyanina, Svetlana O.; Kochetova, Galina; Konovalova, Irina
Artificial lighting sources for growing plants can be efficiently used to control gas exchange and preserve the necessary closure of internal matter turnover in the atmosphere of a controlled ecological life support system (CELSS). However, the lighting sources contribute strongly to the equivalent mass of a CELSS. Thus, the choice of an optimal plant lighting regime largely determines the efficiency of the artificial ecosystem. Lighting systems based on light-emitting diodes (LEDs) are now considered the most promising for space applications (Massa et al., 2006). Many types of LEDs have been developed in recent years. Because of this, the problem of optimizing a lighting source for space vegetation chambers has become more difficult: we need to optimize more parameters (such as emission spectrum, light intensity, frequency of light pulses and the shape of the lighting field inside a vegetation chamber), and in a wider range of values. In this presentation we discuss approaches to optimizing the emission spectrum of a lighting source for the use in space applications, including CELSS. One of the benefits of LEDs is their narrow-band emission spectrum, which allows us to construct a lighting source with an optimal spectrum for plant growth and production. A number of experiments have shown that the reaction of plants to a narrow-band emission spectrum of LEDs is highly species-specific and affects many processes in plants. Adding a small amount of far red light to red and blue quanta increased biomass in radish and lettuce (Tamulaitis et al., 2005). Adding blue and near UV light of different wavelengths to red light decreased total sugar content in lettuce (Urbonavičiūtė et al., 2007) and Chinese cabbage (Avercheva et al., 2009). Supplemental green light improved the nutrition quality of some lettuce varieties: decreased nitrate content and increased ascorbic acid content (Samuoliene et al., 2012). It has also been shown that changes in lighting spectrum can lead to changes in hormone content in plant tissues, and to changes in the ratio of active and inactive forms of hormones (Golovatskaya, 2005; Tamulaitis et al., 2005; Minich et al., 2006). This, in turn, may lead to changes in plant growth and biomass composition. Thus, we should vary the emission spectrum of a lighting source to improve both the productivity (i.e. gas exchange) and nutrition quality of plants growing inside a CELSS. However, it is hard to find a universal spectrum for all plants and all applications. Fundamental studies of the finer effects of narrow-band light on plant growth and metabolism may be beneficial to explain these effects. On the basis of these studies, we may be able to formulate recommendations to optimize lighting sources for different plant species. One optimization approach to LED crop illumination inside CELSS could be use of white LEDs with proper addition of red LEDs. A more difficult approach is to construct lighting sources with a multiband spectrum to adjust it for specific applications experimentally.
Opacity meter for monitoring exhaust emissions from non-stationary sources
Dec, John Edward
2000-01-01
Method and apparatus for determining the opacity of exhaust plumes from moving emissions sources. In operation, a light source is activated at a time prior to the arrival of a diesel locomotive at a measurement point, by means of a track trigger switch or the Automatic Equipment Identification system, such that the opacity measurement is synchronized with the passage of an exhaust plume past the measurement point. A beam of light from the light source passes through the exhaust plume of the locomotive and is detected by a suitable detector, preferably a high-rate photodiode. The light beam is well-collimated and is preferably monochromatic, permitting the use of a narrowband pass filter to discriminate against background light. In order to span a double railroad track and provide a beam which is substantially stronger than background, the light source, preferably a diode laser, must provide a locally intense beam. A high intensity light source is also desirable in order to increase accuracy at the high sampling rates required. Also included is a computer control system useful for data acquisition, manipulation, storage and transmission of opacity data and the identification of the associated diesel engine to a central data collection center.
Near-field photometry for organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Li, Rui; Harikumar, Krishnan; Isphording, Alexandar; Venkataramanan, Venkat
2013-03-01
Organic Light Emitting Diode (OLED) technology is rapidly maturing to be ready for next generation of light source for general lighting. The current standard test methods for solid state lighting have evolved for semiconductor sources, with point-like emission characteristics. However, OLED devices are extended surface emitters, where spatial uniformity and angular variation of brightness and colour are important. This necessitates advanced test methods to obtain meaningful data for fundamental understanding, lighting product development and deployment. In this work, a near field imaging goniophotometer was used to characterize lighting-class white OLED devices, where luminance and colour information of the pixels on the light sources were measured at a near field distance for various angles. Analysis was performed to obtain angle dependent luminous intensity, CIE chromaticity coordinates and correlated colour temperature (CCT) in the far field. Furthermore, a complete ray set with chromaticity information was generated, so that illuminance at any distance and angle from the light source can be determined. The generated ray set is needed for optical modeling and design of OLED luminaires. Our results show that luminance non-uniformity could potentially affect the luminaire aesthetics and CCT can vary with angle by more than 2000K. This leads to the same source being perceived as warm or cool depending on the viewing angle. As OLEDs are becoming commercially available, this could be a major challenge for lighting designers. Near field measurement can provide detailed specifications and quantitative comparison between OLED products for performance improvement.
NASA Astrophysics Data System (ADS)
Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine
2017-06-01
Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.
The Endockscope Using Next Generation Smartphones: "A Global Opportunity".
Tse, Christina; Patel, Roshan M; Yoon, Renai; Okhunov, Zhamshid; Landman, Jaime; Clayman, Ralph V
2018-06-02
The Endockscope combines a smartphone, a battery powered flashlight and a fiberoptic cystoscope allowing for mobile videocystoscopy. We compared conventional videocystoscopy to the Endockscope paired with next generation smartphones in an ex-vivo porcine bladder model to evaluate its image quality. The Endockscope consists of a three-dimensional (3D) printed attachment that connects a smartphone to a flexible fiberoptic cystoscope plus a 1000 lumen light-emitting diode (LED) cordless light source. Video recordings of porcine cystoscopy with a fiberoptic flexible cystoscope (Storz) were captured for each mobile device (iPhone 6, iPhone 6S, iPhone 7, Samsung S8, and Google Pixel) and for the high-definition H3-Z versatile camera (HD) set-up with both the LED light source and the xenon light (XL) source. Eleven faculty urologists, blinded to the modality used, evaluated each video for image quality/resolution, brightness, color quality, sharpness, overall quality, and acceptability for diagnostic use. When comparing the Endockscope coupled to an Galaxy S8, iPhone 7, and iPhone 6S with the LED portable light source to the HD camera with XL, there were no statistically significant differences in any metric. 82% and 55% of evaluators considered the iPhone 7 + LED light source and iPhone 6S + LED light, respectively, appropriate for diagnostic purposes as compared to 100% who considered the HD camera with XL appropriate. The iPhone 6 and Google Pixel coupled with the LED source were both inferior to the HD camera with XL in all metrics. The Endockscope system with a LED light source when coupled with either an iPhone 7 or Samsung S8 (total cost: $750) is comparable to conventional videocystoscopy with a standard camera and XL light source (total cost: $45,000).
Rapid prototyping of reflectors for vehicle lighting using laser activated remote phosphor
NASA Astrophysics Data System (ADS)
Lachmayer, Roland; Kloppenburg, Gerolf; Wolf, Alexander
2015-03-01
Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class vehicles mainly use HID or LED as light source. As a further step in this development laser diode based systems offer high luminance, efficiency and allow the realization of new styling concepts and new dynamic lighting functions. These white laser diode systems can either be realized by mixing different spectral sources or by combining diodes with specific phosphors. Based on the approach of generating light using a laser and remote phosphor, lighting modules are manufactured. Four blue laser diodes (450 nm) are used to activate a phosphor coating and thus to achieve white light. A segmented paraboloid reflector generates the desired light distribution for an additional car headlamp. We use high speed milling and selective laser melting to build the reflector system for this lighting module. We compare the spectral reflection grade of these materials. Furthermore the generated modules are analyzed regarding their efficiency and light distribution. The use of Rapid Prototyping technologies allows an early validation of the chosen concept and is supposed to reduce cost and time in the product development process significantly. Therefor we discuss costs and times of the applied manufacturing technologies.
Kim, Dae Geun; Lee, Changsu; Park, Seung-Moon; Choi, Yoon-E
2014-05-01
LEDs light offer several advantages over the conventional lamps, thereby being considered as the optimal light sources for microalgal cultivation. In this study, various light-emitting diodes (LEDs) especially red and blue color with different light wavelengths were employed to explore the effects of light source on phototrophic cultivation of Chlorella vulgaris. Blue light illumination led to significantly increased cell size, whereas red light resulted in small-sized cell with active divisions. Based on the discovery of the effect of light wavelengths on microalgal biology, we then applied appropriate wavelength at different growth stages; blue light was illuminated first and then shifted to red light. By doing so, biomass and lipid productivity of C. vulgaris could be significantly increased, compared to that in the control. These results will shed light on a novel approach using LED light for microalgal biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.
A novel method for detecting light source for digital images forensic
NASA Astrophysics Data System (ADS)
Roy, A. K.; Mitra, S. K.; Agrawal, R.
2011-06-01
Manipulation in image has been in practice since centuries. These manipulated images are intended to alter facts — facts of ethics, morality, politics, sex, celebrity or chaos. Image forensic science is used to detect these manipulations in a digital image. There are several standard ways to analyze an image for manipulation. Each one has some limitation. Also very rarely any method tried to capitalize on the way image was taken by the camera. We propose a new method that is based on light and its shade as light and shade are the fundamental input resources that may carry all the information of the image. The proposed method measures the direction of light source and uses the light based technique for identification of any intentional partial manipulation in the said digital image. The method is tested for known manipulated images to correctly identify the light sources. The light source of an image is measured in terms of angle. The experimental results show the robustness of the methodology.
Potential Sources of Polarized Light from a Plant Canopy
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert
2016-01-01
Field measurements have demonstrated that sunlight polarized during a first surface reflection by shiny leaves dominates the optical polarization of the light reflected by shiny-leafed plant canopies having approximately spherical leaf angle probability density functions ("Leaf Angle Distributions" - LAD). Yet for other canopies - specifically those without shiny leaves and/or spherical LADs - potential sources of optically polarized light may not always be obvious. Here we identify possible sources of polarized light within those other canopies and speculate on the ecologically important information polarization measurements of those sources might contain.
Grossman, M.W.; George, W.A.; Pai, R.Y.
1985-08-13
A technique is disclosed for opening an evacuated and sealed glass capsule containing a material that is to be dispensed which has a relatively high vapor pressure such as mercury. The capsule is typically disposed in a discharge tube envelope. The technique involves the use of a first light source imaged along the capsule and a second light source imaged across the capsule substantially transversely to the imaging of the first light source. Means are provided for constraining a segment of the capsule along its length with the constraining means being positioned to correspond with the imaging of the second light source. These light sources are preferably incandescent projection lamps. The constraining means is preferably a multiple looped wire support. 6 figs.
Synchrotron Light Sources in Developing Countries
NASA Astrophysics Data System (ADS)
Winick, Herman; Pianetta, Piero
2017-01-01
The more than 50 light sources now in operation around the world include facilities in Brazil, Korea, and Taiwan which started their programs in the 1980's when they were developing countries. They came on line in the 1990's and have since trained hundreds of graduate students locally, without sending them abroad and losing many of them. They have also attracted dozens of mid-career diaspora scientists to return. Their growing user communities have demanded more advanced facilities, leading to the funding of higher performance new light sources that are now coming into operation. Light sources in the developing world now include the following: SESAME in the Middle East which is scheduled to start research in 2017 (www.sesame.org); The African Light Source, in the planning stage (www.africanlightsource.org); and The Mexican Light Source, in the planning stage (http://www.aps.org/units/fip/newsletters/201509/mexico.cfm). See: http://wpj.sagepub.com/content/32/4/92.full.pdf +html; http://www.lightsources.org/press-release/2015/11/20/grenoble-resolutions-mark-historical-step-towards-african-light-source. SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.
NASA Astrophysics Data System (ADS)
Zissis, Georges; Haverlag, Marco
2010-06-01
Light sources play an indispensable role in the daily life of any human being. Quality of life, health and urban security related to traffic and crime prevention depend on light and on its quality. In fact, every day approximately 30 billion electric light sources operate worldwide. These electric light sources consume almost 19% of worldwide electricity production. Finding new ways to light lamps is a challenge where the stakes are scientific, technological, economic and environmental. The production of more efficient light sources is a sustainable solution for humanity. There are many opportunities for not only enhancing the efficiency and reliability of lighting systems but also for improving the quality of light as seen by the end user. This is possible through intelligent use of new technologies, deep scientific understanding of the operating principles of light sources and knowledge of the varied human requirements for different types of lighting in different settings. A revolution in the domain of light source technology is on the way: high brightness light emitting diodes arriving in the general lighting market, together with organic LEDs (OLEDs), are producing spectacular advances. However, unlike incandescence, electrical discharge lamps are far from disappearing from the market. In addition, new generations of discharge lamps based on molecular radiators are becoming a reality. There are still many scientific and technological challenges to be raised in this direction. Diagnostics are important for understanding the fundamental mechanisms taking place in the discharge plasma. This understanding is an absolute necessity for system optimization leading to more efficient and high quality light sources. The studied medium is rather complex, but new diagnostic techniques coupled to innovative ideas and powerful tools have been developed in recent years. This cluster issue of seven papers illustrates these efforts. The selected papers cover all domains, from high to low pressure and dielectric barrier lamps, from breakdown to acoustic resonance. Especially in the domain of high pressure lamps, J J Curry shows how coherent and incoherent x-ray scattering can be used as an imaging technique adapted to lamps. J Hirsch et al treat the acoustic resonance phenomenon that seriously limits the frequency domain for high pressure lamp operation. M Jinno et al illustrate a method that allows for measuring Xe buffer gas pressure in Hg-free metal halide lamps for automotive applications. In the domain of low pressure lamps, M Gendre et al investigate the breakdown phase by means of optical and electrical diagnostic tools. The similarity rules used a long time ago for simulating plasma behaviour based on invariants are now serving as diagnostic tools, as shown in the paper by D Michael et al. N Dagang et al show how impurities can be detected in Hg-free electrodeless lamps and more particularly in dielectric barrier discharges emitting excimer radiation. The quality of light is illustrated by a final example by R Kozakov et al on how to qualify the light output from the lamp with respect to biological effects on humans.
Conjugation of fiber-coupled wide-band light sources and acousto-optical spectral elements
NASA Astrophysics Data System (ADS)
Machikhin, Alexander; Batshev, Vladislav; Polschikova, Olga; Khokhlov, Demid; Pozhar, Vitold; Gorevoy, Alexey
2017-12-01
Endoscopic instrumentation is widely used for diagnostics and surgery. The imaging systems, which provide the hyperspectral information of the tissues accessible by endoscopes, are particularly interesting and promising for in vivo photoluminescence diagnostics and therapy of tumour and inflammatory diseases. To add the spectral imaging feature to standard video endoscopes, we propose to implement acousto-optical (AO) filtration of wide-band illumination of incandescent-lamp-based light sources. To collect maximum light and direct it to the fiber-optic light guide inside the endoscopic probe, we have developed and tested the optical system for coupling the light source, the acousto-optical tunable filter (AOTF) and the light guide. The system is compact and compatible with the standard endoscopic components.
Nonimaging Optical Illumination System
Winston, Roland
1994-02-22
A nonimaging illumination or concentration optical device. An optical device is provided having a light source, a light reflecting surface with an opening and positioned partially around the light source which is opposite the opening of the light reflecting surface. The light reflecting surface is disposed to produce a substantially uniform intensity output with the reflecting surface defined in terms of a radius vector R.sub.i in conjunction with an angle .phi..sub.i between R.sub.i, a direction from the source and an angle .theta..sub.i between direct forward illumination and the light ray reflected once from the reflecting surface. R.sub.i varies as the exponential of tan (.phi..sub.i -.theta..sub.i)/2 integrated over .phi..sub.i.
Open-source products for a lighting experiment device.
Gildea, Kevin M; Milburn, Nelda
2014-12-01
The capabilities of open-source software and microcontrollers were used to construct a device for controlled lighting experiments. The device was designed to ascertain whether individuals with certain color vision deficiencies were able to discriminate between the red and white lights in fielded systems on the basis of luminous intensity. The device provided the ability to control the timing and duration of light-emitting diode (LED) and incandescent light stimulus presentations, to present the experimental sequence and verbal instructions automatically, to adjust LED and incandescent luminous intensity, and to display LED and incandescent lights with various spectral emissions. The lighting device could easily be adapted for experiments involving flashing or timed presentations of colored lights, or the components could be expanded to study areas such as threshold light perception and visual alerting systems.
Andreatta, Lígia Maria Lima; Furuse, Adilson Yoshio; Prakki, Anuradha; Bombonatti, Juliana Fraga Soares; Mondelli, Rafael Francisco Lia
2016-01-01
The aim of the present in vitro study was to evaluate the temperature variation inside the pulp chamber during light-activation of the adhesive and resin composite layers with different light sources. Cavities measuring 8x10 mm were prepared on the buccal surface of bovine incisors, leaving a remaining dentin thickness of 1 mm. Specimens were placed in a 37±1 °C water bath to standardize the temperature. The temperature in the pulp chamber was measured every 10 s during 40 s of light activation of the adhesive system (SBMP-3M/ESPE) and in the three consecutive 1-mm-thick layers of resin composite (Z250-3M/ESPE). Three light source devices were evaluated: Elipar 2500 (QTH), LD Max (LED low irradiance) and VALO (LED high irradiance). The results were submitted to one-way ANOVA with repeated measures and Tukey's test, both with p<0.001. The exothermic reaction warming was observed in the Z250 increments, but not in the SBMP. The high irradiance LED showed a higher temperature average (42.7±1.56 °C), followed by the quartz-tungsten-halogen light (40.6±0.67 °C) and the lower irradiance LED (37.8±0.12 °C). Higher temperature increases were observed with the adhesive and the first resin composite increment light-activation, regardless of the employed light source. From the second increment of Z250, the restorative material acted as a dispersive structure of heat, reducing temperature increases. Regardless the light source and restorative step, the temperature increased with the irradiation time. It may be concluded that the light source, irradiation time and resin composite thickness interfered in the temperature variation inside the pulp chamber.
Single-mode light source fabrication based on colloidal quantum dots
NASA Astrophysics Data System (ADS)
Xu, Jianfeng; Chen, Bing; Baig, Sarfaraz; Wang, Michael R.
2009-02-01
There are huge market demands for innovative, cheap and efficient light sources, including light emitting devices, such as LEDs and lasers. However, the light source development in the visible spectral range encounters significant difficulties these years. The available visible wavelength LEDs or lasers are few, large and expensive. The main challenge lies at the lack of efficient light media. Semiconductor nanocrystal quantum dots (QDs) have recently commanded considerable attention. As a result of quantum confinement effect, the emission color of these QDs covers the whole visible spectral range and can be modified dramatically by simply changing their size. Such spectral tunability, together with large photoluminescence quantum yield and photostability, make QDs attractive for potential applications in a variety of light emitting technologies. However, there are still several technical problems that hinder their application as light sources. One main issue is how to fabricate these QDs into a solid state device while still retaining their original optical emission properties. A vacuum assisted micro-fluidic fabrication of guided wave devices has demonstrated low waveguide propagation loss, lower crosstalk, and improved waveguide structures. We report herein the combination of the excellent emission properties of QDs and novel vacuum assisted micro-fluidic photonic structure fabrication technique to realize single-mode efficient light sources.
A broadband LED source in visible to short-wave-infrared wavelengths for spectral tumor diagnostics
NASA Astrophysics Data System (ADS)
Hayashi, Daiyu; van Dongen, Anne Marie; Boerekamp, Jack; Spoor, Sandra; Lucassen, Gerald; Schleipen, Jean
2017-06-01
Various tumor types exhibit the spectral fingerprints in the absorption and reflection spectra in visible and especially in near- to short-wave-infrared wavelength ranges. For the purpose of spectral tumor diagnostics by means of diffuse reflectance spectroscopy, we developed a broadband light emitting diode (LED) source consisting of a blue LED for optical excitation, Lu3Al5O12:Ce3+,Cr3+ luminescent garnet for visible to near infrared emissions, and Bismuth doped GeO2 luminescent glass for near-infrared to short-wave infrared emissions. It emits broad-band light emissions continuously in 470-1600 nm with a spectral gap at 900-1000 nm. In comparison to the currently available broadband light sources like halogen lamps, high-pressure discharge lamps and super continuum lasers, the light sources of this paper has significant advantages for spectral tissue diagnostics in high-spectral stability, improved light coupling to optical fibers, potential in low light source cost and enabling battery-drive.
Lighting system combining daylight concentrators and an artificial source
Bornstein, Jonathan G.; Friedman, Peter S.
1985-01-01
A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.
An intraocular micro light-emitting diode device for endo-illumination during pars plana vitrectomy.
Koelbl, Philipp S; Lingenfelder, Christian; Spraul, Christoph W; Kampmeier, Juergen; Koch, Frank Hj; Kim, Yong Keun; Hessling, Martin
2018-03-01
Development of a new, fiber-free, single-use endo-illuminator for pars plana vitrectomy as a replacement for fiber-based systems with external light sources. The hand-guided intraocularly placed white micro light-emitting diode is evaluated for its illumination properties and potential photochemical and thermal hazards. A micro light-emitting diode was used to develop a single-use intraocular illumination system. The light-source-on-tip device was implemented in a prototype with 23G trocar compatible outer diameter of 0.6 mm. The experimental testing was performed on porcine eyes. All calculations of possible photochemical and thermal hazards during the application of the intraocular micro light-emitting diode were calculated according to DIN EN ISO 15007-2: 2014. The endo-illuminator generated a homogeneous and bright illumination of the intraocular space. The color impression was physiologic and natural. Contrary to initial apprehension, the possible risk caused by inserting a light-emitting diode into the intraocular vitreous was much smaller when compared to conventional fiber-based illumination systems. The photochemical and thermal hazards allowed a continuous exposure time to the retina of at least 4.7 h. This first intraocular light source showed that a light-emitting diode can be introduced into the eye. The system can be built as single-use illumination system. This light-source-on-tip light-emitting diode-endo-illumination combines a chandelier wide-angle illumination with an adjustable endo-illuminator.
Genotoxicity and carcinogenicity of the light emitted by artificial illumination systems.
De Flora, Silvio
2013-03-01
The light delivered by artificial illumination systems, and in particular by halogen quartz bulbs, contains UVA, UVB, and UVC radiation, is genotoxic to both bacterial and human cells and is potently carcinogenic to hairless mice. Since IARC has classified UV radiation in Group 1, any source of UV light poses a carcinogenic hazard to humans. Suitable regulations would be needed in order to control the safety of the light emitted by artificial light sources.
Full spectrum optical safeguard
Ackerman, Mark R.
2008-12-02
An optical safeguard device with two linear variable Fabry-Perot filters aligned relative to a light source with at least one of the filters having a nonlinear dielectric constant material such that, when a light source produces a sufficiently high intensity light, the light alters the characteristics of the nonlinear dielectric constant material to reduce the intensity of light impacting a connected optical sensor. The device can be incorporated into an imaging system on a moving platform, such as an aircraft or satellite.
A quality assurance program for clinical PDT
NASA Astrophysics Data System (ADS)
Dimofte, Andreea; Finlay, Jarod; Ong, Yi Hong; Zhu, Timothy C.
2018-02-01
Successful outcome of Photodynamic therapy (PDT) depends on accurate delivery of prescribed light dose. A quality assurance program is necessary to ensure that light dosimetry is correctly measured. We have instituted a QA program that include examination of long term calibration uncertainty of isotropic detectors for light fluence rate, power meter head intercomparison for laser power, stability of the light-emitting diode (LED) light source integrating sphere as a light fluence standard, laser output and calibration of in-vivo reflective fluorescence and absorption spectrometers. We examined the long term calibration uncertainty of isotropic detector sensitivity, defined as fluence rate per voltage. We calibrate the detector using the known calibrated light fluence rate of the LED light source built into an internally baffled 4" integrating sphere. LED light sources were examined using a 1mm diameter isotropic detector calibrated in a collimated beam. Wavelengths varying from 632nm to 690nm were used. The internal LED method gives an overall calibration accuracy of +/- 4%. Intercomparison among power meters was performed to determine the consistency of laser power and light fluence rate measured among different power meters. Power and fluence readings were measured and compared among detectors. A comparison of power and fluence reading among several power heads shows long term consistency for power and light fluence rate calibration to within 3% regardless of wavelength. The standard LED light source is used to calibrate the transmission difference between different channels for the diffuse reflective absorption and fluorescence contact probe as well as isotropic detectors used in PDT dose dosimeter.
Saito, Kenta; Arai, Yoshiyuki; Zhang, Jize; Kobayashi, Kentaro; Tani, Tomomi; Nagai, Takeharu
2011-01-01
Laser-scanning confocal microscopy has been employed for exploring structures at subcellular, cellular and tissue level in three dimensions. To acquire the confocal image, a coherent light source, such as laser, is generally required in conventional single-point scanning microscopy. The illuminating beam must be focused onto a small spot with diffraction-limited size, and this determines the spatial resolution of the microscopy system. In contrast, multipoint scanning confocal microscopy using a Nipkow disk enables the use of an incoherent light source. We previously demonstrated successful application of a 100 W mercury arc lamp as a light source for the Yokogawa confocal scanner unit in which a microlens array was coupled with a Nipkow disk to focus the collimated incident light onto a pinhole (Saito et al., Cell Struct. Funct., 33: 133-141, 2008). However, transmission efficiency of incident light through the pinhole array was low because off-axis light, the major component of the incident light, was blocked by the non-aperture area of the disk. To improve transmission efficiency, we propose an optical system in which off-axis light is able to be transmitted through pinholes surrounding the pinhole located on the optical axis of the collimator lens. This optical system facilitates the use of not only the on-axis but also the off-axis light such that the available incident light is considerably improved. As a result, we apply the proposed system to high-speed confocal and multicolor imaging both with a satisfactory signal-to-noise ratio.
Reflector system for a lighting fixture
Siminovitch, M.J.; Page, E.; Gould, C.T.
1998-09-08
Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royer, Michael P.
Minimum color quality standards are necessary, because the light sources most efficient at producing lumens are impractical for use in architectural lighting due to poor color rendition. Thus, accurate measures of color rendition and accompanying performance criteria are essential for helping technology developers and users balance tradeoffs between energy efficiency and lighting quality. Setting higher color-rendition criteria while maintaining use of CRI (e.g., CRI ≥ 90) may filter out some unacceptable light sources, but also filters out many highly desirable light sources and requires a greater tradeoff with energy efficiency. In contrast, specifying color rendition using TM-30 Rf, Rg, andmore » Rcs,h1 has been shown to be effective for differentiating desirable sources while maintaining flexibility for technology development and energy efficiency.« less
The Linac Coherent Light Source
White, William E.; Robert, Aymeric; Dunne, Mike
2015-05-01
The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.
21 CFR 352.71 - Light source (solar simulator).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Light source (solar simulator). 352.71 Section 352... Procedures § 352.71 Light source (solar simulator). A solar simulator used for determining the SPF of a... nanometers. In addition, a solar simulator should have no significant time-related fluctuations in radiation...
21 CFR 352.71 - Light source (solar simulator).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Light source (solar simulator). 352.71 Section 352... Procedures § 352.71 Light source (solar simulator). A solar simulator used for determining the SPF of a... nanometers. In addition, a solar simulator should have no significant time-related fluctuations in radiation...
21 CFR 352.71 - Light source (solar simulator).
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Light source (solar simulator). 352.71 Section 352... Procedures § 352.71 Light source (solar simulator). A solar simulator used for determining the SPF of a... of its total energy output contributed by nonsolar wavelengths shorter than 290 nanometers; and it...
21 CFR 352.71 - Light source (solar simulator).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Light source (solar simulator). 352.71 Section 352.71 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Procedures § 352.71 Light source (solar simulator). A solar simulator used for determining the SPF of a...
21 CFR 352.71 - Light source (solar simulator).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Light source (solar simulator). 352.71 Section 352.71 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Procedures § 352.71 Light source (solar simulator). A solar simulator used for determining the SPF of a...
DARK-FIELD ILLUMINATION SYSTEM
Norgren, D.U.
1962-07-24
A means was developed for viewing objects against a dark background from a viewing point close to the light which illuminates the objects and under conditions where the back scattering of light by the objects is minimal. A broad light retro-directing member on the opposite side of the objects from the light returns direct light back towards the source while directing other light away from the viewing point. The viewing point is offset from the light and thus receives only light which is forwardly scattered by an object while returning towards the source. The object is seen, at its true location, against a dark background. The invention is particularly adapted for illuminating and viewing nuclear particle tracks in a liquid hydrogen bubble chamber through a single chamber window. (AEC)
Metildi, Cristina A; Kaushal, Sharmeela; Lee, Claudia; Hardamon, Chanae R; Snyder, Cynthia S; Luiken, George A; Talamini, Mark A; Hoffman, Robert M; Bouvet, Michael
2012-06-01
The aim of this study was to improve fluorescence laparoscopy of pancreatic cancer in an orthotopic mouse model with the use of a light-emitting diode (LED) light source and optimal fluorophore combinations. Human pancreatic cancer models were established with fluorescent FG-RFP, MiaPaca2-GFP, BxPC-3-RFP, and BxPC-3 cancer cells implanted in 6-week-old female athymic mice. Two weeks postimplantation, diagnostic laparoscopy was performed with a Stryker L9000 LED light source or a Stryker X8000 xenon light source 24 hours after tail-vein injection of CEA antibodies conjugated with Alexa 488 or Alexa 555. Cancer lesions were detected and localized under each light mode. Intravital images were also obtained with the OV-100 Olympus and Maestro CRI Small Animal Imaging Systems, serving as a positive control. Tumors were collected for histologic analysis. Fluorescence laparoscopy with a 495-nm emission filter and an LED light source enabled real-time visualization of the fluorescence-labeled tumor deposits in the peritoneal cavity. The simultaneous use of different fluorophores (Alexa 488 and Alexa 555), conjugated to antibodies, brightened the fluorescence signal, enhancing detection of submillimeter lesions without compromising background illumination. Adjustments to the LED light source permitted simultaneous detection of tumor lesions of different fluorescent colors and surrounding structures with minimal autofluorescence. Using an LED light source with adjustments to the red, blue, and green wavelengths, it is possible to simultaneously identify tumor metastases expressing fluorescent proteins of different wavelengths, which greatly enhanced the signal without compromising background illumination. Development of this fluorescence laparoscopy technology for clinical use can improve staging and resection of pancreatic cancer. Copyright © 2012 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Masada, Genta
2017-08-01
Two-mode squeezed light is an effective resource for quantum entanglement and shows a non-classical correlation between each optical mode. We are developing a two-mode squeezed light source to explore the possibility of quantum radar based on the quantum illumination theory. It is expected that the error probability for discrimination of target presence or absence is improved even in a lossy and noisy environment. We are also expecting to apply two-mode squeezed light source to quantum imaging. In this work we generated two-mode squeezed light and verify its quantum entanglement property towards quantum radar and imaging. Firstly we generated two independent single-mode squeezed light beams utilizing two sub-threshold optical parametric oscillators which include periodically-polled potassium titanyl phosphate crystals for the second order nonlinear interaction. Two single-mode squeezed light beams are combined using a half mirror with the relative optical phase of 90° between each optical field. Then entangled two-mode squeezed light beams can be generated. We observes correlation variances between quadrature phase amplitudes in entangled two-mode fields by balanced homodyne measurement. Finally we verified quantum entanglement property of two-mode squeezed light source based on Duan's and Simon's inseparability criterion.
Ghost imaging with bucket detection and point detection
NASA Astrophysics Data System (ADS)
Zhang, De-Jian; Yin, Rao; Wang, Tong-Biao; Liao, Qing-Hua; Li, Hong-Guo; Liao, Qinghong; Liu, Jiang-Tao
2018-04-01
We experimentally investigate ghost imaging with bucket detection and point detection in which three types of illuminating sources are applied: (a) pseudo-thermal light source; (b) amplitude modulated true thermal light source; (c) amplitude modulated laser source. Experimental results show that the quality of ghost images reconstructed with true thermal light or laser beam is insensitive to the usage of bucket or point detector, however, the quality of ghost images reconstructed with pseudo-thermal light in bucket detector case is better than that in point detector case. Our theoretical analysis shows that the reason for this is due to the first order transverse coherence of the illuminating source.
A quality monitor and monitoring technique employing optically stimulated electron emission
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Welch, Christopher S. (Inventor); Joe, Edmond J. (Inventor); Hefner, Bill Bryan, Jr. (Inventor)
1995-01-01
A light source directs ultraviolet light onto a test surface and a detector detects a current of photoelectrons generated by the light. The detector includes a collector which is positively biased with respect to the test surface. Quality is indicated based on the photoelectron current. The collector is then negatively biased to replace charges removed by the measurement of a nonconducting substrate to permit subsequent measurements. Also, the intensity of the ultraviolet light at a particular wavelength is monitored and the voltage of the light source varied to maintain the light a constant desired intensity. The light source is also cooled via a gas circulation system. If the test surface is an insulator, the surface is bombarded with ultraviolet light in the presence of an electron field to remove the majority of negative charges from the surface. The test surface is then exposed to an ion field until it possesses no net charge. The technique described above is then performed to assess quality.
Adjustable long duration high-intensity point light source
NASA Astrophysics Data System (ADS)
Krehl, P.; Hagelweide, J. B.
1981-06-01
A new long duration high-intensity point light source with adjustable light duration and a small light spot locally stable in time has been developed. The principle involved is a stationary high-temperature plasma flow inside a partly constrained capillary of a coaxial spark gap which is viewed end on through a terminating Plexiglas window. The point light spark gap is operated via a resistor by an artificial transmission line. Using two exchangeable inductance sets in the line, two ranges of photoduration 10-130 μs and 100-600 μs can be covered. For a light spot size of 1.5 mm diameter the corresponding peak light output amounts to 5×106 and 1.6×106 candelas, respectively. Within these ranges the duration is controlled by an ignitron crowbar to extinguish the plasma. The adjustable photoduration is very useful for the application of continuous writing rotating mirror cameras, thus preventing multiple exposures. The essentially uniform exposure within the visible spectral range makes the new light source suitable for color cinematography.
Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes
NASA Technical Reports Server (NTRS)
Kim, Hyeon-Hye; Goins, Gregory D.; Wheeler, Raymond M.; Sager, John C.
2004-01-01
Plants will be an important component of future long-term space missions. Lighting systems for growing plants will need to be lightweight, reliable, and durable, and light-emitting diodes (LEDs) have these characteristics. Previous studies demonstrated that the combination of red and blue light was an effective light source for several crops. Yet the appearance of plants under red and blue lighting is purplish gray making visual assessment of any problems difficult. The addition of green light would make the plant leave appear green and normal similar to a natural setting under white light and may also offer a psychological benefit to the crew. Green supplemental lighting could also offer benefits, since green light can better penetrate the plant canopy and potentially increase plant growth by increasing photosynthesis from the leaves in the lower canopy. In this study, four light sources were tested: 1) red and blue LEDs (RB), 2) red and blue LEDs with green fluorescent lamps (RGB), 3) green fluorescent lamps (GF), and 4) cool-white fluorescent lamps (CWF), that provided 0%, 24%, 86%, and 51% of the total PPF in the green region of the spectrum, respectively. The addition of 24% green light (500 to 600 nm) to red and blue LEDs (RGB treatment) enhanced plant growth. The RGB treatment plants produced more biomass than the plants grown under the cool-white fluorescent lamps (CWF treatment), a commonly tested light source used as a broad-spectrum control.
The photocytotoxicity of different lights on mammalian cells in interior lighting system.
Song, Jiayin; Gao, Tingting; Ye, Maole; Bi, Hongtao; Liu, Gang
2012-12-05
In the present paper, two light sources commonly used in interior lighting system: incandescent light and light emitting diode (LED) were chosen to evaluate their influences on three kinds of mammalian cells, together with UVA and UVB, and the mechanism of the photocytotoxicity was investigated in terms of intracellular ROS production, lipid peroxidation, SOD activity and GSH level assays. The results showed that LED and incandescent light both had some photocytotoxicities. In the interior lighting condition (100lx-250lx), the cytotoxicities of LED and incandescent lamp on RF/6A cells (rhesus retinal pigment epithelium cell line) were stronger than that on two fibroblast cell lines, while the cytotoxicity of UVA and UVB on HS68 cells (fibroblast cell line) was highest in the tests. The mechanism analysis revealed that the photocytotoxicities of LED and incandescent lamp were both caused by cell lipid peroxidation. LED and incandescent light could promote the production of ROS, raise lipid peroxidation level and lower the activity of the antioxidant key enzymes in mammalian cells, and finally cause a number of cells death. However, the negative function of LED was significantly smaller than incandescent light and ultraviolet in daily interior lighting condition. And the significantly lower photocytotoxicity of LED might be due to the less existence of ultraviolet. Therefore, LED is an efficient and relative safe light source in interior lighting system, which should be widely used instead of traditional light source. Copyright © 2012 Elsevier B.V. All rights reserved.
High power LED standard light sources for photometric applications
NASA Astrophysics Data System (ADS)
Ivashin, Evgeniy; Ogarev, Sergey; Khlevnoy, Boris; Shirokov, Stanislav; Dobroserdov, Dmitry; Sapritsky, Victor
2018-02-01
High power LED light sources have been developed as possible new VNIIOFI standard sources for luminous intensity, luminous flux and colour measurements. Stability, repeatability and spatial uniformity of the sources were investigated and demonstrated high accuracy and homogeneity. The paper describes different tests on one of the manufactured sources. In the future, these LED light sources are planned to be used as standard luminous flux sources to transfer the units of luminous intensity and luminous flux from gonio-spectrometer to sphere-spectrometer.
2016-11-29
AFRL-AFOSR-VA-TR-2016-0365 Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source Jerome Moloney...SUBTITLE "Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source 5a. CONTRACT NUMBER FA9550-15-1-0272 5b...afosr.reports.sgizmo.com/s3/> Subject: Final Report to Dr. Arje Nachman Contract/Grant Title: Long Wavelength Electromagnetic Light Bullets Generated by a 10.6
NASA Astrophysics Data System (ADS)
Zhou, Lei; Bai, Gui-Lin; Guo, Xin; Shen, Su; Ou, Qing-Dong; Fan, Yuan-Yuan
2018-05-01
We present a design approach to realizing a desired collimated planar incoherent light source (CPILS) by incorporating lenticular microlens arrays (LMLAs) onto the substrates of discrete white organic light-emitting diode (WOLED) light sources and demonstrate the effectiveness of this method in collimated light beam shaping and luminance enhancement simultaneously. The obtained collimated WOLED light source shows enhanced luminance by a factor of 2.7 compared with that of the flat conventional device at the normal polar angle and, more importantly, exhibits a narrowed angular emission with a full-width at half-maximum (FWHM) of ˜33.6°. We anticipate that the presented strategy could provide an alternative way for achieving the desired large scale CPILS, thereby opening the door to many potential applications, including LCD backlights, three-dimensional displays, car headlights, and so forth.
Method and system for fiber optic determination of gas concentrations in liquid receptacles
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet (Inventor)
2008-01-01
A system for determining gas compositions includes a probe, inserted into a source of gaseous material, the probe having a gas permeable sensor tip and being capable of sending and receiving light to and from the gaseous material, a sensor body, connected to the probe, situated outside of the source and a fiber bundle, connected to the sensor body and communicating light to and from the probe. The system also includes a laser source, connected to one portion of the fiber bundle and providing laser light to the fiber bundle and the probe a Raman spectrograph, connected to another portion of the fiber bundle, receiving light from the probe and filtering the received light into specific channels and a data processing unit, receiving and analyzing the received light in the specific channels and outputting concentration of specific gas species in the gaseous material based on the analyzed received light.
A method to eliminate the influence of incident light variations in spectral analysis
NASA Astrophysics Data System (ADS)
Luo, Yongshun; Li, Gang; Fu, Zhigang; Guan, Yang; Zhang, Shengzhao; Lin, Ling
2018-06-01
The intensity of the light source and consistency of the spectrum are the most important factors influencing the accuracy in quantitative spectrometric analysis. An efficient "measuring in layer" method was proposed in this paper to limit the influence of inconsistencies in the intensity and spectrum of the light source. In order to verify the effectiveness of this method, a light source with a variable intensity and spectrum was designed according to Planck's law and Wien's displacement law. Intra-lipid samples with 12 different concentrations were prepared and divided into modeling sets and prediction sets according to different incident lights and solution concentrations. The spectra of each sample were measured with five different light intensities. The experimental results showed that the proposed method was effective in eliminating the influence caused by incident light changes and was more effective than normalized processing.
Fluorescent optical position sensor
Weiss, Jonathan D.
2005-11-15
A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.
Evaluation of light-emitting diode beacon light fixtures.
DOT National Transportation Integrated Search
2009-12-01
Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...
Early, James W.; Lester, Charles S.
2003-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.
Artificial light sources differ in effect on birch seedling growth
David A. Marquis
1965-01-01
The use of artificial lights to grow tree seedlings for research and even for commercial uses is becoming common. With this has come an increasing awareness that not all types of artificial lights produce the same results (2, 3, 5). The presence or absence of particular wavelengths in the light source may cause large differences in height growth and morphological...
Ultrafast Graphene Light Emitters.
Kim, Young Duck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Bae, Myung-Ho; Kim, Hyungsik; Seo, Dongjea; Choi, Heon-Jin; Kim, Suk Hyun; Nemilentsau, Andrei; Low, Tony; Tan, Cheng; Efetov, Dmitri K; Taniguchi, Takashi; Watanabe, Kenji; Shepard, Kenneth L; Heinz, Tony F; Englund, Dirk; Hone, James
2018-02-14
Ultrafast electrically driven nanoscale light sources are critical components in nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms have been extensively investigated over the past decades. However, monolithic ultrafast light sources with a small footprint remain a challenge. Here, we demonstrate electrically driven ultrafast graphene light emitters that achieve light pulse generation with up to 10 GHz bandwidth across a broad spectral range from the visible to the near-infrared. The fast response results from ultrafast charge-carrier dynamics in graphene and weak electron-acoustic phonon-mediated coupling between the electronic and lattice degrees of freedom. We also find that encapsulating graphene with hexagonal boron nitride (hBN) layers strongly modifies the emission spectrum by changing the local optical density of states, thus providing up to 460% enhancement compared to the gray-body thermal radiation for a broad peak centered at 720 nm. Furthermore, the hBN encapsulation layers permit stable and bright visible thermal radiation with electronic temperatures up to 2000 K under ambient conditions as well as efficient ultrafast electronic cooling via near-field coupling to hybrid polaritonic modes under electrical excitation. These high-speed graphene light emitters provide a promising path for on-chip light sources for optical communications and other optoelectronic applications.
Schlieren with a laser diode source
NASA Technical Reports Server (NTRS)
Burner, A. W.; Franke, J. M.
1981-01-01
The use of a laser diode as a light source for a schlieren system designed to study phase objects such as a wind-tunnel flow is explored. A laser diode schlieren photograph and a white light schlieren photograph (zirconium arc source) are presented for comparison. The laser diode has increased sensitivity, compared with light schlieren, without appreciable image degradiation, and is an acceptable source for schlieren flow visualization.
Design of a Borescope for Extravehicular Non-Destructive Applications
NASA Technical Reports Server (NTRS)
Bachnak, Rafic
2003-01-01
Anomalies such as corrosion, structural damage, misalignment, cracking, stress fiactures, pitting, or wear can be detected and monitored by the aid of a borescope. A borescope requires a source of light for proper operation. Today s current lighting technology market consists of incandescent lamps, fluorescent lamps and other types of electric arc and electric discharge vapor lamp. Recent advances in LED technology have made LEDs viable for a number of applications, including vehicle stoplights, traffic lights, machine-vision-inspection, illumination, and street signs. LEDs promise significant reduction in power consumption compared to other sources of light. This project focused on comparing images taken by the Olympus IPLEX, using two different light sources. One of the sources is the 50-W internal metal halide lamp and the other is a 1 W LED placed at the tip of the insertion tube. Images acquired using these two light sources were quantitatively compared using their histogram, intensity profile along a line segment, and edge detection. Also, images were qualitatively compared using image registration and transformation [l]. The gray-level histogram, edge detection, image profile and image registration do not offer conclusive results. The LED light source, however, produces good images for visual inspection by an operator. Analysis using pattern recognition using Eigenfaces and Gaussian Pyramid in face recognition may be more useful.
Optical detector calibrator system
NASA Technical Reports Server (NTRS)
Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)
1996-01-01
An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.
1997-01-01
A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.
Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution
Ebert, Dieter
2016-01-01
The globally increasing light pollution is a well-recognized threat to ecosystems, with negative effects on human, animal and plant wellbeing. The most well-known and widely documented consequence of light pollution is the generally fatal attraction of nocturnal insects to artificial light sources. However, the evolutionary consequences are unknown. Here we report that moth populations from urban areas with high, globally relevant levels of light pollution over several decades show a significantly reduced flight-to-light behaviour compared with populations of the same species from pristine dark-sky habitats. Using a common garden setting, we reared moths from 10 different populations from early-instar larvae and experimentally compared their flight-to-light behaviour under standardized conditions. Moths from urban populations had a significant reduction in the flight-to-light behaviour compared with pristine populations. The reduced attraction to light sources of ‘city moths' may directly increase these individuals' survival and reproduction. We anticipate that it comes with a reduced mobility, which negatively affects foraging as well as colonization ability. As nocturnal insects are of eminent significance as pollinators and the primary food source of many vertebrates, an evolutionary change of the flight-to-light behaviour thereby potentially cascades across species interaction networks. PMID:27072407
Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution.
Altermatt, Florian; Ebert, Dieter
2016-04-01
The globally increasing light pollution is a well-recognized threat to ecosystems, with negative effects on human, animal and plant wellbeing. The most well-known and widely documented consequence of light pollution is the generally fatal attraction of nocturnal insects to artificial light sources. However, the evolutionary consequences are unknown. Here we report that moth populations from urban areas with high, globally relevant levels of light pollution over several decades show a significantly reduced flight-to-light behaviour compared with populations of the same species from pristine dark-sky habitats. Using a common garden setting, we reared moths from 10 different populations from early-instar larvae and experimentally compared their flight-to-light behaviour under standardized conditions. Moths from urban populations had a significant reduction in the flight-to-light behaviour compared with pristine populations. The reduced attraction to light sources of 'city moths' may directly increase these individuals' survival and reproduction. We anticipate that it comes with a reduced mobility, which negatively affects foraging as well as colonization ability. As nocturnal insects are of eminent significance as pollinators and the primary food source of many vertebrates, an evolutionary change of the flight-to-light behaviour thereby potentially cascades across species interaction networks. © 2016 The Author(s).
Pardo, Pedro J; Cordero, Eduardo M; Suero, María Isabel; Pérez, Ángel L
2012-02-01
It is well known that there are different preferences in correlated color temperature of light sources for daily living activities or for viewing artistic paintings. There are also data relating the capacity of observers to make judgments on color differences with the spectral power distribution of the light source used. The present work describes a visual color discrimination experiment whose results confirm the existence of a relationship between the correlated color temperature of a light source and the color discrimination capacities of the observers. © 2012 Optical Society of America
Lask, Gary; Fournier, Nathalie; Trelles, Mario; Elman, Monica; Scheflan, Michael; Slatkine, Michael; Naimark, Jenny; Harth, Yoram
2005-12-01
A major cause of skin aging is a chronic micro-inflammation triggered by UV radiation and external pollutants. It has been demonstrated that blue light diminishes inflammatory conditions and near infrared light enhances circulation. To assess the effectiveness of a non thermal dual wavelength -- blue (405 - 420 nm) and near infrared (850 - 900 nm) -- light source in skin rejuvenation, in the reduction of the duration of post skin resurfacing erythema and in the acceleration of healing of post surgical conditions (face lift and breast augmentation). We have utilized a non contact, hand free dual wavelength light source (iClearXL and Clear100XL, Curelight Ltd) to treat over 60 patients and perform three controlled studies in four centers. Follow up duration was three months. Control group for photo-rejuvenation consisted of patients treated with Glycolic peeling and daily appliance of vitamin C Control group for post skin resurfacing erythema duration consisted of patients untreated by the light source and control group for post surgical healing consisted of patients untreated by the light source or treated by the light source on one side only. Post skin resurfacing erythema duration is reduced by 90%. The healing of post surgical conditions is substantially accelerated and discomfort is reduced. The anti aging effect of the light source includes: reduction of pore size in 90% of patients with stable results at three months follow up, enhanced skin radiance in 90% of patients with stable results at three months follow up and smoothing of fine wrinkles in 45% of patients with stable results at three months follow up. The control group showed poor results which were stable for a duration of less than one month. A non thermal, non contact / hand free light source emitting at 405-420 nm and 850-900 nm considerably enhances aesthetic and surgical aesthetic procedures without consuming user time.
Solution of multi-element LED light sources development automation problem
NASA Astrophysics Data System (ADS)
Chertov, Aleksandr N.; Gorbunova, Elena V.; Korotaev, Valery V.; Peretyagin, Vladimir S.
2014-09-01
The intensive development of LED technologies resulted in the creation of multicomponent light sources in the form of controlled illumination devices based on usage of mentioned LED technologies. These light sources are used in different areas of production (for example, in the food industry for sorting products or in the textile industry for quality control, etc.). The use of LED lighting products in the devices used in specialized lighting, became possible due to wide range of colors of light, LED structures (which determines the direction of radiation, the spatial distribution and intensity of the radiation, electrical, heat, power and other characteristics), and of course, the possibility of obtaining any shade in a wide dynamic range of brightness values. LED-based lighting devices are notable for the diversity of parameters and characteristics, such as color radiation, location and number of emitters, etc. Although LED technologies have several advantages, however, they require more attention if you need to ensure a certain character of illumination distribution and/or distribution of the color picture at a predetermined distance (for example, at flat surface, work zone, area of analysis or observation). This paper presents software designed for the development of the multicomponent LED light sources. The possibility of obtaining the desired color and energy distribution at the zone of analysis by specifying the spatial parameters of the created multicomponent light source and using of real power, spectral and color parameters and characteristics of the LEDs is shown as well.
Non-focusing optics spectrophotometer, and methods of use
Kramer, David M.; Sacksteder, Colette A.
2004-11-02
In one aspect, the present invention provides kinetic spectrophotometers that each comprise: (a) a light source; and (b) a compound parabolic concentrator disposed to receive light from the light source and configured to (1) intensify and diffuse the light received from the light source, and (2) direct the intensified and diffused light onto a sample. In other aspects, the present invention provides methods for measuring a photosynthetic parameter, the methods comprising the steps of: (a) illuminating a plant leaf until steady-state photosynthesis is achieved; (b) subjecting the illuminated plant leaf to a period of darkness; (c) using a kinetic spectrophotometer of the invention to collect spectral data from the plant leaf treated in accordance with steps (a) and (b); and (d) determining a value for a photosynthetic parameter from the spectral data.
NASA Technical Reports Server (NTRS)
Baker, John G.
2012-01-01
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
Baker, John G; Thorpe, J I
2012-05-25
We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
Evaluation of light-emitting diode beacon light fixtures : final report.
DOT National Transportation Integrated Search
2009-12-01
Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...
Light guide technology: using light to enhance safety
NASA Astrophysics Data System (ADS)
Lerner, William S.
2009-05-01
When used to detect extreme temperatures in harsh environments, warning devices have been placed at a distance from the "danger zone" for several reasons. The inability to mix electricity with flammable, caustic, liquid or volatile substances, the limited heat tolerances exhibited by most light sources, and the susceptibility of light sources to damage from vibration, have made the placement of a warning light directly within these harsh environments impossible. This paper describes a system that utilizes a beam of light to provide just such a warning. This system can be used with hard-wired or wireless sensors, side-light illumination, image projection and image transfer. The entire system may be self-contained and portable.
NASA Technical Reports Server (NTRS)
1997-01-01
A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.
The integration of daylighting with artificial lighting to enhance building energy performance
NASA Astrophysics Data System (ADS)
Al-Ashwal, Najib Taher; Hassan, Ahmad Sanusi
2017-10-01
In sustainable building designs, daylight is considered as an alternative source of light to artificial lighting. Daylight is an energy-free and efficient-cost lighting source. Natural light is the best source for light due to its good quality, which matches the visual response of the human eyes. Daylight positively affects people by providing a sense of liveliness and brightness in the living space. The positive impact of daylight on the building occupants' visual comfort, health and performance is well recognized. However, daylight is not widely utilized to supplement artificial lighting, because there is a lack of information and tools to evaluate daylighting and potentials for energy savings. The efficient utilization of natural lighting will not only affect the interior environment and the occupants' health and performance but also has a direct impact on the building energy performance. Therefore, this paper reviews and discusses the effects of daylighting on the building energy performance mainly in schools and office buildings. This includes lighting energy performance, total energy consumption, cooling load. The methods, which are used to estimate the possible reduction in total energy consumption, are also reviewed in this research paper. Previous studies revealed that a clear reduction can be obtained in the energy consumed by electric lighting, as well as in the total energy end-use when a suitable lighting control system is applied to utilize the available natural light.
Passivation of quartz for halogen-containing light sources
Falkenstein, Zoran
1999-01-01
Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.
X-ray micro-Tomography at the Advanced Light Source
USDA-ARS?s Scientific Manuscript database
The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 10.5KeV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 KeV. A...
Apparatus for Direct Optical Fiber Through-Lens Illumination of Microscopy or Observational Objects
NASA Technical Reports Server (NTRS)
Kadogawa, Hiroshi (Inventor)
2001-01-01
In one embodiment of the invention, a microscope or other observational apparatus, comprises a hollow tube, a lens mounted to the tube, a light source and at least one flexible optical fiber having an input end and an output end. The input end is positioned to receive light from the light source, and the output end is positioned within the tube so as to directly project light along a straight path to the lens to illuminate an object to be viewed. The path of projected light is uninterrupted and free of light deflecting elements. By passing the light through the lens, the light can be diffused or otherwise defocused to provide more uniform illumination across the surface of the object, increasing the quality of the image of the object seen by the viewer. The direct undeflected and uninterrupted projection of light, without change of direction, eliminates the need for light-deflecting elements, such as beam-splitters, mirrors, prisms, or the like, to direct the projected light towards the object.
Concept of white light in stage lighting
NASA Astrophysics Data System (ADS)
Rinaldi, Mauricio R.
2002-06-01
In perceiving objects, generally we see them in a white light situation. But, actually, there is not an absolute white, in such a manner that the different light sources have a determined kind of white, what it is known as color temperature. Even the white light may be of different kinds (different color temperature), the individual mind tends to perceive it as the same kind of white, that is to say, there is in our mind a psychological function by which we operate an integration in the perception in order to do the object perceptually invariable. On the other hand, it is a common practice in stage lighting to use color light sources. It is a well known phenomenon that a color of light produces a change in the object color perception. However, when we go to theater, we see the objects as having their real color, even if the lighting is not white. In this paper the concept of white light in stage lighting is presented, showing its possibilities of aesthetical expression.
NASA Astrophysics Data System (ADS)
Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro
A fundamental study was conducted to establish an experimental system for space farming. Since to ensure optimal light for plant cultivation in space is of grave importance, this study examined the performance of light sources and radiation sensors under microgravity conditions created during the parabolic airplane flight. Three kinds of light sources, a halogen bulb, a fluorescent tube, and blue and red LEDs, and ten models of radiation sensors available in the market were used for the experiment. Surface temperature of the light sources, output signals from the radiation sensors, spectroscopic characteristics were measured at the gravity levels of 0.01, 1.0 and 1.8 G for 20 seconds each during parabolic airplane flights. As a result, the performance of the halogen lamp was affected the most by the gravity level among the three light sources. Under the microgravity conditions which do not raise heat convection, the temperature of the halogen lamp rose and the output of the radiation sensors increased. Spectral distributions of the halogen lamp indicated that peak wavelength appeared the highest at the level of 0.01G, which contributed to the increase in light intensity. In the case of red and blue LEDs, which are promising light sources in space farming, the temperature of both LED chips rose but irradiance from red LED increased and that from blue LED decreased under microgravity conditions due to the different thermal characteristics.
Retinal endoilluminator toxicity of xenon and light-emitting diode (LED) light source: rabbit model.
Aydin, Bahri; Dinç, Erdem; Yilmaz, S Necat; Altiparmak, U Emrah; Yülek, Fatma; Ertekin, Sevda; Yilmaz, Mustafa; Yakın, Mehmet
2014-09-01
This study evaluates retinal toxicity due to endoillumination with the light-emitting diode (LED) light source in comparison to endoillumination with xenon light source. Twenty-five eyes of 14 New Zealand pigmented rabbits were used in the study. The LED light (Omesis Medical Systems, Turkey) group was composed of 7 right eyes, while the other 7 right eyes constituted the xenon group (420 nm filter, 357mW/cm(2)) (Bright Star; DORC, Zuidland, Netherlands). Eleven untreated left eyes composed the control group. Twenty gauge pars plana incision 1.5 mm behind the limbus was performed in the right eyes. Twenty gauge bullet type fiberoptic endoilluminator was inserted into the eye from the incision without any pars plana vitrectomy. Fiberoptic endoilluminator was placed in such a way that it was directed toward visual streak of the rabbit retina with a 5 mm distance to retinal surface. Endoillumination was then applied for 20 min with a maximum light intensity for LED and xenon light. In left control eyes, no surgical procedure and no endoillumination were performed. One week after the endoillumination procedure, both eyes of the rabbits were enucleated following electroretinography. Sections stained with hematoxylin and eosin to evaluate morphologic changes. Retina tissues were assessed by active caspase-3 staining. There was no difference in the shape of the waveforms recorded in the eyes endoilluminated with LED light and xenon light sources compared to control eyes both before and after endoillumination application (p > 0.05). Microscopic evaluation of the retinas with hematoxylin and eosin staining demonstrated that all study groups have normal histologic properties similar to control group. No apoptosis positive cells were found within all sections in all groups. When the LED light source is used with maximum power and limited duration for endoillumination in rabbit eyes it does not produce phototoxic effects that may be detectable by electrophysiology and histology similar to xenon light.
NASA Technical Reports Server (NTRS)
Wyman, C. L.; Griner, D. B.; Hurd, W. A.; Shelton, G. B.; Hunt, G. H.; Fannin, B. B.; Brealt, R. P.; Hawkins, C. A. (Inventor)
1978-01-01
An apparatus is described for measuring the effectiveness of stray light suppression light shields and baffle arrangements used in optical space experiments and large space telescopes. The light shield and baffle arrangement and a telescope model are contained in a vacuum chamber. A source of short, high-powered light energy illuminates portions of the light shield and baffle arrangement and reflects a portion of same to a photomultiplier tube by virtue of multipath scattering. The resulting signal is transferred to time-channel electronics timed by the firing of the high energy light source allowing time discrimination of the signal thereby enabling the light scattered and suppressed by the model to be distinguished from the walls and holders around the apparatus.
Grade 1 to 6 Thai students' existing ideas about light: Across-age study
NASA Astrophysics Data System (ADS)
Horasirt, Yupaporn; Yuenyong, Chokchai
2018-01-01
This paper aimed to investigate Grade 1 to 6 Thai (6 - 12 years old) students' existing ideas about light, sight, vision, source of light. The participants included 36 Grade 1 to 6 students (6 students in each Grade) who studying at a primary school in Khon Kaen. The method of this study is a descriptive qualitative research design. The tools included the two-tiered test about light and open-ended question. Students' responses were categorized the students' existing ideas about light. Findings indicated that young students held various existing ideas about light that could be categorized into 6 different groups relating to sight, vision, and source of light. The paper discussed these students' existing ideas for developing constructivist learning about light in Thailand context.
[A review of mixed gas detection system based on infrared spectroscopic technique].
Dang, Jing-Min; Fu, Li; Yan, Zi-Hui; Zheng, Chuan-Tao; Chang, Yu-Chun; Chen, Chen; Wang, Yi-Din
2014-10-01
In order to provide the experiences and references to the researchers who are working on infrared (IR) mixed gas detection field. The proposed manuscript reviews two sections of the aforementioned field, including optical multiplexing structure and detection method. At present, the coherent light sources whose representative are quantum cascade laser (QCL) and inter-band cascade laser(ICL) become the mainstream light source in IR mixed gas detection, which replace the traditional non-coherent light source, such as IR radiation source and IR light emitting diode. In addition, the photon detector which has a super high detectivity and very short response time is gradually beyond thermal infrared detector, dominant in the field of infrared detector. The optical multiplexing structure is the key factor of IR mixed gas detection system, which consists of single light source multi-plexing detection structure and multi light source multiplexing detection structure. Particularly, single light source multiplexing detection structure is advantages of small volume and high integration, which make it a plausible candidate for the portable mixed gas detection system; Meanwhile, multi light source multiplexing detection structure is embodiment of time division multiplex, frequency division multiplexing and wavelength division multiplexing, and become the leading structure of the mixed gas detection system because of its wider spectral range, higher spectral resolution, etc. The detection method applied to IR mixed gas detection includes non-dispersive infrared (NDIR) spectroscopy, wavelength and frequency-modulation spectroscopy, cavity-enhanced spectroscopy and photoacoustic spectroscopy, etc. The IR mixed gas detection system designed by researchers after recognizing the whole sections of the proposed system, which play a significant role in industrial and agricultural production, environmental monitoring, and life science, etc.
Light emitting diodes as a plant lighting source
NASA Technical Reports Server (NTRS)
Bula, R. J.; Tennessen, D. J.; Morrow, R. C.; Tibbitts, T. W.
1994-01-01
Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. A number of LED characteristics are of considerable importance in selecting a light source for plant lighting in a controlled environment facility. Of particular importance is the characteristic that light is generated by an LED at a rate far greater than the corresponding thermal radiation predicted by the bulk temperature of the device as defined by Plank's radiation law. This is in sharp contrast to other light sources, such as an incandescent or high intensity discharge lamp. A plant lighting system for controlled environments must provide plants with an adequate flux of photosynthetically active radiation, plus providing photons in the spectral regions that are involved in the photomorphogenic and phototropic responses that result in normal plant growth and development. Use of light sources that emit photons over a broad spectral range generally meet these two lighting requirements. Since the LED's emit over specific spectral regions, they must be carefully selected so that the levels of photsynthetically active and photomorphogenic and phototropic radiation meet these plant requirements.
Carim, Azhar I.; Batara, Nicolas A.; Premkumar, Anjali; ...
2015-11-23
The template-free growth of well ordered, highly anisotropic lamellar structures has been demonstrated during the photoelectrodeposition of Se–Te films, wherein the orientation of the pattern can be directed by orienting the linear polarization of the incident light. This control mechanism was investigated further herein by examining the morphologies of films grown photoelectrochemically using light from two simultaneous sources that had mutually different linear polarizations. Photoelectrochemical growth with light from two nonorthogonally polarized same-wavelength sources generated lamellar morphologies in which the long axes of the lamellae were oriented parallel to the intensity-weighted average polarization orientation. Simulations of light scattering at themore » solution–film interface were consistent with this observation. Computer modeling of these growths using combined full-wave electromagnetic and Monte Carlo growth simulations successfully reproduced the experimental morphologies and quantitatively agreed with the pattern orientations observed experimentally by considering only the fundamental light-material interactions during growth. Deposition with light from two orthogonally polarized same-wavelength as well as different-wavelength sources produced structures that consisted of two intersecting sets of orthogonally oriented lamellae in which the relative heights of the two sets could be varied by adjusting the relative source intensities. Simulations of light absorption were performed in analogous, idealized intersecting lamellar structures and revealed that the lamellae preferentially absorbed light polarized with the electric field vector along their long axes. In conclusion, these data sets cumulatively indicate that anisotropic light scattering and light absorption generated by the light polarization produces the anisotropic morphology and that the resultant morphology is a function of all illumination inputs despite differing polarizations.« less
Ring resonant cavities for spectroscopy
Zare, R.N.; Martin, J.; Paldus, B.A.; Xie, J.
1999-06-15
Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS). 6 figs.
Ring resonant cavities for spectroscopy
Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.; Xie, Jinchun
1999-01-01
Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS).
Volume-scalable high-brightness three-dimensional visible light source
Subramania, Ganapathi; Fischer, Arthur J; Wang, George T; Li, Qiming
2014-02-18
A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.
Effects of source shape on the numerical aperture factor with a geometrical-optics model.
Wan, Der-Shen; Schmit, Joanna; Novak, Erik
2004-04-01
We study the effects of an extended light source on the calibration of an interference microscope, also referred to as an optical profiler. Theoretical and experimental numerical aperture (NA) factors for circular and linear light sources along with collimated laser illumination demonstrate that the shape of the light source or effective aperture cone is critical for a correct NA factor calculation. In practice, more-accurate results for the NA factor are obtained when a linear approximation to the filament light source shape is used in a geometric model. We show that previously measured and derived NA factors show some discrepancies because a circular rather than linear approximation to the filament source was used in the modeling.
Conversion degrees of resin composites using different light sources.
Ozturk, Bora; Cobanoglu, Nevin; Cetin, Ali Rıza; Gunduz, Beniz
2013-01-01
The objective of this study was to compare the conversion degree of six different composite materials (Filtek Z 250, Filtek P60, Spectrum TPH, Pertac II, Clearfil AP-X, and Clearfil Photo Posterior) using three different light sources (blue light-emitting diode [LED], plasma arc curing [PAC], and conventional halogen lamp [QTH]). Composites were placed in a 2 mm thick and 5 mm diameter Teflon molds and light cured from the top using three methods: LED for 40 s, PAC for 10 s, and QTH for 40 s. A Fourier Transform Infrared Spectroscopy (FTIR) was used to evaluate the degree of conversion (DC) (n=5). The results were analyzed with two-way analysis of variance and Tukey HSD test. DC was significantly influenced by two variables, light source and composite (P<.05). QTH revealed significantly higher DC values than LED (P<.05). However, there were no significant differences between DC values of QTH and PAC or between DC values of LED and PAC (P>.05). The highest DC was observed in the Z 250 composite specimens following photopolymerization with QTH (70%). The lowest DC was observed in Clearfil Photo Posterior composite specimens following photo-polymerization with LED (43%). The DC was found to be changing according to both light sources and composite materials used. Conventional light halogen (QTH) from light sources and Filtek Z 250 and Filtek P 60 among composite materials showed the most DC performance.
An aluminium nitride light-emitting diode with a wavelength of 210 nanometres.
Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki
2006-05-18
Compact high-efficiency ultraviolet solid-state light sources--such as light-emitting diodes (LEDs) and laser diodes--are of considerable technological interest as alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. Microelectronic fabrication technologies and the environmental sciences both require light sources with shorter emission wavelengths: the former for improved resolution in photolithography and the latter for sensors that can detect minute hazardous particles. In addition, ultraviolet solid-state light sources are also attracting attention for potential applications in high-density optical data storage, biomedical research, water and air purification, and sterilization. Wide-bandgap materials, such as diamond and III-V nitride semiconductors (GaN, AlGaN and AlN; refs 3-10), are potential materials for ultraviolet LEDs and laser diodes, but suffer from difficulties in controlling electrical conduction. Here we report the successful control of both n-type and p-type doping in aluminium nitride (AlN), which has a very wide direct bandgap of 6 eV. This doping strategy allows us to develop an AlN PIN (p-type/intrinsic/n-type) homojunction LED with an emission wavelength of 210 nm, which is the shortest reported to date for any kind of LED. The emission is attributed to an exciton transition, and represents an important step towards achieving exciton-related light-emitting devices as well as replacing gas light sources with solid-state light sources.
Sources of background light on space based laser communications links
NASA Astrophysics Data System (ADS)
Farrell, Thomas C.
2018-05-01
We discuss the sources and levels of background light that should be expected on space based laser communication (lasercom) crosslinks and uplinks, as well as on downlinks to ground stations. The analyses are valid for both Earth orbiting satellites and inter-planetary links. Fundamental equations are derived suitable for first order system engineering analyses of potential lasercom systems. These divide sources of background light into two general categories: extended sources which fill the field of view of a receiver's optics, and point sources which cannot be resolved by the optics. Specific sources of background light are discussed, and expected power levels are estimated. For uplinks, reflected sunlight and blackbody radiation from the Earth dominates. For crosslinks, depending on specific link geometry, sources of background light may include the Sun in the field of view (FOV), reflected sunlight and blackbody radiation from planets and other bodies in the solar system, individual bright stars in the FOV, the amalgam of dim stars in the FOV, zodiacal light, and reflected sunlight off of the transmitting spacecraft. For downlinks, all of these potentially come into play, and the effects of the atmosphere, including turbulence, scattering, and absorption contribute as well. Methods for accounting for each of these are presented. Specific examples are presented to illustrate the relative contributions of each source for various link geometries.
Synchrotron light sources in developing countries
Mtingwa, Sekazi K.; Winick, Herman
2018-03-21
Here, we discuss the role that synchrotron light sources, such as SESAME, could play in improving the socioeconomic conditions in developing countries. After providing a brief description of a synchrotron light source, we discuss the important role that they played in the development of several economically emerging countries. Then we describe the state of synchrotron science in South Africa and that country’s leadership role in founding the African Light Source initiative. Next, we highlight a new initiative called Lightsources for Africa, the Americas & Middle East Project, which is a global initiative led by the International Union of Pure andmore » Applied Physics and the International Union of Crystallography, with initial funding provided by the International Council for Science. Finally, we comment on a new technology called the multibend achromat that has launched a new paradigm for the design of synchrotron light sources that should be attractive for construction in developing countries.« less
Synchrotron light sources in developing countries
NASA Astrophysics Data System (ADS)
Mtingwa, Sekazi K.; Winick, Herman
2018-03-01
We discuss the role that synchrotron light sources, such as SESAME, could play in improving the socioeconomic conditions in developing countries. After providing a brief description of a synchrotron light source, we discuss the important role that they played in the development of several economically emerging countries. Then we describe the state of synchrotron science in South Africa and that country’s leadership role in founding the African Light Source initiative. Next, we highlight a new initiative called Lightsources for Africa, the Americas & Middle East Project, which is a global initiative led by the International Union of Pure and Applied Physics and the International Union of Crystallography, with initial funding provided by the International Council for Science. Finally, we comment on a new technology called the multibend achromat that has launched a new paradigm for the design of synchrotron light sources that should be attractive for construction in developing countries.
Broadband near-field infrared spectroscopy with a high temperature plasma light source.
Lahneman, D J; Huffman, T J; Xu, Peng; Wang, S L; Grogan, T; Qazilbash, M M
2017-08-21
Scattering-type scanning near-field optical microscopy (S-SNOM) has enormous potential as a spectroscopy tool in the infrared spectral range where it can probe phonon resonances and carrier dynamics at the nanometer lengths scales. However, its applicability is limited by the lack of practical and affordable table-top light sources emitting intense broadband infrared radiation in the 100 cm -1 to 2,500 cm -1 spectral range. This paper introduces a high temperature plasma light source that is both ultra-broadband and has much more radiant power in the infrared spectral range than conventional, table-top thermal light sources such as the globar. We implement this plasma lamp in our near-field optical spectroscopy set up and demonstrate its capability as a broadband infrared nano-spectroscopy light source by obtaining near-field infrared amplitude and phase spectra of the phonon resonances of SiO 2 and SrTiO 3 .
Atomic physics research with second and third generation synchrotron light sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, B.M.
1990-10-01
This contribution to these proceedings is intended to provide an introduction and overview for other contributions on atomic (and related) physics research at existing and planned synchrotron light sources. The emphasis will be on research accomplishments and future opportunities, but a comparison will be given of operating characteristics for first, second, and third generation machines. First generation light sources were built to do research with the primary electron and positron beams, rather than with the synchrotron radiation itself. Second generation machines were specifically designed to be dedicated synchrotron-radiation facilities, with an emphasis on the use of bending-magnet radiation. The newmore » third generation light sources are being designed to optimize radiation from insertion devices, such as undulators and wigglers. Each generation of synchrotron light source offers useful capabilities for forefront research in atomic physics and many other disciplines. 27 refs., 1 fig., 3 tabs.« less
Hughes, V K; Ellis, P S; Langlois, N E I
2006-05-10
The age of a bruise may be of interest to forensic investigators. Previous research has demonstrated that an alternative light source may assist in the visualisation of faint or non-visible bruises. This project aimed to determine if an alternative light source could be utilised to assist investigators estimate the age of a bruise. Forty braises, sustained from blunt force trauma, were examined from 30 healthy subjects. The age of the bruises ranged from 2 to 231 h (mean = 74.6, median = 69.0). Alternative light source (polilight) illumination at 415 and 450 nm was used. The black and white photographs obtained were assessed using densitometry. A statistical analysis indicated that there was no correlation between time and the mean densitometry values. The alternative light source used in this study was unable to assist in determining the age of a bruise.
Synchrotron light sources in developing countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mtingwa, Sekazi K.; Winick, Herman
Here, we discuss the role that synchrotron light sources, such as SESAME, could play in improving the socioeconomic conditions in developing countries. After providing a brief description of a synchrotron light source, we discuss the important role that they played in the development of several economically emerging countries. Then we describe the state of synchrotron science in South Africa and that country’s leadership role in founding the African Light Source initiative. Next, we highlight a new initiative called Lightsources for Africa, the Americas & Middle East Project, which is a global initiative led by the International Union of Pure andmore » Applied Physics and the International Union of Crystallography, with initial funding provided by the International Council for Science. Finally, we comment on a new technology called the multibend achromat that has launched a new paradigm for the design of synchrotron light sources that should be attractive for construction in developing countries.« less
Grubisic, Maja; van Grunsven, Roy H A; Manfrin, Alessandro; Monaghan, Michael T; Hölker, Franz
2018-05-14
The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1-13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Infrared light sources with semimetal electron injection
Kurtz, Steven R.; Biefeld, Robert M.; Allerman, Andrew A.
1999-01-01
An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.
Monte Carlo simulation for light propagation in 3D tooth model
NASA Astrophysics Data System (ADS)
Fu, Yongji; Jacques, Steven L.
2011-03-01
Monte Carlo (MC) simulation was implemented in a three dimensional tooth model to simulate the light propagation in the tooth for antibiotic photodynamic therapy and other laser therapy. The goal of this research is to estimate the light energy deposition in the target region of tooth with given light source information, tooth optical properties and tooth structure. Two use cases were presented to demonstrate the practical application of this model. One case was comparing the isotropic point source and narrow beam dosage distribution and the other case was comparing different incident points for the same light source. This model will help the doctor for PDT design in the tooth.
Development of excitation light source for photodynamic diagnosis
NASA Astrophysics Data System (ADS)
Lim, Hyun Soo
2008-02-01
Photodynamic diagnosis (PDD) is a method to diagnose the possibility of cancer, both by the principle that if a photosensitizer is injected into an organic tissue, it is accumulated in the tissue of a malignant tumor selectively after a specific period, and by a comparison of the intensity of the fluorescence of normal tissue with abnormal tissue after investigating the excitation light of a tissue with accumulated photosensitizer. Currently, there are two methods of PDD: The first is a way to acquire incitement fluorescence by using a photosensitizer, and the second is a way to use auto-fluorescence by green fluorescence protein (GFP) and red fluorescence protein (RFP) such as NADH+ active factors within the organic body. Since the selection of the wavelength band of excitation light has an interrelation with fluorescence generation according to the selection of a photosensitizer, it plays an important role in PDD. This study aims at designing and evaluating light source devices that can stably generate light with various kinds of wavelengths in order to make possible PDD using a photosensitizer and diagnosis using auto-fluorescence. The light source was a Xenon lamp and filter wheel, composed of an optical output control through Iris and filters with several wavelength bands. It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-420nm, 430-480nm, 480-560nm. The transmission part of the light source was developed to enhance the efficiency of light transmission. To evaluate this light source, the characteristics of light output and wavelength band were verified. To validate the capability of this device as PDD, the detection of auto-fluorescence using mouse models was performed.
Qian, Hongmei; Liu, Tianyu; Deng, Mingdan; Miao, Huiying; Cai, Congxi; Shen, Wangshu; Wang, Qiaomei
2016-04-01
The effects of different light qualities, including white, red and blue lights, on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts were investigated using light-emitting diodes (LEDs) as a light source. Our results showed that blue light treatment significantly decreased the content of gluconapin, the primary compound for bitter flavor in shoots, while increased the glucoraphanin content in roots. Moreover, the maximum content of vitamin C was detected in the white-light grown sprouts and the highest levels of total phenolic and anthocyanins, as well as the strongest antioxidant capacity were observed in blue-light grown sprouts. Taken together, the application of a colorful light source is a good practice for improvement of the consumers' acceptance and the nutritional phtyochemicals of Chinese kale sprouts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optical multi-species gas monitoring sensor and system
NASA Technical Reports Server (NTRS)
Korman, Valentin (Inventor); Polzin, Kurt A. (Inventor)
2012-01-01
The system includes at least one light source generating light energy having a corresponding wavelength. The system's sensor is based on an optical interferometer that receives light energy from each light source. The interferometer includes a free-space optical path disposed in an environment of interest. The system's sensor includes an optical device disposed in the optical path that causes light energy of a first selected wavelength to continue traversing the optical path whereas light energy of at least one second selected wavelength is directed away from the optical path. The interferometer generates an interference between the light energy of the first selected wavelength so-traversing the optical path with the light energy at the corresponding wavelength incident on the optical interferometer. A first optical detector detects the interference. At least one second detector detects the light energy at the at least one second selected wavelength directed away from the optical path.
Is White Light the Best Illumination for Palmprint Recognition?
NASA Astrophysics Data System (ADS)
Guo, Zhenhua; Zhang, David; Zhang, Lei
Palmprint as a new biometric has received great research attention in the past decades. It owns many merits, such as robustness, low cost, user friendliness, and high accuracy. Most of the current palmprint recognition systems use an active light to acquire clear palmprint images. Thus, light source is a key component in the system to capture enough of discriminant information for palmprint recognition. To the best of our knowledge, white light is the most widely used light source. However, little work has been done on investigating whether white light is the best illumination for palmprint recognition. In this study, we empirically compared palmprint recognition accuracy using white light and other six different color lights. The experiments on a large database show that white light is not the optimal illumination for palmprint recognition. This finding will be useful to future palmprint recognition system design.
System and Method for Scan Range Gating
NASA Technical Reports Server (NTRS)
Lindemann, Scott (Inventor); Zuk, David M. (Inventor)
2017-01-01
A system for scanning light to define a range gated signal includes a pulsed coherent light source that directs light into the atmosphere, a light gathering instrument that receives the light modified by atmospheric backscatter and transfers the light onto an image plane, a scanner that scans collimated light from the image plane to form a range gated signal from the light modified by atmospheric backscatter, a control circuit that coordinates timing of a scan rate of the scanner and a pulse rate of the pulsed coherent light source so that the range gated signal is formed according to a desired range gate, an optical device onto which an image of the range gated signal is scanned, and an interferometer to which the image of the range gated signal is directed by the optical device. The interferometer is configured to modify the image according to a desired analysis.
Wakefield, Andrew; Broyles, Moth; Stone, Emma L; Jones, Gareth; Harris, Stephen
2016-11-01
LED lighting is predicted to constitute 70% of the outdoor and residential lighting markets by 2020. While the use of LEDs promotes energy and cost savings relative to traditional lighting technologies, little is known about the effects these broad-spectrum "white" lights will have on wildlife, human health, animal welfare, and disease transmission. We conducted field experiments to compare the relative attractiveness of four commercially available "domestic" lights, one traditional (tungsten filament) and three modern (compact fluorescent, "cool-white" LED and "warm-white" LED), to aerial insects, particularly Diptera. We found that LEDs attracted significantly fewer insects than other light sources, but found no significant difference in attraction between the "cool-" and "warm-white" LEDs. Fewer flies were attracted to LEDs than alternate light sources, including fewer Culicoides midges (Diptera: Ceratopogonidae). Use of LEDs has the potential to mitigate disturbances to wildlife and occurrences of insect-borne diseases relative to competing lighting technologies. However, we discuss the risks associated with broad-spectrum lighting and net increases in lighting resulting from reduced costs of LED technology.
NASA Astrophysics Data System (ADS)
Lee, Dicky; Moulton, Peter F.
2001-03-01
In this paper we discuss our red, green, and blue (RGB) optical parametric oscillator (OPO) light source for projection display applications. Our source consists of a diode-pumped pump laser and a LBO-based OPO. Based on our Nd:YLF gain-module design, the pump laser is frequency doubled to serve as the pump source for the OPO. The unconverted pump power is recycled as the green light for projection. The singly resonant, non-critically phase- matched OPO has, to date, generated 13 W of 898-nm signal power and an estimated 9.3 W of intra-cavity idler power at 1256 nm. With approximately 76% of pump depletion, the power of the residual green light for projection is about 5.8 W. We have extra-cavity doubled the signal to produce approximately 3.5 W of 449-nm blue light and intra-cavity doubled the idler to produce approximately 6 W of 628-nm red light. The OPO-based RGB source generates about 4000 lumens of D65-balanced white light. The overall electrical power luminous efficiency (diodes only) is about 14.6 lumens/Watt.
Short Course in Highway Lighting.
ERIC Educational Resources Information Center
Federal Highway Administration (DOT), Washington, DC.
This course guide in highway lighting includes an overview of trends in highway lighting, illustrated information on three light sources for today's luminaires, a reference guide to lamp classification, specifications for highway lighting equipment, and instructions for calculating appropriate use. Maintenance notes on highway illumination and…
Deconnable self-reading pocket dosimeter containment with self-contained light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, R.L.; Arnold, G.N.; McBride, R.G.
1996-10-22
A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter. 4 figs.
Deconnable self-reading pocket dosimeter containment with self-contained light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, R.L.; Arnold, G.N.; McBride, R.G.
1995-12-31
A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter.
Deconnable self-reading pocket dosimeter containment with self-contained light
Stevens, Robyn L.; Arnold, Greg N.; McBride, Ryan G.
1996-01-01
A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter.
Lanagan, Michael T.; Valsko-Vlasov, Vitalii K.; Fisher, Brandon L.; Welp, Ulrich
2003-10-07
An optical current transducer configured to sense current in the conductor is disclosed. The optical current transducer includes a light source and a polarizer that generates linearly polarized light received from a the light source. The light is communicated to a magneto-optic garnet that includes, among other elements, bismuth, iron and oxygen and is coupled to the conductor. The magneto-optic garnet is configured to rotate the polarization of the linearly polarized light received from the polarizer. The optical current transducer also includes an analyzer in optical communication with the magneto-optic garnet. The analyzer detects the rotation of the linearly polarized light caused by the magneto-optic garnet.
40 CFR 63.2480 - What requirements must I meet for equipment leaks?
Code of Federal Regulations, 2011 CFR
2011-07-01
... affected source. (5) For pumps in light liquid service in an MCPU that has no continuous process vents and.../vapor and light liquid service at an existing source, you may elect to comply with the requirements in... light liquid service in an MCPU that has no continuous process vents and is part of an existing source...
Light sources based on semiconductor current filaments
Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen
2003-01-01
The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.
NASA Astrophysics Data System (ADS)
Kostal, Hubert; Kreysar, Douglas; Rykowski, Ronald
2009-08-01
The color and luminance distributions of large light sources are difficult to measure because of the size of the source and the physical space required for the measurement. We describe a method for the measurement of large light sources in a limited space that efficiently overcomes the physical limitations of traditional far-field measurement techniques. This method uses a calibrated, high dynamic range imaging colorimeter and a goniometric system to move the light source through an automated measurement sequence in the imaging colorimeter's field-of-view. The measurement is performed from within the near-field of the light source, enabling a compact measurement set-up. This method generates a detailed near-field color and luminance distribution model that can be directly converted to ray sets for optical design and that can be extrapolated to far-field distributions for illumination design. The measurements obtained show excellent correlation to traditional imaging colorimeter and photogoniometer measurement methods. The near-field goniometer approach that we describe is broadly applicable to general lighting systems, can be deployed in a compact laboratory space, and provides full near-field data for optical design and simulation.
Hyperspectral microscopy to identify foodborne bacteria with optimum lighting source
USDA-ARS?s Scientific Manuscript database
Hyperspectral microscopy is an emerging technology for rapid detection of foodborne pathogenic bacteria. Since scattering spectral signatures from hyperspectral microscopic images (HMI) vary with lighting sources, it is important to select optimal lights. The objective of this study is to compare t...
Synchronization of video recording and laser pulses including background light suppression
NASA Technical Reports Server (NTRS)
Kalshoven, Jr., James E. (Inventor); Tierney, Jr., Michael (Inventor); Dabney, Philip W. (Inventor)
2004-01-01
An apparatus for and a method of triggering a pulsed light source, in particular a laser light source, for predictable capture of the source by video equipment. A frame synchronization signal is derived from the video signal of a camera to trigger the laser and position the resulting laser light pulse in the appropriate field of the video frame and during the opening of the electronic shutter, if such shutter is included in the camera. Positioning of the laser pulse in the proper video field allows, after recording, for the viewing of the laser light image with a video monitor using the pause mode on a standard cassette-type VCR. This invention also allows for fine positioning of the laser pulse to fall within the electronic shutter opening. For cameras with externally controllable electronic shutters, the invention provides for background light suppression by increasing shutter speed during the frame in which the laser light image is captured. This results in the laser light appearing in one frame in which the background scene is suppressed with the laser light being uneffected, while in all other frames, the shutter speed is slower, allowing for the normal recording of the background scene. This invention also allows for arbitrary (manual or external) triggering of the laser with full video synchronization and background light suppression.
Apparatus and method for compensating for electron beam emittance in synchronizing light sources
Neil, George R.
1996-01-01
A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.
Apparatus and method for compensating for electron beam emittance in synchronizing light sources
Neil, G.R.
1996-07-30
A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.
An IR Navigation System for Pleural PDT
NASA Astrophysics Data System (ADS)
Zhu, Timothy; Liang, Xing; Kim, Michele; Finlay, Jarod; Dimofte, Andreea; Rodriguez, Carmen; Simone, Charles; Friedberg, Joseph; Cengel, Keith
2015-03-01
Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM). In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR) navigation system is used to track the motion of the light source in real-time at a rate of 20 - 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light dose uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method.
An interferometer having fused optical fibers, and apparatus and method using the interferometer
NASA Technical Reports Server (NTRS)
Hellbaum, Richard F. (Inventor); Claus, Richard O. (Inventor); Murphy, Kent A. (Inventor); Gunther, Michael F. (Inventor)
1992-01-01
An interferometer includes a first optical fiber coupled to a second optical fiber by fusing. At a fused portion, the first and second optical fibers are cut to expose respective cores. The cut or fused end of the first and second optical fibers is arranged to oppose a diaphragm or surface against which a physical phenomenon such as pressure or stress, is applied. In a first embodiment, a source light which is generally single-mode monochromatic, coherent light, is input to the first optical fiber and by evanescence, effectively crosses to the second optical fiber at the fused portion. Source light from the second optical fiber is reflected by the diaphragm or surface, and received at the second optical fiber to generate an output light which has an intensity which depends upon interference of reference light based on the source light, and the reflected light reflected from the diaphragm or surface. The intensity of the output light represents a positional relationship or displacement between the interferometer and the diaphragm or surface.
Modification of light sources for appropriate biological action
NASA Astrophysics Data System (ADS)
Kozakov, R.; Schöpp, H.; Franke, St.; Stoll, C.; Kunz, D.
2010-06-01
The impact of the non-visual action of light on the design of novel light sources is discussed. Therefore possible modifications of lamps dealing with spectral tailoring and their action on melatonin suppression in usual life situations are investigated. The results of melatonin suppression by plasma lamps are presented. It is shown that even short-time exposure to usual light levels in working areas has an influence on the melatonin onset.
Two-mode squeezed light source for quantum illumination and quantum imaging
NASA Astrophysics Data System (ADS)
Masada, Genta
2015-09-01
We started to research quantum illumination radar and quantum imaging by utilizing high quality continuous-wave two-mode squeezed light source as a quantum entanglement resource. Two-mode squeezed light is a macroscopic quantum entangled state of the electro-magnetic field and shows strong correlation between quadrature phase amplitudes of each optical field. One of the most effective methods to generate two-mode squeezed light is combining two independent single-mode squeezed lights by using a beam splitter with relative phase of 90 degrees between each optical field. As a first stage of our work we are developing two-mode squeezed light source for exploring the possibility of quantum illumination radar and quantum imaging. In this article we introduce current development of experimental investigation of single-mode squeezed light. We utilize a sub-threshold optical parametric oscillator with bow-tie configuration which includes a periodically-polled potassium titanyl phosphate crystal as a nonlinear optical medium. We observed the noise level of squeezed quadrature -3.08+/-0.13 dB and anti-squeezed quadrature at 9.29+/-0.13 dB, respectively. We also demonstrated the remote tuning of squeezing level of the light source which leads to the technology for tuning the quantum entanglement in order to adapt to the actual environmental condition.
High throughput optical scanner
Basiji, David A.; van den Engh, Gerrit J.
2001-01-01
A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.
Diffraction spectral filter for use in extreme-UV lithography condenser
Sweatt, William C.; Tichenor, Daniel A.; Bernardez, Luis J.
2002-01-01
A condenser system for generating a beam of radiation includes a source of radiation light that generates a continuous spectrum of radiation light; a condenser comprising one or more first optical elements for collecting radiation from the source of radiation light and for generating a beam of radiation; and a diffractive spectral filter for separating first radiation light having a particular wavelength from the continuous spectrum of radiation light. Cooling devices can be employed to remove heat generated. The condenser system can be used with a ringfield camera in projection lithography.
Centralized light-source optical access network based on polarization multiplexing.
Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José
2010-03-01
This paper presents and demonstrates a centralized light source optical access network based on optical polarization multiplexing technique. By using two optical sources emitting light orthogonally polarized in the Central Node for downstream and upstream operations, the Remote Node is kept source-free. EVM values below telecommunication standard requirements have been measured experimentally when bidirectional digital signals have been transmitted over 10 km of SMF employing subcarrier multiplexing technique in the electrical domain.
Spectrally resolved laser interference microscopy
NASA Astrophysics Data System (ADS)
Butola, Ankit; Ahmad, Azeem; Dubey, Vishesh; Senthilkumaran, P.; Singh Mehta, Dalip
2018-07-01
We developed a new quantitative phase microscopy technique, namely, spectrally resolved laser interference microscopy (SR-LIM), with which it is possible to quantify multi-spectral phase information related to biological specimens without color crosstalk using a color CCD camera. It is a single shot technique where sequential switched on/off of red, green, and blue (RGB) wavelength light sources are not required. The method is implemented using a three-wavelength interference microscope and a customized compact grating based imaging spectrometer fitted at the output port. The results of the USAF resolution chart while employing three different light sources, namely, a halogen lamp, light emitting diodes, and lasers, are discussed and compared. The broadband light sources like the halogen lamp and light emitting diodes lead to stretching in the spectrally decomposed images, whereas it is not observed in the case of narrow-band light sources, i.e. lasers. The proposed technique is further successfully employed for single-shot quantitative phase imaging of human red blood cells at three wavelengths simultaneously without color crosstalk. Using the present technique, one can also use a monochrome camera, even though the experiments are performed using multi-color light sources. Finally, SR-LIM is not only limited to RGB wavelengths, it can be further extended to red, near infra-red, and infra-red wavelengths, which are suitable for various biological applications.
Analytical approach of laser beam propagation in the hollow polygonal light pipe.
Zhu, Guangzhi; Zhu, Xiao; Zhu, Changhong
2013-08-10
An analytical method of researching the light distribution properties on the output end of a hollow n-sided polygonal light pipe and a light source with a Gaussian distribution is developed. The mirror transformation matrices and a special algorithm of removing void virtual images are created to acquire the location and direction vector of each effective virtual image on the entrance plane. The analytical method is demonstrated by Monte Carlo ray tracing. At the same time, four typical cases are discussed. The analytical results indicate that the uniformity of light distribution varies with the structural and optical parameters of the hollow n-sided polygonal light pipe and light source with a Gaussian distribution. The analytical approach will be useful to design and choose the hollow n-sided polygonal light pipe, especially for high-power laser beam homogenization techniques.
Remote multi-position information gathering system and method
Hirschfeld, Tomas B.
1986-01-01
A technique for gathering specific information from various remote locations, especially fluorimetric information characteristic of particular materials at the various locations is disclosed herein. This technique uses a single source of light disposed at still a different, central location and an overall optical network including an arrangement of optical fibers cooperating with the light source for directing individual light beams into the different information bearing locations. The incoming light beams result in corresponding displays of light, e.g., fluorescent light, containing the information to be obtained. The optical network cooperates with these light displays at the various locations for directing outgoing light beams containing the same information as their cooperating displays from these locations to the central location. Each of these outgoing beams is applied to a detection arrangement, e.g., a fluorescence spectroscope, for retrieving the information contained thereby.
Remote multi-position information gathering system and method
Hirschfeld, Tomas B.
1986-01-01
A technique for gathering specific information from various remote locations, especially fluorimetric information characteristic of particular materials at the various locations is disclosed herein. This technique uses a single source of light disposed at still a different, central location and an overall optical network including an arrangement of optical fibers cooperating with the light source for directing individual light beams into the different information bearing locations. The incoming light beams result in corresponding displays of light, e.g., fluorescent light, containing the information to be obtained. The optical network cooperates with these light displays at the various locations for directing ongoing light beams containing the same information as their cooperating displays from these locations to the central location. Each of these outgoing beams is applied to a detection arrangement, e.g., a fluorescence spectroscope, for retrieving the information contained thereby.
Remote multi-position information gathering system and method
Hirschfeld, T.B.
1989-01-24
A technique for gathering specific information from various remote locations, especially fluorimetric information characteristic of particular materials at the various locations is disclosed herein. This technique uses a single source of light disposed at still a different, central location and an overall optical network including an arrangement of optical fibers cooperating with the light source for directing individual light beams into the different information bearing locations. The incoming light beams result in corresponding displays of light, e.g., fluorescent light, containing the information to be obtained. The optical network cooperates with these light displays at the various locations for directing outgoing light beams containing the same information as their cooperating displays from these locations to the central location. Each of these outgoing beams is applied to a detection arrangement, e.g., a fluorescence spectroscope, for retrieving the information contained thereby. 9 figs.
Remote multi-position information gathering system and method
Hirschfeld, T.B.
1986-12-02
A technique for gathering specific information from various remote locations, especially fluorimetric information characteristic of particular materials at the various locations is disclosed herein. This technique uses a single source of light disposed at still a different, central location and an overall optical network including an arrangement of optical fibers cooperating with the light source for directing individual light beams into the different information bearing locations. The incoming light beams result in corresponding displays of light, e.g., fluorescent light, containing the information to be obtained. The optical network cooperates with these light displays at the various locations for directing outgoing light beams containing the same information as their cooperating displays from these locations to the central location. Each of these outgoing beams is applied to a detection arrangement, e.g., a fluorescence spectroscope, for retrieving the information contained thereby. 9 figs.
Remote multi-position information gathering system and method
Hirschfeld, Tomas B.
1989-01-01
A technique for gathering specific information from various remote locations, especially fluorimetric information characteristic of particular materials at the various locations is disclosed herein. This technique uses a single source of light disposed at still a different, central location and an overall optical network including an arrangement of optical fibers cooperating with the light source for directing individual light beams into the different information bearing locations. The incoming light beams result in corresponding displays of light, e.g., fluorescent light, containing the information to be obtained. The optical network cooperates with these light displays at the various locations for directing outgoing light beams containing the same information as their cooperating displays from these locations to the central location. Each of these outgoing beams is applied to a detection arrangement, e.g., a fluorescence spectroscope, for retrieving the information contained thereby.
Designing Light Beam Transmittance Measuring Tool Using a Laser Pointer
NASA Astrophysics Data System (ADS)
Nuroso, H.; Kurniawan, W.; Marwoto, P.
2016-08-01
A simple instrument used for measuring light beam transmittance percentage made of window film has been developed. The instrument uses a laser pointer of 405 nm and 650 nm ±10% as a light source. Its accuracy approaches 80%. Transmittance data was found by comparing the light beam before and after passing the window film. The light intensity measuring unit was deleted by splitting the light source into two beams through a beam splitter. The light beam was changed into resistance by a NORP12 LDR sensor designed at a circuit of voltage divider rule of Khirchoff's laws. This conversion system will produce light beam intensity received by the sensor to become an equal voltage. This voltage will, then, be presented on the computer screen in the form of a real time graph via a 2.0 USB data transfer.
Imaging arrangement and microscope
Pertsinidis, Alexandros; Chu, Steven
2015-12-15
An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.
Effect of blue light radiation on curcumin-induced cell death of breast cancer cells
NASA Astrophysics Data System (ADS)
Zeng, X. B.; Leung, A. W. N.; Xia, X. S.; Yu, H. P.; Bai, D. Q.; Xiang, J. Y.; Jiang, Y.; Xu, C. S.
2010-06-01
In the present study, we have successfully set up a novel blue light source with the power density of 9 mW/cm2 and the wavelength of 435.8 nm and then the novel light source was used to investigate the effect of light radiation on curcumin-induced cell death. The cytotoxicity was investigated 24 h after the treatment of curcumin and blue light radiation together using MTT reduction assay. Nuclear chromatin was observed using a fluorescent microscopy with Hoechst33258 staining. The results showed blue light radiation could significantly enhance the cytotoxicity of curcumin on the MCF-7 cells and apoptosis induction. These findings demonstrated that blue light radiation could enhance curcumin-induced cell death of breast cancer cells, suggesting light radiation may be an efficient enhancer of curcumin in the management of breast cancer.
NASA Astrophysics Data System (ADS)
Obara, Shin'ya
Plant shoot configurations evolve so that maximum sunlight may be obtained. The objective of this study is to develop a compact light-condensing system mimicking a plant shoot configuration that is applicable to a light source from a large area. In this paper, the relationship between the position of a light source (the sun) and the rate at which light is absorbed by each leaf was investigated in detail for plant shoot models of a dogwood (simple leaf) and a ginkgo tree (lobed leaf). The rate of light quantum received in each leaf model is reported to an analysis program that uses cross entropy (CE). The analyses showed that the peak amount of light received in the plant-shoot-light-condensing system was during February (vernal equinox) and October (autumnal equinox). Similarly, the rate of light quantum received in each leaf was measured with the CE. The results found that the plant-shoot-light-condensing system that maximizes the amount of light received has differences in the light received in each leaf. Furthermore, the light-condensing characteristics of the ginkgo biloba model are better than the dogwood model. The light-condensing characteristics of a leaf are influenced by the size, a lobe, shape, and the length of the branch.
NASA Astrophysics Data System (ADS)
Hayashi, Motoki; Tameda, Yuichiro; Tomida, Takayuki; Tsunesada, Yoshiki; Seki, Terutsugu; Saito, Yoshinori
We are developing a unmanned aerial vehicle (UAV), which is called "Opt-copter", carrying a calibrated light source for fluorescence detector (FD) calibration of the Telescope Array (TA) experiment. Opt-copter is equipped with a high accuracy GPS device and a LED light source in the shape of a dodecahedron. A positioning accuracy of the GPS mounted on the UAV is 0.1 m, which meets the requirement for the calibration of the FDs at the distance of 100 m. The light source consists of 12 UV LEDs attached on each side of the dodecahedron, and it is covered with a spherical diffuser to improve the spatial uniformity of the light intensity. We report the status of Opt-copter development and the results of its test at the TA site.
Wierer, Jonathan; Tsao, Jeffrey Y.
2014-09-01
III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less
75 FR 3862 - Photography in Public Exhibit Space
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-25
... exhibit cases for displaying the Charters and other NAE documents to provide better clarity for viewing... documents from damaging exposure to light sources. NARA used filters in earlier exhibit cases. Although... exhibit lighting at its source to remove all ultraviolet and high energy visible light. One commenter...
Soleymani, Teo; Cohen, David E; Folan, Lorcan M; Okereke, Uchenna R; Elbuluk, Nada; Soter, Nicholas A
2017-11-01
Background: While most of the attention regarding skin pigmentation has focused on the effects of ultraviolet radiation, the cutaneous effects of visible light (400 to 700nm) are rarely reported. The purpose of this study was to investigate the cutaneous pigmentary response to pure visible light irradiation, examine the difference in response to different sources of visible light irradiation, and determine a minimal pigmentary dose of visible light irradiation in melanocompetent subjects with Fitzpatrick skin type III - VI. The study was designed as a single arm, non-blinded, split-side dual intervention study in which subjects underwent visible light irradiation using LED and halogen incandescent light sources delivered at a fluence of 0.14 Watts/cm2 with incremental dose progression from 20 J/cm2 to 320 J/cm2. Pigmentation was assessed by clinical examination, cross-polarized digital photography, and analytic colorimetry. Immediate, dose-responsive pigment darkening was seen with LED light exposure in 80% of subjects, beginning at 60 Joules. No pigmentary changes were seen with halogen incandescent light exposure at any dose in any subject. This study is the first to report a distinct difference in cutaneous pigmentary response to different sources of visible light, and the first to demonstrate cutaneous pigment darkening from visible LED light exposure. Our findings raise the concern that our increasing daily artificial light surroundings may have clandestine effects on skin biology.
J Drugs Dermatol. 2017;16(11):1105-1110.
.New design of textile light diffusers for photodynamic therapy.
Cochrane, Cédric; Mordon, Serge R; Lesage, Jean Claude; Koncar, Vladan
2013-04-01
A homogeneous and reproducible fluence delivery rate during clinical photodynamic therapy (PDT) plays a determinant role in preventing under- or overtreatment. PDT applied in dermatology has been carried out with a wide variety of light sources delivering a broad range of more or less adapted light doses. Due to the complexities of the human anatomy, these light sources do not in fact deliver a uniform light distribution to the skin. Therefore, the development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of plastic optical fiber (POF) into textile structures could offer an interesting alternative. In this article, a textile light diffuser (TLD) has been developed using POF and Polyester yarns. Predetermined POF macrobending leads to side emission of light when the critical angle is exceeded. Therefore, a specific pattern based on different satin weaves has been developed in order to improve light emission homogeneity and to correct the decrease of side emitted radiation intensity along POF. The prototyped fabrics (approximately 100 cm(2): 5×20 cm) were woven using a hand loom, then both ends of the POF were coupled to a laser diode (5 W, 635 nm). The fluence rate (mW/ cm(2)) and the homogeneity of light delivery by the TLD were evaluated. Temperature evolution, as a function of time, was controlled with an infrared thermographic camera. When using a power source of 5 W, the fluence rate of the TLD was 18±2.5 mw/cm(2). Due to the high efficiency of the TLD, the optical losses were very low. The TLD temperature elevation was 0.6 °C after 10 min of illumination. Our TLD meets the basic requirements for PDT: homogeneous light distribution and flexibility. It also proves that large (500 cm(2)) textile light diffusers adapted to skin, but also to peritoneal or pleural cavity, PDTs can be easily produced by textile manufacturing processes. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Clark, T. A.; Brainard, G.; Salazar, G.; Johnston, S.; Schwing, B.; Litaker, H.; Kolomenski, A.; Venus, D.; Tran, K.; Hanifin, J.;
2017-01-01
NASA has demonstrated an interest in improving astronaut health and performance through the installment of a new lighting countermeasure on the International Space Station. The Solid State Lighting Assembly (SSLA) system is designed to positively influence astronaut health by providing a daily change to light spectrum to improve circadian entrainment. Unfortunately, existing NASA standards and requirements define ambient light level requirements for crew sleep and other tasks, yet the number of light-emitting diode (LED) indicators and displays within a habitable volume is currently uncontrolled. Because each of these light sources has its own unique spectral properties, the additive lighting environment ends up becoming something different from what was planned or researched. Restricting the use of displays and indicators is not a solution because these systems provide beneficial feedback to the crew. The research team for this grant used computer-based computational modeling and real-world lighting mockups to document the impact that light sources other than the ambient lighting system contribute to the ambient spectral lighting environment. In particular, the team was focused on understanding the impacts of long-term tasks located in front of avionics or computer displays. The team also wanted to understand options for mitigating the changes to the ambient light spectrum in the interest of maintaining the performance of a lighting countermeasure. The project utilized a variety of physical and computer-based simulations to determine direct relationships between system implementation and light spectrum. Using real-world data, computer models were built in the commercially available optics analysis software Zemax Optics Studio(c). The team also built a mockup test facility that had the same volume and configuration as one of the Zemax models. The team collected over 1200 spectral irradiance measurements, each representing a different configuration of the mockup. Analysis of the data showed a measurable impact on ambient light spectrum. This data showed that obvious design techniques exist that can be used to bind the ambient light spectrum closer to the planned spectral operating environment for the observer's eye point. The following observations should be considered when designing an operational environment that is dominated by computer displays. When more light is directed into the field of view of the observer, the greater the impact it will make on various human factors issues that depend on spectral shape and intensity. Because viewing angle has a large part to play in the amount of light flux on the crewmember's retina, beam shape, combined with light source location is an important factor for determining percent probable incident flux on the observer from any combination of light sources. Computer graphics design and display lumen output are major factors influencing the amount of spectrally intense light projected into the environment and in the viewer's direction. Use of adjustable white point display software was useful only if the predominant background color was white and if it matched the ambient light system's color. Display graphics that used a predominantly black background had the least influence on unplanned spectral energy projected into the environment. Percent reflectance makes a difference in total energy reflected back into an environment, and within certain architectural geometries, reflectance can be used to control the amount of a light spectrum that is allowed to perpetuate in the environment. Data showed that room volume and distance from significant light sources influence the total spectrum in a room. Smaller environments had a homogenizing effect on total light spectrum, whereas light from multiple sources in larger environments was less mixed. The findings indicated above should be considered when making recommendations for practice or standards for architectural systems. The ambient lighting system, surface reflectance, and display and indicator implementation all factor into the users' spectral environment. A variety of low-cost solutions exist to mitigate the impact of light from non-architectural lighting systems, and much potential for system automation and integration of display systems with the ambient environment. This team believes that proper planning can be used to avoid integration problems and also believes that human-in-the-loop evaluations, real-world test and measurement, and computer modeling can be used to determine how changes to a process, display graphics, and architecture will help maintain the planned spectral operating lighting environment.
New Directions in X-Ray Light Sources
Falcone, Roger
2017-12-09
July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.
Light sources and output couplers for a backlight with switchable emission angles
NASA Astrophysics Data System (ADS)
Fujieda, Ichiro; Imai, Keita; Takagi, Yoshihiko
2007-09-01
For switching viewing angles of a liquid crystal display, we proposed to place a liquid crystal device between an LED and a light-guide of a backlight. The first key component for this configuration is a light source with electronically-controlled emission angles. Here, we construct such a device by stacking an optical film and a polymer-network liquid crystal (PNLC) cell on top of a chip-type LED. The optical film contains opaque parallel plates that limit the LED output in a narrow angular range. The PNLC cell either transmits or scatters the light emerging from the optical film. Experiment using a 15μm-thick PNLC cell shows that the angular distribution becomes 2.3 times wider by turning off the PNLC cell. We place this light source at one end of a light-guide so that the angular distribution of the light propagating inside is controlled. The second key component is some types of micro-strucrures built on the light-guide to out-couple the propagating light. We first attached various optical films on a light-guide surface. Although the angular distribution of the extracted light was switched successfully, light was mostly emitted into an oblique direction, approximately 60° from the plane normal. Next, we used a half-cylinder in place of the optical films. The curved surface of the cylinder was attached to the light-guide with a small amount of matching oil, which constituted an optical window. We measured that the angular distribution of the extracted light decreased to 35° FWHM from 62° FWHM by turning on the PNLC cell.
Does the light source affect the repairability of composite resins?
Karaman, Emel; Gönülol, Nihan
2014-01-01
The aim of this study was to examine the effect of the light source on the microshear bond strength of different composite resins repaired with the same substrate. Thirty cylindrical specimens of each composite resin--Filtek Silorane, Filtek Z550 (3M ESPE), Gradia Direct Anterior (GC), and Aelite Posterior (BISCO)--were prepared and light-cured with a QTH light curing unit (LCU). The specimens were aged by thermal cycling and divided into three subgroups according to the light source used--QTH, LED, or PAC (n = 10). They were repaired with the same substrate and a Clearfil Repair Kit (Kuraray). The specimens were light-cured and aged for 1 week in distilled water at 37 °C. The microshear bond strength and failure modes were assessed. There was no significant difference in the microshear bond strength values among the composite resins, except for the Filtek Silorane group that showed significantly lower bond strength values when polymerized with the PAC unit compared to the QTH or LED unit. In conclusion, previously placed dimethacrylate-based composites can be repaired with different light sources; however, if the composite to be repaired is silorane-based, then using a QTH or LED device may be the best option.
Increased collection efficiency of LIFI high intensity electrodeless light source
NASA Astrophysics Data System (ADS)
Hafidi, Abdeslam; DeVincentis, Marc; Duelli, Markus; Gilliard, Richard
2008-02-01
Recently, RF driven electrodeless high intensity light sources have been implemented successfully in the projection display systems for HDTV and videowall applications. This paper presents advances made in the RF waveguide and electric field concentrator structures with the purpose of reducing effective arc size and increasing light collection. In addition, new optical designs are described that further improve system efficiency. The results of this work demonstrate that projection system light throughput is increased relative to previous implementations and performance is optimized for home theater and other front projector applications that maintain multi-year lifetime without re-lamping, complete spectral range, fast start times and high levels of dynamic contrast due to dimming flexibility in the light source system.
Light and Color Research Continues in Arkansas.
ERIC Educational Resources Information Center
Sydoriak, Diane
1984-01-01
Describes a research project that will measure whether student achievement, blood pressure, height, and weight gain are influenced by the choice of color and/or the source of artificial light in the classroom. Four third-grade classrooms will be the treatment groups involving two colors and three different artificial light sources. (MLF)
40 CFR 63.3081 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... replacement parts for automobiles, light-duty trucks, or other motor vehicles; and the affected source is... Standards for Hazardous Air Pollutants: Surface Coating of Automobiles and Light-Duty Trucks What This... section, the source category to which this subpart applies is automobile and light-duty truck surface...
NASA Technical Reports Server (NTRS)
Baker, John G.; Thorpe, J. I.
2012-01-01
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.
Investigation of organic light emitting diodes for interferometric purposes
NASA Astrophysics Data System (ADS)
Pakula, Anna; Zimak, Marzena; Sałbut, Leszek
2011-05-01
Recently the new type of light source has been introduced to the market. Organic light emitting diode (OLED) is not only interesting because of the low applying voltage, wide light emitting areas and emission efficiency. It gives the possibility to create a light source of a various shape, various color and in the near future very likely even the one that will change shape and spectrum in time in controlled way. Those opportunities have not been in our reach until now. In the paper authors try to give an answer to the question if the new light source -OLED - is suitable for interferometric purposes. Tests cover the short and long term spectrum stability, spectrum changes due to the emission area selection. In the paper the results of two OLEDs (red and white) are shown together with the result of an attempt to use them in an interferometric setup.
Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil
2013-11-19
A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.
Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil
2013-02-19
A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.
Optically pulsed electron accelerator
Fraser, John S.; Sheffield, Richard L.
1987-01-01
An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.
Optically pulsed electron accelerator
Fraser, J.S.; Sheffield, R.L.
1985-05-20
An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.
Garcia-Sucerquia, Jorge
2013-01-01
By engineering the light from a light-emitting diode (LED) the noises present in digital lensless holographic microscopy (DLHM) are reduced. The partially coherent light from an LED is tailored to produce a spherical wavefront with limited coherence time and the spatial coherence needed by DLHM to work. DLHM with this engineered light source is used to image biological samples that cover areas of the order of mm(2). The ratio between the diameter of the area that is almost coherently illuminated to the diameter of the illumination area is utilized as parameter to quantify the performance of the DLHM with the engineered LED light source. Experimental results show that while the noises can be reduced effectively the spatial resolution can be kept in the micrometer range.
UV emissions from low energy artificial light sources.
Fenton, Leona; Moseley, Harry
2014-01-01
Energy efficient light sources have been introduced across Europe and many other countries world wide. The most common of these is the Compact Fluorescent Lamp (CFL), which has been shown to emit ultraviolet (UV) radiation. Light Emitting Diodes (LEDs) are an alternative technology that has minimal UV emissions. This brief review summarises the different energy efficient light sources available on the market and compares the UV levels and the subsequent effects on the skin of normal individuals and those who suffer from photodermatoses. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Luminescent light source for laser pumping and laser system containing same
Hamil, Roy A.; Ashley, Carol S.; Brinker, C. Jeffrey; Reed, Scott; Walko, Robert J.
1994-01-01
The invention relates to a pumping lamp for use with lasers comprising a porous substrate loaded with a component capable of emitting light upon interaction of the component with exciting radiation and a source of exciting radiation. Preferably, the pumping lamp comprises a source of exciting radiation, such as an electron beam, and an aerogel or xerogel substrate loaded with a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce light, e.g., visible light, of a suitable band width and of a sufficient intensity to generate a laser beam from a laser material.
DUV light source sustainability achievements and next steps
NASA Astrophysics Data System (ADS)
Roman, Yzzer; Cacouris, Ted; Raju, Kumar Raja Guvindan; Kanawade, Dinesh; Gillespie, Walt; Luo, Siqi; Mason, Eric; Manley, David; Das, Saptaparna
2018-03-01
Key sustainability opportunities have been executed in support of corporate initiatives to reduce the environmental footprint and decrease the running cost of DUV light sources. Previously, substantial neon savings were demonstrated over several years through optimized gas management technologies. Beyond this work, Cymer is developing the XLGR 100, a self-contained neon recycling system, to enable minimal gas consumption. The high efficiency results of the XLGR 100 in a production factory are validated in this paper. Cymer has also developed new light source modules with 33% longer life in an effort to reduce raw and associated resource consumption. In addition, a progress report is included regarding the improvements developed to reduce light source energy consumption.
Leveraging brightness from transportation lighting systems through light source color.
DOT National Transportation Integrated Search
2013-11-01
Roadway transportation lighting is installed for multiple reasons including traffic safety and pedestrian : security. Judgments of pedestrian safety and security along roadways are not strictly correlated to : specified light levels, but the color of...
How Things Work: A Light Brighter Than the Sun.
ERIC Educational Resources Information Center
Crane, H. Richard
1996-01-01
Describes the construction of a new lighting system that uses a sulfur light source no bigger than a golf ball that emits enough light for an entire large room. Discusses the theory behind the system. (JRH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paget, Maria L.; McCullough, Jeffrey J.; Steward, Heidi E.
Solid-state lighting products for general lighting applications are now gaining a market presence, and more and more people are asking, “Which of these are ‘good’ products? Do they perform as claimed? How do they compare? Light Emitting Diodes (LEDs) differ from other light sources enough to require new procedures for measuring their performance and comparing to other lighting options, so both manufacturers and buyers are facing a learning curve. The energy-efficiency community has traditionally compared light sources based on system efficacy: rated lamp lumens divided by power into the system. This doesn’t work for LEDs because there are no standardmore » LED “lamp” packages and no lamp ratings, and because LED performance depends heavily on thermal, electrical, and optical design of complete lighting unit or ‘luminaire’. Luminaire efficacy is the preferred metric for LEDs because it measures the net light output from the luminaire divided by power into the system.« less
Using a pseudo-thermal light source to teach spatial coherence
NASA Astrophysics Data System (ADS)
Pieper, K.; Bergmann, A.; Dengler, R.; Rockstuhl, C.
2018-07-01
Teaching students spatial coherence constitutes a challenge. On the one hand, discussing it theoretically requires a quite demanding mathematical breadth. On the other hand, discussing it experimentally is hardly possible as coherence usually cannot be directly observed. To solve this problem, we show, by studying the contrast of interference patterns of a double slit, that speckles of a pseudo-thermal light source, consisting of a laser and a rotating diffuser disc, are equivalent to the spatial extent of coherent areas of a thermal light source. Coherent areas are spatial regions within which light can be considered as coherent. The unique advantage of such pseudo-thermal light source is the opportunity to directly observe the spatial extent of the coherent areas. This renders the phenomena perceptible and accessible by various experiments, as described in this contribution. This opens modern paths to teach spatial coherence to students with a notably reduced order of abstraction.
Kaptsov, V A; Sosunov, N N; Shishchenko, I I; Viktorov, V S; Tulushev, V N; Deynego, V N; Bukhareva, E A; Murashova, M A; Shishchenko, A A
2014-01-01
There was performed the experimental work on the study of the possibility of the application of LED lighting (LED light sources) in rail transport for traffic safety in related professions. Results of 4 series of studies involving 10 volunteers for the study and a comparative evaluation of the functional state of the visual analyzer, the general functional state and mental capacity under the performing the simulated operator activity in conditions of traditional light sources (incandescent, fluorescent lamp) and the new LED (LED lamp, LED panel) light sources have revealed changes in the negative direction. This was pronounced in a some decrease of functional stability to color discrimination between green and red cone signals, as well as an increase in response time in complex visual--motor response and significant reduction in readiness for emergency action of examinees.
A time-domain fluorescence diffusion optical tomography system for breast tumor diagnosis
NASA Astrophysics Data System (ADS)
Zhang, Wei; Gao, Feng; Wu, LinHui; Ma, Wenjuan; Yang, Fang; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan
2011-02-01
A prototype time-domain fluorescence diffusion optical tomography (FDOT) system using near-infrared light is presented. The system employs two pulsed light sources, 32 source fibers and 32 detection channels, working separately for acquiring the temporal distribution of the photon flux on the tissue surface. The light sources are provided by low power picosecond pulsed diode lasers at wavelengths of 780 nm and 830 nm, and a 1×32-fiber-optic-switch sequentially directs light sources to the object surface through 32 source fibers. The light signals re-emitted from the object are collected by 32 detection fibers connected to four 8×1 fiber-optic-switch and then routed to four time-resolved measuring channels, each of which consists of a collimator, a filter wheel, a photomultiplier tube (PMT) photon-counting head and a time-correlated single photon counting (TCSPC) channel. The performance and efficacy of the designed multi-channel PMT-TCSPC system are assessed by reconstructing the fluorescent yield and lifetime images of a solid phantom.
NASA Astrophysics Data System (ADS)
Ma, Suodong; Pan, Qiao; Shen, Weimin
2016-09-01
As one kind of light source simulation devices, spectrally tunable light sources are able to generate specific spectral shape and radiant intensity outputs according to different application requirements, which have urgent demands in many fields of the national economy and the national defense industry. Compared with the LED-type spectrally tunable light source, the one based on a DMD-convex grating Offner configuration has advantages of high spectral resolution, strong digital controllability, high spectrum synthesis accuracy, etc. As a key link of the above type light source to achieve target spectrum outputs, spectrum synthesis algorithm based on spectrum matching is therefore very important. An improved spectrum synthesis algorithm based on linear least square initialization and Levenberg-Marquardt iterative optimization is proposed in this paper on the basis of in-depth study of the spectrum matching principle. The effectiveness of the proposed method is verified by a series of simulations and experimental works.
Zhou, Qin; Zhang, Panyue; Zhang, Guangming
2015-03-01
This study is aimed at enhancing biomass and pigments production together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via different light sources. Red, yellow, blue, white LED and incandescent lamp were used. Results showed different light sources had great effects on the PSB. PSB had the highest biomass production, COD removal and biomass yield with red LED. The corresponding biomass, COD removal and biomass yield reached 2580 mg/L, 88.6% and 0.49 mg-biomass/mg-COD-removal, respectively. The hydraulic retention time of wastewater treatment could be shortened to 72 h with red LED. Mechanism analysis showed higher ATP was produced with red LED than others. Light sources could significantly affect the pigments production. The pigments productions were greatly higher with LED than incandescent lamp. Yellow LED had the highest pigments production while red LED produced the highest carotenoid/bacteriochlorophyll ratio. Considering both efficiency and energy cost, red LED was the optimal light source. Copyright © 2014 Elsevier Ltd. All rights reserved.
Light-emitting diodes (LED) for domestic lighting: any risks for the eye?
Behar-Cohen, F; Martinsons, C; Viénot, F; Zissis, G; Barlier-Salsi, A; Cesarini, J P; Enouf, O; Garcia, M; Picaud, S; Attia, D
2011-07-01
Light-emitting diodes (LEDs) are taking an increasing place in the market of domestic lighting because they produce light with low energy consumption. In the EU, by 2016, no traditional incandescent light sources will be available and LEDs may become the major domestic light sources. Due to specific spectral and energetic characteristics of white LEDs as compared to other domestic light sources, some concerns have been raised regarding their safety for human health and particularly potential harmful risks for the eye. To conduct a health risk assessment on systems using LEDs, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES), a public body reporting to the French Ministers for ecology, for health and for employment, has organized a task group. This group consisted physicists, lighting and metrology specialists, retinal biologist and ophthalmologist who have worked together for a year. Part of this work has comprised the evaluation of group risks of different white LEDs commercialized on the French market, according to the standards and found that some of these lights belonged to the group risk 1 or 2. This paper gives a comprehensive analysis of the potential risks of white LEDs, taking into account pre-clinical knowledge as well as epidemiologic studies and reports the French Agency's recommendations to avoid potential retinal hazards. Copyright © 2011. Published by Elsevier Ltd.
Posavec, Ivona; Prpić, Vladimir; Zlatarić, Dubravka Knezović
2016-12-01
The purpose of this study was to evaluate and compare lightness (L), chroma (C) and hue (h), green-red (a) and blue-yellow (b) character of the color of maxillary right central incisors in different light conditions and light sources. Two examiners who were well trained in digital color evaluation participated in the research. Intraclass correlation coefficients (ICCs) were used to analyze intra- and interobserver reliability. The LCh and L*a*b* values were determined at 08.15 and at 10.00 in the morning under three different light conditions. Tooth color was assessed in 10 subjects using intraoral spectrophotometer VITA Easyshade Advance 4.0 ® set at the central region of the vestibular surface of the measured tooth. Intra- and interobserver ICC values were high for both examiners and ranged from 0.57 to 0.99. Statistically significant differences in LCh and L*a*b* values measured in different time of the day and certain light condition were not found (p>0.05). Statistically significant differences in LCh and L*a*b* values measured under three different light conditions were not found, too (p>0.05). VITA Easyshade Advance 4.0 ® is reliable enough for daily clinical work in order to assess tooth color during the fabrication of esthtic appliances because it is not dependent on light conditions and light sources.
The Effects of Primary Light Sources on Worker Performance and Alertness
NASA Technical Reports Server (NTRS)
Wong, Lily; Caddick, Zachary; Kuriyagawa, Yukiyo; Flynn-Evans, Erin
2017-01-01
Traditional office buildings use a variety of primary light sources (e.g., LED/fluorescent lights). As interest in LEED certified office buildings increase and research has shown that enhanced lighting design improves human performance and alertness (Viola et al., 2008; Juslén & Tenner, 2005; Edwards & Torcellini, 2002), more office buildings are incorporating a daylighting design. We investigated the differences between employee performance and alertness in two different building types (daylight vs. artificial light). We hypothesized that employee performance and sleep duration would be improved in a building designed to increase exposure to natural daylight compared to traditional office settings.
To compute lightness, illumination is not estimated, it is held constant.
Gilchrist, Alan L
2018-05-03
The light reaching the eye from a surface does not indicate the black-gray-white shade of a surface (called lightness) because the effects of illumination level are confounded with the reflectance of the surface. Rotating a gray paper relative to a light source alters its luminance (intensity of light reaching the eye) but the lightness of the paper remains relatively constant. Recent publications have argued, as had Helmholtz (1866/1924), that the visual system unconsciously estimates the direction and intensity of the light source. We report experiments in which this theory was pitted against an alternative theory according to which illumination level and surface reflectance are disentangled by comparing only those surfaces that are equally illuminated, in other words, by holding illumination level constant. A 3-dimensional scene was created within which the rotation of a target surface would be expected to become darker gray according to the lighting estimation theory, but lighter gray according to the equi-illumination comparison theory, with results clearly favoring the latter. In a further experiment cues held to indicate light source direction (cast shadows, attached shadows, and glossy highlights) were completely eliminated and yet this had no effect on the results. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Multi-port, optically addressed RAM
NASA Technical Reports Server (NTRS)
Johnston, Alan R. (Inventor); Nixon, Robert H. (Inventor); Bergman, Larry A. (Inventor); Esener, Sadik (Inventor)
1989-01-01
A random access memory addressing system utilizing optical links between memory and the read/write logic circuits comprises addressing circuits including a plurality of light signal sources, a plurality of optical gates including optical detectors associated with the memory cells, and a holographic optical element adapted to reflect and direct the light signals to the desired memory cell locations. More particularly, it is a multi-port, binary computer memory for interfacing with a plurality of computers. There are a plurality of storage cells for containing bits of binary information, the storage cells being disposed at the intersections of a plurality of row conductors and a plurality of column conductors. There is interfacing logic for receiving information from the computers directing access to ones of the storage cells. There are first light sources associated with the interfacing logic for transmitting a first light beam with the access information modulated thereon. First light detectors are associated with the storage cells for receiving the first light beam, for generating an electrical signal containing the access information, and for conducting the electrical signal to the one of the storage cells to which it is directed. There are holographic optical elements for reflecting the first light beam from the first light sources to the first light detectors.
Passive lighting responsive three-dimensional integral imaging
NASA Astrophysics Data System (ADS)
Lou, Yimin; Hu, Juanmei
2017-11-01
A three dimensional (3D) integral imaging (II) technique with a real-time passive lighting responsive ability and vivid 3D performance has been proposed and demonstrated. Some novel lighting responsive phenomena, including light-activated 3D imaging, and light-controlled 3D image scaling and translation, have been realized optically without updating images. By switching the on/off state of a point light source illuminated on the proposed II system, the 3D images can show/hide independent of the diffused illumination background. By changing the position or illumination direction of the point light source, the position and magnification of the 3D image can be modulated in real time. The lighting responsive mechanism of the 3D II system is deduced analytically and verified experimentally. A flexible thin film lighting responsive II system with a 0.4 mm thickness was fabricated. This technique gives some additional degrees of freedom in order to design the II system and enable the virtual 3D image to interact with the real illumination environment in real time.
Design of Synchrotron Light Source in Taiwan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, C. C.; Chang, H. P.; Chou, P. J.
2007-01-19
An intermediate energy synchrotron light source has been proposed. The goal is to construct a high performance light source in complementary to the existing 1.5 GeV synchrotron ring in Taiwan to boost the research capabilities. A 3 GeV machine with 518.4 m and 24-cell DBA lattice structure is considered and other options are also investigated. We report the 24-cell design considerations and its performances.
Visual color matching system based on RGB LED light source
NASA Astrophysics Data System (ADS)
Sun, Lei; Huang, Qingmei; Feng, Chen; Li, Wei; Wang, Chaofeng
2018-01-01
In order to study the property and performance of LED as RGB primary color light sources on color mixture in visual psychophysical experiments, and to find out the difference between LED light source and traditional light source, a visual color matching experiment system based on LED light sources as RGB primary colors has been built. By simulating traditional experiment of metameric color matching in CIE 1931 RGB color system, it can be used for visual color matching experiments to obtain a set of the spectral tristimulus values which we often call color-matching functions (CMFs). This system consists of three parts: a monochromatic light part using blazed grating, a light mixing part where the summation of 3 LED illuminations are to be visually matched with a monochromatic illumination, and a visual observation part. The three narrow band LEDs used have dominant wavelengths of 640 nm (red), 522 nm (green) and 458 nm (blue) respectively and their intensities can be controlled independently. After the calibration of wavelength and luminance of LED sources with a spectrophotometer, a series of visual color matching experiments have been carried out by 5 observers. The results are compared with those from CIE 1931 RGB color system, and have been used to compute an average locus for the spectral colors in the color triangle, with white at the center. It has been shown that the use of LED is feasible and has the advantages of easy control, good stability and low cost.
Study on the measurement system of the target polarization characteristics and test
NASA Astrophysics Data System (ADS)
Fu, Qiang; Zhu, Yong; Zhang, Su; Duan, Jin; Yang, Di; Zhan, Juntong; Wang, Xiaoman; Jiang, Hui-Lin
2015-10-01
The polarization imaging detection technology increased the polarization information on the basis of the intensity imaging, which is extensive application in the military and civil and other fields, the research on the polarization characteristics of target is particularly important. The research of the polarization reflection model was introduced in this paper, which describes the scattering vector light energy distribution in reflecting hemisphere polarization characteristics, the target polarization characteristics test system solutions was put forward, by the irradiation light source, measuring turntable and camera, etc, which illuminate light source shall direct light source, with laser light sources and xenon lamp light source, light source can be replaced according to the test need; Hemispherical structure is used in measuring circumarotate placed near its base material sample, equipped with azimuth and pitching rotation mechanism, the manual in order to adjust the azimuth Angle and high Angle observation; Measuring camera pump works, through the different in the way of motor control polaroid polarization test, to ensure the accuracy of measurement and imaging resolution. The test platform has set up by existing laboratory equipment, the laser is 532 nm, line polaroid camera, at the same time also set the sending and receiving optical system. According to the different materials such as wood, metal, plastic, azimuth Angle and zenith Angle in different observation conditions, measurement of target in the polarization scattering properties of different exposure conditions, implementation of hemisphere space pBRDF measurement.
Design of TIR collimating lens for ordinary differential equation of extended light source
NASA Astrophysics Data System (ADS)
Zhan, Qianjing; Liu, Xiaoqin; Hou, Zaihong; Wu, Yi
2017-10-01
The source of LED has been widely used in our daily life. The intensity angle distribution of single LED is lambert distribution, which does not satisfy the requirement of people. Therefore, we need to distribute light and change the LED's intensity angle distribution. The most commonly method to change its intensity angle distribution is the free surface. Generally, using ordinary differential equations to calculate free surface can only be applied in a point source, but it will lead to a big error for the expand light. This paper proposes a LED collimating lens based on the ordinary differential equation, combined with the LED's light distribution curve, and adopt the method of calculating the center gravity of the extended light to get the normal vector. According to the law of Snell, the ordinary differential equations are constructed. Using the runge-kutta method for solution of ordinary differential equation solution, the curve point coordinates are gotten. Meanwhile, the edge point data of lens are imported into the optical simulation software TracePro. Based on 1mm×1mm single lambert body for light conditions, The degrees of collimating light can be close to +/-3. Furthermore, the energy utilization rate is higher than 85%. In this paper, the point light source is used to calculate partial differential equation method and compared with the simulation of the lens, which improve the effect of 1 degree of collimation.
Yeung, Edward S.; Gong, Xiaoyi
2004-09-07
The present invention provides a method of analyzing multiple samples simultaneously by absorption detection. The method comprises: (i) providing a planar array of multiple containers, each of which contains a sample comprising at least one absorbing species, (ii) irradiating the planar array of multiple containers with a light source and (iii) detecting absorption of light with a detetion means that is in line with the light source at a distance of at leaat about 10 times a cross-sectional distance of a container in the planar array of multiple containers. The absorption of light by a sample indicates the presence of an absorbing species in it. The method can further comprise: (iv) measuring the amount of absorption of light detected in (iii) indicating the amount of the absorbing species in the sample. Also provided by the present invention is a system for use in the abov metho.The system comprises; (i) a light source comrnpising or consisting essentially of at leaat one wavelength of light, the absorption of which is to be detected, (ii) a planar array of multiple containers, and (iii) a detection means that is in line with the light source and is positioned in line with and parallel to the planar array of multiple contiainers at a distance of at least about 10 times a cross-sectional distance of a container.
Transversely polarized source cladding for an optical fiber
NASA Technical Reports Server (NTRS)
Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)
1994-01-01
An optical fiber comprising a fiber core having a longitudinal symmetry axis is provided. An active cladding surrounds a portion of the fiber core and comprises light-producing sources which emit light in response to chemical or light excitation. The cladding sources are oriented transversely with respect to the longitudinal axis of the fiber core. This polarization results in a superior power efficiency compared to active cladding sources that are randomly polarized or longitudinally polarized parallel with the longitudinal symmetry axis.
Optimization of light source parameters in the photodynamic therapy of heterogeneous prostate
NASA Astrophysics Data System (ADS)
Li, Jun; Altschuler, Martin D.; Hahn, Stephen M.; Zhu, Timothy C.
2008-08-01
The three-dimensional (3D) heterogeneous distributions of optical properties in a patient prostate can now be measured in vivo. Such data can be used to obtain a more accurate light-fluence kernel. (For specified sources and points, the kernel gives the fluence delivered to a point by a source of unit strength.) In turn, the kernel can be used to solve the inverse problem that determines the source strengths needed to deliver a prescribed photodynamic therapy (PDT) dose (or light-fluence) distribution within the prostate (assuming uniform drug concentration). We have developed and tested computational procedures to use the new heterogeneous data to optimize delivered light-fluence. New problems arise, however, in quickly obtaining an accurate kernel following the insertion of interstitial light sources and data acquisition. (1) The light-fluence kernel must be calculated in 3D and separately for each light source, which increases kernel size. (2) An accurate kernel for light scattering in a heterogeneous medium requires ray tracing and volume partitioning, thus significant calculation time. To address these problems, two different kernels were examined and compared for speed of creation and accuracy of dose. Kernels derived more quickly involve simpler algorithms. Our goal is to achieve optimal dose planning with patient-specific heterogeneous optical data applied through accurate kernels, all within clinical times. The optimization process is restricted to accepting the given (interstitially inserted) sources, and determining the best source strengths with which to obtain a prescribed dose. The Cimmino feasibility algorithm is used for this purpose. The dose distribution and source weights obtained for each kernel are analyzed. In clinical use, optimization will also be performed prior to source insertion to obtain initial source positions, source lengths and source weights, but with the assumption of homogeneous optical properties. For this reason, we compare the results from heterogeneous optical data with those obtained from average homogeneous optical properties. The optimized treatment plans are also compared with the reference clinical plan, defined as the plan with sources of equal strength, distributed regularly in space, which delivers a mean value of prescribed fluence at detector locations within the treatment region. The study suggests that comprehensive optimization of source parameters (i.e. strengths, lengths and locations) is feasible, thus allowing acceptable dose coverage in a heterogeneous prostate PDT within the time constraints of the PDT procedure.
Direction-division multiplexed holographic free-electron-driven light sources
NASA Astrophysics Data System (ADS)
Clarke, Brendan P.; MacDonald, Kevin F.; Zheludev, Nikolay I.
2018-01-01
We report on a free-electron-driven light source with a controllable direction of emission. The source comprises a microscopic array of plasmonic surface-relief holographic domains, each tailored to direct electron-induced light emission at a selected wavelength into a collimated beam in a prescribed direction. The direction-division multiplexed source is tested by driving it with the 30 kV electron beam of a scanning electron microscope: light emission, at a wavelength of 800 nm in the present case, is switched among different output angles by micron-scale repositioning of the electron injection point among domains. Such sources, with directional switching/tuning possible at picosecond timescales, may be applied to field-emission and surface-conduction electron-emission display technologies, optical multiplexing, and charged-particle-beam position metrology.
History of Science and Conceptual Change: The Formation of Shadows by Extended Light Sources
ERIC Educational Resources Information Center
Dedes, Christos; Ravanis, Konstantinos
2009-01-01
This study investigates the effectiveness of a teaching conflict procedure whose purpose was the transformation of the representations of 12-16-year-old pupils in Greece concerning light emission and shadow formation by extended light sources. The changes observed during the children's effort to destabilize and reorganise their representations…
A Novel Effect of Scattered-Light Interference in Misted Mirrors
ERIC Educational Resources Information Center
Bridge, N. James
2005-01-01
Interference rings can be observed in mirrors clouded by condensation, even in diffuse lighting. The effect depends on individual droplets acting as point sources by refracting light into the mirror, so producing coherent wave-trains which are reflected and then scattered again by diffraction round the same source droplet. The secondary wave-train…
Method of mounting a fuel pellet in a laser-excited fusion reactor
Hirsch, Robert L.
1979-01-01
Laser irradiation means for irradiating a target, wherein a single laser light beam from a source and a mirror close to the target are used with aperture means for directing laser light to interact with the target over a broad area of the surface, and for protecting the laser light source.
Tunable pulsed narrow bandwidth light source
Powers, Peter E.; Kulp, Thomas J.
2002-01-01
A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.
NASA Astrophysics Data System (ADS)
Bollgruen, Patrick; Gleissner, Uwe; Wolfer, Tim; Megnin, Christof; Mager, Dario; Overmeyer, Ludger; Korvink, Jan G.; Hanemann, Thomas
2016-10-01
Polymer-based optical sensor networks on foils (planar optronic systems) are a promising research field, but it can be challenging to supply them with light. We present a solvent-free, ink-jet printable material system with optically active substances to create planar light sources for these networks. The ink is based on a UV-curable monomer, the fluorescent agents are EuDBMPhen or 9,10-diphenylantracene, which fluoresce at 612 or 430 nm, respectively. We demonstrate the application as light source by printing a small area of fluorescent material on an optical waveguide fabricated by flexographic printing on PMMA foil, resulting in a simple polymer-optical device fabricated entirely by additive deposition techniques. When excited by a 405-nm laser of 10 mW, the emitted light couples into the waveguide and appears at the end of the waveguide. In comparison to conventional light sources, the intensity is weak but could be detected with a photodiode power sensor. In return, the concept has the advantage of being completely independent of any electrical elements or external cable connections.
The effect of light-activation sources on tooth bleaching
Baroudi, Kusai; Hassan, Nadia Aly
2014-01-01
Vital bleaching is one of the most requested cosmetic dental procedures asked by patients who seek a more pleasing smile. This procedure consists of carbamide or hydrogen peroxide gel applications that can be applied in-office or by the patient (at-home/overnight bleaching system). Some in-office treatments utilise whitening light with the objective of speeding up the whitening process. The objective of this article is to review and summarise the current literature with regard to the effect of light-activation sources on in-office tooth bleaching. A literature search was conducted using Medline, accessed via the National Library of Medicine Pub Med from 2003 to 2013 searching for articles relating to effectiveness of light activation sources on in-office tooth bleaching. This study found conflicting evidence on whether light truly improve tooth whitening. Other factors such as, type of stain, initial tooth colour and subject age which can influence tooth bleaching outcome were discussed. Conclusions: The use of light activator sources with in-office bleaching treatment of vital teeth did not increase the efficacy of bleaching or accelerate the bleaching. PMID:25298598
An all-silicon optical PC-to-PC link utilizing USB
NASA Astrophysics Data System (ADS)
Goosen, Marius E.; Alberts, Antonie C.; Venter, Petrus J.; du Plessis, Monuko; Rademeyer, Pieter
2013-02-01
An integrated silicon light source still remains the Holy Grail for integrated optical communication systems. Hot carrier luminescent light sources provide a way to create light in a standard CMOS process, potentially enabling cost effective optical communication between CMOS integrated circuits. In this paper we present a 1 Mb/s integrated silicon optical link for information transfer, targeting a real-world integrated solution by connecting two PCs via a USB port while transferring data optically between the devices. This realization represents the first optical communication product prototype utilizing a CMOS light emitter. The silicon light sources which are implemented in a standard 0.35 μm CMOS technology are electrically modulated and detected using a commercial silicon avalanche photodiode. Data rates exceeding 10 Mb/s using silicon light sources have previously been demonstrated using raw bit streams. In this work data is sent in two half duplex streams accompanied with the separate transmission of a clock. Such an optical communication system could find application in high noise environments where data fidelity, range and cost are a determining factor.
Extended source effect on microlensing light curves by an Ellis wormhole
NASA Astrophysics Data System (ADS)
Tsukamoto, Naoki; Gong, Yungui
2018-04-01
We can survey an Ellis wormhole which is the simplest Morris-Thorne wormhole in our Galaxy with microlensing. The light curve of a point source microlensed by the Ellis wormhole shows approximately 4% demagnification while the total magnification of images lensed by a Schwarzschild lens is always larger than unity. We investigate an extended source effect on the light curves microlensed by the Ellis wormhole. We show that the depth of the gutter of the light curves of an extended source is smaller than the one of a point source since the magnified part of the extended source cancels the demagnified part out. We can, however, distinguish between the light curves of the extended source microlensed by the Ellis wormhole and the ones by the Schwarzschild lens in their shapes even if the size of the source is a few times larger than the size of an Einstein ring on a source plane. If the relative velocity of a star with the radius of 1 06 km at 8 kpc in the bulge of our Galaxy against an observer-lens system is smaller than 10 km /s on a source plane, we can detect microlensing of the star lensed by the Ellis wormhole with the throat radius of 1 km at 4 kpc.
USDA-ARS?s Scientific Manuscript database
Adoption of alternative lighting systems to replace traditional incandescent light sources offers the opportunity to tailor lighting systems according to spectral sensitivity needs of different species. Providing a lighting environment that accounts for poultry vision may improve bird welfare and p...
Inquiry Learning: Students' Perception of Light Wave Phenomena in an Informal Environment
ERIC Educational Resources Information Center
Ford, Ken
2011-01-01
This study involved identifying students' perception of light phenomena and determined if they learned the scientific concepts of light that were presented to them by an interactive science exhibit. The participants in this study made scientific inquiry about light by using a powerful white light source, a prism, converging lenses, diverging…
NASA Astrophysics Data System (ADS)
Mallidi, Srivalleesha; Mai, Zhiming; Rizvi, Imran; Hempstead, Joshua; Arnason, Stephen; Celli, Jonathan; Hasan, Tayyaba
2015-04-01
In view of the increase in cancer-related mortality rates in low- to middle-income countries (LMIC), there is an urgent need to develop economical therapies that can be utilized at minimal infrastructure institutions. Photodynamic therapy (PDT), a photochemistry-based treatment modality, offers such a possibility provided that low-cost light sources and photosensitizers are available. In this proof-of-principle study, we focus on adapting the PDT light source to a low-resource setting and compare an inexpensive, portable, battery-powered light-emitting diode (LED) light source with a standard, high-cost laser source. The comparison studies were performed in vivo in a xenograft murine model of human squamous cell carcinoma subjected to 5-aminolevulinic acid-induced protoporphyrin IX PDT. We observed virtually identical control of the tumor burden by both the LED source and the standard laser source. Further insights into the biological response were evaluated by biomarker analysis of necrosis, microvessel density, and hypoxia [carbonic anhydrase IX (CAIX) expression] among groups of control, LED-PDT, and laser-PDT treated mice. There is no significant difference in the percent necrotic volume and CAIX expression in tumors that were treated with the two different light sources. These encouraging preliminary results merit further investigations in orthotopic animal models of cancers prevalent in LMICs.
Radio Frequency Plasma Discharge Lamps for Use as Stable Calibration Light Sources
NASA Technical Reports Server (NTRS)
McAndrew, Brendan; Cooper, John; Arecchi, Angelo; McKee, Greg; Durell, Christopher
2012-01-01
Stable high radiance in visible and near-ultraviolet wavelengths is desirable for radiometric calibration sources. In this work, newly available electrodeless radio-frequency (RF) driven plasma light sources were combined with research grade, low-noise power supplies and coupled to an integrating sphere to produce a uniform radiance source. The stock light sources consist of a 28 VDC power supply, RF driver, and a resonant RF cavity. The RF cavity includes a small bulb with a fill gas that is ionized by the electric field and emits light. This assembly is known as the emitter. The RF driver supplies a source of RF energy to the emitter. In commercial form, embedded electronics within the RF driver perform a continual optimization routine to maximize energy transfer to the emitter. This optimization routine continually varies the light output sinusoidally by approximately 2% over a several-second period. Modifying to eliminate this optimization eliminates the sinusoidal variation but allows the output to slowly drift over time. This drift can be minimized by allowing sufficient warm-up time to achieve thermal equilibrium. It was also found that supplying the RF driver with a low-noise source of DC electrical power improves the stability of the lamp output. Finally, coupling the light into an integrating sphere reduces the effect of spatial fluctuations, and decreases noise at the output port of the sphere.
Head-mounted LED for optogenetic experiments of freely-behaving animal
NASA Astrophysics Data System (ADS)
Kwon, Ki Yong; Gnade, Andrew G.; Rush, Alexander D.; Patten, Craig D.
2016-03-01
Recent developments in optogenetics have demonstrated the ability to target specific types of neurons with sub-millisecond temporal precision via direct optical stimulation of genetically modified neurons in the brain. In most applications, the beam of a laser is coupled to an optical fiber, which guides and delivers the optical power to the region of interest. Light emitting diodes (LEDs) are an alternative light source for optogenetics and they provide many advantages over a laser based system including cost, size, illumination stability, and fast modulation. Their compact size and low power consumption make LEDs suitable light sources for a wireless optogenetic stimulation system. However, the coupling efficiency of an LED's output light into an optical fiber is lower than a laser due to its noncollimated output light. In typical chronic optogenetic experiment, the output of the light source is transmitted to the brain through a patch cable and a fiber stub implant, and this configuration requires two fiber-to-fiber couplings. Attenuation within the patch cable is potential source of optical power loss. In this study, we report and characterize a recently developed light delivery method for freely-behaving animal experiments. We have developed a head-mounted light source that maximizes the coupling efficiency of an LED light source by eliminating the need for a fiber optic cable. This miniaturized LED is designed to couple directly to the fiber stub implant. Depending on the desired optical power output, the head-mounted LED can be controlled by either a tethered (high power) or battery-powered wireless (moderate power) controller. In the tethered system, the LED is controlled through 40 gauge micro coaxial cable which is thinner, more flexible, and more durable than a fiber optic cable. The battery-powered wireless system uses either infrared or radio frequency transmission to achieve real-time control. Optical, electrical, mechanical, and thermal characteristics of the head-mounted LED were evaluated.
White light Sagnac interferometer—a common (path) tale of light
NASA Astrophysics Data System (ADS)
Schwartz, Eyal
2017-11-01
White or polychromatic light sources are vastly abundant in nature and lie in our most basic understanding of the theory of light, beginning from stars like our Sun and extending to every common household light bulb or street lamp. In this paper, I present concepts of white light interferometery using a common-path Sagnac interferometer, manifested in a straightforward laboratory experiment. I further show the use of this as a Fourier transform spectrometer while presenting a basic overview of the theoretical concepts and spectrum of different light sources obtained experimentally. This work, both experimentally and analytically, is suitable for upper-level undergraduate physics or engineering courses where electromagnetic theory and optics are discussed. The experiment and theory presents important deep concepts and aspects in modern optics and physics that every science student should acquire.
NASA Astrophysics Data System (ADS)
Stasicki, Bolesław; Schröder, Andreas; Boden, Fritz; Ludwikowski, Krzysztof
2017-06-01
The rapid progress of light emitting diode (LED) technology has recently resulted in the availability of high power devices with unprecedented light emission intensities comparable to those of visible laser light sources. On this basis two versatile devices have been developed, constructed and tested. The first one is a high-power, single-LED illuminator equipped with exchangeable projection lenses providing a homogenous light spot of defined diameter. The second device is a multi-LED illuminator array consisting of a number of high-power LEDs, each integrated with a separate collimating lens. These devices can emit R, G, CG, B, UV or white light and can be operated in pulsed or continuous wave (CW) mode. Using an external trigger signal they can be easily synchronized with cameras or other devices. The mode of operation and all parameters can be controlled by software. Various experiments have shown that these devices have become a versatile and competitive alternative to laser and xenon lamp based light sources. The principle, design, achieved performances and application examples are given in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wierer, Jonathan J.; Tsao, Jeffrey Y.
2015-01-14
III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from color mixed emitters is equally challenging formore » both LEDs and LDs, with neither source having a direct advantage. Fourth, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. Finally, the smaller area and higher current density operation of LDs provides them with a potential cost advantage over LEDs. These advantages make LDs a compelling source for future SSL.« less
Mapping algorithm for freeform construction using non-ideal light sources
NASA Astrophysics Data System (ADS)
Li, Chen; Michaelis, D.; Schreiber, P.; Dick, L.; Bräuer, A.
2015-09-01
Using conventional mapping algorithms for the construction of illumination freeform optics' arbitrary target pattern can be obtained for idealized sources, e.g. collimated light or point sources. Each freeform surface element generates an image point at the target and the light intensity of an image point is corresponding to the area of the freeform surface element who generates the image point. For sources with a pronounced extension and ray divergence, e.g. an LED with a small source-freeform-distance, the image points are blurred and the blurred patterns might be different between different points. Besides, due to Fresnel losses and vignetting, the relationship between light intensity of image points and area of freeform surface elements becomes complicated. These individual light distributions of each freeform element are taken into account in a mapping algorithm. To this end the method of steepest decent procedures are used to adapt the mapping goal. A structured target pattern for a optics system with an ideal source is computed applying corresponding linear optimization matrices. Special weighting factor and smoothing factor are included in the procedures to achieve certain edge conditions and to ensure the manufacturability of the freefrom surface. The corresponding linear optimization matrices, which are the lighting distribution patterns of each of the freeform surface elements, are gained by conventional raytracing with a realistic source. Nontrivial source geometries, like LED-irregularities due to bonding or source fine structures, and a complex ray divergence behavior can be easily considered. Additionally, Fresnel losses, vignetting and even stray light are taken into account. After optimization iterations, with a realistic source, the initial mapping goal can be achieved by the optics system providing a structured target pattern with an ideal source. The algorithm is applied to several design examples. A few simple tasks are presented to discussed the ability and limitation of the this mothed. It is also presented that a homogeneous LED-illumination system design, in where, with a strongly tilted incident direction, a homogeneous distribution is achieved with a rather compact optics system and short working distance applying a relatively large LED source. It is shown that the lighting distribution patterns from the freeform surface elements can be significantly different from the others. The generation of a structured target pattern, applying weighting factor and smoothing factor, are discussed. Finally, freeform designs for much more complex sources like clusters of LED-sources are presented.
The study of LED light source illumination conditions for ideal algae cultivation
NASA Astrophysics Data System (ADS)
Tsai, Chun-Chin; Huang, Chien-Fu; Chen, Cin-Fu; Yue, Cheng-Feng
2017-02-01
Utilizing LED light source modules with 3 different RGB colors, the illumination effect of different wavelengths had been investigated on the growth curve of the same kind of micro algae. It was found that the best micro algae culturing status came out with long wavelength light such as red light (650 670 nm). Based on the same condition for a period of 3 weeks , the grown micro algae population density ratio represented by Optical Density (O.D.) ratio is 1?0.4?0.7 corresponding to growth with Red, Green, Blue light sources, respectively. Mixing 3 types and 2 types of LEDs with different parameters, the grown micro algae population densities were compared in terms of O.D. Interestingly enough, different light sources resulted in significant discoloration on micro algae growth, appearing yellow, brown, green, etc. Our experiments results showed such discoloration effect is reversible. Based on the same lighting condition, micro algae growth can be also affected by incubator size, nutrition supply, and temperature variation. In recent years, micro algae related technologies have been international wise a hot topic of energy and environmental protection for research and development institutes, and big energy companies among those developed countries. There will be an economically prosperous future. From this study of LED lighting to ideal algae cultivation, it was found that such built system would be capable of optimizing artificial cultivation system, leading to economic benefits for its continuous development. Since global warming causing weather change, accompanying with reducing energy sources and agriculture growth shortage are all threatening human being survival.
NASA Astrophysics Data System (ADS)
Zhao, L. N.; Liu, J.; Yuan, Y.; Hu, X. P.; Zhao, G.; Gao, Z. D.; Zhu, S. N.
2012-03-01
We present a high power red-green-blue (RGB) laser light source based on cascaded quasi-phasematched wavelength conversions in a single stoichiometric lithium tantalate. The superiority of the experimental setup is: the facula of the incident beam is elliptical to increase interaction volume, and the cavity was an idler resonant configuration for realizing more efficient red and blue light output. An average power of 2 W of quasi-white-light was obtained by proper combination of the RGB three colors. The conversion efficiency for the power of the quasi-white-light over pump power reached 36%. This efficiency and powerful RGB laser light source has potential applications in laser-based projection display et al.
White light velocity interferometer
Erskine, D.J.
1999-06-08
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.
Scharf, John Edward
1998-11-03
A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.
Variable Distance Angular Symbology Reader
NASA Technical Reports Server (NTRS)
Schramm, Harry F., Jr. (Inventor); Corder, Eric L. (Inventor)
2006-01-01
A variable distance angular symbology, reader utilizes at least one light source to direct light through a beam splitter and onto a target. A target may be angled relative to the impinging light beam up to and maybe even greater than 45deg. A reflected beam from the target passes through the beam splitter and is preferably directed 90deg relative to the light source through a telecentric lens to a scanner which records an image of the target such as a direct part marking code.
Achromatic phase-matching second harmonic generation for a tunable laser
Jacobson, A.G.; Bisson, S.; Trebino, R.
1998-01-20
An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency. 6 figs.
Achromatic phase-matching second harmonic generation for a tunable laser
Jacobson, Alexander Gerson; Bisson, Scott; Trebino, Rick
1998-01-01
An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency.
Holographic Optics for Missile Guidance Systems.
1978-12-20
according to SnelPs Law when the ray encounters a change in index of refraction (i.e., a change in the speed of light ). Conventional lenses and prisms are...AA ’ to change the magnification of the system , or individual light sources may be used to address each lens group . Each lens group consists of four...individual lens elements. Element I collimates the light from a source H, 17—mm away . Element II uses the collimated light beam , 8 —. now propagat
White light velocity interferometer
Erskine, David J.
1997-01-01
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.
White light velocity interferometer
Erskine, David J.
1999-01-01
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.
White light velocity interferometer
Erskine, D.J.
1997-06-24
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.
Method of Reproduction of the Luminous Flux of the LED Light Sources by a Spherical Photometer
NASA Astrophysics Data System (ADS)
Huriev, M.; Neyezhmakov, P.
2018-02-01
In connection with transition to energy-efficient temporally stable light-emitting diodes (LEDs) lighting, a problem of ensuring the traceability of results of measurement of characteristics of light sources arises. The problem is related to existing measurement standards of luminous flux based on spherical photometers optimized for the reference incandescent lamps with a relative spectral characteristic different from the spectrum of the LEDs. We propose a method for reproduction of the luminous flux, which solves this problem.
Early, James W.; Lester, Charles S.
2002-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.
An entangled-light-emitting diode.
Salter, C L; Stevenson, R M; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J
2010-06-03
An optical quantum computer, powerful enough to solve problems so far intractable using conventional digital logic, requires a large number of entangled photons. At present, entangled-light sources are optically driven with lasers, which are impractical for quantum computing owing to the bulk and complexity of the optics required for large-scale applications. Parametric down-conversion is the most widely used source of entangled light, and has been used to implement non-destructive quantum logic gates. However, these sources are Poissonian and probabilistically emit zero or multiple entangled photon pairs in most cycles, fundamentally limiting the success probability of quantum computational operations. These complications can be overcome by using an electrically driven on-demand source of entangled photon pairs, but so far such a source has not been produced. Here we report the realization of an electrically driven source of entangled photon pairs, consisting of a quantum dot embedded in a semiconductor light-emitting diode (LED) structure. We show that the device emits entangled photon pairs under d.c. and a.c. injection, the latter achieving an entanglement fidelity of up to 0.82. Entangled light with such high fidelity is sufficient for application in quantum relays, in core components of quantum computing such as teleportation, and in entanglement swapping. The a.c. operation of the entangled-light-emitting diode (ELED) indicates its potential function as an on-demand source without the need for a complicated laser driving system; consequently, the ELED is at present the best source on which to base future scalable quantum information applications.
Correspondence: In support of the IES method of evaluating light source colour rendition
Ashdown, I.; Aviles, G.; Bennett, L.; ...
2015-11-20
In this editorial, written as an open letter to the lighting community, we stand in support of widespread adoption of TM-30-15: The IES Method of Evaluating Light Source Color Rendition. We introduce important considerations related to light source color rendition, define the need for a new method of evaluation, provide a high-level overview of the IES method, discuss some of the practical considerations related to the development of the IES method and the consensus process, and conclude by inviting you to join us in support of the new measures and graphics described in TM-30-15.
Interference and Polarized Light.
ERIC Educational Resources Information Center
Charas, Seymour
1988-01-01
Discusses a demonstration of interference phenomena using three sheets of polaroid material, a light source, and a light meter. Describes instructional procedures with mathematical expressions and a diagram. (YP)
On lamps, walls, and eyes: The spectral radiance field and the evaluation of light pollution indoors
NASA Astrophysics Data System (ADS)
Bará, Salvador; Escofet, Jaume
2018-01-01
Light plays a key role in the regulation of different physiological processes, through several visual and non-visual retinal phototransduction channels whose basic features are being unveiled by recent research. The growing body of evidence on the significance of these effects has sparked a renewed interest in the determination of the light field at the entrance pupil of the eye in indoor spaces. Since photic interactions are strongly wavelength-dependent, a significant effort is being devoted to assess the relative merits of the spectra of the different types of light sources available for use at home and in the workplace. The spectral content of the light reaching the observer eyes in indoor spaces, however, does not depend exclusively on the sources: it is partially modulated by the spectral reflectance of the walls and surrounding surfaces, through the multiple reflections of the light beams along all possible paths from the source to the observer. This modulation can modify significantly the non-visual photic inputs that would be produced by the lamps alone, and opens the way for controlling-to a certain extent-the subject's exposure to different regions of the optical spectrum. In this work we evaluate the expected magnitude of this effect and we show that, for factorizable sources, the spectral modulation can be conveniently described in terms of a set of effective filter-like functions that provide useful insights for lighting design and light pollution assessment. The radiance field also provides a suitable bridge between indoor and outdoor light pollution studies.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
...: OSRAM SYLVANIA Products, Inc.\\1\\ (OSRAM) has determined that certain Type HB2 replaceable light sources... merits of the petition. Equipment involved: Affected are approximately 40,544 Type HB2 replaceable light... provisions only apply to the subject Type HB2 replaceable light sources that OSRAM no longer controlled at...
NASA Technical Reports Server (NTRS)
Kim, Hyeon-Hye; Wheeler, Raymond M.; Sager, John C.; Yorio, Neil C.; Goins, Gregory D.
2005-01-01
The provision of sufficient light is a fundamental requirement to support long-term plant growth in space. Several types of electric lamps have been tested to provide radiant energy for plants in this regard, including fluorescent, high-pressure sodium, and metal halide lamps. These lamps vary in terms of spectral quality, which can result in differences in plant growth and morphology. Current lighting research for space-based plant culture is focused on innovative lighting technologies that demonstrate high electrical efficiency and reduced mass and volume. Among the lighting technologies considered for space are light-emitting diodes (LEDs). The combination of red and blue LEDs has proven to be an effective lighting source for several crops, yet the appearance of plants under red and blue lighting is purplish gray, making visual assessment of plant health difficult. Additional green light would make the plant leaves appear green and normal, similar to a natural setting under white light, and may also offer psychological benefits for the crew. The addition of 24% green light (500-600 nm) to red and blue LEDs enhanced the growth of lettuce plants compared with plants grown under cool white fluorescent lamps. Coincidentally, these plants grown under additional green light would have the additional aesthetic appeal of a green appearance.
The ecological impacts of nighttime light pollution: a mechanistic appraisal.
Gaston, Kevin J; Bennie, Jonathan; Davies, Thomas W; Hopkins, John
2013-11-01
The ecological impacts of nighttime light pollution have been a longstanding source of concern, accentuated by realized and projected growth in electrical lighting. As human communities and lighting technologies develop, artificial light increasingly modifies natural light regimes by encroaching on dark refuges in space, in time, and across wavelengths. A wide variety of ecological implications of artificial light have been identified. However, the primary research to date is largely focused on the disruptive influence of nighttime light on higher vertebrates, and while comprehensive reviews have been compiled along taxonomic lines and within specific research domains, the subject is in need of synthesis within a common mechanistic framework. Here we propose such a framework that focuses on the cross-factoring of the ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways in which light influences biological systems, particularly the distinction between light as a resource and light as an information source. We review the evidence for each of the combinations of this cross-factoring. As artificial lighting alters natural patterns of light in space, time and across wavelengths, natural patterns of resource use and information flows may be disrupted, with downstream effects to the structure and function of ecosystems. This review highlights: (i) the potential influence of nighttime lighting at all levels of biological organisation (from cell to ecosystem); (ii) the significant impact that even low levels of nighttime light pollution can have; and (iii) the existence of major research gaps, particularly in terms of the impacts of light at population and ecosystem levels, identification of intensity thresholds, and the spatial extent of impacts in the vicinity of artificial lights. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Ma, Chen; Cheng, Dewen; Xu, Chen; Wang, Yongtian
2014-11-01
Fundus camera is a complex optical system for retinal photography, involving illumination and imaging of the retina. Stray light is one of the most significant problems of fundus camera because the retina is so minimally reflective that back reflections from the cornea and any other optical surface are likely to be significantly greater than the light reflected from the retina. To provide maximum illumination to the retina while eliminating back reflections, a novel design of illumination system used in portable fundus camera is proposed. Internal illumination, in which eyepiece is shared by both the illumination system and the imaging system but the condenser and the objective are separated by a beam splitter, is adopted for its high efficiency. To eliminate the strong stray light caused by corneal center and make full use of light energy, the annular stop in conventional illumination systems is replaced by a fiber-coupled, ring-shaped light source that forms an annular beam. Parameters including size and divergence angle of the light source are specially designed. To weaken the stray light, a polarized light source is used, and an analyzer plate is placed after beam splitter in the imaging system. Simulation results show that the illumination uniformity at the fundus exceeds 90%, and the stray light is within 1%. Finally, a proof-of-concept prototype is developed and retinal photos of an ophthalmophantom are captured. The experimental results show that ghost images and stray light have been greatly reduced to a level that professional diagnostic will not be interfered with.
Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin
2013-01-01
Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. PMID:24156077
Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin
2013-01-01
Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.
Posavec, Ivona; Prpić, Vladimir
2016-01-01
Objectives The purpose of this study was to evaluate and compare lightness (L), chroma (C) and hue (h), green-red (a) and blue-yellow (b) character of the color of maxillary right central incisors in different light conditions and light sources. Materials and methods Two examiners who were well trained in digital color evaluation participated in the research. Intraclass correlation coefficients (ICCs) were used to analyze intra- and interobserver reliability. The LCh and L*a*b* values were determined at 08.15 and at 10.00 in the morning under three different light conditions. Tooth color was assessed in 10 subjects using intraoral spectrophotometer VITA Easyshade Advance 4.0® set at the central region of the vestibular surface of the measured tooth. Results Intra- and interobserver ICC values were high for both examiners and ranged from 0.57 to 0.99. Statistically significant differences in LCh and L*a*b* values measured in different time of the day and certain light condition were not found (p>0.05). Statistically significant differences in LCh and L*a*b* values measured under three different light conditions were not found, too (p>0.05). Conclusions VITA Easyshade Advance 4.0® is reliable enough for daily clinical work in order to assess tooth color during the fabrication of esthtic appliances because it is not dependent on light conditions and light sources. PMID:28275281
Shim, Jongmyeong; Park, Changsu; Lee, Jinhyung; Kang, Shinill
2016-08-08
Recently, studies have examined techniques for modeling the light distribution of light-emitting diodes (LEDs) for various applications owing to their low power consumption, longevity, and light weight. The energy mapping technique, a design method that matches the energy distributions of an LED light source and target area, has been the focus of active research because of its design efficiency and accuracy. However, these studies have not considered the effects of the emitting area of the LED source. Therefore, there are limitations to the design accuracy for small, high-power applications with a short distance between the light source and optical system. A design method for compensating for the light distribution of an extended source after the initial optics design based on a point source was proposed to overcome such limits, but its time-consuming process and limited design accuracy with multiple iterations raised the need for a new design method that considers an extended source in the initial design stage. This study proposed a method for designing discrete planar optics that controls the light distribution and minimizes the optical loss with an extended source and verified the proposed method experimentally. First, the extended source was modeled theoretically, and a design method for discrete planar optics with the optimum groove angle through energy mapping was proposed. To verify the design method, design for the discrete planar optics was achieved for applications in illumination for LED flash. In addition, discrete planar optics for LED illuminance were designed and fabricated to create a uniform illuminance distribution. Optical characterization of these structures showed that the design was optimal; i.e., we plotted the optical losses as a function of the groove angle, and found a clear minimum. Simulations and measurements showed that an efficient optical design was achieved for an extended source.
Wu, Tingzhu; Lin, Yue; Zheng, Lili; Guo, Ziquan; Xu, Jianxing; Liang, Shijie; Liu, Zhuguagn; Lu, Yijun; Shih, Tien-Mo; Chen, Zhong
2018-02-19
An optimal design of light-emitting diode (LED) lighting that benefits both the photosynthesis performance for plants and the visional health for human eyes has drawn considerable attention. In the present study, we have developed a multi-color driving algorithm that serves as a liaison between desired spectral power distributions and pulse-width-modulation duty cycles. With the aid of this algorithm, our multi-color plant-growth light sources can optimize correlated-color temperature (CCT) and color rendering index (CRI) such that photosynthetic luminous efficacy of radiation (PLER) is maximized regardless of the number of LEDs and the type of photosynthetic action spectrum (PAS). In order to illustrate the accuracies of the proposed algorithm and the practicalities of our plant-growth light sources, we choose six color LEDs and German PAS for experiments. Finally, our study can help provide a useful guide to improve light qualities in plant factories, in which long-term co-inhabitance of plants and human beings is required.
Angular displacement measuring device
NASA Technical Reports Server (NTRS)
Seegmiller, H. Lee B. (Inventor)
1992-01-01
A system for measuring the angular displacement of a point of interest on a structure, such as aircraft model within a wind tunnel, includes a source of polarized light located at the point of interest. A remote detector arrangement detects the orientation of the plane of the polarized light received from the source and compares this orientation with the initial orientation to determine the amount or rate of angular displacement of the point of interest. The detector arrangement comprises a rotating polarizing filter and a dual filter and light detector unit. The latter unit comprises an inner aligned filter and photodetector assembly which is disposed relative to the periphery of the polarizer so as to receive polarized light passing the polarizing filter and an outer aligned filter and photodetector assembly which receives the polarized light directly, i.e., without passing through the polarizing filter. The purpose of the unit is to compensate for the effects of dust, fog and the like. A polarization preserving optical fiber conducts polarized light from a remote laser source to the point of interest.
LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties
Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald
2014-11-11
An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.
Solar concentrator with integrated tracking and light delivery system with summation
Maxey, Lonnie Curt
2015-05-05
A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector redirects the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and provides light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting that uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.
Solar concentrator with integrated tracking and light delivery system with collimation
Maxey, Lonnie Curt
2015-06-09
A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.
Large area, surface discharge pumped, vacuum ultraviolet light source
Sze, Robert C.; Quigley, Gerard P.
1996-01-01
Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, A E; Potapov, V T; Gorshkov, B G
We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)
Matrix light and pixel light: optical system architecture and requirements to the light source
NASA Astrophysics Data System (ADS)
Spinger, Benno; Timinger, Andreas L.
2015-09-01
Modern Automotive headlamps enable improved functionality for more driving comfort and safety. Matrix or Pixel light headlamps are not restricted to either pure low beam functionality or pure high beam. Light in direction of oncoming traffic is selectively switched of, potential hazard can be marked via an isolated beam and the illumination on the road can even follow a bend. The optical architectures that enable these advanced functionalities are diverse. Electromechanical shutters and lens units moved by electric motors were the first ways to realize these systems. Switching multiple LED light sources is a more elegant and mechanically robust solution. While many basic functionalities can already be realized with a limited number of LEDs, an increasing number of pixels will lead to more driving comfort and better visibility. The required optical system needs not only to generate a desired beam distribution with a high angular dynamic, but also needs to guarantee minimal stray light and cross talk between the different pixels. The direct projection of the LED array via a lens is a simple but not very efficient optical system. We discuss different optical elements for pre-collimating the light with minimal cross talk and improved contrast between neighboring pixels. Depending on the selected optical system, we derive the basic light source requirements: luminance, surface area, contrast, flux and color homogeneity.
NASA Astrophysics Data System (ADS)
Kocifaj, M.; Aubé, M.; Kohút, I.
2010-12-01
Nowadays, light pollution is a permanent problem at many observatories around the world. Elimination of excessive lighting during the night is not only about reduction of the total luminous power of ground-based light sources, but also involves experimenting with the spectral features of single lamps. Astronomical photometry is typically made at specific wavelengths, and thus the analysis of the spectral effects of light pollution is highly important. Nevertheless, studies on the spectral behaviour of night light are quite rare. Instead, broad-band or integral quantities (such as sky luminance) are preferentially measured and modelled. The knowledge of night-light spectra is necessary for the proper interpretation of narrow-band photometry data. In this paper, the night-sky radiances in the nominal spectral lines of the B (445 nm) and V (551 nm) filters are determined numerically under clear-sky conditions. Simultaneously, the corresponding sky-luminance patterns are computed and compared against the spectral radiances. It is shown that spectra, patterns and distances of the most important light sources (towns) surrounding an observatory are essential for determining the light pollution levels. In addition, the optical characteristics of the local atmosphere can change the angular behaviour of the sky radiance or luminance. All these effects are evaluated for two Slovakian observatories: Stará Lesná and Vartovka.
The application of UV LEDs for differential optical absorption spectroscopy
NASA Astrophysics Data System (ADS)
Geiko, Pavel P.; Smirnov, Sergey S.; Samokhvalov, Ignatii V.
2018-04-01
Modern UV LEDs represent a potentially very advantageous alternative to thermal light sources, in particular xenon arc lamps, which are the most common light sources in trace gas-analyzers. So, the light-emitting diodes are very attractive for use of as light sources for Long Path Differential Optical Absorption Spectroscopy (DOAS) measurements of trace gases in the open atmosphere. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes have now allowed us to construct a portable, long path DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. First of all, we are talking about the measurement of sulphur dioxide, carbon disulphide and, oxides of chlorine and bromine. The parallel measurements of sulfur dioxide using a certified gas analyzer, were conducted and showed good correlation.
Vecchi, R; Bernardoni, V; Valentini, S; Piazzalunga, A; Fermo, P; Valli, G
2018-02-01
In this paper, results from receptor modelling performed on a well-characterised PM 1 dataset were combined to chemical light extinction data (b ext ) with the aim of assessing the impact of different PM 1 components and sources on light extinction and visibility at a European polluted urban area. It is noteworthy that, at the state of the art, there are still very few papers estimating the impact of different emission sources on light extinction as we present here, although being among the major environmental challenges at many polluted areas. Following the concept of the well-known IMPROVE algorithm, here a tailored site-specific approach (recently developed by our group) was applied to assess chemical light extinction due to PM 1 components and major sources. PM 1 samples collected separately during daytime and nighttime at the urban area of Milan (Italy) were chemically characterised for elements, major ions, elemental and organic carbon, and levoglucosan. Chemical light extinction was estimated and results showed that at the investigated urban site it is heavily impacted by ammonium nitrate and organic matter. Receptor modelling (i.e. Positive Matrix Factorization, EPA-PMF 5.0) was effective to obtain source apportionment; the most reliable solution was found with 7 factors which were tentatively assigned to nitrates, sulphates, wood burning, traffic, industry, fine dust, and a Pb-rich source. The apportionment of aerosol light extinction (b ext,aer ) according to resolved sources showed that considering all samples together nitrate contributed at most (on average 41.6%), followed by sulphate, traffic, and wood burning accounting for 18.3%, 17.8% and 12.4%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Impact of Environmental Light Intensity on Experimental Tumor Growth.
Suckow, Mark A; Wolter, William R; Duffield, Giles E
2017-09-01
Cancer research requires for consistent models that minimize environmental variables. Within the typical laboratory animal housing facility, animals may be exposed to varying intensities of light as a result of cage type, cage position, light source, and other factors; however, studies evaluating the differential effect of light intensity during the light phase on tumor growth are lacking. The effect of cage face light intensity, as determined by cage rack position was evaluated with two tumor models using the C57Bl/6NHsd mouse and transplantable B16F10 melanoma cells or Lewis lung carcinoma (LLC) cells. Animals were housed in individually-ventilated cages placed at the top, middle, or bottom of the rack in a diagonal pattern so that the top cage was closest to the ceiling light source, and cage face light intensity was measured. Following a two-week acclimation period at the assigned cage position, animals were subcutaneously administered either 1.3×10 6 B16F10 melanoma cells or 2.5×10 5 Lewis lung carcinoma cells. Weights of excised tumors were measured following euthanasia 18 days (melanoma) or 21 days (LCC) after tumor cell administration. Cage face light intensity was significantly different depending on the location of the cage, with cages closest to the light source have the greatest intensity. Mean tumor weights were significantly less (p<0.001 for melanoma; p≤0.01 for LCC) in middle light intensity mice compared to high and low light intensity mice. The environmental light intensity to which experimental animals are exposed may vary markedly with cage location and can significantly influence experimental tumor growth, thus supporting the idea that light intensity should be controlled as an experimental variable for animals used in cancer research. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
SeaWiFS technical report series. Volume 31: Stray light in the SeaWiFS radiometer
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Barnes, Robert A.; Holmes, Alan W.; Esaias, Wayne E.
1995-01-01
Some of the measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will not be useful as ocean measurements. For the ocean data set, there are procedures in place to mask the SeaWiFS measurements of clouds and ice. Land measurements will also be masked using a geographic technique based on each measurment's latitude and longitude. Each of these masks involves a source of light much brighter than the ocean. Because of stray light in the SeaWiFS radiometer, light from these bright sources can contaminate ocean measurements located a variable number of pixels away from a bright source. In this document, the sources of stray light in the sensor are examined, and a method is developed for masking measurements near bright targets for stray light effects. In addition, a procedure is proposed for reducing the effects of stray light in the flight data from SeaWiFS. This correction can also reduce the number of pixels masked for stray light. Without these corrections, local area scenes must be masked 10 pixels before and after bright targets in the along-scan direction. The addition of these corrections reduces the along-scan masks to four pixels before and after bright sources. In the along-track direction, the flight data are not corrected, and are masked two pixels before and after. Laboratory measurements have shown that stray light within the instrument changes in a direct ratio to the intensity of the bright source. The measurements have also shown that none of the bands show peculiarities in their stray light response. In other words, the instrument's response is uniform from band to band. The along-scan correction is based on each band's response to a 1 pixel wide bright sources. Since these results are based solely on preflight laboratory measurements, their successful implementation requires compliance with two additional criteria. First, since SeaWiFS has a large data volume, the correction and masking procedures must be such that they can be converted into computationally fast algorithms. Second, they must be shown to operate properly on flight data. The laboratory results, and the corrections and masking procedures that derive from them, should be considered as zeroeth order estimates of the effects that will be found on orbit.
Gallium Nitride Nanowires and Heterostructures: Toward Color-Tunable and White-Light Sources.
Kuykendall, Tevye R; Schwartzberg, Adam M; Aloni, Shaul
2015-10-14
Gallium-nitride-based light-emitting diodes have enabled the commercialization of efficient solid-state lighting devices. Nonplanar nanomaterial architectures, such as nanowires and nanowire-based heterostructures, have the potential to significantly improve the performance of light-emitting devices through defect reduction, strain relaxation, and increased junction area. In addition, relaxation of internal strain caused by indium incorporation will facilitate pushing the emission wavelength into the red. This could eliminate inefficient phosphor conversion and enable color-tunable emission or white-light emission by combining blue, green, and red sources. Utilizing the waveguiding modes of the individual nanowires will further enhance light emission, and the properties of photonic structures formed by nanowire arrays can be implemented to improve light extraction. Recent advances in synthetic methods leading to better control over GaN and InGaN nanowire synthesis are described along with new concept devices leading to efficient white-light emission. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pilot-aided feedforward data recovery in optical coherent communications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Bing
2017-09-19
A method and a system for pilot-aided feedforward data recovery are provided. The method and system include a receiver including a strong local oscillator operating in a free running mode independent of a signal light source. The phase relation between the signal light source and the local oscillator source is determined based on quadrature measurements on pilot pulses from the signal light source. Using the above phase relation, information encoded in an incoming signal can be recovered, optionally for use in communication with classical coherent communication protocols and quantum communication protocols.
Physiological Analysis of Phototropic Responses in Arabidopsis.
Zeidler, Mathias
2016-01-01
Plants utilize light as sole energy source. To maximize light capture they are able to detect the light direction and orient themselves towards the light source. This phototropic response is mediated by the plant blue light photoreceptors phototropin1 and 2 (phot1 and phot2). Although fully differentiated plants also exhibit this response it can be best observed in etiolated seedlings. Differences in light between the illuminated and shaded site of a seedling stem lead to changes in the auxin-distribution, resulting in cell elongation on the shaded site. Since phototropism connects light perception, signaling, and auxin transport, it is of great interest to analyze this response with a fast and simple method.Here we describe a method to analyze the phototropic response of Arabidopsis seedlings. With numerous mutants available, its fast germination and its small size Arabidopsis is well suited for this analysis. Different genotypes can be simultaneously probed in less than a week.
NASA Astrophysics Data System (ADS)
Park, Dubok; Han, David K.; Ko, Hanseok
2017-05-01
Optical imaging systems are often degraded by scattering due to atmospheric particles, such as haze, fog, and mist. Imaging under nighttime haze conditions may suffer especially from the glows near active light sources as well as scattering. We present a methodology for nighttime image dehazing based on an optical imaging model which accounts for varying light sources and their glow. First, glow effects are decomposed using relative smoothness. Atmospheric light is then estimated by assessing global and local atmospheric light using a local atmospheric selection rule. The transmission of light is then estimated by maximizing an objective function designed on the basis of weighted entropy. Finally, haze is removed using two estimated parameters, namely, atmospheric light and transmission. The visual and quantitative comparison of the experimental results with the results of existing state-of-the-art methods demonstrates the significance of the proposed approach.
Design of light guide sleeve on hyperspectral imaging system for skin diagnosis
NASA Astrophysics Data System (ADS)
Yan, Yung-Jhe; Chang, Chao-Hsin; Huang, Ting-Wei; Chiang, Hou-Chi; Wu, Jeng-Fu; Ou-Yang, Mang
2017-08-01
A hyperspectral imaging system is proposed for early study of skin diagnosis. A stable and high hyperspectral image quality is important for analysis. Therefore, a light guide sleeve (LGS) was designed for the embedded on a hyperspectral imaging system. It provides a uniform light source on the object plane with the determined distance. Furthermore, it can shield the ambient light from entering the system and increasing noise. For the purpose of producing a uniform light source, the LGS device was designed in the symmetrical double-layered structure. It has light cut structures to adjust distribution of rays between two layers and has the Lambertian surface in the front-end to promote output uniformity. In the simulation of the design, the uniformity of illuminance was about 91.7%. In the measurement of the actual light guide sleeve, the uniformity of illuminance was about 92.5%.
2017-07-31
Report: High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows The views, opinions and/or...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching...High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows Report Term: 0-Other Email
Photostimulation of osteogenic differentiation on silk scaffolds by plasma arc light source.
Çakmak, Anıl Sera; Çakmak, Soner; Vatansever, H Seda; Gümüşderelioğlu, Menemşe
2018-05-01
Low-level laser therapy (LLLT) has been used for more than 30 years to heal wounds. In recent years, LLLT or photostimulation has been indicated as an effective tool for regenerative and dental medicine by using monochromatic light. The aim of this study is to indicate the usability of plasma arc light source for bone regeneration. This is why we used polychromatic light source providing effective wavelengths in the range of 590-1500 nm for cellular response and investigated photostimulation effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) seeded on 3D silk scaffolds. Cellular responses were examined by using cell culture methods in terms of proliferation, differentiation, and morphological analyses. The results showed that photostimulation with a polychromatic light source (applied for 5 min from the 3rd day after seeding up to the 28th day in 2-day intervals with 92-mW/cm 2 power from 10-cm distance to the cells) enhanced osteogenic differentiation of hMSCs according to higher alkaline phosphatase (ALP) activity, collagen and calcium content, osteogenic gene expressions, and matrix mineralization. In conclusion, we suggest that the plasma arc light source that was used here has a great potential for bone regeneration.
Yamashita, Shuuji; Iguchi, Kazuhiro; Noguchi, Yoshihiro; Sakai, Chihiro; Yokoyama, Satoshi; Ino, Yoko; Hayashi, Hideki; Teramachi, Hitomi; Sako, Magoichi; Sugiyama, Tadashi
2018-01-01
In recent years, the popularity of LED lighting has rapidly increased, owing to its many advantages, including economic benefits. We examined the change in the quality of drugs during storage under LED and fluorescent lighting and found that some medicines exhibited a different degree of color change depending on the light source. The purpose of this study was to investigate the effects of different plastic storage bags on the color change over time when various medicines were stored under LED and fluorescent lighting conditions. Photostability tests were conducted on several types of target drugs. Subsequently, subjective evaluation by ten evaluators and objective evaluation by image analysis software were carried out regarding color change. A similar change in color tone was observed after all types of illumination. Subjective evaluation by 10 evaluators revealed that "change in color tone" occurred in the order of bulb-color LED lighting < daylight-color LED lighting < fluorescent lighting, regardless of the type of plastic bags. A similar tendency was observed also in objective evaluation. In this study, it was considered that a brown light-shielding plastic bag was more effective than a normal plastic bag for the prevention of the color change of medicines stored under LED lighting. The above results suggested that the most appropriate combination of plastic bag and light source for medicine storage was a brown light-shielding plastic bag and bulb-color LED lighting.
Shen, S C; Li, J S; Huang, M C
2014-06-02
Fourier series and an energy mapping method were used in this study to design a lens that produces a light pattern of multiple concentric circles (LPMCC) for a light-emitting diode (LED) fishing lamp. Fourier series were used to represent the light intensity distribution curve (LIDC) of the LPMCC light pattern. Energy mapping involves performing angular energy mapping based on the LIDCs of an LED light source and LPMCC to design a freeform lens. Type I and Type II LPMCC lenses were designed according to the phototaxis behavior of fish to create a LPMCC light pattern of interleaving light-dark zones that attracts fish shoals to stay in an area for a long period. The experimental results indicated that, in comparing the LIDCs of the Type I and II lenses with the respective simulation values, the normalized cross-correlation (NCC) value reached 96%. According to a 24-hour observation of the phototaxis of Poecilia reticulata to evaluate the effectiveness of the proposed light pattern to attract fish, when a fish shoal was habituated to a light source that emitted constant illumination light, it gradually moved away from the intense light zone and hovered around the junction of the light and dark zones. In the future, the design used in this study can be applied to LED fishing lamps to replace traditional fishing lamps.
Acute effects of different light spectra on simulated night-shift work without circadian alignment.
Canazei, Markus; Pohl, Wilfried; Bliem, Harald R; Weiss, Elisabeth M
2017-01-01
Short-wavelength and short-wavelength-enhanced light have a strong impact on night-time working performance, subjective feelings of alertness and circadian physiology. In the present study, we investigated acute effects of white light sources with varied reduced portions of short wavelengths on cognitive and visual performance, mood and cardiac output.Thirty-one healthy subjects were investigated in a balanced cross-over design under three light spectra in a simulated night-shift paradigm without circadian adaptation.Exposure to the light spectrum with the largest attenuation of short wavelengths reduced heart rate and increased vagal cardiac parameters during the night compared to the other two light spectra without deleterious effects on sustained attention, working memory and subjective alertness. In addition, colour discrimination capability was significantly decreased under this light source.To our knowledge, the present study for the first time demonstrates that polychromatic white light with reduced short wavelengths, fulfilling current lighting standards for indoor illumination, may have a positive impact on cardiac physiology of night-shift workers without detrimental consequences for cognitive performance and alertness.
LED-based endoscopic light source for spectral imaging
NASA Astrophysics Data System (ADS)
Browning, Craig M.; Mayes, Samuel; Favreau, Peter; Rich, Thomas C.; Leavesley, Silas J.
2016-03-01
Colorectal cancer is the United States 3rd leading cancer in death rates.1 The current screening for colorectal cancer is an endoscopic procedure using white light endoscopy (WLE). There are multiple new methods testing to replace WLE, for example narrow band imaging and autofluorescence imaging.2 However, these methods do not meet the need for a higher specificity or sensitivity. The goal for this project is to modify the presently used endoscope light source to house 16 narrow wavelength LEDs for spectral imaging in real time while increasing sensitivity and specificity. The process to do such was to take an Olympus CLK-4 light source, replace the light and electronics with 16 LEDs and new circuitry. This allows control of the power and intensity of the LEDs. This required a larger enclosure to house a bracket system for the solid light guide (lightpipe), three new circuit boards, a power source and National Instruments hardware/software for computer control. The results were a successfully designed retrofit with all the new features. The LED testing resulted in the ability to control each wavelength's intensity. The measured intensity over the voltage range will provide the information needed to couple the camera for imaging. Overall the project was successful; the modifications to the light source added the controllable LEDs. This brings the research one step closer to the main goal of spectral imaging for early detection of colorectal cancer. Future goals will be to connect the camera and test the imaging process.
Zhang, Jiaxiang; Wildmann, Johannes S; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G
2015-12-01
Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10(-2)). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.
Fundamental characteristics of a synthesized light source for optical coherence tomography.
Sato, Manabu; Wakaki, Ichiro; Watanabe, Yuuki; Tanno, Naohiro
2005-05-01
We describe the fundamental characteristics of a synthesized light source (SLS) consisting of two low-coherence light sources to enhance the spatial resolution for optical coherence tomography (OCT). The axial resolution of OCT is given by half the coherence length of the light source. We fabricated a SLS with a coherence length of 2.3 microm and a side-lobe intensity of 45% with an intensity ratio of LED1:LED2 = 1:0.5 by combining two light sources, LED1, with a central wavelength of 691 nm and a spectral bandwidth of 99 nm, and LED2, with a central wavelength of 882 nm and a spectral bandwidth of 76 nm. The coherence length of 2.3 microm was 56% of the shorter coherence length in the two LEDs, which indicates that the axial resolution is 1.2 microm. The lateral resolution was measured at less than 4.4 microm by use of the phase-shift method and with a test pattern as a sample. The measured rough surfaces of a coin are illustrated and discussed.
SymPS: BRDF Symmetry Guided Photometric Stereo for Shape and Light Source Estimation.
Lu, Feng; Chen, Xiaowu; Sato, Imari; Sato, Yoichi
2018-01-01
We propose uncalibrated photometric stereo methods that address the problem due to unknown isotropic reflectance. At the core of our methods is the notion of "constrained half-vector symmetry" for general isotropic BRDFs. We show that such symmetry can be observed in various real-world materials, and it leads to new techniques for shape and light source estimation. Based on the 1D and 2D representations of the symmetry, we propose two methods for surface normal estimation; one focuses on accurate elevation angle recovery for surface normals when the light sources only cover the visible hemisphere, and the other for comprehensive surface normal optimization in the case that the light sources are also non-uniformly distributed. The proposed robust light source estimation method also plays an essential role to let our methods work in an uncalibrated manner with good accuracy. Quantitative evaluations are conducted with both synthetic and real-world scenes, which produce the state-of-the-art accuracy for all of the non-Lambertian materials in MERL database and the real-world datasets.
Radiation sensitive area detection device and method
NASA Technical Reports Server (NTRS)
Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)
1991-01-01
A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.
Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Ogata, Yoshimune; Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu
2015-03-01
After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since 137Cs and 134Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from 137Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm 137Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq 137Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a 137Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.
Nine Steps to a Successful Lighting Retrofit.
ERIC Educational Resources Information Center
Ries, Jack
1998-01-01
Presents the steps needed to successfully design a lighting retrofit of school classrooms. Tips cover budgeting, technology, financing, contractor selection, assessing area function, and choosing a light source. (GR)
A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST.
Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu
2016-07-01
Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.
Low intensity X-ray and gamma-ray imaging device. [fiber optics
NASA Technical Reports Server (NTRS)
Yin, L. I. (Inventor)
1979-01-01
A radiation to visible light converter is combined with a visible light intensifier. The converter is a phosphor or scintillator material which is modified to block ambient light. The intensifier includes fiber optics input and output face plates with a photocathode-microchannel plate amplifier-phosphor combination. Incoming radiation is converted to visible light by the converter which is piped into the intensifier by the input fiber optics face plate. The photocathode converts the visible light to electrons which are amplified by a microchannel plate amplifier. The electrons are converted back to light by a phosphor layer and piped out for viewing by the output fiber optics faces plate. The converter-intensifier combination may be further combined with its own radiation source or used with an independent source.
On-line process control monitoring system
O'Rourke, Patrick E.; Van Hare, David R.; Prather, William S.
1992-01-01
An on-line, fiber-optic based apparatus for monitoring the concentration of a chemical substance at a plurality of locations in a chemical processing system comprises a plurality of probes, each of which is at a different location in the system, a light source, optic fibers for carrying light to and from the probes, a multiplexer for switching light from the source from one probe to the next in series, a diode array spectrophotometer for producing a spectrum from the light received from the probes, and a computer programmed to analyze the spectra so produced. The probes allow the light to pass through the chemical substance so that a portion of the light is absorbed before being returned to the multiplexer. A standard and a reference cell are included for data validation and error checking.
Only lasers can be used for low level laser therapy
Moskvin, Sergey Vladimirovich
2017-01-01
The question of lasers' exclusivity, as well as the degree of influence of special properties of low-intensity laser illumination (LILI), such as coherence, polarity and monochromaticity, on the effectiveness of low level laser therapy (LLLT) continues to cause arguments. The study analyzes publications from 1973 to 2016, in which laser and conventional light sources are compared, and the following conclusions are drawn. First, there are a lot of publications with incorrect comparison or unfounded statements. Secondly, other sources of light are often meant by LILI without any justification. Thirdly, all studies, in which the comparison is carried out correctly and close parameters of the impact and the model are used, have a firm conclusion that laser light is much more effective. Fourthly, it is uniquely identified that the most important parameter that determines the efficiency of lasers is monochromaticity, i.e., a much narrower spectral width than for all other light sources. Only laser light sources can be used for LLLT! PMID:29130447
A MoTe2 based light emitting diode and photodetector for silicon photonic integrated circuits
NASA Astrophysics Data System (ADS)
Bie, Ya-Qing; Heuck, M.; Grosso, G.; Furchi, M.; Cao, Y.; Zheng, J.; Navarro-Moratalla, E.; Zhou, L.; Taniguchi, T.; Watanabe, K.; Kong, J.; Englund, D.; Jarillo-Herrero, P.
A key challenge in photonics today is to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, partly because many components such as waveguides, interferometers and modulators, could be integrated on silicon-based processors. However, light sources and photodetectors present continued challenges. Common approaches for light source include off-chip or wafer-bonded lasers based on III-V materials, but studies show advantages for directly modulated light sources. The most advanced photodetectors in silicon photonics are based on germanium growth which increases system cost. The emerging two dimensional transition metal dichalcogenides (TMDs) offer a path for optical interconnects components that can be integrated with the CMOS processing by back-end-of-the-line processing steps. Here we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe2, a TMD semiconductor with infrared band gap. The state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.
Multi-wavelength mid-IR light source for gas sensing
NASA Astrophysics Data System (ADS)
Karioja, Pentti; Alajoki, Teemu; Cherchi, Matteo; Ollila, Jyrki; Harjanne, Mikko; Heinilehto, Noora; Suomalainen, Soile; Viheriälä, Jukka; Zia, Nouman; Guina, Mircea; Buczyński, Ryszard; Kasztelanic, Rafał; Kujawa, Ireneusz; Salo, Tomi; Virtanen, Sami; Kluczyński, Paweł; Sagberg, Hâkon; Ratajczyk, Marcin; Kalinowski, Przemyslaw
2017-02-01
Cost effective multi-wavelength light sources are key enablers for wide-scale penetration of gas sensors at Mid-IR wavelength range. Utilizing novel Mid-IR Si-based photonic integrated circuits (PICs) filter and wide-band Mid-IR Super Luminescent Light Emitting Diodes (SLEDs), we show the concept of a light source that covers 2.5…3.5 μm wavelength range with a resolution of <1nm. The spectral bands are switchable and tunable and they can be modulated. The source allows for the fabrication of an affordable multi-band gas sensor with good selectivity and sensitivity. The unit price can be lowered in high volumes by utilizing tailored molded IR lens technology and automated packaging and assembling technologies. The status of the development of the key components of the light source are reported. The PIC is based on the use of micron-scale SOI technology, SLED is based on AlGaInAsSb materials and the lenses are tailored heavy metal oxide glasses fabricated by the use of hot-embossing. The packaging concept utilizing automated assembly tools is depicted. In safety and security applications, the Mid-IR wavelength range covered by the novel light source allows for detecting several harmful gas components with a single sensor. At the moment, affordable sources are not available. The market impact is expected to be disruptive, since the devices currently in the market are either complicated, expensive and heavy instruments, or the applied measurement principles are inadequate in terms of stability and selectivity.
Lighting in Commercial Buildings
2009-01-01
Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings.
Natural light illumination system.
Whang, Allen Jong-Woei; Chen, Yi-Yung; Yang, Shu-Hua; Pan, Po-Hsuan; Chou, Kao-Hsu; Lee, Yu-Chi; Lee, Zong-Yi; Chen, Chi-An; Chen, Cheng-Nan
2010-12-10
In recent years, green energy has undergone a lot of development and has been the subject of many applications. Many research studies have focused on illumination with sunlight as a means of saving energy and creating healthy lighting. Natural light illumination systems have collecting, transmitting, and lighting elements. Today, most daylight collectors use dynamic concentrators; these include Sun tracking systems. However, this design is too expensive to be cost effective. To create a low-cost collector that can be easily installed on a large building, we have designed a static concentrator, which is prismatic and cascadable, to collect sunlight for indoor illumination. The transmission component uses a large number of optical fibers. Because optical fibers are expensive, this means that most of the cost for the system will be related to transmission. In this paper, we also use a prismatic structure to design an optical coupler for coupling n to 1. With the n-to-1 coupler, the number of optical fibers necessary can be greatly reduced. Although this new natural light illumination system can effectively guide collected sunlight and send it to the basement or to other indoor places for healthy lighting, previously there has been no way to manage the collected sunlight when lighting was not desired. To solve this problem, we have designed an optical switch and a beam splitter to control and separate the transmitted light. When replacing traditional sources, the lighting should have similar characteristics, such as intensity distribution and geometric parameters, to those of traditional artificial sources. We have designed, simulated, and optimized an illumination lightpipe with a dot pattern to redistribute the collected sunlight from the natural light illumination system such that it equals the qualities of a traditional lighting system. We also provide an active lighting module that provides lighting from the natural light illumination system or LED auxiliary sources, depending on circumstances. The system is controlled by a light detector. We used optical simulation tools to design and simulate the efficiency of the active module. Finally, we used the natural light illumination system to provide natural illumination for a traffic tunnel. This system will provide a great number of benefits for the people who use it.
Growth of hybrid poplars, white spruce, and jack pine under various artificial lights.
Pamela S. Roberts; J. Zavitkovski
1981-01-01
Describes the energy consumption and biological effects of fluorescent, incandescent, and high pressure sodium lighting on the growth of poplars, white spruce, and jack pine in a greenhouse. At similar light levels the biological effects of all three light sources were similar. The incandescent lamps consumed several times more energy than the other two light...
Tunable light source for use in photoacoustic spectrometers
Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.
2005-12-13
The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.
46 CFR 111.75-16 - Lighting of survival craft and rescue boats.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Section 111.75-16 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Lighting Circuits and Protection § 111.75-16 Lighting of survival... be adequately illuminated by lighting supplied from the emergency power source. (b) The arrangement...
46 CFR 129.440 - Emergency lighting.
Code of Federal Regulations, 2013 CFR
2013-10-01
... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...
46 CFR 129.440 - Emergency lighting.
Code of Federal Regulations, 2014 CFR
2014-10-01
... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...
46 CFR 129.440 - Emergency lighting.
Code of Federal Regulations, 2012 CFR
2012-10-01
... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...
46 CFR 129.440 - Emergency lighting.
Code of Federal Regulations, 2011 CFR
2011-10-01
... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...
ERIC Educational Resources Information Center
Dedes, Christos; Ravanis, Konstantinos
2009-01-01
This research, carried out in Greece on pupils aged 12-16, focuses on the transformation of their representations concerning light emission and image formation by extended light sources. The instructive process was carried out in two stages, each one having a different, distinct target set. During the first stage, the appropriate conflict…
40 CFR 63.2480 - What requirements must I meet for equipment leaks?
Code of Federal Regulations, 2013 CFR
2013-07-01
... connectors at your affected source. (5) For pumps in light liquid service in an MCPU that has no continuous... connectors in gas/vapor and light liquid service at an existing source, you may elect to comply with the... in light liquid service in an MCPU that has no continuous process vents and is part of an existing...
40 CFR 63.2480 - What requirements must I meet for equipment leaks?
Code of Federal Regulations, 2014 CFR
2014-07-01
... connectors at your affected source. (5) For pumps in light liquid service in an MCPU that has no continuous... connectors in gas/vapor and light liquid service at an existing source, you may elect to comply with the... in light liquid service in an MCPU that has no continuous process vents and is part of an existing...
40 CFR 63.2480 - What requirements must I meet for equipment leaks?
Code of Federal Regulations, 2012 CFR
2012-07-01
... connectors at your affected source. (5) For pumps in light liquid service in an MCPU that has no continuous... connectors in gas/vapor and light liquid service at an existing source, you may elect to comply with the... in light liquid service in an MCPU that has no continuous process vents and is part of an existing...
NASA Astrophysics Data System (ADS)
Rao, Jionghui; Yao, Wenming; Wen, Linqiang
2015-10-01
Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.
NASA Astrophysics Data System (ADS)
Spencer, Domina E.
2001-11-01
Traditionally reflector design has been confined to the use of surfaces defined in terms of conic sections, assuming that all light sources can be considered to be point sources. In the middle of the twentieth century, it was recognized that major improvements could be made if the shape of the reflector was designed to produce a desired distribution of light form an actual light source. Cylindrical reflectors were created which illuminated airport runways using fluorescent lamps in such a way that pilots could make visual landings safely even in fog. These reflector contours were called macrofocal parabolic cylinders. Other new reflector contours introduced were macrofocal elliptic cylinders which confined the light to long rectangles. Surfaces of revolution the fourth degree were also developed which made possible uniform floodlighting of a circular region. These were called horned and peaked quartics. The optimum solution of the automotive head lighting problem has not yet been found. The paper concludes with a discussion of the possibility of developing reflectors which are neither cylindrical nor rotational but will produce the optimum field of view for the automobile driver both in clear weather and in fog.
Energy efficient lighting and communications
NASA Astrophysics Data System (ADS)
Zhou, Z.; Kavehrad, M.; Deng, P.
2012-01-01
As Light-Emitting Diode (LED)'s increasingly displace incandescent lighting over the next few years, general applications of Visible Light Communication (VLC) technology are expected to include wireless internet access, vehicle-to-vehicle communications, broadcast from LED signage, and machine-to-machine communications. An objective in this paper is to reveal the influence of system parameters on the power distribution and communication quality, in a general plural sources VLC system. It is demonstrated that sources' Half-Power Angles (HPA), receivers' Field-Of Views (FOV), sources layout and the power distribution among sources are significant impact factors. Based on our findings, we developed a method to adaptively change working status of each LED respectively according to users' locations. The program minimizes total power emitted while simultaneously ensuring sufficient light intensity and communication quality for each user. The paper also compares Orthogonal Frequency-Division Multiplexing (OFDM) and On-Off Keying (OOK) signals performance in indoor optical wireless communications. The simulation is carried out for different locations where different impulse response distortions are experienced. OFDM seems a better choice than prevalent OOK for indoor VLC due to its high resistance to multi-path effect and delay spread. However, the peak-to-average power limitations of the method must be investigated for lighting LEDs.
ERIC Educational Resources Information Center
Filler, Martin
1979-01-01
The new energy consciousness has led to a thorough reevaluation of how artificial lighting can be used wisely, while other researchers have explored the potential of daylighting as an alternative interior light source. (Author/MLF)
Applications of laser wakefield accelerator-based light sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Felicie; Thomas, Alec G. R.
Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less
Applications of laser wakefield accelerator-based light sources
Albert, Felicie; Thomas, Alec G. R.
2016-10-01
Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less
Polarization from Thomson scattering of the light of a spherical, limb-darkened star
NASA Technical Reports Server (NTRS)
Rudy, R. J.
1979-01-01
The polarized flux produced by the Thomson scattering of the light of a spherical, limb-darkened star by optically thin, extrastellar regions of electrons is calculated and contrasted to previous models which treated the star as a point source. The point-source approximation is found to be valid for scattering by particles more than a stellar radius from the surface of the star but is inappropriate for those lying closer. The specific effect of limb darkening on the fractional polarization of the total light of a system is explored. If the principal source of light is the unpolarized flux of the star, the polarization is nearly independent of limb darkening.
NASA Astrophysics Data System (ADS)
Engelson, Brian Aaron
Footwear impression evidence in dust is often difficult to locate in ambient light and is a fragile medium that both collection and enhancement techniques can destroy or distort. The collection of footwear impression evidence always begins with non-destructive photographic techniques; however, current methods are limited to oblique lighting of the impression followed by an attempt to photograph in situ. For the vast majority of footwear impressions, an interactive collection method, and thus a potentially destructive procedure, is subsequently carried out to gather the evidence. Therefore, alternative non-destructive means for the preservation and enhancement of footwear impressions in dust merits further attention. Previous research performed with reflected ultraviolet (UV) photography and reflected ultraviolet imaging systems (RUVIS) has shown that there are additional non-destructive methodologies that can be applied to the search for and documentation of footwear impressions in dust. Unfortunately, these prior studies did not include robust comparisons to traditional oblique white light, instead choosing to focus on different UV wavelengths. This study, however, seeks to evaluate the use of a RUVIS device paired with a 254 nanometer (nm) UV light source to locate 2-D footwear impressions in dust on multiple substrates against standard oblique white light techniques and assess the visibility of the impression and amount of background interference present. The optimal angle of incident UV light for each substrate was also investigated. Finally, this study applied an image enhancement technique in order to evaluate its usefulness when looking at the visibility of a footwear impression and the amount of background interference present for enhanced white light and RUVIS pictures of footwear impressions in dust. A collection of eight different substrate types was gathered for investigation, including vinyl composition tile (VCT), ceramic tile, marble tile, magazine paper, steel sheet metal, vinyl flooring, wood flooring, and carpet. Heel impressions were applied to the various substrates utilizing vacuum collected dust and normal walking pressure. Each substrate was then explored and photographed in ambient fluorescent light, oblique white light at 0°, 15°, 30°, and 0° with the light source below the surface plane of the substrate, and 254 nm UV light at 0°, 15°, 30°, 45°, 60°, 75°, 90° and 0° with the light source below the surface plane of the substrate. All pictures were evaluated for clarity and visible detail of the footwear impression and the amount of background interference present, selecting for the best images within a lighting condition group. Additional intra- and intergroup comparisons were carried out to explore differences created by the various lighting conditions. Enhanced images were then created with the best scored pictures and evaluated for additional modifications in impression visibility and background interference. Photographs of footwear impressions in dust illuminated with ambient fluorescent light proved to be the most difficult conditions under which a footwear impression could be visualized. However, both oblique white light and 254 nm UV light lighting conditions showed improvements in either visualization or background dropout, or both, over ambient light conditions. An assessment of the white light and 254 nm UV light RUVIS images also demonstrated that the best angles for the light source for all substrates were oblique 0 and oblique 0° below the surface plane of the substrate lighting. It was found that white light photographs generally provided higher visibility ratings, while RUVIS 254 nm UV light photographs provided better grades for reducing background interference. Enhanced images of white light conditions provided generally poorer quality and quantity of details, while enhanced RUVIS images seemed to improve upon these areas. The use of a RUVIS to capture photographs of footwear impression evidence in dust was found to be a successful secondary non-destructive technique that can be paired with traditional oblique white light procedures. Additionally, the use of below the surface plane of the substrate lighting techniques were found to improve either visibility or background dropout, or both, over standard 0 oblique lighting, depending on the light source, and should be employed, when applicable. Finally, further investigation into digital photo-editing enhancement techniques for footwear impression evidence in dust is needed.
Limits on the maximum attainable efficiency for solid-state lighting
NASA Astrophysics Data System (ADS)
Coltrin, Michael E.; Tsao, Jeffrey Y.; Ohno, Yoshi
2008-03-01
Artificial lighting for general illumination purposes accounts for over 8% of global primary energy consumption. However, the traditional lighting technologies in use today, i.e., incandescent, fluorescent, and high-intensity discharge lamps, are not very efficient, with less than about 25% of the input power being converted to useful light. Solid-state lighting is a rapidly evolving, emerging technology whose efficiency of conversion of electricity to visible white light is likely to approach 50% within the next years. This efficiency is significantly higher than that of traditional lighting technologies, with the potential to enable a marked reduction in the rate of world energy consumption. There is no fundamental physical reason why efficiencies well beyond 50% could not be achieved, which could enable even greater world energy savings. The maximum achievable luminous efficacy for a solid-state lighting source depends on many different physical parameters, for example the color rendering quality that is required, the architecture employed to produce the component light colors that are mixed to produce white, and the efficiency of light sources producing each color component. In this article, we discuss in some detail several approaches to solid-state lighting and the maximum luminous efficacy that could be attained, given various constraints such as those listed above.
Some Informal Thoughts on Relativity and Limitations on Interstellar Travel
1990-12-01
velocities, as quantified by the following: Consider a device made up of a light source, a light detector, and a mirror in the following relationship (after...the source and detector are close enough together so that the value of the cosine of the angle of incidence on the mirror can be taken to be 1, a light ...34 observer will see the light pulse trace a diagonal path with length 2 z4 + (vAt/2)2 at a speed (by Postulate 2) of c. The duration of a transit measured
Teksheva, L M; Zvezdina, I V
2014-01-01
Hygienic evaluation of innovative equipment in educational institutions requires the use of appropriate methods permitting to establish valuable criterias for the effectiveness of the application of new technologies. The study of the response of the cardiovascular system of schoolchildren under using different light sources allowed to establish the increase in adaptive capacities and the improvement of the functional state of the organism in LED in comparison with fluorescent lighting.
Multispectral imaging system for contaminant detection
NASA Technical Reports Server (NTRS)
Poole, Gavin H. (Inventor)
2003-01-01
An automated inspection system for detecting digestive contaminants on food items as they are being processed for consumption includes a conveyor for transporting the food items, a light sealed enclosure which surrounds a portion of the conveyor, with a light source and a multispectral or hyperspectral digital imaging camera disposed within the enclosure. Operation of the conveyor, light source and camera are controlled by a central computer unit. Light reflected by the food items within the enclosure is detected in predetermined wavelength bands, and detected intensity values are analyzed to detect the presence of digestive contamination.
Reasonable use of artificial lighting in building energy saving
NASA Astrophysics Data System (ADS)
Hou, Yuhan
2018-06-01
The architectural light environment is a crucial part of the built environment. Appropriate lighting can not only meet the needs of people's production and life, but also have a positive impact on people's mental state and feelings. Architectural lighting occupies a vital part of building energy consumption. At present, China's lighting electricity consumption has accounted for 12% of the total electricity generated in the country. Promoting lighting energy conservation can play an important role in alleviating energy shortages. This article mainly discusses how to make reasonable use of artificial lighting and choose suitable light sources to reduce the energy consumed by lighting under the condition of satisfying a good architectural light environment.
Jorgensen, Betty S.; Nekimken, Howard L.; Carey, W. Patrick; O'Rourke, Patrick E.
1997-01-01
An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.
Jorgensen, B.S.; Nekimken, H.L.; Carey, W.P.; O`Rourke, P.E.
1997-07-22
An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber. 10 figs.
Optical transcutaneous bilirubin detector
Kronberg, J.W.
1993-11-09
A transcutaneous bilirubin detector is designed comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient. 6 figures.
Optical transcutaneous bilirubin detector
Kronberg, J.W.
1991-03-04
This invention consists of a transcutaneous bilirubin detector comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient.
Optical transcutaneous bilirubin detector
Kronberg, James W.
1993-01-01
A transcutaneous bilirubin detector comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient.
Wavelength-Resolved Photon Fluxes of Indoor Light Sources: Implications for HOx Production
NASA Astrophysics Data System (ADS)
Kowal, S.; Kahan, T.
2017-12-01
Only a handful of studies have considered photolytic reactions indoors because photon fluxes at short wavelengths are generally considered to be negligible. We have measured wavelength resolved photon fluxes from indoor light sources including incandescent, halogen, compact fluorescent (CFL), and light emitting diodes (LED). In addition, fluorescent tubes, used in many offices and industrial buildings, and sunlight through windows were measured. The measured photon fluxes were used to calculate photolysis rate constants for potential indoor hydroxyl and peroxy radical (OH and HO2, "HOx") precursors: acetaldehyde (CH3CHO), formaldehyde (HCHO), hydrogen peroxide (H2O2), nitrous acid (HONO) and ozone (O3). Rate constants in conjunction with typical indoor concentrations were used to predict HOx production rates under various lighting conditions. Our results illustrate that all light sources except LEDs emit light at high enough energy to photolyze HOx precursors. Under typical lighting conditions only fluorescent tubes and sunlight will initiate significant photochemical HOx formation, and HONO and HCHO will be the only molecules that will have a strong influence on HOx levels indoors. Data from our experiments can be used in indoor air models to better predict HOx levels indoors.
Vacuum-Compatible Wideband White Light and Laser Combiner Source System
NASA Technical Reports Server (NTRS)
Azizi, Alineza; Ryan, Daniel J.; Tang, Hong; Demers, Richard T.; Kadogawa, Hiroshi; An, Xin; Sun, George Y.
2010-01-01
For the Space Interferometry Mission (SIM) Spectrum Calibration Development Unit (SCDU) testbed, wideband white light is used to simulate starlight. The white light source mount requires extremely stable pointing accuracy (<3.2 microradians). To meet this and other needs, the laser light from a single-mode fiber was combined, through a beam splitter window with special coating from broadband wavelengths, with light from multimode fiber. Both lights were coupled to a photonic crystal fiber (PCF). In many optical systems, simulating a point star with broadband spectrum with stability of microradians for white light interferometry is a challenge. In this case, the cameras use the white light interference to balance two optical paths, and to maintain close tracking. In order to coarse align the optical paths, a laser light is sent into the system to allow tracking of fringes because a narrow band laser has a great range of interference. The design requirements forced the innovators to use a new type of optical fiber, and to take a large amount of care in aligning the input sources. The testbed required better than 1% throughput, or enough output power on the lowest spectrum to be detectable by the CCD camera (6 nW at camera). The system needed to be vacuum-compatible and to have the capability for combining a visible laser light at any time for calibration purposes. The red laser is a commercially produced 635-nm laser 5-mW diode, and the white light source is a commercially produced tungsten halogen lamp that gives a broad spectrum of about 525 to 800 nm full width at half maximum (FWHM), with about 1.4 mW of power at 630 nm. A custom-made beam splitter window with special coating for broadband wavelengths is used with the white light input via a 50-mm multi-mode fiber. The large mode area PCF is an LMA-8 made by Crystal Fibre (core diameter of 8.5 mm, mode field diameter of 6 mm, and numerical aperture at 625 nm of 0.083). Any science interferometer that needs a tracking laser fringe to assist in alignment can use this system.
Interfacing a quantum dot with a spontaneous parametric down-conversion source
NASA Astrophysics Data System (ADS)
Huber, Tobias; Prilmüller, Maximilian; Sehner, Michael; Solomon, Glenn S.; Predojević, Ana; Weihs, Gregor
2017-09-01
Quantum networks require interfacing stationary and flying qubits. These flying qubits are usually nonclassical states of light. Here we consider two of the leading source technologies for nonclassical light, spontaneous parametric down-conversion and single semiconductor quantum dots. Down-conversion delivers high-grade entangled photon pairs, whereas quantum dots excel at producing single photons. We report on an experiment that joins these two technologies and investigates the conditions under which optimal interference between these dissimilar light sources may be achieved.
Falcone, Roger [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Univ. of California, Berkeley, CA (United States). Dept. of Physics
2018-05-04
Summer Lecture Series 2008: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.
Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelepouga, Serguei A; Rue, David M; Saveliev, Alexei V
2011-03-15
A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.
Tans, Petrus P.; Lashof, Daniel A.
1986-01-01
A device for determining the relative composition of a sample of a gas by comparison of the Raman-scattered light of the sample with that of a known gas comprising: a means for passing a single light source through the unknown and the known gases, choppers to alternate the Raman-scattered light into a common light detection and measuring system, optical fiber networks for spatially mixing the resulting Raman scattered light from each sample and directing the mixed light to selective detectors, and a compiler to record the light intensity of each wavelength of Raman-scattered light as a function of the sample from which it originated.
Broadband visible light source based on AllnGaN light emitting diodes
Crawford, Mary H.; Nelson, Jeffrey S.
2003-12-16
A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.
Hosseinzadeh, Reza; Khorsandi, Khatereh
2017-06-01
The aim of current study was to use methylene blue-curcumin ion pair nanoparticles and single dyes as photosensitizer for comparison of photodynamic therapy (PDT) efficacy on MDA-MB-231 cancer cells, also various light sources effect on activation of photosensitizer (PS) was considered. Ion pair nanoparticles were synthesized using opposite charge ions precipitation and lyophilized. The PDT experiments were designed and the effect of PSs and light sources (Red LED (630nm; power density: 30mWcm -2 ) and blue LED (465nm; power density: 34mWcm -2 )) on the human breast cancer cell line were examined. The effect of PS concentration (0-75μg.mL -1 ), incubation time, irradiation time and light sources, and priority in irradiation of blue or red lights were determined. The results show that the ion pairing of methylene blue and curcumin enhance the photodynamic activity of both dyes and the cytotoxicity of ion pair nanoparticles on the MDA-231 breast cancer cell line. Blue and red LED light sources were used for photo activation of photosensitizers. The results demonstrated that both dyes can activate using red light LED better than blue light LED for singlet oxygen producing. Nano scale ion pair precipitating of methylene blue-curcumin enhanced the cell penetrating and subsequently cytotoxicity of both dyes together. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Sportel, Samuel; Bruxvoort, Crystal; Jadrich, James
2009-01-01
Conceptually, students are typically introduced to light as a type of wave. However, children struggle to understand this model because it is highly abstract. Light can be represented more concretely using the photon model. According to this scientific model, light emanates from sources as tiny "packets" of energy (called "photons") that move in…
Validation of luminescent source reconstruction using spectrally resolved bioluminescence images
NASA Astrophysics Data System (ADS)
Virostko, John M.; Powers, Alvin C.; Jansen, E. D.
2008-02-01
This study examines the accuracy of the Living Image® Software 3D Analysis Package (Xenogen, Alameda, CA) in reconstruction of light source depth and intensity. Constant intensity light sources were placed in an optically homogeneous medium (chicken breast). Spectrally filtered images were taken at 560, 580, 600, 620, 640, and 660 nanometers. The Living Image® Software 3D Analysis Package was employed to reconstruct source depth and intensity using these spectrally filtered images. For sources shallower than the mean free path of light there was proportionally higher inaccuracy in reconstruction. For sources deeper than the mean free path, the average error in depth and intensity reconstruction was less than 4% and 12%, respectively. The ability to distinguish multiple sources decreased with increasing source depth and typically required a spatial separation of twice the depth. The constant intensity light sources were also implanted in mice to examine the effect of optical inhomogeneity. The reconstruction accuracy suffered in inhomogeneous tissue with accuracy influenced by the choice of optical properties used in reconstruction.
National Synchrotron Light Source annual report 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.; Lazarz, N.; Williams, G.
1988-01-01
This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)
Experiments with Lasers and Frequency Doublers
NASA Technical Reports Server (NTRS)
Bachor, H.-A.; Taubman, M.; White, A. G.; Ralph, T.; McClelland, D. E.
1996-01-01
Solid state laser sources, such as diode-pumped Nd:YAG lasers, have given us CW laser light of high power with unprecedented stability and low noise performance. In these lasers most of the technical sources of noise can be eliminated allowing them to be operated close to the theoretical noise limit set by the quantum properties of light. The next step of reducing the noise below the standard limit is known as squeezing. We present experimental progress in generating reliably squeezed light using the process of frequency doubling. We emphasize the long term stability that makes this a truly practical source of squeezed light. Our experimental results match noise spectra calculated with our recently developed models of coupled systems which include the noise generated inside the laser and its interaction with the frequency doubler. We conclude with some observations on evaluating quadrature squeezed states of light.
Getting back to nature: a reality check for experiments in controlled environments.
Annunziata, Maria Grazia; Apelt, Federico; Carillo, Petronia; Krause, Ursula; Feil, Regina; Mengin, Virginie; Lauxmann, Martin A; Köhl, Karin; Nikoloski, Zoran; Stitt, Mark; Lunn, John E; Raines, Christine
2017-07-20
Irradiance from sunlight changes in a sinusoidal manner during the day, with irregular fluctuations due to clouds, and light-dark shifts at dawn and dusk are gradual. Experiments in controlled environments typically expose plants to constant irradiance during the day and abrupt light-dark transitions. To compare the effects on metabolism of sunlight versus artificial light regimes, Arabidopsis thaliana plants were grown in a naturally illuminated greenhouse around the vernal equinox, and in controlled environment chambers with a 12-h photoperiod and either constant or sinusoidal light profiles, using either white fluorescent tubes or light-emitting diodes (LEDs) tuned to a sunlight-like spectrum as the light source. Rosettes were sampled throughout a 24-h diurnal cycle for metabolite analysis. The diurnal metabolite profiles revealed that carbon and nitrogen metabolism differed significantly between sunlight and artificial light conditions. The variability of sunlight within and between days could be a factor underlying these differences. Pairwise comparisons of the artificial light sources (fluorescent versus LED) or the light profiles (constant versus sinusoidal) showed much smaller differences. The data indicate that energy-efficient LED lighting is an acceptable alternative to fluorescent lights, but results obtained from plants grown with either type of artificial lighting might not be representative of natural conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Light quality and efficiency of consumer grade solid state lighting products
NASA Astrophysics Data System (ADS)
Dam-Hansen, Carsten; Corell, Dennis Dan; Thorseth, Anders; Poulsen, Peter Behrensdorff
2013-03-01
The rapid development in flux and efficiency of Light Emitting Diodes (LED) has resulted in a flooding of the lighting market with Solid State Lighting (SSL) products. Many traditional light sources can advantageously be replaced by SSL products. There are, however, large variations in the quality of these products, and some are not better than the ones they are supposed to replace. A lack of quality demands and standards makes it difficult for consumers to get an overview of the SSL products. Here the results of a two year study investigating SSL products on the Danish market are presented. Focus has been on SSL products for replacement of incandescent lamps and halogen spotlights. The warm white light and good color rendering properties of these traditional light sources are a must for lighting in Denmark and the Nordic countries. 266 SSL replacement lamps have been tested for efficiency and light quality with respect to correlated color temperature and color rendering properties. This shows a trade-off between high color rendering warm white light and energy efficiency. The lumen and color maintenance over time has been investigated and results for products running over 11000 h will be presented. A new internet based SSL product selection tool will be shown. Here the products can be compared on efficiency, light quality parameters, thus providing a better basis for the selection of SSL products for consumers.
Representation of chromatic distribution for lighting system
NASA Astrophysics Data System (ADS)
Rossi, Maurizio; Musante, Fulvio
2015-01-01
For the luminaire manufacturer, the measurement of the lighting intensity distribution (LID) emitted by lighting fixture is based on photometry. So light is measured as an achromatic value of intensity and there is no the possibility to discriminate the measurement of white vs. colored light. At the Laboratorio Luce of Politecnico di Milano a new instrument for the measurement of spectral radiant intensities distribution for lighting system has been built: the goniospectra- radiometer. This new measuring tool is based on a traditional mirror gonio-photometer with a CCD spectraradiometer controlled by a PC. Beside the traditional representation of photometric distribution we have introduced a new representation where, in addition to the information about the distribution of luminous intensity in space, new details about the chromaticity characteristic of the light sources have been implemented. Some of the results of this research have been applied in developing and testing a new line of lighting system "My White Light" (the research project "Light, Environment and Humans" funded in the Italian Lombardy region Metadistretti Design Research Program involving Politecnico di Milano, Artemide, Danese, and some other SME of the Lighting Design district), giving scientific notions and applicative in order to support the assumption that colored light sources can be used for the realization of interior luminaries that, other than just have low power consumption and long life, may positively affect the mood of people.
Promises and challenges in solid-state lighting
NASA Astrophysics Data System (ADS)
Schubert, Fred
2010-03-01
Lighting technologies based on semiconductor light-emitting diodes (LEDs) offer unprecedented promises that include three major benefits: (i) Gigantic energy savings enabled by efficient conversion of electrical energy to optical energy; (ii) Substantial positive contributions to sustainability through reduced emissions of global-warming gases, acid-rain gases, and toxic substances such as mercury; and (iii) The creation of new paradigms in lighting driven by the unique controllability of solid-state lighting sources. Due to the powerful nature of these benefits, the transition from conventional lighting sources to solid-state lighting is virtually assured. This presentation will illustrate the new world of lighting and illustrate the pervasive changes to be expected in lighting, displays, communications, and biotechnology. The presentation will also address the formidable challenges that must be addressed to continue the further advancement of solid-state lighting technology. These challenges offer opportunities for research and innovation. Specific challenges include light management, carrier transport, and optical design. We will present some innovative approaches in order to solve known technical challenges faced by solid-state lighting. These approaches include the demonstration and use of new optical thin-film materials with a continuously tunable refractive index. These approaches also include the use of polarization-matched structures that reduce the polarization fields in GaInN LEDs and the hotly debated efficiency droop, that is, the decreasing LED efficiency at high currents.
46 CFR 129.395 - Radio installations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with... radios, if installed, may be powered from a local lighting power source, such as the pilothouse lighting panel, provided each radio power source has a separate overcurrent protection device. ...
46 CFR 129.395 - Radio installations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with... radios, if installed, may be powered from a local lighting power source, such as the pilothouse lighting panel, provided each radio power source has a separate overcurrent protection device. ...
46 CFR 129.395 - Radio installations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with... radios, if installed, may be powered from a local lighting power source, such as the pilothouse lighting panel, provided each radio power source has a separate overcurrent protection device. ...
46 CFR 129.395 - Radio installations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with... radios, if installed, may be powered from a local lighting power source, such as the pilothouse lighting panel, provided each radio power source has a separate overcurrent protection device. ...
Large area, surface discharge pumped, vacuum ultraviolet light source
Sze, R.C.; Quigley, G.P.
1996-12-17
Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.
Binary Sources and Binary Lenses in Microlensing Surveys of MACHOs
NASA Astrophysics Data System (ADS)
Petrovic, N.; Di Stefano, R.; Perna, R.
2003-12-01
Microlensing is an intriguing phenomenon which may yield information about the nature of dark matter. Early observational searches identified hundreds of microlensing light curves. The data set consisted mainly of point-lens light curves and binary-lens events in which the light curves exhibit caustic crossings. Very few mildly perturbed light curves were observed, although this latter type should constitute the majority of binary lens light curves. Di Stefano (2001) has suggested that the failure to take binary effects into account may have influenced the estimates of optical depth derived from microlensing surveys. The work we report on here is the first step in a systematic analysis of binary lenses and binary sources and their impact on the results of statistical microlensing surveys. In order to asses the problem, we ran Monte-Carlo simulations of various microlensing events involving binary stars (both as the source and as the lens). For each event with peak magnification > 1.34, we sampled the characteristic light curve and recorded the chi squared value when fitting the curve with a point lens model; we used this to asses the perturbation rate. We also recorded the parameters of each system, the maximum magnification, the times at which each light curve started and ended and the number of caustic crossings. We found that both the binarity of sources and the binarity of lenses increased the lensing rate. While the binarity of sources had a negligible effect on the perturbation rates of the light curves, the binarity of lenses had a notable effect. The combination of binary sources and binary lenses produces an observable rate of interesting events exhibiting multiple "repeats" in which the magnification rises above and dips below 1.34 several times. Finally, the binarity of lenses impacted both the durations of the events and the maximum magnifications. This work was supported in part by the SAO intern program (NSF grant AST-9731923) and NASA contracts NAS8-39073 and NAS8-38248 (CXC).
USDA-ARS?s Scientific Manuscript database
This study investigated the effects of light sources and light intensity on growth performance, carcass characteristics, and welfare indices of heavy broilers (> 3.0 kg) in 4 trials with 2 replications per trial. A total of 960 1-d-old Ross × Ross 708 chicks (30 males/30 females/room) were randomly ...
NASA Technical Reports Server (NTRS)
Franke, John M.; Rhodes, David B.; Jones, Stephen B.; Dismond, Harriet R.
1992-01-01
A technique for synchronizing a pulse light source to charge coupled device cameras is presented. The technique permits the use of pulse light sources for continuous as well as stop action flow visualization. The technique has eliminated the need to provide separate lighting systems at facilities requiring continuous and stop action viewing or photography.
Homogeneous free-form directional backlight for 3D display
NASA Astrophysics Data System (ADS)
Krebs, Peter; Liang, Haowen; Fan, Hang; Zhang, Aiqin; Zhou, Yangui; Chen, Jiayi; Li, Kunyang; Zhou, Jianying
2017-08-01
Realization of a near perfect homogeneous secondary emission source for 3D display is proposed and demonstrated. The light source takes advantage of an array of free-form emission surface with a specially tailored light guiding structure, a light diffuser and Fresnel lens. A seamless and homogeneous directional emission is experimentally obtained which is essential for a high quality naked-eye 3D display.
Sadick, Neil; Sorhaindo, Lian
2005-05-01
Radiofrequency (RF) and combined RF light source technologies have established themselves as safe and effective treatment modalities for several dermatologic procedures, including skin tightening, hair and leg vein removal, acne scarring, skin rejuvenation, and wrinkle reduction. This article reviews the technology, clinical applications, and recent advances of RF and combined RF light/laser source technologies in aesthetic medicine.
A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Shumei; Zang, Qing, E-mail: zangq@ipp.ac.cn; Han, Xiaofeng
Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump systemmore » can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.« less
White organic light-emitting diodes with fluorescent tube efficiency.
Reineke, Sebastian; Lindner, Frank; Schwartz, Gregor; Seidler, Nico; Walzer, Karsten; Lüssem, Björn; Leo, Karl
2009-05-14
The development of white organic light-emitting diodes (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized. Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist, details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W(-1) (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates, and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W(-1) at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W(-1) if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W(-1). This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.
Silurian shale origin for light oil, condensate, and gas in Algeria and the Middle East
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zumberge, J.E.; Macko, S.
1996-01-01
Two of the largest gas fields in the world, Hasi R'Mel, Algeria and North Dome, Qatar, also contain substantial condensate and light oil reserves. Gas to source rock geochemical correlation is difficult due to the paucity of molecular parameters in the former although stable isotope composition is invaluable. However, by correlating source rocks with light oils and condensates associated with gas production using traditional geochemical parameters such as biomarkers and isotopes, a better understanding of the origin of the gas is achieved. Much of the crude oil in the Ghadames/Illizi Basins of Algeria has long been thought to have beenmore » generated from Silurian shales. New light oil discoveries in Saudi Arabia have also been shown to originate in basal euxinic Silurian shales. Key sterane and terpane biomarkers as well as the stable carbon isotopic compositions of the C15+ saturate and aromatic hydrocarbon fractions allow for the typing of Silurian-sourced, thermally mature light oils in Algeria and the Middle East. Even though biomarkers are often absent due to advanced thermal maturity, condensates can be correlated to the light oils using (1) carbon isotopes of the residual heavy hydrocarbon fractions, (2) light hydrocarbon distributions (e.g., C7 composition), and (3) compound specific carbon isotopic composition of the light hydrocarbons. The carbon isotopes of the C2-C4 gas components ran then be compared to the associated condensate and light oil isotopic composition.« less
Silurian shale origin for light oil, condensate, and gas in Algeria and the Middle East
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zumberge, J.E.; Macko, S.
Two of the largest gas fields in the world, Hasi R`Mel, Algeria and North Dome, Qatar, also contain substantial condensate and light oil reserves. Gas to source rock geochemical correlation is difficult due to the paucity of molecular parameters in the former although stable isotope composition is invaluable. However, by correlating source rocks with light oils and condensates associated with gas production using traditional geochemical parameters such as biomarkers and isotopes, a better understanding of the origin of the gas is achieved. Much of the crude oil in the Ghadames/Illizi Basins of Algeria has long been thought to have beenmore » generated from Silurian shales. New light oil discoveries in Saudi Arabia have also been shown to originate in basal euxinic Silurian shales. Key sterane and terpane biomarkers as well as the stable carbon isotopic compositions of the C15+ saturate and aromatic hydrocarbon fractions allow for the typing of Silurian-sourced, thermally mature light oils in Algeria and the Middle East. Even though biomarkers are often absent due to advanced thermal maturity, condensates can be correlated to the light oils using (1) carbon isotopes of the residual heavy hydrocarbon fractions, (2) light hydrocarbon distributions (e.g., C7 composition), and (3) compound specific carbon isotopic composition of the light hydrocarbons. The carbon isotopes of the C2-C4 gas components ran then be compared to the associated condensate and light oil isotopic composition.« less
Spectrally balanced chromatic landing approach lighting system
NASA Technical Reports Server (NTRS)
Chase, W. D. (Inventor)
1981-01-01
Red warning lights delineate the runway approach with additional blue lights juxtaposed with the red lights such that the red lights are chromatically balanced. The red/blue point light sources result in the phenomenon that the red lights appear in front of the blue lights with about one and one-half times the diameter of the blue. To a pilot observing these lights along a glide path, those red lights directly below appear to be nearer than the blue lights. For those lights farther away seen in perspective at oblique angles, the red lights appear to be in a position closer to the pilot and hence appear to be above the corresponding blue lights. This produces a very pronounced three dimensional effect referred to as chromostereopsis which provides valuable visual cues to enable the pilot to perceive his actual position above the ground and the actual distance to the runway.
Spectral quality affects disease development of three pathogens on hydroponically grown plants.
Schuerger, A C; Brown, C S
1997-02-01
Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 micromoles m-2 s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the effects of spectral quality on disease development when other wavelengths were included in the light source (MH-, 660/BF-, and 660/735-grown plants) were equivocal. These results demonstrate that spectral quality may be useful as a component of an integrated pest management program for future space-based controlled ecological life support systems.
Spectral quality affects disease development of three pathogens on hydroponically grown plants
NASA Technical Reports Server (NTRS)
Schuerger, A. C.; Brown, C. S.; Sager, J. C. (Principal Investigator)
1997-01-01
Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 micromoles m-2 s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the effects of spectral quality on disease development when other wavelengths were included in the light source (MH-, 660/BF-, and 660/735-grown plants) were equivocal. These results demonstrate that spectral quality may be useful as a component of an integrated pest management program for future space-based controlled ecological life support systems.
Yang, Yefeng; Pan, Chenhao; Zhong, Renhai; Pan, Jinming
2018-06-01
Although many experiments have been conducted to clarify the response of broiler chickens to light-emitting diode (LED) light, those published results do not provide a solid scientific basis for quantifying the response of broiler chickens. This study used a meta-analysis to establish light spectral models of broiler chickens. The results indicated that 455 to 495 nm blue LED light produced the greatest positive response in body weight by 10.66% (BW; P < 0.001) and 515 to 560 nm green LED light increased BW by 6.27% (P < 0.001) when compared with white light. Regression showed that the wavelength (455 to 660 nm) was negatively related to BW change of birds, with a decrease of about 4.9% BW for each 100 nm increase in wavelength (P = 0.002). Further analysis suggested that a combination of the two beneficial light sources caused a synergistic effect. BW was further increased in birds transferred either from green LED light to blue LED light (17.23%; P < 0.001) or from blue LED light to green LED light (17.52%; P < 0.001). Moreover, birds raised with a mixture of green and blue LED light showed a greater BW promotion (10.66%; P < 0.001) than those raised with green LED light (6.27%). A subgroup analysis indicated that BW response to monochromatic LED light was significant regardless of the genetic strain, sex, control light sources, light intensity and regime of LED light, environmental temperature, and dietary ME and CP (P > 0.05). However, there was an interaction between the FCR response to monochromatic LED light with those covariant factors (P < 0.05). Additionally, green and yellow LED light played a role in affecting the meat color, quality, and nutrition of broiler chickens. The results indicate that the optimal ratio of green × blue of mixed LED light or shift to green-blue of combined LED light may produce the optimized production performance, whereas the optimal ratio of green/yellow of mixed or combined LED light may result in the optimized meat quality.
Application of 3D printing to prototype and develop novel plant tissue culture systems.
Shukla, Mukund R; Singh, Amritpal S; Piunno, Kevin; Saxena, Praveen K; Jones, A Maxwell P
2017-01-01
Due to the complex process of designing and manufacturing new plant tissue culture vessels through conventional means there have been limited efforts to innovate improved designs. Further, development and availability of low cost, energy efficient LEDs of various spectra has made it a promising light source for plant growth in controlled environments. However, direct replacement of conventional lighting sources with LEDs does not address problems with uniformity, spectral control, or the challenges in conducting statistically valid experiments to assess the effects of light. Prototyping using 3D printing and LED based light sources could help overcome these limitations and lead to improved culture systems. A modular culture vessel design in which the fluence rate and spectrum of light are independently controlled was designed, prototyped using 3D printing, and evaluated for plant growth. This design is compatible with semi-solid and liquid based culture systems. Observations on morphology, chlorophyll content, and chlorophyll fluorescence based stress parameters from in vitro plants cultured under different light spectra with similar overall fluence rate indicated different responses in Nicotiana tabacum and Artemisia annua plantlets. This experiment validates the utility of 3D printing to design and test functional vessels and demonstrated that optimal light spectra for in vitro plant growth is species-specific. 3D printing was successfully used to prototype novel culture vessels with independently controlled variable fluence rate/spectra LED lighting. This system addresses several limitations associated with current lighting systems, providing more uniform lighting and allowing proper replication/randomization for experimental plant biology while increasing energy efficiency. A complete procedure including the design and prototyping of a culture vessel using 3D printing, commercial scale injection molding of the prototype, and conducting a properly replicated experiment are discussed. This open source design has the scope for further improvement and adaptation and demonstrates the power of 3D printing to improve the design of culture systems.
Detection of a Novel Mechanism of Acousto-Optic Modulation of Incoherent Light
Jarrett, Christopher W.; Caskey, Charles F.; Gore, John C.
2014-01-01
A novel form of acoustic modulation of light from an incoherent source has been detected in water as well as in turbid media. We demonstrate that patterns of modulated light intensity appear to propagate as the optical shadow of the density variations caused by ultrasound within an illuminated ultrasonic focal zone. This pattern differs from previous reports of acousto-optical interactions that produce diffraction effects that rely on phase shifts and changes in light directions caused by the acoustic modulation. Moreover, previous studies of acousto-optic interactions have mainly reported the effects of sound on coherent light sources via photon tagging, and/or the production of diffraction phenomena from phase effects that give rise to discrete sidebands. We aimed to assess whether the effects of ultrasound modulation of the intensity of light from an incoherent light source could be detected directly, and how the acoustically modulated (AOM) light signal depended on experimental parameters. Our observations suggest that ultrasound at moderate intensities can induce sufficiently large density variations within a uniform medium to cause measurable modulation of the intensity of an incoherent light source by absorption. Light passing through a region of high intensity ultrasound then produces a pattern that is the projection of the density variations within the region of their interaction. The patterns exhibit distinct maxima and minima that are observed at locations much different from those predicted by Raman-Nath, Bragg, or other diffraction theory. The observed patterns scaled appropriately with the geometrical magnification and sound wavelength. We conclude that these observed patterns are simple projections of the ultrasound induced density changes which cause spatial and temporal variations of the optical absorption within the illuminated sound field. These effects potentially provide a novel method for visualizing sound fields and may assist the interpretation of other hybrid imaging methods. PMID:25105880
[The Performance Analysis for Lighting Sources in Highway Tunnel Based on Visual Function].
Yang, Yong; Han, Wen-yuan; Yan, Ming; Jiang, Hai-feng; Zhu, Li-wei
2015-10-01
Under the condition of mesopic vision, the spectral luminous efficiency function is shown as a series of curves. Its peak wavelength and intensity are affected by light spectrum, background brightness and other aspects. The impact of light source to lighting visibility could not be carried out via a single optical parametric characterization. The reaction time of visual cognition is regard as evaluating indexes in this experiment. Under the condition of different speed and luminous environment, testing visual cognition based on vision function method. The light sources include high pressure sodium, electrodeless fluorescent lamp and white LED with three kinds of color temperature (the range of color temperature is from 1 958 to 5 537 K). The background brightness value is used for basic section of highway tunnel illumination and general outdoor illumination, its range is between 1 and 5 cd x m(-)2. All values are in the scope of mesopic vision. Test results show that: under the same condition of speed and luminance, the reaction time of visual cognition that corresponding to high color temperature of light source is shorter than it corresponding to low color temperature; the reaction time corresponding to visual target in high speed is shorter than it in low speed. At the end moment, however, the visual angle of target in observer's visual field that corresponding to low speed was larger than it corresponding to high speed. Based on MOVE model, calculating the equivalent luminance of human mesopic vision, which is on condition of different emission spectrum and background brightness that formed by test lighting sources. Compared with photopic vision result, the standard deviation (CV) of time-reaction curve corresponding to equivalent brightness of mesopic vision is smaller. Under the condition of mesopic vision, the discrepancy between equivalent brightness of different lighting source and photopic vision, that is one of the main reasons for causing the discrepancy of visual recognition. The emission spectrum peak of GaN chip is approximate to the wave length peak of efficiency function in photopic vision. The lighting visual effect of write LED in high color temperature is better than it in low color temperature and electrodeless fluorescent lamp. The lighting visual effect of high pressure sodium is weak. Because of its peak value is around the Na+ characteristic spectra.
Advanced Light Source Activity Report 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duque, Theresa; Greiner, Annette; Moxon, Elizabeth
2003-06-12
This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.
MEMS Incandescent Light Source
NASA Technical Reports Server (NTRS)
Tuma, Margaret; King, Kevin; Kim, Lynn; Hansler, Richard; Jones, Eric; George, Thomas
2001-01-01
A MEMS-based, low-power, incandescent light source is being developed. This light source is fabricated using three bonded chips. The bottom chip consists of a reflector on Silicon, the middle chip contains a Tungsten filament bonded to silicon and the top layer is a transparent window. A 25-micrometer-thick spiral filament is fabricated in Tungsten using lithography and wet-etching. A proof-of-concept device has been fabricated and tested in a vacuum chamber. Results indicate that the filament is electrically heated to approximately 2650 K. The power required to drive the proof-of-concept spiral filament to incandescence is 1.25 W. The emitted optical power is expected to be approximately 1.0 W with the spectral peak at 1.1 microns. The micromachining techniques used to fabricate this light source can be applied to other MEMS devices.
Optical sedimentation recorder
Bishop, James K.B.
2014-05-06
A robotic optical sedimentation recorder is described for the recordation of carbon flux in the oceans wherein both POC and PIC particles are captured at the open end of a submersible sampling platform, the captured particles allowed to drift down onto a collection plate where they can be imaged over time. The particles are imaged using three separate light sources, activated in sequence, one source being a back light, a second source being a side light to provide dark field illumination, and a third source comprising a cross polarized light source to illuminate birefringent particles. The recorder in one embodiment is attached to a buoyancy unit which is capable upon command for bringing the sedimentation recorder to a programmed depth below the ocean surface during recordation mode, and on command returning the unit to the ocean surface for transmission of recorded data and receipt of new instructions. The combined unit is provided with its own power source and is designed to operate autonomously in the ocean for extended periods of time.
Physico-chemical factors influencing spore germination in cyanobacterium Fischerella muscicola.
Mishra, Biranchi N; Kaushik, Manish S; Abraham, Gerard; Singh, Pawan K
2018-06-19
Spore (akinete) formation in the heterocystous and branched filamentous cyanobacterium Fischerella muscicola involves a significant increase in cell size and formation of several endospores in each of the cells. In present study, the physico-chemical factors (pH, light sources, nutrient deficiency, nitrogen sources, carbon sources, and growth hormones) affecting the germination of spores of F. muscicola were examined. Increase in spore germination frequency was detected above pH 8 with maximum germination (46.04%) recorded at pH 9, whereas a significant decrease in germination was observed at pH 6 when compared to control (pH 7.6). Spore germination was not observed at pH 5. Among light sources germination frequency followed the following order, that is, red light (39.9%) > white light (33.8%) > yellow light (3.4%) > green light (1.3%) whereas germination did not take place in dark and blue light. Ammonium chloride (NH 4 Cl) supported maximum (99.5%) germination frequency followed by calcium nitrate (Ca(NO 3 ) 2 ), potassium nitrate (KNO 3 ), and minimum germination was observed in urea. Nutrient (phosphorus, calcium, and magnesium) deficiency significantly enhanced the germination frequency with maximum increase in magnesium (Mg) deficient condition. Further, supplementation of carbon sources (glucose, fructose, and sodium acetate) and growth hormones (IAA and GA) also enhanced the germination frequency in this cyanobacterium. Therefore, it may be concluded that, those factors supporting higher germination frequency could be considered for successful production and use of this cyanobacterium in biofertilizer and other algal production technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
46 CFR 161.013-9 - Independent power source.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Independent power source. 161.013-9 Section 161.013-9...: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Electric Distress Light for Boats § 161.013-9 Independent power source. (a) Each independent power source must be capable of powering the light so that it meets the...
A parallel bubble column system for the cultivation of phototrophic microorganisms.
Havel, Jan; Franco-Lara, Ezequiel; Weuster-Botz, Dirk
2008-07-01
An incubator with up to 16 parallel bubble columns was equipped with artificial light sources assuring a light supply with a homogenous light spectrum directly above the bioreactors. Cylindrical light reflecting tubes were positioned around every single bubble column to avoid light scattering effects and to redirect the light from the top onto the cylindrical outer glass surface of each bubble column. The light reflecting tubes were equipped with light intensity filters to control the total light intensity for every single photo-bioreactor. Parallel cultivations of the unicellular obligate phototrophic cyanobacterium, Synechococcus PCC7942, were studied under different constant light intensities ranging from 20 to 102 microE m(-2)s(-1) at a constant humidified air flow rate supplemented with CO(2).
On the Intensity Profile of Electric Lamps and Light Bulbs
ERIC Educational Resources Information Center
Bacalla, Xavier; Salumbides, Edcel John
2013-01-01
We demonstrate that the time profile of the light intensity from domestic lighting sources exhibits simple yet interesting properties that foster lively student discussions. We monitor the light intensity of an industrial fluorescent lamp (also known as TL) and an incandescent bulb using a photodetector connected to an oscilloscope. The light…
A Simple, Small-Scale Lego Colorimeter with a Light-Emitting Diode (LED) Used as Detector
ERIC Educational Resources Information Center
Asheim, Jonas; Kvittingen, Eivind V.; Kvittingen, Lise; Verley, Richard
2014-01-01
This article describes how to construct a simple, inexpensive, and robust colorimeter from a few Lego bricks, in which one light-emitting diode (LED) is used as a light source and a second LED as a light detector. The colorimeter is suited to various grades and curricula.