Wave propagation in metamaterials mimicking the topology of a cosmic string
NASA Astrophysics Data System (ADS)
Fernández-Núñez, Isabel; Bulashenko, Oleg
2018-04-01
We study the interference and diffraction of light when it propagates through a metamaterial medium mimicking the spacetime of a cosmic string—a topological defect with curvature singularity. The phenomenon may look like a gravitational analogue of the Aharonov-Bohm effect, since the light propagates in a region where the Riemann tensor vanishes, being nonetheless affected by the non-zero curvature confined to the string core. We carry out the full-wave numerical simulation of the metamaterial medium and give the analytical interpretation of the results by use of the asymptotic theory of diffraction, which turns out to be in excellent agreement. In particular, we show that the main features of wave propagation in a medium with conical singularity can be explained by four-wave interference involving two geometrical optics and two diffracted waves.
Nonlinear propagation of light in Dirac matter.
Eliasson, Bengt; Shukla, P K
2011-09-01
The nonlinear interaction between intense laser light and a quantum plasma is modeled by a collective Dirac equation coupled with the Maxwell equations. The model is used to study the nonlinear propagation of relativistically intense laser light in a quantum plasma including the electron spin-1/2 effect. The relativistic effects due to the high-intensity laser light lead, in general, to a downshift of the laser frequency, similar to a classical plasma where the relativistic mass increase leads to self-induced transparency of laser light and other associated effects. The electron spin-1/2 effects lead to a frequency upshift or downshift of the electromagnetic (EM) wave, depending on the spin state of the plasma and the polarization of the EM wave. For laboratory solid density plasmas, the spin-1/2 effects on the propagation of light are small, but they may be significant in superdense plasma in the core of white dwarf stars. We also discuss extensions of the model to include kinetic effects of a distribution of the electrons on the nonlinear propagation of EM waves in a quantum plasma.
NASA Astrophysics Data System (ADS)
Partanen, Mikko; Tulkki, Jukka
2018-02-01
Conventional theories of electromagnetic waves in a medium assume that only the energy of the field propagates inside the medium. Consequently, they neglect the transport of mass density by the medium atoms. We have recently presented foundations of a covariant theory of light propagation in a nondispersive medium by considering a light wave simultaneously with the dynamics of the medium atoms driven by optoelastic forces [Phys. Rev. A 95, 063850 (2017)]. In particular, we have shown that the mass is transferred by an atomic mass density wave (MDW), which gives rise to mass-polariton (MP) quasiparticles, i.e., covariant coupled states of the field and matter having a nonzero rest mass. Another key observation of the mass-polariton theory of light is that, in common semiconductors, most of the momentum of light is transferred by moving atoms, e.g., 92% in the case of silicon. In this work, we generalize the MP theory of light for dispersive media and consider experimental measurement of the mass transferred by the MDW atoms when an intense light pulse propagates in a silicon fiber. In particular, we consider optimal intensity and time dependence of a Gaussian pulse and account for the breakdown threshold irradiance of the material. The optical shock wave property of the MDW, which propagates with the velocity of light instead of the velocity of sound, prompts for engineering of novel device concepts like very high frequency mechanical oscillators not limited by the acoustic cutoff frequency.
Nonlinear waves in subwavelength waveguide arrays: evanescent bands and the "phoenix soliton".
Peleg, Or; Segev, Mordechai; Bartal, Guy; Christodoulides, Demetrios N; Moiseyev, Nimrod
2009-04-24
We formulate wave propagation in arrays of subwavelength waveguides with sharp index contrasts and demonstrate the collapse of bands into evanescent modes and lattice solitons with superluminal phase velocity. We find a self-reviving soliton ("phoenix soliton") comprised of coupled forward- and backward-propagating light, originating solely from evanescent bands. In the linear regime, all Bloch waves comprising this beam decay, whereas a proper nonlinearity assembles them into a propagating self-trapped beam. Finally, we simulate the dynamics of such a beam and observe breakup into temporal pulses, indicating a new kind of slow-light gap solitons, trapped in time and in one transverse dimension.
NASA Astrophysics Data System (ADS)
Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli
2018-01-01
In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.
Modeling the propagation of electromagnetic waves over the surface of the human body
NASA Astrophysics Data System (ADS)
Vendik, I. B.; Vendik, O. G.; Kirillov, V. V.; Pleskachev, V. V.; Tural'chuk, P. A.
2016-12-01
The results of modeling and an experimental study of electromagnetic (EM) waves in microwave range propagating along the surface of the human body have been presented. The parameters of wave propagation, such as the attenuation and phase velocity, have also been investigated. The calculation of the propagation of EM waves by the numerical method FDTD (finite difference time domain), as well as the use of the analytical model of the propagation of the EM wave along flat and curved surfaces has been fulfilled. An experimental study on a human body has been conducted. It has been shown that creeping waves are slow and exhibit a noticeable dispersion, while the surface waves are dispersionless and propagate at the speed of light in free space. A comparison of the results of numerical simulation, analytical calculation, and experimental investigations at a frequency of 2.55 GHz has been carried out.
Superluminal and negative delay times in isotropic-anisotropic one-dimensional photonic crystal
NASA Astrophysics Data System (ADS)
Ouchani, N.; El Moussaouy, A.; Aynaou, H.; El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.
2017-11-01
In this work, we investigate the possibility of superluminal and negative delay times for electromagnetic wave propagation in a linear and passive periodic structure consisting of alternating isotropic and anisotropic media. This phenomenon is due to the birefringence of the anisotropic layers of the structure. By adjusting the orientations of these layers, the delay times of transmitted waves can be controlled from subluminality to superluminality and vice versa. Numerical results indicate that the apparent superluminal propagation of light occurs inside the photonic band-gaps when the principal axes of the anisotropic layers are parallel or perpendicular to the fixed axes. For other orientations of these layers, tunneling and superluminal regimes appear inside the photonic bandgaps and in the allowed bands for frequencies close to the transmission minima. The effect of the number of unit cells of the photonic crystal structure on the propagation of light with superluminal and negative delay times is also investigated. We show that the structure exhibits the Hartman effect in which the tunneling delay time of the electromagnetic wave through the photonic band-gap of the structure converges asymptotically to a finite value with increasing the number of layers. The Green's function approach has been used to derive the transmission and reflection coefficients, the density of states, and the delay times of electromagnetic waves propagating through the structure. The control of the magnitude and the sign of the delay time of light propagation represent a key point in slow and fast light technologies. The proposed structure in this study represents a new system for controlling the delay times of wave propagation without a need of active or non-linear media as well as lossy or asymmetric periodic structures.
On the Theory of High-Power Ultrashort Pulse Propagation in Raman-Active Media
NASA Technical Reports Server (NTRS)
Belenov, E. M.; Isakov, V. A.; Kanavin, A. P.; Smetanin, I. V.
1996-01-01
The propagation of an intense femtosecond pulse in a Raman-active medium is analyzed. An analytic solution which describes in explicit form the evolution of the light pulse is derived. The field of an intense light wave undergoes a substantial transformation as the wave propagates through the medium. The nature of this transformation can change over time scales comparable to the period of the optical oscillations. As a result, the pulse of sufficiently high energy divides into stretched and compressed domains where the field decreases and increases respectively.
NASA Astrophysics Data System (ADS)
Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli
2018-04-01
In this paper, a general theory of coherent population oscillation effect in an Er3+ -doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation at room temperature is presented. Using the numerical simulation, in case of dual frequency light waves (1480 nm and 980 nm) with co-propagation and counter-propagation, we analyze the effect of the pump optical power ratio (M) on the group speed of light. The group velocity of light can be varied with the change of M. We research the time delay and fractional delay in an Er3+-doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation. Compared to the methods of the single pumping, the larger time delay can be got by using the technique of dual-frequency laser pumped fiber with co-propagation and counter-propagation.
Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator.
Del Bino, Leonardo; Silver, Jonathan M; Stebbings, Sarah L; Del'Haye, Pascal
2017-02-21
Spontaneous symmetry breaking is a concept of fundamental importance in many areas of physics, underpinning such diverse phenomena as ferromagnetism, superconductivity, superfluidity and the Higgs mechanism. Here we demonstrate nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) states of light to circulate in the resonator. Equivalently, this effect can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. Our findings pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors.
Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator
Del Bino, Leonardo; Silver, Jonathan M.; Stebbings, Sarah L.; Del'Haye, Pascal
2017-01-01
Spontaneous symmetry breaking is a concept of fundamental importance in many areas of physics, underpinning such diverse phenomena as ferromagnetism, superconductivity, superfluidity and the Higgs mechanism. Here we demonstrate nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) states of light to circulate in the resonator. Equivalently, this effect can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. Our findings pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors. PMID:28220865
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braecher, T.; Sebastian, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern
2013-04-01
We present the generation of propagating backward volume (BV) spin waves in a T shaped Ni{sub 81}Fe{sub 19} microstructure. These waves are created from counterpropagating Damon Eshbach spin waves, which are excited using microstrip antennas. By employing Brillouin light scattering microscopy, we show how the phase relation between the counterpropagating waves determines the mode generated in the center of the structure, and prove its propagation inside the longitudinally magnetized part of the T shaped microstructure. This gives access to the effective generation of backward volume spin waves with full control over the generated transverse mode.
Laser-speckle-visibility acoustic spectroscopy in soft turbid media.
Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard
2014-01-01
We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.
Laser-speckle-visibility acoustic spectroscopy in soft turbid media
NASA Astrophysics Data System (ADS)
Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard
2014-01-01
We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.
Quantum Emulation of Gravitational Waves.
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-07-14
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.
Quantum Emulation of Gravitational Waves
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-01-01
Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801
Invisibility cloaking in the diffusive-light limit (presentation video)
NASA Astrophysics Data System (ADS)
Schittny, Robert; Kadic, Muamer; Wegener, Martin
2014-09-01
Albert Einstein's theory of relativity imposes stringent limitations to making macroscopic objects invisible with respect to electromagnetic light waves propagating in vacuum. These limitations are not relevant though for propagation of light in diffusive media like fog or milk because the effective energy speed is significantly lower than in vacuum due to multiple scattering events. Here, by exploiting the close mathematical analogy between the electrostatic or near-field limit of optics on the one hand and light diffusion on the other hand, we design, fabricate, and characterize simple core-shell cloaking structures for diffusive light propagation in cylindrical and spherical geometry.
QUANTUM CONTROL OF LIGHT: From Slow Light and FAST CARS to Nuclear γ-ray Spectroscopy
NASA Astrophysics Data System (ADS)
Scully, Marlan
2007-06-01
In recent work we have demonstrated strong coherent backward wave oscillation using forward propagating fields only. This surprising result is achieved by applying laser fields to an ultra-dispersive medium with proper chosen detunings to excite a molecular vibrational coherence that corresponds to a backward propagating wave [PRL, 97, 113001 (2006)]. The physics then has much in common with propagation of ultra-slow light. Applications of coherent scattering and remote sensing to the detection of bio and chemical pathogens (e.g., anthrax) via Coherent Anti-Raman Scattering together with Femtosecond Adaptive Spectroscopic Techniques (FAST CARS [Opt. Comm., 244, 423 (2005)]) will be discussed. Furthermore, the interplay between quantum optics (Dicke super and sub-radiant states) and nuclear physics (forward scattering of γ radiation) provides interesting problems and insights into the quantum control of scattered light [PRL, 96, 010501 (2005)].
Laser speckle visibility acoustic spectroscopy in soft turbid media
NASA Astrophysics Data System (ADS)
Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard
2014-03-01
We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light and the speckle visibility[2] is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam.[3] It may be applied to other kinds of acoustic wave in different forms of turbid soft matter, such as biological tissues, pastes or concentrated emulsions. Now at Université Lyon 1 (ILM).
Manipulation of propagating spin waves in straight and curved magnetic microstrips
NASA Astrophysics Data System (ADS)
Haldar, Arabinda; Liu, Hau-Jian; Schultheiss, Helmut; Vogt, Katrin; Hoffmann, Axel; Buchanan, Kristen
2012-02-01
The main challenges in realizing magnonics devices are the generation, manipulation and detection of spin waves, especially in metallic magnetic materials where the length scales are of interest for applications. We have studied the propagation of spin waves in transversely magnetized Permalloy (Py) microstrips of different shapes using micro-Brillouin light scattering. The Py stripe was 30-nm thick, several micrometers wide and >50 μm long. Spin waves were excited in the Py strip using a 2-μm wide antenna. We compare the spin wave propagation along a straight wire to the propagation along a magnetic microstrip with a smooth bend. We will also discuss the use of a current through a gold wire under the Permalloy to provide a local magnetic field to maintain a transverse magnetization around the bend.
NASA Astrophysics Data System (ADS)
Kozák, M.; Eckstein, T.; Schönenberger, N.; Hommelhoff, P.
2018-02-01
In the early days of quantum mechanics Kapitza and Dirac predicted that matter waves would scatter off the optical intensity grating formed by two counter-propagating light waves. This interaction, driven by the ponderomotive potential of the optical standing wave, was both studied theoretically and demonstrated experimentally for atoms and electrons. In the original version of the experiment, only the transverse momentum of particles was varied, but their energy and longitudinal momentum remained unchanged after the interaction. Here, we report on the generalization of the Kapitza-Dirac effect. We demonstrate that the energy of sub-relativistic electrons is strongly modulated on the few-femtosecond timescale via the interaction with a travelling wave created in vacuum by two colliding laser pulses at different frequencies. This effect extends the possibilities of temporal control of freely propagating particles with coherent light and can serve the attosecond ballistic bunching of electrons, or for the acceleration of neutral atoms or molecules by light.
Photonic metamaterials: a new class of materials for manipulating light waves
Iwanaga, Masanobu
2012-01-01
A decade of research on metamaterials (MMs) has yielded great progress in artificial electromagnetic materials in a wide frequency range from microwave to optical frequencies. This review outlines the achievements in photonic MMs that can efficiently manipulate light waves from near-ultraviolet to near-infrared in subwavelength dimensions. One of the key concepts of MMs is effective refractive index, realizing values that have not been obtained in ordinary solid materials. In addition to the high and low refractive indices, negative refractive indices have been reported in some photonic MMs. In anisotropic photonic MMs of high-contrast refractive indices, the polarization and phase of plane light waves were efficiently transformed in a well-designed manner, enabling remarkable miniaturization of linear optical devices such as polarizers, wave plates and circular dichroic devices. Another feature of photonic MMs is the possibility of unusual light propagation, paving the way for a new subfield of transfer optics. MM lenses having super-resolution and cloaking effects were introduced by exploiting novel light-propagating modes. Here, we present a new approach to describing photonic MMs definitely by resolving the electromagnetic eigenmodes. Two representative photonic MMs are addressed: the so-called fishnet MM slabs, which are known to have effective negative refractive index, and a three-dimensional MM based on a multilayer of a metal and an insulator. In these photonic MMs, we elucidate the underlying eigenmodes that induce unusual light propagations. Based on the progress of photonic MMs, the future potential and direction are discussed. PMID:27877512
Characteristic of laser diode beam propagation through a collimating lens.
Xu, Qiang; Han, Yiping; Cui, Zhiwei
2010-01-20
A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.
Light propagation in dentin: influence of microstructure on anisotropy.
Kienle, Alwin; Forster, Florian K; Diebolder, Rolf; Hibst, Raimund
2003-01-21
We investigated the dependence of light propagation in human dentin on its microstructure. The main scatterers in dentin are the tubules, the shape of which can be approximated as long cylinders. We calculated the scattering of electromagnetic waves by an infinitely long cylinder and applied the results in a Monte Carlo code that simulates the light propagation in a dentin slab considering multi-scattering. The theory was compared with goniometric measurements. A pronounced anisotropic scattering pattern was found experimentally and theoretically. In addition, intensity peaks were measured which are shown to be caused by light diffraction by the tubules.
Efficiency of surface plasmon excitation at the photonic crystal – metal interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsova, T I; Raspopov, N A
2015-11-30
We report the results of a theoretical investigation of light wave transformation in a one-dimensional photonic crystal. The scheme considered comprises an incident wave directed in parallel with layers of the photonic crystal under an assumption that the wave vector is far from a forbidden zone. Expressions for propagating and evanescent electromagnetic waves in a periodic medium of the photonic crystal are obtained. It is found that the transverse structure of the propagating wave comprises a strong constant component and a weak oscillating component with a period determined by that of the photonic crystal. On the contrary, the dependence ofmore » evanescent waves on transverse coordinates is presented by a strong oscillating component and a weak constant component. The process of transformation of propagating waves to evanescent waves at a crystal – metal interface is investigated. Parameters of the photonic crystal typical for synthetic opals are used in all numerical simulations. The theoretical approach elaborated yields in an explicit form the dependence of the amplitude of a generated surface wave on the period of the dielectric function modulation in the photonic crystal. The results obtained show that in the conditions close to plasmon resonance the amplitude of the surface wave may be on the order of or even exceed that of the initial incident wave. (light wave transformation)« less
NASA Astrophysics Data System (ADS)
Balac, Stéphane; Fernandez, Arnaud
2016-02-01
The computer program SPIP is aimed at solving the Generalized Non-Linear Schrödinger equation (GNLSE), involved in optics e.g. in the modelling of light-wave propagation in an optical fibre, by the Interaction Picture method, a new efficient alternative method to the Symmetric Split-Step method. In the SPIP program a dedicated costless adaptive step-size control based on the use of a 4th order embedded Runge-Kutta method is implemented in order to speed up the resolution.
Control of Wave Propagation and Effect of Kerr Nonlinearity on Group Index
NASA Astrophysics Data System (ADS)
Hazrat, Ali; Ziauddin; Iftikhar, Ahmed
2013-07-01
We use four-level atomic system and control the wave propagation via forbidden decay rate. The Raman gain process becomes dominant on electromagnetically induced transparency (EIT) medium by increasing the forbidden decay rate via increasing the number of atoms [G.S. Agarwal and T.N. Dey, Phys. Rev. A 74 (2006) 043805 and K. Harada, T. Kanbashi, and M. Mitsunaga, Phys. Rev. A 73 (2006) 013803]. The behavior of wave propagation is dramatically changed from normal (subluminal) to anomalous (superluminal) dispersion by increasing the forbidden decay rate. The system can also give a control over the group velocity of the light propagating through the medium via Kerr field.
NASA Astrophysics Data System (ADS)
Takahashi, K.; Higbie, P. R.; Baker, D. N.
1985-02-01
Properties of compressional Pc 5 waves as deduced from multiple-satellite observations at geosynchronous orbit are presented. The occurrence characteristics of the waves are determined, and the relation between variations in particle fluxes and magnetic field is examined. The spatiotemporal structure of the waves is considered, including the propagation perpendicular to the ambient magnetic field and the relation of the frequency characteristics to harmonic waves. It is demonstrated that the waves have large azimuthal wave numbers from 40 to 120, westward propagation at a typical velocity of 10 km/s, frequency roughly 25 percent of the second harmonic of the poloidal wave, and phase lag of 180 deg between the parallel and radial components of the wave magnetic field and + or -90 deg between the parallel and azimuthal components. These features are discussed in the light of existing theories of instabilities in the ring current plasma.
INTERFERENCE OF THE RUNNING WAVES AT LIGHT BRIDGES OF A SUNSPOT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, J. T.; Priya, T. G.; Yu, S. J.
The observations of chromospheric oscillations of two umbral light bridges (LBs) within a sunspot from NOAA Active Region 12127 are presented. It was found that the running umbral waves with periods of 2.2–2.6 minutes underwent very fast damping before approaching umbral boundaries, while those with higher periods (>2.6 minutes) could propagate outside umbrae. On two sides of each LB adjacent to umbrae, the cross-wavelet spectra displayed that the oscillations on them had a common significant power region with dominant frequencies of 2–6 minutes and phase differences of ∼90°. A counterstream of two running umbral waves in the 2–6 minute frequencymore » range propagated toward the LBs, where they encountered each other and gave rise to constructive or even destructive interference on the LBs. In addition, the velocity and density perturbations on the LBs were found in opposite phases suggesting that the perturbations were caused by the downward propagating waves.« less
Martínez, Alejandro; Míguez, Hernán; Sánchez-Dehesa, José; Martí, Javier
2005-05-30
This work presents a comprehensive analysis of electromagnetic wave propagation inside a two-dimensional photonic crystal in a spectral region in which the crystal behaves as an effective medium to which a negative effective index of refraction can be associated. It is obtained that the main plane wave component of the Bloch mode that propagates inside the photonic crystal has its wave vector k' out of the first Brillouin zone and it is parallel to the Poynting vector ( S' ? k'> 0 ), so light propagation in these composites is different from that reported for left-handed materials despite the fact that negative refraction can take place at the interface between air and both kinds of composites. However, wave coupling at the interfaces is well explained using the reduced wave vector ( k' ) in the first Brillouin zone, which is opposed to the energy flow, and agrees well with previous works dealing with negative refraction in photonic crystals.
Continuous wave room temperature external ring cavity quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.
2015-06-29
An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.
Laser Beam Propagation Through Inhomogeneous Media with Shock-Like Profiles: Modeling and Computing
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Ida, Nathan
1997-01-01
Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of radiowaves in atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and others. In recent years an increased interest has been developed in wave propagation through shocks in supersonic flows. Results of experiments conducted in the past few years has shown such interesting phenomena as a laser beam splitting and spreading. The paper describes a model constructed to propagate a laser beam through shock-like inhomogeneous media. Numerical techniques are presented to compute the beam through such media. The results of computation are presented, discussed, and compared with experimental data.
Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres
NASA Astrophysics Data System (ADS)
Tzang, Omer; Caravaca-Aguirre, Antonio M.; Wagner, Kelvin; Piestun, Rafael
2018-06-01
Recent progress in wavefront shaping has enabled control of light propagation inside linear media to focus and image through scattering objects. In particular, light propagation in multimode fibres comprises complex intermodal interactions and rich spatiotemporal dynamics. Control of physical phenomena in multimode fibres and its applications are in their infancy, opening opportunities to take advantage of complex nonlinear modal dynamics. Here, we demonstrate a wavefront shaping approach for controlling nonlinear phenomena in multimode fibres. Using a spatial light modulator at the fibre input, real-time spectral feedback and a genetic algorithm optimization, we control a highly nonlinear multimode stimulated Raman scattering cascade and its interplay with four-wave mixing via a flexible implicit control on the superposition of modes coupled into the fibre. We show versatile spectrum manipulations including shifts, suppression, and enhancement of Stokes and anti-Stokes peaks. These demonstrations illustrate the power of wavefront shaping to control and optimize nonlinear wave propagation.
Modes in light wave propagating in semiconductor laser
NASA Technical Reports Server (NTRS)
Manko, Margarita A.
1994-01-01
The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.
Collective behavior of light in vacuum
NASA Astrophysics Data System (ADS)
Briscese, Fabio
2018-03-01
Under the action of light-by-light scattering, light beams show collective behaviors in vacuum. For instance, in the case of two counterpropagating laser beams with specific initial helicity, the polarization of each beam oscillates periodically between the left and right helicity. Furthermore, the amplitudes and the corresponding intensities of each polarization propagate like waves. Such polarization waves might be observationally accessible in future laser experiments, in a physical regime complementary to those explored by particle accelerators.
Study on spectral features of terahertz wave propagating in the air
NASA Astrophysics Data System (ADS)
Kang, Shengwu
2018-03-01
Now, Terahertz technology has been widely used in many fields, which is mainly related to imaging detection. While the frequency range of the terahertz-wave is located between microwave and visible light, whether the existing visible light principle is applicable to terahertz-wave should be studied again. Through experiment, we measure the terahertz-wave field amplitude distribution on the receiving plane perpendicular to the direction of propagation in the air and picture out the energy distribution curve; derive an energy decay formula of terahertz wave based on the results; design a terahertz wavelength apparatus using the F-P interferometer theory; test the wavelength between 1 and 3 THz from the SIFIR-50THz laser of American Corehent company; finally analyze the related factors affecting the measurement precision including the beam incident angle, mechanical vibration, temperature fluctuation and the refractive index fluctuation.
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.; Buggele, Alvin E.
2002-01-01
A laser light scattering diagnostic for measurement of dynamic flow velocity at a point is described. The instrument is being developed for use in the study of propagating shock waves and detonation waves in pulse detonation engines under development at the NASA Glenn Research Center (GRC). The approach uses a Fabry-Perot interferometer to measure the Doppler shift of laser light scattered from small (submicron) particles in the flow. The high-speed detection system required to resolve the transient response as a shock wave crosses the probe volume uses fast response photodetectors, and a PC based data acquisition system. Preliminary results of measurements made in the GRC Mach 4, 10 by 25 cm supersonic wind tunnel are presented. Spontaneous condensation of water vapor in the flow is used as seed. The tunnel is supplied with continuous air flow at up to 45 psia and the flow is exhausted into the GRC laboratory-wide altitude exhaust system at pressures down to 0.3 psia.
Excising das All: Evolving Maxwell waves beyond Scri
NASA Technical Reports Server (NTRS)
vanMeter, James R.; Fiske, David R.; Misner, Charles W.
2006-01-01
We study the numerical propagation of waves through future null infinity in a conformally compactified spacetime. We introduce an artificial cosmological constant, which allows us some control over the causal structure near null infinity. We exploit this freedom to ensure that all light cones are tilted outward in a region near null infinity, which allows us to impose excision-style boundary conditions in our finite difference code. In this preliminary study we consider electromagnetic waves propagating in a static, conformally compactified spacetime.
Light focusing in the Anderson regime.
Leonetti, Marco; Karbasi, Salman; Mafi, Arash; Conti, Claudio
2014-07-29
Anderson localization is a regime in which diffusion is inhibited and waves (also electromagnetic waves) get localized. Here we exploit adaptive optics to achieve focusing in disordered optical fibres in the Anderson regime. By wavefront shaping and optimization, we observe the generation of a propagation-invariant beam, where light is trapped transversally by disorder, and show that Anderson localizations can be also excited by extended speckled beams. We demonstrate that disordered fibres allow a more efficient focusing action with respect to standard fibres in a way independent of their length, because of the propagation-invariant features and cooperative action of transverse localizations.
Bistability By Self-Reflection In A Saturable Absorber
NASA Astrophysics Data System (ADS)
Roso-Franco, Luis
1987-01-01
Propagation of laser light through a saturable absorber is theoretically studied. Computed steady state solutions of the Maxwell equations describing the unidimensional propagation of a plane monochromatic wave without introducing the slowly-varying envelope approximation are presented showing how saturation effects can influence the absorption of the field. At a certain range of refractive index and extintion coefficients, computed solutions display a very susprising behaviour, and a self-reflected wave appears inside the absorber. This can be useful for a new kind of biestable device, similar to a standard bistable cavity but with the back mirror self-induced by the light.
NASA Astrophysics Data System (ADS)
Nadkarni, Neel; Daraio, Chiara; Kochmann, Dennis M.
2014-08-01
We investigate the nonlinear dynamics of a periodic chain of bistable elements consisting of masses connected by elastic springs whose constraint arrangement gives rise to a large-deformation snap-through instability. We show that the resulting negative-stiffness effect produces three different regimes of (linear and nonlinear) wave propagation in the periodic medium, depending on the wave amplitude. At small amplitudes, linear elastic waves experience dispersion that is controllable by the geometry and by the level of precompression. At moderate to large amplitudes, solitary waves arise in the weakly and strongly nonlinear regime. For each case, we present closed-form analytical solutions and we confirm our theoretical findings by specific numerical examples. The precompression reveals a class of wave propagation for a partially positive and negative potential. The presented results highlight opportunities in the design of mechanical metamaterials based on negative-stiffness elements, which go beyond current concepts primarily based on linear elastic wave propagation. Our findings shed light on the rich effective dynamics achievable by nonlinear small-scale instabilities in solids and structures.
Understanding "Human" Waves: Exploiting the Physics in a Viral Video
ERIC Educational Resources Information Center
Ferrer-Roca, Chantal
2018-01-01
Waves are a relevant part of physics that students find difficult to grasp, even in those cases in which wave propagation kinematics can be visualized. This may hinder a proper understanding of sound, light or quantum physics phenomena that are explained using a wave model. So-called "human" waves, choreographed by people, have proved to…
A Feasibility Study on Generation of Acoustic Waves Utilizing Evanescent Light
NASA Astrophysics Data System (ADS)
Matsuya, I.; Matozaki, K.; Kosugi, A.; Ihara, I.
2014-06-01
A new approach of generating acoustic waves utilizing evanescent light is presented. The evanescent light is a non-propagating electromagnetic wave that exhibits exponential decay with distance from the surface at which the total internal reflection of light is formed. In this research, the evanescent light during total internal reflection at prism surface is utilized for generating acoustic waves in aluminium and the feasibility for ultrasonic measurements is discussed. Pulsed Nd:YAG laser with 0.36 J/cm2 power density is used and the incident angle during the total internal reflection is arranged to be 69.0° for generating the evanescent light. It has been demonstrated that the amplitude of the acoustic waves by means of evanescent light is about 1/14 as large as the one generated by the conventional pulsed laser. This reveals the possibility of using a laser ultrasonic technique with near-field optics.
Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors
NASA Astrophysics Data System (ADS)
Kraczek, Brent; Kanp, Jaroslaw
Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.
NASA Technical Reports Server (NTRS)
Balmain, K. G.; James, H. G.; Bantin, C. C.
1991-01-01
A recent space experiment confirmed sheath-wave propagation of a kilometer-long insulated wire in the ionosphere, oriented parallel to the Earth's magnetic field. This space tether experiment, Oedipus-A, showed a sheath-wave passband up to about 2 MHz and a phase velocity somewhat slower than the velocity of light in a vacuum, and also demonstrated both ease of wave excitation and low attenuation. The evidence suggests that, on any large structure in low Earth orbit, transient or continuous wave electromagnetic interference, once generated, could propagate over the structure via sheath waves, producing unwanted signal levels much higher than in the absence of the ambient plasma medium. Consequently, there is a need for a review of both electromagnetic interference/electromagnetic compatibility standards and ground test procedures as they apply to large structures in low Earth orbit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.
2011-01-04
We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency changemore » due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.« less
Rogue-wave bullets in a composite (2+1)D nonlinear medium.
Chen, Shihua; Soto-Crespo, Jose M; Baronio, Fabio; Grelu, Philippe; Mihalache, Dumitru
2016-07-11
We show that nonlinear wave packets localized in two dimensions with characteristic rogue wave profiles can propagate in a third dimension with significant stability. This unique behavior makes these waves analogous to light bullets, with the additional feature that they propagate on a finite background. Bulletlike rogue-wave singlet and triplet are derived analytically from a composite (2+1)D nonlinear wave equation. The latter can be interpreted as the combination of two integrable (1+1)D models expressed in different dimensions, namely, the Hirota equation and the complex modified Korteweg-de Vries equation. Numerical simulations confirm that the generation of rogue-wave bullets can be observed in the presence of spontaneous modulation instability activated by quantum noise.
Understanding ‘human’ waves: exploiting the physics in a viral video
NASA Astrophysics Data System (ADS)
Ferrer-Roca, Chantal
2018-01-01
Waves are a relevant part of physics that students find difficult to grasp, even in those cases in which wave propagation kinematics can be visualized. This may hinder a proper understanding of sound, light or quantum physics phenomena that are explained using a wave model. So-called ‘human’ waves, choreographed by people, have proved to be an advisable way to understand basic wave concepts. Videos are widely used as a teaching resource and can be of considerable help in order to watch and discuss ‘human’ waves provided their quality is reasonably good. In this paper we propose and analyse a video that went viral online and has been revealed to be a useful teaching resource for introductory physics students. It shows a unique and very complete series of wave propagations, including pulses with different polarizations and periodic waves that can hardly be found elsewhere. After a proposal on how to discuss the video qualitatively, a quantitative analysis is carried out (no video-tracker needed), including a determination of the main wave magnitudes such as period, wavelength and propagation speed.
NASA Astrophysics Data System (ADS)
Tseng, Snow H.; Chang, Shih-Hui
2018-04-01
Here we present a numerical simulation to analyze the effect of scattering on focusing light into closely-spaced twin peaks. The pseudospectral time-domain (PSTD) is implemented to model continuous-wave (CW) light propagation through a scattering medium. Simulations show that CW light can propagate through a scattering medium and focus into closely-spaced twin peaks. CW light of various wavelengths focusing into twin peaks with sub-diffraction spacing is simulated. In advance, light propagation through scattering media of various number densities is simulated to decipher the dependence of CW light focusing phenomenon on the scattering medium. The reported simulations demonstrate the feasibility of focusing CW light into twin peaks with sub-diffraction dimensions. More importantly, based upon numerical solutions of Maxwell’s equations, research findings show that the sub-diffraction focusing phenomenon can be achieved with scarce or densely-packed scattering media.
Entanglement of light-shift compensated atomic spin waves with telecom light.
Dudin, Y O; Radnaev, A G; Zhao, R; Blumoff, J Z; Kennedy, T A B; Kuzmich, A
2010-12-31
Entanglement of a 795 nm light polarization qubit and an atomic Rb spin-wave qubit for a storage time of 0.1 s is observed by measuring the violation of Bell's inequality (S=2.65±0.12). Long qubit storage times are achieved by pinning the spin wave in a 1064 nm wavelength optical lattice, with a magic-valued magnetic field superposed to eliminate lattice-induced dephasing. Four-wave mixing in a cold Rb gas is employed to perform light qubit conversion between near infrared (795 nm) and telecom (1367 nm) wavelengths, and after propagation in a telecom fiber, to invert the conversion process. Observed Bell inequality violation (S=2.66±0.09), at 10 ms storage, confirms preservation of memory-light entanglement through the two stages of light qubit frequency conversion.
Helicon mysteries: fitting a plane wave into a cylinder
NASA Astrophysics Data System (ADS)
Boswell, Rod
2011-10-01
Since the first reports in the 1960s, the dispersion of helicon waves in a plasma cylinder has been difficult to describe theoretically for axial wavelengths that are greater than the plasma radius. About 10 years ago, Breizman and Arefiev showed how radial density gradients make the plasma column similar to a coaxial cable, allowing the helicon waves to propagate below the cut-off frequency. The resulting dispersion relation is similar to that of a plane wave propagating parallel to the magnetic field. A few years later, Degeling et. al. presented experimental evidence demonstrating such a plane wave dispersion for a broad range of axial wave numbers. The reason lies in the decoupling of the Hall and electron inertial terms in the dispersion, the former describing the electromagnetic propagation and the latter the electrostatic propagation. Combining the experimental and theoretical results has recently thrown further light on this phenomenon that is applicable to both space and laboratory situations. Radially Localized Helicon Modes in Nonuniform Plasma, Boris N. Breizman and Alexey V. Arefiev, Phys. Rev. Letts. 84, 3863 (2000). Transitions from electrostatic to electromagnetic whistler wave excitation, A. W. Degeling, G. G. Borg and R. W. Boswell, Phys. Plasmas, 11, 2144, (2004).
Propagation effects in the generation process of high-order vortex harmonics.
Zhang, Chaojin; Wu, Erheng; Gu, Mingliang; Liu, Chengpu
2017-09-04
We numerically study the propagation of a Laguerre-Gaussian beam through polar molecular media via the exact solution of full-wave Maxwell-Bloch equations where the rotating-wave and slowly-varying-envelope approximations are not included. It is found that beyond the coexistence of odd-order and even-order vortex harmonics due to inversion asymmetry of the system, the light propagation effect results in the intensity enhancement of a high-order vortex harmonics. Moreover, the orbital momentum successfully transfers from the fundamental laser driver to the vortex harmonics which topological charger number is directly proportional to its order.
Design of an Optical System for Phase Retrieval based on a Spatial Light Modulator
NASA Astrophysics Data System (ADS)
Falldorf, Claas; Agour, Mostafa; von Kopylow, Christoph; Bergmann, Ralf B.
2010-04-01
We present an optical configuration for phase retrieval from a sequence of intensity measurements. The setup is based on a 4f-configuration with a phase modulating spatial light modulator (SLM) located in the Fourier domain. The SLM is used to modulate the incoming light with the transfer function of propagation, thus a sequence of propagated representations of the subjected wave field can be captured across a common sensor plane. The main advantage of this technique is the greatly reduced measurement time, since no mechanical adjustment of the camera sensor is required throughout the measurement process. The treatise is focused on the analysis of the wave field in the sensor domain. From the discussion a set of parameters is derived in order to minimize disturbing effects arising from the discrete nature of the SLM. Finally, the big potential of this approach is demonstrated by means of experimental investigations with regard to wave field sensing.
Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimine, Isao; Iida, Ryugo; Shimura, Tsutomu
A phase-controlled spin wave was non-thermally generated in bismuth-doped rare-earth iron garnet by linearly polarized light pulses. We controlled the initial phase of the spin wave continuously within a range of 180° by changing the polarization azimuth of the excitation light. The azimuth dependences of the initial phase and amplitude of the spin wave were attributed to a combination of the inverse Cotton-Mouton effect and photoinduced magnetic anisotropy. Temporally and spatially resolved spin wave propagation was observed with a CCD camera, and the waveform was in good agreement with calculations. A nonlinear effect of the spin excitation was observed formore » excitation fluences higher than 100 mJ/cm{sup 2}.« less
NASA Astrophysics Data System (ADS)
Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje
2012-10-01
We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.
Consequences of Spatial Antisymmetry on Light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascarenhas, Angelo; Fluegel, Brian
2016-12-21
Light propagation in two and three dimensional lattices for which the index of refraction exhibits spatial antisymmetry is investigated in the ray and photonic crystal regimes. In these regimes, all the two dimensional antisymmetry groups for which light fails to propagate are identified. In the ray-regime, it is observed that in tilings described by 7 of the 46 two dimensional antisymmetric groups, light is localized within a fundamental domain and does not propagate through the tiling, in contrast to the behavior in the other 39 groups. To understand the above phenomenon, a rule based on the number of anti-mirror planesmore » passing through a single Bravais lattice point is derived. In the wave regime for photonic crystals, it is observed that there are no propagating eigensolutions for the same 7 tilings as above, whereas propagating solutions and energy pass band dispersion curves can be obtained for the other 39 groups. The reasons underlying this peculiar behavior are analyzed using the topological approach for modeling flow in dynamical billiards to shed light on the applicability of Bloch's theorem for these periodic antisymmetric lattices.« less
Laser Light Scattering by Shock Waves
NASA Technical Reports Server (NTRS)
Panda, J.; Adamovsky, G.
1995-01-01
Scattering of coherent light as it propagates parallel to a shock wave, formed in front of a bluff cylindrical body placed in a supersonic stream, is studied experimentally and numerically. Two incident optical fields are considered. First, a large diameter collimated beam is allowed to pass through the shock containing flow. The light intensity distribution in the resultant shadowgraph image, measured by a low light CCD camera, shows well-defined fringes upstream and downstream of the shadow cast by the shock. In the second situation, a narrow laser beam is brought to a grazing incidence on the shock and the scattered light, which appears as a diverging sheet from the point of interaction, is visualized and measured on a screen placed normal to the laser path. Experiments are conducted on shocks formed at various free-stream Mach numbers, M, and total pressures, P(sub 0). It is found that the widths of the shock shadows in a shadowgraph image become independent of M and P(sub 0) when plotted against the jump in the refractive index, (Delta)n, created across the shock. The total scattered light measured from the narrow laser beam and shock interaction also follows the same trend. In the numerical part of the study, the shock is assumed to be a 'phase object', which introduces phase difference between the upstream and downstream propagating parts of the light disturbances. For a given shape and (Delta)n of the bow shock the phase and amplitude modulations are first calculated by ray tracing. The wave front is then propagated to the screen using the Fresnet diffraction equation. The calculated intensity distribution, for both of the incident optical fields, shows good agreement with the experimental data.
Radiating dispersive shock waves in non-local optical media
El, Gennady A.
2016-01-01
We consider the step Riemann problem for the system of equations describing the propagation of a coherent light beam in nematic liquid crystals, which is a general system describing nonlinear wave propagation in a number of different physical applications. While the equation governing the light beam is of defocusing nonlinear Schrödinger (NLS) equation type, the dispersive shock wave (DSW) generated from this initial condition has major differences from the standard DSW solution of the defocusing NLS equation. In particular, it is found that the DSW has positive polarity and generates resonant radiation which propagates ahead of it. Remarkably, the velocity of the lead soliton of the DSW is determined by the classical shock velocity. The solution for the radiative wavetrain is obtained using the Wentzel–Kramers–Brillouin approximation. It is shown that for sufficiently small initial jumps the nematic DSW is asymptotically governed by a Korteweg–de Vries equation with the fifth-order dispersion, which explicitly shows the resonance generating the radiation ahead of the DSW. The constructed asymptotic theory is shown to be in good agreement with the results of direct numerical simulations. PMID:27118911
Cosmological bound from the neutron star merger GW170817 in scalar-tensor and F(R) gravity theories
NASA Astrophysics Data System (ADS)
Nojiri, Shin'ichi; Odintsov, Sergei D.
2018-04-01
We consider the evolution of cosmological gravitational waves in scalar-tensor theory and F (R) gravity theory as typical models of the modified gravity. Although the propagation speed is not changed from the speed of light, the propagation phase changes when we compare the propagation in these modified gravity theories with the propagation in the ΛCDM model. The phase change might be detected in future observations.
Observation of Wave Packet Distortion during a Negative-Group-Velocity Transmission
Ye, Dexin; Salamin, Yannick; Huangfu, Jiangtao; Qiao, Shan; Zheng, Guoan; Ran, Lixin
2015-01-01
In Physics, causality is a fundamental postulation arising from the second law of thermodynamics. It states that, the cause of an event precedes its effect. In the context of Electromagnetics, the relativistic causality limits the upper bound of the velocity of information, which is carried by electromagnetic wave packets, to the speed of light in free space (c). In anomalously dispersive media (ADM), it has been shown that, wave packets appear to propagate with a superluminal or even negative group velocity. However, Sommerfeld and Brillouin pointed out that the “front” of such wave packets, known as the initial point of the Sommerfeld precursor, always travels at c. In this work, we investigate the negative-group-velocity transmission of half-sine wave packets. We experimentally observe the wave front and the distortion of modulated wave packets propagating with a negative group velocity in a passive artificial ADM in microwave regime. Different from previous literature on the propagation of superluminal Gaussian packets, strongly distorted sinusoidal packets with non-superluminal wave fronts were observed. This result agrees with Brillouin's assertion, i.e., the severe distortion of seemingly superluminal wave packets makes the definition of group velocity physically meaningless in the anomalously dispersive region. PMID:25631746
NASA Astrophysics Data System (ADS)
Stilgoe, Alexander B.; Nieminen, Timo A.; Rubinsztein-Dunlop, Halina
2015-12-01
Non-paraxial theories of wave propagation are essential to model the interaction of highly focused light with matter. Here we investigate the energy, momentum and propagation of the Laguerre-, Hermite- and Ince-Gaussian solutions (LG, HG, and IG) of the paraxial wave equation in an apertured non-paraxial regime. We investigate the far-field relationships between the LG, HG, and IG solutions and the vector spherical wave function (VSWF) solutions of the vector Helmholtz wave equation. We investigate the convergence of the VSWF and the various Gaussian solutions in the presence of an aperture. Finally, we investigate the differences in linear and angular momentum evaluated in the paraxial and non-paraxial regimes. The non-paraxial model we develop can be applied to calculations of the focusing of high-order Gaussian modes in high-resolution microscopes. We find that the addition of an aperture in high numerical aperture optical systems does not greatly affect far-field properties except when the beam is significantly clipped by an aperture. Diffraction from apertures causes large distortions in the near-field and will influence light-matter interactions. The method is not limited to a particular solution of the paraxial wave equation. Our model is constructed in a formalism that is commonly used in scattering calculations. It is thus applicable to optical trapping and other optical investigations of matter.
Slot-grating flat lens for telecom wavelengths.
Pugh, Jonathan R; Stokes, Jamie L; Lopez-Garcia, Martin; Gan, Choon-How; Nash, Geoff R; Rarity, John G; Cryan, Martin J
2014-07-01
We present a stand-alone beam-focusing flat lens for use in the telecommunications wavelength range. Light incident on the back surface of the lens propagates through a subwavelength aperture and is heavily diffracted on exit and partially couples into a surface plasmon polariton and a surface wave propagating along the surface of the lens. Interference between the diffracted wave and re-emission from a grating patterned on the surface produces a highly collimated beam. We show for the first time a geometry at which a lens of this type can be used at telecommunication wavelengths (λ=1.55 μm) and identify the light coupling and re-emission mechanisms involved. Measured beam profile results at varying incident wavelengths show excellent agreement with Lumerical FDTD simulation results.
NASA Astrophysics Data System (ADS)
Aparanji, Santosh; Balaswamy, V.; Arun, S.; Supradeepa, V. R.
2018-02-01
In this work, we report and analyse the surprising observation of a rainbow of visible colors, spanning 390nm to 620nm, in silica-based, Near Infrared, continuous-wave, cascaded Raman fiber lasers. The cascaded Raman laser is pumped at 1117nm at around 200W and at full power we obtain 100 W at 1480nm. With increasing pump power at 1117nm, the fiber constituting the Raman laser glows in various hues along its length. From spectroscopic analysis of the emitted visible light, it was identified to be harmonic and sum-frequency components of various locally propagating wavelength components. In addition to third harmonic components, surprisingly, even 2nd harmonic components were observed. Despite being a continuous-wave laser, we expect the phase-matching occurring between the core-propagating NIR light with the cladding-propagating visible wavelengths and the intensity fluctuations characteristic of Raman lasers to have played a major role in generation of visible light. In addition, this surprising generation of visible light provides us a powerful non-contact method to deduce the spectrum of light propagating in the fiber. Using static images of the fiber captured by a standard visible camera such as a DSLR, we demonstrate novel, image-processing based techniques to deduce the wavelength component propagating in the fiber at any given spatial location. This provides a powerful diagnostic tool for both length and power resolved spectral analysis in Raman fiber lasers. This helps accurate prediction of the optimal length of fiber required for complete and efficient conversion to a given Stokes wavelength.
Tunable VO2/Au Hyperbolic Metamaterial
2016-02-12
phenomenon having a potential of advancing the control of light-matter interaction . Metamaterials are engineered composite materials containing sub...ellipsoids15 – the phenomenon known as hyperbolic dispersion. Hyperbolic metamaterials can propagate light waves with very large wave vectors and have a...incidence angles equal to 15°, 45° and 65°. The spectra measured at 45o are depicted in Fig. 6(a). The wavy pattern in the spectra is due to the parasitic
Evaluation of Acoustic Propagation Paths into the Human Head
2005-04-01
pressure amplitude) via the alternate propagation paths. A 3D finite-element solid mesh was constructed using a digital image database of an adult...optics, rays are used to depict the path or paths taken as a light wave travels through a lens. However, in optics, the eikonal equation can be solved
Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration
NASA Astrophysics Data System (ADS)
Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty
2018-03-01
An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.
Goldberg, Mati; De Pittà, Maurizio; Volman, Vladislav; Berry, Hugues; Ben-Jacob, Eshel
2010-01-01
A new paradigm has recently emerged in brain science whereby communications between glial cells and neuron-glia interactions should be considered together with neurons and their networks to understand higher brain functions. In particular, astrocytes, the main type of glial cells in the cortex, have been shown to communicate with neurons and with each other. They are thought to form a gap-junction-coupled syncytium supporting cell-cell communication via propagating Ca2+ waves. An identified mode of propagation is based on cytoplasm-to-cytoplasm transport of inositol trisphosphate (IP3) through gap junctions that locally trigger Ca2+ pulses via IP3-dependent Ca2+-induced Ca2+ release. It is, however, currently unknown whether this intracellular route is able to support the propagation of long-distance regenerative Ca2+ waves or is restricted to short-distance signaling. Furthermore, the influence of the intracellular signaling dynamics on intercellular propagation remains to be understood. In this work, we propose a model of the gap-junctional route for intercellular Ca2+ wave propagation in astrocytes. Our model yields two major predictions. First, we show that long-distance regenerative signaling requires nonlinear coupling in the gap junctions. Second, we show that even with nonlinear gap junctions, long-distance regenerative signaling is favored when the internal Ca2+ dynamics implements frequency modulation-encoding oscillations with pulsating dynamics, while amplitude modulation-encoding dynamics tends to restrict the propagation range. As a result, spatially heterogeneous molecular properties and/or weak couplings are shown to give rise to rich spatiotemporal dynamics that support complex propagation behaviors. These results shed new light on the mechanisms implicated in the propagation of Ca2+ waves across astrocytes and the precise conditions under which glial cells may participate in information processing in the brain. PMID:20865153
Effects of surface roughness and absorption on light propagation in graded-profile waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danilenko, S S; Osovitskii, A N
2011-06-30
This paper examines the effects of surface roughness and absorption on laser light propagation in graded-profile waveguiding structures. We derive analytical expressions for the scattering and absorption coefficients of guided waves and analyse these coefficients in relation to parameters of the waveguiding structure and the roughness of its boundary. A new approach is proposed to measuring roughness parameters of precision dielectric surfaces. Experimental evidence is presented which supports the main conclusions of the theory. (integraled-optical waweguides)
Improvement of a Nonlinear Internal Wave Tactical Decision Aid
2009-01-01
solitons originating in the Luzon Strait and propagating across South China Sea as well as the solitons in the Sulu and Celebes Seas. The prediction...lines are wave observations from moorings B1 ( dark ) and P1 (light) IMPACT/APPLICATIONS An empirical model for estimating the geographic
NASA Astrophysics Data System (ADS)
Kuramitsu, Y.; Nakanii, N.; Kondo, K.; Sakawa, Y.; Mori, Y.; Miura, E.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Takeda, K.; Tampo, M.; Kodama, R.; Kitagawa, Y.; Mima, K.; Tanaka, K. A.; Hoshino, M.; Takabe, H.
2011-02-01
Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.
Slow-Mode MHD Wave Penetration into a Coronal Null Point due to the Mode Transmission
NASA Astrophysics Data System (ADS)
Afanasyev, Andrey N.; Uralov, Arkadiy M.
2016-11-01
Recent observations of magnetohydrodynamic oscillations and waves in solar active regions revealed their close link to quasi-periodic pulsations in flaring light curves. The nature of that link has not yet been understood in detail. In our analytical modelling we investigate propagation of slow magnetoacoustic waves in a solar active region, taking into account wave refraction and transmission of the slow magnetoacoustic mode into the fast one. The wave propagation is analysed in the geometrical acoustics approximation. Special attention is paid to the penetration of waves in the vicinity of a magnetic null point. The modelling has shown that the interaction of slow magnetoacoustic waves with the magnetic reconnection site is possible due to the mode transmission at the equipartition level where the sound speed is equal to the Alfvén speed. The efficiency of the transmission is also calculated.
NASA Astrophysics Data System (ADS)
Diaz, A.; Ramos, J. G.; Friedman, J. S.
2017-09-01
We developed a web-based instructional and research tool that demonstrates the behavior of electromagnetic waves as they propagate through a homogenous medium and through an interface where the second medium can be characterized by an effective complex permittivity and permeability. Either p- or s-polarization wave components can be chosen and the graphical interface includes 2D wave and 3D component representations. The program enables the study of continuity of electromagnetic components, critical angle, Brewster angle, absorption and amplification, behavior of light in sub-unity and negative-index materials, Poynting vector and phase velocity behavior, and positive and negative Goos- Hänchen shifts.
NASA Astrophysics Data System (ADS)
Aksenova, E. V.; Karetnikov, A. A.; Kovshik, A. P.; Krainyukov, E. S.; Svanidze, A. V.
2017-05-01
The specific features of light transmission in a cholesteric liquid crystal (LC) cell with a director rotated by 90° have been investigated. In this structure, where a light wave is incident at a large angle with respect to the LC surface, the light is reflected (refracted) in the LC layer near the opposite boundary. It is shown that the application of an electric field changes the character of extraordinary wave refraction, as a result of which light starts passing through a cell. The transmission threshold voltage is determined, and its dependence on the angle of incidence of light is obtained. The dependence of the transmitted-light intensity on the voltage across the cell is obtained as well. The same dependences are also derived by numerical calculations with allowance for the turning points and extinction.
General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies
NASA Technical Reports Server (NTRS)
Kopeikin, Sergei
2003-01-01
The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.
NASA Astrophysics Data System (ADS)
Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid
2017-12-01
Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ˜600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ˜0.25 s/excitation source.
NASA Astrophysics Data System (ADS)
Temkin, Richard J.
Recent advances in IR and mm-wave (MMW) physics, astrophysics, devices, and applications are examined in reviews and reports. Sections are devoted to MMW sources, MMW modulation of light, MMW antennas, FELs, MMW optical technology, astronomy, MMW systems, microwave-optical interactions, MMW waveguides, MMW detectors and mixers, plasma diagnostics, and atmospheric physics. Also considered are gyrotrons, guided propagation, high-Tc superconductors, sub-MMW detectors and related devices, ICs, near-MMW measurements and techniques, lasers, material characterization, semiconductors, and atmospheric propagation.
Radiation from a current filament driven by a traveling wave
NASA Technical Reports Server (NTRS)
Levine, D. M.; Meneghini, R.
1976-01-01
Solutions are presented for the electromagnetic fields radiated by an arbitrarily oriented current filament located above a perfectly conducting ground plane and excited by a traveling current wave. Both an approximate solution, valid in the fraunhofer region of the filament and predicting the radiation terms in the fields, and an exact solution, which predicts both near and far field components of the electromagnetic fields, are presented. Both solutions apply to current waveforms which propagate along the channel but are valid regardless of the actual waveshape. The exact solution is valid only for waves which propagate at the speed of light, and the approximate solution is formulated for arbitrary velocity of propagation. The spectrum-magnitude of the fourier transform-of the radiated fields is computed by assuming a compound exponential model for the current waveform. The effects of channel orientation and length, as well as velocity of propagation of the current waveform and location of the observer, are discussed. It is shown that both velocity of propagation and an effective channel length are important in determining the shape of the spectrum.
Impact of wave propagation delay on latency in optical communication systems
NASA Astrophysics Data System (ADS)
Kawanishi, Tetsuya; Kanno, Atsushi; Yoshida, Yuki; Kitayama, Ken-ichi
2012-12-01
Latency is an important figure to describe performance of transmission systems for particular applications, such as data transfer for earthquake early warning, transaction for financial businesses, interactive services such as online games, etc. Latency consists of delay due to signal processing at nodes and transmitters, and of signal propagation delay due to propagation of electromagnetic waves. The lower limit of the latency in transmission systems using conventional single mode fibers (SMFs) depends on wave propagation speed in the SMFs which is slower than c. Photonic crystal fibers, holly fibers and large core fibers can have low effective refractive indices, and can transfer light faster than in SMFs. In free-space optical systems, signals propagate with the speed c, so that the latency could be smaller than in optical fibers. For example, LEO satellites would transmit data faster than optical submarine cables, when the transmission distance is longer than a few thousand kilometers. This paper will discuss combination of various transmission media to reduce negative impact of the latency, as well as applications of low-latency systems.
Nonlinear ring resonator: spatial pattern generation
NASA Astrophysics Data System (ADS)
Ivanov, Vladimir Y.; Lachinova, Svetlana L.; Irochnikov, Nikita G.
2000-03-01
We consider theoretically spatial pattern formation processes in a unidirectional ring cavity with thin layer of Kerr-type nonlinear medium. Our method is based on studying of two coupled equations. The first is a partial differential equation for temporal dynamics of phase modulation of light wave in the medium. It describes nonlinear interaction in the Kerr-type lice. The second is a free propagation equation for the intracavity field complex amplitude. It involves diffraction effects of light wave in the cavity.
Photon mass drag and the momentum of light in a medium
NASA Astrophysics Data System (ADS)
Partanen, Mikko; Häyrynen, Teppo; Oksanen, Jani; Tulkki, Jukka
2017-06-01
Conventional theories of electromagnetic waves in a medium assume that the energy propagating with the light pulse in the medium is entirely carried by the field. Thus, the possibility that the optical force field of the light pulse would drive forward an atomic mass density wave (MDW) and the related kinetic and elastic energies is neglected. In this work, we present foundations of a covariant theory of light propagation in a medium by considering a light wave simultaneously with the dynamics of the medium atoms driven by optoelastic forces between the induced dipoles and the electromagnetic field. We show that a light pulse having a total electromagnetic energy ℏ ω propagating in a nondispersive medium transfers a mass equal to δ m =(n2-1 ) ℏ ω /c2 , where n is the refractive index. MDW, which carries this mass, consists of atoms, which are more densely spaced inside the light pulse as a result of the field-dipole interaction. We also prove that the transfer of mass with the light pulse, the photon mass drag effect, gives an essential contribution to the total momentum of the light pulse, which becomes equal to the Minkowski momentum pM=n ℏ ω /c . The field's share of the momentum is the Abraham momentum pA=ℏ ω /(n c ) , while the difference pM-pA is carried by MDW. Due to the coupling of the field and matter, only the total momentum of the light pulse and the transferred mass δ m can be directly measured. Thus, our theory gives an unambiguous physical meaning to the Abraham and Minkowski momenta. We also show that to solve the centenary Abraham-Minkowski controversy of the momentum of light in a nondispersive medium in a way that is consistent with Newton's first law, one must account for the mass transfer effect. We derive the photon mass drag effect using two independent but complementary covariant models. In the mass-polariton (MP) quasiparticle approach, we consider the light pulse as a coupled state between the photon and matter, isolated from the rest of the medium. The momentum and the transferred mass of MP follow unambiguously from the Lorentz invariance and the fundamental conservation laws of nature. To enable the calculation of the mass and momentum distribution of a light pulse, we have also generalized the electrodynamics of continuous media to account for the space- and time-dependent optoelastic dynamics of the medium driven by the field-dipole forces. In this optoelastic continuum dynamics (OCD) approach, we obtain with an appropriate space-time discretization a numerically accurate solution of the Newtonian continuum dynamics of the medium when the light pulse is propagating in it. The OCD simulations of a Gaussian light pulse propagating in a diamond crystal give the same momentum pM and the transferred mass δ m for the light pulse as the MP quasiparticle approach. Our simulations also show that, after photon transmission, some nonequilibrium of the mass distribution is left in the medium. Since the elastic forces are included in our simulations on equal footing with the optical forces, our simulations also depict how the mass and thermal equilibria are reestablished by elastic waves. In the relaxation process, a small amount of photon energy is dissipated into lattice heat. We finally discuss a possibility of an optical waveguide setup for experimental measurement of the transferred mass of the light pulse. Our main result that a light pulse is inevitably associated with an experimentally measurable mass is a fundamental change in our understanding of light propagation in a medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strassburger, E.; Patel, P.; McCauley, J. W.
An Edge-on Impact (EOI) technique, developed at the Ernst-Mach-Institute (EMI), coupled with a Cranz-Schardin high-speed camera, has been successfully utilized to visualize dynamic fracture in many brittle materials. In a typical test, the projectile strikes one edge of a specimen and damage formation and fracture propagation is recorded during the first 20 {mu}s after impact. In the present study, stress waves and damage propagation in fused silica and AlON were examined by means of two modified Edge-on Impact arrangements. In one arrangement, fracture propagation was observed simultaneously in side and top views of the specimens by means of two Cranz-Schardinmore » cameras. In another arrangement, the photographic technique was modified by placing the specimen between crossed polarizers and using the photo-elastic effect to visualize the stress waves. Pairs of impact tests at approximately equivalent velocities were carried out in transmitted plane (shadowgraphs) and crossed polarized light.« less
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Mironov, V. A.; Skobelev, S. A.
2017-01-01
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the "kaleidoscopic" picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.
Heebner, John E [Livermore, CA
2010-08-03
In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected. In another general embodiment, a system for ultrafast optical signal recording is provided comprising a waveguide including a plurality of wave guiding layers, an optical control source positioned to propagate an optical control signal towards the waveguide in a diagonal orientation relative to a top of the waveguide, at least one optical input source positioned to input an optical input signal into at least a first and a second wave guiding layer of the waveguide, and a detector for detecting at least one interference pattern output from the waveguide, where at least one of the interference patterns results from a combination of the optical input signals input into the first and the second wave guiding layer. Furthermore, propagation of the optical control signal is used to influence at least a portion of the optical input signal propagating through the first wave guiding layer of the waveguide.
Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity
NASA Astrophysics Data System (ADS)
Das, S.; Sahoo, T.; Meylan, M. H.
2018-01-01
The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.
Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity.
Das, S; Sahoo, T; Meylan, M H
2018-01-01
The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.
Holography of Wi-fi Radiation.
Holl, Philipp M; Reinhard, Friedemann
2017-05-05
Wireless data transmission systems such as wi-fi or Bluetooth emit coherent light-electromagnetic waves with a precisely known amplitude and phase. Propagating in space, this radiation forms a hologram-a two-dimensional wave front encoding a three-dimensional view of all objects traversed by the light beam. Here we demonstrate a scheme to record this hologram in a phase-coherent fashion across a meter-sized imaging region. We recover three-dimensional views of objects and emitters by feeding the resulting data into digital reconstruction algorithms. Employing a digital implementation of dark-field propagation to suppress multipath reflection, we significantly enhance the quality of the resulting images. We numerically simulate the hologram of a 10-m-sized building, finding that both localization of emitters and 3D tomography of absorptive objects could be feasible by this technique.
Spin waves in micro-structured yttrium iron garnet nanometer-thick films
Jungfleisch, Matthias B.; Zhang, Wei; Jiang, Wanjun; ...
2015-03-24
Here, we investigated the spin-wave propagation in a micro-structured yttrium iron garnet waveguide of 40 nm thickness. Utilizing spatially-resolved Brillouin light scattering microscopy, an exponential decay of the spinwave amplitude of 10 μm was observed. This leads to an estimated Gilbert damping constant of α = (8.79 ± 0.73) x 10 $-$4, which is larger than damping values obtained through ferromagnetic resonance measurements in unstructured films. Furthermore, we compared the theoretically calculated spatial interference of waveguide modes to the spin-wave pattern observed experimentally by means of Brillouin light scattering spectroscopy.
Diffusing-wave polarimetry for tissue diagnostics
NASA Astrophysics Data System (ADS)
Macdonald, Callum; Doronin, Alexander; Peña, Adrian F.; Eccles, Michael; Meglinski, Igor
2014-03-01
We exploit the directional awareness of circularly and/or elliptically polarized light propagating within media which exhibit high numbers of scattering events. By tracking the Stokes vector of the detected light on the Poincaŕe sphere, we demonstrate its applicability for characterization of anisotropy of scattering. A phenomenological model is shown to have an excellent agreement with the experimental data and with the results obtained by the polarization tracking Monte Carlo model, developed in house. By analogy to diffusing-wave spectroscopy we call this approach diffusing-wave polarimetry, and illustrate its utility in probing cancerous and non-cancerous tissue samplesin vitro for diagnostic purposes.
NASA Astrophysics Data System (ADS)
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-02-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-02-11
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-01-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system. PMID:26864099
Finite element modeling of light propagation in fruit under illumination of continuous-wave beam
USDA-ARS?s Scientific Manuscript database
Spatially-resolved spectroscopy provides a means for measuring the optical properties of biological tissues, based on analytical solutions to diffusion approximation for semi-infinite media under the normal illumination of infinitely small size light beam. The method is, however, prone to error in m...
NASA Astrophysics Data System (ADS)
Šantić, Neven; Fusaro, Adrien; Salem, Sabeur; Garnier, Josselin; Picozzi, Antonio; Kaiser, Robin
2018-02-01
The nonlinear Schrödinger equation, used to describe the dynamics of quantum fluids, is known to be valid not only for massive particles but also for the propagation of light in a nonlinear medium, predicting condensation of classical waves. Here we report on the initial evolution of random waves with Gaussian statistics using atomic vapors as an efficient two dimensional nonlinear medium. Experimental and theoretical analysis of near field images reveal a phenomenon of nonequilibrium precondensation, characterized by a fast relaxation towards a precondensate fraction of up to 75%. Such precondensation is in contrast to complete thermalization to the Rayleigh-Jeans equilibrium distribution, requiring prohibitive long interaction lengths.
Type II Radio Bursts Observed by STEREO/Waves and Wind/Waves instruments
NASA Astrophysics Data System (ADS)
Krupar, V.; Magdalenic, J.; Zhukov, A.; Rodriguez, L.; Mierla, M.; Maksimovic, M.; Cecconi, B.; Santolik, O.
2013-12-01
Type II radio bursts are slow-drift emissions triggered by suprathermal electrons accelerated on shock fronts of propagating CMEs. We present several events at kilometric wavelengths observed by radio instruments onboard the STEREO and Wind spacecraft. The STEREO/Waves and Wind/Waves have goniopolarimetric (GP, also referred to as direction finding) capabilities that allow us to triangulate radio sources when an emission is observed by two or more spacecraft. As the GP inversion has high requirements on the signal-to-noise ratio we only have a few type II radio bursts with sufficient intensity for this analysis. We have compared obtained radio sources with white-light observations of STEREO/COR and STEREO/HI instruments. Our preliminary results indicate that radio sources are located at flanks of propagating CMEs.
Method and apparatus for upshifting light frequency by rapid plasma creation
Dawson, John M.; Wilks, Scott C.; Mori, Warren B.; Joshi, Chandrasekhar J.; Sessler, Andrew M.
1990-01-01
Photons of an electromagnetic source wave are frequency-upshifted as a plasma is rapidly created around the path of this propagating source wave. The final frequency can be controlled by adjusting the gas density. A controlled time-varying frequency (chirped) pulse can be produced by using a controlled spatially varying gas density. The plasma must be created in a time which is short compared to the transit time of the light through the plasmas region. For very fast creation over one to at most a few light periods of an overdense plasma, static magnetic fields with short wavelengths are created.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wavemore » packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.« less
Anderson localization of partially incoherent light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capeta, D.; Radic, J.; Buljan, H.
We study Anderson localization and propagation of partially spatially incoherent wavepackets in linear disordered potentials, motivated by the insight that interference phenomena resulting from multiple scattering are affected by the coherence of the waves. We find that localization is delayed by incoherence: the more incoherent the waves are, the longer they diffusively spread while propagating in the medium. However, if all the eigenmodes of the system are exponentially localized (as in one- and two-dimensional disordered systems), any partially incoherent wavepacket eventually exhibits localization with exponentially decaying tails, after sufficiently long propagation distances. Interestingly, we find that the asymptotic behavior ofmore » the incoherent beam is similar to that of a single instantaneous coherent realization of the beam.« less
A class of invisible inhomogeneous media and the control of electromagnetic waves
NASA Astrophysics Data System (ADS)
Vial, B.; Liu, Y.; Horsley, S. A. R.; Philbin, T. G.; Hao, Y.
2016-12-01
We propose a general method to arbitrarily manipulate an electromagnetic wave propagating in a two-dimensional medium, without introducing any scattering. This leads to a whole class of isotropic spatially varying permittivity and permeability profiles that are invisible while shaping the field magnitude and/or phase. In addition, we propose a metamaterial structure working in the infrared that demonstrates deep subwavelength control of the electric field amplitude and strong reduction of the scattering. This work offers an alternative strategy to achieve invisibility with isotropic materials and paves the way for tailoring the propagation of light at the nanoscale.
Electromagnetic energy dispersion in a 5D universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartnett, John G.
2010-06-15
Electromagnetism is analyzed in a 5D expanding universe. Compared to the usual 4D description of electrodynamics it can be viewed as adding effective charge and current densities to the universe that are static in time. These lead to effective polarization and magnetization of the vacuum, which is most significant at high redshift. Electromagnetic waves propagate but group and phase velocities are dispersive. This introduces a new energy scale to the cosmos. And as a result electromagnetic waves propagate with superluminal speeds but no energy is transmitted faster than the canonical speed of light c.
USDA-ARS?s Scientific Manuscript database
Spatially-resolved spectroscopy provides a means for measuring the optical properties of biological tissues, based on analytical solutions to diffusion approximation for semi-infinite media under the normal illumination of infinitely small size light beam. The method is, however, prone to error in m...
NASA Astrophysics Data System (ADS)
Porras, Miguel A.
2018-06-01
We investigate the properties of the recently introduced time-diffracting (TD) beams in free space. They are shown to be paraxial and quasimonochromatic realizations of spatiotemporal localized waves traveling undistorted at arbitrary speeds. The paraxial and quasimonochromatic regime is shown to be necessary to observe what can properly be named diffraction in time. In this regime, the spatiotemporal frequency correlations for diffraction-free propagation are approximated by parabolic correlations. Time-diffracting beams of finite energy traveling at quasiluminal velocities are seen to form substantially longer foci or needles of light than the so-called abruptly focusing and defocusing needle of light or limiting TD beam of infinite speed. Exploring the properties of TD beams under Lorentz transformations and their transformation by paraxial optical systems, we realize that the nonlinear polarization of material media induced by a strongly localized fundamental pump wave generates a TD beam at its second harmonic, whose diffraction-free behavior as a needle of light in free space can be optimized with a standard 4 f -imager system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V.; Sadovnikov, A. V.
We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development ofmore » magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.« less
Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid
2017-12-01
Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ∼600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ∼0.25 s/excitation source. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Excitation of short-wavelength spin waves in magnonic waveguides
NASA Astrophysics Data System (ADS)
Demidov, V. E.; Kostylev, M. P.; Rott, K.; Münchenberger, J.; Reiss, G.; Demokritov, S. O.
2011-08-01
By using phase-resolved micro-focus Brillouin light scattering spectroscopy, we demonstrate experimentally a phenomenon of wavelength conversion of spin waves propagating in tapered Permalloy waveguides. We show that this phenomenon enables efficient excitation of spin waves with sub-micrometer wavelengths being much smaller than the width of the microstrip antenna used for the excitation. The proposed excitation mechanism removes restrictions on the spin-wave wavelength imposed by the size of the antenna and enables improvement of performances of integrated magnonic devices.
Bending self-collimated one-way light by using gyromagnetic photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qing-Bo; Jiangsu Key Construction Laboratory of Modern Measurement Technology and Intelligent System, Huaiyin Normal University, Huaian 223300; Li, Zhen
2015-12-14
We theoretically demonstrate that electromagnetic waves can self-collimate and propagate unidirectionally in photonic crystals fabricated using semicylindrical ferrite rods in magnetized states. The parity and time-reversal symmetries of such photonic crystals are broken, resulting in a self-collimated one-way body wave within the photonic crystals. By applying the bias magnetic field in a complex configuration, the self-collimated one-way wave beam can be bent into arbitrary trajectories within the photonic crystal, providing an avenue for controlling wave beams.
Investigation on RGB laser source applied to dynamic photoelastic experiment
NASA Astrophysics Data System (ADS)
Li, Songgang; Yang, Guobiao; Zeng, Weiming
2014-06-01
When the elastomer sustains the shock load or the blast load, its internal stress state of every point will change rapidly over time. Dynamic photoelasticity method is an experimental stress analysis method, which researches the dynamic stress and the stress wave propagation. Light source is one of very important device in dynamic photoelastic experiment system, and the RGB laser light source applied in dynamic photoelastic experiment system is innovative and evolutive to the system. RGB laser is synthesized by red laser, green laser and blue laser, either as a single wavelength laser light source, also as synthesized white laser light source. RGB laser as a light source for dynamic photoelastic experiment system, the colored isochromatic can be captured in dynamic photoelastic experiment, and even the black zero-level stripe can be collected, and the isoclinics can also be collected, which conducively analysis and study of transient stress and stress wave propagation. RGB laser is highly stable and continuous output, and its power can be adjusted. The three wavelengths laser can be synthesized by different power ratio. RGB laser light source used in dynamic photoelastic experiment has overcome a number of deficiencies and shortcomings of other light sources, and simplifies dynamic photoelastic experiment, which has achieved good results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadomsky, O. N., E-mail: gadomsky@mail.ru; Shchukarev, I. A., E-mail: blacxpress@gmail.com
2016-08-15
It is shown that external optical radiation in the 450–1200 nm range can be efficiently transformed under the action of bounded light beams to a surface wave that propagates along the external and internal boundaries of a plane-parallel layer with a quasi-zero refractive index. Reflection regimes with complex and real angles of refraction in the layer are considered. The layer with a quasi-zero refractive index in this boundary problem is located on a highly reflective metal substrate; it is shown that the uniform low reflection of light is achieved in the wavelength range under study.
Application of the Pulsed Photoacoustic Spectroscopy in Biomedicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez-Juarez, G.; Sims, M. J.; Gupta, S. K.
2008-08-11
The use of optical spectroscopy as a diagnostic tool in biomedical applications and research has grown considerably in the last two decades. One of them is the pulsed photoacoustic or optoacoustic, which promises to be one of the most important tools for disease diagnostic studies, because while most spectroscopies exploit the optical nature of the light-tissue interaction, this field of photoacoustics uses optical energy to generate an acoustic wave which propagates in the tissue environment. The acoustic wave propagation is fundamentally related to various tissue properties and an analysis of the wave dynamics can provide insights into these properties. Thismore » work presents a review on pulsed photoacoustic spectroscopy of several photoacoustic methods to derive information about tissue and tissue phantoms.« less
Acoustic wave propagation in a temporal evolving shear-layer for low-Mach number perturbations
NASA Astrophysics Data System (ADS)
Hau, Jan-Niklas; Müller, Björn
2018-01-01
We study wave packets with the small perturbation/gradient Mach number interacting with a smooth shear-layer in the linear regime of small amplitude perturbations. In particular, we investigate the temporal evolution of wave packets in shear-layers with locally curved regions of variable size using non-modal linear analysis and direct numerical simulations of the two-dimensional gas-dynamical equations. Depending on the wavenumber of the initially imposed wave packet, three different types of behavior are observed: (i) The wave packet passes through the shear-layer and constantly transfers energy back to the mean flow. (ii) It is turned around (or reflected) within the sheared region and extracts energy from the base flow. (iii) It is split into two oppositely propagating packages when reaching the upper boundary of the linearly sheared region. The conducted direct numerical simulations confirm that non-modal linear stability analysis is able to predict the wave packet dynamics, even in the presence of non-linearly sheared regions. In the light of existing studies in this area, we conclude that the sheared regions are responsible for the highly directed propagation of linearly generated acoustic waves when there is a dominating source, as it is the case for jet flows.
Declining availability of outdoor skating in Canada
NASA Astrophysics Data System (ADS)
Brammer, Jeremy R.; Samson, Jason; Humphries, Murray M.
2015-01-01
We find a mixed chirality $d$-wave superconducting state in the coexistence region between antiferromagnetism and interaction-driven superconductivity in lightly doped honeycomb materials. This state has a topological chiral $d+id$-wave symmetry in one Dirac valley but $d-id$-wave symmetry in the other valley and hosts two counter-propagating edge states, protected in the absence of intervalley scattering. A first-order topological phase transition, with no bulk gap closing, separates the chiral $d$-wave state at small magnetic moments from the mixed chirality $d$-wave phase.
THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves.
Akiba, Takuya; Kaneko, Naoya; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige
2013-09-15
We report a novel sensing technique that uses an evanescent terahertz (THz) wave, without detecting the THz wave directly. When a THz wave generated by Cherenkov phase matching via difference frequency generation undergoes total internal reflection, the evanescent THz wave is subject to a phase change and an amplitude decrease. The reflected THz wave, under the influence of the sample, interferes with the propagating THz wave and the changing electric field of the THz wave interacts with the electric field of the pump waves. We demonstrate a sensing technique for detecting changes in the electric field of near-infrared light, transcribed from changes in the electric field of a THz wave.
Ultrasonic signal enhancement by resonator techniques
NASA Technical Reports Server (NTRS)
Heyman, J. S.
1973-01-01
Ultrasonic resonators increase experimental sensitivity to acoustic dispersion and changes in attenuation. Experimental sensitivity enhancement line shapes are presented which were obtained by modulating the acoustic properties of a CdS resonator with a light beam. Small changes in light level are made to produce almost pure absorptive or dispersive changes in the resonator signal. This effect is due to the coupling of the ultrasonic wave to the CdS conductivity which is proportional to incident light intensity. The resonator conductivity is adjusted in this manner to obtain both dispersive and absorptive sensitivity enhancement line shapes. The data presented verify previous thoretical calculations based on a propagating wave model.
The Fresnel Diffraction: A Story of Light and Darkness
NASA Astrophysics Data System (ADS)
Aime, C.; Aristidi, É.; Rabbia, Y.
2013-03-01
In a first part of the paper we give a simple introduction to the free space propagation of light at the level of a Master degree in Physics. The presentation promotes linear filtering aspects at the expense of fundamental physics. Following the Huygens-Fresnel approach, the propagation of the wave writes as a convolution relationship, the impulse response being a quadratic phase factor. We give the corresponding filter in the Fourier plane. As an illustration, we describe the propagation of wave with a spatial sinusoidal amplitude, introduce lenses as quadratic phase transmissions, discuss their Fourier transform properties and give some properties of Soret screens. Classical diffractions of rectangular diaphragms are also given here. In a second part of the paper, the presentation turns into the use of external occulters in coronagraphy for the detection of exoplanets and the study of the solar corona. Making use of Lommel series expansions, we obtain the analytical expression for the diffraction of a circular opaque screen, giving thereby the complete formalism for the Arago-Poisson spot. We include there shaped occulters. The paper ends up with a brief application to incoherent imaging in astronomy.
Robust flow of light in three-dimensional dielectric photonic crystals.
Chen, Wen-Jie; Jiang, Shao-Ji; Dong, Jian-Wen
2013-09-01
Chiral defect waveguides and waveguide bend geometry were designed in diamond photonic crystal to mold the flow of light in three dimensions. Propagations of electromagnetic waves in chiral waveguides are robust against isotropic obstacles, which would suppress backscattering in waveguides or integrated devices. Finite-difference time-domain simulations demonstrate that high coupling efficiency through the bend corner is preserved in the polarization gap, as it provides an additional constraint on the polarization state of the backscattered wave. Transport robustness is also demonstrated by inserting two metallic slabs into the waveguide bend.
A phased antenna array for surface plasmons
Dikken, Dirk Jan W.; Korterik, Jeroen P.; Segerink, Frans B.; Herek, Jennifer L.; Prangsma, Jord C.
2016-01-01
Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons. PMID:27121099
Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses
Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke
2015-01-01
Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively. PMID:25652694
NASA Astrophysics Data System (ADS)
Washabaugh, P. D.; Hill, L. G.
2007-12-01
A dynamic crack propagating in a brittle material releases enough thermal energy to produce visible light. The dynamic fracture of even macroscopically amorphous materials becomes unsteady as the crack propagation velocity approaches the material wave-speeds. The heat generated at a crack-tip, especially as it jumps, may be a mechanism to initiate a self-sustaining reaction in an energetic material. Experiments were conducted in specimens to simulate an infinite plate for ˜10 μs. The initial specimens were 152 mm square by 6 mm thick acrylic sheets, and were fabricated to study non-steady near-wave-speed crack propagation. A variant of this specimen embedded a 25 mm×3 mm PBX 9205 pellet to explore the influence of dynamic Mode-I cracks in these materials. The crack was initiated by up to 0.24 g of Detasheet placed along a precursor 50 mm long notch, with a shield to contain the reaction products and prevent propagation along the fractured surfaces. The crack was studied by means of a streak camera and a Fourier-filter of the light reflecting off the newly minted surfaces. The sub-microsecond behavior of holes initiating, preceding and coalescing with the main crack were observed in the PMMA samples. The embedding and mechanical loading of explosives by this technique did not initiate a self-sustaining reaction in preliminary testing.
NASA Astrophysics Data System (ADS)
Washabaugh, Peter; Hill, Larry
2007-06-01
A dynamic crack propagating in a brittle material releases enough thermal energy to produce visible light. The dynamic fracture of even macroscopically amorphous materials becomes unsteady as the crack propagation velocity approaches the material wave-speeds. The heat generated at a crack-tip, especially as it jumps, may be a mechanism to initiate a self-sustaining reaction in an energetic material. Experiments were conducted in specimens to simulate an infinite plate for 20 μs. The initial specimens were 152 mm square by 6 mm thick acrylic sheets, and were fabricated to study non-steady near-wave-speed crack propagation. A variant of this specimen embedded a 25 mm x 3 mm PBX 9205 pellet to explore the influence of dynamic Mode-I cracks in these materials. The crack was initiated by up to 0.2 g of Detasheet placed along a precursor 50 mm long notch, with a shield to contain the reaction products and prevent propagation along the fractured surfaces. The crack was studied by means of a streak camera and a Fourier-filter of the light reflecting off the newly minted surfaces. The sub-microsecond behavior of holes initiating, preceding and coalescing with the main crack were observed in the PMMA samples. The embedding and mechanical loading of explosives by this technique did not initiate a self-sustaining reaction in preliminary testing.
The eikonal function: the commom concept in ray optics and particle mechanics
NASA Astrophysics Data System (ADS)
Krautter, Martin
1993-04-01
The habit of teaching the movements of masses first, and propagation of light later, as an electromagnetic phenomenon was widespread. Looking further back into the history of physics, however, we see earlier the concepts for understanding light rays, and later their successful application to particle trajectories, leading to the highly developed celestial mechanics towards the end of the 19th century. And then, 1905, Karl Schwarzschild transferred the technique of `canonical coordinates,' named so by C.G.J. Jacobi in 1837, back to light rays in imaging systems. I would like to point to the chief steps in the evolution. The learning process for handling both particle and wave propagation aspects continues up to our time: Richard Feynman 1918 - 1988. We may judge each contribution: whether it opens our mind to a unifying theory, or whether it hardens partial understanding. And we can notice where the understanding of light propagation led the evolution, and how the theory for movement of masses caught up.
Origins of spectral broadening of incoherent waves: Catastrophic process of coherence degradation
NASA Astrophysics Data System (ADS)
Xu, G.; Garnier, J.; Rumpf, B.; Fusaro, A.; Suret, P.; Randoux, S.; Kudlinski, A.; Millot, G.; Picozzi, A.
2017-08-01
We revisit the mechanisms underlying the process of spectral broadening of incoherent optical waves propagating in nonlinear media on the basis of nonequilibrium thermodynamic considerations. A simple analysis reveals that a prerequisite for the existence of a significant spectral broadening of the waves is that the linear part of the energy (Hamiltonian) has different contributions of opposite signs. It turns out that, at variance with the expected soliton turbulence scenario, an increase of the amount of disorder (incoherence) in the system does not require the generation of a coherent soliton structure. We illustrate the idea by considering the propagation of two wave components in an optical fiber with opposite dispersion coefficients. A wave turbulence approach to the problem reveals that the increase of kinetic energy in one component is offset by the negative reduction in the other component, so that the waves exhibit, as a general rule, virtually unlimited spectral broadening. More precisely, a self-similar solution of the kinetic equations reveals that the spectra of the incoherent waves tend to relax toward a homogeneous distribution in the wake of a front that propagates in frequency space with a decelerating velocity. We discuss this catastrophic process of spectral broadening in the light of different important phenomena, in particular supercontinuum generation, soliton turbulence, wave condensation, and the runaway motion of mechanical systems composed of positive and negative masses.
NASA Astrophysics Data System (ADS)
Sultana, S.; Schlickeiser, R.
2018-05-01
Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.
Shin, Myunghun; Lee, Seong Hyun; Lim, Jung Wook; Yun, Sun Jin
2014-11-01
A scattering matrix (S-matrix) analysis method was developed for evaluating hydrogenated amorphous silicon (a-Si:H)-based thin film solar cells. In this approach, light wave vectors A and B represent the incoming and outgoing behaviors of the incident solar light, respectively, in terms of coherent wave and incoherent intensity components. The S-matrix determines the relation between A and B according to optical effects such as reflection and transmission, as described by the Fresnel equations, scattering at the boundary surfaces, or scattering within the propagation medium, as described by the Beer-Lambert law and the change in the phase of the propagating light wave. This matrix can be used to evaluate the behavior of angle-incident coherent and incoherent light simultaneously, and takes into account not only the light scattering process at material boundaries (haze effects) but also nonlinear optical processes within the material. The optical parameters in the S-matrix were determined by modeling both a 2%-gallium-doped zinc oxide transparent conducting oxide and germanium-compounded a-Si:H (a-SiGe:H). Using the S-matrix equations, the photocurrent for an a-Si:H/a-SiGe:H tandem cell and the optical loss in semitransparent a-Si:H solar cells for use in building-integrated photovoltaic applications were analyzed. The developed S-matrix method can also be used as a general analysis tool for various thin film solar cells.
Rigorous vector wave propagation for arbitrary flat media
NASA Astrophysics Data System (ADS)
Bos, Steven P.; Haffert, Sebastiaan Y.; Keller, Christoph U.
2017-08-01
Precise modelling of the (off-axis) point spread function (PSF) to identify geometrical and polarization aberrations is important for many optical systems. In order to characterise the PSF of the system in all Stokes parameters, an end-to-end simulation of the system has to be performed in which Maxwell's equations are rigorously solved. We present the first results of a python code that we are developing to perform multiscale end-to-end wave propagation simulations that include all relevant physics. Currently we can handle plane-parallel near- and far-field vector diffraction effects of propagating waves in homogeneous isotropic and anisotropic materials, refraction and reflection of flat parallel surfaces, interference effects in thin films and unpolarized light. We show that the code has a numerical precision on the order of 10-16 for non-absorbing isotropic and anisotropic materials. For absorbing materials the precision is on the order of 10-8. The capabilities of the code are demonstrated by simulating a converging beam reflecting from a flat aluminium mirror at normal incidence.
NASA Astrophysics Data System (ADS)
Sultana, S.; Schlickeiser, R.
2018-02-01
A three component degenerate relativistic quantum plasma (consisting of relativistically degenerate electrons, nondegenerate inertial light nuclei, and stationary heavy nuclei) is considered to model the linear wave and also the electrostatic solitary waves in the light nuclei-scale length. A well-known normal mode analysis is employed to investigate the linear wave properties. A mechanical-motion analog (Sagdeev-type) pseudo-potential approach, which reveals the existence of large amplitude solitary excitations, is adopted to study the nonlinear wave properties. Only the positive potential solitary excitations are found to exist in the plasma medium under consideration. The basic properties of the arbitrary amplitude electrostatic acoustic modes in the light nuclei-scale length and their existence domain in terms of soliton speed (Mach number) are examined. The modifications of solitary wave characteristics and their existence domain with the variation of different key plasma configuration parameters (e.g., electrons degeneracy parameter, inertial light nuclei number density, and degenerate electron number density) are also analyzed. Our results, which may be helpful to explain the basic features of the nonlinear wave propagation in multi-component degenerate quantum plasmas, in connection with astrophysical compact objects (e.g., white dwarfs) are briefly discussed.
Geometrical and wave optics of paraxial beams.
Meron, M; Viccaro, P J; Lin, B
1999-06-01
Most calculational techniques used to evaluate beam propagation are geared towards either fully coherent or fully incoherent beams. The intermediate partial-coherence regime, while in principle known for a long time, has received comparably little attention so far. The resulting shortage of adequate calculational techniques is currently being felt in the realm of x-ray optics where, with the advent of third generation synchrotron light sources, partially coherent beams become increasingly common. The purpose of this paper is to present a calculational approach which, utilizing a "variance matrix" representation of paraxial beams, allows for a straightforward evaluation of wave propagation through an optical system. Being capable of dealing with an arbitrary degree of coherence, this approach covers the whole range from wave to ray optics, in a seamless fashion.
Sound Transmission Through a Curved Honeycomb Composite Panel
NASA Technical Reports Server (NTRS)
Klos, Jacob; Robinson, Jay H.; Buehrle, Ralph D.
2003-01-01
Composite structures are often used in aircraft because of the advantages offered by a high strength to weight ratio. However, the acoustical properties of these light and stiff structures can often be less than desirable resulting in high aircraft interior noise levels. In this paper, measurements and predictions of the transmission loss of a curved honeycomb composite panel are presented. The transmission loss predictions are validated by comparisons to measurements. An assessment of the behavior of the panel is made from the dispersion characteristics of transverse waves propagating in the panel. The speed of transverse waves propagating in the panel is found to be sonic or supersonic over the frequency range from 100 to 5000 Hz. The acoustical benefit of reducing the wave speed for transverse vibration is demonstrated.
Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan
2009-01-01
Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propagation method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory and the experimental results. The numerical method allows more comprehensive studies of the VFZP parameters to achieve higher diffraction efficiency.
Self-compression of spatially limited laser pulses in a system of coupled light-guides
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.
2018-04-01
The self-action features of wave packets propagating in a 2D system of equidistantly arranged fibers are studied analytically and numerically on the basis of the discrete nonlinear Schrödinger equation. Self-consistent equations for the characteristic scales of a Gaussian wave packet are derived on the basis of the variational approach, which are proved numerically for powers P < 10 P_cr , slightly exceeding the critical one for self-focusing. At higher powers, the wave beams become filamented, and their amplitude is limited due to the nonlinear breaking of the interaction between neighboring light-guides. This makes it impossible to collect a powerful wave beam in a single light-guide. Variational analysis shows the possibility of the adiabatic self-compression of soliton-like laser pulses in the process of 3D self-focusing on the central light-guide. However, further increase of the field amplitude during self-compression leads to the development of longitudinal modulation instability and the formation of a set of light bullets in the central fiber. In the regime of hollow wave beams, filamentation instability becomes predominant. As a result, it becomes possible to form a set of light bullets in optical fibers located on the ring.
Heavy ion-acoustic rogue waves in electron-positron multi-ion plasmas
NASA Astrophysics Data System (ADS)
Chowdhury, N. A.; Mannan, A.; Hasan, M. M.; Mamun, A. A.
2017-09-01
The nonlinear propagation of heavy-ion-acoustic (HIA) waves (HIAWs) in a four-component multi-ion plasma (containing inertial heavy negative ions and light positive ions, as well as inertialess nonextensive electrons and positrons) has been theoretically investigated. The nonlinear Schrödinger (NLS) equation is derived by employing the reductive perturbation method. It is found that the NLS equation leads to the modulational instability (MI) of HIAWs, and to the formation of HIA rogue waves (HIARWs), which are due to the effects of nonlinearity and dispersion in the propagation of HIAWs. The conditions for the MI of HIAWs and the basic properties of the generated HIARWs are identified. It is observed that the striking features (viz., instability criteria, growth rate of MI, amplitude and width of HIARWs, etc.) of the HIAWs are significantly modified by the effects of nonextensivity of electrons and positrons, the ratio of light positive ion mass to heavy negative ion mass, the ratio of electron number density to light positive ion number density, the ratio of electron temperature to positron temperature, etc. The relevancy of our present investigation to the observations in space (viz., cometary comae and earth's ionosphere) and laboratory (viz., solid-high intense laser plasma interaction experiments) plasmas is pointed out.
Heavy ion-acoustic rogue waves in electron-positron multi-ion plasmas.
Chowdhury, N A; Mannan, A; Hasan, M M; Mamun, A A
2017-09-01
The nonlinear propagation of heavy-ion-acoustic (HIA) waves (HIAWs) in a four-component multi-ion plasma (containing inertial heavy negative ions and light positive ions, as well as inertialess nonextensive electrons and positrons) has been theoretically investigated. The nonlinear Schrödinger (NLS) equation is derived by employing the reductive perturbation method. It is found that the NLS equation leads to the modulational instability (MI) of HIAWs, and to the formation of HIA rogue waves (HIARWs), which are due to the effects of nonlinearity and dispersion in the propagation of HIAWs. The conditions for the MI of HIAWs and the basic properties of the generated HIARWs are identified. It is observed that the striking features (viz., instability criteria, growth rate of MI, amplitude and width of HIARWs, etc.) of the HIAWs are significantly modified by the effects of nonextensivity of electrons and positrons, the ratio of light positive ion mass to heavy negative ion mass, the ratio of electron number density to light positive ion number density, the ratio of electron temperature to positron temperature, etc. The relevancy of our present investigation to the observations in space (viz., cometary comae and earth's ionosphere) and laboratory (viz., solid-high intense laser plasma interaction experiments) plasmas is pointed out.
Topologically-protected one-way leaky waves in nonreciprocal plasmonic structures
NASA Astrophysics Data System (ADS)
Hassani Gangaraj, S. Ali; Monticone, Francesco
2018-03-01
We investigate topologically-protected unidirectional leaky waves on magnetized plasmonic structures acting as homogeneous photonic topological insulators. Our theoretical analyses and numerical experiments aim at unveiling the general properties of these exotic surface waves, and their nonreciprocal and topological nature. In particular, we study the behavior of topological leaky modes in stratified structures composed of a magnetized plasma at the interface with isotropic conventional media, and we show how to engineer their propagation and radiation properties, leading to topologically-protected backscattering-immune wave propagation, and highly directive and tunable radiation. Taking advantage of the non-trivial topological properties of these leaky modes, we also theoretically demonstrate advanced functionalities, including arbitrary re-routing of leaky waves on the surface of bodies with complex shapes, as well as the realization of topological leaky-wave (nano)antennas with isolated channels of radiation that are completely independent and separately tunable. Our findings help shedding light on the behavior of topologically-protected modes in open wave-guiding structures, and may open intriguing directions for future antenna generations based on topological structures, at microwaves and optical frequencies.
Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya
2011-10-10
We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.
Opal-based photonic crystal with double photonic bandgap structure
NASA Astrophysics Data System (ADS)
Romanov, S. G.; Yates, H. M.; Pemble, M. E.; DeLa Rue, R. M.
2000-09-01
The interior surfaces of one part of a piece of artificial opal have been coated with GaP so that the remaining part of the opal crystal remains empty, thus forming a photonic heterostructure. Two Bragg resonances have been observed in the optical transmission and reflectance spectra. These two resonances were found to behave differently with changes in the polarization of the incident light and the angle of propagation of the light with respect to the (111) planes of opal. Depolarization of the light was observed to occur most effectively at frequencies within the stop-bands, apparently due to the re-coupling of the propagating electromagnetic wave to a different system of eigenmodes when it crosses the interface separating two parts of the double photonic crystal.
Coherent field propagation between tilted planes.
Stock, Johannes; Worku, Norman Girma; Gross, Herbert
2017-10-01
Propagating electromagnetic light fields between nonparallel planes is of special importance, e.g., within the design of novel computer-generated holograms or the simulation of optical systems. In contrast to the extensively discussed evaluation between parallel planes, the diffraction-based propagation of light onto a tilted plane is more burdensome, since discrete fast Fourier transforms cannot be applied directly. In this work, we propose a quasi-fast algorithm (O(N 3 log N)) that deals with this problem. Based on a proper decomposition into three rotations, the vectorial field distribution is calculated on a tilted plane using the spectrum of plane waves. The algorithm works on equidistant grids, so neither nonuniform Fourier transforms nor an explicit complex interpolation is necessary. The proposed algorithm is discussed in detail and applied to several examples of practical interest.
Gravitational Wave in Linear General Relativity
NASA Astrophysics Data System (ADS)
Cubillos, D. J.
2017-07-01
General relativity is the best theory currently available to describe the interaction due to gravity. Within Albert Einstein's field equations this interaction is described by means of the spatiotemporal curvature generated by the matter-energy content in the universe. Weyl worked on the existence of perturbations of the curvature of space-time that propagate at the speed of light, which are known as Gravitational Waves, obtained to a first approximation through the linearization of the field equations of Einstein. Weyl's solution consists of taking the field equations in a vacuum and disturbing the metric, using the Minkowski metric slightly perturbed by a factor ɛ greater than zero but much smaller than one. If the feedback effect of the field is neglected, it can be considered as a weak field solution. After introducing the disturbed metric and ignoring ɛ terms of order greater than one, we can find the linearized field equations in terms of the perturbation, which can then be expressed in terms of the Dalambertian operator of the perturbation equalized to zero. This is analogous to the linear wave equation in classical mechanics, which can be interpreted by saying that gravitational effects propagate as waves at the speed of light. In addition to this, by studying the motion of a particle affected by this perturbation through the geodesic equation can show the transversal character of the gravitational wave and its two possible states of polarization. It can be shown that the energy carried by the wave is of the order of 1/c5 where c is the speed of light, which explains that its effects on matter are very small and very difficult to detect.
Visualizing light with electrons
NASA Astrophysics Data System (ADS)
Fitzgerald, J. P. S.; Word, R. C.; Koenenkamp, R.
2014-03-01
In multiphoton photoemission electron microscopy (nP-PEEM) electrons are emitted from surfaces at a rate proportional to the surface electromagnetic field amplitude. We use 2P-PEEM to give nanometer scale visualizations of light of diffracted and waveguide fields around various microstructures. We use Fourier analysis to determine the phase and amplitude of surface fields in relation to incident light from the interference patterns. To provide quick and intuitive simulations of surface fields, we employ two dimensional Fresnel-Kirchhoff integration, a technique based on freely propagating waves and Huygens' principle. We find generally good agreement between simulations and experiment. Additionally diffracted wave simulations exhibit greater phase accuracy, indicating that these waves are well represented by a two dimensional approximation. The authors gratefully acknowledge funding of this research by the US-DOE Basic Science Office under Contract DE-FG02-10ER46406.
Geometrical optics in the near field: local plane-interface approach with evanescent waves.
Bose, Gaurav; Hyvärinen, Heikki J; Tervo, Jani; Turunen, Jari
2015-01-12
We show that geometrical models may provide useful information on light propagation in wavelength-scale structures even if evanescent fields are present. We apply a so-called local plane-wave and local plane-interface methods to study a geometry that resembles a scanning near-field microscope. We show that fair agreement between the geometrical approach and rigorous electromagnetic theory can be achieved in the case where evanescent waves are required to predict any transmission through the structure.
Single-shot observation of optical rogue waves in integrable turbulence using time microscopy
Suret, Pierre; Koussaifi, Rebecca El; Tikan, Alexey; Evain, Clément; Randoux, Stéphane; Szwaj, Christophe; Bielawski, Serge
2016-01-01
Optical fibres are favourable tabletop laboratories to investigate both coherent and incoherent nonlinear waves. In particular, exact solutions of the one-dimensional nonlinear Schrödinger equation such as fundamental solitons or solitons on finite background can be generated by launching periodic, specifically designed coherent waves in optical fibres. It is an open fundamental question to know whether these coherent structures can emerge from the nonlinear propagation of random waves. However the typical sub-picosecond timescale prevented—up to now—time-resolved observations of the awaited dynamics. Here, we report temporal ‘snapshots' of random light using a specially designed ‘time-microscope'. Ultrafast structures having peak powers much larger than the average optical power are generated from the propagation of partially coherent waves in optical fibre and are recorded with 250 femtoseconds resolution. Our experiment demonstrates the central role played by ‘breather-like' structures such as the Peregrine soliton in the emergence of heavy-tailed statistics in integrable turbulence. PMID:27713416
Two-loop renormalization of the quark propagator in the light-cone gauge
NASA Astrophysics Data System (ADS)
Williams, James Daniel
The divergent parts of the five two-loop quark self- energy diagrams of quantum chromodynamics are evaluated in the noncovariant light-cone gauge. Most of the Feynman integrals are computed by means of the powerful matrix integration method, originally developed for the author's Master's thesis. From the results of the integrations, it is shown how to renormalize the quark mass and wave function in such a way that the effective quark propagator is rendered finite at two-loop order. The required counterterms turn out to be local functions of the quark momentum, due to cancellation of the nonlocal divergent parts of the two-loop integrals with equal and opposite contributions from one-loop counterterm subtraction diagrams. The final form of the counterterms is seen to be consistent with the renormalization framework proposed by Bassetto, Dalbosco, and Soldati, in which all noncovariant divergences are absorbed into the wave function normalizations. It also turns out that the mass renormalization d m is the same in the light-cone gauge as it is in a general covariant gauge, at least up to two-loop order.
Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI
NASA Astrophysics Data System (ADS)
Sciancalepore, Corrado; Hassan, Karim; Ferrotti, Thomas; Harduin, Julie; Duprez, Hélène; Menezo, Sylvie; Ben Bakir, Badhise
2015-02-01
In this communication, we report about the design, fabrication, and testing of Silicon-based photonic integrated circuits (Si-PICs) including low-loss flat-band slow-light high-contrast-gratings (HCGs) waveguides at 1.31 μm. The light slowdown is achieved in 300-nm-thick silicon-on-insulator (SOI) rib waveguides by patterning adiabatically-tapered highcontrast gratings, capable of providing slow-light propagation with extremely low optical losses, back-scattering, and Fabry-Pérot noise. In detail, the one-dimensional (1-D) grating architecture is capable to provide band-edge group indices ng ~ 25, characterized by overall propagation losses equivalent to those of the index-like propagation regime (~ 1-2 dB/cm). Such photonic band-edge slow-light regime at low propagation losses is made possible by the adiabatic apodization of such 1-D HCGs, thus resulting in a win-win approach where light slow-down regime is reached without additional optical losses penalty. As well as that, a tailored apodization optimized via genetic algorithms allows the flattening of slow-light regime over the wavelength window of interest, therefore suiting well needs for group index stability for modulation purposes and non-linear effects generation. In conclusion, such architectures provide key features suitable for power-efficient high-speed modulators in silicon as well as an extremely low-loss building block for non-linear optics (NLO) which is now available in the Si photonics toolbox.
NASA Astrophysics Data System (ADS)
Klimov, M. S.; Sychugov, V. A.; Tishchenko, A. V.
1992-02-01
An analysis is made of the process of light emission from a corrugated waveguide into air and into a substrate in a noncollinear geometry, i.e., when the direction along which the waveguide mode propagates does not coincide with the plane in which the emitted wave lies. Calculations show that when a TE mode is excited in a corrugated waveguide by a light beam with the TM polarization incident from air on the waveguide at a grazing angle, one can achieve a high waveguide excitation efficiency (~ 60%) if the waveguide mode propagates along the normal to the plane of incidence.
Acoustic Wave Propagation in Snow Based on a Biot-Type Porous Model
NASA Astrophysics Data System (ADS)
Sidler, R.
2014-12-01
Despite the fact that acoustic methods are inexpensive, robust and simple, the application of seismic waves to snow has been sparse. This might be due to the strong attenuation inherent to snow that prevents large scale seismic applications or due to the somewhat counterintuitive acoustic behavior of snow as a porous material. Such materials support a second kind of compressional wave that can be measured in fresh snow and which has a decreasing wave velocity with increasing density of snow. To investigate wave propagation in snow we construct a Biot-type porous model of snow as a function of porosity based on the assumptions that the solid frame is build of ice, the pore space is filled with a mix of air, or air and water, and empirical relationships for the tortuosity, the permeability, the bulk, and the shear modulus.We use this reduced model to investigate compressional and shear wave velocities of snow as a function of porosity and to asses the consequences of liquid water in the snowpack on acoustic wave propagation by solving Biot's differential equations with plain wave solutions. We find that the fast compressional wave velocity increases significantly with increasing density, but also that the fast compressional wave velocity might be even lower than the slow compressional wave velocity for very light snow. By using compressional and shear strength criteria and solving Biot's differential equations with a pseudo-spectral approach we evaluate snow failure due to acoustic waves in a heterogeneous snowpack, which we think is an important mechanism in triggering avalanches by explosives as well as by skiers. Finally, we developed a low cost seismic acquisition device to assess the theoretically obtained wave velocities in the field and to explore the possibility of an inexpensive tool to remotely gather snow water equivalent.
Optical Kerr spatiotemporal dark extreme waves
NASA Astrophysics Data System (ADS)
Wabnitz, Stefan; Kodama, Yuji; Baronio, Fabio
2018-02-01
We study the existence and propagation of multidimensional dark non-diffractive and non-dispersive spatiotemporal optical wave-packets in nonlinear Kerr media. We report analytically and confirm numerically the properties of spatiotemporal dark lines, X solitary waves and lump solutions of the (2 + 1)D nonlinear Schr odinger equation (NLSE). Dark lines, X waves and lumps represent holes of light on a continuous wave background. These solitary waves are derived by exploiting the connection between the (2 + 1)D NLSE and a well-known equation of hydrodynamics, namely the (2+1)D Kadomtsev-Petviashvili (KP) equation. This finding opens a novel path for the excitation and control of spatiotemporal optical solitary and rogue waves, of hydrodynamic nature.
Light scattering from an atomic gas under conditions of quantum degeneracy
NASA Astrophysics Data System (ADS)
Porozova, V. M.; Gerasimov, L. V.; Havey, M. D.; Kupriyanov, D. V.
2018-05-01
Elastic light scattering from a macroscopic atomic sample existing in the Bose-Einstein condensate phase reveals a unique physical configuration of interacting light and matter waves. However, the joint coherent dynamics of the optical excitation induced by an incident photon is influenced by the presence of incoherent scattering channels. For a sample of sufficient length the excitation transports as a polariton wave and the propagation Green's function obeys the scattering equation which we derive. The polariton dynamics could be tracked in the outgoing channel of the scattered photon as we show via numerical solution of the scattering equation for one-dimensional geometry. The results are analyzed and compared with predictions of the conventional macroscopic Maxwell theory for light scattering from a nondegenerate atomic sample of the same density and size.
NASA Astrophysics Data System (ADS)
Brazhnikov, D. V.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.
2014-12-01
The method for observing the high-contrast and narrow-width resonances of electromagnetically induced absorption (EIA) in the Hanle configuration under counter-propagating pump and probe light waves is proposed. Here, as an example, we study a ‘dark’ type of atomic dipole transition {{F}\\text{g}}={1}\\to {{F}\\text{e}}={1} in D1 line of 87Rb, where usually the electromagnetically induced transparency can be observed. To obtain the EIA signal one should properly choose the polarizations of light waves and intensities. In contrast to regular schemes for observing EIA signals (under a single traveling light wave in the Hanle configuration or under a bichromatic light field consisting of two traveling waves), the proposed scheme allows one to use buffer gas for significantly improving the properties of the resonance. Also the dramatic influence of atomic transition openness on the contrast of the resonance is revealed, which is advantageous in comparison with cyclic atomic transitions. The nonlinear resonances in a probe-wave transmitted signal with contrast close to 100% and sub-kHz widths can be obtained. The results are interesting in high-resolution spectroscopy, nonlinear and magneto-optics.
Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.
2012-12-18
Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.
Anomalous refraction of a low divergence monochromatic light beam in a transparent slab.
Lequime, Michel; Amra, Claude
2018-04-01
An exact formulation for the propagation of a monochromatic wave packet impinging on a transparent, homogeneous, isotropic, and parallel slab at oblique incidence is given. Approximate formulas are derived for low divergence light beams. These formulas show the presence of anomalous refraction phenomena at any slab thickness, including negative refraction and flat lensing effects, induced by reflection at the rear face.
NASA Astrophysics Data System (ADS)
Linder, Eric V.
2018-03-01
A subclass of the Horndeski modified gravity theory we call No Slip Gravity has particularly interesting properties: 1) a speed of gravitational wave propagation equal to the speed of light, 2) equality between the effective gravitational coupling strengths to matter and light, Gmatter and Glight, hence no slip between the metric potentials, yet difference from Newton's constant, and 3) suppressed growth to give better agreement with galaxy clustering observations. We explore the characteristics and implications of this theory, and project observational constraints. We also give a simple expression for the ratio of the gravitational wave standard siren distance to the photon standard candle distance, in this theory and others, and enable a direct comparison of modified gravity in structure growth and in gravitational waves, an important crosscheck.
Wind Generated Rogue Waves in an Annular Wave Flume.
Toffoli, A; Proment, D; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M
2017-04-07
We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an unlimited-fetch condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.
Scalar wave-optical reconstruction of plenoptic camera images.
Junker, André; Stenau, Tim; Brenner, Karl-Heinz
2014-09-01
We investigate the reconstruction of plenoptic camera images in a scalar wave-optical framework. Previous publications relating to this topic numerically simulate light propagation on the basis of ray tracing. However, due to continuing miniaturization of hardware components it can be assumed that in combination with low-aperture optical systems this technique may not be generally valid. Therefore, we study the differences between ray- and wave-optical object reconstructions of true plenoptic camera images. For this purpose we present a wave-optical reconstruction algorithm, which can be run on a regular computer. Our findings show that a wave-optical treatment is capable of increasing the detail resolution of reconstructed objects.
Validation of optical codes based on 3D nanostructures
NASA Astrophysics Data System (ADS)
Carnicer, Artur; Javidi, Bahram
2017-05-01
Image information encoding using random phase masks produce speckle-like noise distributions when the sample is propagated in the Fresnel domain. As a result, information cannot be accessed by simple visual inspection. Phase masks can be easily implemented in practice by attaching cello-tape to the plain-text message. Conventional 2D-phase masks can be generalized to 3D by combining glass and diffusers resulting in a more complex, physical unclonable function. In this communication, we model the behavior of a 3D phase mask using a simple approach: light is propagated trough glass using the angular spectrum of plane waves whereas the diffusor is described as a random phase mask and a blurring effect on the amplitude of the propagated wave. Using different designs for the 3D phase mask and multiple samples, we demonstrate that classification is possible using the k-nearest neighbors and random forests machine learning algorithms.
A finite element beam propagation method for simulation of liquid crystal devices.
Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal
2009-06-22
An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng Jing; Huang Guoxiang; State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062
2011-05-15
We propose a scheme to realize a transition from delocalization to localization of light waves via electromagnetically induced transparency. The system we suggested is a resonant cold atomic ensemble having N configuration, with a control field consisting of two pairs of laser beams with different cross angles, which produce an electromagnetically induced quasiperiodic waveguide (EIQPW) for the propagation of a signal field. By appropriately tuning the incommensurate rate or relative modulation strength between the two pairs of control-field components, the signal field can exhibit the delocalization-localization transition as it transports inside the atomic ensemble. The delocalization-localization transition point is determinedmore » and the propagation property of the signal field is studied in detail. Our work provides a way of realizing wave localization via atomic coherence, which is quite different from the conventional, off-resonant mechanism-based Aubry-Andre model, and the great controllability of the EIQPW also allows an easy manipulation of the delocalization-localization transition.« less
On the Traversal Time of Barriers
NASA Astrophysics Data System (ADS)
Aichmann, Horst; Nimtz, Günter
2014-06-01
Fifty years ago Hartman studied the barrier transmission time of wave packets (J Appl Phys 33:3427-3433, 1962). He was inspired by the tunneling experiments across thin insulating layers at that time. For opaque barriers he calculated faster than light propagation and a transmission time independent of barrier length, which is called the Hartman effect. A faster than light (FTL or superluminal) wave packet velocity was deduced in analog tunneling experiments with microwaves and with infrared light thirty years later. Recently, the conjectured zero time of electron tunneling was claimed to have been observed in ionizing helium inside the barrier. The calculated and measured short tunneling time arises at the barrier front. This tunneling time was found to be universal for elastic fields as well as for electromagnetic fields. Remarkable is that the delay time is the same for the reflected and the transmitted waves in the case of symmetric barriers. Several theoretical physicists predicted this strange nature of the tunneling process. However, even with this background many members of the physics community do not accept a FTL signal velocity interpretation of the experimental tunneling results. Instead a luminal front velocity was calculated to explain the FTL experimental results frequently. However, Brillouin stated in his book on wave propagation and group velocity that the front velocity is given by the group velocity of wave packets in the case of physical signals, which have only finite frequency bandwidths. Some studies assumed barriers to be cavities and the observed tunneling time does represent the cavity lifetime. We are going to discus these continuing misleading interpretations, which are found in journals and in textbooks till today.
NASA Astrophysics Data System (ADS)
Ullah Manzoor, Habib; Manzoor, Tareq; Hussain, Masroor; Manzoor, Sanaullah; Nazar, Kashif
2018-04-01
Surface electromagnetic waves are the solution of Maxwell’s frequency domain equations at the interface of two dissimilar materials. In this article, two canonical boundary-value problems have been formulated to analyze the multiplicity of electromagnetic surface waves at the interface between two dissimilar materials in the visible region of light. In the first problem, the interface between two semi-infinite rugate filters having symmetric refractive index profiles is considered and in the second problem, to enhance the multiplicity of surface electromagnetic waves, a homogeneous dielectric slab of 400 nm is included between two semi-infinite symmetric rugate filters. Numerical results show that multiple Bloch surface waves of different phase speeds, different polarization states, different degrees of localization and different field profiles are propagated at the interface between two semi-infinite rugate filters. Having two interfaces when a homogeneous dielectric layer is placed between two semi-infinite rugate filters has increased the multiplicity of electromagnetic surface waves.
2015-07-09
This cartoon shows how magnetic waves, called Alfvén S-waves, propagate outward from the base of black hole jets. The jet is a flow of charged particles, called a plasma, which is launched by a black hole. The jet has a helical magnetic field (yellow coil) permeating the plasma. The waves then travel along the jet, in the direction of the plasma flow, but at a velocity determined by both the jet's magnetic properties and the plasma flow speed. The BL Lac jet examined in a new study is several light-years long, and the wave speed is about 98 percent the speed of light. Fast-moving magnetic waves emanating from a distant supermassive black hole undulate like a whip whose handle is being shaken by a giant hand, according to a study using data from the National Radio Astronomy Observatory's Very Long Baseline Array. Scientists used this instrument to explore the galaxy/black hole system known as BL Lacertae (BL Lac) in high resolution. http://photojournal.jpl.nasa.gov/catalog/PIA19822
Self-reflection of extremely short light pulses in nonlinear optical waveguides
NASA Astrophysics Data System (ADS)
Kurasov, Alexander E.; Kozlov, Sergei A.
2004-07-01
An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.
Optical supercavitation in soft matter.
Conti, C; DelRe, E
2010-09-10
We investigate theoretically, numerically, and experimentally nonlinear optical waves in an absorbing out-of-equilibrium colloidal material at the gelification transition. At a sufficiently high optical intensity, absorption is frustrated and light propagates into the medium. The process is mediated by the formation of a matter-shock wave due to optically induced thermodiffusion and largely resembles the mechanism of hydrodynamical supercavitation, as it is accompanied by a dynamic phase-transition region between the beam and the absorbing material.
Optical Supercavitation in Soft Matter
NASA Astrophysics Data System (ADS)
Conti, C.; Delre, E.
2010-09-01
We investigate theoretically, numerically, and experimentally nonlinear optical waves in an absorbing out-of-equilibrium colloidal material at the gelification transition. At a sufficiently high optical intensity, absorption is frustrated and light propagates into the medium. The process is mediated by the formation of a matter-shock wave due to optically induced thermodiffusion and largely resembles the mechanism of hydrodynamical supercavitation, as it is accompanied by a dynamic phase-transition region between the beam and the absorbing material.
Ultrarelativistic boost of a black hole in the magnetic universe of Levi-Civita-Bertotti-Robinson
NASA Astrophysics Data System (ADS)
Ortaggio, Marcello; Astorino, Marco
2018-05-01
We consider an exact Einstein-Maxwell solution constructed by Alekseev and Garcia, which describes a Schwarzschild black hole immersed in the magnetic universe of Levi-Civita, Bertotti, and Robinson (LCBR). After reviewing the basic properties of this spacetime, we study the ultrarelativistic limit in which the black hole is boosted to the speed of light, while sending its mass to 0. This results in a nonexpanding impulsive wave traveling in the LCBR universe. The wave front is a 2-sphere carrying two null point particles at its poles—a remnant of the structure of the original static spacetime. It is also shown that the obtained line element belongs to the Kundt class of spacetimes, and the relation with the known family of exact gravitational waves of finite duration propagating in the LCBR background is clarified. In the limit of a vanishing electromagnetic field, one point particle is pushed away to infinity and the single-particle Aichelburg-Sexl p p -wave propagating in Minkowski space is recovered.
Spatial Light Modulators with Arbitrary Quantum Wells Profiles
1993-09-27
phase change in the 1.152Pm wave propagating through the waveguide and appears as an optically bistable intensity signal normal to the control beam ...electrical bistability of a SEED was integrated with a phase modulator to produce optical bistability in an all- optical switch. A control wavelength of...received attention for its use in electrically-addressable spatial light intensity modulator arrays due to its potentially high contrast ratio, large
Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agio, Mario
2002-12-31
This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group.more » The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.« less
Spatial Distribution of Phase Singularities in Optical Random Vector Waves.
De Angelis, L; Alpeggiani, F; Di Falco, A; Kuipers, L
2016-08-26
Phase singularities are dislocations widely studied in optical fields as well as in other areas of physics. With experiment and theory we show that the vectorial nature of light affects the spatial distribution of phase singularities in random light fields. While in scalar random waves phase singularities exhibit spatial distributions reminiscent of particles in isotropic liquids, in vector fields their distribution for the different vector components becomes anisotropic due to the direct relation between propagation and field direction. By incorporating this relation in the theory for scalar fields by Berry and Dennis [Proc. R. Soc. A 456, 2059 (2000)], we quantitatively describe our experiments.
NASA Astrophysics Data System (ADS)
Milkov, M. G.; Voloshinov, V. B.; Isaenko, L. I.; Vedenyapin, V. N.
2018-01-01
Acousto-optic interaction in an optically biaxial crystalline medium under propagation of light close to one of the optical axes of a potassium arsenate titanyl KTiOAsO4 crystal has been studied. The experimental dependences of the intensity of a diffracted optical beam on the angle of light incidence on an ultrasonic wave have been obtained. It has been shown that a flat cut of a wave-vector surface provides development of an ultra-wide-aperture and ultra-wide-band acousto-optic deflector to control radiation in the visible and infrared electromagnetic spectral ranges.
NASA Astrophysics Data System (ADS)
Suhaimi, N. Sheeda; Ohae, C.; Gavara, T.; Nakagawa, K.; Hong, F.-L.; Katsuragawa, M.
2017-08-01
We have successfully generated a new broadband coherent light source in the continuous wave (CW) regime which is an ensemble of multi-harmonic radiations (2403, 1201, 801, 600 and 480 nm) by implementing a frequency dividing technology. The system is uniquely designed that all the harmonics are generated and propagate coaxially which gives the advantage of robustly maintaining the phase coherence among the harmonics. The highlight is its huge potential for the arbitrary optical waveform synthesis in the CW regime which has not been performed yet due to the limitation of the existing light source.
Resonance, criticality, and emergence in city traffic investigated in cellular automaton models.
Varas, A; Cornejo, M D; Toledo, B A; Muñoz, V; Rogan, J; Zarama, R; Valdivia, J A
2009-11-01
The complex behavior that occurs when traffic lights are synchronized is studied for a row of interacting cars. The system is modeled through a cellular automaton. Two strategies are considered: all lights in phase and a "green wave" with a propagating green signal. It is found that the mean velocity near the resonant condition follows a critical scaling law. For the green wave, it is shown that the mean velocity scaling law holds even for random separation between traffic lights and is not dependent on the density. This independence on car density is broken when random perturbations are considered in the car velocity. Random velocity perturbations also have the effect of leading the system to an emergent state, where cars move in clusters, but with an average velocity which is independent of traffic light switching for large injection rates.
NASA Astrophysics Data System (ADS)
Voelz, David; Wijerathna, Erandi; Xiao, Xifeng; Muschinski, Andreas
2017-09-01
The analysis of optical propagation through both deterministic and stochastic refractive-index fields may be substantially simplified if diffraction effects can be neglected. With regard to simplification, it is known that certain geometricaloptics predictions often agree well with field observations but it is not always clear why this is so. Here, a new investigation of this issue is presented involving wave optics and geometrical (ray) optics computer simulations of a beam of visible light propagating through fully turbulent, homogeneous and isotropic refractive-index fields. We compare the computationally simulated, aperture-averaged angle-of-arrival variances (for aperture diameters ranging from 0.5 to 13 Fresnel lengths) with theoretical predictions based on the Rytov theory.
f (T ) gravity after GW170817 and GRB170817A
NASA Astrophysics Data System (ADS)
Cai, Yi-Fu; Li, Chunlong; Saridakis, Emmanuel N.; Xue, Ling-Qin
2018-05-01
The combined observation of GW170817 and its electromagnetic counterpart GRB170817A reveals that gravitational waves propagate at the speed of light in high precision. We apply the standard analysis of cosmological perturbations, as well as the effective field theory approach, to investigate the experimental consequences for the theory of f (T ) gravity. Our analysis verifies for the first time that the speed of gravitational waves within f (T ) gravity is equal to the light speed, and hence, the constraints from GW170817 and GRB170817A are trivially satisfied. Nevertheless, by examining the dispersion relation and the frequency of cosmological gravitational waves, we observe a deviation from the results of general relativity, quantified by a new parameter. Although its value is relatively small in viable f (T ) models, its possible future measurement in advancing gravitational-wave astronomy would be the smoking gun of testing this type of modified gravity.
NASA Astrophysics Data System (ADS)
Cheng, Yazhou; Jia, Yuechen; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng
2014-11-01
We report on the guided-wave second-harmonic generation in a KTiOPO4 nonlinear optical waveguide fabricated by a 17 MeV O5+ ion irradiation at a fluence of 1.5×1015 ions/cm2. The waveguide guides light along both TE and TM polarizations, which is suitable for phase-matching frequency doubling. Second harmonics of green light at a wavelength of 532 nm have been generated through the KTiOPO4 waveguide platform under an optical pump of fundamental wave at 1064 nm in both continuous-wave and pulsed regimes, reaching optical conversion efficiencies of 5.36%/W and 11.5%, respectively. The propagation losses have been determined to be ˜3.1 and ˜5.7 dB/cm for the TE and TM polarizations at a wavelength of 632.8 nm, respectively.
NASA Astrophysics Data System (ADS)
Pushin, Dmitry
Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.
About the Nature of a Coherence of Light Waves
NASA Astrophysics Data System (ADS)
Demyaneko, P. O.; Zinkovskiy, Y. F.; Savenko, Y. V.
The confrontation of corpuscular and wave hypotheses was not partly stacked in frameworks of the uniform theory. Fundamental works of Fresnel and Fraunhofer on a diffraction of light have erected a wave theory in a rank of dominant true. The wave theory did not so effectively explain developments of corpuscular properties of a light. Its feeble place was also necessity for concept "coherence", introduced for explanation of a light interference. The wave coherence is properly understood as waves ability to interfere. The problem of a light coherence continues to be interesting for investigators [L], but clear understanding of its nature is not yet appeared. Because, it is unconvincing to consider an attribution to the act of separate atom radiation of electromagnetic waves "zug" of a few meters length as explanation of the coherence nature, when it has become possible to generate light pulses by duration ˜ 10 -15 s. Let's note there is the spatial separation of a primary luminous flux on two secondary ones in a basis of all ways of deriving of coherent luminous fluxes. And these fluxes are able to interfere when are brought together. Their coherence was explained that at partitioning each "zug" was bisected, and at joining again met mutual coherent "its halves". There was not disputed the question, how happens " separation of each waves "zug" in halves". M. Plank postulated (1900) heated bodies radiate electromagnetic waves not continuously, but by separate portions he called "quantums" of energy. Its have a quantity is proportional to frequency of electromagnetic waves. A. Einstein has entered (1905) a hypothesis of light quantums -- light is indeed generated as quantums, and in further it exists as a flux of quantums and interacts with matter also, as a flux of separate quantums. The term "photon" was entered by G.N. Lewis (1929) properly for emphasising of light quantums and that one underlined corpuscularity of a light. At investigation of an atom structure there was set (E. Rutherford, N. Bohr, 1911) quantums are generated in atoms at transitions of excited electrons from higher energy levels onto lowest levels. At that, there are radiated quantums-waves of electromagnetic energy into environmental space. In different light sources "working body" has the "own" structure of energy levels defining spectral characteristics of these sources. So, the development of representations about the nature of a light returns to a corpuscular hypothesis. It has become clear, that the light organically combines in itself both property of waves and the properties of particles. It depends on requirements of experiment which one from developments will be prevalent. Inseparable unity of corpuscular and wave properties is proper for all microparticles (a hypothesis De Brogle, 1924) and has received a title of "wave-corpuscle dualism". Let's make a common view about "sizes" of a photon. As was mentioned, the light pulses can have duration ˜ 10 -15 s. Spatial length of such pulses in direction of motion ˜ 10 -6 m, that comparable with a light wavelength λ . It is possible to suspect that it will be a size of a photon in direction of its propagation. An estimate of "cross" of the sizes of a photon we shall obtain by analyzing of light diffraction on a narrow slot. The angular size of central diffraction peak at decreasing of width of a slot b is increased, and it reaches 180 at b = λ . Then the light intensity promptly impinges behind it. From this it is possible to assume, that the cross sectional dimensions of photon also is comparable with λ . It is necessary to clear understand, that photon, as the wave formation, does not have sharp borders. It is possible to speak only about the sizes of area containing a dominant share of photon energy. So, photon is a spatial localized electromagnetic perturbation, that allows to allot it with properties of a particle. Essential properties of a photon are indivisibility and existence only in a motion. So, the light is a photons flux: both light wave and light electromagnetic field consist of final number of photons. At that, it is important to remember that in any light source along with spontaneous mechanism it also operates a mechanism of induced radiation, generating identical (coherent) quantums. Due to it, there is radiated a partially coherent flux, consisting of large or small groups of quantums ("quantum packets"), from any light source. In limits of a separate packet its component quantums are coherent, because all of them are originated by one quantum which has appeared spontaneously, which induced occurrence of other quantums of this packet, passing by other excited atoms. The representation about quantum packets gives clear physical explanation to concept of "light waves zugs". Quantum packet is that "zug of waves". "Quality" of a light source (in sense of its coherence) is determined by sizes of quantum packets -- the larger they the more qualitative source, radiating them. There are understandable a better coherence of a gas light sources: the atoms in gas are arranged on large distances and do not hinder for spontaneously generated light quantum to overcome without absorption or dispersion that large distance, challenging on it an induced radiation of other excited atoms. The low coherence of glow-discharge tubes is stipulated by that the radiation in them goes only from surface layer of atoms and the requirements for development of the mechanism of induced radiation are unfavorable. It is also obvious the high coherence of a laser radiation due to a positive optical back coupling. The coherent quantums of one quantum packet exist a long time inside the resonator; they are reproducing there during all this time. Due to this the lasers are capable to generate multi-km quantum packets ("zugs"). By the way, it could not to explain "by emissive opportunities" of one atom. It is understandable a division of quantum packets on semi transparent mirrors: the part of quantums of each packet simply transits through a semi transparent mirrors, and remaining ones are simply reflected from it. The model of quantum packets gives clear explanation of coherence parameters of light flux. A length of coherence is a spatial extent of a quantum packet in direction of its propagation. A coherence time is a time of flight of quantum packet by a fixed spectator. A coherence radius (size) is a spatial extent of a quantum packet in direction, perpendicular to direction of its propagation. A volume of coherence is simply a volume of quantum packet. Separately it is necessary to tell about the fact of increasing of coherence radius of a light flux, propagating in space. Iterated, including by us, assertion: "at induced transitions there are generated the same quantums as ones induced them". It is not necessary to understand it too literally. What perfect was a light source, the spectral line of its radiation always has final width. That means, there is a certain frequency dispersion of quantums, generated by source, or modules of their wave vectors. Apparently, it is necessary to expect as well certain dispersion of particular straggling of wave vectors directions inside separate quantum packets. Beginning with experimentally obtained radius of sunlight coherence on surface of the Earth, it was determined a value of angular divergence of quantum packets. With the help of the obtained thus value, there were calculated values of coherence radiuses of light, coming on the Earth from more remote stars. Obtained calculated values are well compared with experimentally obtained values of light coherence radiuses for these stars. Starting from proposed concept of quantum packets, we have given explanation to such development of wave properties of the light as interference, in particular, its variety, when superimposed coherent fluxes interfere. It is not less important from a point of view of the coordination of their explanations with our representations about luminous flux structure, there is an analysis also such developments of wave properties of light, as its interference on thin films, "Newton's ringes", etc. For explanation of this variety of interference there is no need for concept coherence, as in such interference is watched always and for a light from any sources. There is a special interest to phenomenas bound with diffraction of light, from a point of view of quantum packets model. The prime task here is to give a corresponding explanation to the content both senses of Huygens' and Huygens-Fresnel principles. These problems will be considered in following our works. [L] Mandel L., Wolf E. Optical Coherence and Quantum Optics / Cambrige, 1995
Sapko, Michael J.; Cortese, Robert A.
1992-01-01
An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.
Photonic surface waves on metamaterial interfaces
NASA Astrophysics Data System (ADS)
Takayama, O.; Bogdanov, A. A.; Lavrinenko, A. V.
2017-11-01
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. Research on surface waves has been flourishing in the last few decades due to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on near-field techniques, contributing to the establishment of nanophotonics as a field of research. Up to now, a wide variety of surface waves has been investigated in numerous material and structure settings. This article reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of surface wave, we discuss the material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods.
Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.
Dennis, Mark R; Ring, James D
2013-09-01
We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.
NASA Astrophysics Data System (ADS)
Kyrazis, D. T.; Weiland, T. L.
1990-10-01
The propagation of intense 3rd harmonic light (0.351 micron) through large optical components of the Nova laser results in fracture damage of the center of the component. This damage is caused by an intense acoustical wave brought to focus in the center by reflecting off the circular edge of the optic. The source of this wave is light generated by transverse stimulated Brillouin scattering (SBS). By taking into account the transient gain characteristics of the SBS, the pulse energy can be correctly predicted that would cause damage for any time variation in intensity in the pump beam, and predict the relative intensity of the Brillouin light. The model is based on the transient behavior of a first order linear system.
Voloshinov, Vitaly; Polikarpova, Nataliya; Ivanova, Polina; Khorkin, Vladimir
2018-04-01
Peculiar cases of acoustic wave propagation and reflection may be observed in strongly anisotropic acousto-optical crystals. A tellurium dioxide crystal serves as a prime example of such media, since it possesses record indexes of acoustic anisotropy. We studied one of the unusual scenarios of acoustic incidence and reflection from a free crystal-vacuum boundary in paratellurite. The directions of the acoustic waves in the (001) plane of the crystal were determined, and their basic characteristics were calculated. The carried-out acousto-optic experiment at the wavelength of light 532 nm and the acoustic frequency 73 MHz confirmed the theoretical predictions. The effects examined in the paper include the acoustic wave propagation with the record walkoff angle 74°. We also observed the incidence of the wave on the boundary at the angle exceeding 90°. Finally, we registered the close-to-back reflection of acoustic energy following the incidence. One of the stunning aspects is the distribution of energy between the incident and the back-reflected wave. The unusual features of the acoustic wave reflections pointed out in the paper are valuable for their possible applications in acousto-optic devices.
Nagatani, Yoshiki; Mizuno, Katsunori; Saeki, Takashi; Matsukawa, Mami; Sakaguchi, Takefumi; Hosoi, Hiroshi
2008-11-01
In cancellous bone, longitudinal waves often separate into fast and slow waves depending on the alignment of bone trabeculae in the propagation path. This interesting phenomenon becomes an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. Since the fast wave mainly propagates in trabeculae, this wave is considered to reflect the structure of trabeculae. For a new diagnosis method using the information of this fast wave, therefore, it is necessary to understand the generation mechanism and propagation behavior precisely. In this study, the generation process of fast wave was examined by numerical simulations using elastic finite-difference time-domain (FDTD) method and experimental measurements. As simulation models, three-dimensional X-ray computer tomography (CT) data of actual bone samples were used. Simulation and experimental results showed that the attenuation of fast wave was always higher in the early state of propagation, and they gradually decreased as the wave propagated in bone. This phenomenon is supposed to come from the complicated propagating paths of fast waves in cancellous bone.
Avendaño, Carlos G; Palomares, Laura O
2018-04-20
We consider the propagation of electromagnetic waves throughout a nanocomposite structurally chiral medium consisting of metallic nanoballs randomly dispersed in a structurally chiral material whose dielectric properties can be represented by a resonant effective uniaxial tensor. It is found that an omnidirectional narrow pass band and two omnidirectional narrow band gaps are created in the blue optical spectrum for right and left circularly polarized light, as well as narrow reflection bands for right circularly polarized light that can be controlled by varying the light incidence angle and the filling fraction of metallic inclusions.
Spin wave filtering and guiding in Permalloy/iron nanowires
NASA Astrophysics Data System (ADS)
Silvani, R.; Kostylev, M.; Adeyeye, A. O.; Gubbiotti, G.
2018-03-01
We have investigated the spin wave filtering and guiding properties of periodic array of single (Permalloy and Fe) and bi-layer (Py/Fe) nanowires (NWs) by means of Brillouin light scattering measurements and micromagnetic simulations. For all the nanowire arrays, the thickness of the layers is 10 nm while all NWs have the same width of 340 nm and edge-to-edge separation of 100 nm. Spin wave dispersion has been measured in the Damon-Eshbach configuration for wave vector either parallel or perpendicular to the nanowire length. This study reveals the filtering property of the spin waves when the wave vector is perpendicular to the NW length, with frequency ranges where the spin wave propagation is permitted separated by frequency band gaps, and the guiding property of NW when the wave vector is oriented parallel to the NW, with spin wave modes propagating in parallel channels in the central and edge regions of the NW. The measured dispersions were well reproduced by micromagnetic simulations, which also deliver the spatial profiles for the modes at zero wave vector. To reproduce the dispersion of the modes localized close to the NW edges, uniaxial anisotropy has been introduced. In the case of Permalloy/iron NWs, the obtained results have been compared with those for a 20 nm thick effective NW having average magnetic properties of the two materials.
Signatures of Nonlinear Waves in Coronal Plumes and Holes
NASA Technical Reports Server (NTRS)
Ofman, Leon
1999-01-01
In recent Ultraviolet Coronagraph Spectrometer/Solar and Heliospheric Observatory (UVCS/SOHO) White Light Channel (WLC) observations we found quasi-periodic variations in the polarized brightness (pB) in the polar coronal holes at heliocentric distances of 1.9-2.45 solar radii. The motivation for the observation is the 2.5D Magnetohydrodynamics (MHD) model of solar wind acceleration by nonlinear waves, that predicts compressive fluctuations in coronal holes. To help identify the waves observed with the UVCS/WLC we model the propagation and dissipation of slow magnetosonic waves in polar plumes using 1D MHD code in spherical geometry, We find that the slow waves nonlinearly steepen in the gravitationally stratified plumes. The nonlinear steepening of the waves leads to enhanced dissipation due to compressive viscosity at the wave-fronts.
Soliton-induced relativistic-scattering and amplification.
Rubino, E; Lotti, A; Belgiorno, F; Cacciatori, S L; Couairon, A; Leonhardt, U; Faccio, D
2012-01-01
Solitons are of fundamental importance in photonics due to applications in optical data transmission and also as a tool for investigating novel phenomena ranging from light generation at new frequencies and wave-trapping to rogue waves. Solitons are also moving scatterers: they generate refractive index perturbations moving at the speed of light. Here we found that such perturbations scatter light in an unusual way: they amplify light by the mixing of positive and negative frequencies, as we describe using a first Born approximation and numerical simulations. The simplest scenario in which these effects may be observed is within the initial stages of optical soliton propagation: a steep shock front develops that may efficiently scatter a second, weaker probe pulse into relatively intense positive and negative frequency modes with amplification at the expense of the soliton. Our results show a novel all-optical amplification scheme that relies on soliton induced scattering.
Optics. Spatially structured photons that travel in free space slower than the speed of light.
Giovannini, Daniel; Romero, Jacquiline; Potoček, Václav; Ferenczi, Gergely; Speirits, Fiona; Barnett, Stephen M; Faccio, Daniele; Padgett, Miles J
2015-02-20
That the speed of light in free space is constant is a cornerstone of modern physics. However, light beams have finite transverse size, which leads to a modification of their wave vectors resulting in a change to their phase and group velocities. We study the group velocity of single photons by measuring a change in their arrival time that results from changing the beam's transverse spatial structure. Using time-correlated photon pairs, we show a reduction in the group velocity of photons in both a Bessel beam and photons in a focused Gaussian beam. In both cases, the delay is several micrometers over a propagation distance of ~1 meter. Our work highlights that, even in free space, the invariance of the speed of light only applies to plane waves. Copyright © 2015, American Association for the Advancement of Science.
Diffraction of three-colour radiation on an acoustic wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotov, V M
We study acousto-optic Bragg diffraction of three-colour radiation having wavelengths of 488, 514 and 633 nm on a single acoustic wave propagating in a TeO{sub 2} crystal. A technique is developed that allows one to find diffraction regimes with a proportional change in the intensity of all radiations by varying the acoustic power. According to the technique, radiation with a maximum wavelength has to be in strict Bragg synchronism with the acoustic wave, while other radiations diffract during the synchronism detuning. The results obtained using this technique are experimentally confirmed. (diffraction of light)
Quantum spatial propagation of squeezed light in a degenerate parametric amplifier
NASA Technical Reports Server (NTRS)
Deutsch, Ivan H.; Garrison, John C.
1992-01-01
Differential equations which describe the steady state spatial evolution of nonclassical light are established using standard quantum field theoretic techniques. A Schroedinger equation for the state vector of the optical field is derived using the quantum analog of the slowly varying envelope approximation (SVEA). The steady state solutions are those that satisfy the time independent Schroedinger equation. The resulting eigenvalue problem then leads to the spatial propagation equations. For the degenerate parametric amplifier this method shows that the squeezing parameter obey nonlinear differential equations coupled by the amplifier gain and phase mismatch. The solution to these differential equations is equivalent to one obtained from the classical three wave mixing steady state solution to the parametric amplifier with a nondepleted pump.
Wave study of compound eyes for efficient infrared detection
NASA Astrophysics Data System (ADS)
Kilinc, Takiyettin Oytun; Hayran, Zeki; Kocer, Hasan; Kurt, Hamza
2017-08-01
Improving sensitivity in the infrared spectrum is a challenging task. Detecting infrared light over a wide bandwidth and at low power consumption is very important. Novel solutions can be acquired by mimicking biological eyes such as compound eye with many individual lenses inspired from the nature. The nature provides many ingenious approaches of sensing and detecting the surrounding environment. Even though compound eye consists of small optical units, it can detect wide-angle electromagnetic waves and it has high transmission and low reflection loss. Insects have eyes that are superior compared to human eyes (single-aperture eyes) in terms of compactness, robustness, wider field of view, higher sensitivity of light intensity and being cheap vision systems. All these desired properties are accompanied by an important drawback: lower spatial resolution. The first step to investigate the feasibility of bio-inspired optics in photodetectors is to perform light interaction with the optical system that gather light and detect it. The most common method used in natural vision systems is the ray analysis. Light wave characteristics are not taken into consideration in such analyses, such as the amount of energy at the focal point or photoreceptor site, the losses caused by reflection at the interfaces and absorption cannot be investigated. In this study, we present a bio-inspired optical detection system investigated by wave analysis. We numerically model the wave analysis based on Maxwell equations from the viewpoint of efficient light detection and revealing the light propagation after intercepting the first interface of the eye towards the photoreceptor site.
Generating a stationary infinite range tractor force via a multimode optical fibre
NASA Astrophysics Data System (ADS)
Ebongue, C. A.; Holzmann, D.; Ostermann, S.; Ritsch, H.
2017-06-01
Optical fibres confine and guide light almost unattenuated and thus convey light forces to polarizable nano-particles over very long distances. Radiation pressure forces arise from scattering of guided photons into free space while gradient forces are based on coherent scattering between different fibre modes or propagation directions. Interestingly, even scattering between co-propagating modes induces longitudinal forces as the transverse confinement of the light modes creates mode dependent longitudinal wave-vectors and photon momenta. We generalize a proven scattering matrix based approach to calculate single as well as inter-particle forces to include several forward and backward propagating modes. We show that an injection of the higher order mode only in a two mode fibre will induce a stationary tractor force against the injection direction, when the mode coupling to the lower order mode dominates against backscattering and free space losses. Generically this arises for non-absorbing particles at the centre of a waveguide. The model also gives improved predictions for inter-particle forces in evanescent nanofibre fields as experimentally observed recently. Surprisingly strong tractor forces can also act on whole optically bound arrays.
Wave-mixing-induced transparency with zero phase shift in atomic vapors
NASA Astrophysics Data System (ADS)
Zhou, F.; Zhu, C. J.; Li, Y.
2017-12-01
We present a wave-mixing induced transparency that can lead to a hyper-Raman gain-clamping effect. This new type of transparency is originated from a dynamic gain cancellation effect in a multiphoton process where a highly efficient light field of new frequency is generated and amplified. We further show that this novel dynamic gain cancellation effect not only makes the medium transparent to a probe light field at appropriate frequency but also eliminates the probe field propagation phase shift. This gain-cancellation-based induced transparency holds for many potential applications on optical communication and may lead to effective suppression of parasitic Raman/hyper-Raman noise field generated in high intensity optical fiber transmissions.
Raetz, Samuel; Dehoux, Thomas; Perton, Mathieu; Audoin, Bertrand
2013-12-01
The symmetry of a thermoelastic source resulting from laser absorption can be broken when the direction of light propagation in an elastic half-space is inclined relatively to the surface. This leads to an asymmetry of the directivity patterns of both compressional and shear acoustic waves. In contrast to classical surface acoustic sources, the tunable volume source allows one to take advantage of the mode conversion at the surface to control the directivity of specific modes. Physical interpretations of the evolution of the directivity patterns with the increasing light angle of incidence and of the relations between the preferential directions of compressional- and shear-wave emission are proposed. In order to compare calculated directivity patterns with measurements of normal displacement amplitudes performed on plates, a procedure is proposed to transform the directivity patterns into pseudo-directivity patterns representative of the experimental conditions. The comparison of the theoretical with measured pseudo-directivity patterns demonstrates the ability to enhance bulk-wave amplitudes and to steer specific bulk acoustic modes by adequately tuning light refraction.
A review and reassessment of diffraction, scattering, and shadows in electrodynamics
NASA Astrophysics Data System (ADS)
Berg, Matthew J.; Sorensen, Christopher M.
2018-05-01
The concepts of diffraction and scattering are well known and considered fundamental in optics and other wave phenomena. For any type of wave, one way to define diffraction is the spreading of waves, i.e., no change in the average propagation direction, while scattering is the deflection of waves with a clear change of propagation direction. However, the terms "diffraction" and "scattering" are often used interchangeably, and hence, a clear distinction between the two is difficult to find. This review considers electromagnetic waves and retains the simple definition that diffraction is the spreading of waves but demonstrates that all diffraction patterns are the result of scattering. It is shown that for electromagnetic waves, the "diffracted" wave from an object is the Ewald-Oseen extinction wave in the far-field zone. The intensity distribution of this wave yields what is commonly called the diffraction pattern. Moreover, this is the same Ewald-Oseen wave that cancels the incident wave inside the object and thereafter continues to do so immediately behind the object to create a shadow. If the object is much wider than the beam but has a hole, e.g., a screen with an aperture, the Ewald-Oseen extinction wave creates the shadow behind the screen and the incident light that passes through the aperture creates the diffraction pattern. This point of view also illustrates Babinet's principle. Thus, it is the Ewald-Oseen extinction theorem that binds together diffraction, scattering, and shadows.
Coherent ultra-violet to near-infrared generation in silica ridge waveguides
Yoon Oh, Dong; Yang, Ki Youl; Fredrick, Connor; Ycas, Gabriel; Diddams, Scott A.; Vahala, Kerry J.
2017-01-01
Short duration, intense pulses of light can experience dramatic spectral broadening when propagating through lengths of optical fibre. This continuum generation process is caused by a combination of nonlinear optical effects including the formation of dispersive waves. Optical analogues of Cherenkov radiation, these waves allow a pulse to radiate power into a distant spectral region. In this work, efficient and coherent dispersive wave generation of visible to ultraviolet light is demonstrated in silica waveguides on a silicon chip. Unlike fibre broadeners, the arrays provide a wide range of emission wavelength choices on a single, compact chip. This new capability is used to simplify offset frequency measurements of a mode-locked frequency comb. The arrays can also enable mode-locked lasers to attain unprecedented tunable spectral reach for spectroscopy, bioimaging, tomography and metrology. PMID:28067233
Cosmology in the laboratory: An analogy between hyperbolic metamaterials and the Milne universe
NASA Astrophysics Data System (ADS)
Figueiredo, David; Moraes, Fernando; Fumeron, Sébastien; Berche, Bertrand
2017-11-01
This article shows that the compactified Milne universe geometry, a toy model for the big crunch/big bang transition, can be realized in hyperbolic metamaterials, a new class of nanoengineered systems which have recently found its way as an experimental playground for cosmological ideas. On one side, Klein-Gordon particles, as well as tachyons, are used as probes of the Milne geometry. On the other side, the propagation of light in two versions of a liquid crystal-based metamaterial provides the analogy. It is shown that ray and wave optics in the metamaterial mimic, respectively, the classical trajectories and wave function propagation, of the Milne probes, leading to the exciting perspective of realizing experimental tests of particle tunneling through the cosmic singularity, for instance.
Ultrasmooth Patterned Metals for Plasmonics and Metamaterials
NASA Astrophysics Data System (ADS)
Nagpal, Prashant; Lindquist, Nathan C.; Oh, Sang-Hyun; Norris, David J.
2009-07-01
Surface plasmons are electromagnetic waves that can exist at metal interfaces because of coupling between light and free electrons. Restricted to travel along the interface, these waves can be channeled, concentrated, or otherwise manipulated by surface patterning. However, because surface roughness and other inhomogeneities have so far limited surface-plasmon propagation in real plasmonic devices, simple high-throughput methods are needed to fabricate high-quality patterned metals. We combined template stripping with precisely patterned silicon substrates to obtain ultrasmooth pure metal films with grooves, bumps, pyramids, ridges, and holes. Measured surface-plasmon-propagation lengths on the resulting surfaces approach theoretical values for perfectly flat films. With the use of our method, we demonstrated structures that exhibit Raman scattering enhancements above 107 for sensing applications and multilayer films for optical metamaterials.
NASA Astrophysics Data System (ADS)
Holl, Philipp M.; Reinhard, Friedemann
2017-05-01
Wireless data transmission systems such as wi-fi or Bluetooth emit coherent light—electromagnetic waves with a precisely known amplitude and phase. Propagating in space, this radiation forms a hologram—a two-dimensional wave front encoding a three-dimensional view of all objects traversed by the light beam. Here we demonstrate a scheme to record this hologram in a phase-coherent fashion across a meter-sized imaging region. We recover three-dimensional views of objects and emitters by feeding the resulting data into digital reconstruction algorithms. Employing a digital implementation of dark-field propagation to suppress multipath reflection, we significantly enhance the quality of the resulting images. We numerically simulate the hologram of a 10-m-sized building, finding that both localization of emitters and 3D tomography of absorptive objects could be feasible by this technique.
Unidirectional THz radiation propagation in BiFeO3
NASA Astrophysics Data System (ADS)
Room, Toomas
The mutual coupling between magnetism and electricity present in many multiferroic materials permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to write a magnetic state current-free by an electric voltage would provide a huge technological advantage. However, ME coupling changes the low energy electrodynamics of these materials in unprecedented way - optical ME effects give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. The transparent direction can be switched with dc magnetic or electric field, thus opening up new possibilities to manipulate the propagation of electromagnetic waves in multiferroic materials. We studied the unidirectional transmission of THz radiation in BiFeO3 crystals, the unique multiferroic compound offering a real potential for room temperature applications. The electrodynamics of BiFeO3 at 1THz and below is dominated by the spin wave modes of cycloidal spin order. We found that the optical magnetoelectric effect generated by spin waves in BiFeO3 is robust enough to cause considerable nonreciprocal directional dichroism in the GHz-THz range even at room temperature. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. Our work demonstrates that the nonreciprocal directional dichroism spectra of low energy excitations and their theoretical analysis provide microscopic model of ME couplings in multiferroic materials. Recent THz spectroscopy studies of multiferroic materials are an important step toward the realization of optical diodes, devices which transmit light in one but not in the opposite direction.
Consequences of repeated discovery and benign neglect of non-interaction of waves (NIW)
NASA Astrophysics Data System (ADS)
Roychoudhuri, ChandraSekhar
2017-08-01
This paper presents the historical background behind the repeated discovery and repeated ignoring of the generic important property of all propagating waves, the Non-Interaction of Waves (NIW). The focus will be on the implications of NIW in most of the major optical phenomena with brief hints of importance. We argue that the prevailing postulate of wave-particle duality becomes unnecessary, once we accept NIW. Semi-classical model of treating light-matter interactions should be the preferred approach since the quantumness actually arises from within the structure of the energy levels (bands) in materials. Waves, and wave equations, do not support bullet-like propagation. We follow the historical trend starting from the tenth century physicist Alhazen, to the seventeenth century Newton and Huygens, then to the nineteenth century Young and Fresnel. Then we jump to twentieth century physicists Planck, Einstein, Bose, Dirac and Feynman. Had we recognized and appreciated NIW property of waves from the time of Alhazen, the evolutionary history of physics would have been dramatically different from what we have today. The prevailing dominance of the postulate of wave-particle duality is keeping us confused from seeking out actual reality; and hence, we should abandon this concept and search out better models. The paper demonstrates that NIW provides us with a platform for deeper understanding of the nature of EM waves that we have missed; it is not just semantics.
NASA Astrophysics Data System (ADS)
Santolik, O.; Soucek, J.; Kolmasova, I.; Grison, B.; Wahlund, J.-E.; Bergmann, J.
2013-09-01
Evidence for a magnetosphere at Ganymede has been found in 1996 using measurements of plasma waves onboard the Galileo spacecraft (fig. 1). This discovery demonstrates the importance of measurements of waves in plasmas around Jovian moons [1]. Galileo also observed whistler-mode waves in the magnetosphere of Ganymede similar to important classes of waves in the Earth magnetosphere: chorus and hiss [2]. Data from the Galileo spacecraft have therefore shown the importance of measurements of waves in plasmas around Jovian moons, especially in the light of recent advances in analysis of whistler-mode waves in the Earth magnetosphere and their importance for acceleration of radiation belt electrons to relativistic energies. Multicomponent measurements of the fluctuating magnetic and electric fields are needed for localization and characterization of source regions of these waves. Radio & Plasma Waves Investigation (RPWI) experiment will be implemented on the JUICE (JUpiter ICy moon Explorer) spacecraft. RPWI is a highly integrated instrument package that provides a comprehensive set of plasma and fields measurements. Proposed measurement modes for the low frequency receiver subsystem of RPWI include onboard processing which will be suitable for analysis of whistler-mode waves: (1) Polarization and propagation analysis based on phase relations to identify wave modes and propagation directions (2) Poynting vector to determine source regions (3) Detailed frequency-time structure, polarization, wave vector directions to identify linear or nonlinear source mechanisms
Soliton wave-speed management: Slowing, stopping, or reversing a solitary wave
NASA Astrophysics Data System (ADS)
Baines, Luke W. S.; Van Gorder, Robert A.
2018-06-01
While dispersion management is a well-known tool to control soliton properties such as shape or amplitude, far less effort has been directed toward the theoretical control of the soliton wave speed. However, recent experiments concerning the stopping or slowing of light demonstrate that the control of the soliton wave speed is of experimental interest. Motivated by these and other studies, we propose a management approach for modifying the wave speed of a soliton (or of other nonlinear wave solutions, such as periodic cnoidal waves) under the nonlinear Schrödinger equation. Making use of this approach, we are able to slow, stop, or even reverse a solitary wave, and we give several examples to bright solitons, dark solitons, and periodic wave trains, to demonstrate the method. An extension of the approach to spatially heterogeneous media, for which the wave may propagate differently at different spatial locations, is also discussed.
Nonlinear extraordinary wave in dense plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.
2013-10-15
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. Themore » possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.« less
NASA Astrophysics Data System (ADS)
Petrovic, K.
2015-10-01
Light emitting electron beam generated in a vacuum chamber is used as a medium for visualizing Jupiter's electromagnetic radiation. Dual dipole array antenna is receiving HF radio signals that are next amplified to radiate a strong electromagnetic field capable of influencing the propagation of electron beam in plasma. Installation aims to provide a platform for observing the characteristics of light emitting beam in 3D, as opposed to the experiments with cathode ray tubes in 2-dimensional television screens. Gas giant 'speaking' to us by radio waves bends the light in the tube, allowing us to see and hear the messages of Jupiter - God of light and sky.
High-power laser radiation in atmospheric aerosols: Nonlinear optics of aerodispersed media
NASA Astrophysics Data System (ADS)
Zuev, V. E.; Zemlianov, A. A.; Kopytin, Iu. D.; Kuzikovskii, A. V.
The bulk of this book contains the results of investigations carried out at the Institute of Atmospheric Optics, Siberian Branch, USSR Academy of Science with the participation of the authors. The microphysical and optical characteristics of atmospheric aerosols are considered, taking into account light scattering by a single aerosol particle, light scattering by a system of particles, the scattering phase matrix, light scattering by clouds and fogs, light scattering by hazes, and scattering phase functions of polydispersed aerosols. Other topics studies are related to low-energy (subexplosive) effects of radiation on individual particles, the formation of clear zones in clouds and fogs due to the vaporization of droplets under regular regimes, self-action of a wave beam in a water aerosol under conditions of regular droplet vaporization, laser beam propagation through an explosively evaporating water-droplet aerosol, the propagation of high-power laser radiation through hazes, the ionization and optical breakdown in aerosol media, and laser monitoring of a turbid atmosphere using nonlinear effects.
NASA Astrophysics Data System (ADS)
Labin, Amichai M.; Safuri, Shadi K.; Ribak, Erez N.; Perlman, Ido
2014-07-01
Vision starts with the absorption of light by the retinal photoreceptors—cones and rods. However, due to the ‘inverted’ structure of the retina, the incident light must propagate through reflecting and scattering cellular layers before reaching the photoreceptors. It has been recently suggested that Müller cells function as optical fibres in the retina, transferring light illuminating the retinal surface onto the cone photoreceptors. Here we show that Müller cells are wavelength-dependent wave-guides, concentrating the green-red part of the visible spectrum onto cones and allowing the blue-purple part to leak onto nearby rods. This phenomenon is observed in the isolated retina and explained by a computational model, for the guinea pig and the human parafoveal retina. Therefore, light propagation by Müller cells through the retina can be considered as an integral part of the first step in the visual process, increasing photon absorption by cones while minimally affecting rod-mediated vision.
Optical Kerr Spatiotemporal Dark-Lump Dynamics of Hydrodynamic Origin
NASA Astrophysics Data System (ADS)
Baronio, Fabio; Wabnitz, Stefan; Kodama, Yuji
2016-04-01
There is considerable fundamental and applicative interest in obtaining nondiffractive and nondispersive spatiotemporal localized wave packets propagating in optical cubic nonlinear or Kerr media. Here, we analytically predict the existence of a novel family of spatiotemporal dark lump solitary wave solutions of the (2 +1 )D nonlinear Schrödinger equation. Dark lumps represent multidimensional holes of light on a continuous wave background. We analytically derive the dark lumps from the hydrodynamic exact soliton solutions of the (2 +1 )D shallow water Kadomtsev-Petviashvili model, inheriting their complex interaction properties. This finding opens a novel path for the excitation and control of optical spatiotemporal waveforms of hydrodynamic footprint and multidimensional optical extreme wave phenomena.
Wave scattering in spatially inhomogeneous currents
NASA Astrophysics Data System (ADS)
Churilov, Semyon; Ermakov, Andrei; Stepanyants, Yury
2017-09-01
We analytically study a scattering of long linear surface waves on stationary currents in a duct (canal) of constant depth and variable width. It is assumed that the background velocity linearly increases or decreases with the longitudinal coordinate due to the gradual variation of duct width. Such a model admits an analytical solution of the problem in hand, and we calculate the scattering coefficients as functions of incident wave frequency for all possible cases of sub-, super-, and transcritical currents. For completeness we study both cocurrent and countercurrent wave propagation in accelerating and decelerating currents. The results obtained are analyzed in application to recent analog gravity experiments and shed light on the problem of hydrodynamic modeling of Hawking radiation.
Optical Kerr Spatiotemporal Dark-Lump Dynamics of Hydrodynamic Origin.
Baronio, Fabio; Wabnitz, Stefan; Kodama, Yuji
2016-04-29
There is considerable fundamental and applicative interest in obtaining nondiffractive and nondispersive spatiotemporal localized wave packets propagating in optical cubic nonlinear or Kerr media. Here, we analytically predict the existence of a novel family of spatiotemporal dark lump solitary wave solutions of the (2+1)D nonlinear Schrödinger equation. Dark lumps represent multidimensional holes of light on a continuous wave background. We analytically derive the dark lumps from the hydrodynamic exact soliton solutions of the (2+1)D shallow water Kadomtsev-Petviashvili model, inheriting their complex interaction properties. This finding opens a novel path for the excitation and control of optical spatiotemporal waveforms of hydrodynamic footprint and multidimensional optical extreme wave phenomena.
Stationary propagation of a wave segment along an inhomogeneous excitable stripe
NASA Astrophysics Data System (ADS)
Gao, Xiang; Zhang, Hong; Zykov, Vladimir; Bodenschatz, Eberhard
2014-03-01
We report a numerical and theoretical study of an excitation wave propagating along an inhomogeneous stripe of an excitable medium. The stripe inhomogeneity is due to a jump of the propagation velocity in the direction transverse to the wave motion. Stationary propagating wave segments of rather complicated curved shapes are observed. We demonstrate that the stationary segment shape strongly depends on the initial conditions which are used to initiate the excitation wave. In a certain parameter range, the wave propagation is blocked at the inhomogeneity boundary, although the wave propagation is supported everywhere within the stripe. A free-boundary approach is applied to describe these phenomena which are important for a wide variety of applications from cardiology to information processing.
Analytical and Numerical Modeling of Tsunami Wave Propagation for double layer state in Bore
NASA Astrophysics Data System (ADS)
Yuvaraj, V.; Rajasekaran, S.; Nagarajan, D.
2018-04-01
Tsunami wave enters into the river bore in the landslide. Tsunami wave propagation are described in two-layer states. The velocity and amplitude of the tsunami wave propagation are calculated using the double layer. The numerical and analytical solutions are given for the nonlinear equation of motion of the wave propagation in a bore.
Integrated optical signal processing with magnetostatic waves
NASA Technical Reports Server (NTRS)
Fisher, A. D.; Lee, J. N.
1984-01-01
Magneto-optical devices based on Bragg diffraction of light by magnetostatic waves (MSW's) offer the potential of large time-bandwidth optical signal processing at microwave frequencies of 1 to 20 GHz and higher. A thin-film integrated-optical configuration, with the interacting MSW and guided-optical wave both propagating in a common ferrite layer, is necessary to avoid shape-factor demagnetization effects. The underlying theory of the MSW-optical interaction is outlined, including the development of expressions for optical diffraction efficiency as a function of MSW power and other relevant parameters. Bradd diffraction of guided-optical waves by transversely-propagating magnetostatic waves and collinear TE/TM mode conversion included by MSW's have been demonstrated in yttrium iron garnet (YIG) thin films. Diffraction levels as large as 4% (7 mm interaction length) and a modulation dynamic range of approx 30 dB have been observed. Advantages of these MSW-based devices over the analogous acousto-optical devices include: much greater operating frequencies, tunability of the MSW dispersion relation by varying either the RF frequency or the applied bias magnetic field, simple broad-band MSW transducer structures (e.g., a single stripline), and the potential for very high diffraction efficiencies.
Eavesdropping on spin waves inside the domain-wall nanochannel via three-magnon processes
NASA Astrophysics Data System (ADS)
Zhang, Beining; Wang, Zhenyu; Cao, Yunshan; Yan, Peng; Wang, X. R.
2018-03-01
One recent breakthrough in the field of magnonics is the experimental realization of reconfigurable spin-wave nanochannels formed by a magnetic domain wall with a width of 10-100 nm [Wagner et al., Nat. Nano. 11, 432 (2016), 10.1038/nnano.2015.339]. This remarkable progress enables an energy-efficient spin-wave propagation with a well-defined wave vector along its propagating path inside the wall. In the mentioned experiment, a microfocus Brillouin light scattering spectroscopy was taken in a line-scans manner to measure the frequency of the bounded spin wave. Due to their localization nature, the confined spin waves can hardly be detected from outside the wall channel, which guarantees the information security to some extent. In this work, we theoretically propose a scheme to detect/eavesdrop on the spin waves inside the domain-wall nanochannel via nonlinear three-magnon processes. We send a spin wave (ωi,ki) in one magnetic domain to interact with the bounded mode (ωb,kb) in the wall, where kb is parallel with the domain-wall channel defined as the z ̂ axis. Two kinds of three-magnon processes, i.e., confluence and splitting, are expected to occur. The confluence process is conventional: conservation of energy and momentum parallel with the wall indicates a transmitted wave in the opposite domain with ω (k ) =ωi+ωb and (ki+kb-k ) .z ̂=0 , while the momentum perpendicular to the domain wall is not necessary to be conserved due to the nonuniform internal field near the wall. We predict a stimulated three-magnon splitting (or "magnon laser") effect: the presence of a bound magnon propagating along the domain wall channel assists the splitting of the incident wave into two modes, one is ω1=ωb,k1=kb identical to the bound mode in the channel, and the other one is ω2=ωi-ωb with (ki-kb-k2) .z ̂=0 propagating in the opposite magnetic domain. Micromagnetic simulations confirm our theoretical analysis. These results demonstrate that one is able to uniquely infer the spectrum of the spin wave in the domain-wall nanochannel once we know both the injection and the transmitted waves.
Waves in Radial Gravity Using Magnetic Fluid
NASA Technical Reports Server (NTRS)
Ohlsen, D. R.; Hart, J. E.; Weidman, P. D.
1999-01-01
Terrestrial laboratory experiments studying various fluid dynamical processes are constrained, by being in an Earth laboratory, to have a gravitational body force which is uniform and unidirectional. Therefore fluid free-surfaces are horizontal and flat. Such free surfaces must have a vertical solid boundary to keep the fluid from spreading horizontally along a gravitational potential surface. In atmospheric, oceanic, or stellar fluid flows that have a horizontal scale of about one-tenth the body radius or larger, sphericity is important in the dynamics. Further, fluids in spherical geometry can cover an entire domain without any sidewall effects, i.e. have truly periodic boundary conditions. We describe spherical body-force laboratory experiments using ferrofluid. Ferrofluids are dilute suspensions of magnetic dipoles, for example magnetite particles of order 10 nm diameter, suspended in a carrier fluid. Ferrofluids are subject to an additional body force in the presence of an applied magnetic field gradient. We use this body force to conduct laboratory experiments in spherical geometry. The present study is a laboratory technique improvement. The apparatus is cylindrically axisymmetric. A cylindrical ceramic magnet is embedded in a smooth, solid, spherical PVC ball. The geopotential field and its gradient, the body force, were made nearly spherical by careful choice of magnet height-to-diameter ratio and magnet size relative to the PVC ball size. Terrestrial gravity is eliminated from the dynamics by immersing the "planet" and its ferrofluid "ocean" in an immiscible silicone oil/freon mixture of the same density. Thus the earth gravity is removed from the dynamics of the ferrofluid/oil interface and the only dynamically active force there is the radial magnetic gravity. The entire apparatus can rotate, and waves are forced on the ferrofluid surface by exterior magnets. The biggest improvement in technique is in the wave visualization. Fluorescing dye is added to the oil/freon mixture and an argon ion laser generates a horizontal light that can be scanned vertically. Viewed from above, the experiment is a black circle with wave deformations surrounded by a light background. A contour of the image intensity at any light sheet position gives the surface of the ferrofluid "ocean" at that "latitude". Radial displacements of the waves as a function of longitude are obtained by subtracting the contour line positions from a no-motion contour at that laser sheet latitude. The experiments are run by traversing the forcing magnet with the laser sheet height fixed and images are frame grabbed to obtain a time-series at one latitude. The experiment is then re-run with another laser-sheet height to generate a full picture of the three-dimensional wave structure in the upper hemisphere of the ball as a function of time. We concentrate here on results of laboratory studies of waves that are important in Earth's atmosphere and especially the ocean. To get oceanic scaling in the laboratory, the experiment must rotate rapidly (4-second rotation period) so that the wave speed is slow compared to the planetary rotation speed as in the ocean. In the Pacific Ocean, eastward propagating Kelvin waves eventually run into the South American coast. Theory predicts that some of the wave energy should scatter into coastal-trapped Kelvin waves that propagate north and south along the coast. Some of this coastal wave energy might then scatter into mid-latitude Rossby waves that propagate back westward. Satellite observations of the Pacific Ocean sea-surface temperature and height seem to show signatures of westward propagating mid-latitude Rossby waves, 5 to 10 years after the 1982-83 El Nino. The observational data is difficult to interpret unambiguously owing to the large range of motions that fill the ocean at shorter timescales. This series of reflections giving eastward, north- ward, and then westward traveling waves is observed cleanly in the laboratory experiments, confirming the theoretical expectations.
Wood pulp characterization by a novel photoacoustic sensor
NASA Astrophysics Data System (ADS)
Niemi, Jan; Löfqvist, Torbjörn
2012-08-01
In this paper we introduce a novel photoacoustic sensing technique that captures a photoacoustic signal excited by a laser light pulse after the light has propagated through a turbid medium. Simultaneously, the ultrasonic sound wave is captured after it has propagated through the same turbid medium. By combining the two signals, more information on the investigated medium can be obtained. Applications can be found in the pulp and paper industry where monitoring wood pulp compositions is of interest. Depending on its origin, pulp suspension contains different compositions of fibres and fibre fragments (fines). Poor control of the pulp composition leads to an unstable process that compromises the production, quality and energy efficiency in the pulp mill. The result shows the feasibility of the photoacoustic sensor in monitoring the mass fractions of fibres and fines in a pulp suspension. The first received echo, corresponding to the light interaction with the sample, showed a stronger correlation to the fines mass fraction compared to fibre mass fraction. The second echo, corresponding to the sound wave interaction with the sample, showed a much stronger correlation to fibre mass fraction than to fines mass fraction. Hence, it is proposed that by combining these two echoes, more information about the pulp suspension could be extracted than from any other sensor built on a single sensing principle.
Hui, Zhan-Qiang
2011-10-01
Spectral gain induced by four-wave-mixing with multi-frequency pump was investigated by exploiting the data signal and continue lights co-propagation in dispersion flattened high nonlinear photonic crystal fiber (PCF). The effects of wavelength drift of pump lights, polarization state of orthogonal or parallel of pump lights, polarization mismatch of signal light versus orthogonal pump lights, total power of signal and probe light on the spectrum gain were analyzed. The results show that good FWM gain effects with multi-frequency pump can be obtained in 36.4 nm wavelength range when power ratio of pump to probe light is appropriate and with identical polarization. Furthermore, the gain of FWM with multi-frequency pump is very sensitive to polarization fluctuation and the different idle waves obtain different gain with the variation in signal polarization state. Moreover, the impact of pump numbers was investigated. The obtained results would be helpful for further research on ultrahigh-speed all optical signal processing devices exploiting the FWM with multi-frequency pump in PCF for future photonics network.
NASA Astrophysics Data System (ADS)
Reiner, M. J.; Jackson, B. V.; Webb, D. F.; Mizuno, D. R.; Kaiser, M. L.; Bougeret, J.-L.
2005-09-01
White-light and radio observations are combined to deduce the coronal and interplanetary kinematics of a fast coronal mass ejection (CME) that was ejected from the Sun at about 1700 UT on 2 November 2003. The CME, which was associated with an X8.3 solar flare from W56°, was observed by the Mauna Loa and Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronograph (LASCO) coronagraphs to 14 R⊙. The measured plane-of-sky speed of the LASCO CME was 2600 km s-1. To deduce the kinematics of this CME, we use the plane-of-sky white light observations from both the Solar Mass Ejection Imager (SMEI) all-sky camera on board the Coriolis spacecraft and the SOHO/LASCO coronagraph, as well as the frequency drift rate of the low-frequency radio data and the results of the radio direction-finding analysis from the WAVES experiment on the Wind spacecraft. In agreement with the in situ observations for this event, we find that both the white light and radio observations indicate that the CME must have decelerated significantly beginning near the Sun and continuing well into the interplanetary medium. More specifically, by requiring self-consistency of all the available remote and in situ data, together with a simple, but not unreasonable, assumption about the general characteristic of the CME deceleration, we were able to deduce the radial speed and distance time profiles for this CME as it propagated from the Sun to 1 AU. The technique presented here, which is applicable to mutual SMEI/WAVES CME events, is expected to provide a more complete description and better quantitative understanding of how CMEs propagate through interplanetary space, as well as how the radio emissions, generated by propagating CME/shocks, relate to the shock and CME. This understanding can potentially lead to more accurate predictions for the onset times of space weather events, such as those that were observed during this unique period of intense solar activity.
NASA Astrophysics Data System (ADS)
Sharma, M. D.
2018-07-01
Phenomenon of reflection and refraction is considered at the plane interface between a thermoelastic medium and thermo-poroelastic medium. Both the media are isotropic and behave dissipative to wave propagation. Incident wave in thermo-poroelastic medium is considered inhomogeneous with deviation allowed between the directions of propagation and maximum attenuation. For this incidence, four attenuated waves reflect back in thermo-poroelastic medium and three waves refract to the continuing thermoelastic medium. Each of these reflected/refracted waves is inhomogeneous and propagates with a phase shift. The propagation characteristics (velocity, attenuation, inhomogeneity, phase shift, amplitude, energy) of reflected and refracted waves are calculated as functions of propagation direction and inhomogeneity of the incident wave. Variations in these propagation characteristics with the incident direction are illustrated through a numerical example.
NASA Astrophysics Data System (ADS)
de Wit, R. J.; Janches, D.; Fritts, D. C.; Stockwell, R. G.; Coy, L.
2017-01-01
The Southern Argentina Agile MEteor Radar (SAAMER), located at Tierra del Fuego (53.7°S, 67.7°W), has been providing near-continuous high-resolution measurements of winds and high-frequency gravity wave (GW) momentum fluxes of the mesopause region since May 2008. As SAAMER is located in the lee of the largest seasonal GW hot spot on Earth, this is a key location to study GWs and their interaction with large-scale motions. GW momentum flux climatologies are shown for the first time for this location and discussed in light of these unique dynamics. Particularly, the large eastward GW momentum fluxes during local winter are surprising, as these observations cannot be explained by the direct upward propagation of expected large-amplitude mountain waves (MWs) through the eastward stratospheric jet. Instead, these results are interpreted as secondary GWs propagating away from stratospheric sources over the Andes accompanying MW breaking over the Southern Andes.
NASA Technical Reports Server (NTRS)
DeWit, R. J.; Janches, D.; Fritts, D. C.; Stockwell, R. G.; Coy, L.
2017-01-01
The Southern Argentina Agile MEteor Radar (SAAMER), located at Tierra del Fuego (53.7degS, 67.7degW), has been providing near-continuous high-resolution measurements of winds and high-frequency gravity wave (GW) momentum fluxes of the mesopause region since May 2008. As SAAMER is located in the lee of the largest seasonal GW hot spot on Earth, this is a key location to study GWs and their interaction with large-scale motions. GW momentum flux climatologies are shown for the first time for this location and discussed in light of these unique dynamics. Particularly, the large eastward GW momentum fluxes during local winter are surprising, as these observations cannot be explained by the direct upward propagation of expected large-amplitude mountain waves (MWs) through the eastward stratospheric jet. Instead, these results are interpreted as secondary GWs propagating away from stratospheric sources over the Andes accompanying MW breaking over the Southern Andes.
Nonlinear Talbot effect of rogue waves.
Zhang, Yiqi; Belić, Milivoj R; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng
2014-03-01
Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a π-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.
NASA Astrophysics Data System (ADS)
Lin, C. S.; Barfield, J. N.
1985-11-01
Storm-time Pc 5 wave events observed simultaneously by the GOES 2 and GOES 3 satellites in the afternoon sector during the 1-year interval of March 1979 to February 1980 are surveyed to learn the wave propagation. Essentially, all storm-time Pc 5 waves (approximately 93 percent) are found to propagate westward azimuthally with a velocity of 5 to 50 km/s and a wavelength of 1000 km to 9000 km (Only two of 30 events had eastward propagation, with a velocity of about 150 km/s). It is concluded that westward propagating waves are excited by ion drift instabilities associated with the ion ring current, and that the eastward propagating waves are excited by surface waves on the magnetopause through Kelvin-Helmholtz instability.
Photonics surface waves on metamaterials interfaces.
Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V
2017-09-12
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.
Modified fundamental Airy wave.
Seshadri, S R
2014-01-01
The propagation characteristics of the fundamental Airy wave are obtained; the intensity distribution is the same as that for a point electric dipole situated at the origin and oriented normal to the propagation direction. The propagation characteristics of the modified fundamental Airy wave are determined. These characteristics are the same as those for the fundamental Gaussian wave provided that an equivalent waist is identified for the Airy wave. In general, the waves are localized spatially with the peak in the propagation direction.
Ultra-Wideband Radar: Research and Development Considerations
1989-06-05
ballistic missile IEEE Institute of Electrical and Electronics Engineers3 ISRD Institutional Supporting Research and Development LAMPF Los Alamos Meson ...s is the propagation velocity of light in free space. The parameter P, is the effective bandwidth of the signal defined by ,6 = ’R(0) (2.2) =f R2(r...6raveling-wave antenna are likely to be much greater than the distance light travels in the rise time of the antenna current; 10-100 ps =4. 3-30 mm
Near field effect on elasticity measurement for cartilage-bone structure using Lamb wave method.
Xu, Hao; Chen, Shigao; An, Kai-Nan; Luo, Zong-Ping
2017-10-30
Cartilage elasticity changes with cartilage degeneration. Hence, cartilage elasticity detection might be an alternative to traditional imaging methods for the early diagnosis of osteoarthritis. Based on the wave propagation measurement, Shear wave elastography (SWE) become an emerging non-invasive elasticity detection method. The wave propagation model, which is affected by tissue shapes, is crucial for elasticity estimating in SWE. However, wave propagation model for cartilage was unclear. This study aimed to establish a wave propagation model for the cartilage-bone structure. We fabricated a cartilage-bone structure, and studied the elasticity measurement and wave propagation by experimental and numerical Lamb wave method (LWM). Results indicated the wave propagation model satisfied the lamb wave theory for two-layered structure. Moreover, a near field region, which affects wave speed measurements and whose occurrence can be prevented if the wave frequency is larger than one critical frequency, was observed. Our findings would provide a theoretical foundation for further application of LWM in elasticity measurement of cartilage in vivo. It can help the application of LWM to the diagnosis of osteoarthritis.
Enhanced Propagating Surface Plasmon Signal Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Y.; Joly, Alan G.; El-Khoury, Patrick Z.
2016-12-21
Overcoming the dissipative nature of propagating surface plasmons (PSPs) is pre-requisite to realizing functional plasmonic circuitry, in which large bandwidth signals can be manipulated over length scales far-below the diffraction limit of light. To this end, we report on a novel PSP enhanced signal detection technique achieved in an all-metallic substrate. We take advantage of two strategically spatio-temporally separated phase-locked femtosecond laser pulses, incident onto lithographically patterned PSP coupling structures. We follow PSP propagation with joint femtosecond temporal and nanometer spatial resolution in a time-resolved non-linear photoemission electron microscopy scheme. Initially, a PSP signal wave packet is launched from amore » hole etched into the silver surface from where it propagates through an open trench structure and is decoded through the use of a timed probe pulse. FDTD calculations demonstrate that PSP signal waves may traverse open trenches in excess of 10 microns in diameter, thereby allowing remote detection even through vacuum regions. This arrangement results in a 10X enhancement in photoemission relative to readout from the bare metal surface. The enhancement is attributed to an all-optical homodyne detection technique that mixes signal and reference PSP waves in a non-linear scheme. Larger readout trenches achieve higher readout levels, however reduced transmission through the trench limits the trench size to 6 microns for maximum readout levels. However, the use of an array of trenches increases the maximum enhancement to near 30X. The attainable enhancement factor may be harnessed to achieve extended coherent PSP propagation in ultrafast plasmonic circuitry.« less
NASA Astrophysics Data System (ADS)
Hakobyan, H. L.; Beskin, V. S.; Philippov, A. A.
2017-08-01
Our previous paper outlined the general aspects of the theory of radio light curve and polarization formation for pulsars. We predicted the one-to-one correspondence between the tilt of the linear polarization position angle of the the circular polarization. However, some of the radio pulsars indicate a clear deviation from that correlation. In this paper, we apply the theory of the radio wave propagation in the pulsar magnetosphere for the analysis of individual effects leading to these deviations. We show that within our theory the circular polarization of a given mode can switch its sign, without the need to introduce a new radiation mode or other effects. Moreover, we show that the generation of different emission modes on different altitudes can explain pulsars, that presumably have the X-O-X light-curve pattern, different from what we predict. General properties of radio emission within our propagation theory are also discussed. In particular, we calculate the intensity patterns for different radiation altitudes and present light curves for different observer viewing angles. In this context we also study the light curves and polarization profiles for pulsars with interpulses. Further, we explain the characteristic width of the position angle curves by introducing the concept of a wide emitting region. Another important feature of radio polarization profiles is the shift of the position angle from the centre, which in some cases demonstrates a weak dependence on the observation frequency. Here we demonstrate that propagation effects do not necessarily imply a significant frequency-dependent change of the position angle curve.
Classification of biological micro-objects using optical coherence tomography: in silico study
Ossowski, Paweł; Wojtkowski, Maciej; Munro, Peter RT
2017-01-01
We report on the development of a technique for differentiating between biological micro-objects using a rigorous, full-wave model of OCT image formation. We model an existing experimental prototype which uses OCT to interrogate a microfluidic chip containing the blood cells. A full-wave model is required since the technique uses light back-scattered by a scattering substrate, rather than by the cells directly. The light back-scattered by the substrate is perturbed upon propagation through the cells, which flow between the substrate and imaging system’s objective lens. We present the key elements of the 3D, Maxwell equation-based computational model, the key findings of the computational study and a comparison with experimental results. PMID:28856039
Classification of biological micro-objects using optical coherence tomography: in silico study.
Ossowski, Paweł; Wojtkowski, Maciej; Munro, Peter Rt
2017-08-01
We report on the development of a technique for differentiating between biological micro-objects using a rigorous, full-wave model of OCT image formation. We model an existing experimental prototype which uses OCT to interrogate a microfluidic chip containing the blood cells. A full-wave model is required since the technique uses light back-scattered by a scattering substrate, rather than by the cells directly. The light back-scattered by the substrate is perturbed upon propagation through the cells, which flow between the substrate and imaging system's objective lens. We present the key elements of the 3D, Maxwell equation-based computational model, the key findings of the computational study and a comparison with experimental results.
Propagation of Circularly Polarized Light Through a Two-Dimensional Random Medium
NASA Astrophysics Data System (ADS)
Gorodnichev, E. E.
2017-12-01
The problem of small-angle multiple-scattering of circularly polarized light in a two-dimensional medium with large fiberlike inhomogeneities is studied. The attenuation lengths for elements the density matrix are calculated. It is found that with increasing the sample thickness the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the thickness, the off-diagonal element which is responsible for correlation between the cross-polarized waves dissapears. In the case of very thick samples the scattered field proves to be polarized perpendicular to the fibers. It is shown that the difference in the attenuation lengths of the density matrix elements results in a non-monotonic depth dependence of the degree of polarization.
Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro
2005-10-01
We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.
Field experiments to determine wave propagation principles and mechanical properties of snow
NASA Astrophysics Data System (ADS)
Simioni, Stephan; Gebhard, Felix; Dual, Jürg; Schweizer, Jürg
2017-04-01
To understand the release of snow avalanches by explosions one needs to know how acoustic waves travel above and within the snowpack. Hitherto, wave propagation was investigated in the laboratory with small samples or in the field in the shock wave region. We developed a measurement system and layout to derive wave attenuation in snow, wave speeds and elastic moduli on small-scale (1-2 m) field experiments to close the gap between the lab scale (0.1 m) and the scale of artificial release (10-100 m). We used solid explosives and hammer blows to create the load and accelerometers to measure the resulting wave within the snowpack. The strong attenuation we observed indicates that we measured the second longitudinal wave which propagates through the pore space. The wave speeds, however, corresponded to the speeds of the first longitudinal wave within the ice skeleton. The elastic moduli were high on the order of several tens of MPa for lower densities (150 kg m-3) and agreed well with earlier lab studies, in particular for the higher densities 250-400 kg m-3). However, the scatter was rather large as expected for in-situ experiments in the layered snow cover. In addition, we measured accelerations during propagation saw test experiments. The propagation of cracks during this type of snow instability test has mainly been studied by analysing the bending of the slab (due to the saw cut) using particle tracking velocimetry. We used the accelerometers to measure crack propagation speeds. The wave speeds were slightly higher for most experiments than reported previously. Furthermore, in some experiments, we encountered to different wave types with one propagating at a higher speed. This finding may be interpreted as the actual crack propagation and the settling of the weak layer (collapse wave). Our results show that field measurements of propagation properties are feasible and that crack propagation as observed during propagation saw tests may involve different processes that need to be further investigated.
The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave
Muller, Lyle; Reynaud, Alexandre; Chavane, Frédéric; Destexhe, Alain
2014-01-01
Propagating waves occur in many excitable media and were recently found in neural systems from retina to neocortex. While propagating waves are clearly present under anaesthesia, whether they also appear during awake and conscious states remains unclear. One possibility is that these waves are systematically missed in trial-averaged data, due to variability. Here we present a method for detecting propagating waves in noisy multichannel recordings. Applying this method to single-trial voltage-sensitive dye imaging data, we show that the stimulus-evoked population response in primary visual cortex of the awake monkey propagates as a travelling wave, with consistent dynamics across trials. A network model suggests that this reliability is the hallmark of the horizontal fibre network of superficial cortical layers. Propagating waves with similar properties occur independently in secondary visual cortex, but maintain precise phase relations with the waves in primary visual cortex. These results show that, in response to a visual stimulus, propagating waves are systematically evoked in several visual areas, generating a consistent spatiotemporal frame for further neuronal interactions. PMID:24770473
Active control of turbomachine discrete tones
NASA Technical Reports Server (NTRS)
Fleeter, Sanford
1994-01-01
This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.
Relationship between directions of wave and energy propagation for cold plasma waves
NASA Technical Reports Server (NTRS)
Musielak, Zdzislaw E.
1986-01-01
The dispersion relation for plasma waves is considered in the 'cold' plasma approximation. General formulas for the dependence of the phase and group velocities on the direction of wave propagation with respect to the local magnetic field are obtained for a cold magnetized plasma. The principal cold plasma resonances and cut-off frequencies are defined for an arbitrary angle and are used to establish basic regimes of frequency where the cold plasma waves can propagate or can be evanescent. The relationship between direction of wave and energy propagation, for cold plasma waves in hydrogen atmosphere, is presented in the form of angle diagrams (angle between group velocity and magnetic field versus angle between phase velocity and magnetic field) and polar diagrams (also referred to as 'Friedrich's diagrams') for different directions of wave propagation. Morphological features of the diagrams as well as some critical angles of propagation are discussed.
Active control of turbomachine discrete tones
NASA Astrophysics Data System (ADS)
Fleeter, Sanford
This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.
On constraining the speed of gravitational waves following GW150914
NASA Astrophysics Data System (ADS)
Blas, D.; Ivanov, M. M.; Sawicki, I.; Sibiryakov, S.
2016-05-01
We point out that the observed time delay between the detection of the signal at the Hanford and Livingston LIGO sites from the gravitational wave event GW150914 places an upper bound on the speed of propagation of gravitational waves, c gw ≲ 1.7 in the units of speed of light. Combined with the lower bound from the absence of gravitational Cherenkov losses by cosmic rays that rules out most of subluminal velocities, this gives a model-independent double-sided constraint 1 ≲ c gw ≲ 1.7. We compare this result to model-specific constraints from pulsar timing and cosmology.
Terahertz Magnon-Polaritons in TmFeO3.
Grishunin, Kirill; Huisman, Thomas; Li, Guanqiao; Mishina, Elena; Rasing, Theo; Kimel, Alexey V; Zhang, Kailing; Jin, Zuanming; Cao, Shixun; Ren, Wei; Ma, Guo-Hong; Mikhaylovskiy, Rostislav V
2018-04-18
Magnon-polaritons are shown to play a dominant role in the propagation of terahertz (THz) waves through TmFeO 3 orthoferrite, if the frequencies of the waves are in the vicinity of the quasi-antiferromagnetic spin resonance mode. Both time-domain THz transmission and emission spectroscopies reveal clear beatings between two modes with frequencies slightly above and slightly below this resonance, respectively. Rigorous modeling of the interaction between the spins of TmFeO 3 and the THz light shows that the frequencies correspond to the upper and lower magnon-polariton branches. Our findings reveal the previously ignored importance of propagation effects and polaritons in such heavily debated areas as THz magnonics and THz spectroscopy of electromagnons. It also shows that future progress in these areas calls for an interdisciplinary approach at the interface between magnetism and photonics.
Dynamic Gratings and Other Applications of Dispersion
NASA Astrophysics Data System (ADS)
Little, Bethany J.
This thesis contains the work of several different experiments conducted during my doctoral studies at the University of Rochester. The broad connecting thread is that each result comes about because of the dispersive response of a medium. I first show how a dynamic grating can be induced in an atomic vapor, which can be used as a rapid optical switch. The second experiment presents a Doppler remote sensing technique, at the heart of which is a liquid crystal light valve. Two beams incident on the light valve induce a grating; the output of this two-wave mixing process displays a dispersive response in the amplitude of the difference signal between the beams. The response is phase insensitive and allows the detection of a moving mirror with a displacement noise floor of twenty femtometers per square root hertz. Finally, I delve deeper into the nature of light propagating through a dispersive medium by presenting the results of a pulse imaging experiment, in which single photons scattered from a propagating pulse give a clear picture of propagation along the length of the cell. Through these three experiments, we see the power of viewing the light-matter interaction as a resonant response, and show how novel applications can arise from such fundamental concepts.
Construction of Ray Diagrams in Geometrical Optics: A Media-Focused Approach
ERIC Educational Resources Information Center
Santana, Alejandro; Rodriguez, Yohany; Gomez, Edgar A.
2012-01-01
Ray diagrams offer a powerful framework for understanding and characterizing many properties of optical systems, such as images and magnifications. However, this construction also introduces many conceptual hurdles for students. The idea of representing the propagation of waves by means of a light ray, which is a line or curve perpendicular to the…
Head wave correlations in ambient noise.
Gebbie, John; Siderius, Martin
2016-07-01
Ambient ocean noise is processed with a vertical line array to reveal coherent time-separated arrivals suggesting the presence of head wave multipath propagation. Head waves, which are critically propagating water waves created by seabed waves traveling parallel to the water-sediment interface, can propagate faster than water-only waves. Such eigenrays are much weaker than water-only eigenrays, and are often completely overshadowed by them. Surface-generated noise is different whereby it amplifies the coherence between head waves and critically propagating water-only waves, which is measured by cross-correlating critically steered beams. This phenomenon is demonstrated both experimentally and with a full wave simulation.
Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves.
Haas, Brigitte; Schipke, Carola G; Peters, Oliver; Söhl, Goran; Willecke, Klaus; Kettenmann, Helmut
2006-02-01
In the corpus callosum, astrocytic calcium waves propagate via a mechanism involving ATP-release but not gap junctional coupling. In the present study, we report for the neocortex that calcium wave propagation depends on functional astrocytic gap junctions but is still accompanied by ATP-release. In acute slices obtained from the neocortex of mice deficient for astrocytic expression of connexin43, the calcium wave did not propagate. In contrast, in the corpus callosum and hippocampus of these mice, the wave propagated as in control animals. In addition to calcium wave propagation in astrocytes, ATP-release was recorded as a calcium signal from 'sniffer cells', a cell line expressing high-affinity purinergic receptors placed on the surface of the slice. The astrocyte calcium wave in the neocortex was accompanied by calcium signals in the 'sniffer cell' population. In the connexin43-deficient mice we recorded calcium signals from sniffer cells also in the absence of an astrocytic calcium wave. Our findings indicate that astrocytes propagate calcium signals by two separate mechanisms depending on the brain region and that ATP release can propagate within the neocortex independent from calcium waves.
Multidimensional nonlinear ion-acoustic waves in a plasma in view of relativistic effects
NASA Astrophysics Data System (ADS)
Belashov, V. Yu.
2017-05-01
The structure and dynamics of ion-acoustic waves in an unmagnetized plasma, including the case of weakly relativistic collisional plasma (when it is necessary to take into account the high energy particle flows which are observed in the magnetospheric plasma), are studied analytically and numerically on the basis of a model of the Kadomtsev-Petviashvili (KP) equation. It is shown that, if the velocity of plasma particles approaches the speed of light, the relativistic effects start to strongly influence on the wave characteristics, such as its phase velocity, amplitude, and characteristic wavelength, with the propagation of the twodimensional solitary ion-acoustic wave. The results can be used in the study of nonlinear wave processes in the magnetosphere and in laser and astrophysical plasma.
The response of stationary planetary waves to tropospheric forcing
NASA Technical Reports Server (NTRS)
Alpert, J. C.; Geller, M. A.; Avery, S. K.
1983-01-01
The lower boundary forcing of airflow over topography, and the internal forcing that results from the geographical distribution of diabatic heating, are studied in light of a steady state, linear, quasi-geostrophic model of stationary waves on a sphere. The lower boundary vertical motions forced by airflow over topography depend on whether the horizontal deflection of airflow around topographic features is taken into account, the level of the wind profile at which flow over topography is assumed to take place, and the topographic data set that was used in the forcing formulation. The lower boundary forcing is taken to be given by the observed stationary planetary wave in lower boundary geopotential height, and the internal forcing is computed using the planetary wave propagation equation on the observed wave structure.
Experimental study of three-wave interactions among capillary-gravity surface waves
NASA Astrophysics Data System (ADS)
Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael
2016-04-01
In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.
Experimental study of three-wave interactions among capillary-gravity surface waves.
Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael
2016-04-01
In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.
Rossby Wave Propagation into the Northern Hemisphere Stratosphere: The Role of Zonal Phase Speed
NASA Astrophysics Data System (ADS)
Domeisen, Daniela I. V.; Martius, Olivia; Jiménez-Esteve, Bernat
2018-02-01
Sudden stratospheric warming (SSW) events are to a dominant part induced by upward propagating planetary waves. While theory predicts that the zonal phase speed of a tropospheric wave forcing affects wave propagation into the stratosphere, its relevance for SSW events has so far not been considered. This study shows in a linear wave diagnostic and in reanalysis data that phase speeds tend eastward as waves propagate upward, indicating that the stratosphere preselects eastward phase speeds for propagation, especially for zonal wave number 2. This also affects SSW events: Split SSW events tend to be preceded by anomalously eastward zonal phase speeds. Zonal phase speed may indeed explain part of the increased wave flux observed during the preconditioning of SSW events, as, for example, for the record 2009 SSW event.
Emergent geometries and nonlinear-wave dynamics in photon fluids.
Marino, F; Maitland, C; Vocke, D; Ortolan, A; Faccio, D
2016-03-22
Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.
Emergent geometries and nonlinear-wave dynamics in photon fluids
NASA Astrophysics Data System (ADS)
Marino, F.; Maitland, C.; Vocke, D.; Ortolan, A.; Faccio, D.
2016-03-01
Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2004-01-01
The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the -correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.
NASA Technical Reports Server (NTRS)
2005-01-01
An up-close look at Saturn's atmosphere shows wavelike structures in the planet's constantly changing clouds. Feathery striations in the lower right appear to be small-scale waves propagating at a higher altitude than the other cloud features. The image was taken with the Cassini spacecraft wide-angle camera on April 14, 2005, through a filter sensitive to wavelengths of infrared light centered at 727 nanometers and at a distance of approximately 386,000 kilometers (240,000 miles) from Saturn. The image scale is 19 kilometers (12 miles) per pixel.NASA Astrophysics Data System (ADS)
Parsons, L. C.; Andrews, G. T.
2012-09-01
Pseudo-reflection geometry Brillouin spectroscopy can be used to probe acoustic wave dispersion approximately along the surface normal of a material system while avoiding the difficulties associated with specularly reflected light encountered in an ideal reflection configuration. As an example of its application, we show analytically that it can be used to determine both the refractive index and bulk acoustic mode velocities of optically-isotropic non-metallic materials and confirm the utility of the approach via a series of experiments on fused quartz, gallium phosphide, water, and porous silicon films.
NASA Astrophysics Data System (ADS)
Itaya, K.; Ishisaka, K.; Ashihara, Y.; Abe, T.; Kumamoto, A.; Kurihara, J.
2015-12-01
S-520-29 sounding rocket experiment was carried out at Uchinoura Space Center (USC) at 19:10 JST on 17 August, 2014. The purpose of this sounding rocket experiments is observation of sporadic E layer that appears in the lower ionosphere at near 100km. Three methods were used in order to observe the sporadic E layer. The first method is an optical method that observe the light of metal ion emitted by the resonance scattering in sporadic E layer using the imager. The second method is observation of characteristic of radio wave propagation that the LF/MF band radio waves transmitted from the ground. The third method is measuring the electron density in the vicinity of sounding rocket using the fast Langmuir probe and the impedance probe. We analyze the propagation characteristics of radio wave in sporadic E layer appeared from the results of the second method observation. This rocket was equipped with LF/MF band radio receiver for observe the LF/MF band radio waves in rocket flight. Antenna of LF/MF band radio receiver is composed of three axis loop antenna. LF/MF band radio receiver receives three radio waves of 873kHz (JOGB), 666kHz (JOBK), 60kHz (JJY) from the ground. 873kHz and 60kHz radio waves are transmitting from north side, and 666kHz radio waves are transmitting from the east side to the trajectory of the rocket. In the sounding rocket experiment, LF/MF band radio receiver was working properly. We have completed the observation of radio wave intensity. We analyze the observation results using a Doppler shift calculations by frequency analysis. Radio waves received by the sounding rocket include the influences of Doppler shift by polarization and the direction of rocket spin and the magnetic field of the Earth. So received radio waves that are separate into characteristics waves using frequency analysis. Then we calculate the Doppler shift from the separated data. As a result, 873kHz, 666kHz radio waves are reflected by the ionosphere. 60kHz wave was able to propagate in ionosphere because wavelength of 60kHz was longer than the thickness of the sporadic E layer. In this study, we explain the result of LF/MF band radio receiver observations and the electron density of the ionosphere using frequency analysis by S-520-29 sounding rocket experiment.
Elastic Wave Propagation Mechanisms in Underwater Acoustic Environments
2015-09-30
Elastic wave propagation mechanisms in underwater acoustic environments Scott D. Frank Marist College Department of Mathematics Poughkeepsie...conversion from elastic propagation to acoustic propagation, and intense interface waves on underwater acoustic environments with elastic bottoms...acoustic propagation will be considered as a means to predict the presence of elastic ice layers. APPROACH In a cylindrically symmetric environment
Early network activity propagates bidirectionally between hippocampus and cortex.
Barger, Zeke; Easton, Curtis R; Neuzil, Kevin E; Moody, William J
2016-06-01
Spontaneous activity in the developing brain helps refine neuronal connections before the arrival of sensory-driven neuronal activity. In mouse neocortex during the first postnatal week, waves of spontaneous activity originating from pacemaker regions in the septal nucleus and piriform cortex propagate through the neocortex. Using high-speed Ca(2+) imaging to resolve the spatiotemporal dynamics of wave propagation in parasagittal mouse brain slices, we show that the hippocampus can act as an additional source of neocortical waves. Some waves that originate in the hippocampus remain restricted to that structure, while others pause at the hippocampus-neocortex boundary and then propagate into the neocortex. Blocking GABAergic neurotransmission decreases the likelihood of wave propagation into neocortex, whereas blocking glutamatergic neurotransmission eliminates spontaneous and evoked hippocampal waves. A subset of hippocampal and cortical waves trigger Ca(2+) waves in astrocytic networks after a brief delay. Hippocampal waves accompanied by Ca(2+) elevation in astrocytes are more likely to propagate into the neocortex. Finally, we show that two structures in our preparation that initiate waves-the hippocampus and the piriform cortex-can be electrically stimulated to initiate propagating waves at lower thresholds than the neocortex, indicating that the intrinsic circuit properties of those regions are responsible for their pacemaker function. © 2015 Wiley Periodicals, Inc.
Conversion of evanescent Lamb waves into propagating waves via a narrow aperture edge.
Yan, Xiang; Yuan, Fuh-Gwo
2015-06-01
This paper presents a quantitative study of conversion of evanescent Lamb waves into propagating in isotropic plates. The conversion is substantiated by prescribing time-harmonic Lamb displacements/tractions through a narrow aperture at an edge of a semi-infinite plate. Complex-valued dispersion and group velocity curves are employed to characterize the conversion process. The amplitude coefficient of the propagating Lamb modes converted from evanescent is quantified based on the complex reciprocity theorem via a finite element analysis. The power flow generated into the plate can be separated into radiative and reactive parts made on the basis of propagating and evanescent Lamb waves, where propagating Lamb waves are theoretically proved to radiate pure real power flow, and evanescent Lamb waves carry reactive pure imaginary power flow. The propagating power conversion efficiency is then defined to quantitatively describe the conversion. The conversion efficiency is strongly frequency dependent and can be significant. With the converted propagating waves from evanescent, sensors at far-field can recapture some localized damage information that is generally possessed in evanescent waves and may have potential application in structural health monitoring.
NASA Astrophysics Data System (ADS)
Kirilenko, A. K.
1989-07-01
An investigation was made of the transient process of formation of volume dynamic holograms by light within the spectral limits of the D2 resonant absorption line of sodium. The observed asymmetry of the spectral distribution of the gain of the signal waves in the case of a concurrent interaction between four beams was attributed to different mechanisms of the interaction, the main of which were a four-wave interaction in the long-wavelength wing and transient two-beam energy transfer in the short-wavelength wing. The results obtained were used to recommend an experimental method for the determination of the relative contributions of these processes to the amplification of signal waves.
NASA Astrophysics Data System (ADS)
Stashkevich, A. A.; Belmeguenai, M.; Roussigné, Y.; Cherif, S. M.; Kostylev, M.; Gabor, M.; Lacour, D.; Tiusan, C.; Hehn, M.
2015-06-01
Brillouin light scattering (BLS), complemented by ferromagnetic resonance (FMR) characterization, has been used for studying spin-wave (SW) propagation in Py (L )/Pt (6 -nm ) bilayers of various Py thicknesses (4 nm ≤L ≤10 nm ) . The FMR measurements allowed determination of the pertinent magnetic parameters and revealed the existence of a normal surface anisotropy. A pronounced asymmetry of Damon-Eshbach (DE) wave frequencies has been evidenced by BLS. Therefore, the difference between Stokes and anti-Stokes DE frequencies has been measured versus SW wave number for all the samples. A detailed discussion about the origin of this frequency difference is reported, which concludes that this is due to interface Dzyaloshinskii-Moriya interaction (IDMI).
Low frequency wave propagation in a cold magnetized dusty plasma
NASA Astrophysics Data System (ADS)
Sarkar, S.; Ghosh, S.; Khan, M.
1998-12-01
In this paper several characteristics of low frequency waves in a cold magnetized dusty plasma propagating parallel and perpendicular to the static background magnetic field have been investigated. In the case of parallel propagation the negatively charged dust particles resonate with the right circularly polarized (RCP) component of em waves when the wave frequency equals the dust cyclotron frequency. It has been shown that an RCP wave in dusty plasma consists of two branches and there exists a region where an RCP wave propagation is not possible. Dispersion relation, phase velocity and group velocity of RCP waves have been obtained and propagation characteristics have been shown graphically. Poynting flux and Faraday rotation angles have been calculated for both lower and upper branches of the RCP wave. It has been observed that sense of rotation of the plane of polarization of the RCP wave corresponding to two distinct branches are opposite. Finally, the effect of dust particles on the induced magnetization from the inverse Faraday effect (IFE) due to the interaction of low frequency propagating and standing em waves with dusty plasmas has been evaluated.
Characteristic analysis of surface waves in a sensitive plasma absorption probe
NASA Astrophysics Data System (ADS)
You, Wei; Li, Hong; Tan, Mingsheng; Liu, Wandong
2018-01-01
With features that are simple to construct and a symmetric configuration, the sensitive plasma absorption probe (SPAP) is a dependable probe for industry plasma diagnosis. The minimum peak in the characteristic curve of the coefficient of reflection stems from the surface wave resonance in plasma. We use numerical simulation methods to analyse the details of the excitation and propagation of these surface waves. With this method, the electromagnetic field structure and the resonance and propagation characteristics of the surface wave were analyzed simultaneously using the simulation method. For this SPAP structure, there are three different propagation paths for the propagating plasma surface wave. The propagation characteristic of the surface wave along each path is presented. Its dispersion relation is also calculated. The objective is to complete the relevant theory of the SPAP as well as the propagation process of the plasma surface wave.
Re-evaluation of ``;The Propagation of Radiation in the Spherical Wave Form''
NASA Astrophysics Data System (ADS)
Joshi, Narahari V.
2012-03-01
It is well accepted that radiation propagates in the free space (without obstacles) in a spherical wave form as well as in a plane wave form. Almost all observed phenomena such as interference, diffraction etc are explained satisfactorily on the basis of spherical wave propagation with a slight alteration in the mathematical treatment. However, one of the fundamental aspects, namely the intensity of the radiation as a function of the distance still remains an unsolved problem as the intensity varies with
Kuznetsov-Ma waves train generation in a left-handed material
NASA Astrophysics Data System (ADS)
Atangana, Jacques; Giscard Onana Essama, Bedel; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Crépin Kofane, Timoléon
2015-03-01
We analyze the behavior of an electromagnetic wave which propagates in a left-handed material. Second-order dispersion and cubic-quintic nonlinearities are considered. This behavior of an electromagnetic wave is modeled by a nonlinear Schrödinger equation which is solved by collective coordinates theory in order to characterize the light pulse intensity profile. More so, a specific frequency range has been outlined where electromagnetic wave behavior will be investigated. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton. When the quintic nonlinearity comes into play, it provokes strong and long internal perturbations which lead to Benjamin-Feir instability. This phenomenon, also called modulational instability, induces appearance of a Kuznetsov-Ma waves train. We numerically verify the validity of Kuznetsov-Ma theory by presenting physical conditions which lead to Kuznetsov-Ma waves train generation. Thereafter, some properties of such waves train are also verified.
NASA Astrophysics Data System (ADS)
Chai, Han-Peng; Tian, Bo; Chai, Jun; Du, Zhong
2017-10-01
We investigate the three-coupled Hirota system, which is applied to model the long distance communication and ultrafast signal routing systems governing the propagation of light pulses. With the aid of the Darboux dressing transformation, composite rogue wave solutions are derived. Spatial-temporal structures, including the four-petaled structure for the three-coupled Hirota system, are exhibited. We find that the four-petaled rogue waves occur in two of the three components, whereas the eye-shaped rogue wave occurs in the other one. The composite rogue waves can split up into two or three single rogue waves. The corresponding conditions for the occurrence of such phenomena are discussed and presented. We find that the relative position of every single rogue wave is influenced by the ratios of certain parameters. Besides, the linear instability analysis is performed, and our results agree with those from the baseband modulation instability theory.
Propagation of coherent light pulses with PHASE
NASA Astrophysics Data System (ADS)
Bahrdt, J.; Flechsig, U.; Grizzoli, W.; Siewert, F.
2014-09-01
The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel-Kirchhoff integral (stationary phase approximation) which is usually truncated at the 2nd order. The limits of this approximation as well as possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the Fresnel-Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. PHASE can be run either from a built-in graphical user interface or from any script language. The latter method provides substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of propagators. Several means to speed up the computation time were tested - among them are the parallelization in a multi core environment and the parallelization on a cluster.
NASA Astrophysics Data System (ADS)
Guan, Yi-jun; Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi; Ge, Yong
2016-10-01
We have established numerical models for simulating laser-generated Rayleigh waves in coating/substrate systems by a finite element method and investigated the propagation characteristics of Rayleigh waves in systems concerning the viscoelasticity and transparency of adhesive coatings. In this way, we have studied the influence of the mechanical properties of the coating, such as the elastic moduli, viscoelastic moduli, coating thickness, transparency, and coating material, on the propagation characteristics of the Rayleigh waves. The results show that the propagation characteristics of the Rayleigh waves can be divided into low- and high-frequency parts. The high-frequency propagation characteristics of the Rayleigh wave are closely related to the properties of the adhesive coating.
NASA Astrophysics Data System (ADS)
Chen, Haopeng; Ni, Sidao; Chu, Risheng; Chong, Jiajun; Liu, Zhikun; Zhu, Liangbao
2018-05-01
Surface waves are generally assumed to propagate along great-circle paths in most surface-wave tomography. However, when lateral heterogeneity is strong, off-great-circle propagation may occur and deteriorate surface wave tomography results based on the great-circle assumption. In this study, we used teleseismic waveforms recorded by the NECESSArray in Northeast China to study off-great-circle propagation of Rayleigh waves using the beamforming method and evaluated the influence of off-great-circle propagation on event-based surface wave tomography. The results show that arrival angle anomalies generally increase with decreasing period. The arrival angle anomalies at 60 and 50 s periods are smaller than that at 40 and 30 s periods, which indicates that the off-great-circle propagation is relatively weak for longer periods. At 30 s period, the arrival angle anomalies are relatively larger and some of the measurements can exceed 20°, which represents a strong off-great-circle propagation effect. In some areas, the arrival angle anomalies of adjacent events differ significantly, which may be attributed to multipathing propagation of surface waves. To evaluate the influence of off-great-circle propagation on event-based surface wave tomography, we used measured arrival angle anomalies to correct two-station phase velocity measurements, and performed azimuthal anisotropy tomography using dispersion datasets with and without the arrival angle correction. At longer periods, such as 60 s, the influence of off-great-circle propagation on surface wave tomography is weak even though the corrected model has better data fit than the uncorrected model. However, the influence of off-great-circle propagation is non-negligible at short periods. The tomography results at 30 s period show that the differences in phase velocity, the strength of anisotropy and the fast direction can be as large as 1.5 per cent, 1.0 per cent and 30°, respectively. Furthermore, the corrected phase velocity is systematically lower than that without correction. This study illustrates the necessity of studying the off-great-circle propagation of surface waves to improve the accuracy of event-based surface wave tomography, especially for shorter periods.
Linear Elastic Waves - Series: Cambridge Texts in Applied Mathematics (No. 26)
NASA Astrophysics Data System (ADS)
Harris, John G.
2001-10-01
Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are often very complex, one way to begin to understand them is to study wave propagation in the linear approximation. This is a book describing such propagation using, as a context, the equations of elasticity. Two unifying themes are used. The first is that an understanding of plane wave interactions is fundamental to understanding more complex wave interactions. The second is that waves are best understood in an asymptotic approximation where they are free of the complications of their excitation and are governed primarily by their propagation environments. The topics covered include reflection, refraction, the propagation of interfacial waves, integral representations, radiation and diffraction, and propagation in closed and open waveguides. Linear Elastic Waves is an advanced level textbook directed at applied mathematicians, seismologists, and engineers. Aimed at beginning graduate students Includes examples and exercises Has application in a wide range of disciplines
MAVEN Observations of Solar Wind-Driven Magnetosonic Waves Heating the Martian Dayside Ionosphere
NASA Astrophysics Data System (ADS)
Fowler, C. M.; Andersson, L.; Ergun, R. E.; Harada, Y.; Hara, T.; Collinson, G.; Peterson, W. K.; Espley, J.; Halekas, J.; Mcfadden, J.; Mitchell, D. L.; Mazelle, C.; Benna, M.; Jakosky, B. M.
2018-05-01
We present Mars Atmosphere and Volatile EvolutioN observations of large-amplitude magnetosonic waves propagating through the magnetosheath into the Martian ionosphere near the subsolar point on the dayside of the planet. The observed waves grow in amplitude as predicted for a wave propagating into a denser, charged medium, with wave amplitudes reaching 25 nT, equivalent to ˜40% of the background field strength. These waves drive significant density and temperature variations (˜20% to 100% in amplitude) in the suprathermal electrons and light ion species (H+) that correlate with compressional fronts of the magnetosonic waves. Density and temperature variations are also observed for the ionospheric electrons, and heavy ion species (O+ and O2+); however, these variations are not in phase with the magnetic field variations. Whistler waves are observed at compressional wave fronts and are thought to be produced by unstable, anistropic suprathermal electrons. The magnetosonic waves drive significant ion and electron heating down to just above the exobase region. Ion heating rates are estimated to be between 0.03 and 0.2 eVs-1 per ion, and heavier ions could thus gain escape energy if located in this heating region for ˜10-70 s. The measured ionospheric density profile indicates severe ionospheric erosion above the exobase region, and this is likely caused by substantial ion outflow that is driven by the observed heating. The effectiveness of these magnetosonic waves to energize the plasma close to the exobase could have important implications for the long-term climate evolution for unmagnetized bodies that are exposed to the solar wind.
Homogeneous microwave field emitted propagating spin waves: Direct imaging and modeling
NASA Astrophysics Data System (ADS)
Lohman, Mathis; Mozooni, Babak; McCord, Jeffrey
2018-03-01
We explore the generation of propagating dipolar spin waves by homogeneous magnetic field excitation in the proximity of the boundaries of magnetic microstructures. Domain wall motion, precessional dynamics, and propagating spin waves are directly imaged by time-resolved wide-field magneto-optical Kerr effect microscopy. The aspects of spin wave generation are clarified by micromagnetic calculations matching the experimental results. The region of dipolar spin wave formation is confined to the local resonant excitation due to non-uniform internal demagnetization fields at the edges of the patterned sample. Magnetic domain walls act as a border for the propagation of plane and low damped spin waves, thus restraining the spin waves within the individual magnetic domains. The findings are of significance for the general understanding of structural and configurational magnetic boundaries for the creation, the propagation, and elimination of spin waves.
Wave propagation downstream of a high power helicon in a dipolelike magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prager, James; Winglee, Robert; Roberson, B. Race
2010-01-15
The wave propagating downstream of a high power helicon source in a diverging magnetic field was investigated experimentally. The magnetic field of the wave has been measured both axially and radially. The three-dimensional structure of the propagating wave is observed and its wavelength and phase velocity are determined. The measurements are compared to predictions from helicon theory and that of a freely propagating whistler wave. The implications of this work on the helicon as a thruster are also discussed.
NASA Astrophysics Data System (ADS)
Anderson, T.; Holzworth, R. H., II; Brundell, J. B.
2017-12-01
Energetic particle precipitation associated with solar events have been known to cause changes in the Earth-ionosphere waveguide. Previous studies of solar proton events (SPEs) have shown that high-energy protons can ionize lower-altitude layers of the ionosphere, leading to changes in Schumann resonance parameters (Schlegel and Fullekrug, 1999) and absorption of radio waves over the polar cap (Kundu and Haddock, 1960). We use the World-Wide Lightning Location Network (WWLLN) to study propagation of VLF waves during SPEs. WWLLN detects lightning-generated sferics in the VLF band using 80 stations distributed around the world. By comparing received power at individual stations from specific lightning source regions during SPEs, we can infer changes in the lower ionosphere conductivity profile caused by high-energy proton precipitation. In particular, we find that some WWLLN stations see different distributions of sferic power and range during SPEs. We also use the power/propagation analysis to improve WWLLN's lightning detection accuracy, by developing a better model for ionosphere parameters and speed of light in the waveguide than we have previously used.
NASA Astrophysics Data System (ADS)
Wu, Xianyun; Wu, Ru-Shan
A seismic wave is a mechanical disturbance or energy packet that can propagate from point to point in the Earth. Seismic waves can be generated by a sudden release of energy such as an earthquake, volcanic eruption, or chemical explosion. There are several types of seismic waves, often classified as body waves, which propagate through the volume of the Earth, and surface waves, which travel along the surface of the Earth. Compressional and shear waves are the two main types of body wave and Rayleigh and Love waves are the most common forms of surface wave.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2004-01-01
The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.
On small beams with large topological charge: II. Photons, electrons and gravitational waves
NASA Astrophysics Data System (ADS)
Krenn, Mario; Zeilinger, Anton
2018-06-01
Beams of light with a large topological charge significantly change their spatial structure when they are focused strongly. Physically, it can be explained by an emerging electromagnetic field component in the direction of propagation, which is neglected in the simplified scalar wave picture in optics. Here we ask: is this a specific photonic behavior, or can similar phenomena also be predicted for other species of particles? We show that the same modification of the spatial structure exists for relativistic electrons as well as for focused gravitational waves. However, this is for different physical reasons: for electrons, which are described by the Dirac equation, the spatial structure changes due to a spin–orbit coupling in the relativistic regime. In gravitational waves described with linearized general relativity, the curvature of space–time between the transverse and propagation direction leads to the modification of the spatial structure. Thus, this universal phenomenon exists for both massive and massless elementary particles with spin 1/2, 1 and 2. It would be very interesting whether other types of particles such as composite systems (neutrons or C60) or neutrinos show a similar behavior and how this phenomenon can be explained in a unified physical way.
Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.
Solis, David; Willingham, Britain; Nauert, Scott L; Slaughter, Liane S; Olson, Jana; Swanglap, Pattanawit; Paul, Aniruddha; Chang, Wei-Shun; Link, Stephan
2012-03-14
Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices. © 2012 American Chemical Society
Topologically protected bound states in photonic parity-time-symmetric crystals.
Weimann, S; Kremer, M; Plotnik, Y; Lumer, Y; Nolte, S; Makris, K G; Segev, M; Rechtsman, M C; Szameit, A
2017-04-01
Parity-time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently debated whether topological interface states can exist at all in PT-symmetric systems. Here, we show theoretically and demonstrate experimentally the existence of such states: states that are localized at the interface between two topologically distinct PT-symmetric photonic lattices. We find analytical closed form solutions of topological PT-symmetric interface states, and observe them through fluorescence microscopy in a passive PT-symmetric dimerized photonic lattice. Our results are relevant towards approaches to localize light on the interface between non-Hermitian crystals.
Laser mode conversion into a surface plasma wave in a metal coated optical fiber
NASA Astrophysics Data System (ADS)
Liu, C. S.; Kumar, Gagan; Tripathi, V. K.
2006-07-01
An optical fiber, coated with thin metal film, supports two distinct kinds of waves, viz., body waves that propagate through the fiber as transverse magnetic (TM) and transverse electric modes, and surface plasma waves that propagate on metal free space interface. When the metal has a ripple of suitable wave number q, a body wave of frequency ω and propagation constant kz induces a current at ω ,kz+q in the ripple region that resonantly derives a surface plasma wave. When the metal surface has metallic particles attached to it and molecules are adsorbed on them, the surface plasma wave undergoes surface enhanced Raman scattering with them. The scattered signals propagate backward as a TM body wave and can be detected.
Frequency dependent steering with backward leaky waves via photonic crystal interface layer.
Colak, Evrim; Caglayan, Humeyra; Cakmak, Atilla O; Villa, Alessandro D; Capolino, Filippo; Ozbay, Ekmel
2009-06-08
A Photonic Crystal (PC) with a surface defect layer (made of dimers) is studied in the microwave regime. The dispersion diagram is obtained with the Plane Wave Expansion Method. The dispersion diagram reveals that the dimer-layer supports a surface mode with negative slope. Two facts are noted: First, a guided (bounded) wave is present, propagating along the surface of the dimer-layer. Second, above the light line, the fast traveling mode couple to the propagating spectra and as a result a directive (narrow beam) radiation with backward characteristics is observed and measured. In this leaky mode regime, symmetrical radiation patterns with respect to the normal to the PC surface are attained. Beam steering is observed and measured in a 70 degrees angular range when frequency ranges in the 11.88-13.69 GHz interval. Thus, a PC based surface wave structure that acts as a frequency dependent leaky wave antenna is presented. Angular radiation pattern measurements are in agreement with those obtained via numerical simulations that employ the Finite Difference Time Domain Method (FDTD). Finally, the backward radiation characteristics that in turn suggest the existence of a backward leaky mode in the dimer-layer are experimentally verified using a halved dimer-layer structure.
Investigating Alfvénic wave propagation in coronal open-field regions
Morton, R. J.; Tomczyk, S.; Pinto, R.
2015-01-01
The physical mechanisms behind accelerating solar and stellar winds are a long-standing astrophysical mystery, although recent breakthroughs have come from models invoking the turbulent dissipation of Alfvén waves. The existence of Alfvén waves far from the Sun has been known since the 1970s, and recently the presence of ubiquitous Alfvénic waves throughout the solar atmosphere has been confirmed. However, the presence of atmospheric Alfvénic waves does not, alone, provide sufficient support for wave-based models; the existence of counter-propagating Alfvénic waves is crucial for the development of turbulence. Here, we demonstrate that counter-propagating Alfvénic waves exist in open coronal magnetic fields and reveal key observational insights into the details of their generation, reflection in the upper atmosphere and outward propagation into the solar wind. The results enhance our knowledge of Alfvénic wave propagation in the solar atmosphere, providing support and constraints for some of the recent Alfvén wave turbulence models. PMID:26213234
Laloš, Jernej; Gregorčič, Peter; Jezeršek, Matija
2018-01-01
We present an optical study of elastic wave propagation inside skin phantoms consisting of agar gel as induced by an Er:YAG (wavelength of 2.94 μm) laser pulse. A laser-beam-deflection probe is used to measure ultrasonic propagation and a high-speed camera is used to record displacements in ablation-induced elastic transients. These measurements are further analyzed with a custom developed image recognition algorithm utilizing the methods of particle image velocimetry and spline interpolation to determine point trajectories, material displacement and strain during the passing of the transients. The results indicate that the ablation-induced elastic waves propagate with a velocity of 1 m/s and amplitudes of 0.1 mm. Compared to them, the measured velocities of ultrasonic waves are much higher, within the range of 1.42–1.51 km/s, while their amplitudes are three orders of magnitude smaller. This proves that the agar gel may be used as a rudimental skin and soft tissue substitute in biomedical research, since its polymeric structure reproduces adequate soft-solid properties and its transparency for visible light makes it convenient to study with optical instruments. The results presented provide an insight into the distribution of laser-induced elastic transients in soft tissue phantoms, while the experimental approach serves as a foundation for further research of laser-induced mechanical effects deeper in the tissue. PMID:29675327
Laloš, Jernej; Gregorčič, Peter; Jezeršek, Matija
2018-04-01
We present an optical study of elastic wave propagation inside skin phantoms consisting of agar gel as induced by an Er:YAG (wavelength of 2.94 μm) laser pulse. A laser-beam-deflection probe is used to measure ultrasonic propagation and a high-speed camera is used to record displacements in ablation-induced elastic transients. These measurements are further analyzed with a custom developed image recognition algorithm utilizing the methods of particle image velocimetry and spline interpolation to determine point trajectories, material displacement and strain during the passing of the transients. The results indicate that the ablation-induced elastic waves propagate with a velocity of 1 m/s and amplitudes of 0.1 mm. Compared to them, the measured velocities of ultrasonic waves are much higher, within the range of 1.42-1.51 km/s, while their amplitudes are three orders of magnitude smaller. This proves that the agar gel may be used as a rudimental skin and soft tissue substitute in biomedical research, since its polymeric structure reproduces adequate soft-solid properties and its transparency for visible light makes it convenient to study with optical instruments. The results presented provide an insight into the distribution of laser-induced elastic transients in soft tissue phantoms, while the experimental approach serves as a foundation for further research of laser-induced mechanical effects deeper in the tissue.
Stenmark, Theodore; Word, R. C.; Konenkamp, R.
2016-02-16
Photoemission Electron Microscopy (PEEM) is a versatile tool that relies on the photoelectric effect to produce high-resolution images. Pulse lasers allow for multi-photon PEEM where multiple photons are required excite a single electron. This non-linear process can directly image the near field region of electromagnetic fields in materials. We use this ability here to analyze wave propagation in a linear dielectric waveguide with wavelengths of 410nm and 780nm. The propagation constant of the waveguide can be extracted from the interference pattern created by the coupled and incident light and shows distinct polarization dependence. Furthermore, the electromagnetic field interaction at themore » boundaries can then be deduced which is essential to understand power flow in wave guiding structures. These results match well with simulations using finite element techniques.« less
Pulse generation scheme for flying electromagnetic doughnuts
NASA Astrophysics Data System (ADS)
Papasimakis, Nikitas; Raybould, Tim; Fedotov, Vassili A.; Tsai, Din Ping; Youngs, Ian; Zheludev, Nikolay I.
2018-05-01
Transverse electromagnetic plane waves are fundamental solutions of Maxwells equations. It is less known that a radically different type of solutions has been described theoretically, but has never been realized experimentally, that exist only in the form of short bursts of electromagnetic energy propagating in free space at the speed of light. They are distinguished from transverse waves by a doughnutlike configuration of electric and magnetic fields with a strong field component along the propagation direction. Here, we demonstrate numerically that such flying doughnuts can be generated from conventional pulses using a singular metamaterial converter designed to manipulate both the spatial and spectral structure of the input pulse. The ability to generate flying doughnuts is of fundamental interest, as they shall interact with matter in unique ways, including nontrivial field transformations upon reflection from interfaces and the excitation of toroidal response and anapole modes in matter, hence offering opportunities for telecommunications, sensing, and spectroscopy.
NASA Astrophysics Data System (ADS)
Tang, Qiuyan; Wang, Jing; Lv, Pin; Sun, Quan
2015-10-01
Propagation simulation method and choosing mesh grid are both very important to get the correct propagation results in wave optics simulation. A new angular spectrum propagation method with alterable mesh grid based on the traditional angular spectrum method and the direct FFT method is introduced. With this method, the sampling space after propagation is not limited to propagation methods no more, but freely alterable. However, choosing mesh grid on target board influences the validity of simulation results directly. So an adaptive mesh choosing method based on wave characteristics is proposed with the introduced propagation method. We can calculate appropriate mesh grids on target board to get satisfying results. And for complex initial wave field or propagation through inhomogeneous media, we can also calculate and set the mesh grid rationally according to above method. Finally, though comparing with theoretical results, it's shown that the simulation result with the proposed method coinciding with theory. And by comparing with the traditional angular spectrum method and the direct FFT method, it's known that the proposed method is able to adapt to a wider range of Fresnel number conditions. That is to say, the method can simulate propagation results efficiently and correctly with propagation distance of almost zero to infinity. So it can provide better support for more wave propagation applications such as atmospheric optics, laser propagation and so on.
Control of wave propagation in a biological excitable medium by an external electric field.
Sebestikova, Lenka; Slamova, Elena; Sevcikova, Hana
2005-03-01
We present an experimental evidence of effects of external electric fields (EFs) on the velocity of pulse waves propagating in a biological excitable medium. The excitable medium used is formed by a layer of starving cells of Dictyostelium discoideum through which the waves of increased concentration of cAMP propagate by reaction-diffusion mechanism. External dc EFs of low intensities (up to 5 V/cm) are shown to speed up the propagation of cAMP waves towards the positive electrode and slow it down towards the negative electrode. Electric fields were also found to support an emergence of new centers, emitting cAMP waves, in front of cAMP waves propagating towards the negative electrode.
NASA Astrophysics Data System (ADS)
Biria, Saeid; Morim, Derek R.; An Tsao, Fu; Saravanamuttu, Kalaichelvi; Hosein, Ian D.
2017-10-01
Nonlinear optics and polymer systems are distinct fields that have been studied for decades. These two fields intersect with the observation of nonlinear wave propagation in photoreactive polymer systems. This has led to studies on the nonlinear dynamics of transmitted light in polymer media, particularly for optical self-trapping and optical modulation instability. The irreversibility of polymerization leads to permanent capture of nonlinear optical patterns in the polymer structure, which is a new synthetic route to complex structured soft materials. Over time more intricate polymer systems are employed, whereby nonlinear optical dynamics can couple to nonlinear chemical dynamics, opening opportunities for self-organization. This paper discusses the work to date on nonlinear optical pattern formation processes in polymers. A brief overview of nonlinear optical phenomenon is provided to set the stage for understanding their effects. We review the accomplishments of the field on studying nonlinear waveform propagation in photopolymerizable systems, then discuss our most recent progress in coupling nonlinear optical pattern formation to polymer blends and phase separation. To this end, perspectives on future directions and areas of sustained inquiry are provided. This review highlights the significant opportunity in exploiting nonlinear optical pattern formation in soft matter for the discovery of new light-directed and light-stimulated materials phenomenon, and in turn, soft matter provides a platform by which new nonlinear optical phenomenon may be discovered.
Propagation and dispersion of shock waves in magnetoelastic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crum, R. S.; Domann, J. P.; Carman, G. P.
Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less
Propagation and dispersion of shock waves in magnetoelastic materials
NASA Astrophysics Data System (ADS)
Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.
2017-12-01
Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.
Propagation and dispersion of shock waves in magnetoelastic materials
Crum, R. S.; Domann, J. P.; Carman, G. P.; ...
2017-11-15
Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less
Nonlinear Ultrasonic Measurements in Nuclear Reactor Environments
NASA Astrophysics Data System (ADS)
Reinhardt, Brian T.
Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this thesis, two ultrasonic characterization techniques will be explored. The first, finite amplitude wave propagation has been demonstrated to be sensitive to microstructural material property changes. It is a strong candidate to determine fuel evolution; however, it has not been demonstrated for in-situ reactor applications. In this thesis, finite amplitude wave propagation will be used to measure the microstructural evolution in Al-6061. This is the first demonstration of finite amplitude wave propagation at temperatures in excess of 200 °C and during an irradiation test. Second, a method based on contact nonlinear acoustic theory will be developed to identify compressed cracks. Compressed cracks are typically transparent to ultrasonic wave propagation; however, by measuring harmonic content developed during finite amplitude wave propagation, it is shown that even compressed cracks can be characterized. Lastly, piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65x10 20 n/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 x1020 n/cm2, Zinc Oxide is capable of transduction up to 6.27 x1020 n/cm 2, and Aluminum Nitride is capable of transduction up to 8.65x x10 20 n/cm2.
NASA Astrophysics Data System (ADS)
Wu, Chensheng; Nelson, William; Davis, Christopher C.
2014-10-01
Plenoptic functions are functions that preserve all the necessary light field information of optical events. Theoretical work has demonstrated that geometric based plenoptic functions can serve equally well in the traditional wave propagation equation known as the "scalar stochastic Helmholtz equation". However, in addressing problems of 3D turbulence simulation, the dominant methods using phase screen models have limitations both in explaining the choice of parameters (on the transverse plane) in real-world measurements, and finding proper correlations between neighboring phase screens (the Markov assumption breaks down). Though possible corrections to phase screen models are still promising, the equivalent geometric approach based on plenoptic functions begins to show some advantages. In fact, in these geometric approaches, a continuous wave problem is reduced to discrete trajectories of rays. This allows for convenience in parallel computing and guarantees conservation of energy. Besides the pairwise independence of simulated rays, the assigned refractive index grids can be directly tested by temperature measurements with tiny thermoprobes combined with other parameters such as humidity level and wind speed. Furthermore, without loss of generality one can break the causal chain in phase screen models by defining regional refractive centers to allow rays that are less affected to propagate through directly. As a result, our work shows that the 3D geometric approach serves as an efficient and accurate method in assessing relevant turbulence problems with inputs of several environmental measurements and reasonable guesses (such as Cn 2 levels). This approach will facilitate analysis and possible corrections in lateral wave propagation problems, such as image de-blurring, prediction of laser propagation over long ranges, and improvement of free space optic communication systems. In this paper, the plenoptic function model and relevant parallel algorithm computing will be presented, and its primary results and applications are demonstrated.
Common omissions and misconceptions of wave propagation in turbulence: discussion.
Charnotskii, Mikhail
2012-05-01
This review paper addresses typical mistakes and omissions that involve theoretical research and modeling of optical propagation through atmospheric turbulence. We discuss the disregard of some general properties of narrow-angle propagation in refractive random media, the careless use of simplified models of turbulence, and omissions in the calculations of the second moment of the propagating wave. We also review some misconceptions regarding short-exposure imaging, propagation of polarized waves, and calculations of the scintillation index of the beam waves. © 2012 Optical Society of America
Propagating elastic vibrations dominate thermal conduction in amorphous silicon
NASA Astrophysics Data System (ADS)
Moon, Jaeyun; Latour, Benoit; Minnich, Austin J.
2018-01-01
The thermal atomic vibrations of amorphous solids can be distinguished by whether they propagate as elastic waves or do not propagate due to lack of atomic periodicity. In a -Si, prior works concluded that nonpropagating waves are the dominant contributors to heat transport, with propagating waves being restricted to frequencies less than a few THz and scattered by anharmonicity. Here, we present a lattice and molecular dynamics analysis of vibrations in a -Si that supports a qualitatively different picture in which propagating elastic waves dominate the thermal conduction and are scattered by local fluctuations of elastic modulus rather than anharmonicity. We explicitly demonstrate the propagating nature of waves up to around 10 THz, and further show that pseudoperiodic structures with homogeneous elastic properties exhibit a marked temperature dependence characteristic of anharmonic interactions. Our work suggests that most heat is carried by propagating elastic waves in a -Si and demonstrates that manipulating local elastic modulus variations is a promising route to realize amorphous materials with extreme thermal properties.
NASA Astrophysics Data System (ADS)
Ghosh, Somnath
2018-05-01
Co-existence and interplay between mesoscopic light dynamics with singular optics in spatially random but temporally coherent disordered waveguide lattices is reported. Two CW light beams of 1.55 micron operating wavelength are launched as inputs to 1D waveguide lattices with controllable weak disorder in refractive index profile. Direct observation of phase singularities in the speckle pattern along the length is numerically demonstrated. Quantitative analysis of onset of such singular behavior and diffusive wave propagation is analyzed for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cifuentes, A.; Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alameda Urquijo s/n, 48013 Bilbao; Alvarado, S.
Here, we present a novel application of the shadowgraph technique for obtaining the thermal diffusivity of an opaque solid sample, inspired by the orthogonal skimming photothermal beam deflection technique. This new variant utilizes the shadow projected by the sample when put against a collimated light source. The sample is then heated periodically by another light beam, giving rise to thermal waves, which propagate across it and through its surroundings. Changes in the refractive index of the surrounding media due to the heating distort the shadow. This phenomenon is recorded and lock-in amplified in order to determine the sample's thermal diffusivity.
Geometric calculus-based postulates for the derivation and extension of the Maxwell equations
NASA Astrophysics Data System (ADS)
McClellan, Gene E.
2012-09-01
Clifford analysis, particularly application of the geometric algebra of three-dimensional physical space and its associated geometric calculus, enables a compact formulation of Maxwell's electromagnetic (EM) equations from a set of physically relevant and mathematically pleasing postulates. This formulation results in a natural extension of the Maxwell equations yielding wave solutions in addition to the usual EM waves. These additional solutions do not contradict experiment and have three properties in common with the apparent properties of dark energy. These three properties are that the wave solutions 1) propagate at the speed of light, 2) do not interact with ordinary electric charges or currents, and 3) possess retrograde momentum. By retrograde momentum, we mean that the momentum carried by such a wave is directed oppositely to the direction of energy transport. A "gas" of such waves generates negative pressure.
Stellar winds driven by Alfven waves
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Olbert, S.
1973-01-01
Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.
Microwave excitation of spin wave beams in thin ferromagnetic films
Gruszecki, P.; Kasprzak, M.; Serebryannikov, A. E.; Krawczyk, M.; Śmigaj, W.
2016-01-01
An inherent element of research and applications in photonics is a beam of light. In magnonics, which is the magnetic counterpart of photonics, where spin waves are used instead of electromagnetic waves to transmit and process information, the lack of a beam source limits exploration. Here, we present an approach enabling generation of narrow spin wave beams in thin homogeneous nanosized ferromagnetic films by microwave current. We show that the desired beam-type behavior can be achieved with the aid of a properly designed coplanar waveguide transducer generating a nonuniform microwave magnetic field. We test this idea using micromagnetic simulations, confirming numerically that the resulting spin wave beams propagate over distances of several micrometers. The proposed approach requires neither inhomogeneity of the ferromagnetic film nor nonuniformity of the biasing magnetic field. It can be generalized to different magnetization configurations and yield multiple spin wave beams of different width at the same frequency. PMID:26971711
Modeling digital pulse waveforms by solving one-dimensional Navier-stokes equations.
Fedotov, Aleksandr A; Akulova, Anna S; Akulov, Sergey A
2016-08-01
Mathematical modeling for composition distal arterial pulse wave in the blood vessels of the upper limbs was considered. Formation of distal arterial pulse wave is represented as a composition of forward and reflected pulse waves propagating along the arterial vessels. The formal analogy between pulse waves propagation along the human arterial system and the propagation of electrical oscillations in electrical transmission lines with distributed parameters was proposed. Dependencies of pulse wave propagation along the human arterial system were obtained by solving the one-dimensional Navier-Stokes equations for a few special cases.
Manipulation of visible-light polarization with dendritic cell-cluster metasurfaces.
Fang, Zhen-Hua; Chen, Huan; An, Di; Luo, Chun-Rong; Zhao, Xiao-Peng
2018-06-26
Cross-polarization conversion plays an important role in visible light manipulation. Metasurface with asymmetric structure can be used to achieve polarization conversion of linearly polarized light. Based on this, we design a quasi-periodic dendritic metasurface model composed of asymmetric dendritic cells. The simulation indicates that the asymmetric dendritic structure can vertically rotate the polarization direction of the linear polarization wave in visible light. Silver dendritic cell-cluster metasurface samples were prepared by the bottom-up electrochemical deposition. It experimentally proved that they could realize the cross - polarization conversion in visible light. Cross-polarized propagating light is deflected into anomalous refraction channels. Dendritic cell-cluster metasurface with asymmetric quasi-periodic structure conveys significance in cross-polarization conversion research and features extensive practical application prospect and development potential.
Dynamics in Layer Models of Solid Flame Propagation
NASA Technical Reports Server (NTRS)
Aldushin, A. P.; Bayliss, A.; Matkowsky, B. J.; Gokoglu, S. (Technical Monitor)
2000-01-01
Self-propagating high-temperature synthesis (SHS) is a process in which combustion waves, e.g., "solid flames", which are considered here, are employed to synthesize desired materials. Like many other systems, SHS is a pattern forming system. The problem of describing experimentally observed patterns and of predicting new, as yet unobserved, patterns continues to attract the attention of scientists and mathematicians due to the fundamental significance of the phenomena in combustion in particular, and in nonlinear science in general. Here, we analyze the dynamics of solid flame propagation in a 2D region by considering the region to be composed of parallel, identical layers aligned along the direction of propagation and having thermal contact. Each layer is then described by wave propagation in 1D, with the transverse Laplacian replaced by a term describing heat exchange between neighboring layers. This configuration is the simplest model of a 2D system because it accounts, in a simple way, for the principal feature of the problem, i.e., heat exchange between neighbors in the transverse direction. For simplicity, we describe the situation for two layers. Because the layers are identical, uniformly propagating waves in each layer must be identical, independent of the heat exchange rate alpha. When the Zeldovich number Z exceeds a critical value Z(sub c), which depends on alpha, uniformly propagating waves become unstable. The stability diagram for the two coupled layers reproduces that for the full 2D problem after appropriate identification of parameters in the two problems. Depending on parameter values, we determine three different steady-state dynamical behaviors (though additional behaviors are also expected to occur). The three behaviors are: (i) waves in each layer which pulsate in phase as they propagate, so that together they form a single pulsating propagating wave; (ii) the waves in each layer are no longer identical, and antiphase pulsations occur, with the two waves alternately advancing and receding as they propagate. This wave is the analog of the spinning wave on the surface of a circular cylinder; (iii) finally, there is a region of bistability between the in phase and antiphase waves. with each having its own domain of attraction, so that which of the two behaviors occur depends on the condition of initiation of the wave. The results of our computations indicate a qualitative similarity in the behavior of combustion waves in the layer model and in the full 2D model. Specifically, due to the similarity between the small alpha wave behavior in the layer model and the large diameter behavior in the model of waves on the surface of a cylinder, we are able to predict the behavior of the mean velocity for the waves on the cylinder, where computations of the full problem can be rather difficult. We also compute solutions for three or more layers. The results of our computations prompt us to predict that, while planar uniformly propagating waves are unstable, the wave will be quasiplanar, i.e., the resulting spinning waves have very low amplitude hot spots, and travel with the velocity close to that of the uniformly propagating wave. Such waves may be difficult to distinguish from uniformly propagating waves in experiments. We also find that for both the layer model and full 2D problem, steady-state time-dependent waves, e.g., pulsating and spinning wave, have a conserved quantity H which characterizes the excess energy in the wave, just as in the case of uniformly propagating waves. The quantity H, which is generated by dissipation, does not vary in time and is proportional to the diffusivity and caloricity of the system, and inversely proportional to the mean wave velocity.
Frank, Scott D; Collis, Jon M; Odom, Robert I
2015-06-01
Oceanic T-waves are earthquake signals that originate when elastic waves interact with the fluid-elastic interface at the ocean bottom and are converted to acoustic waves in the ocean. These waves propagate long distances in the Sound Fixing and Ranging (SOFAR) channel and tend to be the largest observed arrivals from seismic events. Thus, an understanding of their generation is important for event detection, localization, and source-type discrimination. Recently benchmarked seismic self-starting fields are used to generate elastic parabolic equation solutions that demonstrate generation and propagation of oceanic T-waves in range-dependent underwater acoustic environments. Both downward sloping and abyssal ocean range-dependent environments are considered, and results demonstrate conversion of elastic waves into water-borne oceanic T-waves. Examples demonstrating long-range broadband T-wave propagation in range-dependent environments are shown. These results confirm that elastic parabolic equation solutions are valuable for characterization of the relationships between T-wave propagation and variations in range-dependent bathymetry or elastic material parameters, as well as for modeling T-wave receptions at hydrophone arrays or coastal receiving stations.
NASA Astrophysics Data System (ADS)
Deldar, H.; Bidokhti, A. A.; Chegini, V.
2018-01-01
Internal waves usually cause temporal and spatial changes of density and consequently affect the acoustic wave propagation in the ocean. The purpose of this study is a laboratory investigation of the effects of internal waves generated by oscillation of a cylinder in a large stratified glass tank with a sloping bed on the sound waves propagation. Results showed that sound waves are affected by internal waves that depend on the slope angle to the direction of internal wave propagation angle ratio. When the ratio is subcritical or supercritical, the acoustic signal is much reduced as compared to the case with no sloped bottom. This can be explained in terms of the internal waves energy reaching the sloped bed and their reflections.
Pollitz, F.F.
2002-01-01
I present a new algorithm for calculating seismic wave propagation through a three-dimensional heterogeneous medium using the framework of mode coupling theory originally developed to perform very low frequency (f < ???0.01-0.05 Hz) seismic wavefield computation. It is a Greens function approach for multiple scattering within a defined volume and employs a truncated traveling wave basis set using the locked mode approximation. Interactions between incident and scattered wavefields are prescribed by mode coupling theory and account for the coupling among surface waves, body waves, and evanescent waves. The described algorithm is, in principle, applicable to global and regional wave propagation problems, but I focus on higher frequency (typically f ??????0.25 Hz) applications at regional and local distances where the locked mode approximation is best utilized and which involve wavefields strongly shaped by propagation through a highly heterogeneous crust. Synthetic examples are shown for P-SV-wave propagation through a semi-ellipsoidal basin and SH-wave propagation through a fault zone.
Wave propagation in equivalent continuums representing truss lattice materials
Messner, Mark C.; Barham, Matthew I.; Kumar, Mukul; ...
2015-07-29
Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures from lattice materials, but the design of such structures will require accurate, efficient simulation methods. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss in the small deformation regime is complicated by microinertial effects. This study derives a dynamic equivalent continuum model for periodic trussmore » structures suitable for representing long-wavelength wave propagation and verifies it against the full Bloch wave theory and detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long wavelength characteristics of the response such as anisotropic elastic soundspeeds. Finally, the formulation presented here also improves upon previous work by preserving equilibrium at truss joints for simple lattices and by improving numerical stability by eliminating vertices in the effective yield surface.« less
Scattering by multiple cylinders located on both sides of an interface
NASA Astrophysics Data System (ADS)
Lee, Siu-Chun
2018-07-01
The solution for scattering by multiple parallel infinite cylinders located in adjacent half spaces with dissimilar refractive index is presented in this paper. The incident radiation is an arbitrarily polarized plane wave propagating in the upper half space in the plane perpendicular to the axis of the cylinders. The formulation of the electromagnetic field vectors utilized Hertz potentials that are expressed in terms of an expansion of cylindrical wave functions. It accounts for the near-field multiple scattering, Fresnel effect at the interface, and interaction between cylinders in both half spaces. Analytical formulas are derived for the electromagnetic field and Poynting vector in the far-field. The present solution provides the theoretical framework for deducing the solutions for scattering by cylinders located on either side of an interface irradiated by a propagating or an evanescent incident wave. Deduction of these solutions from the present formulation is demonstrated. Numerical results are presented to illustrate the frustration of total internal reflection and scattering of light beyond the critical angle by nanocylinders located in either or both half spaces.
NASA Astrophysics Data System (ADS)
Kupke, Renate; Gavel, Don; Johnson, Jess; Reinig, Marc
2008-07-01
We investigate the non-modulating pyramid wave-front sensor's (P-WFS) implementation in the context of Lick Observatory's Villages visible light AO system on the Nickel 1-meter telescope. A complete adaptive optics correction, using a non-modulated P-WFS in slope sensing mode as a boot-strap to a regime in which the P-WFS can act as a direct phase sensor is explored. An iterative approach to reconstructing the wave-front phase, given the pyramid wave-front sensor's non-linear signal, is developed. Using Monte Carlo simulations, the iterative reconstruction method's photon noise propagation behavior is compared to both the pyramid sensor used in slope-sensing mode, and the traditional Shack Hartmann sensor's theoretical performance limits. We determine that bootstrapping using the P-WFS as a slope sensor does not offer enough correction to bring the phase residuals into a regime in which the iterative algorithm can provide much improvement in phase measurement. It is found that both the iterative phase reconstructor and the slope reconstruction methods offer an advantage in noise propagation over Shack Hartmann sensors.
Metasurfaces based on Gallium Nitride High Contrast Gratings at Visible Range
NASA Astrophysics Data System (ADS)
Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei; Wang, Yongjin; Zhu, Hongbo; Grünberg Research Centre Team
2015-03-01
Metasurfaces are currently attracting global attention due to their ability to achieve full control of light propagation. However, these metasurfaces have thus far been constructed mostly from metallic materials, which greatly limit the diffraction efficiencies because of the ohmic losses. Semiconducting metasurfaces offer one potential solution to the issue of losses. Besides, the use of semiconducting materials can broaden the applicability of metasurfaces, as they enable facile integration with electronics and mechanical systems and can benefit from mature semiconductor fabrication technologies. We have proposed visible-light metasurfaces (VLMs) capable of serving as lenses and beam deflecting elements based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wave-fronts of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 83.0% and numerical aperture of 0.77, and a VLM with beam deflection angle of 6.03° and transmissivity as high as 93.3%. The proposed metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.
Four-Wave Mixing of Gigawatt Power, Long-Wave Infrared Radiation in Gases and Semiconductors
NASA Astrophysics Data System (ADS)
Pigeon, Jeremy James
The nonlinear optics of gigawatt power, 10 microm, 3 and 200 ps long pulses propagating in gases and semiconductors has been studied experimentally and numerically. In this work, the development of a high-repetition rate, picosecond, CO2 laser system has enabled experiments using peak intensities in the range of 1-10 GW/cm2, approximately one thousand times greater than previous nonlinear optics experiments in the long-wave infrared (LWIR) spectral region. The first measurements of the nonlinear refractive index of the atomic and molecular gases Kr, Xe, N2, O2 and the air at a wavelength near 10 microm were accomplished by studying the four-wave mixing (FWM) of dual-wavelength, 200 ps CO2 laser pulses. These measurements indicate that the nonlinearities of the diatomic molecules N2, O2 and the air are dominated by the molecular contribution to the nonlinear refractive index. Supercontinuum (SC) generation covering the infrared spectral range, from 2-20 microm, was realized by propagating 3 ps, 10 microm pulses in an approximately 7 cm long, Cr-doped GaAs crystal. Temporal measurements of the SC radiation show that pulse splitting accompanies the generation of such broadband light in GaAs. The propagation of 3 ps, 10 microm pulses in GaAs was studied numerically by solving the Generalized Nonlinear Schrodinger Equation (GNLSE). These simulations, combined with analytic estimates, were used to determine that stimulated Raman scattering combined with a modulational instability caused by the propagation of intense LWIR radiation in the negative group velocity dispersion region of GaAs are responsible for the SC generation process. The multiple FWM of a 106 GHz, 200 ps CO2 laser beat-wave propagating in GaAs was used to generate a broadband FWM spectrum that was compressed by the negative group velocity dispersion of GaAs and NaCl crystals to form trains of high-power, picosecond pulses at a wavelength near 10 microm. Experimental FWM spectra obtained using 165 and 882 GHz beat-waves revealed an unexpected and rapid decrease in the FWM yield that was not predicted by the GNLSE model that accounts for third-order nonlinearities alone. These results suggest that the effective nonlinear refractive index of GaAs, having formidable second- and third-order susceptibilities, may be altered by quadratic nonlinearities.
NASA Astrophysics Data System (ADS)
Shu, Weixing; Lv, Xiaofang; Luo, Hailu; Wen, Shuangchun
2010-08-01
We extend the Green's function integral method to investigate the propagation of electromagnetic waves through an anisotropic dielectric-magnetic slab. From a microscopic perspective, we analyze the interaction of wave with the slab and derive the propagation characteristics by self-consistent analyses. Applying the results, we find an alternative explanation to the general mechanism for the photon tunneling. The results are confirmed by numerical simulations and disclose the underlying physics of wave propagation through slab. The method extended is applicable to other problems of propagation in dielectric-magnetic materials, including metamaterials.
Linear and nonlinear acoustic wave propagation in the atmosphere
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Yu, Ping
1988-01-01
The investigation of the acoustic wave propagation theory and numerical implementation for the situation of an isothermal atmosphere is described. A one-dimensional model to validate an asymptotic theory and a 3-D situation to relate to a realistic situation are considered. In addition, nonlinear wave propagation and the numerical treatment are included. It is known that the gravitational effects play a crucial role in the low frequency acoustic wave propagation. They propagate large distances and, as such, the numerical treatment of those problems become difficult in terms of posing boundary conditions which are valid for all frequencies.
Wave-propagation formulation of seismic response of multistory buildings
Safak, E.
1999-01-01
This paper presents a discrete-time wave-propagation method to calculate the seismic response of multistory buildings, founded on layered soil media and subjected to vertically propagating shear waves. Buildings are modeled as an extension of the layered soil media by considering each story as another layer in the wave-propagation path. The seismic response is expressed in terms of wave travel times between the layers and wave reflection and transmission coefficients at layer interfaces. The method accounts for the filtering effects of the concentrated foundation and floor masses. Compared with commonly used vibration formulation, the wave-propagation formulation provides several advantages, including simplicity, improved accuracy, better representation of damping, the ability to incorporate the soil layers under the foundation, and providing better tools for identification and damage detection from seismic records. Examples are presented to show the versatility and the superiority of the method.
Slow waves in microchannel metal waveguides and application to particle acceleration
NASA Astrophysics Data System (ADS)
Steinhauer, L. C.; Kimura, W. D.
2003-06-01
Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.
NASA Astrophysics Data System (ADS)
Karl, Robert; Knobloch, Joshua; Frazer, Travis; Tanksalvala, Michael; Porter, Christina; Bevis, Charles; Chao, Weilun; Abad Mayor, Begoña.; Adams, Daniel; Mancini, Giulia F.; Hernandez-Charpak, Jorge N.; Kapteyn, Henry; Murnane, Margaret
2018-03-01
Using a tabletop coherent extreme ultraviolet source, we extend current nanoscale metrology capabilities with applications spanning from new models of nanoscale transport and materials, to nanoscale device fabrication. We measure the ultrafast dynamics of acoustic waves in materials; by analyzing the material's response, we can extract elastic properties of films as thin as 11nm. We extend this capability to a spatially resolved imaging modality by using coherent diffractive imaging to image the acoustic waves in nanostructures as they propagate. This will allow for spatially resolved characterization of the elastic properties of non-isotropic materials.
NASA Astrophysics Data System (ADS)
Okulov, A. Yu.
2010-10-01
The interaction of the two counter-propagating ultrashort laser pulses with singular wavefronts in the thin slice of the underdense plasma is considered. It is shown that ion-acoustic wave is excited via Brillouin three-wave resonance by corkscrew interference pattern of paraxial singular laser beams. The orbital angular momentum carried by light is transferred to plasma ion-acoustic vortex. The rotation of the density perturbations of electron fluid is the cause of helical current which produces the kilogauss axial quasi-static magnetic field. The exact analytical configurations are presented for an ion-acoustic current field and magnetic induction. The range of experimentally accessible parameters is evaluated.
Studies of nonlinear interactions between counter-propagating Alfv'en waves in the LAPD
NASA Astrophysics Data System (ADS)
Auerbach, D. W.; Perez, J. C.; Carter, T. A.; Boldyrev, S.
2007-11-01
From a weak turbulence point of view, nonlinear interactions between shear Alfv'en waves are fundamental to the energy cascade in low-frequency magnetic turbulence. We report here on an experimental study of counter-propagating Alfv'en wave interactions in the Large Plasma Device (LAPD) at UCLA. Colliding, orthogonally polarized kinetic Alfv'en waves are generated by two antennae, separated by 5m along the guide magnetic field. Magnetic field and langmuir probes record plasma behavior between the antennae. When each antenna is operated separately, linearly polarized Alfv'en waves propagate in opposite directions along the guide field. When two antennae simultaneously excite counter propagating waves, we observe multiple side bands in the frequency domain, whose amplitude scales quadratically with wave amplitude. In the spatial domain we observe non-linear superposition in the 2D structure of the waves and spectral broadening in the perpendicular wave-number spectrum. This indicates the presence of nonlinear interaction of the counter propagating Alfv'en waves, and opens the possiblity to investigate Alfv'enic plasma turbulence in controlled and reproducible laboratory experiments.
Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.
NASA Astrophysics Data System (ADS)
Bozeman, Steven Paul
The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in skin depth with magnetic field and a damping of the effect of B with pressure. The flat coil geometry which launches waves more nearly parallel to B allows enhanced wave penetration at higher pressures than the standard helical coil.
A Problem-Based Approach to Elastic Wave Propagation: The Role of Constraints
ERIC Educational Resources Information Center
Fazio, Claudio; Guastella, Ivan; Tarantino, Giovanni
2009-01-01
A problem-based approach to the teaching of mechanical wave propagation, focused on observation and measurement of wave properties in solids and on modelling of these properties, is presented. In particular, some experimental results, originally aimed at measuring the propagation speed of sound waves in metallic rods, are used in order to deepen…
Wave propagation of spectral energy content in a granular chain
NASA Astrophysics Data System (ADS)
Shrivastava, Rohit Kumar; Luding, Stefan
2017-06-01
A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.
The anomalous amplification of M2 tide in the Taiwan Strait
NASA Astrophysics Data System (ADS)
Jan, Sen; Chern, Ching-Sheng; Wang, Joe; Chao, Shenn-Yu
2004-04-01
The complex tidal wave propagation pattern in the Taiwan Strait invites parochialism. Along the eastern (Taiwan) boundary of the strait, the anomalous amplification of M2 tide in the middle often led to the parochial view that two tidal waves coming from both ends of the strait collide in the middle, creating wave resonance. Along the western (China) boundary, one sees a southward progressive tidal wave and hence no wave collision. To reconcile, we examine a few solutions of a numerical tidal model below. Both realistic bottom bathymetry and idealized bottom topographies are used to identify dominant mechanism leading to the complex tidal wave propagation. Our process of elimination identifies the wave reflection of southward propagating tidal wave by the deep trench in the southern strait as the true cause responsible for the complex wave propagation pattern.
An introduction to wave propagation in pavements and soils : theory and practice
DOT National Transportation Integrated Search
1999-02-01
This paper introduces the physics and analyst of wave propagation in pavement and soils. The study of wave propagation in soils can yield useful results to engineers concerned with resilient characteristics of a particular site, dynamic soils structu...
Wave Coupling in the Atmosphere-Ionosphere System
NASA Astrophysics Data System (ADS)
Forbes, J. M.
2016-12-01
Vertically-propagating solar and lunar tides, Kelvin waves, gravity waves (GW) and planetary waves (PW) constitute the primary mechanism for transmitting lower atmosphere variability to the upper atmosphere and ionosphere. Vertically propagating waves grow exponentially with height into the more rarified atmosphere where they dissipate, deposit net momentum and heat, and induce net constituent transport. Some waves penetrate to the base of the exosphere (ca. 500-600 km). Over the past decade, a mature knowledge of the tidal part of the spectrum has emerged, in an average or climatological sense, up to about 110 km. This knowledge has largely accrued as a result of remote sensing observations made from the TIMED satellite. These observations have also enabled limited studies on day-to-day variability of atmospheric tides, the PW and Kelvin wave spectra up to 110 km, and PW-tide coupling. Complementary ionospheric observations made by GPS receivers, COSMIC, CHAMP, and ROCSAT contain signatures of plasma redistributions induced by these waves, and ionosphere-thermosphere (IT) general circulation models have been developed that provide a corroborating theoretical foundation. Pioneering theoretical and modeling work also demonstrate the importance of the GW part of the spectrum on thermosphere circulation and thermal structure. While significant strides have been made, critical shortcomings in our understanding of atmosphere-IT coupling remain. In particular, we are practically absent any observations of the vertical evolution and dissipation of the wave spectrum between 100 and 200 km, which is also the region where electric fields and currents are generated by dynamo action. Moreover, the day-to-day variability of the wave spectrum and secondary wave generation remain to be quantified in this critical region. In this talk, the above progress and knowledge gaps will be examined in light of imminent and potential future missions.
Measuring the Seismic and Acoustic Time of Flight - Lessons in Earthquakes and Thunder
NASA Astrophysics Data System (ADS)
Leeman, J.; Ammon, C. J.
2016-12-01
When teaching the fundamentals of waves and wave propagation, students must appreciate and understand that different waves travel through different materials at different speeds. We describe a simple experiment to explore acoustic wave propagation through the ground and the air and how to use those observations to locate the source of the waves. The experiment that can be performed with a geophone, a microphone, and an oscilloscope. For this activity, students will strike a metal plate, equipped with a vibration trigger, with a hammer. The blow triggers an oscilloscope to begin recording data in a "single-shot" mode. The two channels of the oscilloscope record the output of the microphone (measuring the energy of sound waves in the air) and the geophone (measuring the seismic wave energy in the ground). Seismic waves reach the geophone earlier than the sound waves since they travel at approximately ten times the speed. Students can measure the travel time on the oscilloscope, or using data downloaded to a computer. With measurements of the travel time and distance to the hammer, students can calculate the velocity of each wave. Then, the hammer can be used at other distances from the sensors and by measuring the difference in arrival time of the two waves, students can estimate the distance to the source which they check by direct measurement. This exercise can be directly connected to common observations such as seeing lighting before hearing thunder. The activity also connects directly to concepts related to earthquake location. We describe pedagogical materials, including experiment instructions, videos and data for those who do not have access to the equipment, and simple exercise suggestions for classroom activities.
Projecting non-diffracting waves with intermediate-plane holography.
Mondal, Argha; Yevick, Aaron; Blackburn, Lauren C; Kanellakopoulos, Nikitas; Grier, David G
2018-02-19
We introduce intermediate-plane holography, which substantially improves the ability of holographic trapping systems to project propagation-invariant modes of light using phase-only diffractive optical elements. Translating the mode-forming hologram to an intermediate plane in the optical train can reduce the need to encode amplitude variations in the field, and therefore complements well-established techniques for encoding complex-valued transfer functions into phase-only holograms. Compared to standard holographic trapping implementations, intermediate-plane holograms greatly improve diffraction efficiency and mode purity of propagation-invariant modes, and so increase their useful non-diffracting range. We demonstrate this technique through experimental realizations of accelerating modes and long-range tractor beams.
Shock induced Richtmyer-Meshkov instability in the presence of a wall boundary layer
NASA Astrophysics Data System (ADS)
Jourdan, G.; Billiotte, M.; Houas, L.
1996-06-01
An experimental investigation on gaseous mixing zones originated from the Richtmyer-Meshkov instability has been undertaken in a square cross section shock tube. Mass concentration fields, of one of the two mixing constituents, have been determined within the mixing zone when the shock wave passes from the heavy gas to the light one, from one gas to an other of close density, and from the light gas to the heavy one. Results have been obtained before and after the coming back of the reflected shock wave. The diagnostic method is based on the infrared absorption of one of the two constituents of the mixing zone. It is shown that the mixing zone is strongly deformed by the wall boundary layer. The consequence is the presence of strong gradients of concentration in the direction perpendicular to the shock wave propagation. Finally, it is pointed out that the mixing goes more homogeneous when the Atwood number tends to zero.
New Experimental Capabilities and Theoretical Insights of High Pressure Compression Waves
NASA Astrophysics Data System (ADS)
Orlikowski, Daniel; Nguyen, Jeffrey H.; Patterson, J. Reed; Minich, Roger; Martin, L. Peter; Holmes, Neil C.
2007-12-01
Currently there are three platforms that offer quasi-isentropic compression or ramp-wave compression (RWC): light-gas gun, magnetic flux (Z-pinch), and laser. We focus here on the light-gas gun technique and on some current theoretical insights from experimental data. An impedance gradient through the length of the impactor provides the pressure pulse upon impact to the subject material. Applications and results are given concerning high-pressure strength and the liquid-to-solid, phase transition of water giving its first associated phase fraction history. We also introduce the Korteweg-deVries-Burgers equation as a means to understand the evolution of these RWC waves as they propagate through the thickness of the subject material. This model equation has the necessary competition between non-linear, dispersion, and dissipation processes, which is shown through observed structures that are manifested in the experimental particle velocity histories. Such methodology points towards a possibility of quantifying dissipation, through which RWC experiments may be analyzed.
NASA Astrophysics Data System (ADS)
Li, Jingru; Li, Sheng
2018-02-01
Low-frequency transverse wave propagation plays a significant role in the out-of-plane vibration control. To efficiently attenuate the propagation of transverse waves at low-frequency range, this letter proposed a new type phononic beam by attaching inertial amplification mechanisms on it. The wave propagation of the beam with enhanced effective inertia is analyzed using the transfer matrix method. It is demonstrated that the low-frequency gap within inertial amplification effects can possess much wider bandwidth than using the local resonance method, thus is more suitable for designing applications to suppress transverse wave propagation.
Study on Pressure Wave Propagation in a Liquid Containing Spherical Bubbles in a Rectangular Duct
NASA Astrophysics Data System (ADS)
Kawahara, Junya; Watanabe, Masao; Kobayashi, Kazumichi
2015-12-01
Pressure wave propagation in a liquid containing several bubbles is numerically investigated. We simulate liner plane wave propagation in a liquid containing 10 spherical bubbles in a rectangular duct with the equation of motion for N spherical bubbles. The sound pressures of the reflected waves from the rigid walls are calculated by using the method of images. The result shows that the phase velocity of the pressure wave propagating in the liquid containing 10 spherical bubbles in the duct agrees well with the low-frequency speed of sound in a homogeneous bubbly liquid.
Mixing induced by a propagating normal mode in long term experiments
NASA Astrophysics Data System (ADS)
Dossmann, Yvan; Pollet, Florence; Odier, Philippe; Dauxois, Thierry
2017-04-01
The energy pathways from propagating internal waves to the scales of irreversible mixing in the ocean are numerous. The triadic resonant instability (TRI) is an intrinsic destabilization process that can lead to mixing away from topographies. It consists in the destabilization of a primary internal wave generation leading to the radiation of two secondary waves of lower frequencies and different wave vectors. In the process, internal wave energy is carried down to smaller scales. A previous study focused on the assessment of instantaneous turbulent fluxes fields associated with the TRI process in laboratory experiments [1]. The present study investigates the integrated impact of mixing processes induced by a propagative normal mode over long term experiments using a similar setup. Configurations for which the TRI process is either favored or inhibited are tackled. Optical measurements using the light attenuation technique allow to follow the internal waves dynamics and the evolution of the density profile between two runs of one hour typical duration. The horizontally averaged turbulent diffusivity Kt(z) and the mixing efficiency Γ are assessed. One finds values up to Kt = 10-6 m2/s and Γ = 11 %, with slightly larger values in the presence of TRI. The maximum value for Kt is measured at the position(s) of the maximum shear normal mode shear for both normal modes 1 and 2. The development of staircases in the density profile is observed after several hours of forcing. This mechanism can be explained by Phillips' argument by which sharp interfaces can form due to vertical variations of the buoyancy flux. The staircases are responsible for large variations in the vertical distribution of turbulent diffusivity. These results could help to refine parameterizations of the impact of low order normal modes in ocean mixing. Reference : [1] Dossmann et al. 2016, Mixing by internal waves quantified using combined PIV/PLIF technique, Experiments in Fluids, 57, 132.
NASA Astrophysics Data System (ADS)
Liu, Xu; Chen, Lunjin; Yang, Lixia; Xia, Zhiyang; Malaspina, David M.
2018-01-01
The effect of the plasmapause on equatorially radially propagating fast magnetosonic (MS) waves in the Earth's dipole magnetic field is studied by using finite difference time domain method. We run 1-D simulation for three different density profiles: (1) no plasmapause, (2) with a plasmapause, and (3) with a plasmapause accompanied with fine-scale density irregularity. We find that (1) without plasmapause the radially inward propagating MS wave can reach ionosphere and continuously propagate to lower altitude if no damping mechanism is considered. The wave properties follow the cold plasma dispersion relation locally along its trajectory. (2) For simulation with a plasmapause with a scale length of 0.006 RE compared to wavelength, only a small fraction of the MS wave power is reflected by the plasmapause. WKB approximation is generally valid for such plasmapause. (3) The multiple fine-scale density irregularities near the outer edge of plasmapause can effectively block the MS wave propagation, resulting in a terminating boundary for MS waves near the plasmapause.
Plasma control by modification of helicon wave propagation in low magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafleur, T.; Charles, C.; Boswell, R. W.
2010-07-15
By making use of nonuniform magnetic fields, it is shown experimentally that control of helicon wave propagation can be achieved in a low pressure (0.08 Pa) expanding plasma. The m=1 helicon waves are formed during a direct capacitive to wave mode transition that occurs in a low diverging magnetic field (B{sub 0}<3 mT). In this initial configuration, waves are prevented from reaching the downstream region, but slight modifications to the magnetic field allows the axial distance over which waves can propagate to be controlled. By changing the effective propagation distance in this way, significant modification of the density and plasmamore » potential profiles can be achieved, showing that the rf power deposition can be spatially controlled as well. Critical to the modification of the wave propagation behavior is the magnetic field strength (and geometry) near the exit of the plasma source region, which gives electron cyclotron frequencies close to the wave frequency of 13.56 MHz.« less
NASA Astrophysics Data System (ADS)
Ofman, Leon; Liu, Wei
2018-06-01
Since their discovery by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) in the extreme ultraviolet, rapid (phase speeds of ∼1000 km s‑1), quasi-periodic, fast-mode propagating (QFP) wave trains have been observed accompanying many solar flares. They typically propagate in funnel-like structures associated with the expanding magnetic field topology of the active regions (ARs). The waves provide information on the associated flare pulsations and the magnetic structure through coronal seismology (CS). The reported waves usually originate from a single localized source associated with the flare. Here we report the first detection of counter-propagating QFPs associated with two neighboring flares on 2013 May 22, apparently connected by large-scale, trans-equatorial coronal loops. We present the first results of a 3D MHD model of counter-propagating QFPs in an idealized bipolar AR. We investigate the excitation, propagation, nonlinearity, and interaction of the counter-propagating waves for a range of key model parameters, such as the properties of the sources and the background magnetic structure. In addition to QFPs, we also find evidence of trapped fast- (kink) and slow-mode waves associated with the event. We apply CS to determine the magnetic field strength in an oscillating loop during the event. Our model results are in qualitative agreement with the AIA-observed counter-propagating waves and used to identify the various MHD wave modes associated with the observed event, providing insights into their linear and nonlinear interactions. Our observations provide the first direct evidence of counter-propagating fast magnetosonic waves that can potentially lead to turbulent cascade and carry significant energy flux for coronal heating in low-corona magnetic structures.
NASA Astrophysics Data System (ADS)
Kam, Hosik; Jee, Geonhwa; Kim, Yong; Ham, Young-bae; Song, In-Sun
2017-03-01
We have investigated the characteristics of mesospheric short period (<1 h) gravity waves which were observed with all-sky images of OH Meinel band and OI 557 nm airglows over King Sejong Station (KSS) (62.22°S, 58.78°W) during a period of 2008-2015. By applying 2-dimensional FFT to time differenced images, we derived horizontal wavelengths, phase speeds, and propagating directions (188 and 173 quasi-monochromatic waves from OH and OI airglow images, respectively). The majority of the observed waves propagated predominantly westward, implying that eastward waves were filtered out by strong eastward stratospheric winds. In order to obtain the intrinsic properties of the observed waves, we utilized winds simultaneously measured by KSS Meteor Radar and temperatures from Aura Microwave Limb Sounder (MLS). More than half the waves propagated horizontally, as waves were in Doppler duct or evanescent in the vertical direction. This might be due to strong eastward background wind field in the mesosphere over KSS. For freely propagating waves, the vertical wavelengths were in the interquartile range of 9-33 km with a median value of 15 km. The vertical wavelengths are shorter than those observed at Halley station (76°S, 27°W) where the majority of the observed waves were freely propagating. The difference in the wave propagating characteristics between KSS and Halley station suggests that gravity waves may affect mesospheric dynamics in this part of the Antarctic Peninsula more strongly than over the Antarctic continent. Furthermore, strong wind shear over KSS played an important role in changing the vertical wavenumbers as the waves propagated upward between two airglow layers (87 and 96 km).
General two-species interacting Lotka-Volterra system: Population dynamics and wave propagation
NASA Astrophysics Data System (ADS)
Zhu, Haoqi; Wang, Mao-Xiang; Lai, Pik-Yin
2018-05-01
The population dynamics of two interacting species modeled by the Lotka-Volterra (LV) model with general parameters that can promote or suppress the other species is studied. It is found that the properties of the two species' isoclines determine the interaction of species, leading to six regimes in the phase diagram of interspecies interaction; i.e., there are six different interspecific relationships described by the LV model. Four regimes allow for nontrivial species coexistence, among which it is found that three of them are stable, namely, weak competition, mutualism, and predator-prey scenarios can lead to win-win coexistence situations. The Lyapunov function for general nontrivial two-species coexistence is also constructed. Furthermore, in the presence of spatial diffusion of the species, the dynamics can lead to steady wavefront propagation and can alter the population map. Propagating wavefront solutions in one dimension are investigated analytically and by numerical solutions. The steady wavefront speeds are obtained analytically via nonlinear dynamics analysis and verified by numerical solutions. In addition to the inter- and intraspecific interaction parameters, the intrinsic speed parameters of each species play a decisive role in species populations and wave properties. In some regimes, both species can copropagate with the same wave speeds in a finite range of parameters. Our results are further discussed in the light of possible biological relevance and ecological implications.
Kardaś, Tomasz M; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr
2017-02-22
Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.
Study of coherence effects in a four-level Ξ‑Λ type system
NASA Astrophysics Data System (ADS)
Yadav, Kavita; Wasan, Ajay
2018-05-01
We theoretically study the two- and three-photon coherence in a Ξ‑Λ type four-level system for stationary as well moving atoms at the room temperature using density matrix formalism. We discuss the role of dressed states to elucidate the electromagnetically induced transparency and electromagnetically induced absorption phenomena. The presence of the third field induces absorption at the line centre. A negative dispersion slope owing to the enhanced absorption results in super-luminal light propagation and the group index variation with the coupling field is switched from sub- to super-luminal. Group index with probe detuning shows super-luminal light propagation behaviour at the dressed state positions. The three optical fields trigger four-wave mixing as a result of the third order nonlinearity. The transient evolution is also discussed for optimum strengths of the coupling and drive fields to realize the optical switching in the system.
NASA Astrophysics Data System (ADS)
Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr
2017-02-01
Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.
Steepened magnetosonic waves in the high beta plasma surrounding Comet Giacobini-Zinner
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Smith, E. J.; Thorne, R. M.; Gosling, J. T.; Matsumoto, H.
1986-01-01
Studies of intense hydromagnetic waves at Giacobini-Zinner are extended to investigate the mode and direction of wave propagation. Simultaneous high-resolution measurements of electron density fluctuations demonstrate that long period waves propagate in the magnetosonic mode. Principal axis analyses of the long period waves and accompanying partial rotations show that the sum of the wave phase rotations is 360 deg, indicating that both are parts of the same wave oscillation. The time sequence of the steepened waveforms observed by ICE shows that the waves must propagate towards the Sun with Cph less than Vsw. Observations are consistent with wave generation by resonant ion ring or ion beam instability which predicts right-hand polarized waves propagating in the ion beam (solar) direction. The large amplitudes and small scale sizes of the cometary waves suggest that rapid pitch-angle scattering and energy transfer with energetic ions should occur. Since the waves are highly compressive, first-order Fermi acceleration is forecast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berginc, G
2013-11-30
We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell – Garnett formula at the low-frequency limit, and the Keller formula; the latter hasmore » been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength. (coherent light scattering)« less
NASA Astrophysics Data System (ADS)
Kim, Sungwon; Uprety, Bibhisha; Mathews, V. John; Adams, Daniel O.
2015-03-01
Structural Health Monitoring (SHM) based on Acoustic Emission (AE) is dependent on both the sensors to detect an impact event as well as an algorithm to determine the impact location. The propagation of Lamb waves produced by an impact event in thin composite structures is affected by several unique aspects including material anisotropy, ply orientations, and geometric discontinuities within the structure. The development of accurate numerical models of Lamb wave propagation has important benefits towards the development of AE-based SHM systems for impact location estimation. Currently, many impact location algorithms utilize the time of arrival or velocities of Lamb waves. Therefore the numerical prediction of characteristic wave velocities is of great interest. Additionally, the propagation of the initial symmetric (S0) and asymmetric (A0) wave modes is important, as these wave modes are used for time of arrival estimation. In this investigation, finite element analyses were performed to investigate aspects of Lamb wave propagation in composite plates with active signal excitation. A comparative evaluation of two three-dimensional modeling approaches was performed, with emphasis placed on the propagation and velocity of both the S0 and A0 wave modes. Results from numerical simulations are compared to experimental results obtained from active AE testing. Of particular interest is the directional dependence of Lamb waves in quasi-isotropic carbon/epoxy composite plates. Numerical and experimental results suggest that although a quasi-isotropic composite plate may have the same effective elastic modulus in all in-plane directions, the Lamb wave velocity may have some directional dependence. Further numerical analyses were performed to investigate Lamb wave propagation associated with circular cutouts in composite plates.
Focused terahertz waves generated by a phase velocity gradient in a parallel-plate waveguide.
McKinney, Robert W; Monnai, Yasuaki; Mendis, Rajind; Mittleman, Daniel
2015-10-19
We demonstrate the focusing of a free-space THz beam emerging from a leaky parallel-plate waveguide (PPWG). Focusing is accomplished by grading the launch angle of the leaky wave using a PPWG with gradient plate separation. Inside the PPWG, the phase velocity of the guided TE1 mode exceeds the vacuum light speed, allowing the wave to leak into free space from a slit cut along the top plate. Since the leaky wave angle changes as the plate separation decreases, the beam divergence can be controlled by grading the plate separation along the propagation axis. We experimentally demonstrate focusing of the leaky wave at a selected location at frequencies of 100 GHz and 170 GHz, and compare our measurements with numerical simulations. The proposed concept can be valuable for implementing a flat and wide-aperture beam-former for THz communications systems.
Electromagnetic Ion Cyclotron Wavefields in a Realistic Dipole Field
NASA Astrophysics Data System (ADS)
Denton, R. E.
2018-02-01
The latitudinal distribution and properties of electromagnetic ion cyclotron (EMIC) waves determine the total effect of those waves on relativistic electrons. Here we describe the latitudinal variation of EMIC waves simulated self-consistently in a dipole magnetic field for a plasmasphere or plume-like plasma at geostationary orbit with cold H+, He+, and O+ and hot protons with temperature anisotropy. The waves grow as they propagate away from the magnetic equator to higher latitude, while the wave vector turns outward radially and the polarization becomes linear. We calculate the detailed wave spectrum in four latitudinal ranges varying from magnetic latitude (MLAT) close to 0° (magnetic equator) up to 21°. The strongest waves are propagating away from the magnetic equator, but some wave power propagating toward the magnetic equator is observed due to local generation (especially close to the magnetic equator) or reflection. The He band waves, which are generated relatively high up on their dispersion surface, are able to propagate all the way to MLAT = 21°, but the H band waves experience frequency filtering, with no equatorial waves propagating to MLAT = 21° and only the higher-frequency waves propagating to MLAT = 14°. The result is that the wave power averaged k∥, which determines the relativistic electron minimum resonance energy, scales like the inverse of the local magnetic field for the He mode, whereas it is almost constant for the H mode. While the perpendicular wave vector turns outward, it broadens. These wavefields should be useful for simulations of radiation belt particle dynamics.
The effect of convection and shear on the damping and propagation of pressure waves
NASA Astrophysics Data System (ADS)
Kiel, Barry Vincent
Combustion instability is the positive feedback between heat release and pressure in a combustion system. Combustion instability occurs in the both air breathing and rocket propulsion devices, frequently resulting in high amplitude spinning waves. If unchecked, the resultant pressure fluctuations can cause significant damage. Models for the prediction of combustion instability typically include models for the heat release, the wave propagation and damping. Many wave propagation models for propulsion systems assume negligible flow, resulting in the wave equation. In this research the effect of flow on wave propagation was studied both numerically and experimentally. Two experiential rigs were constructed, one with axial flow to study the longitudinal waves, the other with swirling flow to study circumferential waves. The rigs were excited with speakers and the resultant pressure was measured simultaneously at many locations. Models of the rig were also developed. Equations for wave propagation were derived from the Euler Equations. The resultant resembled the wave equation with three additional terms, two for the effect of the convection and a one for the effect of shear of the mean flow on wave propagation. From the experimental and numerical data several conclusions were made. First, convection and shear both act as damping on the wave propagation, reducing the magnitude of the Frequency Response Function and the resonant frequency of the modes. Second, the energy extracted from the mean flow as a result of turbulent shear for a given condition is frequency dependent, decreasing with increasing frequency. The damping of the modes, measured for the same shear flow, also decreased with frequency. Finally, the two convective terms cause the anti-nodes of the modes to no longer be stationary. For both the longitudinal and circumferential waves, the anti-nodes move through the domain even for mean flow Mach numbers less than 0.10. It was concluded that convection causes the spinning waves documented in inlets and exhausts of gas turbine engines, rocket combustion chambers, and afterburner chambers. As a result, the effects of shear must be included when modeling wave propagation, even for mean flows less than < Mach 0.10.
An omnidirectional retroreflector based on the transmutation of dielectric singularities.
Ma, Yun Gui; Ong, C K; Tyc, Tomás; Leonhardt, Ulf
2009-08-01
Transformation optics is a concept used in some metamaterials to guide light on a predetermined path. In this approach, the materials implement coordinate transformations on electromagnetic waves to create the illusion that the waves are propagating through a virtual space. Transforming space by appropriately designed materials makes devices possible that have been deemed impossible. In particular, transformation optics has led to the demonstration of invisibility cloaking for microwaves, surface plasmons and infrared light. Here, on the basis of transformation optics, we implement a microwave device that would normally require a dielectric singularity, an infinity in the refractive index. To fabricate such a device, we transmute a dielectric singularity in virtual space into a mere topological defect in a real metamaterial. In particular, we demonstrate an omnidirectional retroreflector, a device for faithfully reflecting images and for creating high visibility from all directions. Our method is robust, potentially broadband and could also be applied to visible light using similar techniques.
Kim, Seyoon; Jang, Min Seok; Brar, Victor W.; ...
2016-08-08
In this paper, subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunneling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulationsmore » predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm –1, corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures.« less
Electromagnetic waves propagating in the string axiverse
NASA Astrophysics Data System (ADS)
Yoshida, Daiske; Soda, Jiro
2018-04-01
It is widely believed that axions are ubiquitous in string theory and could be dark matter. The peculiar features of axion dark matter are coherent oscillations and a coupling to the electromagnetic field through the Chern-Simons term. In this letter, we study the consequences of these two features of axions with mass in the range 10^{-13} eV to 103 eV. First, we study the parametric resonance of electromagnetic waves induced by the coherent oscillation of the axion. Since the resonance frequency is determined by the mass of the axion dark matter, if we detect this signal, we can get information on the mass of the axion dark matter. Second, we study the velocity of light in the background of the axion dark matter. In the presence of the Chern-Simons term, the dispersion relation is modified and the speed of light will oscillate in time. It turns out that the change in the speed of light would be difficult to observe. We argue that future radio wave observations of the resonance can give rise to a stronger constraint on the coupling constant and/or the density of the axion dark matter.
Measuring Gravitation Using Polarization Spectroscopy
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Yu, Nan; Maleki, Lute
2004-01-01
A proposed method of measuring gravitational acceleration would involve the application of polarization spectroscopy to an ultracold, vertically moving cloud of atoms (an atomic fountain). A related proposed method involving measurements of absorption of light pulses like those used in conventional atomic interferometry would yield an estimate of the number of atoms participating in the interferometric interaction. The basis of the first-mentioned proposed method is that the rotation of polarization of light is affected by the acceleration of atoms along the path of propagation of the light. The rotation of polarization is associated with a phase shift: When an atom moving in a laboratory reference interacts with an electromagnetic wave, the energy levels of the atom are Doppler-shifted, relative to where they would be if the atom were stationary. The Doppler shift gives rise to changes in the detuning of the light from the corresponding atomic transitions. This detuning, in turn, causes the electromagnetic wave to undergo a phase shift that can be measured by conventional means. One would infer the gravitational acceleration and/or the gradient of the gravitational acceleration from the phase measurements.
Generation, propagation and run-up of tsunamis due to the Chicxulub impact event
NASA Astrophysics Data System (ADS)
Weisz, R.; Wuennenmann, K.; Bahlburg, H.
2003-04-01
The Chicxulub impact event can be investigated in (1) local, (2) regional and in (3) global scales. Our investigations focus on the regional scale, especially on the influence of tsunami waves on the coast around the Gulf of Mexico caused by the impact. During an impact two types of tsunamis are generated. The first wave is known as the "rim wave" and is generated in front of the ejecta curtain. The second one is linked to the late modification stage of the impact and results from the collapsing cavity of water. We designate this wave as "collapse wave". The "rim wave" and "collapse wave" are able to propagate over long distances, without a significant loss of wave amplitude. Corresponding to the amplitudes, the waves have a potentially large influence on the coastal areas. Run-up distance and run-up height can be used as parameters for describing this influence. We are utilizing a multimaterial hydrocode (SALE) to simulate the generation of tsunami waves. The propagation of the waves is based on the non-linear shallow water theory, because tsunami waves are defined to be long waves. The position of the coast line varies according to the tsunami run-up and is implemented with open boundary conditions. We show with our investigations (1) the generation of tsunami waves due to shallow water impacts, (2) wave damping during propagation, and (3) the influence of the "rim wave" and the "collapse wave" on the coastal areas. Here, we present our first results from numerical modeling of tsunami waves owing to a Chicxulub sized impactor. The characteristics of the “rim wave” depend on the size of the bolide and the water depth. However, the amplitude and velocity of the “collapse wave” is only determined by the water depth in the impact area. The numerical modeling of the tsunami propagation and run-up is calculated along a section from the impact point towards to the west and gives the moderate damping of both waves and the run-up on the coastal area. As a first approximation, the bathymetric data, used in the wave propagation and run-up, correspond to a linearized bathymetry of the Recent Gulf of Mexico. The linearized bathymetry allows to study the influence of the bathymetry on wave propagation and run-up. Additionally, we give preliminary results of the implementation of the two-dimensional propagation and run-up model for arbitrary bathymetries. The two-dimensional wave propagation model will enable us to more realistically asses the influence of the impact-related tsunamis on the coasts around the Gulf of Mexico due to the Chicxulub impact event.
NASA Astrophysics Data System (ADS)
Wu, Z.; Zheng, Y.; Wang, K. W.
2018-02-01
We present an approach to achieve adaptable band structures and nonreciprocal wave propagation by exploring and exploiting the concept of metastable modular metastructures. Through studying the dynamics of wave propagation in a chain composed of finite metastable modules, we provide experimental and analytical results on nonreciprocal wave propagation and unveil the underlying mechanisms that facilitate such unidirectional energy transmission. In addition, we demonstrate that via transitioning among the numerous metastable states, the proposed metastructure is endowed with a large number of bandgap reconfiguration possibilities. As a result, we illustrate that unprecedented adaptable nonreciprocal wave propagation can be realized using the metastable modular metastructure. Overall, this research elucidates the rich dynamics attainable through the combinations of periodicity, nonlinearity, spatial asymmetry, and metastability and creates a class of adaptive structural and material systems capable of realizing tunable bandgaps and nonreciprocal wave transmissions.
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Rolland, Jannick P.; Grygotis, Emma; Wayson, Sarah; Helguera, Maria; Dalecki, Diane; Parker, Kevin J.
2018-02-01
Determining the mechanical properties of tissue such as elasticity and viscosity is fundamental for better understanding and assessment of pathological and physiological processes. Dynamic optical coherence elastography uses shear/surface wave propagation to estimate frequency-dependent wave speed and Young's modulus. However, for dispersive tissues, the displacement pulse is highly damped and distorted during propagation, diminishing the effectiveness of peak tracking approaches. The majority of methods used to determine mechanical properties assume a rheological model of tissue for the calculation of viscoelastic parameters. Further, plane wave propagation is sometimes assumed which contributes to estimation errors. To overcome these limitations, we invert a general wave propagation model which incorporates (1) the initial force shape of the excitation pulse in the space-time field, (2) wave speed dispersion, (3) wave attenuation caused by the material properties of the sample, (4) wave spreading caused by the outward cylindrical propagation of the wavefronts, and (5) the rheological-independent estimation of the dispersive medium. Experiments were conducted in elastic and viscous tissue-mimicking phantoms by producing a Gaussian push using acoustic radiation force excitation, and measuring the wave propagation using a swept-source frequency domain optical coherence tomography system. Results confirm the effectiveness of the inversion method in estimating viscoelasticity in both the viscous and elastic phantoms when compared to mechanical measurements. Finally, the viscoelastic characterization of collagen hydrogels was conducted. Preliminary results indicate a relationship between collagen concentration and viscoelastic parameters which is important for tissue engineering applications.
Compact Packaging of Photonic Millimeter-Wave Receiver
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Pouch, John; Miranda, Felix; Levi, Anthony F.
2007-01-01
A carrier structure made from a single silicon substrate is the basis of a compact, lightweight, relatively inexpensive package that holds the main optical/electronic coupling components of a photonic millimeter-wave receiver based on a lithium niobate resonator disk. The design of the package is simple and provides for precise relative placement of optical components, eliminating the need for complex, bulky positioning mechanisms like those commonly used to align optical components to optimize focus and coupling. Although a prototype of the package was fabricated as a discrete unit, the design is amenable to integration of the package into a larger photonic and/or electronic receiver system. The components (see figure) include a lithium niobate optical resonator disk of 5-mm diameter and .200- m thickness, positioned adjacent to a millimeter- wave resonator electrode. Other components include input and output coupling prisms and input and output optical fibers tipped with ball lenses for focusing and collimation, respectively. Laser light is introduced via the input optical fiber and focused into the input coupling prism. The input coupling prism is positioned near (but not in contact with) the resonator disk so that by means of evanescent-wave coupling, the input laser light in the prism gives rise to laser light propagating circumferentially in guided modes in the resonator disk. Similarly, a portion of the circumferentially propagating optical power is extracted from the disk by evanescent-wave coupling from the disk to the output coupling prism, from whence the light passes through the collimating ball lens into the output optical fiber. The lens-tipped optical fibers must be positioned at a specified focal distance from the prisms. The optical fibers and the prisms must be correctly positioned relative to the resonator disk and must be oriented to obtain the angle of incidence (55 in the prototype) required for evanescent-wave coupling of light into and out of the desired guided modes in the resonator disk. To satisfy all these requirements, precise alignment features are formed in the silicon substrate by use of a conventional wet-etching process. These features include a 5-mm-diameter, 50- m-deep cavity that holds the disk; two trapezoidal-cross-section recesses for the prisms; and two grooves that hold the optical fibers at the correct positions and angles relative to the prisms and disk. The fiber grooves contain abrupt tapers, near the prisms, that serve as hard stops for positioning the lenses at the focal distance from the prisms. There are also two grooves for prismadjusting rods. The design provides a little slack in the prism recesses for adjusting the positions of the prisms by means of these rods to optimize the optical coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Light, Max Eugene
This report outlines the theory underlying electromagnetic (EM) wave propagation in an unmagnetized, inhomogeneous plasma. The inhomogeneity is given by a spatially nonuniform plasma electron density n e(r), which will modify the wave propagation in the direction of the gradient rn e(r).
Invertible propagator for plane wave illumination of forward-scattering structures.
Samelsohn, Gregory
2017-05-10
Propagation of directed waves in forward-scattering media is considered. It is assumed that the evolution of the wave field is governed by the standard parabolic wave equation. An efficient one-step momentum-space propagator, suitable for a tilted plane wave illumination of extended objects, is derived. It is expressed in terms of a propagation operator that transforms (the complex exponential of) a linogram of the illuminated object into a set of its diffraction patterns. The invertibility of the propagator is demonstrated, which permits a multiple-shot scatter correction to be performed, and makes the solution especially attractive for either projective or tomographic imaging. As an example, high-resolution tomograms are obtained in numerical simulations implemented for a synthetic phantom, with both refractive and absorptive inclusions.
Optimizing a spectral element for modeling PZT-induced Lamb wave propagation in thin plates
NASA Astrophysics Data System (ADS)
Ha, Sungwon; Chang, Fu-Kuo
2010-01-01
Use of surface-mounted piezoelectric actuators to generate acoustic ultrasound has been demonstrated to be a key component of built-in nondestructive detection evaluation (NDE) techniques, which can automatically inspect and interrogate damage in hard-to-access areas in real time without disassembly of the structural parts. However, piezoelectric actuators create complex waves, which propagate through the structure. Having the capability to model piezoelectric actuator-induced wave propagation and understanding its physics are essential to developing advanced algorithms for the built-in NDE techniques. Therefore, the objective of this investigation was to develop an efficient hybrid spectral element for modeling piezoelectric actuator-induced high-frequency wave propagation in thin plates. With the hybrid element we take advantage of both a high-order spectral element in the in-plane direction and a linear finite element in the thickness direction in order to efficiently analyze Lamb wave propagation in thin plates. The hybrid spectral element out-performs other elements in terms of leading to significantly faster computation and smaller memory requirements. Use of the hybrid spectral element is proven to be an efficient technique for modeling PZT-induced (PZT: lead zirconate titanate) wave propagation in thin plates. The element enables fundamental understanding of PZT-induced wave propagation.
NASA Astrophysics Data System (ADS)
Hirigoyen, Flavien; Crocherie, Axel; Vaillant, Jérôme M.; Cazaux, Yvon
2008-02-01
This paper presents a new FDTD-based optical simulation model dedicated to describe the optical performances of CMOS image sensors taking into account diffraction effects. Following market trend and industrialization constraints, CMOS image sensors must be easily embedded into even smaller packages, which are now equipped with auto-focus and short-term coming zoom system. Due to miniaturization, the ray-tracing models used to evaluate pixels optical performances are not accurate anymore to describe the light propagation inside the sensor, because of diffraction effects. Thus we adopt a more fundamental description to take into account these diffraction effects: we chose to use Maxwell-Boltzmann based modeling to compute the propagation of light, and to use a software with an FDTD-based (Finite Difference Time Domain) engine to solve this propagation. We present in this article the complete methodology of this modeling: on one hand incoherent plane waves are propagated to approximate a product-use diffuse-like source, on the other hand we use periodic conditions to limit the size of the simulated model and both memory and computation time. After having presented the correlation of the model with measurements we will illustrate its use in the case of the optimization of a 1.75μm pixel.
Plasma and radio waves from Neptune: Source mechanisms and propagation
NASA Astrophysics Data System (ADS)
Wong, H. K.
1994-03-01
This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.
Plasma and radio waves from Neptune: Source mechanisms and propagation
NASA Technical Reports Server (NTRS)
Wong, H. K.
1994-01-01
This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.
Sound and vision: visualization of music with a soap film
NASA Astrophysics Data System (ADS)
Gaulon, C.; Derec, C.; Combriat, T.; Marmottant, P.; Elias, F.
2017-07-01
A vertical soap film, freely suspended at the end of a tube, is vibrated by a sound wave that propagates in the tube. If the sound wave is a piece of music, the soap film ‘comes alive’: colours, due to iridescences in the soap film, swirl, split and merge in time with the music (see the snapshots in figure 1 below). In this article, we analyse the rich physics behind these fascinating dynamical patterns: it combines the acoustic propagation in a tube, the light interferences, and the static and dynamic properties of soap films. The interaction between the acoustic wave and the liquid membrane results in capillary waves on the soap film, as well as non-linear effects leading to a non-oscillatory flow of liquid in the plane of the film, which induces several spectacular effects: generation of vortices, diphasic dynamical patterns inside the film, and swelling of the soap film under certain conditions. Each of these effects is associated with a characteristic time scale, which interacts with the characteristic time of the music play. This article shows the richness of those characteristic times that lead to dynamical patterns. Through its artistic interest, the experiments presented in this article provide a tool for popularizing and demonstrating science in the classroom or to a broader audience.
Relativistic nonlinear plasma waves in a magnetic field
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Pellat, R.
1975-01-01
Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.
All electrical propagating spin wave spectroscopy with broadband wavevector capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciubotaru, F., E-mail: Florin.Ciubotaru@imec.be; KU Leuven, Departement Electrotechniek; Devolder, T.
2016-07-04
We developed an all electrical experiment to perform the broadband phase-resolved spectroscopy of propagating spin waves in micrometer sized thin magnetic stripes. The magnetostatic surface spin waves are excited and detected by scaled down to 125 nm wide inductive antennas, which award ultra broadband wavevector capability. The wavevector selection can be done by applying an excitation frequency above the ferromagnetic resonance. Wavevector demultiplexing is done at the spin wave detector thanks to the rotation of the spin wave phase upon propagation. A simple model accounts for the main features of the apparatus transfer functions. Our approach opens an avenue for themore » all electrical study of wavevector-dependent spin wave properties including dispersion spectra or non-reciprocal propagation.« less
Viscoelastic representation of surface waves in patchy saturated poroelastic media
NASA Astrophysics Data System (ADS)
Zhang, Yu; Xu, Yixian; Xia, Jianghai; Ping, Ping; Zhang, Shuangxi
2014-08-01
Wave-induced flow is observed as the dominated factor for P wave propagation at seismic frequencies. This mechanism has a mesoscopic scale nature. The inhomogeneous unsaturated patches are regarded larger than the pore size, but smaller than the wavelength. Surface wave, e.g., Rayleigh wave, which propagates along the free surface, generated by the interfering of body waves is also affected by the mesoscopic loss mechanisms. Recent studies have reported that the effect of the wave-induced flow in wave propagation shows a relaxation behavior. Viscoelastic equivalent relaxation function associated with the wave mode can describe the kinetic nature of the attenuation. In this paper, the equivalent viscoelastic relaxation functions are extended to take into account the free surface for the Rayleigh surface wave propagation in patchy saturated poroelastic media. Numerical results for the frequency-dependent velocity and attenuation and the time-dependent dynamical responses for the equivalent Rayleigh surface wave propagation along an interface between vacuum and patchy saturated porous media are reported in the low-frequency range (0.1-1,000 Hz). The results show that the dispersion and attenuation and kinetic characteristics of the mesoscopic loss effect for the surface wave can be effectively represented in the equivalent viscoelastic media. The simulation of surface wave propagation within mesoscopic patches requires solving Biot's differential equations in very small grid spaces, involving the conversion of the fast P wave energy diffusion into the Biot slow wave. This procedure requires a very large amount of computer consumption. An efficient equivalent approach for this patchy saturated poroelastic media shows a more convenient way to solve the single phase viscoelastic differential equations.
Using a slightly tapered optical fiber to attract and transport microparticles.
Sheu, Fang-Wen; Wu, Hong-Yu; Chen, Sy-Hann
2010-03-15
We exploit a fiber puller to transform a telecom single-mode optical fiber with a 125 microm diameter into a symmetric and unbroken slightly tapered optical fiber with a 50 microm diameter at the minimum waist. When the laser light is launched into the optical fiber, we can observe that, due to the evanescent wave of the slightly tapered fiber, the nearby polystyrene microparticles with 10 microm diameters will be attracted onto the fiber surface and roll separately in the direction of light propagation. We have also simulated and compared the optical propulsion effects on the microparticles when the laser light is launched into a slightly tapered fiber and a heavily tapered (subwavelength) fiber, respectively.
Photographic laboratory studies of explosions.
NASA Technical Reports Server (NTRS)
Kamel, M. M.; Oppenheim, A. K.
1973-01-01
Description of a series of cinematographic studies of explosions made with a high-speed rotating-mirror streak camera which uses a high-frequency stroboscopic ruby laser as the light source. The results obtained mainly concern explosions initiated by focused laser irradiation from a pulsed neodymium laser in a detonating gas consisting essentially of an equimolar mixture of acetylene and oxygen at an initial pressure of 100 torr at room temperature. Among the most significant observations were observations of a spherical blast wave preceded by a Chapman-Jouguet detonation which is stabilized immediately after initiation, the merging of a spherical flame with a shock front of the blast wave in which the flame is propagating, the division of a spherical detonation front into a shock wave and flame, and the generation of shock waves by a network of spherical flames.
NASA Astrophysics Data System (ADS)
Tsugawa, T.; Nishioka, M.; Matsumura, M.; Shinagawa, H.; Maruyama, T.; Ogawa, T.; Saito, A.; Otsuka, Y.; Nagatsuma, T.; Murata, T.
2012-12-01
Ionospheric disturbances induced by the 2011 Tohoku earthquake and tsunami were studied by the high-resolution GPS total electron content (TEC) observation in Japan and in the world. The initial ionospheric disturbance appeared as sudden depletions by about 6 TEC unit (20%) about seven minutes after the earthquake onset, near the epicenter. From 06:00UT to 06:15UT, circular waves with short propagation distance propagated in the radial direction in the propagation velocity of 3,457, 783, 423 m/s for the first, second, third peak, respectively. Following these waves, concentric waves with long propagation distance appeared to propagate at the velocity of 138-288 m/s. In the vicinity of the epicenter, shortperiod oscillations with period of about 4 minutes were observed after 06:00 UT for 3 hours or more. We focus on the the circular and concentric waves in this paper. The circular or concentric structures indicate that these ionospheric disturbances had a point source. The center of these structures, termed as "ionospheric epicenter", was located around 37.5 deg N of latitude and 144.0 deg E of longitude, 170 km far from the epicenter to the southeast direction, and corresponded to the tsunami source. Comparing to the results of a numerical simulation using non-hydrostatic compressible atmosphere-ionosphere model, the first peak of circular wave would be caused by the acoustic waves generated from the propagating Rayleigh wave. The second and third waves would be caused by atmospheric gravity waves excited in the lower ionosphere due to the acoustic wave propagations from the tsunami source. The fourth and following waves are considered to be caused by the atmospheric gravity waves induced by the wavefronts of traveling tsunami. Long-propagation of these TEC disturbances were studied also using high-resolution GPS-TEC data in North America and Europe. Medium-scale wave structures with wavelengths of several 100 km appeared in the west part of North America at the almost same time as the tsunami arrival. On the other hand, no remarkable wave structure was observed in Europe. We will introduce these observational results and discuss about the generation and propagation mechanisms of the ionospheric disturbances induced by the earthquake and tsunami.
Surface Plasmon Waves on Thin Metal Films.
NASA Astrophysics Data System (ADS)
Craig, Alan Ellsworth
Surface-plasmon polaritons propagating on thin metal films bounded by dielectrics of nearly equal refractive indexes comprise two bound modes. Calculations indicate that, while the modes are degenerate on thick films, both the real and the imaginary components of the propagation constants for the modes split into two branches on successively thinner films. Considering these non-degenerate modes, the mode exhibiting a symmetric (antisymmetric) transverse profile of the longitudinally polarized electric field component, has propagation constant components both of which increase (decrease) with decreasing film thickness. Theoretical propagation constant eigenvalue (PCE) curves have been plotted which delineate this dependence of both propagation constant components on film thickness. By means of a retroreflecting, hemispherical glass coupler in an attenuated total reflection (ATR) configuration, light of wavelength 632.8 nm coupled to the modes of thin silver films deposited on polished glass substrates. Lorentzian lineshape dips in the plots of reflectance vs. angle of incidence indicate the presence of the plasmon modes. The real and imaginary components of the propagation constraints (i.e., the propagation constant and loss coefficient) were calculated from the angular positions and widths of the ATR resonances recorded. Films of several thicknesses were probed. Results which support the theoretically predicted curves were reported.
Ghosh, Somnath
2018-05-10
Coexistence and interplay between mesoscopic light dynamics with singular optics in spatially disordered waveguide lattices are reported. Two CW light beams of a 1.55 μm operating wavelength are launched as inputs to 1D waveguide lattices with controllable weak disorder in a complex refractive index profile. Direct observation of phase singularities in the speckle pattern along the length is numerically demonstrated. Quantitative analysis of the onset of such singular behavior and diffusive wave propagation is analyzed for the first time, to the best of our knowledge.
Fiber Fabry-Perot sensors for detection of partial discharges in power transformers.
Yu, Bing; Kim, Dae Woong; Deng, Jiangdong; Xiao, Hai; Wang, Anbo
2003-06-01
A diaphragm-based interferometric fiberoptic sensor that uses a low-coherence light source was designed and tested for on-line detection of the acoustic waves generated by partial discharges inside high-voltage power transformers. The sensor uses a fused-silica diaphragm and a single-mode optical fiber encapsulated in a fused-silica glass tube to form an extrinsic Fabry-Perot interferometer, which is interrogated by low-coherence light. Test results indicate that these fiber optic acoustic sensors are capable of faithfully detecting acoustic signals propagating inside transformer oil with high sensitivity and wide bandwidth.
Fast modal decomposition for optical fibers using digital holography.
Lyu, Meng; Lin, Zhiquan; Li, Guowei; Situ, Guohai
2017-07-26
Eigenmode decomposition of the light field at the output end of optical fibers can provide fundamental insights into the nature of electromagnetic-wave propagation through the fibers. Here we present a fast and complete modal decomposition technique for step-index optical fibers. The proposed technique employs digital holography to measure the light field at the output end of the multimode optical fiber, and utilizes the modal orthonormal property of the basis modes to calculate the modal coefficients of each mode. Optical experiments were carried out to demonstrate the proposed decomposition technique, showing that this approach is fast, accurate and cost-effective.
NASA Astrophysics Data System (ADS)
Kotov, V. M.; Averin, S. V.; Shkerdin, G. N.
2010-12-01
A method is proposed to measure the scattering angle of optical radiation, the method employing two Bragg diffraction processes in which divergent optical radiation propagates close to the optical axis of a uniaxial crystal, while the acoustic wave — orthogonally to this axis. The method does not require additional angular tuning of the acousto-optic cell. We suggest using a mask to measure the light divergence that is larger than the angle of Bragg scattering. The method can be used to measure the size of the polished glass plate inhomogeneities.
Homeostatic and Circadian Abnormalities in Sleep and Arousal in Gulf War Syndrome
2013-10-01
temperature, melatonin , vigilance 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...analysis of slow wave characteristics, origin and propagation. Circadian rhythm is also assessed, including temperature and salivary melatonin ...to note diurnal changes, as well as morning cortisol rise from natural wake. We also have collected melatonin samples in a low light environment to
Effects of UGTs on the ionosphere
NASA Astrophysics Data System (ADS)
Argo, P. E.; Fitzgerald, T. J.
The processes that propagate local effects of underground nuclear tests from the ground into the upper atmosphere, and produce a detectable signal in the ionosphere are described. Initially, the blast wave from a underground test (UGT) radially expands, until it reaches the surface of the earth. The wave is both reflected and transmitted at this sharp discontinuity in propagation media. Tne reflected wave combines with the incident wave to form an 'Airy surface,' at which very strong ripping forces tear the earth apart. This broken region is called the 'spat zone,' and is launched into ballistic motion. The resultant ground motion launches an acoustical wave into the atmosphere. This acoustic wave, with overpressures of a few tenths of one percent, propagates upwards at the speed of sound. Assuming purely linear propagation, the path of the acoustic energy can be tracked using raytracing models. Most of the wave energy, which is radiated nearly vertically, tends to propagate into the upper atmosphere, while wave energy radiated at angles greater than about 30 degrees to the vertical will be reflected back to earth and is probably what is seen by most infrasonde measurements.
Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Jieshu; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn; Gao, Ruilin
2016-04-15
The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause themore » attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.« less
NASA Astrophysics Data System (ADS)
Hwang, Stephen
Combustion synthesis (CS) is an attractive method for producing advanced materials, including ceramics, intermetallics, and composites. In this process, after initiation by an external heat source, a highly exothermic reaction propagates through the sample in a self-sustained combustion wave. The process offers the possibility of producing materials with novel structures and properties. At conventional magnifications and imaging rates, the combustion wave appears to propagate in a planar, steady manner. However, using higher magnifications (>400X) and imaging rates (1000 frames/sec), fluctuations in the shape and propagation of the combustion front were observed. These variations in local conditions (i.e., the microstructure of the combustion wave) can influence the microstructure and properties of materials produced by combustion synthesis. In this work, the microstructure of wave propagation during combustion synthesis is investigated experimentally and theoretically. Using microscopic high-speed imaging, the spatial and temporal fluctuations of the combustion front shape and propagation were investigated. New image analysis methods were developed to characterize the heterogeneity of the combustion front quantitatively. The initial organization of the reaction medium was found to affect the heterogeneity of the combustion wave. Moreover, at the microscopic level, two different regimes of combustion propagation were observed. In the quasihomogeneous mechanism, the microstructure of the combustion wave resembles what is viewed macroscopically, and steady, planar propagation is observed. In the relay-race mechanism, while planar at the macroscopic level, the combustion front profiles are irregularly shaped, with arc-shaped convexities and concavities at the microscopic level. Also, the reaction front propagates as a series of rapid jumps and hesitations. Based on the combustion wave microstructure, new criteria were developed to determine the boundaries between quasihomogeneous and relay-race mechanisms, as functions of the initial organization of the reaction medium (i.e. particle size and porosity). In conjunction with the experiments, a microheterogeneous cell model was developed that simulates the local propagation of the combustion wave. Accounting for the stochastically organized medium with non-uniform properties, calculated results for the microstructural parameters of the combustion wave, and their dependence on density and reactant particle size, were in good qualitative agreement with experimental data.
NASA Astrophysics Data System (ADS)
Stojadinović, Bojana; Nestorović, Zorica; Djurić, Biljana; Tenne, Tamar; Zikich, Dragoslav; Žikić, Dejan
2017-03-01
The velocity by which a disturbance moves through the medium is the wave velocity. Pulse wave velocity is among the key parameters in hemodynamics. Investigation of wave propagation through the fluid-filled elastic tube has a great importance for the proper biophysical understanding of the nature of blood flow through the cardiovascular system. Here, we present a laboratory model of the cardiovascular system. We have designed an experimental setup which can help medical and nursing students to properly learn and understand basic fluid hemodynamic principles, pulse wave and the phenomenon of wave propagation in blood vessels. Demonstration of wave propagation allowed a real time observation of the formation of compression and expansion waves by students, thus enabling them to better understand the difference between the two waves, and also to measure the pulse wave velocity for different fluid viscosities. The laboratory model of the cardiovascular system could be useful as an active learning methodology and a complementary tool for understanding basic principles of hemodynamics.
Pulse propagation in discrete excitatory networks of integrate-and-fire neurons.
Badel, Laurent; Tonnelier, Arnaud
2004-07-01
We study the propagation of solitary waves in a discrete excitatory network of integrate-and-fire neurons. We show the existence and the stability of a fast wave and a family of slow waves. Fast waves are similar to those already described in continuum networks. Stable slow waves have not been previously reported in purely excitatory networks and their propagation is particular to the discrete nature of the network. The robustness of our results is studied in the presence of noise.
Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayrapetyan, A.G., E-mail: armen@physi.uni-heidelberg.de; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg; Grigoryan, K.K.
2013-06-15
The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period τ is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the soundmore » wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods τ between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.« less
Low-Frequency Waves in Cold Three-Component Plasmas
NASA Astrophysics Data System (ADS)
Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong
2016-09-01
The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS
APPARENT CROSS-FIELD SUPERSLOW PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES IN SOLAR PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, T.; Yokoyama, T.; Goossens, M.
2015-10-20
In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation acrossmore » the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.« less
NASA Astrophysics Data System (ADS)
Ansari, M. H.; Attarzadeh, M. A.; Nouh, M.; Karami, M. Amin
2018-01-01
In this paper, a physical platform is proposed to change the properties of phononic crystals in space and time in order to achieve nonreciprocal wave transmission. The utilization of magnetoelastic materials in elastic phononic systems is studied. Material properties of magnetoelastic materials change significantly with an external magnetic field. This property is used to design systems with a desired wave propagation pattern. The properties of the magnetoelastic medium are changed in a traveling wave pattern, which changes in both space and time. A phononic crystal with such a modulation exhibits one-way wave propagation behavior. An extended transfer matrix method (TMM) is developed to model a system with time varying properties. The stop band and the pass band of a reciprocal and a nonreciprocal bar are found using this method. The TMM is used to find the transfer function of a magnetoelastic bar. The obtained results match those obtained via the theoretical Floquet-Bloch approach and numerical simulations. It is shown that the stop band in the transfer function of a system with temporal varying property for the forward wave propagation is different from the same in the backward wave propagation. The proposed configuration enables the physical realization of a class of smart structures that incorporates nonreciprocal wave propagation.
Time-domain Brillouin scattering assisted by diffraction gratings
NASA Astrophysics Data System (ADS)
Matsuda, Osamu; Pezeril, Thomas; Chaban, Ievgeniia; Fujita, Kentaro; Gusev, Vitalyi
2018-02-01
Absorption of ultrashort laser pulses in a metallic grating deposited on a transparent sample launches coherent compression/dilatation acoustic pulses in directions of different orders of acoustic diffraction. Their propagation is detected by delayed laser pulses, which are also diffracted by the metallic grating, through the measurement of the transient intensity change of the first-order diffracted light. The obtained data contain multiple frequency components, which are interpreted by considering all possible angles for the Brillouin scattering of light achieved through multiplexing of the propagation directions of light and coherent sound by the metallic grating. The emitted acoustic field can be equivalently presented as a superposition of plane inhomogeneous acoustic waves, which constitute an acoustic diffraction grating for the probe light. Thus the obtained results can also be interpreted as a consequence of probe light diffraction by both metallic and acoustic gratings. The realized scheme of time-domain Brillouin scattering with metallic gratings operating in reflection mode provides access to wide range of acoustic frequencies from minimal to maximal possible values in a single experimental optical configuration for the directions of probe light incidence and scattered light detection. This is achieved by monitoring the backward and forward Brillouin scattering processes in parallel. Potential applications include measurements of the acoustic dispersion, simultaneous determination of sound velocity and optical refractive index, and evaluation of samples with a single direction of possible optical access.
Propagation of a fluidization - combustion wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pron, G.P.; Gusachenko, L.K.; Zarko, V.E.
1994-05-01
A fluidization-combustion wave propagating through a fixed and initially cool bed was created by igniting coal at the top surface of the bed. The proposed physical interpretation of the phenomenon is in qualitative agreement with the experimental dependences of the characteristics of the process on determining parameters. A kindling regime with forced wave propagation is suggested.
Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping
2017-05-01
Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.
NASA Astrophysics Data System (ADS)
Tsugawa, Takuya; Otsuka, Yuichi; Saito, Akinori; Ishii, Mamoru; Nishioka, Michi
Ionospheric disturbances following the 2011 Tohoku earthquake and the 2013 Moore tornado were observed by high-resolution GPS total electron content (TEC) observations using dense GPS receiver networks. After the 2011 Tohoku earthquake, concentric waves with short propagation distance propagated in the radial direction in the propagation velocity of 3,457, 783, 423 m/s for the first, second, third peak, respectively. Following these waves, concentric waves with long propagation distance appeared to propagate at the velocity of 138-288 m/s. In the vicinity of the epicenter, sudden TEC depletions and short-period oscillations with a period of approximately 4 minutes were also observed. The center of these ionospheric variations, termed the "ionospheric epicenter", corresponded to the tsunami source. Comparing to the results of a numerical simulation using non-hydrostatic compressible atmosphere-ionosphere model, the first peak of circular wave would be caused by the acoustic waves generated from the propagating Rayleigh wave. The second and third waves would be caused by atmospheric gravity waves excited in the lower ionosphere due to the acoustic wave propagations from the tsunami source. The fourth and following waves are considered to be caused by the atmospheric gravity waves induced by the wavefronts of traveling tsunami. After the EF5 tornado hit Moore, Oklahoma, USA, on 20 May 2013, clear concentric waves and short-period oscillations were observed. These concentric waves were non-dispersive waves with a horizontal wavelength of approximately 120 km and a period of approximately 13 minutes. They were observed for more than seven hours throughout North America. TEC oscillations with a period of approximately 4 minutes were also observed in the south of Moore for more than eight hours. Comparison between the GPS-TEC observations and the infrared cloud images from the GOES satellite indicates that the concentric waves and the short-period oscillations would be caused by supercell-induced atmospheric gravity waves and acoustic resonances, respectively. In this presentation, we will introduce the observational results of these ionospheric disturbances and discuss about the mechanism of concentric waves and short-period oscillations observed in both events.
DeWall, Ryan J.; Varghese, Tomy
2013-01-01
Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation. In this work, we assume both lateral and axial wave propagation and compare wave velocity images to those assuming only lateral shear wave propagation in finite element simulations, tissue-mimicking phantoms, and bovine liver tissue. Our results show that assuming bidirectional wave propagation minimizes artifacts above and below ablated volumes, yielding a more accurate representation of the ablated region on shear wave velocity images. Area overestimation was reduced from 13.4% to 3.6% in a stiff-inclusion tissue-mimicking phantom and from 9.1% to 0.8% in a radio-frequency ablation in bovine liver tissue. More accurate ablation representation during ablation procedures increases the likelihood of complete treatment of the malignant target, decreasing tumor recurrence. PMID:22293748
DeWall, Ryan J; Varghese, Tomy
2012-01-01
Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation. In this work, we assume both lateral and axial wave propagation and compare wave velocity images to those assuming only lateral shear wave propagation in finite element simulations, tissue-mimicking phantoms, and bovine liver tissue. Our results show that assuming bidirectional wave propagation minimizes artifacts above and below ablated volumes, yielding a more accurate representation of the ablated region on shear wave velocity images. Area overestimation was reduced from 13.4% to 3.6% in a stiff-inclusion tissue-mimicking phantom and from 9.1% to 0.8% in a radio-frequency ablation in bovine liver tissue. More accurate ablation representation during ablation procedures increases the likelihood of complete treatment of the malignant target, decreasing tumor recurrence. © 2012 IEEE
Modulational instability of finite-amplitude, circularly polarized Alfven waves
NASA Technical Reports Server (NTRS)
Derby, N. F., Jr.
1978-01-01
The simple theory of the decay instability of Alfven waves is strictly applicable only to a small-amplitude parent wave in a low-beta plasma, but, if the parent wave is circularly polarized, it is possible to analyze the situation without either of these restrictions. Results show that a large-amplitude circularly polarized wave is unstable with respect to decay into three waves, one longitudinal and one transverse wave propagating parallel to the parent wave and one transverse wave propagating antiparallel. The transverse decay products appear at frequencies which are the sum and difference of the frequencies of the parent wave and the longitudinal wave. The decay products are not familiar MHD modes except in the limit of small beta and small amplitude of the parent wave, in which case the decay products are a forward-propagating sound wave and a backward-propagating circularly polarized wave. In this limit the other transverse wave disappears. The effect of finite beta is to reduce the linear growth rate of the instability from the value suggested by the simple theory. Possible applications of these results to the theory of the solar wind are briefly touched upon.
Simulation of laser beam reflection at the sea surface
NASA Astrophysics Data System (ADS)
Schwenger, Frédéric; Repasi, Endre
2011-05-01
A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for both the calculation of images of SWIR (short wave infrared) imaging sensor and for determination of total detected power of reflected laser light for a bistatic configuration of laser source and receiver at different atmospheric conditions. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. The propagation model for water waves is applied for sea surface animation. To predict the view of a camera in the spectral band SWIR the sea surface radiance must be calculated. This is done by considering the emitted sea surface radiance and the reflected sky radiance, calculated by MODTRAN. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled in the SWIR band considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). This BRDF model considers the statistical slope statistics of waves and accounts for slope-shadowing of waves that especially occurs at flat incident angles of the laser beam and near horizontal detection angles of reflected irradiance at rough seas. Simulation results are presented showing the variation of the detected laser power dependent on the geometric configuration of laser, sensor and wind characteristics.
Role of Compressibility on Tsunami Propagation
NASA Astrophysics Data System (ADS)
Abdolali, Ali; Kirby, James T.
2017-12-01
In the present paper, we aim to reduce the discrepancies between tsunami arrival times evaluated from tsunami models and real measurements considering the role of ocean compressibility. We perform qualitative studies to reveal the phase speed reduction rate via a modified version of the Mild Slope Equation for Weakly Compressible fluid (MSEWC) proposed by Sammarco et al. (2013). The model is validated against a 3-D computational model. Physical properties of surface gravity waves are studied and compared with those for waves evaluated from an incompressible flow solver over realistic geometry for 2011 Tohoku-oki event, revealing reduction in phase speed.
Wave Propagation, Scattering and Imaging Using Dual-domain One-way and One-return Propagators
NASA Astrophysics Data System (ADS)
Wu, R.-S.
- Dual-domain one-way propagators implement wave propagation in heterogeneous media in mixed domains (space-wavenumber domains). One-way propagators neglect wave reverberations between heterogeneities but correctly handle the forward multiple-scattering including focusing/defocusing, diffraction, refraction and interference of waves. The algorithm shuttles between space-domain and wavenumber-domain using FFT, and the operations in the two domains are self-adaptive to the complexity of the media. The method makes the best use of the operations in each domain, resulting in efficient and accurate propagators. Due to recent progress, new versions of dual-domain methods overcame some limitations of the classical dual-domain methods (phase-screen or split-step Fourier methods) and can propagate large-angle waves quite accurately in media with strong velocity contrasts. These methods can deliver superior image quality (high resolution/high fidelity) for complex subsurface structures. One-way and one-return (De Wolf approximation) propagators can be also applied to wave-field modeling and simulations for some geophysical problems. In the article, a historical review and theoretical analysis of the Born, Rytov, and De Wolf approximations are given. A review on classical phase-screen or split-step Fourier methods is also given, followed by a summary and analysis of the new dual-domain propagators. The applications of the new propagators to seismic imaging and modeling are reviewed with several examples. For seismic imaging, the advantages and limitations of the traditional Kirchhoff migration and time-space domain finite-difference migration, when applied to 3-D complicated structures, are first analyzed. Then the special features, and applications of the new dual-domain methods are presented. Three versions of GSP (generalized screen propagators), the hybrid pseudo-screen, the wide-angle Padé-screen, and the higher-order generalized screen propagators are discussed. Recent progress also makes it possible to use the dual-domain propagators for modeling elastic reflections for complex structures and long-range propagations of crustal guided waves. Examples of 2-D and 3-D imaging and modeling using GSP methods are given.
Diffusion Driven Combustion Waves in Porous Media
NASA Technical Reports Server (NTRS)
Aldushin, A. P.; Matkowsky, B. J.
2000-01-01
Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases the wave velocity. In addition to the reaction and diffusion layers, the uniformly propagating wave structure includes a layer with a pressure gradient, where the gas motion is induced by the production or consumption of the gas in the reaction as well as by thermal expansion of the gas. The width of this zone determines the scale of the combustion wave in the porous medium.
NASA Astrophysics Data System (ADS)
Ebrahimi, Farzad; Barati, Mohammad Reza
2018-04-01
This article deals with the wave propagation analysis of single/double layered functionally graded (FG) size-dependent nanobeams in elastic medium and subjected to a longitudinal magnetic field employing nonlocal elasticity theory. Material properties of nanobeam change gradually according to the sigmoid function. Applying an analytical solution, the acoustical and optical dispersion relations are explored for various wave number, nonlocality parameter, material composition, elastic foundation constants, and magnetic field intensity. It is found that frequency and phase velocity of waves propagating in S-FGM nanobeam are significantly affected by these parameters. Also, presence of cut-off and escape frequencies in wave propagation analysis of embedded S-FGM nanobeams is investigated.
NASA Astrophysics Data System (ADS)
Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya
2015-03-01
Quantification of the optical properties of the tissues and blood by noninvasive photoacoustic (PA) imaging may provide useful information for screening and early diagnosis of diseases. Linearized 2D image reconstruction algorithm based on PA wave equation and the photon diffusion equation (PDE) can reconstruct the image with computational cost smaller than a method based on 3D radiative transfer equation. However, the reconstructed image is affected by the differences between the actual and assumed light propagations. A quantitative capability of a linearized 2D image reconstruction was investigated and discussed by the numerical simulations and the phantom experiment in this study. The numerical simulations with the 3D Monte Carlo (MC) simulation and the 2D finite element calculation of the PDE were carried out. The phantom experiment was also conducted. In the phantom experiment, the PA pressures were acquired by a probe which had an optical fiber for illumination and the ring shaped P(VDF-TrFE) ultrasound transducer. The measured object was made of Intralipid and Indocyanine green. In the numerical simulations, it was shown that the linearized image reconstruction method recovered the absorption coefficients with alleviating the dependency of the PA amplitude on the depth of the photon absorber. The linearized image reconstruction method worked effectively under the light propagation calculated by 3D MC simulation, although some errors occurred. The phantom experiments validated the result of the numerical simulations.
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginova, Maria M.
2018-02-01
We consider a propagation of laser pulse in a semiconductor under the conditions of an occurrence of optical bistability, which appears due to a nonlinear absorption of the semiconductor. As a result, the domains of high concentration of free charged particles (electrons and ionized donors) occur if an intensity of the incident optical pulse is greater than certain intensity. As it is well-known, that an optical beam must undergo a diffraction on (or reflection from) the domains boundaries. Usually, the beam diffraction along a coordinate of the optical pulse propagation does not take into account by using the slowly varying envelope approximation for the laser pulse interaction with optical bistable element. Therefore, a reflection of the beam from the domains with abrupt boundary does not take into account under computer simulation of the laser pulse propagation. However, the optical beams, reflected from nonhomogeneities caused by the domains of high concentration of free-charged particles, can essentially influence on a formation of switching waves in a semiconductor. We illustrate this statement by computer simulation results provided on the base of nonlinear Schrödinger equation and a set of PDEs, which describe an evolution of the semiconductor characteristics (concentrations of free-charged particles and potential of an electric field strength), and taking into account the longitudinal and transverse diffraction effects.
2002-09-30
Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...OBJECTIVES The electro - optical propagation objectives are: 1) The acquisition and analysis of mid-wave and long-wave infrared transmission and...elements to the electro - optical propagation model development. The first element is the design and execution of field experiments to generate useful
Shape Measurement by Means of Phase Retrieval using a Spatial Light Modulator
NASA Astrophysics Data System (ADS)
Agour, Mostafa; Huke, Philipp; Kopylow, Christoph V.; Falldorf, Claas
2010-04-01
We present a novel approach to investigate the shape of a diffusely reflecting technical object. It is based on a combination of a multiple-illumination contouring procedure and phase retrieval from a set of intensity measurements. Special consideration is given to the design of the experimental configuration for phase retrieval and the iterative algorithm to extract the 3D phase map. It is mainly based on a phase-only spatial light modulator (SLM) in the Fourier domain of a 4f-imaging system. The SLM is used to modulate the light incident in the Fourier plane with the transfer function of propagation. Thus, a set of consecutive intensity measurements of the wave field scattered by the investigated object in various propagation states can be realized in a common recording plane. In contrast to already existing methods, no mechanical adjustment is required during the recording process and thus the measuring time is considerably reduced. The method is applied to investigate the shape of micro-objects obtained from a metalforming process. Finally, the experimental results are compared to those provided by a standard interferometric contouring procedure.
NASA Astrophysics Data System (ADS)
Nutto, C.; Steiner, O.; Schaffenberger, W.; Roth, M.
2012-02-01
Context. Observations of waves at frequencies above the acoustic cut-off frequency have revealed vanishing wave travel-times in the vicinity of strong magnetic fields. This detection of apparently evanescent waves, instead of the expected propagating waves, has remained a riddle. Aims: We investigate the influence of a strong magnetic field on the propagation of magneto-acoustic waves in the atmosphere of the solar network. We test whether mode conversion effects can account for the shortening in wave travel-times between different heights in the solar atmosphere. Methods: We carry out numerical simulations of the complex magneto-atmosphere representing the solar magnetic network. In the simulation domain, we artificially excite high frequency waves whose wave travel-times between different height levels we then analyze. Results: The simulations demonstrate that the wave travel-time in the solar magneto-atmosphere is strongly influenced by mode conversion. In a layer enclosing the surface sheet defined by the set of points where the Alfvén speed and the sound speed are equal, called the equipartition level, energy is partially transferred from the fast acoustic mode to the fast magnetic mode. Above the equipartition level, the fast magnetic mode is refracted due to the large gradient of the Alfvén speed. The refractive wave path and the increasing phase speed of the fast mode inside the magnetic canopy significantly reduce the wave travel-time, provided that both observing levels are above the equipartition level. Conclusions: Mode conversion and the resulting excitation and propagation of fast magneto-acoustic waves is responsible for the observation of vanishing wave travel-times in the vicinity of strong magnetic fields. In particular, the wave propagation behavior of the fast mode above the equipartition level may mimic evanescent behavior. The present wave propagation experiments provide an explanation of vanishing wave travel-times as observed with multi-line high-cadence instruments. Movies are available in electronic form at http://www.aanda.org
High-frequency guided ultrasonic waves to monitor corrosion thickness loss
NASA Astrophysics Data System (ADS)
Fromme, Paul; Bernhard, Fabian; Masserey, Bernard
2017-02-01
Corrosion due to adverse environmental conditions can occur for a range of industrial structures, e.g., ships and offshore oil platforms. Pitting corrosion and generalized corrosion can lead to the reduction of the strength and thus degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided ultrasonic waves propagating along the structure. Using standard ultrasonic transducers with single sided access to the structure, the two fundamental Lamb wave modes were selectively generated simultaneously, penetrating through the complete thickness of the structure. The wave propagation and interference of the guided wave modes depends on the thickness of the structure. Numerical simulations were performed using a 2D Finite Difference Method (FDM) algorithm in order to visualize the guided wave propagation and energy transfer across the plate thickness. Laboratory experiments were conducted and the wall thickness reduced initially uniformly by milling of the steel structure. Further measurements were conducted using accelerated corrosion in salt water. From the measured signal change due to the wave mode interference, the wall thickness reduction was monitored and good agreement with theoretical predictions was achieved. Corrosion can lead to non-uniform thickness reduction and the influence of this on the propagation of the high frequency guided ultrasonic waves was investigated. The wave propagation in a steel specimen with varying thickness was measured experimentally and the influence on the wave propagation characteristics quantified.
Wave-vector and polarization dependence of conical refraction.
Turpin, A; Loiko, Yu V; Kalkandjiev, T K; Tomizawa, H; Mompart, J
2013-02-25
We experimentally address the wave-vector and polarization dependence of the internal conical refraction phenomenon by demonstrating that an input light beam of elliptical transverse profile refracts into two beams after passing along one of the optic axes of a biaxial crystal, i.e. it exhibits double refraction instead of refracting conically. Such double refraction is investigated by the independent rotation of a linear polarizer and a cylindrical lens. Expressions to describe the position and the intensity pattern of the refracted beams are presented and applied to predict the intensity pattern for an axicon beam propagating along the optic axis of a biaxial crystal.
Designing scattering-free isotropic index profiles using phase-amplitude equations
NASA Astrophysics Data System (ADS)
King, C. G.; Horsley, S. A. R.; Philbin, T. G.
2018-05-01
The Helmholtz equation can be written as coupled equations for the amplitude and phase. By considering spatial phase distributions corresponding to reflectionless wave propagation in the plane and solving for the amplitude in terms of this phase, we designed two-dimensional graded-index media which do not scatter light. We give two illustrative examples, the first of which is a periodic grating for which diffraction is completely suppressed at a single frequency at normal incidence to the periodicity. The second example is a medium which behaves as a "beam shifter" at a single frequency; acting to laterally shift a plane wave, or sufficiently wide beam, without reflection.
A cylindrical optical black hole using graded index photonic crystals
NASA Astrophysics Data System (ADS)
Wang, Hung-Wen; Chen, Lien-Wen
2011-05-01
The electromagnetic wave propagation of a two-dimensional optical black hole with graded index photonic crystals for transverse magnetic modes is studied. The implementation of the proposed system is validated in the metamaterial regime. The finite element method is employed in order to confirm the optical properties of the designed device. Numerical simulations show that the light incident on the device is bent toward the central area and absorbed by the inner core. As a result, the artificial optical black hole can effectively absorb the incident waves from all directions. The structure is composed of two kinds of real isotropic materials, which eases the experimental fabrication.
1989 IEEE Aerospace Applications Conference, Breckenridge, CO, Feb. 12-17, 1989, Conference Digest
NASA Astrophysics Data System (ADS)
Recent advances in electronic devices for aerospace applications are discussed in reviews and reports. Topics addressed include large-aperture mm-wave antennas, a cross-array radiometer for spacecraft applications, a technique for computing the propagation characteristics of optical fibers, an analog light-wave system for improving microwave-telemetry data communication, and a ground demonstration of an orbital-debris radar. Consideration is given to a verifiable autonomous satellite control system, Inmarsat second-generation satellites for mobile communication, automated tools for data-base design and criteria for their selection, and a desk-top simulation work station based on the DSP96002 microprocessor chip.
NASA Astrophysics Data System (ADS)
Xie, Y. J.; Ho, Y. K.; Cao, N.; Shao, L.; Pang, J.; Chen, Z.; Zhang, S. Y.; Liu, J. R.
2003-11-01
By taking account of the high-order corrections to the paraxial approximation of a Gaussian beam, it has been verified that for a focused laser beam propagating in vacuum, there indeed exists a subluminous wave phase velocity region surrounding the laser beam axis. The magnitude of the phase velocity scales as Vϕm∼ c(1+ b/( kw0) 2), where Vϕm is the phase velocity of the wave, c is the speed of light in vacuum, w0 is the beam width at focus. This feature gives a reasonable explanation for the mechanism of capture and acceleration scenario.
Time dependent wave envelope finite difference analysis of sound propagation
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1984-01-01
A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.
Shear wave propagation in anisotropic soft tissues and gels
Namani, Ravi; Bayly, Philip V.
2013-01-01
The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) [1] to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized experimental systems are needed to understand wave propagation in these structures. In this paper we review the theory behind waves in anisotropic, soft materials, including small-amplitude waves superimposed on finite deformation of a nonlinear hyperelastic material. Some predictions of this theory are confirmed in experimental studies of a soft material with controlled anisotropy: magnetically-aligned fibrin gel. PMID:19963987
Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves
NASA Astrophysics Data System (ADS)
Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh
2017-08-01
The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.
NASA Astrophysics Data System (ADS)
Mueller, A.
2018-04-01
A new transparent artificial boundary condition for the two-dimensional (vertical) (2DV) free surface water wave propagation modelled using the meshless Radial-Basis-Function Collocation Method (RBFCM) as boundary-only solution is derived. The two-way artificial boundary condition (2wABC) works as pure incidence, pure radiation and as combined incidence/radiation BC. In this work the 2wABC is applied to harmonic linear water waves; its performance is tested against the analytical solution for wave propagation over horizontal sea bottom, standing and partially standing wave as well as wave interference of waves with different periods.
Chen, Xuemei; Ma, Ruiyuan; Zhou, Hongbo; Zhou, Xiaofeng; Che, Lufeng; Yao, Shuhuai; Wang, Zuankai
2013-01-01
Despite extensive progress, current icephobic materials are limited by the breakdown of their icephobicity in the condensation frosting environment. In particular, the frost formation over the entire surface is inevitable as a result of undesired inter-droplet freezing wave propagation initiated by the sample edges. Moreover, the frost formation directly results in an increased frost adhesion, posing severe challenges for the subsequent defrosting process. Here, we report a hierarchical surface which allows for interdroplet freezing wave propagation suppression and efficient frost removal. The enhanced performances are mainly owing to the activation of the microscale edge effect in the hierarchical surface, which increases the energy barrier for ice bridging as well as engendering the liquid lubrication during the defrosting process. We believe the concept of harnessing the surface morphology to achieve superior performances in two opposite phase transition processes might shed new light on the development of novel materials for various applications. PMID:23981909
Utilizing strongly absorbing materials for low-loss surface-wave nonlinear optics
NASA Astrophysics Data System (ADS)
Grosse, Nicolai B.; Franz, Philipp; Heckmann, Jan; Pufahl, Karsten; Woggon, Ulrike
2018-04-01
Optical media endowed with large nonlinear susceptibilities are highly prized for their employment in frequency conversion and the generation of nonclassical states of light. Although the presence of an optical resonance can greatly increase the nonlinear response (e.g., in epsilon-near-zero materials), the non-negligible increase in linear absorption often precludes the application of such materials in nonlinear optics. Absorbing materials prepared as thin films, however, can support a low-loss surface wave: the long-range surface exciton polariton (LRSEP). Its propagation lifetime increases with greater intrinsic absorption and reduced film thickness, provided that the film is embedded in a transparent medium (symmetric cladding). We explore LRSEP propagation in a molybdenum film by way of a prism-coupling configuration. Our observations show that excitation of the LRSEP mode leads to a dramatic increase in the yield of second-harmonic generation. This implies that the LRSEP mode is an effective vehicle for utilizing the nonlinear response of absorbing materials.
Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.
Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir
2017-09-15
In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.
NASA Astrophysics Data System (ADS)
Walla, Frederik; Wiecha, Matthias M.; Mecklenbeck, Nicolas; Beldi, Sabri; Keilmann, Fritz; Thomson, Mark D.; Roskos, Hartmut G.
2018-01-01
We investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM). The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.
NASA Astrophysics Data System (ADS)
Balakshiĭ, V. I.; Kazar'yan, A. Y.; Lee, A. A.
1995-10-01
An investigation was made of an acousto-optical system with hybrid feedback used to control the frequency of ultrasonic waves excited in an acousto-optical cell. An amplitude transparency, placed in front of a photodetector, ensured a nonlinear dependence of the intensity of the diffracted radiation reaching the detector on the ultrasound frequency. Conditions were found under which this nonlinearity gave rise to multistable states differing in respect of the amplitude, frequency, and direction of propagation of the diffracted beam. An analysis was made of various uses of such a system as an optical channel switch and in stabilisation of the direction of propagation of a light beam.
Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng
Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less
Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces
Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng; ...
2017-04-17
Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzuang, C.K.C.
1986-01-01
Various MMIC (monolithic microwave integrated circuit) planar waveguides have shown possible existence of a slow-wave propagation. In many practical applications of these slow-wave circuits, the semiconductor devices have nonuniform material properties that may affect the slow-wave propagation. In the first part of the dissertation, the effects of the nonuniform material properties are studied by a finite-element method. In addition, the transient pulse excitations of these slow-wave circuits also have great theoretical and practical interests. In the second part, the time-domain analysis of a slow-wave coplanar waveguide is presented.
Multi-soliton interaction of a generalized Schrödinger-Boussinesq system in a magnetized plasma
NASA Astrophysics Data System (ADS)
Zhao, Xue-Hui; Tian, Bo; Chai, Jun; Wu, Xiao-Yu; Guo, Yong-Jiang
2017-04-01
Under investigation in this paper is a generalized Schrödinger-Boussinesq system, which describes the stationary propagation of coupled upper-hybrid waves and magnetoacoustic waves in a magnetized plasma. Bilinear forms, one-, two- and three-soliton solutions are derived by virtue of the Hirota method and symbolic computation. Propagation and interaction for the solitons are illustrated graphically: Coefficients β1^{} and β2^{} can affect the velocities and propagation directions of the solitary waves. Amplitude, velocity and shape of the one solitary wave keep invariant during the propagation, implying that the transport of the energy is stable in the upper-hybrid and magnetoacoustic waves, and amplitude of the upper-hybrid wave is bigger than that of the magnetoacoustic wave. For the upper-hybrid and magnetoacoustic waves, head-on, overtaking and bound-state interaction between the two solitary waves are asymptotically depicted, respectively, indicating that the interaction between the two solitary waves is elastic. Elastic interaction between the bound-state soliton and a single one soliton is also displayed, and interaction among the three solitary waves is all elastic.
Long-Wave Infrared Thermophotonic Imaging of Demineralization in Dental Hard Tissue
NASA Astrophysics Data System (ADS)
Ojaghi, A.; Parkhimchyk, A.; Tabatabaei, N.
2016-08-01
Dental caries remains the most prevalent chronic disease in both children and adults worldwide. To address this prevalence through disease prevention and management, dentists need tools capable of detecting caries at early stages of formation. Looking into the physics of light propagation in teeth, this study presents a clinically and commercially viable platform technology for thermophotonic detection of early dental caries using an inexpensive long-wavelength infrared (LWIR; 8 μm to 14 μm) camera. The developed system incorporates intensity-modulated light to generate a thermal-wave field inside enamel and uses the subsequent infrared emission of the thermal-wave field to detect early caries. It was found that the greater light absorption at caries sites shifts the thermal-wave field centroid, providing contrast between early caries and intact enamel. Use of LWIR detection band in dental samples is novel and beneficial over the conventional mid-wavelength infrared band (3 μm to 5 μm) as it suppresses the masking effect of the instantaneous radiative emission from subsurface features due to the minimal transmittance of enamel in the LWIR band. The efficacy of the LWIR system is verified though experiments carried out on nonbiological test samples as well as on teeth with natural and artificially induced caries. The results suggest that the developed LWIR technology is an affordable early dental caries detection system suitable for commercialization/translation to Dentistry.
Wave Propagation Around Coronal Structures: Stratification, Buoyancy, Small Scale Formation
NASA Astrophysics Data System (ADS)
Tomlinson, S. M.; Rappazzo, F.; Velli, M.
2017-12-01
We study the propagation of waves in a coronal medium characterized by stratification and structure in density. temperature and magnetic field. It is well known that average gradients affect the propagation of Alfvén and other MHD waves via reflection, phase mixing, resonant absorption and other coupling phenomena. Here we discuss how the interplay of propagation on inhomogeneous, stratified structures with nonlinear interactions may lead to interesting effects including preferential heating, buoyancy, and plasma acceleration.
A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response
NASA Astrophysics Data System (ADS)
Zhang, Yixin; Xia, Lan; Cao, Chunqi; Sun, Zhenhong; Li, Yanting; Zhang, Xuping
2017-01-01
A hybrid single-end-access Mach-Zehnder interferometer (MZI) and phase sensitive OTDR (Φ-OTDR) vibration sensing system is proposed and demonstrated experimentally. In our system, the narrow optical pulses and the continuous wave are injected into the fiber through the front end of the fiber at the same time. And at the rear end of the fiber, a frequency-shift-mirror (FSM) is designed to back propagate the continuous wave modulated by the external vibration. Thus the Rayleigh backscattering signals (RBS) and the back propagated continuous wave interfere with the reference light at the same end of the sensing fiber and a single-end-access configuration is achieved. The RBS can be successfully separated from the interference signal (IS) through digital signal process due to their different intermediate frequency based on frequency division multiplexing technique. There is no influence between these two schemes. The experimental results show 10 m spatial resolution and up to 1.2 MHz frequency response along a 6.35 km long fiber. This newly designed single-end-access setup can achieve vibration events locating and high frequency events response, which can be widely used in health monitoring for civil infrastructures and transportation.
Optimization of one-way wave equations.
Lee, M.W.; Suh, S.Y.
1985-01-01
The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors
Vortex Rossby Waves in Hurricanes Katrina and Rita (2005)
NASA Astrophysics Data System (ADS)
Judt, F.; Chen, S. S.
2007-12-01
Radar observations in hurricanes reveal inner spiraling rainbands emanating from the eyewall and propagating outward. Theoretical analysis indicated that these inner bands are azimuthally and radially propagating vortex Rossby waves (VRW). The outward propagating waves convey PV from the inner core to outer regions and thus lead to PV redistribution within a hurricane. It has been hypothesized that the outward propogating VRWs may play a role in interacting with an existing secondary PV ring in the outer region of a hurricane, which could lead to a development of concentric eyewalls. However, the lack of simultaneous observations over the inner-core and rainband regions is a major difficulty in our understanding of the complex interaction. The importance of VRWs in hurricane intensity change remains to be a question. This study aims to address the question using high- resolution model (MM5) forecasts of Hurricanes Katrina and Rita during the Hurricane Rainbands and Intensity Change Experiment (RAINEX) in 2005. The two major hurricanes went through a similar rapid intensification over the Gulf of Mexico. Both RAINEX observations and model forecast fields showed that Rita developed a secondary eyewall and went through an eyewall replacement before landfall, whereas Katrina did not. We analyze the model output at 1.67 km grid-resolution with 12-min time intervals. Azimuthally and radially propagating VRWs were found in the PV, rainrate, and vertical velocity fields in both storms. In the case of Katrina, no secondary PV maximum exists due to the lack of highly circular rainbands. Thus the VRWs propagate outward smoothly over a relatively long distance. No VRW activity has been found beyond 80-100 km radius in Katrina. This result indicates that interaction between the VRWs and outer PV disturbance must take place within this region, otherwise no effect concerning the importance of VRW would occur. The stagnation radius depends on the background PV- gradient which itself can be changed by wave-redistributed PV. It is also a function of the azimuthal wavenumber. Higher wavenumbers generally propagate farther and are thus more likely to interact with outer PV disturbance in the first place. In contrast, Rita developed a PV ring in the outer rainband region. Detailed analysis of Rita is underway. The comparison between the two hurricanes may shed some lights on the interaction of VRWs and rainbands as well as its implication on hurricane intensity change.
Computational process to study the wave propagation In a non-linear medium by quasi- linearization
NASA Astrophysics Data System (ADS)
Sharath Babu, K.; Venkata Brammam, J.; Baby Rani, CH
2018-03-01
Two objects having distinct velocities come into contact an impact can occur. The impact study i.e., in the displacement of the objects after the impact, the impact force is function of time‘t’ which is behaves similar to compression force. The impact tenure is very short so impulses must be generated subsequently high stresses are generated. In this work we are examined the wave propagation inside the object after collision and measured the object non-linear behavior in the one-dimensional case. Wave transmission is studied by means of material acoustic parameter value. The objective of this paper is to present a computational study of propagating pulsation and harmonic waves in nonlinear media using quasi-linearization and subsequently utilized the central difference scheme. This study gives focus on longitudinal, one- dimensional wave propagation. In the finite difference scheme Non-linear system is reduced to a linear system by applying quasi-linearization method. The computed results exhibit good agreement on par with the selected non-liner wave propagation.
A circuit mechanism for the propagation of waves of muscle contraction in Drosophila
Fushiki, Akira; Zwart, Maarten F; Kohsaka, Hiroshi; Fetter, Richard D; Cardona, Albert; Nose, Akinao
2016-01-01
Animals move by adaptively coordinating the sequential activation of muscles. The circuit mechanisms underlying coordinated locomotion are poorly understood. Here, we report on a novel circuit for the propagation of waves of muscle contraction, using the peristaltic locomotion of Drosophila larvae as a model system. We found an intersegmental chain of synaptically connected neurons, alternating excitatory and inhibitory, necessary for wave propagation and active in phase with the wave. The excitatory neurons (A27h) are premotor and necessary only for forward locomotion, and are modulated by stretch receptors and descending inputs. The inhibitory neurons (GDL) are necessary for both forward and backward locomotion, suggestive of different yet coupled central pattern generators, and its inhibition is necessary for wave propagation. The circuit structure and functional imaging indicated that the commands to contract one segment promote the relaxation of the next segment, revealing a mechanism for wave propagation in peristaltic locomotion. DOI: http://dx.doi.org/10.7554/eLife.13253.001 PMID:26880545
Song, Zhongchang; Zhang, Yu; Thornton, Steven W; Li, Songhai; Dong, Jianchen
2017-10-01
The wave propagation, sound field, and transmission beam pattern of a pygmy sperm whale (Kogia breviceps) were investigated in both the horizontal and vertical planes. Results suggested that the signals obtained at both planes were similarly characterized with a high peak frequency and a relatively narrow bandwidth, close to the ones recorded from live animals. The sound beam measured outside the head in the vertical plane was narrower than that of the horizontal one. Cases with different combinations of air-filled structures in both planes were used to study the respective roles in controlling wave propagation and beam formation. The wave propagations and beam patterns in the horizontal and vertical planes elucidated the important reflection effect of the spermaceti and vocal chambers on sound waves, which was highly significant in forming intensive forward sound beams. The air-filled structures, the forehead soft tissues and skull structures formed wave guides in these two planes for emitted sounds to propagate forward.
Spread of epileptic activity in human brain
NASA Astrophysics Data System (ADS)
Milton, John
1997-03-01
For many patients with medically refractory epilepsy surgical resection of the site of seizure onset (epileptic focus) offers the best hope for cure. Determination of the nature of seizure propagation should lead to improved methods for locating the epileptic focus (and hence reduce patient morbidity) and possibly to new treatment modalities directed at blocking seizure spread. Theoretical studies of neural networks emphasize the role of traveling waves for the propagation of activity. However, the nature of seizure propagation in human brain remains poorly characterized. The spread of epileptic activity in patients undergoing presurgical evaluation for epilepsy surgery was measured by placing subdural grids of electrodes (interelectrode spacings of 3-10 mm) over the frontal and temporal lobes. The exact location of each electrode relative to the surface of the brain was determined using 3--D MRI imaging techniques. Thus it is possible to monitor the spread of epileptic activity in both space and time. The observations are discussed in light of models for seizure propagation.
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)
1994-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.
Confining standing waves in optical corrals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babayan, Y.; McMahon, J. M.; Li, S.
2009-03-01
Near-field scanning optical microscopy images of solid wall, circular, and elliptical microscale corrals show standing wave patterns confined inside the structures with a wavelength close to that of the incident light. The patterns inside the corrals can be tuned by changing the size and material of the walls, the wavelength of incident light, and polarization direction for elliptical corrals. Finite-difference time-domain calculations of the corral structures agree with the experimental observations and reveal that the electric and magnetic field intensities are out of phase inside the corral. A theoretical modal analysis indicates that the fields inside the corrals can bemore » attributed to p- and s-polarized waveguide modes, and that the superposition of the propagating and evanescent modes can explain the phase differences between the fields. These experimental and theoretical results demonstrate that electromagnetic fields on a dielectric surface can be controlled in a predictable manner.« less
Attosecond-resolved photoionization of chiral molecules.
Beaulieu, S; Comby, A; Clergerie, A; Caillat, J; Descamps, D; Dudovich, N; Fabre, B; Géneaux, R; Légaré, F; Petit, S; Pons, B; Porat, G; Ruchon, T; Taïeb, R; Blanchet, V; Mairesse, Y
2017-12-08
Chiral light-matter interactions have been investigated for two centuries, leading to the discovery of many chiroptical processes used for discrimination of enantiomers. Whereas most chiroptical effects result from a response of bound electrons, photoionization can produce much stronger chiral signals that manifest as asymmetries in the angular distribution of the photoelectrons along the light-propagation axis. We implemented self-referenced attosecond photoelectron interferometry to measure the temporal profile of the forward and backward electron wave packets emitted upon photoionization of camphor by circularly polarized laser pulses. We measured a delay between electrons ejected forward and backward, which depends on the ejection angle and reaches 24 attoseconds. The asymmetric temporal shape of electron wave packets emitted through an autoionizing state further reveals the chiral character of strongly correlated electronic dynamics. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Magnetic hyperbolic optical metamaterials
Kruk, Sergey S.; Wong, Zi Jing; Pshenay-Severin, Ekaterina; ...
2016-04-13
Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This then restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolicmore » dispersion in three-dimensional metamaterials. We also measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. These findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light.« less
Positive-Negative Birefringence in Multiferroic Layered Metasurfaces.
Khomeriki, R; Chotorlishvili, L; Tralle, I; Berakdar, J
2016-11-09
We uncover and identify the regime for a magnetically and ferroelectrically controllable negative refraction of a light-traversing multiferroic, oxide-based metastructure consisting of alternating nanoscopic ferroelectric (SrTiO 3 ) and ferromagnetic (Y 3 Fe 2 (FeO 4 ) 3 , YIG) layers. We perform analytical and numerical simulations based on discretized, coupled equations for the self-consistent Maxwell/ferroelectric/ferromagnetic dynamics and obtain a biquadratic relation for the refractive index. Various scenarios of ordinary and negative refraction in different frequency ranges are analyzed and quantified by simple analytical formula that are confirmed by full-fledge numerical simulations. Electromagnetic waves injected at the edges of the sample are propagated exactly numerically. We discovered that, for particular GHz frequencies, waves with different polarizations are characterized by different signs of the refractive index, giving rise to novel types of phenomena such as a positive-negative birefringence effect and magnetically controlled light trapping and accelerations.
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)
1995-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.
Piccardi, Armando; Alberucci, Alessandro; Assanto, Gaetano
2013-01-01
Liquid crystals in the nematic phase exhibit substantial reorientation when the molecules are driven by electric fields of any frequencies. Exploiting such a response at optical frequencies, self-focusing supports transverse localization of light and the propagation of self-confined beams and waveguides, namely “nematicons”. Nematicons can guide other light signals and interact with inhomogeneities and other beams. Moreover, they can be effectively deviated by using the electro-optic response of the medium, leading to several strategies for voltage-controlled reconfiguration of light-induced guided-wave circuits and signal readdressing. Hereby, we outline the main features of nematicons and review the outstanding progress achieved in the last twelve years on beam self-trapping and electro-optic readdressing. PMID:24108367
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-05-01
Nonparaxial fractional electromagnetic Bessel and Bessel-Gauss auto-focusing light-sheet solutions and their spatial derivatives are synthesized stemming from the angular spectrum decomposition in plane waves. The propagation characteristics of these transverse electric-polarized light-sheets are analyzed by computing the radiated component of the incident electric field. Tight bending of the beam along curved trajectories and slit openings are observed, which could offer unique features and potential applications in the development of improved methods and devices in light-sheet tweezers for particle manipulation applications and dynamics in opto-fluidics, particle sizing and imaging to name a few examples. Moreover, computations of the scattering, radiation force and torque, and particle dynamics also benefit from the developed beam solutions.
Light trapping and surface plasmon enhanced high-performance NIR photodetector
Luo, Lin-Bao; Zeng, Long-Hui; Xie, Chao; Yu, Yong-Qiang; Liang, Feng-Xia; Wu, Chun-Yan; Wang, Li; Hu, Ji-Gang
2014-01-01
Heterojunctions near infrared (NIR) photodetectors have attracted increasing research interests for their wide-ranging applications in many areas such as military surveillance, target detection, and light vision. A high-performance NIR light photodetector was fabricated by coating the methyl-group terminated Si nanowire array with plasmonic gold nanoparticles (AuNPs) decorated graphene film. Theoretical simulation based on finite element method (FEM) reveals that the AuNPs@graphene/CH3-SiNWs array device is capable of trapping the incident NIR light into the SiNWs array through SPP excitation and coupling in the AuNPs decorated graphene layer. What is more, the coupling and trapping of freely propagating plane waves from free space into the nanostructures, and surface passivation contribute to the high on-off ratio as well. PMID:24468857
Modeling the NF-κB mediated inflammatory response predicts cytokine waves in tissue
2011-01-01
Background Waves propagating in "excitable media" is a reliable way to transmit signals in space. A fascinating example where living cells comprise such a medium is Dictyostelium D. which propagates waves of chemoattractant to attract distant cells. While neutrophils chemotax in a similar fashion as Dictyostelium D., it is unclear if chemoattractant waves exist in mammalian tissues and what mechanisms could propagate them. Results We propose that chemoattractant cytokine waves may naturally develop as a result of NF-κB response. Using a heuristic mathematical model of NF-κB-like circuits coupled in space we show that the known characteristics of NF-κB response favor cytokine waves. Conclusions While the propagating wave of cytokines is generally beneficial for inflammation resolution, our model predicts that there exist special conditions that can cause chronic inflammation and re-occurrence of acute inflammatory response. PMID:21771307
Wave propagation in and around negative-dielectric-constant discharge plasma
NASA Astrophysics Data System (ADS)
Sakai, Osamu; Iwai, Akinori; Omura, Yoshiharu; Iio, Satoshi; Naito, Teruki
2018-03-01
The modes of wave propagation in media with a negative dielectric constant are not simple, unlike those for electromagnetic waves in media with a positive dielectric constant (where modes propagate inside the media with positive phase velocity since the refractive index is usually positive). Instead, they depend on the permeability sign, either positive or negative, and exhibit completely different features. In this report, we investigated a wave confined on the surface of a negative-dielectric-constant and a positive-permeability plasma medium for which the refractive index is imaginary. The propagation mode is similar to surface plasmon polaritons on the metal containing free electrons, but its frequency band is different due to the significant spatial gradient of the dielectric constant and a different pressure term. We also studied a wave with a negative dielectric constant and negative permeability, where the refractive index is negative. This wave can propagate inside the media, but its phase velocity is negative. It also shares similar qualities with waves in plasmonic devices with negative permeability in the photon range.
Numerical study of electromagnetic waves generated by a prototype dielectric logging tool
Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.
2004-01-01
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, H.; Chong, J.
2016-12-01
The traditional surface wave tomography is based on the ray theory, which assumes that surface wave propagates along the great-circle. The great-circle assumption is valid only when the size of the anomaly is larger than the width of the Fresnel zone and the lateral variation is relatively smooth. However, off-great-circle propagation may occur when the surface wave travels across tectonic boundaries with strong heterogeneity and sharp velocity change, e.g., continental margin, mid-ridge and sea trench, resulting in arrival angle anomaly and multi-pathing effect. The off-great-circle propagation may deviate the result of surface wave tomography based on great-circle approximation, so it is of great importance to study the off-great-circle propagation. In this study, we used the teleseismic waveforms from September 2009 to August 2011, recorded by the NECESSArray in Northeast China, to study the off-great-circle propagation of Rayleigh wave by the Beamforming method. Our results show that the off-great-circle effect increases with decreasing period. At the period of 60 s, the off-great-circle effect is relatively weak and the Rayleigh wave propagates approximately along the great-circle. While at the period of 20 s, the off-great-circle effect becomes strong, the arrival angle anomaly measured from some events can be as large as 20º, and obvious multi-pathing effect is also observed. Lateral variations of the arrival angle anomaly and phase velocity have also been found in the study region, which may be correlated with the lithosphere heterogeneity in Northeast China. Our results demonstrate the necessity to study the surface wave off-great-circle propagation. Acknowledgement: This study is financially supported by National Natural Science Foundation of China under Grant No. 41590854.
GPS Observations of Medium-Scale Traveling Ionospheric Disturbances over New Zealand
NASA Astrophysics Data System (ADS)
Otsuka, Y.; Lee, C.; Shiokawa, K.; Tsugawa, T.; Nishioka, M.
2014-12-01
Using the GPS data obtained from dual-frequency GPS receivers in New Zealand, we have made two-dimensional maps of total electron content (TEC) in 2012 in order to reveal statistical characteristics of MSTIDs at mid-latitudes in southern hemisphere. As of 2012, approximately 40 GPS receivers are in operation in New Zealand. We found that most of the MSITDs over New Zealand propagate northwestward during nighttime in summer and northeastward during daytime in winter. The propagation direction of the nighttime MSTIDs is consistent with the theory that polarization electric fields play an important role in the generating MSTIDs. Because the daytime MSTIDs propagate equatorward, we can speculate that they could be caused by atmospheric gravity waves in the thermosphere. The propagation direction of the daytime MSTIDs also has an eastward component in addition to the equatorward component. This feature is consistent with the daytime MSTIDs observed at mid-latitudes in both northern and southern hemispheres. By carrying out model calculations, we have shown that the eastward component of the MSTID propagation direction during daytime is attributed to an interaction of gravity waves to the background neutral winds. Because most of the daytime MSTIDs appear before 14 LT, the background neutral winds could blow westward. According to the dispersion relation for atmospheric gravity waves, vertical wavelength of the gravity waves becomes larger when the gravity wave propagates in the direction opposite to the background winds. Consequently, the gravity waves having an eastward component of the propagation direction could cause larger amplitude of TEC variations compared to the gravity waves propagating westward. This could be a reason why the propagation direction of the dime MSTIDs has an eastward component.
Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Shiling; Shen, Zhonghua, E-mail: shenzh@njust.edu.cn; Lomonosov, Alexey M.
2016-06-07
The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.
Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices
Chong, C.; Kevrekidis, P. G.; Ablowitz, M. J.; ...
2016-01-25
We explore linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wave packet and via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression, i.e., near the linear regime. Formore » weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a nonoscillatory nature, resulting from the complex interplay among the discreteness, nonlinearity, and geometry of the packing. Lastly, the transition between these two types of propagation is explored.« less
Surface Current Density Mapping for Identification of Gastric Slow Wave Propagation
Bradshaw, L. A.; Cheng, L. K.; Richards, W. O.; Pullan, A. J.
2009-01-01
The magnetogastrogram records clinically relevant parameters of the electrical slow wave of the stomach noninvasively. Besides slow wave frequency, gastric slow wave propagation velocity is a potentially useful clinical indicator of the state of health of gastric tissue, but it is a difficult parameter to determine from noninvasive bioelectric or biomagnetic measurements. We present a method for computing the surface current density (SCD) from multichannel magnetogastrogram recordings that allows computation of the propagation velocity of the gastric slow wave. A moving dipole source model with hypothetical as well as realistic biomagnetometer parameters demonstrates that while a relatively sparse array of magnetometer sensors is sufficient to compute a single average propagation velocity, more detailed information about spatial variations in propagation velocity requires higher density magnetometer arrays. Finally, the method is validated with simultaneous MGG and serosal EMG measurements in a porcine subject. PMID:19403355
NASA Astrophysics Data System (ADS)
Elshahat, Sayed; Khan, Karim; Yadav, Ashish; Bibbò, Luigi; Ouyang, Zhengbiao
2018-07-01
We proposed a strategy with successive cavities as energy reservoirs of electromagnetic energy and light-speed reducers introduced in the first and second rows of rods on the walls of an intrinsic photonic crystal waveguide (PCW) for slow-light transmission in the PCW concerning applications for optical communication, optical computation and optical signal processing. Subsequently, plane-wave expansion method (PWE) is used for studying slow-light properties and finite-difference time-domain (FDTD) method to demonstrate the slow-light propagating property of our proposed structure. We obtained group index as exceedingly large as 6123 with normalized delay bandwidth product (NDBP) as high as 0.48. We designed a facile but more generalized structure that may provide a vital theoretical basis for further enhancing the storage capacity properties of slow light with wideband and high NDBP.
Centrifugal photovoltaic and photogalvanic effects driven by structured light
Wätzel, J.; Berakdar, J.
2016-01-01
Much efforts are devoted to material structuring in a quest to enhance the photovoltaic effect. We show that structuring light in a way it transfers orbital angular momentum to semiconductor-based rings results in a steady charge accumulation at the outer boundaries that can be utilized for the generation of an open circuit voltage or a photogalvanic (bulk photovoltaic) type current. This effect which stems both from structuring light and matter confinement potentials, can be magnified even at fixed moderate intensities, by increasing the orbital angular momentum of light which strengthens the effective centrifugal potential that repels the charge outwards. Based on a full numerical time propagation of the carriers wave functions in the presence of light pulses we demonstrate how the charge buildup leads to a useable voltage or directed photocurrent whose amplitudes and directions are controllable by the light pulse parameters. PMID:26900105
NASA Astrophysics Data System (ADS)
Ke, Y.; Gao, X.; Lu, Q.; Wang, X.; Wang, S.
2017-12-01
Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. We have developed a two-dimensional(2-D) general curvilinear PIC simulation code, and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator, and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are formed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the finite wave normal angle. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves are found to be larger along a field line more close to the middle field line in the mirror field.
NASA Astrophysics Data System (ADS)
Ke, Yangguang; Gao, Xinliang; Lu, Quanming; Wang, Xueyi; Wang, Shui
2017-08-01
Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. In this paper, we have developed a two-dimensional (2-D) general curvilinear PIC simulation code and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are observed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the wave normal angle smaller than 25°. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves is found to be larger along a field line with a smaller curvature.
Simulating Freak Waves in the Ocean with CFD Modeling
NASA Astrophysics Data System (ADS)
Manolidis, M.; Orzech, M.; Simeonov, J.
2017-12-01
Rogue, or freak, waves constitute an active topic of research within the world scientific community, as various maritime authorities around the globe seek to better understand and more accurately assess the risks that the occurrence of such phenomena entail. Several experimental studies have shed some light on the mechanics of rogue wave formation. In our work we numerically simulate the formation of such waves in oceanic conditions by means of Computational Fluid Dynamics (CFD) software. For this purpose we implement the NHWAVE and OpenFOAM software packages. Both are non-hydrostatic, turbulent flow solvers, but NHWAVE implements a shock-capturing scheme at the free surface-interface, while OpenFOAM utilizes the Volume Of Fluid (VOF) method. NHWAVE has been shown to accurately reproduce highly nonlinear surface wave phenomena, such as soliton propagation and wave shoaling. We conducted a range of tests simulating rogue wave formation and horizontally varying currents to evaluate and compare the capabilities of the two software packages. Then we used each model to investigate the effect of ocean currents and current gradients on the formation of rogue waves. We present preliminary results.
Analytical Time-Domain Solution of Plane Wave Propagation Across a Viscoelastic Rock Joint
NASA Astrophysics Data System (ADS)
Zou, Yang; Li, Jianchun; Laloui, Lyesse; Zhao, Jian
2017-10-01
The effects of viscoelastic filled rock joints on wave propagation are of great significance in rock engineering. The solutions in time domain for plane longitudinal ( P-) and transverse ( S-) waves propagation across a viscoelastic rock joint are derived based on Maxwell and Kelvin models which are, respectively, applied to describe the viscoelastic deformational behaviour of the rock joint and incorporated into the displacement discontinuity model (DDM). The proposed solutions are verified by comparing with the previous studies on harmonic waves, which are simulated by sinusoidal incident P- and S-waves. Comparison between the predicted transmitted waves and the experimental data for P-wave propagation across a joint filled with clay is conducted. The Maxwell is found to be more appropriate to describe the filled joint. The parametric studies show that wave propagation is affected by many factors, such as the stiffness and the viscosity of joints, the incident angle and the duration of incident waves. Furthermore, the dependences of the transmission and reflection coefficients on the specific joint stiffness and viscosity are different for the joints with Maxwell and Kelvin behaviours. The alternation of the reflected and transmitted waveforms is discussed, and the application scope of this study is demonstrated by an illustration of the effects of the joint thickness. The solutions are also extended for multiple parallel joints with the virtual wave source method and the time-domain recursive method. For an incident wave with arbitrary waveform, it is convenient to adopt the present approach to directly calculate wave propagation across a viscoelastic rock joint without additional mathematical methods such as the Fourier and inverse Fourier transforms.
Phase locking of convectively coupled equatorial atmospheric Kelvin waves over Indian Ocean basin
NASA Astrophysics Data System (ADS)
Baranowski, Dariusz; Flatau, Maria; Flatau, Piotr; Matthews, Adrian
2015-04-01
The properties of convectively coupled Kelvin waves in the Indian Ocean and their propagation over the Maritime Continent are studied. It is shown that Kelvin waves are longitude - diurnal cycle phase locked over the Maritime Continent, Africa and the Indian Ocean. Thus, it is shown that they tend to propagate over definite areas during specific times of the day. Over the Maritime Continent, longitude-diurnal cycle phase locking is such that it agrees with mean, local diurnal cycle of convection. The strength of the longitude-diurnal cycle phase locking differs between 'non-blocked' Kelvin waves, which make successful transition over the Maritime Continent, and 'blocked' waves that terminated within it. It is shown that a specific combination of Kelvin wave phase speed and time of the day at which a wave approaches the Maritime Continent influence the chance of successful transition into the Western Pacific. Kelvin waves that maintain phase speed of 10 to 11 degrees per day over the central-eastern Indian Ocean and arrive at 90E between 9UTC and 18UTC have the highest chance of being 'non-blocked' by the Maritime Continent. The distance between the islands of Sumatra and Borneo agrees with the distance travelled by an average convectively coupled Kelvin wave in one day. This suggests that the Maritime Continent may act as a 'filter' for Kelvin waves favoring successful propagation of those waves for which propagation is in phase with the local diurnal cycle of precipitation. The AmPm index, a simple measure of local diurnal cycle for propagating disturbances, is introduced and shown to be useful metric depicting key characteristics of the convection associated with propagating Kelvin waves.
Zarmi, Yair
2015-01-01
The (1+1)-dimensional Sine-Gordon equation passes integrability tests commonly applied to nonlinear evolution equations. Its kink solutions (one-dimensional fronts) are obtained by a Hirota algorithm. In higher space-dimensions, the equation does not pass these tests. Although it has been derived over the years for quite a few physical systems that have nothing to do with Special Relativity, the Sine-Gordon equation emerges as a non-linear relativistic wave equation. This opens the way for exploiting the tools of the Theory of Special Relativity. Using no more than the relativistic kinematics of tachyonic momentum vectors, from which the solutions are constructed through the Hirota algorithm, the existence and classification of N-moving-front solutions of the (1+2)- and (1+3)-dimensional equations for all N ≥ 1 are presented. In (1+2) dimensions, each multi-front solution propagates rigidly at one velocity. The solutions are divided into two subsets: Solutions whose velocities are lower than a limiting speed, c = 1, or are greater than or equal to c. To connect with concepts of the Theory of Special Relativity, c will be called "the speed of light." In (1+3)-dimensions, multi-front solutions are characterized by spatial structure and by velocity composition. The spatial structure is either planar (rotated (1+2)-dimensional solutions), or genuinely three-dimensional--branes. Planar solutions, propagate rigidly at one velocity, which is lower than, equal to, or higher than c. Branes must contain clusters of fronts whose speed exceeds c = 1. Some branes are "hybrids": different clusters of fronts propagate at different velocities. Some velocities may be lower than c but some must be equal to, or exceed, c. Finally, the speed of light cannot be approached from within the subset of slower-than-light solutions in both (1+2) and (1+3) dimensions.
Hama, Noriyuki; Kawai, Minako; Ito, Shin-Ichi; Hirota, Akihiko
2018-05-01
Multisite optical recording has revealed that the neural excitation wave induced by a sensory stimulation begins at a focus and propagates in the cortex. This wave is considered to be important for computation in the sensory cortex, particularly the integration of sensory information; however, the nature of this wave remains largely unknown. In the present study, we examined the interaction between two waves in the rat sensory cortex induced by hindlimb and forelimb stimuli with different interstimulus intervals. We classified the resultant patterns as follows: 1) the collision of two waves, 2) the hindlimb response being evoked while the forelimb-induced wave is passing the hindlimb focus, and 3) the hindlimb response being evoked after the forelimb-induced wave has passed the hindlimb focus. In pattern 1, the two waves fused into a single wave, but the propagation pattern differed from that predicted by the superimposition of two singly induced propagation courses. In pattern 2, the state of the interaction between the two waves varied depending on the phase of optical signals constituting the forelimb-induced wave around the hindlimb focus. Although no hindlimb-induced wave was observed in the rising phase, the propagating velocity of the forelimb-induced wave increased. At the peak, neither the hindlimb-induced response nor a modulatory effect on the forelimb-induced wave was detected. In pattern 3, the hindlimb-induced wave showed a reduced amplitude and spatial extent. These results indicate that the state of the interaction between waves was strongly influenced by the relative timing of sensory inputs. NEW & NOTEWORTHY Sensory stimulation-induced cortical excitation propagates as a wave and spreads over a wide area of the sensory cortex. To elucidate the characteristics of this relatively unknown phenomenon, we examined the interaction between two individually induced waves in the somatosensory cortex. Either the waves collided or the preceding wave affected the emergence of the following one. Our results indicate that the state of the interaction was strongly influenced by the relative timing of sensory inputs.
NASA Astrophysics Data System (ADS)
Shu, Wei-Xing; Fu, Na; Lü, Xiao-Fang; Luo, Hai-Lu; Wen, Shuang-Chun; Fan, Dian-Yuan
2010-11-01
We investigate the propagation of electromagnetic waves in stratified anisotropic dielectric-magnetic materials using the integral equation method (IEM). Based on the superposition principle, we use Hertz vector formulations of radiated fields to study the interaction of wave with matter. We derive in a new way the dispersion relation, Snell's law and reflection/transmission coefficients by self-consistent analyses. Moreover, we find two new forms of the generalized extinction theorem. Applying the IEM, we investigate the wave propagation through a slab and disclose the underlying physics, which are further verified by numerical simulations. The results lead to a unified framework of the IEM for the propagation of wave incident either from a medium or vacuum in stratified dielectric-magnetic materials.
Influence of bias electric field on elastic waves propagation in piezoelectric layered structures.
Burkov, S I; Zolotova, O P; Sorokin, B P
2013-08-01
Theoretical and computer investigations of acoustic wave propagation in piezoelectric layered structures, subjected to the dc electric field influence have been fulfilled. Analysis of the dispersive parameters of elastic waves propagation in the BGO/fused silica and fused silica/LiNbO3 piezoelectric layered structures for a number of variants of dc electric field application has been executed. Transformation of bulk acoustic wave into SAW type mode under the dc electric field influence has been found. Possibility to control the permission or prohibition of the wave propagation by the dc electric field application and the appropriate choice of the layer and substrate materials has been discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Stochastic and Deterministic Fluctuations in Stimulated Brillouin Scattering
1990-10-01
and J. R. Ackerhalt, "Instabilities in the Propagation of Arbitrarily Polarized Counterpropagating Waves in a Nonlinear Kerr Medium," Optical...Ackerhalt, and P. W. Milonni, "Instabilities and Chaos in the Polarizations of Counterpropagating Light Fields," Phys. Rev. Lett. 58, 2432 (1987). iv P...Plenum, New York (1990). V D. J. Gauthier, M. S. Malcuit, A. L. Gaeta, and R. W. Boyd, " Polarization Bistability of Counterpropagating Beams," Phys. Rev
Conical Lens for 5-Inch/54 Gun Launched Missile
1981-06-01
Propagation, Interferenceand Diffraction of Light, 2nd ed. (revised), p. 121-124, Pergamon Press, 1964. 10. Anton , Howard, Elementary Linear Algebra , p. 1-21...equations is nonlinear in x, but is linear in the coefficients. Therefore, the techniques of linear algebra can be used on equation (F-13). The method...This thesis assumes the air to be homogenous, isotropic, linear , time indepen- dent (HILT) and free of shock waves in order to investigate the
Inward propagating chemical waves in Taylor vortices.
Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F
2010-04-01
Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.
Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A.; Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009
We experimentally demonstrate spin waves coupling in two laterally adjacent magnetic stripes. By the means of Brillouin light scattering spectroscopy, we show that the coupling efficiency depends both on the magnonic waveguides' geometry and the characteristics of spin-wave modes. In particular, the lateral confinement of coupled yttrium-iron-garnet stripes enables the possibility of control over the spin-wave propagation characteristics. Numerical simulations (in time domain and frequency domain) reveal the nature of intermodal coupling between two magnonic stripes. The proposed topology of multimode magnonic coupler can be utilized as a building block for fabrication of integrated parallel functional and logic devices suchmore » as the frequency selective directional coupler or tunable splitter, enabling a number of potential applications for planar magnonics.« less
Relativistic mirrors in laser plasmas (analytical methods)
NASA Astrophysics Data System (ADS)
Bulanov, S. V.; Esirkepov, T. Zh; Kando, M.; Koga, J.
2016-10-01
Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort x-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role. We present an overview of theoretical methods used to describe relativistic flying, accelerating, oscillating mirrors emerging in intense laser-plasma interactions.
3D superwide-angle one-way propagator and its application in seismic modeling and imaging
NASA Astrophysics Data System (ADS)
Jia, Xiaofeng; Jiang, Yunong; Wu, Ru-Shan
2018-07-01
Traditional one-way wave-equation based propagators have been widely used in past decades. Comparing to two-way propagators, one-way methods have higher efficiency and lower memory demands. These two features are especially important in solving large-scale 3D problems. However, regular one-way propagators cannot simulate waves that propagate in large angles within 90° because of their inherent wide angle limitation. Traditional one-way can only propagate along the determined direction (e.g., z-direction), so simulation of turning waves is beyond the ability of one-way methods. We develop 3D superwide-angle one-way propagator to overcome angle limitation and to simulate turning waves with superwide-angle propagation angle (>90°) for modeling and imaging complex geological structures. Wavefields propagating along vertical and horizontal directions are combined using typical stacking scheme. A weight function related to the propagation angle is used for combining and updating wavefields in each propagating step. In the implementation, we use graphics processing units (GPU) to accelerate the process. Typical workflow is designed to exploit the advantages of GPU architecture. Numerical examples show that the method achieves higher accuracy in modeling and imaging steep structures than regular one-way propagators. Actually, superwide-angle one-way propagator can be applied based on any one-way method to improve the effects of seismic modeling and imaging.
Longitudinal nonlinear wave propagation through soft tissue.
Valdez, M; Balachandran, B
2013-04-01
In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated strain-rates introduced at the end of the structure where the load is applied. In addition, it is shown that when steep wave fronts are generated in the nonlinear viscoelastic material, energy dissipation is focused in those wave fronts implying deposition of energy in a highly localized region of the material. Novel mechanisms for brain tissue damage are proposed based on the results obtained. The first mechanism is related to the dissipation of energy at steep wave fronts, while the second one is related to the interaction of steep wave fronts with axons encountered on its way through the structure. Copyright © 2013 Elsevier Ltd. All rights reserved.
Filamentation instability of magnetosonic waves in the solar wind environment
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Lee, M. C.
1989-01-01
Intense magnetosonic waves, originally propagating at the right angle with the interplanetary magnetic field, can excite a purely growing mode along the interplanetary magnetic field together with two symmetric magnetosonic sidebands propagating obliquely across the magnetic field. This instability process leads to the filamentation of the magnetosonic pump waves. These two excited magnetosonic sideband modes propagate together perpendicularly across the magnetic field and, meanwhile, form a standing wave pattern along the magnetic field. The thresholds of this filamentation instability can be exceeded in the solar wind environment. It is predicted that the density fluctuations produced by the filamentation instability along the interplanetary magnetic field have wavelengths greater than, at least, a few earth radii. The polarization of the obliquely propagating magnetosonic waves excited by the filamentation instability is determined by the characteristics of the magnetosonic pump waves and the environmental plasmas.
Method and apparatus for characterizing propagation delays of integrated circuit devices
NASA Technical Reports Server (NTRS)
Blaes, Brent R. (Inventor); Buehler, Martin G. (Inventor)
1987-01-01
Propagation delay of a signal through a channel is measured by cyclically generating a first step-wave signal for transmission through the channel to a two-input logic element and a second step-wave signal with a controlled delay to the second input terminal of the logic element. The logic element determines which signal is present first at its input terminals and stores a binary signal indicative of that determination for control of the delay of the second signal which is advanced or retarded for the next cycle until both the propagation delayed first step-wave signal and the control delayed step-wave signal are coincident. The propagation delay of the channel is then determined by measuring the time between the first and second step-wave signals out of the controlled step-wave signal generator.
NASA Astrophysics Data System (ADS)
Qiang, FangWei; Wei, PeiJun; Li, Li
2012-07-01
In the present paper, the effective propagation constants of elastic SH waves in composites with randomly distributed parallel cylindrical nanofibers are studied. The surface stress effects are considered based on the surface elasticity theory and non-classical interfacial conditions between the nanofiber and the host are derived. The scattering waves from individual nanofibers embedded in an infinite elastic host are obtained by the plane wave expansion method. The scattering waves from all fibers are summed up to obtain the multiple scattering waves. The interactions among random dispersive nanofibers are taken into account by the effective field approximation. The effective propagation constants are obtained by the configurational average of the multiple scattering waves. The effective speed and attenuation of the averaged wave and the associated dynamical effective shear modulus of composites are numerically calculated. Based on the numerical results, the size effects of the nanofibers on the effective propagation constants and the effective modulus are discussed.
Geometric controls of the flexural gravity waves on the Ross Ice Shelf
NASA Astrophysics Data System (ADS)
Sergienko, O. V.
2017-12-01
Long-period ocean waves, formed locally or at distant sources, can reach sub-ice-shelf cavities and excite coupled motion in the cavity and the ice shelf - flexural gravity waves. Three-dimensional numerical simulations of the flexural gravity waves on the Ross Ice Shelf show that propagation of these waves is strongly controlled by the geometry of the system - the cavity shape, its water-column thickness and the ice-shelf thickness. The results of numerical simulations demonstrate that propagation of the waves is spatially organized in beams, whose orientation is determined by the direction of the of the open ocean waves incident on the ice-shelf front. As a result, depending on the beams orientation, parts of the Ross Ice Shelf experience significantly larger flexural stresses compared to other parts where the flexural gravity beams do not propagate. Very long-period waves can propagate farther away from the ice-shelf front exciting flexural stresses in the vicinity of the grounding line.
Propagation characteristics of electromagnetic waves in dusty plasma with full ionization
NASA Astrophysics Data System (ADS)
Dan, Li; Guo, Li-Xin; Li, Jiang-Ting
2018-01-01
This study investigates the propagation characteristics of electromagnetic (EM) waves in fully ionized dusty plasmas. The propagation characteristics of fully ionized plasma with and without dust under the Fokker-Planck-Landau (FPL) and Bhatnagar-Gross-Krook (BGK) models are compared to those of weakly ionized plasmas by using the propagation matrix method. It is shown that the FPL model is suitable for the analysis of the propagation characteristics of weakly collisional and fully ionized dusty plasmas, as is the BGK model. The influence of varying the dust parameters on the propagation properties of EM waves in the fully ionized dusty plasma was analyzed using the FPL model. The simulation results indicated that the densities and average radii of dust grains influence the reflection and transmission coefficients of fully ionized dusty plasma slabs. These results may be utilized to analyze the effects of interaction between EM waves and dusty plasmas, such as those associated with hypersonic vehicles.
2000-03-13
of breaking waves , the position and strength of surface currents, and the propagation of the tide into very shallow waters. In the surf zone...6) sediment properties determine shock wave propagation , a method for mine neutralization in the surf zone. 48 OCEANOGRAPHY AND MINE WARFARE...mines will be buried in the sediments, sedimentary explosive shock wave propagation is critical for determining operational performance. Presently, we
Quantifying Electromagnetic Wave Propagation Environment Using Measurements From A Small Buoy
2017-06-01
ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A SMALL BUOY by Andrew E. Sweeney June 2017 Thesis Advisor: Qing Wang...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE QUANTIFYING ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A...the Coupled Air Sea Processes and Electromagnetic (EM) ducting Research (CASPER), to understand air-sea interaction processes and their representation
Analysis of pulse thermography using similarities between wave and diffusion propagation
NASA Astrophysics Data System (ADS)
Gershenson, M.
2017-05-01
Pulse thermography or thermal wave imaging are commonly used as nondestructive evaluation (NDE) method. While the technical aspect has evolve with time, theoretical interpretation is lagging. Interpretation is still using curved fitting on a log log scale. A new approach based directly on the governing differential equation is introduced. By using relationships between wave propagation and the diffusive propagation of thermal excitation, it is shown that one can transform from solutions in one type of propagation to the other. The method is based on the similarities between the Laplace transforms of the diffusion equation and the wave equation. For diffusive propagation we have the Laplace variable s to the first power, while for the wave propagation similar equations occur with s2. For discrete time the transformation between the domains is performed by multiplying the temperature data vector by a matrix. The transform is local. The performance of the techniques is tested on synthetic data. The application of common back projection techniques used in the processing of wave data is also demonstrated. The combined use of the transform and back projection makes it possible to improve both depth and lateral resolution of transient thermography.
Cho, Hideo; Rokhlin, Stanislav I
2015-09-01
The Rayleigh-to-interface wave conversion and the propagation of the resulting symmetric and antisymmetric modes on a bonded interface between solids is analyzed by the two dimensional finite difference time domain method. The propagated patterns were visualized to improve understanding of the phenomena. It is found that the partition of the energy of the interface waves above and below the interface changes repeatedly with propagation distance due to interference between the two modes which have slightly different phase velocities. The destructive interference of those two modes results in dips in the amplitude spectrum of the interface waves, which shift in frequency with propagation distance. The Rayleigh wave received that is created by the interface wave at the exit corner of the joint also shows interference dips in its spectrum. Those dips depend on the interface properties and can potentially be used for interface characterization. Conversion factors related to the interface wave at the upward and downward corners are determined and discussed. As a result, the total transition factor through the upward and downward corners for the interface wave was estimated as 0.37 and would be sufficiently large to probe the interface by coupling from the Rayleigh to the interface wave. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Eastwood, J. P.; Balogh, A.; Lucek, E. A.; Mazelle, C.; Dandouras, I.
2005-11-01
This paper presents the results of a statistical investigation into the nature of oblique wave propagation in the foreshock. Observations have shown that foreshock ULF waves tend to propagate obliquely to the background magnetic field. This is in contrast to theoretical work, which predicts that the growth rate of the mechanism responsible for the waves is maximized for parallel propagation, at least in the linear regime in homogenous plasma. Here we use data from the Cluster mission to study in detail the oblique propagation of a particular class of foreshock ULF wave, the 30 s quasi-monochromatic wave. We find that these waves persistently propagate at oblique angles to the magnetic field. Over the whole data set, the average value of θkB was found to be 21 ± 14°. Oblique propagation is observed even when the interplanetary magnetic field (IMF) cone angle is small, such that the convective component of the solar wind velocity, vE×B, is comparable to the wave speed. In this subset of the data, the mean value of θkB was 12.9 ± 7.1°. In the subset of data for which the IMF cone angle exceeded 45°, the mean value of θkB was 19.5 ± 10.7°. When the angle between the IMF and the x geocentric solar ecliptic (GSE) direction (i.e., the solar wind vector) is large, the wave k vectors tend to be confined in the plane defined by the x GSE direction and the magnetic field and a systematic deflection is observed. The dependence of θkB on vE×B is also studied.
Correlation of wave propagation modes in helicon plasma with source tube lengths
NASA Astrophysics Data System (ADS)
Niu, Chen; Zhao, Gao; Wang, Yu; Liu, Zhongwei; Chen, Qiang
2017-01-01
Helicon wave plasma demonstrates lots of advantages in high coupling efficiency, high density, and low magnetic field. However, the helicon wave plasma still meets challenges in applications of material deposition, surface treatment, and electromagnetic thrusters owing to the changeable coupled efficiency and the remarkable non-uniformity. In this paper, we explore the wave propagation characterization by the B-dot probe in various lengths of source tubes. We find that in a long source tube the standing wave appears under the antenna zone, while the traveling wave is formed out of the antenna region. The apparent modulation of wave amplitude is formed in upstream rather than in downstream of the antenna. In a short source tube, however, there is only standing wave propagation.
Orthogonal wave propagation of epileptiform activity in the planar mouse hippocampus in vitro.
Kibler, Andrew B; Durand, Dominique M
2011-09-01
In vitro brain preparations have been used extensively to study the generation and propagation of epileptiform activity. Transverse and longitudinal slices of the rodent hippocampus have revealed various patterns of propagation. Yet intact connections between the transverse and longitudinal pathways should generate orthogonal (both transverse and longitudinal) propagation of seizures involving the entire hippocampus. This study utilizes the planar unfolded mouse hippocampus preparation to reveal simultaneous orthogonal epileptiform propagation and to test a method of arresting propagation. This study utilized an unfolded mouse hippocampus preparation. It was chosen due to its preservation of longitudinal neuronal processes, which are thought to play an important role in epileptiform hyperexcitability. 4-Aminopyridine (4-AP), microelectrodes, and voltage-sensitive dye imaging were employed to investigate tissue excitability. In 50-μm 4-AP, stimulation of the stratum radiatum induced transverse activation of CA3 cells but also induced a longitudinal wave of activity propagating along the CA3 region at a speed of 0.09 m/s. Without stimulation, a wave originated at the temporal CA3 and propagated in a temporal-septal direction could be suppressed with glutamatergic receptor antagonists. Orthogonal propagation traveled longitudinally along the CA3 pathway, secondarily invading the CA1 region at a velocity of 0.22 ± 0.024 m/s. Moreover, a local lesion restricted to the CA3 region could arrest wave propagation. These results reveal a complex two-dimensional epileptiform wave propagation pattern in the hippocampus that is generated by a combination of synaptic transmission and axonal propagation in the CA3 recurrent network. Epileptiform propagation block via a transverse selective CA3 lesion suggests a potential surgical technique for the treatment of temporal lobe epilepsy. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.
Orthogonal Wave Propagation of Epileptiform Activity in the Planar Mouse Hippocampus in vitro
Kibler, Andrew B; Durand, Dominique M
2011-01-01
Purpose In vitro brain preparations have been used extensively to study the generation and propagation of epileptiform activity. Transverse and longitudinal slices of the rodent hippocampus have revealed various patterns of propagation. Yet intact connections between the transverse and longitudinal pathways should generate orthogonal (both transverse and longitudinal) propagation of seizures involving the entire hippocampus. This study utilizes the planar unfolded mouse hippocampus preparation to reveal simultaneous orthogonal epileptiform propagation and to test a method of arresting propagation. Methods This study utilized an unfolded mouse hippocampus preparation. It was chosen due to its preservation of longitudinal neuronal processes which are thought to play an important role in epileptiform hyper-excitability. 4-aminopyridine (4-AP), micro-electrodes, and voltage sensitive dye imaging were employed to investigate tissue excitability. Key Findings In 50 μM 4-AP, stimulation of the stratum radiatum induced transverse activation of CA3 cells but also induced a longitudinal wave of activity propagating along the CA3 region at a speed of 0.09 m/s. Without stimulation, a wave originated at the temporal CA3 and propagated in a temporal–septal direction and could be suppressed with glutamatergic antagonists. Orthogonal propagation traveled longitudinally along the CA3 pathway, secondarily invading the CA1 region at a velocity of 0.22±0.024 m/s. Moreover, a local lesion restricted to the CA3 region could arrest wave propagation. Significance These results reveal a complex two-dimensional epileptiform wave propagation pattern in the hippocampus that is generated by a combination of synaptic transmission and axonal propagation in the CA3 recurrent network. Epileptiform propagation block via a transverse selective CA3 lesion suggests a potential surgical technique for the treatment of temporal lobe epilepsy. PMID:21668440
Salomons, Erik M.; Lohman, Walter J. A.; Zhou, Han
2016-01-01
Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing. PMID:26789631
Salomons, Erik M; Lohman, Walter J A; Zhou, Han
2016-01-01
Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.
NASA Astrophysics Data System (ADS)
Jin, M.; Manchester, W. B.; van der Holst, B.; Sokolov, I.; Tóth, G.; Vourlidas, A.; de Koning, C. A.; Gombosi, T. I.
2017-01-01
We perform and analyze the results of a global magnetohydrodynamic simulation of the fast coronal mass ejection (CME) that occurred on 2011 March 7. The simulation is made using the newly developed Alfvén Wave Solar Model (AWSoM), which describes the background solar wind starting from the upper chromosphere and extends to 24 R⊙. Coupling AWSoM to an inner heliosphere model with the Space Weather Modeling Framework extends the total domain beyond the orbit of Earth. Physical processes included in the model are multi-species thermodynamics, electron heat conduction (both collisional and collisionless formulations), optically thin radiative cooling, and Alfvén-wave turbulence that accelerates and heats the solar wind. The Alfvén-wave description is physically self-consistent, including non-Wentzel-Kramers-Brillouin reflection and physics-based apportioning of turbulent dissipative heating to both electrons and protons. Within this model, we initiate the CME by using the Gibson-Low analytical flux rope model and follow its evolution for days, in which time it propagates beyond STEREO A. A detailed comparison study is performed using remote as well as in situ observations. Although the flux rope structure is not compared directly due to lack of relevant ejecta observation at 1 au in this event, our results show that the new model can reproduce many of the observed features near the Sun (e.g., CME-driven extreme ultraviolet [EUV] waves, deflection of the flux rope from the coronal hole, “double-front” in the white light images) and in the heliosphere (e.g., shock propagation direction, shock properties at STEREO A).
The Inhomogeneous Waves in a Rotating Piezoelectric Body
Chen, Si
2013-01-01
This paper presents the analysis and numerical results of rotation, propagation angle, and attenuation angle upon the waves propagating in the piezoelectric body. Via considering the centripetal and Coriolis accelerations in the piezoelectric equations with respect to a rotating frame of reference, wave velocities and attenuations are derived and plotted graphically. It is demonstrated that rotation speed vector can affect wave velocities and make the piezoelectric body behaves as if it was damping. Besides, the effects of propagation angle and attenuation angle are presented. Critical point is found when rotation speed is equal to wave frequency, around which wave characteristics change drastically. PMID:24298219
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
A critical survey of wave propagation and impact in composite materials
NASA Technical Reports Server (NTRS)
Moon, F. C.
1973-01-01
A review of the field of stress waves in composite materials is presented covering the period up to December 1972. The major properties of waves in composites are discussed and a summary is made of the major experimental results in this field. Various theoretical models for analysis of wave propagation in laminated, fiber and particle reinforced composites are surveyed. The anisotropic, dispersive and dissipative properties of stress pulses and shock waves in such materials are reviewed. A review of the behavior of composites under impact loading is presented along with the application of wave propagation concepts to the determination of impact stresses in composite plates.
Ormachea, Juvenal; Castaneda, Benjamin; Parker, Kevin J
2018-05-01
Elastography is a modality that estimates tissue stiffness and, thus, provides useful information for clinical diagnosis. Attention has focused on the measurement of shear wave propagation; however, many methods assume shear wave propagation is unidirectional and aligned with the lateral imaging direction. Any deviations from the assumed propagation result in biased estimates of shear wave speed. To address these challenges, directional filters have been applied to isolate shear waves with different propagation directions. Recently, a new method was proposed for tissue stiffness estimation involving creation of a reverberant shear wave field propagating in all directions within the medium. These reverberant conditions lead to simple solutions, facile implementation and rapid viscoelasticity estimation of local tissue. In this work, this new approach based on reverberant shear waves was evaluated and compared with another well-known elastography technique using two calibrated elastic and viscoelastic phantoms. Additionally, the clinical feasibility of this technique was analyzed by assessing shear wave speed in human liver and breast tissues, in vivo. The results indicate that it is possible to estimate the viscoelastic properties in each scanned medium. Moreover, a better approach to estimation of shear wave speed was obtained when only the phase information was taken from the reverberant waves, which is equivalent to setting all magnitudes within the bandpass equal to unity: an idealization of a perfectly isotropic reverberant shear wave field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Xin; Wang, Yuan; Xue, Ming; Zhu, Kefeng
2017-11-01
The impact of horizontal propagation of mountain waves on the orographic gravity wave drag (OGWD) in the stratosphere and lower mesosphere of the Northern Hemisphere is evaluated for the first time. Using a fine-resolution (1 arc min) terrain and 2.5°×2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis data during 2011-2016, two sets of OGWD are calculated offline according to a traditional parameterization scheme (without horizontal propagation) and a newly proposed scheme (with horizontal propagation). In both cases, the zonal mean OGWDs show similar spatial patterns and undergo a notable seasonal variation. In winter, the OGWD is mainly distributed in the upper stratosphere and lower mesosphere of middle to high latitudes, whereas the summertime OGWD is confined in the lower stratosphere. Comparison between the two sets of OGWD reveal that the horizontal propagation of mountain waves tends to decrease (increase) the OGWD in the lower stratosphere (middle to upper stratosphere and lower mesosphere). Consequently, including the horizontal propagation of mountain waves in the parameterization of OGWD can reduce the excessive OGWD in the lower stratosphere and strengthen the insufficient gravity wave forcing in the mesosphere, which are the known problems of traditional OGWD schemes. The impact of horizontal propagation is more prominent in winter than in summer, with the OGWD in western Tibetan Plateau, Rocky Mountains, and Greenland notably affected.
Monlithic nonplanar ring oscillator and method
NASA Technical Reports Server (NTRS)
Nilsson, Alan C. (Inventor); Byer, Robert L. (Inventor)
1991-01-01
A monolithic nonplanar ring oscillator having an optically isotropic solid-state laser body for propagating laser radiation about a nonplanar ring path internal to the laser body is disclosed. The monolithic laser body is configured to produce a 2N reflection nonplanar ring light path, where N is an integer greater than or equal to 2, comprising 2N-1 total internal reflections and one reflection at a coupler in a single round trip. Undirectional traveling wave oscillation of the laser is induced by the geometry of the nonplanar ring path together with the effect of an applied magnetic field and partial polarizer characteristics of the oblique reflection from the coupler. The 6-reflection nonplanar ring oscillator makes possible otpimal unidirectional oscillation (low loss for the oscillating direction of propagation and, simultaneously high loss for the nonoscillating direction of propagation) in monolithic NPROs using materials with index of refraction smaller than the square root of 3, for example, laser glass.
An Integrative Wave Model for the Marginal Ice Zone Based on a Rheological Parameterization
2015-09-30
2015) Characterizing the behavior of gravity wave propagation into a floating or submerged viscous layer , 2015 AGU Joint Assembly Meeting, May 3–7...are the PI and a PhD student. Task 1: Use an analytical method to determine the propagation of waves through a floating viscoelastic mat for a wide...and Ben Holt. 2 Task 3: Assemble all existing laboratory and field data of wave propagation in ice covers. Task 4: Determine if all existing
Solitary waves in a peridynamic elastic solid
Silling, Stewart A.
2016-06-23
The propagation of large amplitude nonlinear waves in a peridynamic solid is ana- lyzed. With an elastic material model that hardens in compression, sufficiently large wave pulses propagate as solitary waves whose velocity can far exceed the linear wave speed. In spite of their large velocity and amplitude, these waves leave the material they pass through with no net change in velocity and stress. They are nondissipative and nondispersive, and they travel unchanged over large distances. An approximate solution for solitary waves is derived that reproduces the main features of these waves observed in computational simulations. We demonstrate, by numericalmore » studies, that waves interact only weakly with each other when they collide. Finally, we found that wavetrains composed of many non-interacting solitary waves form and propagate under certain boundary and initial conditions.« less
Actively tunable transverse waves in soft membrane-type acoustic metamaterials
NASA Astrophysics Data System (ADS)
Zhou, Weijian; Wu, Bin; Muhammad, Du, Qiujiao; Huang, Guoliang; Lü, Chaofeng; Chen, Weiqiu
2018-04-01
Membrane-type metamaterials have shown a fantastic capacity for manipulating acoustic waves in the low frequency range. They have the advantages of simple geometry, light weight, and active tunability. In general, these membrane-type metamaterials contain a rigid frame support, leading to a fixed configuration. However, in some instances, flexible and reconfigurable devices may be desirable. A soft membrane-type acoustic metamaterial that is highly flexible and controllable is designed here. Different from the previously designed membrane-type metamaterials, the stiff supporting frame is removed and the stiff mass at the center of each unit cell is replaced by the soft mass, realized by bonding fine metallic particles in the central region. In contrast to the previous studies, the propagation of elastic transverse waves in such a soft metamaterial is investigated by employing the plane wave expansion method. Both the Bragg scattering bandgaps and locally resonant bandgaps are found to coexist in the soft metamaterial. The influences of structural parameters and finite biaxial pre-stretch on the dynamic behavior of this soft metamaterial are carefully examined. It is shown that whether or not the wave propagation characteristics are sensitive to the finite deformation does not depend on the property and pre-stretch of the membrane. In addition, a broadband complete bandgap and a pseudo-gap formed by the combination of two extremely adjacent directional bandgaps are observed in the low-frequency range, and both can be controlled by the finite pre-stretch.
Stress Wave Scattering: Friend or Enemy of Non Destructive Testing of Concrete?
NASA Astrophysics Data System (ADS)
Aggelis, Dimitrios G.; Shiotani, Tomoki; Philippidis, Theodore P.; Polyzos, Demosthenes
Cementitious materials are by definition inhomogeneous containing cement paste, sand, aggregates as well as air voids. Wave propagation in such a material is characterized by scattering phenomena. Damage in the form of micro or macro cracks certainly enhances scattering influence. Its most obvious manifestation is the velocity variation with frequency and excessive attenuation. The influence becomes stronger with increased mis-match of elastic properties of constituent materials and higher crack content. Therefore, in many cases of large concrete structures, field application of stress waves is hindered since attenuation makes the acquisition of reliable signals troublesome. However, measured wave parameters, combined with investigation with scattering theory can reveal much about the internal condition and supply information that cannot be obtained in any other way. The size and properties of the scatterers leave their signature on the dispersion and attenuation curves making thus the characterization more accurate in case of damage assessment, repair evaluation as well as composition inspection. In this paper, three indicative cases of scattering influence are presented. Namely, the interaction of actual distributed damage, as well as the repair material injected in an old concrete structure with the wave parameters. Other cases are the influence of light plastic inclusions in hardened mortar and the influence of sand and water content in the examination of fresh concrete. In all the above cases, scattering seems to complicate the propagation behavior but also offers the way for a more accurate characterization of the quality of the material.
Convective Propagation Characteristics Using a Simple Representation of Convective Organization
NASA Astrophysics Data System (ADS)
Neale, R. B.; Mapes, B. E.
2016-12-01
Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.
NASA Astrophysics Data System (ADS)
Okazaki, Masakazu; Hattori, Ichiro; Shiraiwa, Fujio; Koizumi, Takashi
1983-08-01
Effect of strain wave shape on strain-controlled low-cycle fatigue crack propagation of SUS 304 stainless steel was investigated at 600 and 700 °C. It was found that the rate of crack propagation in a cycle-dependent region was successfully correlated with the range of cyclic J-integral, Δ Jf, regardless of the strain wave shape, frequency, and test temperature. It was also shown that the rate of crack propagation gradually increased from cycle-dependent curve to time-dependent one with decreasing frequency and slow-fast strain wave shape, and that one of the factors governing the rate of crack propagation in such a region was the ratio of the range of creep J-integral to that of total J-integral, Δ J c/Δ JT. Based on the results thus obtained, an interaction damage rule proposed semi-empirically was interpreted, with regard to crack propagation. Furthermore, fatigue crack initiation mechanism in slow-fast strain wave shape was studied, and it was shown that grain boundary sliding took an important role in it.
Determining the Viscosity Coefficient for Viscoelastic Wave Propagation in Rock Bars
NASA Astrophysics Data System (ADS)
Niu, Leilei; Zhu, Wancheng; Li, Shaohua; Guan, Kai
2018-05-01
Rocks with microdefects exhibit viscoelastic behavior during stress wave propagation. The viscosity coefficient of the wave can be used to characterize the attenuation as the wave propagates in rock. In this study, a long artificial bar with a readily adjustable viscosity coefficient was fabricated to investigate stress wave attenuation. The viscoelastic behavior of the artificial bar under dynamic loading was investigated, and the initial viscoelastic coefficient was obtained based on the amplitude attenuation of the incident harmonic wave. A one-dimensional wave propagation program was compiled to reproduce the time history of the stress wave measured during the experiments, and the program was well fitted to the Kelvin-Voigt model. The attenuation and dispersion of the stress wave in long artificial viscoelastic bars were quantified to accurately determine the viscoelastic coefficient. Finally, the method used to determine the viscoelastic coefficient of a long artificial bar based on the experiments and numerical simulations was extended to determine the viscoelastic coefficient of a short rock bar. This study provides a new method of determining the viscosity coefficient of rock.
NASA Technical Reports Server (NTRS)
Golshan, Nasser (Editor)
1997-01-01
The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry. NAPEX XXI took place in El Segundo, California on June 11-12, 1997 and consisted of three sessions. Session 1, entitled "ACTS Propagation Study Results & Outcome " covered the results of 20 station-years of Ka-band radio-wave propagation experiments. Session 11, 'Ka-band Propagation Studies and Models,' provided the latest developments in modeling, and analysis of experimental results about radio wave propagation phenomena for design of Ka-band satellite communications systems. Session 111, 'Propagation Research Topics,' covered a diverse range of propagation topics of interest to the space community, including overviews of handbooks and databases on radio wave propagation. The ACTS Propagation Studies miniworkshop was held on June 13, 1997 and consisted of a technical session in the morning and a plenary session in the afternoon. The morning session covered updates on the status of the ACTS Project & Propagation Program, engineering support for ACTS Propagation Terminals, and the Data Center. The plenary session made specific recommendations for the future direction of the program.
NASA Technical Reports Server (NTRS)
Huba, J. D.; Rowland, H. L.
1993-01-01
The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.
Wave propagation in elastic and damped structures with stabilized negative-stiffness components
NASA Astrophysics Data System (ADS)
Drugan, W. J.
2017-09-01
Effects on wave propagation achievable by introduction of a negative-stiffness component are investigated via perhaps the simplest discrete repeating element that can remain stable in the component's presence. When the system is elastic, appropriate tuning of the stabilized component's negative stiffness introduces a no-pass zone theoretically extending from zero to an arbitrarily high frequency, tunable by a mass ratio adjustment. When the negative-stiffness component is tuned to the system's stability limit and a mass ratio is sufficiently small, the system restricts propagation to waves of approximately a single arbitrary frequency, adjustable by tuning the stiffness ratio of the positive-stiffness components. The elastic system's general solutions are closed-form and transparent. When damping is added, the general solutions are still closed-form, but so complex that they do not clearly display how the negative stiffness component affects the system's response and how it should best be tuned to achieve desired effects. Approximate solutions having these features are obtained via four perturbation analyses: one for long wavelengths; one for small damping; and two for small mass ratios. The long-wavelengths solution shows that appropriate tuning of the negative-stiffness component can prevent propagation of long-wavelength waves. The small damping solution shows that the zero-damping low-frequency no-pass zone remains, while waves that do propagate are highly damped when a mass ratio is made small. Finally, very interesting effects are achievable at the full system's stability limit. For small mass ratios, the wavelength range of waves prohibited from propagation can be adjusted, from all to none, by tuning the system's damping: When one mass ratio is small, all waves with wavelengths larger than an arbitrary damping-adjusted value can be prohibited from propagation, while when the inverse of this mass ratio is small, all waves with wavelengths outside an arbitrary single adjustable value or range of values can be prohibited from propagation. All of the approximate solutions' analytically-transparent predictions are confirmed by the exact solution. The conclusions are that a stabilized tuned negative-stiffness component greatly enhances control of wave propagation in a purely elastic system, and when adjustable damping is added, even further control is facilitated.
On the Generation of Hydrodynamic Shocks by Mixed Beams and Occurrence of Sunquakes in Flares
NASA Astrophysics Data System (ADS)
Zharkova, Valentina; Zharkov, Sergei
2015-11-01
Observations of solar flares with sunquakes by space- and ground-based instruments reveal essentially different dynamics of seismic events in different flares. Some sunquakes are found to be closely associated with the locations of hard X-ray (HXR) and white-light (WL) emission, while others are located outside either of them. In this article we investigate possible sources causing a seismic response in a form of hydrodynamic shocks produced by the injection of mixed (electron plus proton) beams, discuss the velocities of these shocks, and the depths where they deposit the bulk of their energy and momentum. The simulation of hydrodynamic shocks in flaring atmospheres induced by electron-rich and proton-rich beams reveals that the linear depth of the shock termination is shifted beneath the level of the quiet solar photosphere on a distance from 200 to 5000 km. The parameters of these atmospheric hydrodynamic shocks are used as initial condition for another hydrodynamic model developed for acoustic-wave propagation in the solar interior (Zharkov, Mon. Not. Roy. Astron. Soc. 431, 3414, 2013). The model reveals that the depth of energy and momentum deposition by the atmospheric shocks strongly affects the propagation velocity of the acoustic-wave packet in the interior. The locations of the first bounces from the photosphere of acoustic waves generated in the vicinity of a flare are seen as ripples on the solar surface, or sunquakes. Mixed proton-dominated beams are found to produce a strong supersonic shock at depths 200 - 300 km under the level of the quiet-Sun photosphere and in this way produce well-observable acoustic waves, while electron-dominated beams create a slightly supersonic shock propagating down to 5000 km under the photosphere. This shock can only generate acoustic waves at the top layers beneath the photosphere since the shock velocity very quickly drops below the local sound speed. The distance Δ of the first bounce of the generated acoustic waves is discussed in relation to the minimal phase velocities of wave packets defined by the acoustic cutoff frequency and the parameters of atmospheric shock termination beneath the photosphere.
Nucleus-acoustic shock waves in white dwarfs
NASA Astrophysics Data System (ADS)
Jannat, S.; Mamun, A. A.
2018-04-01
The nucleus-acoustic shock waves (NASWs) propagating in a white dwarf plasma system, which contain non-relativistically or ultrarelativistically degenerate electrons, non-relativistically degenerate, viscous fluid of light nuclei, and immobile nuclei of heavy elements, have been theoretically investigated. We have used the reductive perturbation method, which is valid for small but finite-amplitude NASWs to derive the Burgers equation. The NASWs are, in fact, associated with the nucleus-acoustic (NA) waves in which the inertia is provided by the light nuclei, and restoring force is provided by the degenerate pressure of electrons. On the other hand, the stationary heavy nuclei participate only in maintaining the background charge neutrality condition at equilibrium. It is found that the viscous force acting in the fluid of light nuclei is a source of dissipation, and is responsible for the formation of NASWs. It is also observed that the basic features (polarity, amplitude, width, etc.) of the NASWs are significantly modified by the presence of heavy nuclei, and that NASWs are formed with either positive or negative potential depending on the values of the charge density of the heavy nuclei. The basic properties are also found to be significantly modified by the effects of ultrarelativistically degenerate electrons. The implications of our results in white dwarfs are briefly discussed.
Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear
NASA Technical Reports Server (NTRS)
Zhang, Minghua; Geller, Marvin A.
1994-01-01
The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.
Rigorous approaches to tether dynamics in deployment and retrieval
NASA Technical Reports Server (NTRS)
Antona, Ettore
1987-01-01
Dynamics of tethers in a linearized analysis can be considered as the superposition of propagating waves. This approach permits a new way for the analysis of tether behavior during deployment and retrieval, where a tether is composed by a part at rest and a part subjected to propagation phenomena, with the separating section depending on time. The dependence on time of the separating section requires the analysis of the reflection of the waves travelling toward the part at rest. Such a reflection generates a reflected wave, whose characteristics are determined. The propagation phenomena of major interest in a tether are transverse waves and longitudinal waves, all mathematically modelled by the vibrating chord equations, if the tension is considered constant along the tether. An interesting problem also considered is concerned with the dependence of the tether tension from the longitudinal position, due to microgravity, and the influence of this dependence on the propagation waves.
NASA Astrophysics Data System (ADS)
Ozeki, Seiya; Kurita, Keisuke; Uehara, Choyu; Nakane, Noriaki; Sato, Toshio; Takeuchi, Shinichi
2018-07-01
In our research group, we previously developed a coiled stator ultrasound motor (CS-USM) for medical applications such as intravascular ultrasound (IVUS) devices. However, wave propagation on acoustic waveguides has not been investigated sufficiently in previous studies. In this study, we analyze the propagation velocity of elastic waves from the simulated the vibration displacement mode profile along a straight line acoustic waveguide via three-dimensional finite element method (FEM). Concerning results, elastic waves with vibration displacement along the thickness direction show dispersion characteristics corresponding to the a0 and a1 mode plate waves (Lamb waves) in the acoustic waveguide. Our theoretical hypotheses of the propagation velocities were closely borne out by experimental results. We further find that the dispersion characteristic is affected by the width of the acoustic waveguide. We believe that our findings can contribute to improved CS-USM designs for practical application.
Solitary waves in dimer binary collision model
NASA Astrophysics Data System (ADS)
Ahsan, Zaid; Jayaprakash, K. R.
2017-01-01
Solitary wave propagation in nonlinear diatomic (dimer) chains is a very interesting topic of research in the study of nonlinear lattices. Such waves were recently found to be supported by the essentially nonlinear granular lattice and Toda lattice. An interesting aspect of this discovery is attributed to the realization of a spectrum of the mass ratio (the only system parameter governing the dynamics) that supports the propagation of such waves corresponding to the considered interaction potential. The objective of this exposition is to explore solitary wave propagation in the dimer binary collision (BC) model. Interestingly, the dimer BC model supports solitary wave propagation at a discrete spectrum of mass ratios similar to those observed in granular and Toda dimers. Further, we report a qualitative and one-to-one correspondence between the spectrum of the mass ratio corresponding to the dimer BC model and those corresponding to granular and Toda dimer chains.
Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation
Jing, Yun; Tao, Molei; Clement, Greg T.
2011-01-01
A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green’s function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed. PMID:21302985
Characteristics of solitary waves in a relativistic degenerate ion beam driven magneto plasma
NASA Astrophysics Data System (ADS)
Deka, Manoj Kr.; Dev, Apul N.; Misra, Amar P.; Adhikary, Nirab C.
2018-01-01
The nonlinear propagation of a small amplitude ion acoustic solitary wave in a relativistic degenerate magneto plasma in the presence of an ion beam is investigated in detail. The nonlinear equations describing the evolution of a solitary wave in the presence of relativistic non-degenerate magnetized positive ions and ion beams including magnetized degenerate relativistic electrons are derived in terms of Zakharov-Kuznetsov (Z-K) equation for such plasma systems. The ion beams which are a ubiquitous ingredient in such plasma systems are found to have a decisive role in the propagation of a solitary wave in such a highly dense plasma system. The conditions of a wave, propagating with typical solitonic characteristics, are examined and discussed in detail under suitable conditions of different physical parameters. Both a subsonic and supersonic wave can propagate in such plasmas bearing different characteristics under different physical situations. A detailed analysis of waves propagating in subsonic and/or supersonic regime is carried out. The ion beam concentrations, magnetic field, as well as ion beam streaming velocity are found to play a momentous role on the control of the amplitude and width of small amplitude perturbation in both weakly (or non-relativistic) and relativistic plasmas.
Chen, Chunyi; Yang, Huamin
2017-11-01
The root-mean-square (RMS) bandwidth of temporal light-flux fluctuations is formulated for both plane and spherical waves propagating in the turbulent atmosphere with location-dependent transverse wind. Two path weighting functions characterizing the joint contributions of turbulent eddies and transverse winds at various locations toward the RMS bandwidth are derived. Based on the developed formulations, the roles of variations in both the direction and magnitude of transverse wind velocity with locations over a path on the RMS bandwidth are elucidated. For propagation paths between ground and space, comparisons of the RMS bandwidth computed based on the Bufton wind profile with that calculated by assuming a nominal constant transverse wind velocity are made to exemplify the effect that location dependence of transverse wind velocity has on the RMS bandwidth. Moreover, an expression for the weighted RMS transverse wind velocity has been derived, which can be used as a nominal constant transverse wind velocity over a path for accurately determining the RMS bandwidth.
Super-luminescent jet light generated by femtosecond laser pulses
Xu, Zhijun; Zhu, Xiaonong; Yu, Yang; Zhang, Nan; Zhao, Jiefeng
2014-01-01
Phenomena of nonlinear light-matter interaction that occur during the propagation of intense ultrashort laser pulses in continuous media have been extensively studied in ultrafast optical science. In this vibrant research field, conversion of the input laser beam into optical filament(s) is commonly encountered. Here, we demonstrate generation of distinctive single or double super-luminescent optical jet beams as a result of strong spatial-temporal nonlinear interaction between focused 50 fs millijoule laser pulses and their induced micro air plasma. Such jet-like optical beams, being slightly divergent and coexisting with severely distorted conical emission of colored speckles, are largely different from optical filaments, and obtainable when the focal lens of proper f-number is slightly tilted or shifted. Once being collimated, the jet beams can propagate over a long distance in air. These beams not only reveal a potentially useful approach to coherent optical wave generation, but also may find applications in remote sensing. PMID:24463611
Propagation and wavefront ambiguity of linear nondiffracting beams
NASA Astrophysics Data System (ADS)
Grunwald, R.; Bock, M.
2014-02-01
Ultrashort-pulsed Bessel and Airy beams in free space are often interpreted as "linear light bullets". Usually, interconnected intensity profiles are considered a "propagation" along arbitrary pathways which can even follow curved trajectories. A more detailed analysis, however, shows that this picture gives an adequate description only in situations which do not require to consider the transport of optical signals or causality. To also cover these special cases, a generalization of the terms "beam" and "propagation" is necessary. The problem becomes clearer by representing the angular spectra of the propagating wave fields by rays or Poynting vectors. It is known that quasi-nondiffracting beams can be described as caustics of ray bundles. Their decomposition into Poynting vectors by Shack-Hartmann sensors indicates that, in the frame of their classical definition, the corresponding local wavefronts are ambiguous and concepts based on energy density are not appropriate to describe the propagation completely. For this reason, quantitative parameters like the beam propagation factor have to be treated with caution as well. For applications like communication or optical computing, alternative descriptions are required. A heuristic approach based on vector field based information transport and Fourier analysis is proposed here. Continuity and discontinuity of far field distributions in space and time are discussed. Quantum aspects of propagation are briefly addressed.
Application of Spectroscopic Doppler Velocimetry for Measurement of Streamwise Vorticity
NASA Technical Reports Server (NTRS)
Fagan, Amy; Zaman, Khairul B.; Elam, Kristie A.; Clem, Michelle M.
2013-01-01
A spectroscopic Doppler velocimetry technique has been developed for measuring two transverse components of velocity and hence streamwise vorticity in free jet flows. The nonintrusive optical measurement system uses Mie scattering from a 200 mW green continuous-wave laser interacting with dust and other tracer particulates naturally present in the air flow to measure the velocities. Scattered light is collected in two opposing directions to provide measurements of two orthogonal velocity components. An air-spaced Fabry-Perot interferometer is used for spectral analysis to determine the optical frequency shift between the incident laser light and the Mie scattered light. This frequency shift is directly proportional to the velocity component in the direction of the bisector of the incident and scattered light wave propagation vectors. Data were acquired for jet Mach numbers of 1.73 and 0.99 using a convergent 1.27-cm diameter round nozzle fitted with a single triangular "delta-tab". The velocity components and the streamwise vorticity calculated from the measurements are presented. The results demonstrate the ability of this novel optical system to obtain velocity and vorticity data without any artificial seeding and using a low power laser system.
Visualization of stress wave propagation via air-coupled acoustic emission sensors
NASA Astrophysics Data System (ADS)
Rivey, Joshua C.; Lee, Gil-Yong; Yang, Jinkyu; Kim, Youngkey; Kim, Sungchan
2017-02-01
We experimentally demonstrate the feasibility of visualizing stress waves propagating in plates using air-coupled acoustic emission sensors. Specifically, we employ a device that embeds arrays of microphones around an optical lens in a helical pattern. By implementing a beamforming technique, this remote sensing system allows us to record wave propagation events in situ via a single-shot and full-field measurement. This is a significant improvement over the conventional wave propagation tracking approaches based on laser doppler vibrometry or digital image correlation techniques. In this paper, we focus on demonstrating the feasibility and efficacy of this air-coupled acoustic emission technique by using large metallic plates exposed to external impacts. The visualization results of stress wave propagation will be shown under various impact scenarios. The proposed technique can be used to characterize and localize damage by detecting the attenuation, reflection, and scattering of stress waves that occurs at damage locations. This can ultimately lead to the development of new structural health monitoring and nondestructive evaluation methods for identifying hidden cracks or delaminations in metallic or composite plate structures, simultaneously negating the need for mounted contact sensors.