Characterizing Scitillation and Cherenkov Light Yield in Water-Based Liquid Scintillators
NASA Astrophysics Data System (ADS)
Land, B. J.; Caravaca, J.; Descamps, F. B.; Orebi Gann, G. D.
2016-03-01
The recent development of Water-based Liquid Scintillator (WbLS) has made it possible to produce scintillating materials with highly tunable light yields and excellent optical clarity. This allows for a straightforward combination of the directional properties of Cherenkov light with the greater energy resolution afforded by the typically brighter scintillation light, which lends itself well to a broad program of neutrino physics. Here we explore the light yields and optical properties of WbLS materials in development for Theia (formerly ASDC) as measured in our benchtop Theia R&D at Berkeley Lab and extrapolate to larger detectors.
NASA Astrophysics Data System (ADS)
Gordienko, E.; Fedorov, A.; Radiuk, E.; Mechinsky, V.; Dosovitskiy, G.; Vashchenkova, E.; Kuznetsova, D.; Retivov, V.; Dosovitskiy, A.; Korjik, M.; Sandu, R.
2018-04-01
This work reports on a process of preparation of garnet phosphor powders and a technique for light yield evaluation of strongly light scattering samples. Powders of scintillation compounds could be used as individual materials or as samples for express tests of scintillation properties. However, estimation of their light yield (LY) is complicated by strong light scattering of this kind of materials. Ce3+-activated yttrium-aluminum and gallium-gadolinium-aluminum garnet phosphor powders, Y3Al5O12 (YAG:Ce) and Gd3Ga3Al2O12 (GGAG:Ce), were obtained using a modified coprecipitation technique. Ga tends to residue in mother liquor in ammonia media, but the modification allows to avoid the loss of components. We propose an approach for sample preparation and LY measurement setup with alpha particles excitation, allowing to decrease light scattering influence and to estimate a light yield of powder samples. This approach is used to evaluate the obtained powders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karunakaran, C., E-mail: karunakaranc@rediffmail.com; Abiramasundari, G.; Gomathisankar, P.
2011-10-15
Highlights: {yields} ZnO-TiO{sub 2} nanocomposite, obtained by modified ammonia-evaporation-induced synthetic method, absorbs visible light. {yields} ZnO-TiO{sub 2} nanoparticles catalyze bacteria disinfection and cyanide detoxification under sunlight. {yields} ZnO-TiO{sub 2} nanocomposite is selective in photocatalysis. -- Abstract: ZnO-TiO{sub 2} nanocomposite was prepared by modified ammonia-evaporation-induced synthetic method. It was characterized by powder X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray, UV-visible diffuse reflectance, photoluminescence and electrochemical impedance spectroscopies. Incorporation of ZnO leads to visible light absorption, larger charge transfer resistance and lower capacitance. The nanocomposite effectively catalyzes the inactivation of E. coli under visible light. Further,more » the prepared nanocomposite displays selective photocatalysis. While its photocatalytic efficiency to detoxify cyanide with visible light is higher than that of TiO{sub 2} P25, its efficiency to degrade methylene blue, sunset yellow and rhodamine B dyes under UV-A light is less than that of TiO{sub 2} P25.« less
Characterizing Chain Processes in Visible Light Photoredox Catalysis
Cismesia, Megan A.
2015-01-01
The recognition that Ru(bpy)32+ andsimilar visible light absorbing transition metal complexes can be photocatalysts for a variety of synthetically useful organic reactions has resulted in a recent resurgence of interest in photoredox catalysis. However, many of the critical mechanistic aspects of this class of reactions remain poorly understood. In particular, the degree to which visible light photoredox reactions involve radical chain processes has been a point of some disagreement that has not been subjected to systematic analysis. We have now performed quantum yield measurements to demonstrate that threerepresentative, mechanistically distinct photoredox processes involve product-forming chain reactions. Moreover, we show that the combination of quantum yield and luminescence quenching experiments provides a rapid method to estimate the length of these chains. Together, these measurements constitute a robust, operationally facile strategy for characterizing chain processes in a wide range of visible light photoredox reactions. PMID:26668708
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Police Anil Kumar; Srinivas, Basavaraju; Kala, Pruthu
Highlights: {yields} Visible active Bi-TiO{sub 2} photocatalyst preparation and thorough charaterization. {yields} Bi-TiO{sub 2} shows high activity for isoproturon degradation under solar light irradiation. {yields} The spectral response of TiO{sub 2} shifts from UV to visible light region by Bi doping. {yields} Bi{sup 3+{delta}+} species are playing a vital role in minimizing e{sup -}/h{sup +} recombination. -- Abstract: Bi-doped TiO{sub 2} catalyst was prepared by sol-gel method and was characterized by thermo gravimetric analysis (TGA), X-ray diffraction spectra (XRD), X-ray photo electronic spectroscopy (XPS), UV-Vis diffused reflectance spectra (DRS), photoluminescence spectra (PLS), transmission electron microscopy (TEM), energy dispersive analysis ofmore » X-rays (EDAX) and BET surface area. The photocatalytic activity of the catalysts were evaluated for the degradation of isoproturon herbicide under solar light irradiation. The UV-Visible DRS of Bi-doped TiO{sub 2} showed red shift in optical absorption. The presence of Bi{sup 3+{delta}+} species are playing a vital role in minimizing the electron hole recombination resulting higher activity compared to bare TiO{sub 2}.« less
Serôdio, João; Schmidt, William; Frankenbach, Silja
2017-02-01
This work introduces a new experimental method for the comprehensive description of the physiological responses to light of photosynthetic organisms. It allows the integration in a single experiment of the main established manipulative chlorophyll fluorescence-based protocols. It enables the integrated characterization of the photophysiology of samples regarding photoacclimation state (generating non-sequential light-response curves of effective PSII quantum yield, electron transport rate or non-photochemical quenching), photoprotection capacity (running light stress-recovery experiments, quantifying non-photochemical quenching components) and the operation of photoinactivation and photorepair processes (measuring rate constants of photoinactivation and repair for different light levels and the relative quantum yield of photoinactivation). The new method is based on a previously introduced technique, combining the illumination of a set of replicated samples with spatially separated actinic light beams of different intensity, and the simultaneous measurement of the fluorescence emitted by all samples using an imaging fluorometer. The main novelty described here is the independent manipulation of light intensity and duration of exposure for each sample, and the control of the cumulative light dose applied. The results demonstrate the proof of concept for the method, by comparing the responses of cultures of Chlorella vulgaris acclimated to low and high light regimes, highlighting the mapping of light stress responses over a wide range of light intensity and exposure conditions, and the rapid generation of paired light-response curves of photoinactivation and repair rate constants. This approach represents a chlorophyll fluorescence 'protocol of everything', contributing towards the high throughput characterization of the photophysiology of photosynthetic organisms. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Novel solar light driven photocatalyst, zinc indium vanadate for photodegradation of aqueous phenol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahapure, Sonali A.; Rane, Vilas H.; Ambekar, Jalindar D.
2011-05-15
Graphical abstract: Novel photocatalyst, zinc indium vanadate (ZnIn{sub 2}V{sub 2}O{sub 9}) demonstrated and showed an excellent photocatalytic activity for phenol degradation under visible light. Research highlights: {yields} Designing and identification of a photocatalyst having prospective potential application to be used in visible light (400-800 nm). {yields} Successful synthesis of novel ZnIn{sub 2}V{sub 2}O{sub 9} by solid state route. {yields} Confirmation of the designed product using characterization techniques. {yields} Application study comprising photodegradation of aqueous phenol at visible light despite of UV radiations. -- Abstract: In the present investigation, we have demonstrated the synthesis of novel photocatalyst, zinc indium vanadate (ZIV)more » by solid-solid state route using respective oxides of zinc, indium and vanadium. This novel photocatalyst was characterized using XRD, FESEM, UV-DRS and FTIR in order to investigate its structural, morphological and optical properties. XRD clearly shows the formation of phase pure ZIV of triclinic crystal structure with good crystallinity. FESEM micrographs showed the clustered morphology having particle size between 0.5 and 1 {mu}m. Since, optical study showed the band gap around 2.8 eV, i.e. in visible region, we have performed the photocatalytic activity of phenol degradation under visible light irradiation. The photodecomposition of phenol by ZIV is studied for the first time and an excellent photocatalytic activity was obtained using this novel photocatalyst. Considering the band gap of zinc indium vanadate in visible region, it will also be the potential candidate for water splitting.« less
Nano-Se: Cheap and easy-to-obtain novel material for all-dielectric nano-photonics
NASA Astrophysics Data System (ADS)
Ivanova, A. K.; Ionin, A. A.; Khmel'nitskii, R. A.; Klevkov, Yu. K.; Kudryashov, S. I.; Levchenko, A. O.; Mel'nik, N. N.; Nastulyavichus, A. A.; Rudenko, A. A.; Saraeva, I. N.; Smirnov, N. A.; Zayarny, D. A.; Gonchukov, S. A.; Tolordava, E. R.; Baranov, A. N.
2017-09-01
Milligram-per-second production of selenium nanoparticles in water sols was realized through few W, kHz-rate nanosecond laser ablation of a solid selenium pellet. High-yield particle formation mechanism and ultimate mass-removal yield were elucidated by optical profilometry and scanning electron microscopy characterization of crater depths and topographies. Deposited particles were inspected by scanning electron microscopy, while optical transmission Raman and dynamic light scattering spectroscopy characterized their hydrosols.
Characterizing Scintillation and Cherenkov Light in Water-Based Liquid Scintillators
NASA Astrophysics Data System (ADS)
Land, Benjamin; Caravaca, Javier; Descamps, Freija; Orebi Gann, Gabriel
2016-09-01
The recent development of Water-based Liquid Scintillator (WbLS) has made it possible to produce scintillating materials with highly tunable light yields and excellent optical clarity. This allows for a straightforward combination of the directional properties of Cherenkov light with the greater energy resolution afforded by the typically brighter scintillation light which lends itself well to a broad program of neutrino physics. Here we explore the light yields and time profiles of WbLS materials in development for Theia (formerly ASDC) as measured in CheSS: our bench-top Cherenkov and scintillation separation R&D project at Berkeley Lab. This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.
High energy resolution with transparent ceramic garnet scintillators
NASA Astrophysics Data System (ADS)
Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Beck, P. R.; Swanberg, E. L.; Hunter, S.; Ahle, L.; Fisher, S. E.; Melcher, C.; Wei, H.; Stefanik, T.; Chung, Y.-S.; Kindem, J.
2014-09-01
Breakthrough energy resolution, R(662keV) < 4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce). Transparent ceramic GYGAG(Ce), has a peak emission wavelength of 550 nm that is better matched to Silicon photodetectors than to standard PMTs. We are therefore developing a spectrometer based on pixelated GYGAG(Ce) on a Silicon photodiode array that can provide R(662 keV) = 3.6%. In comparison, with large 1-2 in3 size GYGAG(Ce) ceramics we obtain R(662 keV) = 4.6% with PMT readout. We find that ceramic GYGAG(Ce) of a given stoichiometric chemical composition can exhibit very different scintillation properties, depending on sintering conditions and post-anneal treatments. Among the characteristics of transparent ceramic garnet scintillators that can be controlled by fabrication conditions are: scintillation decay components and their amplitudes, intensity and duration of afterglow, thermoluminescence glow curve peak positions and amplitudes, integrated light yield, light yield non-proportionality - as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI), and energy resolution for gamma spectroscopy. Garnet samples exhibiting a significant fraction of Cerium dopant in the tetravalent valence also exhibit: faster overall scintillation decay, very low afterglow, high light yield, but poor light yield proportionality and degraded energy resolution.
NASA Astrophysics Data System (ADS)
Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Beck, Patrick R.; Swanberg, Erik L.; Hunter, Steven L.
2016-09-01
Breakthrough energy resolution, R(662keV) <4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce), by optimizing fabrication conditions. Here we describe the dependence of scintillation light yield and energy resolution on several variables: (1) Stoichiometry, in particular Gd/Y and Ga/Al ratios which modify the bandgap energy, (2) Processing methods, including vacuum vs. oxygen sintering, and (3) Trace co-dopants that influence the formation of Ce4+ and modify the intra-bandgap trap distribution. To learn about how chemical composition influences the scintillation properties of transparent ceramic garnet scintillators, we have measured: scintillation decay component amplitudes; intensity and duration of afterglow; thermoluminescence glow curve peak positions and amplitudes; integrated light yield; light yield non-proportionality, as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI); and energy resolution for gamma spectroscopy. Optimized GYGAG(Ce) provides R(662 keV) =3.0%, for 0.05 cm3 size ceramics with Silicon photodiode readout, and R(662 keV) =4.6%, at 2 in3 size with PMT readout.
Photo reduction of CO2 to CH4 on g-C3N4: The effect of concentrating light and pretreatment
NASA Astrophysics Data System (ADS)
Li, Dong; Fang, Xiaoxiang; Liu, Huayan; Lu, Hanfeng; Zhang, Zekai
2018-06-01
The behavior of CO2 photoreduction to CH4 on the g-C3N4 catalyst was studied in a concentrating light reactor. The g-C3N4 catalysts before and after pretreatment were characterized by FE-SEM, XRD and photoilluminance. It is found that concentrating light increases the CH4 yield on the g-C3N4 by heightening the incident light intensity, and light pretreatment has an excessive effect on the performance. Pretreated by suitable light intensity, air atmosphere and time, the CH4 yield on the g-C3N4 under concentrating light irradiation reached about 3.39 μmol.g-1.h-1, which is about 16 times of that g-C3N4 reacted at nature incident light without pretreatment. The mechanism of pretreatment is considered to be from the surface oxidation state change of the catalyst either from the oxidation of the catalyst surface or the activation of surface oxygen.
Preparation and performance study of a novel liquid scintillator with mixed solvent as the matrix
NASA Astrophysics Data System (ADS)
Zheng, Zhanlong; Zhu, Jiayi; Luo, Xuan; Xu, Yewei; Zhang, Qianfeng; Zhang, Xing; Bi, Yutie; Zhang, Lin
2017-04-01
A novel liquid scintillator with the mixed solvent as the matrix was prepared for obtaining a good comprehensive performance. In this ternary liquid scintillator, the combination of 20% pseudocumene (PC) and 80% linear-alkyl benzene (LAB) by volume was chosen as the mixed solvent, and 2,5-diphenyloxazole (PPO) and 1,4-bis(2-Methylstyryl) benzene (bis-MSB) were as the primary fluor and wavelength shifter, respectively. The optimum prescription was obtained with regard to the light yield. Some characterizations based on the optimal formulation were conducted. The fluorescence emission spectra and wavelength-dependent optical attenuation length of the sample were measured by the fluorescence spectrophotometer and an UV-Vis spectrometer, respectively. The light yield was characterized by adopting the home-made optical platform device. The decay time was tested by adopting the time-correlated single photon counting (TCSPC) technique featured in high dynamic range of several orders of magnitude in light intensity. The experimental test results showed that the sample had a fairly good comprehensive performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, T.; Nattress, J.; Mayer, Michael F.
2016-12-11
An exothermic neutron capture reaction can be used to uniquely identify neutrons in particle detectors. With the use of a capture-gated coincidence technique, the sequence of scatter events that lead to neutron thermalization prior to the neutron capture can also be used to measure neutron energy. We report on the measurement of thermalization light yield via a time-of-flight technique in a polyvinyl toluene-based scintillator EJ-290 within a heterogeneous composite detector that also includes 6Li-doped glass scintillator. The thermalization light output exhibits a strong correlation with neutron energy because of the preference for near-complete energy deposition prior to the 6Li(n,t)4He neutronmore » capture reaction. The nonproportionality of the light yield from nuclear recoils contributes to the observed broadening of the distribution of thermalization light output. The nonproportional dependence of the scintillation light output in the EJ-290 scintillator as a function of proton recoil energy has been characterized in the range of 0.3–14.1 MeV via the Birks parametrization through a combination of time-of-flight measurement and previously conducted measurements with Monoenergetic neutron sources.« less
Marcano, Aristides; Alvarado, Salvador; Meng, Junwei; Caballero, Daniel; Moares, Ernesto Marín; Edziah, Raymond
2014-01-01
We developed a pump-probe photothermal lens spectrophotometer that uses a broadband arc-lamp and a set of interference filters to provide tunable, nearly monochromatic radiation between 370 and 730 nm as the pump light source. This light is focused onto an absorbing sample, generating a photothermal lens of millimeter dimensions. A highly collimated monochromatic probe light from a low-power He-Ne laser interrogates the generated lens, yielding a photothermal signal proportional to the absorption of light. We measure the absorption spectra of scattering dye solutions using the device. We show that the spectra are not affected by the presence of scattering, confirming that the method only measures the absorption of light that results in generation of heat. By comparing the photothermal spectra with the usual absorption spectra determined using commercial transmission spectrophotometers, we estimate the quantum yield of scattering of the sample. We discuss applications of the device for spectroscopic characterization of samples such as blood and gold nanoparticles that exhibit a complex behavior upon interaction with light.
Characterizing Cool Giant Planets in Reflected Light
NASA Technical Reports Server (NTRS)
Marley, Mark
2016-01-01
While the James Webb Space Telescope will detect and characterize extrasolar planets by transit and direct imaging, a new generation of telescopes will be required to detect and characterize extrasolar planets by reflected light imaging. NASA's WFIRST space telescope, now in development, will image dozens of cool giant planets at optical wavelengths and will obtain spectra for several of the best and brightest targets. This mission will pave the way for the detection and characterization of terrestrial planets by the planned LUVOIR or HabEx space telescopes. In my presentation I will discuss the challenges that arise in the interpretation of direct imaging data and present the results of our group's effort to develop methods for maximizing the science yield from these planned missions.
NASA Astrophysics Data System (ADS)
Royo, Santiago; Arranz, Maria J.; Arasa, Josep; Cattoen, Michel; Bosch, Thierry
2005-02-01
The present works depicts a measurement technique intended to enhance the characterization procedures of the photometric emissions of automotive headlamps, with potential applications to any light source emission, either automotive or non-automotive. A CCD array with a precisely characterized optical system is used for sampling the luminance field of the headlamp just a few centimetres in front of it, by combining deflectometric techniques (yielding the direction of the light beams) and photometric techniques (yielding the energy travelling in each direction). The CCD array scans the measurement plane using a self-developed mechanical unit and electronics, and then image-processing techniques are used for obtaining the photometric behaviour of the headlamp in any given plane, in particular in the plane and positions required by current normative, but also on the road, on traffic signs, etc. An overview of the construction of the system, of the considered principle of measurement, and of the main calibrations performed on the unit is presented. First results concerning relative measurements are presented compared both to reference data from a photometric tunnel and from a plane placed 5m away from the source. Preliminary results for the absolute photometric calibration of the system are also presented for different illumination beams of different headlamps (driving and passing beam).
van Loef, Edgar V.; Wang, Yimin; Miller, Stuart R.; Brecher, Charles; Rhodes, William H.; Baldoni, Gary; Topping, Stephen; Lingertat, Helmut; Sarin, Vinod K.; Shah, Kanai S.
2011-01-01
In this paper we report on the fabrication and characterization of SrHfO3:Ce ceramics. Powders were prepared by solid-state synthesis using metal oxides and carbonates. X-ray diffraction measurements showed that phase-pure SrHfO3 is formed at 1200°C. Inductively coupled plasma spectroscopy confirmed the purity and composition of each batch. SrHfO3 exhibits several phase changes in the solid, but this does not appear to be detrimental to the ceramics. Microprobe experiments showed uniform elemental grain composition, whereas aluminum added as charge compensation for trivalent cerium congregated at grain boundaries and triple points. Radioluminescence spectra revealed that the light yield decreases when the concentration of excess Sr increases. The decrease in the light yield may be related to the change of Ce3+ into Ce4+ ions. For stoichiometric SrHfO3:Ce, the light yield is about four times that of bismuth germanate (BGO), the conventional benchmark, indicating great potential for many scintillator applications. PMID:21339835
Crystal growth and characterization of europium doped KCaI3, a high light yield scintillator
NASA Astrophysics Data System (ADS)
Lindsey, Adam C.; Zhuravleva, Mariya; Stand, Luis; Wu, Yuntao; Melcher, Charles L.
2015-10-01
The presented study reports on the spectroscopic characteristics of a new high performance scintillation material KCaI3:Eu. The growth of ∅ 17 mm boules using the Bridgman-Stockbarger method in fused silica ampoules is demonstrated to produce yellow tinted, yet transparent single crystals suitable for use in spectroscopic applications due to very promising performance. Scintillation light yield of 72,000 ± 3000 ph/MeV and energy resolution of 3% (FWHM) at 662 keV and 6.1% at 122 keV was obtained from small single crystals of approximately 15 mm3. For a much larger 3.8 cm3 detector, 4.4% and 7.3% for the same energy. Proportionality of the scintillation response to the energy of ionizing radiation is within 96% of the ideal response over an energy range of 14-662 keV. The high light yield and energy resolution of KCaI3:Eu make it suitable for potential use in domestic security applications requiring radionuclide identification.
Microcolumnar and polycrystalline growth of LaBr3:Ce scintillator
NASA Astrophysics Data System (ADS)
Nagarkar, V. V.; Miller, S.; Sia, R.; Gaysinskiy, V.
2011-05-01
While a wide variety of new scintillators are now available, cerium-doped lanthanide halide scintillators have shown a strong potential toward fulfilling the needs of highly demanding applications such as radioisotope identification at room temperature, homeland security, quantitative molecular imaging for medical diagnostics, and disease staging and research. Despite their extraordinary advantages in terms of light yield and response uniformity over a wide energy range, issues related to reliable, large volume manufacturing of these high-light-yield materials in a rapid and economic manner has not been resolved or purposefully addressed. Here we report on synthesizing LaBr3:Ce scintillator using a thermal evaporation technique, which offers the potential to synthesize large quantities of small-to-large volume, high-quality material in a time-efficient and cost-effective manner. To date we have successfully applied this method to form both microcolumnar films and thick polycrystalline slabs of LaBr3:Ce, and have characterized their light yield, response linearity, decay time and afterglow.
NASA Astrophysics Data System (ADS)
Auer-Berger, Manuel; Tretnak, Veronika; Wenzl, Franz-Peter; Krenn, Joachim R.; List-Kratochvil, Emil J. W.
2017-10-01
We examine aluminum-nanodisc-induced collective lattice resonances as a means to enhance the efficiency of organic light emitting diodes. Thus, nanodisc arrays were embedded in the hole transporting layer of a solution-processed phosphorescent organic blue-light emitting diode. Through extinction spectroscopy, we confirm the emergence of array-induced collective lattice resonances within the organic light emitting diode. Through finite-difference time domain simulations, we show that the collective lattice resonances yield an enhancement of the electric field intensity within the emissive layer. The effectiveness for improving the light generation and light outcoupling is demonstrated by electro-optical characterization, realizing a gain in a current efficiency of 35%.
Characterizing extrasolar planets
NASA Astrophysics Data System (ADS)
Brown, Timothy M.
Transiting extrasolar planets provide the best current opportunities for characterizing the physical properties of extrasolar planets. In this review, I first describe the geometry of planetary transits, and methods for detecting and refining the observations of such transits. I derive the methods by which transit light curves and radial velocity data can be analyzed to yield estimates of the planetary radius, mass, and orbital parameters. I also show how visible-light and infrared spectroscopy can be valuable tools for understanding the composition, temperature, and dynamics of the atmospheres of transiting planets. Finally, I relate the outcome of a participatory lecture-hall exercise relating to one term in the Drake equation, namely the lifetime of technical civilizations.
Characterization of PbWO4 crystals for high-energy physics experiments
NASA Astrophysics Data System (ADS)
Kim, M. J.; Park, H.; Kim, H. J.
2016-09-01
High-energy physics (HEP) experiments have employed many new types of scintillators. Specifically, bismuth germanate, thallium-doped cesium iodide, and lead tungstate (PbWO4, PWO) have been used for the L3 experiment; CLEO II, Belle and BES-III; and CMS, respectively. PWO has particularly beneficial properties, such as high density, fast decay time, short radiation length and radiation hardness. In this study, we tested the PWO crystals at low temperatures to determine their applicability in future calorimeters. Various crystals from the Proton Antiproton Annihilations at Darmstadt (PANDA) experiment in Giessen, the Bogoroditsk Techno-Chemical Plant (BTCP) in Russia and by Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS) in China were investigated. We studied the scintillation properties of PWO crystals, such as their X-ray luminescence, relative light yields, absolute light yields, energy resolutions, decay times and longitudinal uniformities of their light yields. In addition, we measured the temperature dependences of the light yields and decay times by using a 137Cs γ-ray source. The emission spectra of the PWO crystals consisted of a broad band from 350 nm to 700 nm, and the peak emission wavelength in each spectrum was 420 nm. The emission spectra of the PWO crystals from SICCAS were slightly shifted to longer wavelengths compared with those of the crystals from the other institutions.
Light yield and energy resolution studies for SoLid phase 1
NASA Astrophysics Data System (ADS)
Boursette, Delphine;
2017-09-01
The SoLid experiment is searching for sterile neutrinos at a nuclear research reactor. It looks for inverse beta decays (producing a positron and a neutron in delayed coincidence) with a very segmented detector made of thousands of scintillating cubes. SoLid has a very innovative hybrid technology with two different scintillators which have different light emissions: polyvynil-toluene cubes (PVT) to detect the positrons and 6LiF:ZnS sheets on two faces of each PVT cube to detect the neutrons. It allows us to do an efficient pulse shape analysis to identify the signals from neutrons and positrons. The 288 kg detector prototype (SM1) took data in 2015. It demonstrated the detection principle and background rejection efficiency. The construction of SoLid phase I (˜ 1.5 t) has now started. To improve the energy resolution of SoLid phase I, we have tried to increase the light yield studying separately the two scintillators: PVT and ZnS. A test bench has been built to fully characterize and improve the neutron detection with the ZnS using an AmBe source. To study the positron light yield on the PVT, we have built another test bench with a 207Bi source. We have improved the design of the cubes, their wrapping or the type and the configuration of the fibers. We managed to increase the PVT light yield by about 66 % and improve the resolution of the positron energy on the test bench from 21 % to 16 % at 1 MeV.
Characterization of Spirulina biomass for CELSS diet potential
NASA Technical Reports Server (NTRS)
Tadros, Mahasin G.
1993-01-01
Cyanobacteria, Spirulina maxima as a biogenerative photosynthetic and an edible alga for the space craft crew in a CELSS, was evaluated in an effort to increase the growth rate, biomass, yield, and chemical analysis in continuous cultures. The cell characteristics were determined for cultures maintained at steady state with respect to the substrate concentration. The productivity increased in experiments exposed to low light (30 uE m(exp -2)s(exp -1). Oxygen evolved and protein production were higher in cultures exposed to low light intensity. There was a relationship between nitrate concentration and the yield of the culture. Increasing the concentration of nitrate in the growth medium up to 20 mM was enough to produce a culture having the same chemical composition as that of complete medium. High light was inhibiting the yield of the culture. Increasing the concentration of phosphate beyond 1 mM did not improve the yield of the culture. Increasing the concentration of sodium chloride in the growth medium did not affect the growth of the alga up to 0.1 M but beyond that the culture started to be stressed. The response to stress appeared in high production of total carbohydrate on the expense of protein production. The oxygen production was also higher in cultures stressed with sodium chloride.
In May 2012, a HESI-sponsored expert workshop yielded a proposed research strategy for systematically discovering, characterizing, and annotating fish early life-stage (FELS) adverse outcome pathways (AOPs) as well as prioritizing AOP development in light of current restrictions ...
NASA Astrophysics Data System (ADS)
Gogoi, Nibedita; Borah, Geetika; Gogoi, Pradip K.; Chetia, Tridip Ranjan
2018-01-01
An efficient heterogeneous photocatalyst composed of Au nanoparticle supported on TiO2 (anatase) is prepared by sol-gel method. This prepared nanocomposite showed good catalytic activity in the oxidation of various alcohols to aldehyde and ketone under irradiation of visible light. Various spectroscopic techniques including UV-Visible absorption spectral studies and photoluminescence study are employed to characterize the catalyst. It was also characterized by XRD, TEM, BET, XPS and ICP-AES analysis. In contrast to air and H2O2, use of TBHP as oxidant gave good yield. The reaction conditions with respect to solvent and amount of catalyst are optimized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiele, A.; Herold, M.; Lenk, I.
Transgenic potato (Solanum tuberosum) plants expressing Arabidopsis phytochrome B were characterized morphologically and physiologically under white light in a greenhouse to explore their potential for improved photosynthesis and higher tuber yields. As expected, overexpression of functional phytochrome B caused pleiotropic effects such as semidwarfism, decreased apical dominance, a higher number of smaller but thicker leaves, and increased pigmentation. Because of increased numbers of chloroplasts in elongated palisade cells, photosynthesis per leaf area and in each individual plant increased. In addition, photosynthesis was less sensitive to photoinactivation under prolonged light stress. The beginning of senescence was not delayed, but deceleration ofmore » chlorophyll degradation extended the lifetime of photosynthetically active plants. Both the higher photosynthetic performance and the longer lifespan of the transgenic plants allowed greater biomass production, resulting in extended underground organs with increased tuber yields.« less
Characterization of Peronospora belbahrii on basil under light and scanning electron microscopy
USDA-ARS?s Scientific Manuscript database
Basil (Ocimum spp.) downy mildew caused by Peronsoora belbahrii is a major yield-limiting disease of sweet basil (O. basilicum) production worldwide. In this study, sweet basil was grown in a soilless potting mix in plant growth chambers and inoculated with sporangia of P. belbahrii harvested from p...
USDA-ARS?s Scientific Manuscript database
Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...
Deep UV emitting scintillators for alpha and beta particle detection
NASA Astrophysics Data System (ADS)
Zhou, Y.; Jia, D. D.; Lewis, L. A.; Feofilov, S. P.; Meltzer, R. S.
2011-03-01
Several deep UV emitting scintillators, whose emission falls in the solar blind region of the spectrum (200-280 nm), are described and their scintillator properties are characterized. They include LaPO 4:Pr, YPO 4:Pr, YAlO 3:Pr, Pr(PO 3) 3, YPO 4:Bi and ScPO 4. These materials would facilitate the detection of ionizing radiation in open areas, even during the daylight hours, and could be used to support large area surveys that monitor for the presence of ionization radiation due, for example, to system leaks or transfer contamination. These materials can be used in the form of powders, thin films or paints for radiation detection. They are characterized for both beta radiation using electron beams (2-35 keV) and 137Cs and alpha radiations using 241Am sources. Their absolute light yields are estimated and are compared to that of Y 2SiO 5:Ce. Their light yields decrease as a function of electron energy but at 10 keV they approach 8000 ph/MeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalkreuth, W.; Macauley, G.
1984-04-01
Incident light microscopy was used to describe maturation and composition of organic material in oil shale samples from the Lower Carboniferous Albert Formation of New Brunswick. The maturation level was determined in normal (white) light by measuring vitrinite reflectance and in fluorescent light by measuring fluorescence spectral of alginite B. Results indicate low to intermediate maturation for all of the samples. Composition was determined by maceral analysis. Alginite B is the major organic component in all samples having significant oil potential. Oil yields obtained from the Fischer Assay process, and oil and gas potentials from Rock-Eval analyses correlate to themore » amounts of alginite B and bituminite determined in the samples. In some of the samples characterized by similar high concentrations of alginite B, decrease in Fischer Assay yields and oil and gas potentials is related to an increase in maturation, as expected by increase in the fluorescence parameter lambda/sub max/ and red/green quotient of alginite B. Incident light microscopy, particularly with fluorescent light, offers a valuable tool for the identification of the organic matter in oil shales and for the evaluation of their oil and gas potentials.« less
NASA Astrophysics Data System (ADS)
Ionin, Andrey; Ivanova, Anastasia; Khmel'nitskii, Roman; Klevkov, Yury; Kudryashov, Sergey; Mel'nik, Nikolay; Nastulyavichus, Alena; Rudenko, Andrey; Saraeva, Irina; Smirnov, Nikita; Zayarny, Dmitry; Baranov, Anatoly; Kirilenko, Demid; Brunkov, Pavel; Shakhmin, Alexander
2018-04-01
Milligram-per-second production of selenium nanoparticles in water sols was realized through 7-W, 2 MHz-rate femtosecond laser ablation of a crystalline trigonal selenium pellet. High-yield particle formation mechanism and ultimate mass-removal yield were elucidated by optical profilometry and scanning electron microscopy characterization of the corresponding crater depths and topographies. Deposited selenium particles were inspected by scanning and transmission electron microscopy, while their hydrosols (nanoinks) were characterized by optical transmission, Raman and dynamic light scattering spectroscopy. 2D patterns and coatings were ink-jet printed on thin supported silver films and their bare silica glass substrates, as well as on IR-transparent CaF2 substrates, and characterized by electron microscopy, energy-dispersive x-ray spectroscopy, and broadband (vis-mid IR) transmission spectroscopy, exhibiting crystalline selenium nanoparticles with high refractive index as promising all-dielectric sensing building nanoblocks in nanophotonics.
NASA Astrophysics Data System (ADS)
Veloce, L. M.; Kuźniak, M.; Di Stefano, P. C. F.; Noble, A. J.; Boulay, M. G.; Nadeau, P.; Pollmann, T.; Clark, M.; Piquemal, M.; Schreiner, K.
2016-06-01
Liquid noble based particle detectors often use the organic wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) which shifts UV scintillation light to the visible regime, facilitating its detection, but which also can scintillate on its own. Dark matter searches based on this type of detector commonly rely on pulse-shape discrimination (PSD) for background mitigation. Alpha-induced scintillation therefore represents a possible background source in dark matter searches. The timing characteristics of this scintillation determine whether this background can be mitigated through PSD. We have therefore characterized the pulse shape and light yield of alpha induced TPB scintillation at temperatures ranging from 300 K down to 4 K, with special attention given to liquid noble gas temperatures. We find that the pulse shapes and light yield depend strongly on temperature. In addition, the significant contribution of long time constants above ~50 K provides an avenue for discrimination between alpha decay events in TPB and nuclear-recoil events in noble liquid detectors.
Elevated CO2 response of photosynthesis depends on ozone concentration in aspen
A. Noormets; O. Kull; A. Sôber; M.E. Kubiske; D.F. Karnosky
2010-01-01
The effect of elevated CO2 and O3 on apparent quantum yield (f), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy...
Jet printing of convex and concave polymer micro-lenses.
Blattmann, M; Ocker, M; Zappe, H; Seifert, A
2015-09-21
We describe a novel approach for fabricating customized convex as well as concave micro-lenses using substrates with sophisticated pinning architecture and utilizing a drop-on-demand jet printer. The polymeric lens material deposited on the wafer is cured by UV light irradiation yielding lenses with high quality surfaces. Surface shape and roughness of the cured polymer lenses are characterized by white light interferometry. Their optical quality is demonstrated by imaging an USAF1951 test chart. The evaluated modulation transfer function is compared to Zemax simulations as a benchmark for the fabricated lenses.
Analysis and Characterization of an Acousto-Optic Beam Position Control System
2002-07-01
glass or plastic. This device can be viewed as a medium where light interacts with sound yielding a diffracted light beam. Bragg cells can operate in...by “optical activity” is considered to be very small for TeO2 [2]. The birefringence is due to the fact the index of refraction in for the incident...equations describes behavior of the acousto-optic device. The acoustic velocity can be expressed as follows. azat vvv Θ+Θ= 22222 sincos For TeO2 vt=616 m
Measurement of LYSO Intrinsic Light Yield Using Electron Excitation
NASA Astrophysics Data System (ADS)
Turtos, Rosana Martinez; Gundacker, Stefan; Pizzichemi, Marco; Ghezzi, Alessio; Pauwels, Kristof; Auffray, Etiennette; Lecoq, Paul; Paganoni, Marco
2016-04-01
The determination of the intrinsic light yield (LYint) of scintillating crystals, i.e. number of optical photons created per amount of energy deposited, constitutes a key factor in order to characterize and optimize their energy and time resolution. However, until now measurements of this quantity are affected by large uncertainties and often rely on corrections for bulk absorption and surface/edge state. The novel idea presented in this contribution is based on the confinement of the scintillation emission in the central upper part of a 10 mm cubic crystal using a 1.5 MeV electron beam with diameter of 1 mm. A black non-reflective pinhole aligned with the excitation point is used to fix the light extraction solid angle (narrower than total reflection angle), which then sets a light cone travel path through the crystal. The final number of photoelectrons detected using a Hamamatsu R2059 photomultiplier tube (PMT) was corrected for the extraction solid angle, the Fresnel reflection coefficient and quantum efficiency (QE) of the PMT. The total number of optical photons produced per energy deposited was found to be 40000 ph/MeV ± 9% (syst) ±3% (stat) for LYSO. Simulations using Geant4 were successfully compared to light output measurements of 2 × 2 mm2 section crystals with lengths of 5-30 mm, in order to validate the light transport model and set a limit on Light Transfer Efficiency estimations.
Eppel, Amir; Keren, Nir; Salomon, Eitan; Volis, Sergei; Rachmilevitch, Shimon
2013-03-01
The goal of the current research was to study the role of anthocyanin accumulation, O(2)-related photochemical processes and non-photochemical quenching (NPQ) in the response of desert and Mediterranean plants to drought and excessive light. Plants of Hordeum spontaneum were collected from Mediterranean and desert environments and were subjected to terminal drought for 25 days and then measured for PSII yield at 2 and 21% O(2), NPQ, net carbon assimilation, stomatal conductance, leaf relative water content (LRWC), anthocyanin concentration and leaf absorbance. Under terminal drought, LRWC, carbon assimilation and stomatal conductance decreased similarly and significantly in both the Mediterranean and the desert ecotypes. Anthocyanin accumulated more in the desert ecotype than in the Mediterranean ecotype. NPQ increased more in the Mediterranean ecotype as compared with the desert ecotype. PSII yield decreased significantly in the Mediterranean ecotype under drought and was much lower than in the desert ecotype under drought. The relatively high PSII yield under drought in the desert ecotype was O(2) dependent. The response of the H. spontaneum ecotype from a desert environment to drought stress was characterized by anthocyanin accumulation and induction of O(2) dependent photochemical activity, while the response of the Mediterranean ecotype was based on a higher induction of NPQ. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Han, Pei-pei; Sun, Ying; Jia, Shi-ru; Zhong, Cheng; Tan, Zhi-lei
2014-05-25
The influences of different wavelengths of light (red 660nm, yellow 590nm, green 520nm, blue 460nm, purple 400nm) and white light on extracellular polysaccharide (EPS) and capsular polysaccharide (CPS) production by Nostoc flagelliforme in liquid culture were demonstrated in this study. The results showed that, compared with white light, red and blue lights significantly increased both EPS and CPS production while yellow light reduced their production; purple and green lights stimulated EPS production but inhibited CPS formation. Nine constituent monosaccharides and one uronic acid were detected in both EPS and CPS, and their ratios showed significant differences among treatment with different light wavelengths. However, the advanced structure of EPS and CPS from various light conditions did not present obvious difference through Fourier transform infrared spectroscopy and X-ray diffraction characterization. These findings establish a basis for development of high-yielding polysaccharide production process and understanding their regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Characterization of a tin-loaded liquid scintillator for gamma spectroscopy and neutron detection
NASA Astrophysics Data System (ADS)
Wen, Xianfei; Harvey, Taylor; Weinmann-Smith, Robert; Walker, James; Noh, Young; Farley, Richard; Enqvist, Andreas
2018-07-01
A tin-loaded liquid scintillator has been developed for gamma spectroscopy and neutron detection. The scintillator was characterized in regard to energy resolution, pulse shape discrimination, neutron light output function, and timing resolution. The loading of tin into scintillators with low effective atomic number was demonstrated to provide photopeaks with acceptable energy resolution. The scintillator was shown to have reasonable neutron/gamma discrimination capability based on the charge comparison method. The effect on the discrimination quality of the total charge integration time and the initial delay time for tail charge integration was studied. To obtain the neutron light output function, the time-of-flight technique was utilized with a 252Cf source. The light output function was validated with the MCNPX-PoliMi code by comparing the measured and simulated pule height spectra. The timing resolution of the developed scintillator was also evaluated. The tin-loading was found to have negligible impact on the scintillation decay times. However, a relatively large degradation of timing resolution was observed due to the reduced light yield.
Characterization of Spirulina biomass for CELSS diet potential
NASA Technical Reports Server (NTRS)
Tadros, Mahasin G.
1988-01-01
Spirulina sp. as a bioregenerative photosynthetic and an edible alga for space craft crew in a CELSS, was characterized for growth rate and biomass yield in batch cultures, under various environmental conditions. The cell characteristics were identified for two strains of Spirulina: S. maxima and S. plantensis. Fast growth rate and high yield of both strains were obtained under the following conditions: temperature (30 to 35 C), light irradiance (60 to 100 uE/m/s), nitrate (30 mM), phosphate (2 mM), aeration (300 ml/min), and ph (9 to 10). The partitioning of the assimalatory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental growth conditions. The experiments with Spirulina demonstrated that under stress conditions (high light 120 uE/m/s, temperature 38 C, nitrogen or phosphate limitation; 0.1 M sodium chloride) carbohydrate increased at the expense of protein. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total proteins were increased up to almost 70 percent of the organic weight. Conclusion: The nutritional quality of the alga could be manipulated by growth conditions, and therefore usful as a subsystem in CELSS.
Galfsky, Tal; Sun, Zheng; Considine, Christopher R; Chou, Cheng-Tse; Ko, Wei-Chun; Lee, Yi-Hsien; Narimanov, Evgenii E; Menon, Vinod M
2016-08-10
The low quantum yield observed in two-dimensional semiconductors of transition metal dichalcogenides (TMDs) has motivated the quest for approaches that can enhance the light emission from these systems. Here, we demonstrate broadband enhancement of spontaneous emission and increase in Raman signature from archetype two-dimensional semiconductors: molybdenum disulfide (MoS2) and tungsten disulfide (WS2) by placing the monolayers in the near field of a photonic hypercrystal having hyperbolic dispersion. Hypercrystals are characterized by a large broadband photonic density of states due to hyperbolic dispersion while having enhanced light in/out coupling by a subwavelength photonic crystal lattice. This dual advantage is exploited here to enhance the light emission from the 2D TMDs and can be utilized for developing light emitters and solar cells using two-dimensional semiconductors.
Effect of low electric fields on alpha scintillation light yield in liquid argon
NASA Astrophysics Data System (ADS)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.
2017-01-01
Measurements were made of scintillation light yield of alpha particles from the 222Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a ~2% increase in light yield compared to alphas in no field.
Soleymani, A
2017-08-01
Crop response to light is an important parameter determining crop growth. Three field (split plots) experiments were conducted to investigate the effects of plant density, plant genotype and N fertilization on the light absorption and light extinction of sunflower (Helianthus annuus L.) and canola (Brassica napus L.). A detailed set of plant growth, light absorption and crop yield and oil related parameters were determined. Light was measured at noon during the sunny days with clear sky. In experiment I, although the plant density (PD) of 14 resulted in the highest rate of sunflower light absorption (31.37%) and light extinction (0.756), the highest rate of grain yield and grain oil yield was resulted at PD12 at 3639 and 1457.9kg/ha, respectively; as well as by genotype SUP.A. In experiment II (canola), PD80 resulted in the highest rate of light absorption (13.13%), light extinction (0.63), grain yield (2189.4kg/ha) and grain oil yield (556.54kg/ha). This was also the case for Genotype H. In experiment III (canola), although N150 resulted in the highest rate of light absorption (10.74%) and light extinction (0.48), the highest rate of grain yield (3413.6kg/ha) and grain oil yield (891.86kg/ha) was resulted at N100 as well as by Genotype H401. Results indicate how light properties, crop growth and yield of sunflower and canola can be affected by plant and environmental parameters, which are also of practical use by farmers. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Okubo, Chris H.
2007-10-01
Quantifying host rock deformation is vital to understanding the geologic evolution and productivity of subsurface fluid reservoirs. In support of on-going characterization of fracture controlled fluid flow through the light-toned layered deposits on Mars, key parameters of strength and deformability are derived from Microscopic Imager and Rock Abrasion Tool data collected by the Mars Exploration Rover Opportunity in Meridiani Planum. Analysis of 21 targets of light-toned layered deposits yields a median apparent porosity of 0.25. Additional physical parameters for each target are derived from these porosity measurements. The median value of unconfined compressive strength is 11.23 MPa, Young's modulus is 1.86 GPa, and the brittle-ductile transition pressure is 8.77 MPa.
Effect of low electric fields on alpha scintillation light yield in liquid argon
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; ...
2017-01-24
Measurements were made of scintillation light yield of alpha particles from themore » $$^{222}$$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. Furthermore, the light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a 2% increase in light yield compared to alphas in no field.« less
Gendreau, Paul L; Vitaro, Frank
2005-01-01
Labelling cigarettes as "light" or "mild" is claimed to be one of the biggest marketing scams in Canadian history. Arguably, such labelling implies that these varieties of cigarettes are less harmful than "regular" cigarettes. In Canada, a food product can be labelled "light" if there is a 25% reduction from the "reference food" and if the constituent being reduced is clearly identified (e.g., light in fat). Cigarette labelling does not comply with these regulations, however. To examine whether or not some tobacco constituents meet the 25% reduction criterion, we compared yields of 41 toxic and/or carcinogenic smoke constituents in six varieties of "light" cigarettes to the yields of "regular" cigarettes. We selected cigarettes from the two most popular Canadian brands, Du Maurier and Players. Using a set of data provided by Imperial Tobacco Canada and made available to the public by the Government of British Columbia, we compared yields measured under a laboratory protocol (modified ISO) that was designed to provide a more rigorous evaluation of the differences between varieties of cigarettes and a more accurate assessment of smokers' potential smoke intake than the traditional protocol (standard ISO). For all six varieties of "light" cigarettes, the yields of nicotine were higher by an average of 5% (range: 1% to 13%). The 25% reduction criterion was not met for any variety of "light" cigarettes concerning yields of tar. For all cigarettes tested, yields of tar were reduced on average by only 16% (range: 5% to 22%). For carbon monoxide (CO), only Player's Smooth Light had an over 25% reduction (30%) compared with Player's Regular. Conversely, yield of CO was 24% higher for Du Maurier Lights compared with Du Maurier Regular. As for the other smoke constituents, the majority (75%) were not reduced by 25% or more in "light" cigarettes, and a sizeable proportion of yields (e.g., acrylonitrile, benzene, chromium, m+p cresol, mercury, nickel, toluene) were larger in these varieties of cigarettes. Only yields of formaldehyde, crotonaldehyde, 1-aminonaphtalene, and proprionaldehyde were systematically reduced in all varieties of "light" cigarettes. The six varieties of "light" cigarettes examined in this study do not differ substantially from "regular" cigarettes in terms of smoke yields. We argue that the modified ISO protocol should be implemented for a more valid comparison of potential smoke yields in all varieties of cigarettes and that labelling based on this protocol should be promoted.
Li, Wen-Tao; Jin, Jing; Li, Qiang; Wu, Chen-Fei; Lu, Hai; Zhou, Qing; Li, Ai-Min
2016-04-15
Online monitoring dissolved organic matter (DOM) is urgent for water treatment management. In this study, high performance size exclusion chromatography with multi-UV absorbance and multi-emission fluorescence scans were applied to spectrally characterize samples from 16 drinking water sources across Yangzi River and Huai River Watersheds. The UV absorbance indices at 254 nm and 280 nm referred to the same DOM components and concentration, and the 280 nm UV light could excite both protein-like and humic-like fluorescence. Hence a novel UV fluorescence sensor was developed out using only one UV280 light-emitting diode (LED) as light source. For all samples, enhanced coagulation was mainly effective for large molecular weight biopolymers; while anion exchange further substantially removed humic substances. During chlorination tests, UVA280 and UVA254 showed similar correlations with yields of disinfection byproducts (DBPs); the humic-like fluorescence obtained from LED sensors correlated well with both trihalomethanes and haloacetic acids yields, while the correlation between protein-like fluorescence and trihalomethanes was relatively poor. Anion exchange exhibited more reduction of DBPs yields as well as UV absorbance and fluorescence signals than enhanced coagulation. The results suggest that the LED UV fluorescence sensors are very promising for online monitoring DOM and predicting DBPs formation potential during water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
ZnO PN Junctions for Highly-Efficient, Low-Cost Light Emitting Diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
David P. Norton; Stephen Pearton; Fan Ren
2007-09-30
By 2015, the US Department of Energy has set as a goal the development of advanced solid state lighting technologies that are more energy efficient, longer lasting, and more cost-effective than current technology. One approach that is most attractive is to utilize light-emitting diode technologies. Although III-V compound semiconductors have been the primary focus in pursuing this objective, ZnO-based materials present some distinct advantages that could yield success in meeting this objective. As with the nitrides, ZnO is a direct bandgap semiconductor whose gap energy (3.2 eV) can be tuned from 3.0 to 4 eV with substitution of Mg formore » higher bandgap, Cd for lower bandgap. ZnO has an exciton binding energy of 60 meV, which is larger than that for the nitrides, indicating that it should be a superior light emitting semiconductor. Furthermore, ZnO thin films can be deposited at temperatures on the order of 400-600 C, which is significantly lower than that for the nitrides and should lead to lower manufacturing costs. It has also been demonstrated that functional ZnO electronic devices can be fabricated on inexpensive substrates, such as glass. Therefore, for the large-area photonic application of solid state lighting, ZnO holds unique potential. A significant impediment to exploiting ZnO in light-emitting applications has been the absence of effective p-type carrier doping. However, the recent realization of acceptor-doped ZnO material overcomes this impediment, opening the door to ZnO light emitting diode development In this project, the synthesis and properties of ZnO-based pn junctions for light emitting diodes was investigated. The focus was on three issues most pertinent to realizing a ZnO-based solid state lighting technology, namely (1) achieving high p-type carrier concentrations in epitaxial and polycrystalline films, (2) realizing band edge emission from pn homojunctions, and (3) investigating pn heterojunction constructs that should yield efficient light emission. The project engaged established expertise at the University of Florida in ZnO film growth (D. Norton), device fabrication (F. Ren) and wide bandgap photonics (S. Pearton). It addressed p-type doping and junction formation in (Zn,Mg)O alloy thin films. The project employed pulsed laser deposition for film growth. The p-type dopant of interest was primarily phosphorus, given the recent results in our laboratory and elsewhere that this anions can yield p-type ZnO-based materials. The role of Zn interstitials, oxygen vacancies, and/or hydrogen complexes in forming compensating shallow donor levels imposes the need to simultaneously consider the role of in situ and post-growth processing conditions. Temperature-dependent Hall, Seebeck, C-V, and resistivity measurements was used to determine conduction mechanisms, carrier type, and doping. Temperature-dependent photoluminescence was used to determine the location of the acceptor level, injection efficiency, and optical properties of the structures. X-ray diffraction will used to characterize film crystallinity. Using these materials, the fabrication and characterization of (Zn,Mg)O pn homojunction and heterojunction devices was pursued. Electrical characterization of the junction capacitance and I-V behavior was used to extract junction profile and minority carrier lifetime. Electroluminescence from biased junctions was the primary property of interest.« less
Identifying Multiple Populations in M71 using CN
NASA Astrophysics Data System (ADS)
Gerber, Jeffrey M.; Friel, Eileen D.; Vesperini, Enrico
2018-01-01
It is now well established that globular clusters (GCs) host multiple stellar populations characterized by differences in several light elements. While these populations have been found in nearly all GCs, we still lack an entirely successful model to explain their formation. A key constraint to these models is the detailed pattern of light element abundances seen among the populations; different techniques for identifying these populations probe different elements and do not always yield the same results. We study a large sample of stars in the GC M71 for light elements C and N, using the CN and CH band strength to identify multiple populations. Our measurements come from low-resolution spectroscopy obtained with the WIYN-3.5m telescope for ~150 stars from the tip of the red-giant branch down to the main-sequence turn-off. The large number of stars and broad spatial coverage of our sample (out to ~3.5 half-light radii) allows us to carry out a comprehensive characterization of the multiple populations in M71. We use a combination of the various spectroscopic and photometric indicators to draw a more complete picture of the properties of the populations and to investigate the consistency of classifications using different techniques.
Kang, Dong Young; Kim, Won-Suk; Heo, In Sook; Park, Young Hun; Lee, Seungho
2010-11-01
Hyaluronic acid (HA) was extracted in a relatively large scale from rooster comb using a method similar to that reported previously. The extraction method was modified to simplify and to reduce time and cost in order to accommodate a large-scale extraction. Five hundred grams of frozen rooster combs yielded about 500 mg of dried HA. Extracted HA was characterized using asymmetrical flow field-flow fractionation (AsFlFFF) coupled online to a multiangle light scattering detector and a refractive index detector to determine the molecular size, molecular weight (MW) distribution, and molecular conformation of HA. For characterization of HA, AsFlFFF was operated by a simplified two-step procedure, instead of the conventional three-step procedure, where the first two steps (sample loading and focusing) were combined into one to avoid the adsorption of viscous HA onto the channel membrane. The simplified two-step AsFlFFF yielded reasonably good separations of HA molecules based on their MWs. The weight average MW (M(w) ) and the average root-mean-square (RMS) radius of HA extracted from rooster comb were 1.20×10(6) and 94.7 nm, respectively. When the sample solution was filtered through a 0.45 μm disposable syringe filter, they were reduced down to 3.8×10(5) and 50.1 nm, respectively. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization and Modeling of a Water-based Liquid Scintillator
L. J. Bignell; Beznosko, D.; Diwan, M. V.; ...
2015-12-15
We characterised Water-based Liquid Scintillator (WbLS) using low energy protons, UV-VIS absorbance, and fluorescence spectroscopy. We have also developed and validated a simulation model that describes the behaviour of WbLS in our detector configurations for proton beam energies of 210 MeV, 475 MeV, and 2 GeV and for two WbLS compositions. These results have enabled us to estimate the light yield and ionisation quenching of WbLS, as well as to understand the influence of the wavelength shifting of Cherenkov light on our measurements. These results are relevant to the suitability of WbLS materials for next generation intensity frontier experiments.
Synthesis and characterization of photoswitchable fluorescent silica nanoparticles.
Fölling, Jonas; Polyakova, Svetlana; Belov, Vladimir; van Blaaderen, Alfons; Bossi, Mariano L; Hell, Stefan W
2008-01-01
We have designed and synthesized a new functional (amino reactive) highly efficient fluorescent molecular switch (FMS) with a photochromic diarylethene and a rhodamine fluorescent dye. The reactive group in this FMS -N-hydroxysuccinimide ester- allows selective labeling of amino containing molecules or other materials. In ethanolic solutions, the compound displays a large fluorescent quantum yield of 52 % and a large fluorescence modulation ratio (94 %) between two states that may be interconverted with red and near-UV light. Silica nanoparticles incorporating the new FMS were prepared and characterized, and their spectroscopic and switching properties were also studied. The dye retained its properties after the incorporation into the silica, thereby allowing light-induced reversible high modulation of the fluorescence signal of a single particle for up to 60 cycles, before undergoing irreversible photobleaching. Some applications of these particles in fluorescence microscopy are also demonstrated. In particular, subdiffraction images of nanoparticles were obtained, in the focal plane of a confocal microscope.
Non-auditory factors affecting urban soundscape evaluation.
Jeon, Jin Yong; Lee, Pyoung Jik; Hong, Joo Young; Cabrera, Densil
2011-12-01
The aim of this study is to characterize urban spaces, which combine landscape, acoustics, and lighting, and to investigate people's perceptions of urban soundscapes through quantitative and qualitative analyses. A general questionnaire survey and soundwalk were performed to investigate soundscape perception in urban spaces. Non-auditory factors (visual image, day lighting, and olfactory perceptions), as well as acoustic comfort, were selected as the main contexts that affect soundscape perception, and context preferences and overall impressions were evaluated using an 11-point numerical scale. For qualitative analysis, a semantic differential test was performed in the form of a social survey, and subjects were also asked to describe their impressions during a soundwalk. The results showed that urban soundscapes can be characterized by soundmarks, and soundscape perceptions are dominated by acoustic comfort, visual images, and day lighting, whereas reverberance in urban spaces does not yield consistent preference judgments. It is posited that the subjective evaluation of reverberance can be replaced by physical measurements. The categories extracted from the qualitative analysis revealed that spatial impressions such as openness and density emerged as some of the contexts of soundscape perception. © 2011 Acoustical Society of America
Smith, Michael H.; South, Antoinette B.; Gaulding, Jeffrey C.; Lyon, L. Andrew
2009-01-01
We describe the synthesis and characterization of degradable nanogels that display bulk erosion under physiologic conditions (pH = 7.4, 37 °C). Erodible poly(N-isopropylmethacrylamide) nanogels were synthesized by copolymerization with N,O-(dimethacryloyl)hydroxylamine, a cross-linker previously used in the preparation of non-toxic and biodegradable bulk hydrogels. To monitor particle degradation, we employed multiangle light scattering and differential refractometry detection following asymmetrical flow field-flow fractionation. This approach allowed the detection of changes in nanogel molar mass and topology as a function of both temperature and pH. Particle erosion was evident from both an increase in nanogel swelling and a decrease in scattering intensity as a function of time. Following these analyses, the samples were recovered for subsequent characterization by direct particle tracking, which yields hydrodynamic size measurements and enables number density determination. Additionally, we confirmed the conservation of nanogel stimuli-responsivity through turbidity measurements. Thus, we have demonstrated the synthesis of degradable nanogels that erode under conditions and on timescales that are relevant for many drug delivery applications. The combined separation and light scattering detection method is demonstrated to be a versatile means to monitor erosion and should also find applicability in the characterization of other degradable particle constructs. PMID:20000662
Using pre-screening methods for an effective and reliable site characterization at megasites.
Algreen, Mette; Kalisz, Mariusz; Stalder, Marcel; Martac, Eugeniu; Krupanek, Janusz; Trapp, Stefan; Bartke, Stephan
2015-10-01
This paper illustrates the usefulness of pre-screening methods for an effective characterization of polluted sites. We applied a sequence of site characterization methods to a former Soviet military airbase with likely fuel and benzene, toluene, ethylbenzene, and xylene (BTEX) contamination in shallow groundwater and subsoil. The methods were (i) phytoscreening with tree cores; (ii) soil gas measurements for CH4, O2, and photoionization detector (PID); (iii) direct-push with membrane interface probe (MIP) and laser-induced fluorescence (LIF) sensors; (iv) direct-push sampling; and (v) sampling from soil and from groundwater monitoring wells. Phytoscreening and soil gas measurements are rapid and inexpensive pre-screening methods. Both indicated subsurface pollution and hot spots successfully. The direct-push sensors yielded 3D information about the extension and the volume of the subsurface plume. This study also expanded the applicability of tree coring to BTEX compounds and tested the use of high-resolution direct-push sensors for light hydrocarbons. Comparison of screening results to results from conventional soil and groundwater sampling yielded in most cases high rank correlation and confirmed the findings. The large-scale application of non- or low-invasive pre-screening can be of help in directing and focusing the subsequent, more expensive investigation methods. The rapid pre-screening methods also yielded useful information about potential remediation methods. Overall, we see several benefits of a stepwise screening and site characterization scheme, which we propose in conclusion.
McGraw, John T [Placitas, NM; Zimmer, Peter C [Albuquerque, NM; Ackermann, Mark R [Albuquerque, NM
2012-01-24
Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.
Williams, M. L.; Wiarda, D.; Ilas, G.; ...
2014-06-15
Recently, we processed a new covariance data library based on ENDF/B-VII.1 for the SCALE nuclear analysis code system. The multigroup covariance data are discussed here, along with testing and application results for critical benchmark experiments. Moreover, the cross section covariance library, along with covariances for fission product yields and decay data, is used to compute uncertainties in the decay heat produced by a burned reactor fuel assembly.
Sutter-Fella, Carolin M; Li, Yanbo; Amani, Matin; Ager, Joel W; Toma, Francesca M; Yablonovitch, Eli; Sharp, Ian D; Javey, Ali
2016-01-13
Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH3NH3PbI3-xBrx perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamic range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ Eg ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells.
Kim, Uihan; Song, Jaewoo; Lee, Donghak; Ryu, Suho; Kim, Soocheol; Hwang, Jaehyun; Joo, Chulmin
2015-12-15
We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL. Copyright © 2015 Elsevier B.V. All rights reserved.
[Dynamics of Amomum villosum growth and its fruit yield cultivated under tropical forests].
Zheng, Zheng; Gan, Jianmin; Feng, Zhili; Meng, Ying
2004-01-01
Investigations on the dynamics of Amomum villosum growth and its fruit yield cultivated under tropical ravine rainforest and secondary forest at different elevations in Xishuangbanna showed that the yield of A. villosum was influenced by the site age, sun light level of understorey, and water stress in dry season. The fruit yield and mature plant density decreased with increasing age of the A. villosum site. The fruit yield increased with sun light level when the light level in understorey was under 35% of full sun light (P < 0.05). The fruit yield at the lower site by stream was significantly higher than that at upper site (P < 0.05). The yield difference between ravine rainforest and secondary forest was not significant. Planned cultivation of A. villosum in the secondary forest of the shifting cultivation land by ravine from 800-1000 m elevation instead of customary cultivation in the ravine rainforest, could not only resolve the problem of the effect of light deficiency in understorey and water stress in the dry season on A. villosum fruit yield, but also be useful to protect the tropical ravine rain forest.
Tewolde, Fasil T; Lu, Na; Shiina, Kouta; Maruo, Toru; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru
2016-01-01
Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 μmol m(-2) s(-1) measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also more cost-effective than daytime inter-lighting. Thus, nighttime LED inter-lighting can effectively improve tomato plant growth and yield with lower energy cost compared with daytime both in summer and winter.
Tewolde, Fasil T.; Lu, Na; Shiina, Kouta; Maruo, Toru; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru
2016-01-01
Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 μmol m-2 s-1 measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also more cost-effective than daytime inter-lighting. Thus, nighttime LED inter-lighting can effectively improve tomato plant growth and yield with lower energy cost compared with daytime both in summer and winter. PMID:27092163
Characterization of the intrinsic scintillator Cs 2LiCeCl 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, R.
2017-10-02
In this work, we report on the scintillation properties of the intrinsic scintillator Cs 2LiCeCl 6 (CLCC), which is potentially useful for dual gamma-ray and neutron detection. CLCC is from the elpasolite family with a cubic structure. We grew the crystals at BNL by the vertical Bridgman growth technique. The luminescence spectrum of CLCC showed a doublet with peak maxima at 384 nm and 402 nm. The light yield of CLCC was approximately 20,000 photons/MeV, and the energy resolution was about 6% for 662-keV gamma radiation. A scintillation decay of ~81% of the total light was observed to be ~more » 90 nanoseconds.« less
Zirak, P; Penzkofer, A; Lehmpfuhl, C; Mathes, T; Hegemann, P
2007-01-03
The BLUF protein Slr1694 from the cyanobacterium Synechocystis sp. PCC6803 is characterized by absorption and emission spectroscopy. Slr1694 expressed from E. coli which non-covalently binds FAD, FMN, and riboflavin (called Slr1694(I)), and reconstituted Slr1694 which dominantly contains FAD (called Slr1694(II)) are investigated. The receptor conformation of Slr1694 (dark adapted form Slr1694(r)) is transformed to the putative signalling state (light adapted form Slr1694(s)) with red-shifted absorption and decreased fluorescence efficiency by blue-light excitation. In the dark at 22 degrees C, the signalling state recovers back to the initial receptor state with a time constants of about 14.2s for Slr1694(I) and 17s for Slr1694(II). Quantum yields of signalling state formation of approximately 0.63+/-0.07 for both Slr1694(I) and Slr1694(II) were determined by transient transmission measurements and intensity dependent steady-state transmission measurements. Extended blue-light excitation causes some bound flavin conversion to the hydroquinone form and some photo-degradation, both with low quantum efficiency. The flavin-hydroquinone re-oxidizes slowly back (time constant 5-9 min) to the initial flavoquinone form in the dark. A photo-cycle dynamics scheme is presented.
Surface modification and characterization of indium-tin oxide for organic light-emitting devices.
Zhong, Z Y; Jiang, Y D
2006-10-15
In this work, we used different treatment methods (ultrasonic degreasing, hydrochloric acid treatment, and oxygen plasma) to modify the surfaces of indium-tin oxide (ITO) substrates for organic light-emitting devices. The surface properties of treated ITO substrates were studied by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), sheet resistance, contact angle, and surface energy measurements. Experimental results show that the ITO surface properties are closely related to the treatment methods, and the oxygen plasma is more efficient than the other treatments since it brings about smoother surfaces, lower sheet resistance, higher work function, and higher surface energy and polarity of the ITO substrate. Moreover, polymer light-emitting electrochemical cells (PLECs) with differently treated ITO substrates as device electrodes were fabricated and characterized. It is found that surface treatments of ITO substrates have a certain degree of influence upon the injection current, brightness, and efficiency, but hardly upon the turn-on voltages of current injection and light emission, which are in agreement with the measured optical energy gap of the electroluminescent polymer. The oxygen plasma treatment on the ITO substrate yields the best performance of PLECs, due to the improvement of interface formation and electrical contact of the ITO substrate with the polymer blend in the PLECs.
Yang, Ying; Weathers, Pamela
2015-01-01
Ettlia oleoabundans, a freshwater unicellular green microalga, was grown under different light qualities ± carbon dioxide-enriched air to determine the combined effects on growth and lipid production of this oleaginous species. Keeping total light intensity constant, when a portion of the cool white was replaced by red, volumetric lipid yield increased 2.8-fold mainly due to the greater yield of oleic acid, a desirable biodiesel precursor. Only 30 min of red light treatment was sufficient to increase lipid yield and quality to the same level as cultures provided red light for >14 days, indicating the potential role of red light in stimulating lipid production of this species. Carbon dioxide enrichment via air sparging enhanced exponential growth, carbon conversion efficiency, and nutrient consumption. Together, these results showed that light quality plays an important role in microalgal lipid production. Adjustment in light quality and gas delivery efficiency with carbon dioxide enrichment improved lipid yield and quality in this and possibly other oleaginous algal species.
Physical and chemical characterization of petroleum products by GC-MS.
Mendez, A; Meneghini, R; Lubkowitz, J
2007-01-01
There is a need for reliable and fast means of monitoring refining, conversion, and upgrading processes aiming to increase the yield of light distillates, and thus, reducing the oil barrel bottoms. By simultaneously utilizing the FID and mass selective detectors while splitting the column effluent in a controlled way, it is possible to obtain identical gas chromatograms and total ion chromatograms from a single run. This means that besides the intensity vs. time graphs, the intensity vs. mass and boiling point can also be obtained. As a result, physical and chemical characterization can be performed in a simple and rapid manner. Experimental results on middle, heavy distillates, and crude oil fractions show clearly the effect of upgrading processes on the chemical composition and yields of diesel, jet fuels, and high vacuum gasoil fractions. The methodology is fully compliant with ASTM D-2887, D-7213, D-6352, and D7169 for simulated distillation and the previously mentioned mass spectrometry standards. The group type analysis correlated satisfactorily with high-performance liquid chromatography data.
Slattery, Rebecca A; VanLoocke, Andy; Bernacchi, Carl J; Zhu, Xin-Guang; Ort, Donald R
2017-01-01
Reducing chlorophyll (chl) content may improve the conversion efficiency of absorbed photosynthetically active radiation into biomass and therefore yield in dense monoculture crops by improving light penetration and distribution within the canopy. The effects of reduced chl on leaf and canopy photosynthesis and photosynthetic efficiency were studied in two reportedly robust reduced-chl soybean mutants, Y11y11 and y9y9 , in comparison to the wild-type (WT) "Clark" cultivar. Both mutants were characterized during the 2012 growing season whereas only the Y11y11 mutant was characterized during the 2013 growing season. Chl deficiency led to greater rates of leaf-level photosynthesis per absorbed photon early in the growing season when mutant chl content was ∼35% of the WT, but there was no effect on photosynthesis later in the season when mutant leaf chl approached 50% of the WT. Transient benefits of reduced chl at the leaf level did not translate to improvements in canopy-level processes. Reduced pigmentation in these mutants was linked to lower water use efficiency, which may have dampened any photosynthetic benefits of reduced chl, especially since both growing seasons experienced significant drought conditions. These results, while not confirming our hypothesis or an earlier published study in which the Y11y11 mutant significantly outyielded the WT, do demonstrate that soybean significantly overinvests in chl. Despite a >50% chl reduction, there was little negative impact on biomass accumulation or yield, and the small negative effects present were likely due to pleiotropic effects of the mutation. This outcome points to an opportunity to reinvest nitrogen and energy resources that would otherwise be used in pigment-proteins into increasing biochemical photosynthetic capacity, thereby improving canopy photosynthesis and biomass production.
Slattery, Rebecca A.; VanLoocke, Andy; Bernacchi, Carl J.; Zhu, Xin-Guang; Ort, Donald R.
2017-01-01
Reducing chlorophyll (chl) content may improve the conversion efficiency of absorbed photosynthetically active radiation into biomass and therefore yield in dense monoculture crops by improving light penetration and distribution within the canopy. The effects of reduced chl on leaf and canopy photosynthesis and photosynthetic efficiency were studied in two reportedly robust reduced-chl soybean mutants, Y11y11 and y9y9, in comparison to the wild-type (WT) “Clark” cultivar. Both mutants were characterized during the 2012 growing season whereas only the Y11y11 mutant was characterized during the 2013 growing season. Chl deficiency led to greater rates of leaf-level photosynthesis per absorbed photon early in the growing season when mutant chl content was ∼35% of the WT, but there was no effect on photosynthesis later in the season when mutant leaf chl approached 50% of the WT. Transient benefits of reduced chl at the leaf level did not translate to improvements in canopy-level processes. Reduced pigmentation in these mutants was linked to lower water use efficiency, which may have dampened any photosynthetic benefits of reduced chl, especially since both growing seasons experienced significant drought conditions. These results, while not confirming our hypothesis or an earlier published study in which the Y11y11 mutant significantly outyielded the WT, do demonstrate that soybean significantly overinvests in chl. Despite a >50% chl reduction, there was little negative impact on biomass accumulation or yield, and the small negative effects present were likely due to pleiotropic effects of the mutation. This outcome points to an opportunity to reinvest nitrogen and energy resources that would otherwise be used in pigment-proteins into increasing biochemical photosynthetic capacity, thereby improving canopy photosynthesis and biomass production. PMID:28458677
NASA Astrophysics Data System (ADS)
Abdelaziz, Chebboubi; Grégoire, Kessedjian; Olivier, Serot; Sylvain, Julien-Laferriere; Christophe, Sage; Florence, Martin; Olivier, Méplan; David, Bernard; Olivier, Litaize; Aurélien, Blanc; Herbert, Faust; Paolo, Mutti; Ulli, Köster; Alain, Letourneau; Thomas, Materna; Michal, Rapala
2017-09-01
The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. In the past with the LOHENGRIN spectrometer of the ILL, priority has been given for the studies in the light fission fragment mass range. The LPSC in collaboration with ILL and CEA has developed a measurement program on symmetric and heavy mass fission fragment distributions. The combination of measurements with ionisation chamber and Ge detectors is necessary to describe precisely the heavy fission fragment region in mass and charge. Recently, new measurements of fission yields and kinetic energy distributions are has been made on the 233U(nth,f) reaction. The focus of this work has been on the new optical and statistical methodology and the self-normalization of the data to provide new absolute measurements, independently of any libraries, and the associated experimental covariance matrix.
Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B.; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva
2018-01-01
The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity. PMID:29780400
Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva
2018-01-01
The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity.
10B enriched plastic scintillators for application in thermal neutron detection
NASA Astrophysics Data System (ADS)
Mahl, Adam; Yemam, Henok A.; Fernando, Roshan; Koubek, Joshua T.; Sellinger, Alan; Greife, Uwe
2018-02-01
We report here on the synthesis and characterization of a novel 10B enriched aromatic molecule that can be incorporated into common poly(vinyltoluene) (PVT) based plastic scintillators to achieve enhanced thermal neutron detection. Starting from relatively inexpensive 10B enriched boric acid, we have prepared 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (MBB) in three high yield steps. MBB is soluble and compatible with PVT based formulations and results in stable plastic scintillators. Chemical synthesis, solubility limit in PVT, and the physical properties of the dopant were explored. The relevant response properties of the resulting scintillators when exposed to neutron and gamma radiation, including light yield and pulse shape discrimination properties were measured and analyzed.
Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland
2017-01-01
For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. PMID:27639623
Metal Sorbing Vesicles: Light Scattering Characterization and Metal Sorbtion Behavior.
NASA Astrophysics Data System (ADS)
van Zanten, John Hollis
1992-01-01
The research described herein consisted of two parts: light scattering characterization of vesicles and kinetic investigations of metal sorbing vesicles. Static light scattering techniques can be used to determine the geometric size, shape and apparent molecular weight of phosphatidylcholine vesicles in aqueous suspension. A Rayleigh-Gans-Debye (RGD) approximation analysis of multiangle scattered light intensity data yields the size and degree of polydispersity of the vesicles in solution, while the Zimm plot technique provides the radius of gyration and apparent weight-average molecular weight. Together the RGD approximation and Zimm plots can be used to confirm the geometric shape of vesicles and can give a good estimate of the vesicle wall thickness in some cases. Vesicles varying from 40 to 115 nm in diameter have been characterized effectively. The static light scattering measurements indicate that, as expected, phosphatidylcholine vesicles in this size range scatter light as isotropic hollow spheres. Additionally, static and dynamic light scattering measurements have been made and compared with one another. The values for geometric radii determined by static light scattering typically agree with those estimated by dynamic light scattering to within a few percent. Interestingly however, dynamic measurements suggest that there is a significant degree of polydispersity present in the vesicle dispersions, while static measurements indicate near size monodisperse dispersions. Metal sorbing vesicles which harbor ionophores, such as antibiotic A23187 and synthetic carriers, in their bilayer membranes have been produced. These vesicles also encapsulate the chelating compound, nitrilotriacetate, to provide the driving force for metal ion uptake. Very dilute dispersions (on the order of 0.03% w/v) of these metal sorbing vesicles were capable of removing Cd ^{2+} and Pb^{2+ } from dilute aqueous solution (5 ppm and less) and concentrating these metal ions several hundred to more than a thousand fold in the vesicle interior in a few minutes time. Synthetic ionophores were found to preferentially transport Pb^{2+} over Cd^{2+}, thus suggesting that engineered vesicle dispersions can be used as selective separations media. The effect of ionophore concentration, solution pH, solution ionic strength, initial metal ion concentration and vesicle concentration have been investigated.
NASA Astrophysics Data System (ADS)
Sogabe, Tomah; Ogura, Akio; Hung, Chao-Yu; Evstropov, Valery; Mintairov, Mikhail; Shvarts, Maxim; Okada, Yoshitaka
2013-12-01
In this paper, we focused on developing an accurate model to describe the luminescent coupling (L-C) effect in multijunction solar cells (MJSC) under light concentration. We present here a transcend current-voltage (I-V) formula combined with a self-consistent simulation algorithm to derive the coupling yield γ dependence on light intensity by including the electrical parameters such as shunt resistance (Rsh) and series resistance (Rs), which were ignored in previous simulation models. The effects of both Rsh and Rs on γ were revealed, and the dependence of γ on the external voltage bias Vbias was investigated. Meanwhile, we have performed experiments to determine coupling yield γ by measuring the I-V curves of individual subcell of InGaP/GaAs/Ge triple junction solar cell under varied light intensity. We found that the measured results are only in good agreement with the simulated data obtained from the model where the resistance parameters were included. Based on these results, we calculated the conversion efficiency of MJSC and found that the efficiency increase due to L-C effect is 0.31% under 1 sun and 1.07% under 1000 suns. Thus the L-C analysis results presented here will work as an additional device optimization criteria for MJSC toward higher efficiency.
Riederer, Michael S; Requist, Brennan D; Payne, Karin A; Way, J Douglas; Krebs, Melissa D
2016-11-05
In this work, an emulsion crosslinking method was developed to produce chitosan-genipin microgels which acted as an injectable and microporous scaffold. Chitosan was characterized with respect to pH by light scattering and aqueous titration. Microgels were characterized with swelling, light scattering, and rheometry of densely-packed microgel solutions. The results suggest that as chitosan becomes increasingly deprotonated above the pKa, repulsive forces diminish and intermolecular attractions cause pH-responsive chain aggregation; leading to microgel-microgel aggregation as well. The microgels with the most chitosan and least cross-linker showed the highest yield stress and a storage modulus of 16kPa when condensed as a microgel paste at pH 7.4. Two oppositely-charged growth factors could be encapsulated into the microgels and endothelial cells were able to proliferate into the 3D microgel scaffold. This work motivates further research on the applications of the chitosan microgel scaffold as an injectable and microporous scaffold in regenerative medicine. Copyright © 2016 Elsevier Ltd. All rights reserved.
Motorist actions at a crosswalk with an in-pavement flashing light system.
Karkee, Ganesh J; Nambisan, Shashi S; Pulugurtha, Srinivas S
2010-12-01
An in-pavement flashing light system is used at crosswalks to alert motorists and pedestrians of possible conflicts and to influence their behavior to enhance safety. The relative behaviors of the drivers and the pedestrians affect safety. An evaluation of motorist behavior at a pedestrian crosswalk with an in-pavement flashing light system is presented in this manuscript. Field observations provide the basis to evaluate motorist behavior at a crosswalk with an in-pavement flashing light system. Outcomes of pedestrian and motorists actions were observed to quantify measures of effectiveness (MOEs) such as yielding behavior of motorists, vehicle speeds, and yielding distance from the crosswalk. A before-and-after study design was used. The before condition was prior to the activation of the in-pavement flashing light system and the after condition was after the activation of the in-pavement flashing light system. The study was conducted on a relatively low-volume roadway located in the Henderson, Nevada. The significance of the differences in the MOEs between the 2 study periods was evaluated using statistical analysis tools such as a one-tailed test for proportions and the Welch-Satterthwaite t-test. The results show that the installation of the in-pavement flashing light system increased the yielding behavior of motorists significantly (P < 0.001). The vehicular speeds decreased when pedestrians were waiting at the curb to cross and when they were crossing (P < 0.001). Motorists yielded to pedestrians on an average about 3 m (∼10 feet) upstream from the yield markings and the yielding distances were consistent in both directions. The in-pavement flashing light system is seen to be effective to improve motorists' yielding behavior and the speeds of vehicles were also observed to decrease in the presence of pedestrians.
High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites
Sutter-Fella, Carolin M.; Li, Yanbo; Amani, Matin; ...
2015-12-21
Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH 3NH 3PbI 3-xBr x perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamicmore » range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ E g ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells. (Figure Presented).« less
Light yield in DarkSide-10: A prototype two-phase argon TPC for dark matter searches
NASA Astrophysics Data System (ADS)
Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cline, D.; Cocco, A. G.; Condon, C.; D'Angelo, D.; Davini, S.; De Haas, E.; Derbin, A.; Di Pietro, G.; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghag, C.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Shields, E.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Maricic, J.; Martoff, C. J.; Meng, Y.; Meroni, E.; Meyers, P. D.; Mohayai, T.; Montanari, D.; Montuschi, M.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, N.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Teymourian, A.; Thompson, J.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.
2013-09-01
As part of the DarkSide program of direct dark matter searches using two-phase argon TPCs, a prototype detector with an active volume containing 10 kg of liquid argon, DarkSide-10, was built and operated underground in the Gran Sasso National Laboratory in Italy. A critically important parameter for such devices is the scintillation light yield, as photon statistics limits the rejection of electron-recoil backgrounds by pulse shape discrimination. We have measured the light yield of DarkSide-10 using the readily-identifiable full-absorption peaks from gamma ray sources combined with single-photoelectron calibrations using low-occupancy laser pulses. For gamma lines of energies in the range 122-1275 keV, we get light yields averaging 8.887±0.003(stat)±0.444(sys) p.e./keVee. With additional purification, the light yield measured at 511 keV increased to 9.142±0.006(stat) p.e./keVee.
A novel Ru/TiO2 hybrid nanocomposite catalyzed photoreduction of CO2 to methanol under visible light
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Joshi, Chetan; Labhsetwar, Nitin; Boukherroub, Rabah; Jain, Suman L.
2015-09-01
A novel in situ synthesized Ru(bpy)3/TiO2 hybrid nanocomposite is developed for the photoreduction of CO2 into methanol under visible light irradiation. The prepared composite was characterized by means of SEM, TEM, XRD, DT-TGA, XPS, UV-Vis and FT-IR techniques. The photocatalytic activity of the synthesized hybrid catalyst was tested for the photoreduction of CO2 under visible light using triethylamine as a sacrificial donor. The methanol yield for the Ru(bpy)3/TiO2 hybrid nanocomposite was found to be 1876 μmol g-1 cat (φMeOH 0.024 mol Einstein-1) that was much higher in comparison with the in situ synthesized TiO2, 828 μmol g-1 cat (φMeOH 0.010 mol Einstein-1) and the homogeneous Ru(bpy)3Cl2 complex, 385 μmol g-1 cat (φMeOH 0.005 mol Einstein-1).A novel in situ synthesized Ru(bpy)3/TiO2 hybrid nanocomposite is developed for the photoreduction of CO2 into methanol under visible light irradiation. The prepared composite was characterized by means of SEM, TEM, XRD, DT-TGA, XPS, UV-Vis and FT-IR techniques. The photocatalytic activity of the synthesized hybrid catalyst was tested for the photoreduction of CO2 under visible light using triethylamine as a sacrificial donor. The methanol yield for the Ru(bpy)3/TiO2 hybrid nanocomposite was found to be 1876 μmol g-1 cat (φMeOH 0.024 mol Einstein-1) that was much higher in comparison with the in situ synthesized TiO2, 828 μmol g-1 cat (φMeOH 0.010 mol Einstein-1) and the homogeneous Ru(bpy)3Cl2 complex, 385 μmol g-1 cat (φMeOH 0.005 mol Einstein-1). Electronic supplementary information (ESI) available: GC chromatograms of reaction products and calibration curve for methanol analysis. See DOI: 10.1039/c5nr03712c
Search for Sterile Neutrinos Using the MiniBooNE Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorel, Michel
2005-01-01
The possible existence of light sterile neutrinos in Nature is motivated, and the prospects to extend sterile neutrino searches beyond current limits is substantiated, using the MiniBooNE neutrino beam and detector at Fermilab. We report on the neutrino flux predictions for the MiniBooNE experiment, on the characterization of the charged-current, quasi-elastic interactions of muon neutrinos ({nu}{sub {mu}}n {yields} {mu}{sup -}p) observed, and on the experiment's sensitivity to sterile neutrinos via muon neutrino disappearance.
Risk Informed Margins Management as part of Risk Informed Safety Margin Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis Smith
2014-06-01
The ability to better characterize and quantify safety margin is important to improved decision making about Light Water Reactor (LWR) design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margin management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. In addition, as research and development in the LWR Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plantmore » safety and performance will become known. To support decision making related to economics, readability, and safety, the Risk Informed Safety Margin Characterization (RISMC) Pathway provides methods and tools that enable mitigation options known as risk informed margins management (RIMM) strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.
Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughoutmore » the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.« less
Vertical pillar-superlattice array and graphene hybrid light emitting diodes.
Lee, Jung Min; Choung, Jae Woong; Yi, Jaeseok; Lee, Dong Hyun; Samal, Monica; Yi, Dong Kee; Lee, Chul-Ho; Yi, Gyu-Chul; Paik, Ungyu; Rogers, John A; Park, Won Il
2010-08-11
We report a type of device that combines vertical arrays of one-dimensional (1D) pillar-superlattice (PSL) structures with 2D graphene sheets to yield a class of light emitting diode (LED) with interesting mechanical, optical, and electrical characteristics. In this application, graphene sheets coated with very thin metal layers exhibit good mechanical and electrical properties and an ability to mount, in a freely suspended configuration, on the PSL arrays as a top window electrode. Optical characterization demonstrates that graphene exhibits excellent optical transparency even after deposition of the thin metal films. Thermal annealing of the graphene/metal (Gr/M) contact to the GaAs decreases the contact resistance, to provide enhanced carrier injection. The resulting PSL-Gr/M LEDs exhibit bright light emission over large areas. The result suggests the utility of graphene-based materials as electrodes in devices with unusual, nonplanar 3D architectures.
NASA Technical Reports Server (NTRS)
Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.; Sager, J. C. (Principal Investigator)
1997-01-01
Red light-emitting diodes (LEDs) are a potential light source for growing plants in spaceflight systems because of their safety, small mass and volume, wavelength specificity, and longevity. Despite these attractive features, red LEDs must satisfy requirements for plant photosynthesis and photomorphogenesis for successful growth and seed yield. To determine the influence of gallium aluminium arsenide (GaAlAs) red LEDs on wheat photomorphogenesis, photosynthesis, and seed yield, wheat (Triticum aestivum L., cv. 'USU-Super Dwarf') plants were grown under red LEDs and compared to plants grown under daylight fluorescent (white) lamps and red LEDs supplemented with either 1% or 10% blue light from blue fluorescent (BF) lamps. Compared to white light-grown plants, wheat grown under red LEDs alone demonstrated less main culm development during vegetative growth through preanthesis, while showing a longer flag leaf at 40 DAP and greater main culm length at final harvest (70 DAP). As supplemental BF light was increased with red LEDs, shoot dry matter and net leaf photosynthesis rate increased. At final harvest, wheat grown under red LEDs alone displayed fewer subtillers and a lower seed yield compared to plants grown under white light. Wheat grown under red LEDs+10% BF light had comparable shoot dry matter accumulation and seed yield relative to wheat grown under white light. These results indicate that wheat can complete its life cycle under red LEDs alone, but larger plants and greater amounts of seed are produced in the presence of red LEDs supplemented with a quantity of blue light.
Strontium and barium iodide high light yield scintillators
NASA Astrophysics Data System (ADS)
Cherepy, Nerine J.; Hull, Giulia; Drobshoff, Alexander D.; Payne, Stephen A.; van Loef, Edgar; Wilson, Cody M.; Shah, Kanai S.; Roy, Utpal N.; Burger, Arnold; Boatner, Lynn A.; Choong, Woon-Seng; Moses, William W.
2008-02-01
Europium-doped strontium and barium iodide are found to be readily growable by the Bridgman method and to produce high scintillation light yields. SrI2(Eu ) emits into the Eu2+ band, centered at 435nm, with a decay time of 1.2μs and a light yield of ˜90000photons/MeV. It offers energy resolution better than 4% full width at half maximum at 662keV, and exhibits excellent light yield proportionality. BaI2(Eu ) produces >30000photons/MeV into the Eu2+ band at 420nm (<1μs decay). An additional broad impurity-mediated recombination band is present at 550nm (>3μs decay), unless high-purity feedstock is used.
The influence of day/night cycles on biomass yield and composition of Neochloris oleoabundans.
de Winter, Lenneke; Cabanelas, Iago Teles Dominguez; Martens, Dirk E; Wijffels, René H; Barbosa, Maria J
2017-01-01
Day/night cycles regulate the circadian clock of organisms to program daily activities. Many species of microalgae have a synchronized cell division when grown under a day/night cycle, and synchronization might influence biomass yield and composition. Therefore, the aim of this study was to study the influence of day/night cycle on biomass yield and composition of the green microalgae Neochloris oleoabundans . Hence, we compared continuous turbidostat cultures grown under continuous light with cultures grown under simulated day/night cycles. Under day/night cycles, cultures were synchronized as cell division was scheduled in the night, whereas under continuous light cell division occurred randomly synchronized cultures were able to use the light 10-15% more efficiently than non-synchronized cultures. Our results indicate that the efficiency of light use varies over the cell cycle and that synchronized cell division provides a fitness benefit to microalgae. Biomass composition under day/night cycles was similar to continuous light, with the exception of starch content. The starch content was higher in cultures under continuous light, most likely because the cells never had to respire starch to cover for maintenance during dark periods. Day/night cycles were provided in a 'block' (continuous light intensity during the light period) and in a 'sine' (using a sine function to simulate light intensities from sunrise to sunset). There were no differences in biomass yield or composition between these two ways of providing light (in a 'block' or in a 'sine'). The biomass yield and composition of N. oleoabundans were influenced by day/night cycles. These results are important to better understand the relations between research done under continuous light conditions and with day/night cycle conditions. Our findings also imply that more research should be done under day/night cycles.
NASA Astrophysics Data System (ADS)
van Diggelen, Lisa; Khin, Hnin; Conner, Kip; Shao, Jenny; Sweezy, Margaretta; Jung, Anna H.; Isaac, Meden; Simonis, Ursula
2009-06-01
Stopping cancer in its path occurs when photosensitizers (PSs) induce apoptotic cell death after their exposure to light and the subsequent formation of reactive oxygen species. In pursuit of our hypothesis that mitochondrial localizing PSs will enhance the efficacy of the photosensitizing process in photodynamic therapy, since they provoke cell death by inducing apoptosis, we synthesized and characterized tetraphenylporphyrins (TPPs) that are substituted at the paraphenyl positions by two amino acids and two fluoro or hydroxyl groups, respectively. They were prepared according to the Lindsey-modified Adler-Longo methodology using trifluoromethanesulfonylchloride (CF3SO2Cl) as a catalyst instead of trifluoroacetic acid. The use of CF3SO2Cl yielded cleaner products in significantly higher yields. During the synthesis, not only the yields and work-up procedure of the TPPs were improved by using CF3SO2Cl as a catalyst, but also a better means of synthesizing the precursor dipyrromethanes was tested by using indium(III) chloride. Column chromatography, HPLC, and NMR spectroscopy were used to separate and characterize the di-amino acid-dihydroxy, or difluoro-substituted porphyrins and to ascertain their purity before subcellular localization studies were carried out. Studies using androgen-sensitive human prostate adenocarcinoma cells LNCaP revealed that certain amino acid substituted porphyrins that are positively charged in the slightly acidic medium of cancer cells are very useful in shedding light on the targets of TPPs in subcellular organelles of cancer cells. Although some of these compounds have properties of promising photosensitizers by revealing increased water solubility, acidic properties, and innate ability to provoke cell death by apoptosis, the cell killing efficacy of these TPPs is low. This correlates with their subcellular localization. The di-amino acid, di-hydroxy substituted TPPs localize mainly to the lysosomes, whereas the di-fluoro-substituted TPPs are trapped in the plasma membrane. Only a pheophorbide derivative recently synthesized in our laboratory localized to the mitochondria of LNCaP cells, which are at the center of cell death as is reflected in their key role during apoptosis, thus reassuring our attempts toward rational drug design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter-Fella, Carolin M.; Li, Yanbo; Amani, Matin
Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH 3NH 3PbI 3-xBr x perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamicmore » range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ E g ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells. (Figure Presented).« less
Urey, Carlos; Weiss, Victor U; Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland
2016-11-20
For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Dall'Osto, Luca; Holt, Nancy E.; Kaligotla, Shanti; Fuciman, Marcel; Cazzaniga, Stefano; Carbonera, Donatella; Frank, Harry A.; Alric, Jean; Bassi, Roberto
2012-01-01
Plants are particularly prone to photo-oxidative damage caused by excess light. Photoprotection is essential for photosynthesis to proceed in oxygenic environments either by scavenging harmful reactive intermediates or preventing their accumulation to avoid photoinhibition. Carotenoids play a key role in protecting photosynthesis from the toxic effect of over-excitation; under excess light conditions, plants accumulate a specific carotenoid, zeaxanthin, that was shown to increase photoprotection. In this work we genetically dissected different components of zeaxanthin-dependent photoprotection. By using time-resolved differential spectroscopy in vivo, we identified a zeaxanthin-dependent optical signal characterized by a red shift in the carotenoid peak of the triplet-minus-singlet spectrum of leaves and pigment-binding proteins. By fractionating thylakoids into their component pigment binding complexes, the signal was found to originate from the monomeric Lhcb4–6 antenna components of Photosystem II and the Lhca1–4 subunits of Photosystem I. By analyzing mutants based on their sensitivity to excess light, the red-shifted triplet-minus-singlet signal was tightly correlated with photoprotection in the chloroplasts, suggesting the signal implies an increased efficiency of zeaxanthin in controlling chlorophyll triplet formation. Fluorescence-detected magnetic resonance analysis showed a decrease in the amplitude of signals assigned to chlorophyll triplets belonging to the monomeric antenna complexes of Photosystem II upon zeaxanthin binding; however, the amplitude of carotenoid triplet signal does not increase correspondingly. Results show that the high light-induced binding of zeaxanthin to specific proteins plays a major role in enhancing photoprotection by modulating the yield of potentially dangerous chlorophyll-excited states in vivo and preventing the production of singlet oxygen. PMID:23066020
NASA Astrophysics Data System (ADS)
Bacigalupo, Lauren N.
Epoxy resins are commonly utilized because of their adhesive capacity and high strength. However, epoxies are inherently brittle; so much research has been dedicated to improving their fracture toughness. This study will focus on a comparing a traditional telechelic oligomer, CTBN, and a novel self-assembling block copolymer, SBM, as it relates to improving the fracture toughness of a lightly crosslinked epoxy system. After characterizing the modified systems for fracture toughness, mechanical and thermal properties, namely yield stress and the glass transition, will be determined in order to discern the impact these modifiers have on the overall properties of the blend. TEM, SEM and TOM techniques will be utilized for characterizing morphology, fractography and subsurface damage, respectively. Once this was accomplished, it was deduced that the toughening mechanisms of CTBN and SBM-modified epoxies are very similar. The main difference between the two is that the inherent structure of SBM allows the SBM-modified epoxy to retain its compressive yield strength. This, consequently, makes SBM ideal for thin bondline applications in the industrial adhesive and/or electronics industry.
Early Direct Imaging and Spectral Characterization of Extrasolar Planets with the SCExAO/CHARIS
NASA Astrophysics Data System (ADS)
Currie, Thayne; Guyon, Olivier; Kasdin, Jeremy; Brandt, Timothy; Groff, Tyler; Jovanovic, Nemanja; Lozi, Julien; Chilcote, Jeffrey K.; Uyama, Taichi; Ascensio-Torres, Ruben; Tamura, Motohide; Norris, Barnaby
2018-01-01
We present selected direct imaging/spectroscopy results from Subaru’s extreme adaptive optics system, SCExAO, coupled with the CHARIS integral field spectrograph obtained from the first full year of CHARIS’s operation. SCExAO/CHARIS yields high signal-to-noise detections and 1.1—2.4 micron spectra of benchmark directly-imaged companions like HR 8799 cde and kappa And b that clarify their atmospheric properties. We describe these results and multi-epoch, multi-wavelength imaging of LkCa 15 to assess the (non-)existence of protoplanetary companions, and briefly describe upgrades to SCExAO that will allow it to image and characterize even fainter self-luminous extrasolar planets and eventually mature planets in reflected light.
STELLAR MAGNETIC CYCLES IN THE SOLAR-LIKE STARS KEPLER-17 AND KEPLER-63
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estrela, Raissa; Valio, Adriana, E-mail: rlf.estrela@gmail.com, E-mail: avalio@craam.mackenzie.br
2016-11-01
The stellar magnetic field plays a crucial role in the star internal mechanisms, as in the interactions with its environment. The study of starspots provides information about the stellar magnetic field and can characterize the cycle. Moreover, the analysis of solar-type stars is also useful to shed light onto the origin of the solar magnetic field. The objective of this work is to characterize the magnetic activity of stars. Here, we studied two solar-type stars, Kepler-17 and Kepler-63, using two methods to estimate the magnetic cycle length. The first one characterizes the spots (radius, intensity, and location) by fitting themore » small variations in the light curve of a star caused by the occultation of a spot during a planetary transit. This approach yields the number of spots present in the stellar surface and the flux deficit subtracted from the star by their presence during each transit. The second method estimates the activity from the excess in the residuals of the transit light curves. This excess is obtained by subtracting a spotless model transit from the light curve and then integrating all the residuals during the transit. The presence of long-term periodicity is estimated in both time series. With the first method, we obtained P {sub cycle} = 1.12 ± 0.16 year (Kepler-17) and P {sub cycle} = 1.27 ± 0.16 year (Kepler-63), and for the second approach the values are 1.35 ± 0.27 year and 1.27 ± 0.12 year, respectively. The results of both methods agree with each other and confirm their robustness.« less
Baryshev, Sergey V; Erck, Robert A; Moore, Jerry F; Zinovev, Alexander V; Tripa, C Emil; Veryovkin, Igor V
2013-02-27
In materials science and engineering it is often necessary to obtain quantitative measurements of surface topography with micrometer lateral resolution. From the measured surface, 3D topographic maps can be subsequently analyzed using a variety of software packages to extract the information that is needed. In this article we describe how white light interferometry, and optical profilometry (OP) in general, combined with generic surface analysis software, can be used for materials science and engineering tasks. In this article, a number of applications of white light interferometry for investigation of surface modifications in mass spectrometry, and wear phenomena in tribology and lubrication are demonstrated. We characterize the products of the interaction of semiconductors and metals with energetic ions (sputtering), and laser irradiation (ablation), as well as ex situ measurements of wear of tribological test specimens. Specifically, we will discuss: i. Aspects of traditional ion sputtering-based mass spectrometry such as sputtering rates/yields measurements on Si and Cu and subsequent time-to-depth conversion. ii. Results of quantitative characterization of the interaction of femtosecond laser irradiation with a semiconductor surface. These results are important for applications such as ablation mass spectrometry, where the quantities of evaporated material can be studied and controlled via pulse duration and energy per pulse. Thus, by determining the crater geometry one can define depth and lateral resolution versus experimental setup conditions. iii. Measurements of surface roughness parameters in two dimensions, and quantitative measurements of the surface wear that occur as a result of friction and wear tests. Some inherent drawbacks, possible artifacts, and uncertainty assessments of the white light interferometry approach will be discussed and explained.
Baryshev, Sergey V.; Erck, Robert A.; Moore, Jerry F.; Zinovev, Alexander V.; Tripa, C. Emil; Veryovkin, Igor V.
2013-01-01
In materials science and engineering it is often necessary to obtain quantitative measurements of surface topography with micrometer lateral resolution. From the measured surface, 3D topographic maps can be subsequently analyzed using a variety of software packages to extract the information that is needed. In this article we describe how white light interferometry, and optical profilometry (OP) in general, combined with generic surface analysis software, can be used for materials science and engineering tasks. In this article, a number of applications of white light interferometry for investigation of surface modifications in mass spectrometry, and wear phenomena in tribology and lubrication are demonstrated. We characterize the products of the interaction of semiconductors and metals with energetic ions (sputtering), and laser irradiation (ablation), as well as ex situ measurements of wear of tribological test specimens. Specifically, we will discuss: Aspects of traditional ion sputtering-based mass spectrometry such as sputtering rates/yields measurements on Si and Cu and subsequent time-to-depth conversion. Results of quantitative characterization of the interaction of femtosecond laser irradiation with a semiconductor surface. These results are important for applications such as ablation mass spectrometry, where the quantities of evaporated material can be studied and controlled via pulse duration and energy per pulse. Thus, by determining the crater geometry one can define depth and lateral resolution versus experimental setup conditions. Measurements of surface roughness parameters in two dimensions, and quantitative measurements of the surface wear that occur as a result of friction and wear tests. Some inherent drawbacks, possible artifacts, and uncertainty assessments of the white light interferometry approach will be discussed and explained. PMID:23486006
Marker, Sierra C; MacMillan, Samantha N; Zipfel, Warren R; Li, Zhi; Ford, Peter C; Wilson, Justin J
2018-02-05
Fifteen water-soluble rhenium compounds of the general formula [Re(CO) 3 (NN)(PR 3 )] + , where NN is a diimine ligand and PR 3 is 1,3,5-triaza-7-phosphaadamantane (PTA), tris(hydroxymethyl)phosphine (THP), or 1,4-diacetyl-1,3,7-triaza-5-phosphabicylco[3.3.1]nonane (DAPTA), were synthesized and characterized by multinuclear NMR spectroscopy, IR spectroscopy, and X-ray crystallography. The complexes bearing the THP and DAPTA ligands exhibit triplet-based luminescence in air-equilibrated aqueous solutions with quantum yields ranging from 3.4 to 11.5%. Furthermore, the THP and DAPTA complexes undergo photosubstitution of a CO ligand upon irradiation with 365 nm light with quantum yields ranging from 1.1 to 5.5% and sensitize the formation of 1 O 2 with quantum yields as high as 70%. In contrast, all of the complexes bearing the PTA ligand are nonemissive and do not undergo photosubstitution upon irradiation with 365 nm light. These compounds were evaluated as photoactivated anticancer agents in human cervical (HeLa), ovarian (A2780), and cisplatin-resistant ovarian (A2780CP70) cancer cell lines. All of the complexes bearing THP and DAPTA exhibited a cytotoxic response upon irradiation with minimal toxicity in the absence of light. Notably, the complex with DAPTA and 1,10-phenanthroline gave rise to an IC 50 value of 6 μM in HeLa cells upon irradiation, rendering it the most phototoxic compound in this library. The nature of the photoinduced cytotoxicity of this compound was explored in further detail. These data indicate that the phototoxic response may result from the release of both CO and the rhenium-containing photoproduct, as well as the production of 1 O 2 .
Generic Features of Tertiary Chromatin Structure as Detected in Natural Chromosomes
Müller, Waltraud G.; Rieder, Dietmar; Kreth, Gregor; Cremer, Christoph; Trajanoski, Zlatko; McNally, James G.
2004-01-01
Knowledge of tertiary chromatin structure in mammalian interphase chromosomes is largely derived from artificial tandem arrays. In these model systems, light microscope images reveal fibers or beaded fibers after high-density targeting of transactivators to insertional domains spanning several megabases. These images of fibers have lent support to chromonema fiber models of tertiary structure. To assess the relevance of these studies to natural mammalian chromatin, we identified two different ∼400-kb regions on human chromosomes 6 and 22 and then examined light microscope images of interphase tertiary chromatin structure when the regions were transcriptionally active and inactive. When transcriptionally active, these natural chromosomal regions elongated, yielding images characterized by a series of adjacent puncta or “beads”, referred to hereafter as beaded images. These elongated structures required transcription for their maintenance. Thus, despite marked differences in the density and the mode of transactivation, the natural and artificial systems showed similarities, suggesting that beaded images are generic features of transcriptionally active tertiary chromatin. We show here, however, that these images do not necessarily favor chromonema fiber models but can also be explained by a radial-loop model or even a simple nucleosome affinity, random-chain model. Thus, light microscope images of tertiary structure cannot distinguish among competing models, although they do impose key constraints: chromatin must be clustered to yield beaded images and then packaged within each cluster to enable decondensation into adjacent clusters. PMID:15485905
NASA Astrophysics Data System (ADS)
Chrysler, Benjamin D.; Wu, Yuechen; Yu, Zhengshan; Kostuk, Raymond K.
2017-08-01
In this paper a prototype spectrum-splitting photovoltaic system based on volume holographic lenses (VHL) is designed, fabricated and tested. In spectrum-splitting systems, incident sunlight is divided in spectral bands for optimal conversion by a set of single-junction PV cells that are laterally separated. The VHL spectrumsplitting system in this paper has a form factor similar to conventional silicon PV modules but with higher efficiencies (>30%). Unlike many other spectrum-splitting systems that have been proposed in the past, the system in this work converts both direct and diffuse sunlight while using inexpensive 1-axis tracking systems. The VHL system uses holographic lenses that focus light at a transition wavelength to the boundary between two PV cells. Longer wavelength light is dispersed to the narrow bandgap cell and shorter wavelength light to the wide bandgap cell. A prototype system is designed with silicon and GaAs PV cells. The holographic lenses are fabricated in Covestro Bayfol HX photopolymer by `stitching' together lens segments through sequential masked exposures. The PV cells and holographic lenses were characterized and the data was used in a raytrace simulation and predicts an improvement in total power output of 15.2% compared to a non-spectrum-splitting reference. A laboratory measurement yielded an improvement in power output of 8.5%.
NASA Astrophysics Data System (ADS)
Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Hamann, E.; van de Kamp, T.; Riedel, A.; Fiederle, M.; Baumbach, T.
2011-08-01
Within the project ScinTAX of the 6th framework program (FP6) of the European Commission (SCINTAX—STRP 033 427) we have developed a new thin single crystal scintillator for high-resolution X-ray imaging. The scintillator is based on a Tb-doped Lu2SiO5 (LSO) film epitaxially grown on an adapted substrate. The high density, effective atomic number and light yield of the scintillating LSO significantly improves the efficiency of the X-ray imaging detectors currently used in synchrotron micro-imaging applications. In this work we present the characterization of the scintillating LSO films in terms of their spatial resolution performance and we provide two examples of high spatial and high temporal resolution applications.
Spatially resolved scatter measurement of diffractive micromirror arrays.
Sicker, Cornelius; Heber, Jörg; Berndt, Dirk
2016-06-01
Spatial light modulators (SLMs) support flexible system concepts in modern optics and especially phase-only SLMs such as micromirror arrays (MMAs) appear attractive for many applications. In order to achieve a precise phase modulation, which is crucial for optical performance, careful characterization and calibration of SLM devices is required. We examine an intensity-based measurement concept, which promises distinct advantages by means of a spatially resolved scatter measurement that is combined with the MMA's diffractive principle. Measurements yield quantitative results, which are consistent with measurements of micromirror roughness components, by white-light interferometry. They reveal relative scatter as low as 10-4, which corresponds to contrast ratios up to 10,000. The potential of the technique to resolve phase changes in the subnanometer range is experimentally demonstrated.
NASA Astrophysics Data System (ADS)
Moqbel, Redhwan A.; Gondal, Mohammed A.; Qahtan, Talal F.; Dastageer, Mohamed A.
2018-03-01
In this work the synthesis of visible light active zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposite by laser induced fragmentation of particulates in liquid, its morphological/optical characterizations, and its application in the process of photo-catalytic degradation of toxic Rhodamine B (RhB) dye under visible radiation were studied. It is observed from the optical and morphological characterization that the anchoring of ZnO on the rGO sheets in ZnO/rGO nanocomposite considerably reduced the aggregation of ZnO (increased surface area), reduced the recombination of photo-induced charge carriers, promoted more adsorption of reactants on the catalytic surface and also enhanced and extended the light absorption in the visible spectral region. With all these improved characteristics of ZnO/rGO nanocomposite, it was found that this material as a photo-catalyst yielded an RhB degradation efficiency of 86%, as compared to the 40% degradation with pure ZnO NPs under the same experimental conditions. In the ZnO/rGO nanocomposite, rGO functions as an electron acceptor to promote charge separation, an aggregation inhibitor to enhance the active surface area, a co-catalyst, a good dye adsorber and also as a supporting matrix for ZnO.
Anastasaki, Athina; Nikolaou, Vasiliki; Brandford-Adams, Francesca; Nurumbetov, Gabit; Zhang, Qiang; Clarkson, Guy J; Fox, David J; Wilson, Paul; Kempe, Kristian; Haddleton, David M
2015-04-04
A photo-polymerization protocol, utilizing a pre-formed and well-characterized Cu(II) formate complex, [Cu(Me6-Tren)(O2CH)](ClO4), mediated by UV light is described. In the absence of additional reducing agents and/or photosensitizers, ppm concentrations of the oxidatively stable [Cu(Me6-Tren)(O2CH)](ClO4), furnish near-quantitative conversions within 2 h, yielding poly(acrylates) with low dispersities (∼1.10) and exceptional end-group fidelity, capable of undergoing in situ chain extension and block copolymerization.
Porto Ferreira, Cassio; Oliveira de Almeida, Ana Cristina; Corte-Real, Suzana
2015-01-01
Transmission electron microscopy can yield useful information in a range of scientific fields; it is capable of imaging at a significantly higher resolution than light microscopes and has been a very useful tool in the identification of morphological changes of the dermis as well as assessment of changes in the extracellular matrix. Our aim is to characterize by electron microscopy the cellular profile of lesions caused by Sporothrix schenckii from the sporotrichosis epidemic in its zoonotic form that occurs in Rio de Janeiro, Brazil. PMID:25653392
Model-assisted forest yield estimation with light detection and ranging
Jacob L. Strunk; Stephen E. Reutebuch; Hans-Erik Andersen; Peter J. Gould; Robert J. McGaughey
2012-01-01
Previous studies have demonstrated that light detection and ranging (LiDAR)-derived variables can be used to model forest yield variables, such as biomass, volume, and number of stems. However, the next step is underrepresented in the literature: estimation of forest yield with appropriate confidence intervals. It is of great importance that the procedures required for...
Ouzounis, Theoharis; Razi Parjikolaei, Behnaz; Fretté, Xavier; Rosenqvist, Eva; Ottosen, Carl-Otto
2015-01-01
To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. “Batavia” (green) and cv. “Lollo Rossa” (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m−2 s−1 for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m−2 s−1 from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m−2 s−1 from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m−2 s−1 from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m−2 s−1 from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent. PMID:25767473
Photoperiod shift effects on yield characteristics of rice
NASA Technical Reports Server (NTRS)
Volk, G. M.; Mitchell, C. A.
1995-01-01
Edible yield must be maximized for each crop species selected for inclusion in the Controlled Ecological Life-Support System (CELSS) proposed by NASA to support long-term manned space missions. In a greenhouse study aimed at increasing biomass partitioning to rice (Oryza sativa L.) grain, plants of the high yielding semi-dwarf rice cultivar Ai-Nan-Tsao were started in pots under 8-h photoperiods at a density of 212 plants m-2. After different periods of time under 8-h photoperiods, pots were switched to continuous light for the remainder of the cropping cycle. Continuous light did not delay time to first panicle emergence (60 d) or time to harvest (83 d). There was a positive correlation between the length of continuous light treatments and nongrain biomass. Grain yield (1.6 +/- 0.2 g plant-1) did not increase in continuous light. Yield-efficiency rate (grain weight per length of cropping cycle, canopy volume, and weight of nongrain shoot biomass) was used to compare treatments. Small Ai-Nan-Tsao rice canopies grown under 8-h photoperiods were more efficient producers of grain than canopies grown under continuous light for a portion of the rice cropping cycle.
Gas Exchange, Transpiration and Yield of Sweetpotato Grown in a Controlled Environment
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Henderson, Keith E.; Mortley, Desmond G.; Henninger, Donald L.
2000-01-01
Sweetpotato was grown to harvest maturity within NASA Johnson Space Center's Variable Pressure Growth Chamber (VPGC) to characterize crop performance for potential use in advanced life support systems as a contributor to food production, air revitalization and resource recovery. Stem cuttings of breeding clone "TU-82-155" were grown hydroponically at a density of 17 plants m(sup -2) using a modified pressure-plate growing system (Patent No. 4860-490, Tuskegee University). Lighting was provided by HPS lamps at a photoperiod of 12h light: 12h dark. The photosynthetic photon flux was maintained at 500, 750 and 1000 micro mol m(sup -2) s(sub -1) during days 1-15, 16-28, 29-119, respectively. Canopy temperatures were maintained at 28 C: light: 22 C:dark. During the light period, relative humidity and carbon dioxide were maintained at 70% and 1200 micro liters l(sup -1), respectively. Nutrient solution was manually adjusted 2 to 4 times per week by addition of 10X concentrated modified half-strength Hoagland nutrient salts and NaOH to return the electrical conductivity and pH to 1.2 mS cm(sup -1) and 6.0, respectively. At 17 weeks (119 days) from transplanting, a total of 56.5 kilograms fresh mass of storage roots (84.1% moisture) were harvested from the 11.2 m(sup 2) chamber, resulting in a yield 5.0 kilograms m(sup -2). Harvest index, based on fresh mass, was 38.6%. Rates of net photosynthesis, dark respiration, transpiration, and ethylene production will be reported.
NASA Astrophysics Data System (ADS)
Jebali, M. A.; Basso, E. T.
2018-02-01
Cladding mode strippers are primarily used at the end of a fiber laser cavity to remove high-power excess cladding light without inducing core loss and beam quality degradation. Conventional manufacturing methods of cladding mode strippers include acid etching, abrasive blasting or laser ablation. Manufacturing of cladding mode strippers using laser ablation consist of removing parts of the cladding by fused silica ablation with a controlled penetration and shape. We present and characterize an optimized cladding mode stripper design that increases the cladding light loss with a minimal device length and manufacturing time. This design reduces the localized heat generation by improving the heat distribution along the device. We demonstrate a cladding mode stripper written on a 400um fiber with cladding light loss of 20dB, with less than 0.02dB loss in the core and minimal heating of the fiber and coating. The manufacturing process of the designed component is fully automated and takes less than 3 minutes with a very high throughput yield.
Light propagation and fluorescence quantum yields in liquid scintillators
NASA Astrophysics Data System (ADS)
Buck, C.; Gramlich, B.; Wagner, S.
2015-09-01
For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.
Lima, Vandimilli A; Pacheco, Fernanda V; Avelar, Rafaella P; Alvarenga, Ivan C A; Pinto, José Eduardo B P; Alvarenga, Amauri A DE
2017-01-01
Piper hispidinervum C. DC. is popularly known as long-pepper and it owns a commercial value due to the essential oil it produces. Long-pepper oil is rich in safrole and eugenoln components that have insecticidal, fungicidal and bactericidal activity. It has been establish that to medicinal plants light influences not only growth but also essential oil production. The growth, the content of photosynthetic pigments and the essential oil production of Piper hispidinervum at greenhouses with different light conditions was evaluated. The treatments were characterized by cultivation of plants for 180 days under different light conditions, produced by shading greenhouses with 50% and 30% of natural incident irradiance, two colored shading nets red (RN) and blue (BN) both blocking 50% of the incident radiation and one treatment at full-sun (0% of shade). The results showed that the treatments of 50% shade and RN and BN were the ones which stimulated the greater growth. Blue and red light also had the best production of photosynthetic pigments. Essential oil yielded more under full sun therefore this is the most indicated condition to produce seedlings for the chemical and pharmaceutical industry.
Fiber-Optic Sensor for Aircraft Lightning Current Measurement
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata,Angel G.; Snyder, Gary P.
2012-01-01
An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor's accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.
Fiber-Optic Sensor for Aircraft Lightning Current Measurement
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.
2012-01-01
An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.
NASA Astrophysics Data System (ADS)
Pahk, Ian
Non-photochemical quenching (NPQ) is a photoprotective regulatory mechanism essential to the robustness of the photosynthetic apparatus of green plants. Energy flow within the low-light adapted reaction centers is dynamically optimized to match the continuously fluctuating light conditions found in nature. Activated by compartmentalized decreases in pH resulting from photosynthetic activity during periods of elevated photon flux, NPQ induces rapid thermal dissipation of excess excitation energy that would otherwise overwhelm the apparatus's ability to consume it. Consequently, the frequency of charge separation decreases and the formation of potentially deleterious, high-energy intermediates slows, thereby reducing the threat of photodamage by disallowing their accumulation. Herein is described the synthesis and photophysical analysis of a molecular triad that mimics the effects of NPQ on charge separation within the photosynthetic reaction centers. Steady-state absorption and emission, time-resolved fluorescence, and transient absorption spectroscopies were used to demonstrate reversible quenching of the first singlet excited state affecting the quantum yield of charge separation by approximately one order of magnitude. As in the natural system, the populations of unquenched and quenched states and, therefore, the overall yields of charge separation were found to be dependent upon acid concentration.
Ge, Hongmei; Xia, Ling; Zhou, Xuping; Zhang, Delu; Hu, Chunxiang
2014-02-01
A study on the effects of light intensity (40 and 80 μE/m(2)/sec) on the components and topographical structures of extracellular polysaccharides (EPS) was carried out in cyanobacteria Nostoc sp.. EPS yield increased with light intensity. However, light intensity did not significantly affect the EPS fractions and monosaccharide composition. Higher light intensity generally resulted in higher protein content of EPS in similar fractions. The topographical structure of EPS, investigated by atomic force microscopy, appeared as spherical lumps, chains and networks. The long chains were observed at higher light intensity. Thus, light intensity affected the yield and nature of EPS.
Optimizing concentration of shifter additive for plastic scintillators of different size
NASA Astrophysics Data System (ADS)
Adadurov, A. F.; Zhmurin, P. N.; Lebedev, V. N.; Titskaya, V. D.
2009-02-01
This paper concerns the influence of wavelength shifting (secondary) luminescent additive (LA 2) on the light yield of polystyrene-based plastic scintillator (PS) taking self-absorption into account. Calculations of light yield dependence on concentration of 1.4-bis(2-(5-phenyloxazolyl)-benzene (POPOP) as LA 2 were made for various path lengths of photons in PS. It is shown that there is an optimal POPOP concentration ( Copt), which provides a maximum light yield for a given path length. This optimal concentration is determined by the competition of luminescence and self-reflection processes. Copt values were calculated for PS of different dimensions. For small PS, Copt≈0.02%, which agree with a common (standard) value of POPOP concentration. For higher PS dimensions, the optimal POPOP concentration is decreased (to Copt≈0.006% for 320×30×2 cm sample), reducing the light yield from PS by almost 35%.
Ghate, Minakshi; Dahule, H K; Thejo Kalyani, N; Dhoble, S J
2018-03-01
A novel blue luminescent 6-chloro-2-(4-cynophenyl) substituted diphenyl quinoline (Cl-CN DPQ) organic phosphor has been synthesized by the acid-catalyzed Friedlander reaction and then characterized to confirm structural, optical and thermal properties. Structural properties of Cl-CN-DPQ were analyzed by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction technique (XRD) and scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) spectroscopy. FTIR spectra confirmed the presence of different functional groups and bond stretching. 1 H-NMR and 13 C-NMR confirmed the formation of an organic Cl-CN-DPQ compound. X-ray diffraction study provided its crystalline nature. The surface morphology of Cl-CN-DPQ was analyzed by SEM, while EDAX spectroscopy revealed the elemental analysis. Differential thermal analysis (TGA/DTA) disclosed its thermal stability up to 250°C. The optical properties of Cl-CN-DPQ were investigated by UV-vis absorption and photoluminescence (PL) measurements. Cl-CN-DPQ exhibits intense blue emission at 434 nm in a solid-state crystalline powder with CIE co-ordinates (0.157, 0.027), when excited at 373 nm. Cl-CN-DPQ shows remarkable Stokes shift in the range 14800-5100 cm -1 , which is the characteristic feature of intense light emission. A narrow full width at half-maximum (FWHM) value of PL spectra in the range 42-48 nm was observed. Oscillator strength, energy band gap, quantum yield, and fluorescence energy yield were also examined using UV-vis absorption and photoluminescence spectra. These results prove its applications towards developing organic luminescence devices and displays, organic phosphor-based solar cells and displays, organic lasers, chemical sensors and many more. Copyright © 2017 John Wiley & Sons, Ltd.
Thermally activated creep and fluidization in flowing disordered materials
NASA Astrophysics Data System (ADS)
Merabia, Samy; Detcheverry, François
2016-11-01
When submitted to a constant mechanical load, many materials display power law creep followed by fluidization. A fundamental understanding of these processes is still far from being achieved. Here, we characterize creep and fluidization on the basis of a mesoscopic viscoplastic model that includes thermally activated yielding events and a broad distribution of energy barriers, which may be lowered under the effect of a local deformation. We relate the creep exponent observed before fluidization to the width of barrier distribution and to the specific form of stress redistribution following yielding events. We show that Andrade creep is accompanied by local strain hardening driven by stress redistribution and find that the fluidization time depends exponentially on the applied stress. The simulation results are interpreted in the light of a mean-field analysis, and should help in rationalizing the creep phenomenology in disordered materials.
NASA Astrophysics Data System (ADS)
Hershey, Kyle W.; Suddard-Bangsund, John; Qian, Gang; Holmes, Russell J.
2017-09-01
The analysis of organic light-emitting device degradation is typically restricted to fitting the overall luminance loss as a function of time or the characterization of fully degraded devices. To develop a more complete understanding of degradation, additional specific data are needed as a function of luminance loss. The overall degradation in luminance during testing can be decoupled into a loss in emitter photoluminescence efficiency and a reduction in the exciton formation efficiency. Here, we demonstrate a method that permits separation of these component efficiencies, yielding the time evolution of two additional specific device parameters that can be used in interpreting and modeling degradation without modification to the device architecture or introduction of any additional post-degradation characterization steps. Here, devices based on the phosphor tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) are characterized as a function of initial luminance and emissive layer thickness. The overall loss in device luminance is found to originate primarily from a reduction in the exciton formation efficiency which is exacerbated in devices with thinner emissive layers. Interestingly, the contribution to overall degradation from a reduction in the efficiency of exciton recombination (i.e., photoluminescence) is unaffected by thickness, suggesting a fixed exciton recombination zone width and degradation at an interface.
Observation of chemiluminescence induced by hydrodynamic cavitation in microchannels.
Podbevsek, D; Colombet, D; Ledoux, G; Ayela, F
2018-05-01
We have performed hydrodynamic cavitation experiments with an aqueous luminol solution as the working fluid. Light emission, together with the high frequency noise which characterizes cavitation, was emitted by the two-phase flow, whereas no light emission from luminol was recorded in the single phase liquid flow. Light emission occurs downstream transparent microdiaphragms. The maximum level of the recorded signal was around 180 photons per second with flow rates of 380 µl/s, that corresponds to a real order of magnitude of the chemiluminescence of 75,000 photons per second. The yield of emitted photons increases linearly with the pressure drop, which is proportional to the square of the total flow rate. Chemiluminescence of luminol is a direct and a quantitative demonstration of the presence of OH hydroxyl radicals created by hydrodynamic cavitation. The presented method could be a key to optimize channel geometry for processes where radical production is essential. Copyright © 2018 Elsevier B.V. All rights reserved.
Slab waveguide photobioreactors for microalgae based biofuel production.
Jung, Erica Eunjung; Kalontarov, Michael; Doud, Devin F R; Ooms, Matthew D; Angenent, Largus T; Sinton, David; Erickson, David
2012-10-07
Microalgae are a promising feedstock for sustainable biofuel production. At present, however, there are a number of challenges that limit the economic viability of the process. Two of the major challenges are the non-uniform distribution of light in photobioreactors and the inefficiencies associated with traditional biomass processing. To address the latter limitation, a number of studies have demonstrated organisms that directly secrete fuels without requiring organism harvesting. In this paper, we demonstrate a novel optofluidic photobioreactor that can help address the light distribution challenge while being compatible with these chemical secreting organisms. Our approach is based on light delivery to surface bound photosynthetic organisms through the evanescent field of an optically excited slab waveguide. In addition to characterizing organism growth-rates in the system, we also show here, for the first time, that the photon usage efficiency of evanescent field illumination is comparable to the direct illumination used in traditional photobioreactors. We also show that the stackable nature of the slab waveguide approach could yield a 12-fold improvement in the volumetric productivity.
Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability
Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.; ...
2017-11-28
Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughoutmore » the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.« less
Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability
NASA Astrophysics Data System (ADS)
Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.; Schloemer, Tracy H.; Harvey, Steven P.; Tremolet de Villers, Bertrand J.; Sellinger, Alan; Berry, Joseph J.; Luther, Joseph M.
2018-01-01
Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughout the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.
Effect of light with different wavelengths on Nostoc flagelliforme cells in liquid culture.
Dai, Yu-Jie; Li, Jing; Wei, Shu-Mei; Chen, Nan; Xiao, Yu-Peng; Tan, Zhi-Lei; Jia, Shi-Ru; Yuan, Nan-Nan; Tan, Ning; Song, Yi-Jie
2013-04-01
The effects of lights with different wavelengths on the growth and the yield of extracellular polysaccharides of Nostoc flagelliforme cells were investigated in a liquid cultivation. N. flagelliforme cells were cultured for 16 days in 500 ml conical flasks containing BG11 culture medium under 27 micromol·m-2·s-1 of light intensity and 25 degrees C on a rotary shaker (140 rpm). The chlorophyll a, phycocyanin, allophycocyanin, and phycoerythrin contents in N. flagelliforme cells under the lights of different wavelengths were also measured. It was found that the cell biomass and the yield of polysaccharide changed with different wavelengths of light. The biomass and the yield of extracellular polysaccharides under the red or violet light were higher than those under other light colors. Chlorophyll a, phycocyanin, and allophycocyanin are the main pigments in N. flagelliforme cells. The results showed that N. flagelliforme, like other cyanobacteria, has the ability of adjusting the contents and relative ratio of its pigments with the light quality. As a conclusion, N. flagelliforme cells favor red and violet lights and perform the complementary chromatic adaptation ability to acclimate to the changes of the light quality in the environment.
Many light Higgs bosons in the next-to-minimal supersymmetric model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dermisek, Radovan; Gunion, John F.
2009-03-01
The next-to-minimal supersymmetric model with a light doubletlike CP-odd Higgs boson and small tan{beta} can satisfy all experimental limits on Higgs bosons even with light superpartners. In these scenarios, the two lightest CP-even Higgs bosons, h{sub 1} and h{sub 2}, and the charged Higgs boson, h{sup +}, can all be light enough to be produced at CERN LEP and yet have decays that have not been looked for or are poorly constrained by existing collider experiments. The channel h{sub 1}{yields}a{sub 1}a{sub 1} with a{sub 1}{yields}{tau}{sup +}{tau}{sup -} or 2j is still awaiting LEP constraints for m{sub h{sub 1}}>86 or 82more » GeV, respectively. LEP data may also contain e{sup +}e{sup -}{yields}h{sub 2}a{sub 1} events where h{sub 2}{yields}Za{sub 1} is the dominant decay, a channel that was never examined. Decays of the charged Higgs bosons are often dominated by H{sup {+-}}{yields}W{sup {+-}}{sup (}*{sup )}a{sub 1} with a{sub 1}{yields}gg, cc, and {tau}{sup +}{tau}{sup -}. This is a channel that has so far been ignored in the search for t{yields}h{sup +}b decays at the Tevatron. A specialized analysis might reveal a signal. The light a{sub 1} might be within the reach of B factories via {upsilon}{yields}{gamma}a{sub 1} decays. We study typical mass ranges and branching ratios of Higgs bosons in this scenario and compare these scenarios where the a{sub 1} has a large doublet component to the more general scenarios with arbitrary singlet component for the a{sub 1}.« less
Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966.
Hubbart, S; Peng, S; Horton, P; Chen, Y; Murchie, E H
2007-01-01
Crop improvement in terms of yield is rarely linked to leaf photosynthesis. However, in certain crop plants such as rice, it is predicted that an increase in photosynthetic rate will be required to support future grain yield potential. In order to understand the relationships between yield improvement and leaf photosynthesis, controlled environment conditions were used to grow 10 varieties which were released from the International Rice Research Institute (IRRI) between 1966 and 1995 and one newly developed line. Two growth light intensities were used: high light (1500 micromol m(-2) s(-1)) and low light (300 micromol m(-2) s(-1)). Gas exchange, leaf protein, chlorophyll, and leaf morphology were measured in the ninth leaf on the main stem. A high level of variation was observed among high light-grown plants for light-saturated photosynthetic rate per unit leaf area (P(max)), stomatal conductance (g), content of ribulose bisphosphate carboxylase-oxygenase (Rubisco), and total leaf protein content. Notably, between 1966 and 1980 there was a decline in P(max), g, leaf protein, chlorophyll, and Rubisco content. Values recovered in those varieties released after 1980. This striking trend coincides with a previous published observation that grain yield in IRRI varieties released prior to 1980 correlated with harvest index whereas that for those released after 1980 correlated with biomass. P(max) showed significant correlations with both g and Rubisco content. Large differences were observed between high light- and low light-grown plants (photoacclimation). The photoacclimation 'range' for P(max) correlated with P(max) in high light-grown plants. It is concluded that (i) leaf photosynthesis may be systematically affected by breeding strategy; (ii) P(max) is a useful target for yield improvements where yield is limited by biomass production rather than partitioning; and (iii) the capacity for photoacclimation is related to high P(max) values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacIntyre, H.L.; Geider, R.J.; McKay, R.M.
Net phytoplankton (>20 {mu}m) comprised 51 {plus_minus} 9% of the total chlorophyll (Chl) in a Skeletonema costatum-dominated spring bloom in Delaware Bay. The net phytoplankton had low C:N and high protein:carbohydrate ratios, indicating that their growth was nutrient-replete. Their photosynthetic responses were characterized by low specific absorption, low light-limited and light-saturated rates of photosynthesis, and high quantum yields, indicative of acclimation to low irradiance and internal self-shading. High fucoxanthin: Chl ratios also indicated low light acclimation, but high photoprotective xanthophyll: Chl ratios suggested a high capacity for photoprotective energy dissipation. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) could be activated and deactivated in responsemore » to changes in irradiance and was fully activated at the surface of the water column and fully deactivated in aphotic deep water. Maximum Rubisco activity was correlated with Rubisco content and bulk protein content of the phytoplankton and with light-saturated rates of photosynthesis measured in short (<20-min) incubations. Long (60-min) incubations caused a decrease in the light-saturated rate of photosynthesis, possibly because of feedback limitation. While feedback limitation is unlikely to occur in the water column it should be considered when estimating productivity in well-mixed waters from fixed light-depth incubations. 90 refs., 7 figs., 2 tabs.« less
Moquin, Alexandre; Neibert, Kevin D; Maysinger, Dusica; Winnik, Françoise M
2015-01-01
The molecular composition of the biological environment of nanoparticles influences their physical properties and changes their pristine physicochemical identity. In order to understand, or predict, the interactions of cells with specific nanoparticles, it is critical to know their size, shape, and agglomeration state not only in their nascent state but also in biological media. Here, we use asymmetrical flow field-flow fractionation (AF4) with on-line multiangle light scattering (MALS), dynamic light scattering (DLS) and UV-Visible absorption detections to determine the relative concentration of isolated nanoparticles and agglomerates in the case of three types of semi-conductor quantum dots (QDs) dispersed in Dulbecco's Modified Eagle Media (DMEM) containing 10% of fetal bovine serum (DMEM-FBS). AF4 analysis also yielded the size and size distribution of the agglomerates as a function of the time of QDs incubation in DMEM-FBS. The preferred modes of internalization of the QDs are assessed for three cell-types, N9 microglia, human hepatocellular carcinoma cells (HepG2) and human embryonic kidney cells (Hek293), by confocal fluorescence imaging of live cells, quantitative determination of the intracellular QD concentration, and flow cytometry. There is an excellent correlation between the agglomeration status of the three types of QDs in DMEM-FBS determined by AF4 analysis and their preferred mode of uptake by the three cell lines, which suggests that AF4 yields an accurate description of the nanoparticles as they encounter cells and advocates its use as a means to characterize particles under evaluation. Copyright © 2014 Elsevier B.V. All rights reserved.
High-efficiency organic glass scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Patrick L.; Carlson, Joseph S.
A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-castingmore » distinguishes the developed organic glasses from existing scintillators.« less
Exoplanet Yield Estimation for Decadal Study Concepts using EXOSIMS
NASA Astrophysics Data System (ADS)
Morgan, Rhonda; Lowrance, Patrick; Savransky, Dmitry; Garrett, Daniel
2016-01-01
The anticipated upcoming large mission study concepts for the direct imaging of exo-earths present an exciting opportunity for exoplanet discovery and characterization. While these telescope concepts would also be capable of conducting a broad range of astrophysical investigations, the most difficult technology challenges are driven by the requirements for imaging exo-earths. The exoplanet science yield for these mission concepts will drive design trades and mission concept comparisons.To assist in these trade studies, the Exoplanet Exploration Program Office (ExEP) is developing a yield estimation tool that emphasizes transparency and consistent comparison of various design concepts. The tool will provide a parametric estimate of science yield of various mission concepts using contrast curves from physics-based model codes and Monte Carlo simulations of design reference missions using realistic constraints, such as solar avoidance angles, the observatory orbit, propulsion limitations of star shades, the accessibility of candidate targets, local and background zodiacal light levels, and background confusion by stars and galaxies. The python tool utilizes Dmitry Savransky's EXOSIMS (Exoplanet Open-Source Imaging Mission Simulator) design reference mission simulator that is being developed for the WFIRST Preliminary Science program. ExEP is extending and validating the tool for future mission concepts under consideration for the upcoming 2020 decadal review. We present a validation plan and preliminary yield results for a point design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Ke; Verschuuren, Marc A.; Lozano, Gabriel
2015-08-21
Optical losses in metals represent the largest limitation to the external quantum yield of emitters coupled to plasmonic antennas. These losses can be at the emission wavelength, but they can be more important at shorter wavelengths, i.e., at the excitation wavelength of the emitters, where the conductivity of metals is usually lower. We present accurate measurements of the absolute external photoluminescent quantum yield of a thin layer of emitting material deposited over a periodic nanoantenna phased array. Emission and absorptance measurements of the sample are performed using a custom-made setup including an integrating sphere and variable angle excitation. The measurementsmore » reveal a strong dependence of the external quantum yield on the angle at which the optical field excites the sample. Such behavior is attributed to the coupling between far-field illumination and near-field excitation mediated by the collective resonances supported by the array. Numerical simulations confirm that the inherent losses associated with the metal can be greatly reduced by selecting an optimum angle of illumination, which boosts the light conversion efficiency in the emitting layer. This combined experimental and numerical characterization of the emission from plasmonic arrays reveals the need to carefully design the illumination to achieve the maximum external quantum yield.« less
Zhang, Shihong; Yang, Mingfa; Shao, Jingai; Yang, Haiping; Zeng, Kuo; Chen, Yingquan; Luo, Jun; Agblevor, Foster A; Chen, Hanping
2018-07-01
Light olefins are the key building blocks for the petrochemical industry. In this study, the effects of in-situ and ex-situ process, temperature, Fe loading, catalyst to feed ratio and gas flow rate on the olefins carbon yield and selectivity were explored. The results showed that Fe-modified ZSM-5 catalyst increased the olefins yield significantly, and the ex-situ process was much better than in-situ. With the increasing of temperature, Fe-loading amount, catalyst to feed ratio, and gas flow rate, the carbon yields of light olefins were firstly increased and further decreased. The maximum carbon yield of light olefins (6.98% C-mol) was obtained at the pyrolysis temperature of 600°C, catalyst to feed ratio of 2, gas flow rate of 100ml/min, and 3wt% Fe/ZSM-5 for cellulose. The selectivity of C 2 H 4 was more than 60% for all feedstock, and the total light olefins followed the decreasing order of cellulose, corn stalk, hemicelluloses and lignin. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khan, Sajid; Kim, H. J.; Lee, M. H.
2016-06-01
This study presents luminescence and scintillation properties of Silver doped LiI crystals. Single crystals of LiI: x% Ag (x=0.02, 0.05, 0.1 and 0.5) were grown by using the Bridgman technique. X-ray induced luminescence spectra show emission bands spanning from 275 nm to 675 nm, dominated by Ag+ band having a peak at 300 nm. Under UV-luminescence, a similar emission band was observed with the peak excitation wavelength of 265 nm. Energy resolution, light yield and decay time profiles of the samples were measured under a 137Cs γ-ray irradiation. The LiI(0.1%Ag) showed the highest light yield and the best energy resolution among the samples. The light yield of LiI(0.1%Ag) is higher than commercially available LiI(Eu) crystal (15,000±1500 ph/MeV). The LiI(Ag) samples exhibit three exponential decay time components except the LiI(0.02%Ag), where the fitting found two decay time components. Temperature dependences of emission spectra, light yield and decay time were studied from 300 K to 10 K. The LiI(0.1%Ag) crystal showed an increase in the light yield and a shortening of decay time with a decrease in temperature..
Naseeruddin, Ramapuram; Sumathi, Vupprucherla; Prasad, Tollamadugu N V K V; Sudhakar, Palagiri; Chandrika, Velaga; Ravindra Reddy, Balam
2018-02-07
Evidence-based synergistic effects of nanoscale materials (size of <100 nm in at least one dimension) were scantly documented in agriculture at field scale. Herein, we report for the first time on effects of nanoscale zinc oxide (n-ZnO), calcium oxide (n-CaO), and magnesium oxide (n-MgO) on growth and productivity of sweet sorghum [Sorghum bicolor (L.) Moench]. A modified sol-gel method was used to prepare nanoscale materials under study. Characterization was performed using transmission and scanning electron microscopies, X-ray diffraction, and dynamic light scattering. Average sizes (25, 53.7, and 53.5 nm) and ζ potentials (-10.9, -28.2, and -16.2 mV) of n-ZnO, n-CaO, and n-MgO were measured, respectively. The significant grain yield (17.8 and 14.2%), cane yield (7.2 and 8.0%), juice yield (10 and 12%), and higher sucrose yield (21.8 and 20.9%) were recorded with the application of nanoscale materials in the years 2014 and 2015, respectively. Nutrient uptake was significant with foliar application of nanoscale nutrients.
Factors determining yield and quality of illicit indoor cannabis (Cannabis spp.) production.
Vanhove, Wouter; Van Damme, Patrick; Meert, Natalie
2011-10-10
Judiciary currently faces difficulties in adequately estimating the yield of illicit indoor cannabis plantations. The latter data is required in penalization which is based on the profits gained. A full factorial experiment in which two overhead light intensities, two plant densities and four varieties were combined in the indoor cultivation of cannabis (Cannabis spp.) was used to reveal cannabis drug yield and quality under each of the factor combinations. Highest yield was found for the Super Skunk and Big Bud varieties which also exhibited the highest concentrations of Δ(9)-tetrahydrocannabinol (THC). Results show that plant density and light intensity are additive factors whereas the variety factor significantly interacts with both plant density and light intensity factors. Adequate estimations of yield of illicit, indoor cannabis plantations can only be made if upon seizure all factors considered in this study are accounted for. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Zhang, Feng; Zhong, Haizheng; Chen, Cheng; Wu, Xian-gang; Hu, Xiangmin; Huang, Hailong; Han, Junbo; Zou, Bingsuo; Dong, Yuping
2015-04-28
Organometal halide perovskites are inexpensive materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology, but they suffer from low photoluminescence quantum yields at low excitation fluencies. Here we developed a ligand-assisted reprecipitation strategy to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies. To illustrate the photoluminescence enhancements in these quantum dots, we conducted comprehensive composition and surface characterizations and determined the time- and temperature-dependent photoluminescence spectra. Comparisons between small-sized CH3NH3PbBr3 quantum dots (average diameter 3.3 nm) and corresponding micrometer-sized bulk particles (2-8 μm) suggest that the intense increased photoluminescence quantum yield originates from the increase of exciton binding energy due to size reduction as well as proper chemical passivations of the Br-rich surface. We further demonstrated wide-color gamut white-light-emitting diodes using green emissive CH3NH3PbBr3 quantum dots and red emissive K2SiF6:Mn(4+) as color converters, providing enhanced color quality for display technology. Moreover, colloidal CH3NH3PbX3 quantum dots are expected to exhibit interesting nanoscale excitonic properties and also have other potential applications in lasers, electroluminescence devices, and optical sensors.
Chen, Ya-Meng; Zhou, Yang; Zhao, Qing; Zhang, Jun-Ying; Ma, Ju-Ping; Xuan, Tong-Tong; Guo, Shao-Qiang; Yong, Zi-Jun; Wang, Jing; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Sun, Hong-Tao
2018-05-09
All-inorganic perovskites have emerged as a new class of phosphor materials owing to their outstanding optical properties. Zero-dimensional inorganic perovskites, in particular the Cs 4 PbBr 6 -related systems, are inspiring intensive research owing to the high photoluminescence quantum yield (PLQY) and good stability. However, synthesizing such perovskites with high PLQYs through an environment-friendly, cost-effective, scalable, and high-yield approach remains challenging, and their luminescence mechanisms has been elusive. Here, we report a simple, scalable, room-temperature self-assembly strategy for the synthesis of Cs 4 PbBr 6 /CsPbBr 3 perovskite composites with near-unity PLQY (95%), high product yield (71%), and good stability using low-cost, low-toxicity chemicals as precursors. A broad range of experimental and theoretical characterizations suggest that the high-efficiency PL originates from CsPbBr 3 nanocrystals well passivated by the zero-dimensional Cs 4 PbBr 6 matrix that forms based on a dissolution-crystallization process. These findings underscore the importance in accurately identifying the phase purity of zero-dimensional perovskites by synchrotron X-ray technique to gain deep insights into the structure-property relationship. Additionally, we demonstrate that green-emitting Cs 4 PbBr 6 /CsPbBr 3 , combined with red-emitting K 2 SiF 6 :Mn 4+ , can be used for the construction of WLEDs. Our work may pave the way for the use of such composite perovskites as highly luminescent emitters in various applications such as lighting, displays, and other optoelectronic and photonic devices.
Koester, Robert P.; Skoneczka, Jeffrey A.; Cary, Troy R.; Diers, Brian W.; Ainsworth, Elizabeth A.
2014-01-01
Soybean (Glycine max Merr.) is the world’s most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha–1 year–1, and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. PMID:24790116
Three-peak standard white organic light-emitting devices for solid-state lighting
NASA Astrophysics Data System (ADS)
Guo, Kunping; Wei, Bin
2014-12-01
Standard white organic light-emitting device (OLED) lighting provides a warm and comfortable atmosphere and shows mild effect on melatonin suppression. A high-efficiency red OLED employing phosphorescent dopant has been investigated. The device generates saturated red emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.66, 0.34), characterized by a low driving voltage of 3.5 V and high external quantum efficiency of 20.1% at 130 cd m-2. In addition, we have demonstrated a two-peak cold white OLED by combining with a pure blue emitter with the electroluminescent emission of 464 nm, 6, 12-bis{[N-(3,4-dimethylpheyl)-N-(2,4,5-trimethylphenyl)]} chrysene (BmPAC). It was found that the man-made lighting device capable of yielding a relatively stable color emission within the luminance range of 1000-5000 cd m-2. And the chromaticity coordinates, varying from (0.25, 0.21) to (0.23, 0.21). Furthermore, an ultrathin layer of green-light-emitting tris (2-phenylpyridinato)iridium(Ⅲ) Ir(ppy)3 in the host material was introduced to the emissive region for compensating light. By appropriately controlling the layer thickness, the white light OLED achieved good performance of 1280 cd m-2 at 5.0 V and 5150 cd m-2 at 7.0 V, respectively. The CIE coordinates of the emitted light are quite stable at current densities from 759 cd m-2 to 5150 cd m-2, ranging from (0.34, 0.37) to (0.33, 0.33).
EVEREST: Pixel Level Decorrelation of K2 Light Curves
NASA Astrophysics Data System (ADS)
Luger, Rodrigo; Agol, Eric; Kruse, Ethan; Barnes, Rory; Becker, Andrew; Foreman-Mackey, Daniel; Deming, Drake
2016-10-01
We present EPIC Variability Extraction and Removal for Exoplanet Science Targets (EVEREST), an open-source pipeline for removing instrumental noise from K2 light curves. EVEREST employs a variant of pixel level decorrelation to remove systematics introduced by the spacecraft’s pointing error and a Gaussian process to capture astrophysical variability. We apply EVEREST to all K2 targets in campaigns 0-7, yielding light curves with precision comparable to that of the original Kepler mission for stars brighter than {K}p≈ 13, and within a factor of two of the Kepler precision for fainter targets. We perform cross-validation and transit injection and recovery tests to validate the pipeline, and compare our light curves to the other de-trended light curves available for download at the MAST High Level Science Products archive. We find that EVEREST achieves the highest average precision of any of these pipelines for unsaturated K2 stars. The improved precision of these light curves will aid in exoplanet detection and characterization, investigations of stellar variability, asteroseismology, and other photometric studies. The EVEREST pipeline can also easily be applied to future surveys, such as the TESS mission, to correct for instrumental systematics and enable the detection of low signal-to-noise transiting exoplanets. The EVEREST light curves and the source code used to generate them are freely available online.
Fadil, Mouhcine; Farah, Abdellah; Ihssane, Bouchaib; Haloui, Taoufik; Lebrazi, Sara; Zghari, Badreddine; Rachiq, Saâd
2016-01-01
To investigate the effect of environmental factors such as light and shade on essential oil yield and morphological traits of Moroccan Myrtus communis, a chemometric study was conducted on 20 individuals growing under two contrasting light environments. The study of individual's parameters by principal component analysis has shown that essential oil yield, altitude, and leaves thickness were positively correlated between them and negatively correlated with plants height, leaves length and leaves width. Principal component analysis and hierarchical cluster analysis have also shown that the individuals of each sampling site were grouped separately. The one-way ANOVA test has confirmed the effect of light and shade on essential oil yield and morphological parameters by showing a statistically significant difference between them from the shaded side to the sunny one. Finally, the multiple linear model containing main, interaction and quadratic terms was chosen for the modeling of essential oil yield in terms of morphological parameters. Sun plants have a small height, small leaves length and width, but they are thicker and richer in essential oil than shade plants which have shown almost the opposite. The highlighted multiple linear model can be used to predict essential oil yield in the studied area.
NASA Astrophysics Data System (ADS)
Baudis, L.; Benato, G.; Dressler, R.; Piastra, F.; Usoltsev, I.; Walter, M.
2015-09-01
The detection of VUV scintillation light in (liquid) argon (LAr) detectors commonly includes a reflector with a fluorescent coating, converting UV photons to visible light. The light yield of these detectors depends directly on the conversion efficiency. Several coating/reflector combinations were produced using VM2000, a specular reflecting multi-layer polymer, and Tetratex®, a diffuse reflecting PTFE fabric, as reflector foils. The light yield of these coatings was optimised and has been measured in a dedicated liquid argon setup built at the University of Zurich. It employs a small, 1.3 kg LAr cell viewed by a 3-inch, low radioactivity PMT of type R11065-10 from Hamamatsu. The cryogenic stability of these coatings was additionally studied. The optimum reflector/coating combination was found to be Tetratex® dip-coated with Tetraphenyl-butadiene with a thickness of 0.9 mg/cm2, resulting in a 3.6 times higher light yield compared to uncoated VM2000. Its performance was stable in long-term measurements, performed up to 100 days in liquid argon. This coated reflector was also investigated concerning radioactive impurities and found to be suitable for current and upcoming low-background experiments. Therefore it is used for the liquid argon veto in Phase II of the GERDA neutrinoless double beta decay experiment.
Spatial-spectral characterization of focused spatially chirped broadband laser beams.
Greco, Michael J; Block, Erica; Meier, Amanda K; Beaman, Alex; Cooper, Samuel; Iliev, Marin; Squier, Jeff A; Durfee, Charles G
2015-11-20
Proper alignment is critical to obtain the desired performance from focused spatially chirped beams, for example in simultaneous spatial and temporal focusing (SSTF). We present a simple technique for inspecting the beam paths and focusing conditions for the spectral components of a broadband beam. We spectrally resolve the light transmitted past a knife edge as it was scanned across the beam at several axial positions. The measurement yields information about spot size, M2, and the propagation paths of different frequency components. We also present calculations to illustrate the effects of defocus aberration on SSTF beams.
Ferreira, Cassio Porto; Oliveira de Almeida, Ana Cristina; Corte-Real, Suzana
2015-02-01
Transmission electron microscopy can yield useful information in a range of scientific fields; it is capable of imaging at a significantly higher resolution than light microscopes and has been a very useful tool in the identification of morphological changes of the dermis as well as assessment of changes in the extracellular matrix. Our aim is to characterize by electron microscopy the cellular profile of lesions caused by Sporothrix schenckii from the sporotrichosis epidemic in its zoonotic form that occurs in Rio de Janeiro, Brazil. © The American Society of Tropical Medicine and Hygiene.
Effects of blue light on pigment biosynthesis of Monascus.
Chen, Di; Xue, Chunmao; Chen, Mianhua; Wu, Shufen; Li, Zhenjing; Wang, Changlu
2016-04-01
The influence of different illumination levels of blue light on the growth and intracellular pigment yields of Monascus strain M9 was investigated. Compared with darkness, constant exposure to blue light of 100 lux reduced the yields of six pigments, namely, rubropunctatamine (RUM), monascorubramine (MOM), rubropunctatin (RUN), monascorubrin (MON), monascin (MS), and ankaflavin (AK). However, exposure to varying levels of blue light had different effects on pigment production. Exposure to 100 lux of blue light once for 30 min/day and to 100 lux of blue light once and twice for 15 min/day could enhance RUM, MOM, MS, and AK production and reduce RUN and MON compared with non-exposure. Exposure to 100 lux twice for 30 min/day and to 200 lux once for 45 min/day decreased the RUM, MOM, MS, and AK yields and increased the RUN and MON. Meanwhile, the expression levels of pigment biosynthetic genes were analyzed by real-time quantitative PCR. Results indicated that gene MpPKS5, mppR1, mppA, mppB, mmpC, mppD, MpFasA, MpFasB, and mppF were positively correlated with the yields of RUN and MON, whereas mppE and mppR2 were associated with RUM, MOM, MS, and AK production.
Deák, Zsuzsanna; Sass, László; Kiss, Eva; Vass, Imre
2014-09-01
Fluorescence yield relaxation following a light pulse was studied in various cyanobacteria under aerobic and microaerobic conditions. In Synechocystis PCC 6803 fluorescence yield decays in a monotonous fashion under aerobic conditions. However, under microaerobic conditions the decay exhibits a wave feature showing a dip at 30-50 ms after the flash followed by a transient rise, reaching maximum at ~1s, before decaying back to the initial level. The wave phenomenon can also be observed under aerobic conditions in cells preilluminated with continuous light. Illumination preconditions cells for the wave phenomenon transiently: for few seconds in Synechocystis PCC 6803, but up to one hour in Thermosynechocystis elongatus BP-1. The wave is eliminated by inhibition of plastoquinone binding either to the QB site of Photosystem-II or the Qo site of cytochrome b6f complex by 3-(3',4'-dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, respectively. The wave is also absent in mutants, which lack either Photosystem-I or the NAD(P)H-quinone oxidoreductase (NDH-1) complex. Monitoring the redox state of the plastoquinone pool revealed that the dip of the fluorescence wave corresponds to transient oxidation, whereas the following rise to re-reduction of the plastoquinone pool. It is concluded that the unusual wave feature of fluorescence yield relaxation reflects transient oxidation of highly reduced plastoquinone pool by Photosystem-I followed by its re-reduction from stromal components via the NDH-1 complex, which is transmitted back to the fluorescence yield modulator primary quinone electron acceptor via charge equilibria. Potential applications of the wave phenomenon in studying photosynthetic and respiratory electron transport are discussed. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2014 Elsevier B.V. All rights reserved.
Applegate, Amanda M; Lubner, Carolyn E; Knörzer, Philipp; Happe, Thomas; Golbeck, John H
2016-01-01
The quantum yield for light-induced H2 generation was measured for a previously optimized bio-hybrid cytochrome c 6-crosslinked PSI(C13G)-1,8-octanedithiol-[FeFe]-H2ase(C97G) (PSI-H2ase) nanoconstruct. The theoretical quantum yield for the PSI-H2ase nanoconstruct is 0.50 molecules of H2 per photon absorbed, which equates to a requirement of two photons per H2 generated. Illumination of the PSI-H2ase nanoconstruct with visible light between 400 and 700 nm resulted in an average quantum yield of 0.10-0.15 molecules of H2 per photon absorbed, which equates to a requirement of 6.7-10 photons per H2 generated. A possible reason for the difference between the theoretical and experimental quantum yield is the occurrence of non-productive PSI(C13G)-1,8-octanedithiol-PSIC13G (PSI-PSI) conjugates, which would absorb light without generating H2. Assuming the thiol-Fe coupling is equally efficient at producing PSI-PSI conjugates as well as in producing PSI-H2ase nanoconstructs, the theoretical quantum yield would decrease to 0.167 molecules of H2 per photon absorbed, which equates to 6 photons per H2 generated. This value is close to the range of measured values in the current study. A strategy that purifies the PSI-H2ase nanoconstructs from the unproductive PSI-PSI conjugates or that incorporates different chemistries on the PSI and [FeFe]-H2ase enzyme sites could potentially allow the PSI-H2ase nanoconstruct to approach the expected theoretical quantum yield for light-induced H2 generation.
Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel.
Zhao, Xianhui; Wei, Lin; Julson, James; Qiao, Qiquan; Dubey, Ashish; Anderson, Gary
2015-03-25
Non-edible sunflower oils that were extracted from sunflower residual wastes were catalytically cracked over a ZSM-5 catalyst in a fixed-bed reactor at three different reaction temperatures: 450°C, 500°C and 550°C. The catalyst was characterized using XRD, FT-IR, BET and SEM. Characterizations of the upgraded sunflower oils, hydrocarbon fuels, distillation residues and non-condensable gases were carried out. The effect of the reaction temperature on the yield and quality of liquid products was discussed. The results showed that the reaction temperature affected the hydrocarbon fuel yield but had a minor influence on its properties. The highest conversion efficiency from sunflower oils to hydrocarbon fuels was 30.1%, which was obtained at 550°C. The reaction temperature affected the component content of the non-condensable gases. The non-condensable gases generated at 550°C contained the highest content of light hydrocarbons (C1-C5), CO, CO2 and H2. Compared to raw sunflower oils, the properties of hydrocarbon fuels including the dynamic viscosity, pH, moisture content, density, oxygen content and heating value were improved. Copyright © 2015 Elsevier B.V. All rights reserved.
Collective effects and dynamics of non-adiabatic flame balls
NASA Astrophysics Data System (ADS)
D'Angelo, Yves; Joulin, Guy
2001-03-01
The dynamics of a homogeneous, polydisperse collection of non-adiabatic flame balls (FBs) is investigated by analytical/numerical means. A strongly temperature-dependent Arrhenius reaction rate is assumed, along with a light enough reactant characterized by a markedly less than unity Lewis number (Le). Combining activation-energy asymptotics with a mean-field type of treatment, the analysis yields a nonlinear integro-differential evolution equation (EE) for the FB population. The EE accounts for heat losses inside each FB and unsteadiness around it, as well as for its interactions with the entire FB population, namely mutual heating and faster (Le<1) consumption of the reactant pool. The initial FB number density and size distribution enter the EE explicitly. The latter is studied analytically at early times, then for small total FB number densities; it is subsequently solved numerically, yielding the whole population evolution and its lifetime. Generalizations and open questions relating to `spotty' turbulent combustion are finally evoked.
Ivanov, E L; Koval'tsova, S V; Korolev, V G
1987-09-01
We have studied the influence of him1-1, him2-1, him3-1 and himX mutations on induction frequency and specificity of UV-induced adenine-dependent mutations in the yeast Saccharomyces cerevisiae. Him mutations do not render haploid cells more sensitive to the lethal action of UV-light; however, in him strains adenine-dependent mutations (ade1, ade2) were induced more frequently (1.5--2-fold), as compared to the HIM strain. An analysis of the molecular nature of ade2 mutants revealed that him1-1, him2-1 and himX mutations increase specifically the yield of transitions (AT----GC and GC----AT), whereas in the him3-1 strain the yield of transversions was enhanced as well. We suggest him mutations analysed to affect specific repair pathway for mismatch correction.
Oxygen quenching in a LAB based liquid scintillator and the nitrogen bubbling model
NASA Astrophysics Data System (ADS)
Xiao, Hua-Lin; Deng, Jing-Shan; Wang, Nai-Yan
2010-05-01
The oxygen quenching effect in a Linear Alkl Benzene (LAB) based liquid scintillator (LAB as the solvent, 3 g/L 2, 5 diphe-nyloxazole (PPO) as the fluor and 15 mg/L p-bis-(o-methylstyryl)-benzene (bis-MSB) as the λ-shifter) is studied by measuring the light yield as a function of the nitrogen bubbling time. It is shown that the light yield of the fully purged liquid scintillator is increased by 11% at room temperature and the room atmospheric pressure. A simple nitrogen bubbling model is proposed to describe the relationship between the relative light yield (oxygen quenching factor) and the bubbling time.
Li, Zhenglong; Lepore, Andrew W.; Davison, Brian H.; ...
2016-01-01
Here, we describe a light gas recirculation (LGR) method to increase the liquid hydrocarbon yield with reduced aromatic content from catalytic conversion of ethanol to hydrocarbons. The previous liquid hydrocarbon yield is ~40% from one-pass ethanol conversion over V-ZSM-5 at 350 C and atmospheric pressure where the remaining ~60% yield is light gas hydrocarbons. In comparison, the liquid hydrocarbon yield increases to 80% when a simulated light gas hydrocarbon stream is co-fed at a rate of 0.053 mol g-1 h-1 with ethanol due to the conversion of most of the light olefins. The LGR also significantly improves the quality ofmore » the liquid hydrocarbon blend-stock by reducing aromatic content and overall benzene concentration. For 0.027 mol g-1 h-1 light gas mixture co-feeding, the average aromatic content in liquid hydrocarbons is 51.5% compared with 62.5% aromatic content in ethanol only experiment. Average benzene concentration decreases from 3.75% to 1.5% which is highly desirable since EPA limits benzene concentration in gasoline to 0.62%. As a result of low benzene concentration, the blend-wall for ethanol derived liquid hydrocarbons changes from ~18% to 43%. The remaining light paraffins and olefins can be further converted to valuable BTX products (94% BTX in the liquid) over Ga-ZSM-5 at 500 C. Thus, the LGR is an effective approach to convert ethanol to liquid hydrocarbons with higher liquid yield and low aromatic content, especially low benzene concentration, which could be blended with gasoline in a much higher ratio than ethanol or ethanol derived hydrocarbon blend-stock.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhenglong; Lepore, Andrew W.; Davison, Brian H.
Here, we describe a light gas recirculation (LGR) method to increase the liquid hydrocarbon yield with reduced aromatic content from catalytic conversion of ethanol to hydrocarbons. The previous liquid hydrocarbon yield is ~40% from one-pass ethanol conversion over V-ZSM-5 at 350 C and atmospheric pressure where the remaining ~60% yield is light gas hydrocarbons. In comparison, the liquid hydrocarbon yield increases to 80% when a simulated light gas hydrocarbon stream is co-fed at a rate of 0.053 mol g-1 h-1 with ethanol due to the conversion of most of the light olefins. The LGR also significantly improves the quality ofmore » the liquid hydrocarbon blend-stock by reducing aromatic content and overall benzene concentration. For 0.027 mol g-1 h-1 light gas mixture co-feeding, the average aromatic content in liquid hydrocarbons is 51.5% compared with 62.5% aromatic content in ethanol only experiment. Average benzene concentration decreases from 3.75% to 1.5% which is highly desirable since EPA limits benzene concentration in gasoline to 0.62%. As a result of low benzene concentration, the blend-wall for ethanol derived liquid hydrocarbons changes from ~18% to 43%. The remaining light paraffins and olefins can be further converted to valuable BTX products (94% BTX in the liquid) over Ga-ZSM-5 at 500 C. Thus, the LGR is an effective approach to convert ethanol to liquid hydrocarbons with higher liquid yield and low aromatic content, especially low benzene concentration, which could be blended with gasoline in a much higher ratio than ethanol or ethanol derived hydrocarbon blend-stock.« less
Lefsih, Khalef; Giacomazza, Daniela; Dahmoune, Farid; Mangione, Maria Rosalia; Bulone, Donatella; San Biagio, Pier Luigi; Passantino, Rosa; Costa, Maria Assunta; Guarrasi, Valeria; Madani, Khodir
2017-04-15
Optimization of microwave-assisted extraction (MAE) of water-soluble pectin (WSP) from Opuntia ficus indica cladodes was performed using Response Surface Methodology. The effect of extraction time (X 1 ), microwave power (X 2 ), pH (X 3 ) and solid-to-liquid ratio (X 4 ) on the extraction yield was examined. The optimum conditions of MAE were as follows: X 1 =2.15min; X 2 =517W; X 3 =2.26 and X 4 =2g/30.6mL. The maximum obtained yield of pectin extraction was 12.57%. Total carbohydrate content of WSP is about 95.5% including 34.4% of Galacturonic acid. Pectin-related proteins represent only the 0.66% of WSP mass. HPSEC and light scattering analyses reveal that WSP is mostly constituted of high molecular pectin and FTIR measurements show that the microwave treatment does not alter the chemical structure of WSP, in which Galacturonic acid content and yield are 34.4% and 4.33%, respectively. Overall, application of MAE can give rise to high quality pectin. Copyright © 2016 Elsevier Ltd. All rights reserved.
Boal Carvalho, Pedro; Magalhães, Joana; Dias de Castro, Francisca; Gonçalves, Tiago Cúrdia; Rosa, Bruno; Moreira, Maria João; Cotter, José
2016-02-01
Small bowel capsule endoscopy represents the initial investigation for obscure gastrointestinal bleeding. Flexible spectral imaging colour enhancement (FICE) is a virtual chromoendoscopy technique designed to enhance mucosal lesions, available in different settings according to light wavelength-- FICE1, 2 and 3. To compare the diagnostic yield of FICE1 and white light during capsule endoscopy in patients with obscure gastrointestinal bleeding. Retrospective single-centre study including 60 consecutive patients referred for small bowel capsule endoscopy for obscure gastrointestinal bleeding. Endoscopies were independently reviewed in FICE1 and white light; findings were then reviewed by another researcher, establishing a gold standard. Diagnostic yield was defined as the presence of lesions with high bleeding potential (P2) angioectasias, ulcers or tumours. Diagnostic yield using FICE1 was significantly higher than white light (55% vs. 42%, p=0.021). A superior number of P2 lesions was detected with FICE1 (74 vs. 44, p=0.003), particularly angioectasias (54 vs. 26, p=0.002), but not ulcers or tumours. FICE1 was significantly superior to white light, resulting in a 13% improvement in diagnostic yield, and potentially bleeding lesions particularly angioectasias were more often observed. Our results support the use of FICE1 while reviewing small bowel capsule endoscopy for obscure gastrointestinal bleeding. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Measurement of radiation damage of water-based liquid scintillator and liquid scintillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bignell, L. J.; Diwan, M. V.; Hans, S.
2015-10-19
Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less
Thabit, Mohamed; Liu, Huiling; Zhang, Jian; Wang, Bing
2017-10-01
Pd-MnO 2 /TiO 2 nanotube arrays (NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO 2 /TiO 2 NTAs photo electrodes were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet-visible diffuse reflectance spectrum (DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination (xenon light). The performed analyses illustrated that Pd-MnO 2 codoped particles were successfully deposited onto the surface of the TiO 2 nanotube arrays; DRS results showed significant improvement in visible light absorption which was between 400 and 700nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant (Rhodamine B) illustrated a superior photocatalytic (PC) efficiency of approximately 95% compared to the bare TiO 2 NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of OH radicals. Copyright © 2017. Published by Elsevier B.V.
Koester, Robert P; Skoneczka, Jeffrey A; Cary, Troy R; Diers, Brian W; Ainsworth, Elizabeth A
2014-07-01
Soybean (Glycine max Merr.) is the world's most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha(-1) year(-1), and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
USDA-ARS?s Scientific Manuscript database
Reducing chlorophyll (chl) content may improve the conversion efficiency of absorbed radiation into biomass (ec) and therefore yield in dense monoculture crops by improving light penetration and distribution within the canopy. Modeling suggests that reducing chl content may also reduce leaf temperat...
NASA Astrophysics Data System (ADS)
Zirak, P.; Penzkofer, A.; Schiereis, T.; Hegemann, P.; Jung, A.; Schlichting, I.
2005-08-01
The BLUF domain of the transcriptional anti-repressor protein AppA from the non-sulfur anoxyphototrophic purple bacterium Rhodobacter sphaeroides was characterized by absorption and emission spectroscopy. The BLUF domain constructs AppA 148 (consisting of amino-acid residues 1-148) and AppA 126 (amino-acid residues 1-126) are investigated. The cofactor of the investigated domains is found to consist of a mixture of the flavins riboflavin, FMN, and FAD. The dark-adapted domains exist in two different active receptor conformations (receptor states) with different sub-nanosecond fluorescence lifetimes (BLUF r,f and BLUF r,sl) and a small non-interacting conformation (BLUF nc). The active receptor conformations are transformed to putative signalling states (BLUF s,f and BLUF s,sl) of low fluorescence efficiency and picosecond fluorescence lifetime by blue-light excitation (light-adapted domains). In the dark at room temperature both signalling states recover back to the initial receptor states with a time constant of about 17 min. A quantum yield of signalling state formation of about 25% was determined by intensity dependent transmission measurements. A photo-cycle scheme is presented including photo-induced charge transfer complex formation, charge recombination, and protein binding pocket reorganisation.
Glucose-functionalized amino-OPEs as biocompatible photosensitizers in PDT.
Deni, Elisa; Zamarrón, Alicia; Bonaccorsi, Paola; Carmen Carreño, M; Juarranz, Ángeles; Puntoriero, Fausto; Sciortino, Maria Teresa; Ribagorda, María; Barattucci, Anna
2016-03-23
Photodynamic therapy (PDT) is a minimally invasive procedure that can provide a selective eradication of neoplastic diseases by the combined effect of a photosensitizer, light and oxygen. New amino oligo(phenylene-ethynylene)s (OPEs), bearing hydrophilic glucoside terminations, have been prepared, characterized and tested as photosensitizers in PDT. The effectiveness of these compounds in combination with UVA light has been checked on two tumor cell lines (HEp-2 and HeLa cells, derived from a larynx carcinoma and a cervical carcinoma, respectively). The compounds triggered a mitotic blockage that led to the cell death, being the effect active up to 3 μm concentration. The photophysical properties of OPEs, such as high quantum yield, stability, singlet oxygen production, biocompatibility, easy cell-internalization and very good response even at low concentration, make them promising photosensitizers in the application of PDT. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Geometrical Properties of Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Cremades, Hebe; Bothmer, Volker
Based on the SOHO/LASCO dataset, a collection of "structured" coronal mass ejections (CMEs) has been compiled within the period 1996-2002, in order to analyze their three-dimensional configuration. These CME events exhibit white-light fine structures, likely indicative of their possible 3D topology. From a detailed investigation of the associated low coronal and photospheric source regions, a generic scheme has been deduced, which considers the white-light topology of a CME projected in the plane of the sky as being primarily dependent on the orientation and position of the source region's neutral line on the solar disk. The obtained results imply that structured CMEs are essentially organized along a symmetry axis, in a cylindrical manner. The measured dimensions of the cylinder's base and length yield a ratio of 1.6. These CMEs seem to be better approximated by elliptic cones, rather than by the classical ice cream cone, characterized by a circular cross section.
NASA Astrophysics Data System (ADS)
Xu, Chao; Zhou, Dongxiang; Zhai, Yongping; Liu, Yunhui
2015-12-01
This paper realizes the automatic segmentation and classification of Mycobacterium tuberculosis with conventional light microscopy. First, the candidate bacillus objects are segmented by the marker-based watershed transform. The markers are obtained by an adaptive threshold segmentation based on the adaptive scale Gaussian filter. The scale of the Gaussian filter is determined according to the color model of the bacillus objects. Then the candidate objects are extracted integrally after region merging and contaminations elimination. Second, the shape features of the bacillus objects are characterized by the Hu moments, compactness, eccentricity, and roughness, which are used to classify the single, touching and non-bacillus objects. We evaluated the logistic regression, random forest, and intersection kernel support vector machines classifiers in classifying the bacillus objects respectively. Experimental results demonstrate that the proposed method yields to high robustness and accuracy. The logistic regression classifier performs best with an accuracy of 91.68%.
Patel, A S; Soni, T; Thakkar, V; Gandhi, T
2012-03-01
The preparation of Tramadol-HCL spray-dried microspheres can be affected by the long drug recrystallization time. Polymer type and drug-polymer ratio as well as manufacturing parameters affect the preparation. The purpose of this work was to evaluate the possibility to obtain tramadol spray-dried microspheres using the Eudragit(®) RS and RL; the influence of the spray-drying parameters on morphology, dimension, and physical stability of microspheres was studied. The effects of matrix composition on microparticle properties were characterized by Laser Light scattering, differential scanning calorimetry (DSC), X-ray diffraction study, FT-infrared and UV-visible spectroscopy. The spray-dried microparticles were evaluated in terms of shape (SEM), size distribution (Laser light scattering method), production yield, drug content, initial drug loding and encapsulation efficiency. The results of X-ray diffraction and thermal analysis reveals the conversion of crystalline drug to amorphous. FTIR analysis confirmed the absence of any drug polymer interaction. The results indicated that the entrapment efficiency (EE), and product yield were depended on polymeric composition and polymeric ratios of the microspheres prepared. Tramadol microspheres based on Eudragit(®) blend can be prepared by spray-drying and the nebulization parameters do not influence significantly on particle properties.
Neutron response characterization for an EJ299-33 plastic scintillation detector
Lawrence, Chris C.; Febbraro, Michael; Massey, Thomas N.; ...
2014-05-10
Organic scintillation detectors have shown promise as neutron detectors for characterizing special nuclear materials in various arms-control and homeland security applications. Recent advances have yielded a new plastic scintillator - EJ299-33 - with pulse-shape-discrimination (PSD) capability. Plastic scintillators would have a much expanded range of deployment relative to liquids and crystals. Here in this paper, we present a full characterization of pulse height response to fission-energy neutrons for an EJ299-33 detector with 7.62-by-7.62-cm cylindrical active volume, and compare with an EJ309 liquid scintillator in the same assembly. Scintillation light output relations, energy resolutions, and response matrices are presented for bothmore » detectors. A Continuous spectrum neutron source, obtained via the bombardment of 27Al with 7.44-MeV deuterons at the Edwards Accelerator Facility at Ohio University, was used for the measurement. A new procedure for evaluating and comparing PSD performance is presented which accounts for the effect of the light output relation on the ability to detect low energy neutrons. The EJ299-33 is shown to have considerable deficit in matrix condition, and in PSD figure of merit when compared to EJ309, especially when neutron energy is taken into account. Furthermore the EJ299 is likely to bring a modest PSD capability into a array of held applications that are not accessible to liquids or crystals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalla Palma, M.; Quaranta, A.; INFN, Laboratori Nazionali di Legnaro,Viale dell'Universita, 2, 35020 Legnaro - Padova
In the last decade, attention toward neutron detection has been growing in the scientific community, driven by new requirements in different fields of application ranging from homeland security to medical and material analysis, from research physics, to nuclear energy production. So far neutron detection, with particular attention to fast neutrons, has been mainly based on organic liquid scintillators, owing to their good efficiency and pulse shape discrimination (PSD) capability. Most of these liquids have however some main drawbacks given by toxicity, flammability, volatility and sensitivity to dissolved oxygen that limits the duration and the quality of their performances with worsemore » handiness and increased costs. Phenyl-substituted polysiloxanes could address most of these issues, being characterized by low toxicity, low volatility and low flammability. Their optical properties can be tailored by changing the phenyl distribution and concentration thus allowing to increase the solubility of organic dyes, to modify the fluorescence spectra and to vary the refractive index of the medium. Furthermore, polysiloxanes have been recently exploited for the production of plastic scintillators with very good chemical and thermal stability and very good radiation hardness and the development of polysiloxane liquid scintillators could allow to combine these interesting properties with the supremacy of liquid scintillators as regarding PSD over plastics. For these reasons, the properties of several phenyl-substituted polysiloxane with different phenyl amounts and different viscosities have been investigated, with particular attention to the scintillation response and the pulse shape discrimination capability, and the results of the investigation are reported in this work. More in details, the scintillation light yield towards gamma rays ({sup 60}Co and {sup 137}Cs) of several polysiloxane liquids has been analyzed and compared with the light yield of a commercial non-toxic liquid scintillator (EJ309). The results have been related to the optical characterization of these materials, especially as regarding the fluorescence response, and the best performing material (1,1,5,5-Tetraphenyl 1,3,3,5-Tetramethyl Trisiloxane) showed a scintillation light-yield only slightly lower than EJ309, proving to be a promising candidate for the production of an efficient polysiloxane based liquid scintillator. The results as regarding the neutron-gamma pulse shape discrimination capability of the best performing materials are also reported in this work and the scintillation decay time of these materials are compared to the results of fluorescence lifetime analysis. PSD tests have been performed at CN accelerator in Legnaro National Laboratories with a 2.2 MeV pulsed neutron beam using TOF procedure and the pulses have been analyzed in order to evidence the PSD capability of every sample. The reported results pave the way to the development of a new promising class of non-toxic liquid scintillating materials for neutron detection, with good light output and interesting PSD characteristics. (authors)« less
NASA Technical Reports Server (NTRS)
Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.
1996-01-01
To determine the influence of narrow-spectrum red light-emitting diodes (LED's) on plant growth and seed production, wheat (Triticum aestivum L.cv Superdwarf) and Arabidopsis (Arabidopsis thaliana (L.) Heynh, race Columbia) plants were grown under red LED's (peak emission 660 nm) and compared to plants grown under daylight fluorescent (white) light and red LED's supplemented with either 1 percent or 10 percent blue fluorescent (BF) light. Wheat growth under red LED's alone appeared normal, whereas Arabidopsis under red LED's alone developed curled leaf margins and a spiraling growth pattern. Both wheat and Arabidopsis under red LED's alone or red LED's + 1 percent BF light had significantly lower seed yield than plants grown under white light. However, the addition of 10 percent BF light to red LED's partially alleviated the adverse effect of red LED's on yield. Irrespective of the light treatment, viable seeds were produced by wheat(75-92 percent germination rate) and Arabidopsis (85-100 percent germination rate). These results indicate that wheat, and to a lesser extent Arabidopsis, can be successfully grown under red LED's alone, but supplemental blue light is required with red LED's to sufficiently match the growth characteristics and seed yield associated with plants grown under white light.
Mechanism of rapid suppression of cell expansion in cucumber hypocotyls after blue-light irradiation
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1988-01-01
Rapid suppression of hypocotyl elongation by blue light in cucumber (Cucumis sativus L.) was studied to examine possible hydraulic and wall changes responsible for diminished growth. Cell-sap osmotic pressure, measured by vapor-pressure osmometry, was not decreased by blue light; turgor pressure, measured by the pressure-probe technique, remained constant during the growth inhibition; and stem hydraulic conductance, measured by dynamic and static methods, was likewise unaffected by blue light. Wall yielding properties were assessed by the pressure-block technique for in-vivo stress relaxation. Blue light reduced the initial rate of relaxation by 77%, but had little effect on the final amount of relaxation. The results demonstrate that blue irradiation acts to decrease the wall yielding coefficient, but not the yield threshold. Stress-strain (Instron) analysis showed that irradiation of the seedlings had little effect on the mechanical extensibilities of the isolated wall. The results indicate that blue light can reduce cell-wall loosening without affecting bulk viscoelastic properties, and indicate a chemorheological mechanism of cell-wall expansion.
Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M
2018-03-01
The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2 s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2 s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Geng; Shen, Shanqi; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru
2015-01-01
Recently, the so-called "plant factory with artificial lighting" (PFAL) approach has been developed to provide safe and steady food production. Although PFALs can produce high-yielding and high-quality plants, the high plant density in these systems accelerates leaf senescence in the bottom (or outer) leaves owing to shading by the upper (or inner) leaves and by neighboring plants. This decreases yield and increases labor costs for trimming. Thus, the establishment of cultivation methods to retard senescence of outer leaves is an important research goal to improve PFAL yield and profitability. In the present study, we developed an LED lighting apparatus that would optimize light conditions for PFAL cultivation of a leafy vegetable. Lettuce (Lactuca sativa L.) was hydroponically grown under white, red, or blue LEDs, with light provided from above (downward), with or without supplemental upward lighting from underneath the plant. White LEDs proved more appropriate for lettuce growth than red or blue LEDs, and the supplemental lighting retarded the senescence of outer leaves and decreased waste (i.e., dead or low-quality senescent leaves), leading to an improvement of the marketable leaf fresh weight.
Luminescence of water or ice as a new detection method for magnetic monopoles
NASA Astrophysics Data System (ADS)
Pollmann, Anna Obertacke
2017-12-01
Cosmic ray detectors use air as a radiator for luminescence. In water and ice, Cherenkov light is the dominant light producing mechanism when the particle's velocity exceeds the Cherenkov threshold, approximately three quarters of the speed of light in vacuum. Luminescence is produced by highly ionizing particles passing through matter due to the electronic excitation of the surrounding molecules. The observables of luminescence, such as the wavelength spectrum and decay times, are highly dependent on the properties of the medium, in particular, temperature and purity. The results for the light yield of luminescence of previous measurements vary by two orders of magnitude. It will be shown that even for the lowest measured light yield, luminescence is an important signature of highly ionizing particles below the Cherenkov threshold. These could be magnetic monopoles or other massive and highly ionizing exotic particles. With the highest observed efficiencies, luminescence may even contribute significantly to the light output of standard model particles such as the PeV IceCube neutrinos. We present analysis techniques to use luminescence in neutrino telescopes and discuss experimental setups to measure the light yield of luminescence for the particular conditions in neutrino detectors.
All-angle negative refraction and active flat lensing of ultraviolet light.
Xu, Ting; Agrawal, Amit; Abashin, Maxim; Chau, Kenneth J; Lezec, Henri J
2013-05-23
Decades ago, Veselago predicted that a material with simultaneously negative electric and magnetic polarization responses would yield a 'left-handed' medium in which light propagates with opposite phase and energy velocities--a condition described by a negative refractive index. He proposed that a flat slab of left-handed material possessing an isotropic refractive index of -1 could act like an imaging lens in free space. Left-handed materials do not occur naturally, and it has only recently become possible to achieve a left-handed response using metamaterials, that is, electromagnetic structures engineered on subwavelength scales to elicit tailored polarization responses. So far, left-handed responses have typically been implemented using resonant metamaterials composed of periodic arrays of unit cells containing inductive-capacitive resonators and conductive wires. Negative refractive indices that are isotropic in two or three dimensions at microwave frequencies have been achieved in resonant metamaterials with centimetre-scale features. Scaling the left-handed response to higher frequencies, such as infrared or visible, has been done by shrinking critical dimensions to submicrometre scales by means of top-down nanofabrication. This miniaturization has, however, so far been achieved at the cost of reduced unit-cell symmetry, yielding a refractive index that is negative along only one axis. Moreover, lithographic scaling limits have so far precluded the fabrication of resonant metamaterials with left-handed responses at frequencies beyond the visible. Here we report the experimental implementation of a bulk metamaterial with a left-handed response to ultraviolet light. The structure, based on stacked plasmonic waveguides, yields an omnidirectional left-handed response for transverse magnetic polarization characterized by a negative refractive index. By engineering the structure to have a refractive index close to -1 over a broad angular range, we achieve Veselago flat lensing, in free space, of arbitrarily shaped, two-dimensional objects beyond the near field. We further demonstrate active, all-optical modulation of the image transferred by the flat lens.
NASA Astrophysics Data System (ADS)
Scherzinger, J.; Al Jebali, R.; Annand, J. R. M.; Fissum, K. G.; Hall-Wilton, R.; Kanaki, K.; Lundin, M.; Nilsson, B.; Perrey, H.; Rosborg, A.; Svensson, H.
2016-12-01
The response of a NE-213 liquid-scintillator detector has been measured using tagged neutrons from 2 to 6 MeV originating from an Am/Be neutron source. The neutron energies were determined using the time-of-flight technique. Pulse-shape discrimination was employed to discern between gamma-rays and neutrons. The behavior of both the fast (35 ns) and the combined fast and slow (475 ns) components of the neutron scintillation-light pulses were studied. Three different prescriptions were used to relate the neutron maximum energy-transfer edges to the corresponding recoil-proton scintillation-light yields, and the results were compared to simulations. The overall normalizations of parametrizations which predict the fast or total light yield of the scintillation pulses were also tested. Our results agree with both existing data and existing parametrizations. We observe a clear sensitivity to the portion and length of the neutron scintillation-light pulse considered.
Environmental Dynamics of Dissolved Black Carbon in the Amazon River
NASA Astrophysics Data System (ADS)
Roebuck, J. A., Jr.; Gonsior, M.; Enrich-Prast, A.; Jaffe, R.
2016-02-01
Dissolve black carbon (DBC) is an important component in the global carbon cycle and constitutes a significant portion of dissolved organic carbon (DOC) in aquatic systems. While global fluxes of DBC may be well understood, little is known about systematic processing of this carbon pool in fluvial systems. Similar to DOC, DBC composition may change as it moves throughout a river continuum before it is eventually deposited into the ocean. This is especially important for large river systems that are major sources of DOC to the ocean and may have significant impacts on ocean biogeochemistry and carbon cycling. To better understand variations in DBC dynamics throughout a large fluvial system, DBC was quantified using the benzene polycarboxylic acid method (BPCA) in three major tributaries of the Amazon River, each with varying biogeochemical characteristics. Principal component analysis of the BPCA abundances was used to assess the DBC compositional differences between sampling locations. In some rivers, light availability appeared to influence both DBC quantity and quality. Higher concentrations of DBC characterized by a larger, more aromatic DBC pool was found in the Rio Negro, a black water river with high levels of chromophoric dissolved organic matter and low light penetration. In the Rio Tapajós, a clear water river with higher light penetration, lower DBC concentrations characterized by higher abundances of the less polycondensed DBC pool provided evidence of photodecomposition under such conditions. The Rio Madeira, characterized as a white water river with high suspended sediment yields and high mineral/clay content, had the lowest DBC concentrations and the least polycondensed DBC content, suggesting a preferential adsorption of the more highly polycondensed DBC components onto clay particles.
Muñetón-Gómez, Vilma C.; Doncel-Pérez, Ernesto; Fernandez, Ana P.; Serrano, Julia; Pozo-Rodrigálvarez, Andrea; Vellosillo-Huerta, Lara; Taylor, Julian S.; Cardona-Gómez, Gloria P.; Nieto-Sampedro, Manuel; Martínez-Murillo, Ricardo
2012-01-01
The increased risk and prevalence of lacunar stroke and Parkinson's disease (PD) makes the search for better experimental models an important requirement for translational research. In this study we assess ischemic damage of the nigrostriatal pathway in a model of lacunar stroke evoked by damaging the perforating arteries in the territory of the substantia nigra (SN) of the rat after stereotaxic administration of endothelin-1 (ET-1), a potent vasoconstrictor peptide. We hypothesized that transplantation of neural stem cells (NSCs) with the capacity of differentiating into diverse cell types such as neurons and glia, but with limited proliferation potential, would constitute an alternative and/or adjuvant therapy for lacunar stroke. These cells showed neuritogenic activity in vitro and a high potential for neural differentiation. Light and electron microscopy immunocytochemistry was used to characterize GFP-positive neurons derived from the transplants. 48 h after ET-1 injection, we characterized an area of selective degeneration of dopaminergic neurons within the nigrostriatal pathway characterized with tissue necrosis and glial scar formation, with subsequent behavioral signs of Parkinsonism. Light microscopy showed that grafted cells within the striatal infarction zone differentiated with a high yield into mature glial cells (GFAP-positive) and neuron types present in the normal striatum. Electron microscopy revealed that NSCs-derived neurons integrated into the host circuitry establishing synaptic contacts, mostly of the asymmetric type. Astrocytes were closely associated with normal small-sized blood vessels in the area of infarct, suggesting a possible role in the regulation of the blood brain barrier and angiogenesis. Our results encourage the use of NSCs as a cell-replacement therapy for the treatment of human vascular Parkinsonism. PMID:22876219
Wang, Jinfeng; Zhu, Jianyi; Yao, Chunyan; Liu, Jianguo; Qin, Song; Jiang, Peng
2013-01-01
Photosystem II photochemistry and phycobiliprotein (PBP) genes of red algae Kappaphycus alvarezii, raw material of κ-carrageenan used in food and pharmaceutical industries, were analyzed in this study. Minimum saturating irradiance (I k) of this algal species was less than 115 μmol m−2 s−1. Its actual PSII efficiency (yield II) increased when light intensity enhanced and decreased when light intensity reached 200 μmol m−2 s−1. Under dim light, yield II declined at first and then increased on the fourth day. Under high light, yield II retained a stable value. These results indicate that K. alvarezii is a low-light-adapted species but possesses regulative mechanisms in response to both excessive and deficient light. Based on the PBP gene sequences, K. alvarezii, together with other red algae, assembled faster and showed a closer relationship with LL-Prochlorococcus compared to HL-Prochlorococcus. Many amino acid loci in PBP sequences of K. alvarezii were conserved with those of LL-Prochlorococcus. However, loci conserved with HL-Prochlorococcus but divergent with LL-Prochlorococcus were also found. The diversities of PE and PC are proposed to have played some roles during the algal evolution and divergence of light adaption. PMID:24380080
Guan, Xiangyu; Wang, Jinfeng; Zhu, Jianyi; Yao, Chunyan; Liu, Jianguo; Qin, Song; Jiang, Peng
2013-01-01
Photosystem II photochemistry and phycobiliprotein (PBP) genes of red algae Kappaphycus alvarezii, raw material of κ -carrageenan used in food and pharmaceutical industries, were analyzed in this study. Minimum saturating irradiance (I k) of this algal species was less than 115 μmol m(-2) s(-1). Its actual PSII efficiency (yield II) increased when light intensity enhanced and decreased when light intensity reached 200 μmol m(-2) s(-1). Under dim light, yield II declined at first and then increased on the fourth day. Under high light, yield II retained a stable value. These results indicate that K. alvarezii is a low-light-adapted species but possesses regulative mechanisms in response to both excessive and deficient light. Based on the PBP gene sequences, K. alvarezii, together with other red algae, assembled faster and showed a closer relationship with LL-Prochlorococcus compared to HL-Prochlorococcus. Many amino acid loci in PBP sequences of K. alvarezii were conserved with those of LL-Prochlorococcus. However, loci conserved with HL-Prochlorococcus but divergent with LL-Prochlorococcus were also found. The diversities of PE and PC are proposed to have played some roles during the algal evolution and divergence of light adaption.
Neutron irradiation and damage assessment of plastic scintillators of the Tile Calorimeter
NASA Astrophysics Data System (ADS)
Mdhluli, J. E.; Mellado, B.; Sideras-Haddad, E.
2017-01-01
Following the comparative study of proton induced radiation damage on various plastic scintillator samples from the ATLAS-CERN detector, a study on neutron irradiation and damage assessment on the same type of samples will be conducted. The samples will be irradiated with different dose rates of neutrons produced in favourable nuclear reactions using a radiofrequency linear particle accelerator as well as from the SAFARI nuclear reactor at NECSA. The MCNP 5 code will be utilized in simulating the neutron transport for determining the dose rate. Light transmission and light yield tests will be performed in order to assess the radiation damage on the scintillators. In addition, Raman spectroscopy and Electron Paramagnetic Resonance (EPR) analysis will be used to characterize the samples after irradiation. The project aims to extent these studies to include radiation assessment damage of any component that processes the scintillating light and deteriorates the quantum efficiency of the Tilecal detector, namely, photomultiplier tubes, wavelength shifting optical fibres and the readout electronics. They will also be exposed to neutron irradiation and the damage assessed in the same manner.
Know the Planet, Know the Star: Precise Stellar Parameters with Kepler
NASA Astrophysics Data System (ADS)
Sandford, Emily; Kipping, David M.
2017-01-01
The Kepler space telescope has revolutionized exoplanetary science with unprecedentedly precise photometric measurements of the light curves of transiting planets. In addition to information about the planet and its orbit, encoded in each Kepler transiting planet light curve are certain properties of the host star, including the stellar density and the limb darkening profile. For planets with strong prior constraints on orbital eccentricity (planets to which we refer as “stellar anchors”), we may measure these stellar properties directly from the light curve. This method promises to aid greatly in the characterization of transiting planet host stars targeted by the upcoming NASA TESS mission and any long-period, singly-transiting planets discovered in the same systems. Using Bayesian inference, we fit a transit model, including a nonlinear limb darkening law, to a large sample of transiting planet hosts to measure their stellar properties. We present the results of our analysis, including posterior stellar density distributions for each stellar host, and show how the method yields superior precision to literature stellar properties in the majority of cases studied.
Hogewoning, Sander W.; Trouwborst, Govert; Maljaars, Hans; Poorter, Hendrik; van Ieperen, Wim; Harbinson, Jeremy
2010-01-01
The blue part of the light spectrum has been associated with leaf characteristics which also develop under high irradiances. In this study blue light dose–response curves were made for the photosynthetic properties and related developmental characteristics of cucumber leaves that were grown at an equal irradiance under seven different combinations of red and blue light provided by light-emitting diodes. Only the leaves developed under red light alone (0% blue) displayed dysfunctional photosynthetic operation, characterized by a suboptimal and heterogeneously distributed dark-adapted Fv/Fm, a stomatal conductance unresponsive to irradiance, and a relatively low light-limited quantum yield for CO2 fixation. Only 7% blue light was sufficient to prevent any overt dysfunctional photosynthesis, which can be considered a qualitatively blue light effect. The photosynthetic capacity (Amax) was twice as high for leaves grown at 7% blue compared with 0% blue, and continued to increase with increasing blue percentage during growth measured up to 50% blue. At 100% blue, Amax was lower but photosynthetic functioning was normal. The increase in Amax with blue percentage (0–50%) was associated with an increase in leaf mass per unit leaf area (LMA), nitrogen (N) content per area, chlorophyll (Chl) content per area, and stomatal conductance. Above 15% blue, the parameters Amax, LMA, Chl content, photosynthetic N use efficiency, and the Chl:N ratio had a comparable relationship as reported for leaf responses to irradiance intensity. It is concluded that blue light during growth is qualitatively required for normal photosynthetic functioning and quantitatively mediates leaf responses resembling those to irradiance intensity. PMID:20504875
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, Arnold, E-mail: aburger@fisk.edu; Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235; Rowe, Emmanuel
We report on the scintillation properties of Cs{sub 2}HfCl{sub 6} (cesium hafnium chloride or CHC) as an example of a little-known class of non-hygroscopic compounds having the generic cubic crystal structure of K{sub 2}PtCl{sub 6}. The crystals are easily growable from the melt using the Bridgman method with minimal precursor treatments or purification. CHC scintillation is centered at 400 nm, with a principal decay time of 4.37 μs and a light yield of up to 54 000 photons/MeV when measured using a silicon CCD photodetector. The light yield is the highest ever reported for an undoped crystal, and CHC also exhibits excellent lightmore » yield nonproportionality. These desirable properties allowed us to build and test CHC gamma-ray spectrometers providing energy resolution of 3.3% at 662 keV.« less
Characterization of Two Ton NaI Scintillator
NASA Astrophysics Data System (ADS)
Maier, Alleta; Coherent Collaboration
2017-09-01
The COHERENT collaboration is dedicated to measuring Coherent Elastic Neutrino-Nucleus Scattering (CE νNS), an interaction predicted by the standard model that ultimately serves as a background floor for dark matter detection. In the pursuit of observing the N2 scaling predicted, COHERENT is deploying two tons of NaI[Tl] detector to observe CE νNS recoils of sodium nuclei. Before the two tons of this NaI[Tl] scintillator are deployed, however, all crystals and PMTs must be characterized to understand the individual properties vital to precision in the measurement of CE νNS. This detector is also expected to allow COHERENT to observe charged current and CE νNS interactions with 127I. A standard operating procedure is developed to characterize each detector based on seven properties relevant to precision in the measurement of CE νNS: energy scale, energy resolution, low-energy light yield non-linearity, decay time energy dependence, position variance, time variance, and background levels. Crystals will be tested and characterized for these properties in the context of a ton-scale NaI[Tl] detector. Preliminary development of the SOP has allowed for greater understanding of optimization methods needed for characterization for the ton scale detector. TUNL, NSF, Duke University.
The dark side of marketing seemingly "Light" cigarettes: successful images and failed fact.
Pollay, R W; Dewhirst, T
2002-03-01
To understand the development, intent, and consequences of US tobacco industry advertising for low machine yield cigarettes. Analysis of trade sources and internal US tobacco company documents now available on various web sites created by corporations, litigation, or public health bodies. When introducing low yield products, cigarette manufacturers were concerned about maintaining products with acceptable taste/flavour and feared consumers might become weaned from smoking. Several tactics were employed by cigarette manufacturers, leading consumers to perceive filtered and low machine yield brands as safer relative to other brands. Tactics include using cosmetic (that is, ineffective) filters, loosening filters over time, using medicinal menthol, using high tech imagery, using virtuous brand names and descriptors, adding a virtuous variant to a brand's product line, and generating misleading data on tar and nicotine yields. Advertisements of filtered and low tar cigarettes were intended to reassure smokers concerned about the health risks of smoking, and to present the respective products as an alternative to quitting. Promotional efforts were successful in getting smokers to adopt filtered and low yield cigarette brands. Corporate documents demonstrate that cigarette manufacturers recognised the inherent deceptiveness of cigarette brands described as "Light"or "Ultra-Light" because of low machine measured yields.
Laser waveform control of extreme ultraviolet high harmonics from solids.
You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu
2017-05-01
Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.
NASA Astrophysics Data System (ADS)
Hou, Juan; Wang, Wei; Zhou, Tianyu; Wang, Bo; Li, Huiyu; Ding, Lan
2016-05-01
Heteroatom doped carbon dots (CDs) have received increasing attention due to their unique properties and related applications. However, previously reported CDs generally show strong emission only in the blue-light region, thus restricting their further applications. And the fundamental investigation on the preparation process is always neglected. Herein, we have developed a simple and solvent-free synthetic strategy to fabricate nitrogen-doped CDs (N-CDs) from citric acid and dicyandiamide. The as-prepared N-CDs exhibited a uniform size distribution, strong yellowish-green fluorescence emission and a high quantum yield of 73.2%. The products obtained at different formation stages were detailedly characterized by transmission electron microscopy, X-ray diffraction spectrometer, X-ray photoelectron spectroscopy and UV absorbance spectroscopy. A possible formation mechanism has thus been proposed including dehydration, polymerization and carbonization. Furthermore, the N-CDs could serve as a facile and label-free probe for the detection of iron and fluorine ions with detection limits of 50 nmol L-1 and 75 nmol L-1, respectively.Heteroatom doped carbon dots (CDs) have received increasing attention due to their unique properties and related applications. However, previously reported CDs generally show strong emission only in the blue-light region, thus restricting their further applications. And the fundamental investigation on the preparation process is always neglected. Herein, we have developed a simple and solvent-free synthetic strategy to fabricate nitrogen-doped CDs (N-CDs) from citric acid and dicyandiamide. The as-prepared N-CDs exhibited a uniform size distribution, strong yellowish-green fluorescence emission and a high quantum yield of 73.2%. The products obtained at different formation stages were detailedly characterized by transmission electron microscopy, X-ray diffraction spectrometer, X-ray photoelectron spectroscopy and UV absorbance spectroscopy. A possible formation mechanism has thus been proposed including dehydration, polymerization and carbonization. Furthermore, the N-CDs could serve as a facile and label-free probe for the detection of iron and fluorine ions with detection limits of 50 nmol L-1 and 75 nmol L-1, respectively. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02701f
[Effects of light intensity on growth and photosynthetic characteristics of Tulipa edulis].
Xu, Hongjian; Zhu, Zaibiao; Guo, Qiaosheng; Wu, Zhengjun; Ma, Hongliang; Miao, Yuanyuan
2012-02-01
Present study was conducted to explore the growth and photosynthetic characteristics of Tulipa edulis under different light conditions (23%, 45%, 63%, 78%, 100% of full sunlight) and to determine the optimum light intensity for growth of T. edulis. The leaf area and biomass indicators as well as reproductive characteristics were measured. The photosynthetic basic parameters and light response curve were determined by a LI-6400XT portable photosynthesis system, and the light response curve characteristic parameters was determined. Additionally, chlorophyll fluorescence parameters were determined by assorted fluorescence leaf chamber of LI-6400XT. The lowest biomass yield was observed in the 23% and 100% of full sunlight treatments while the highest value was found under the 78% of full sunlight conditions. With the reduction of light availability, the success rate of sexual reproduction, light saturation point (LSP) and light compensation point (LCP) reduced, while apparent quantum yield (AQY) increased. 23% and 45% of full sunlight treatments led to lower photosynthesis rate (Pn) and higher apparent quantum yield (AQY) in comparison with other treatents. The highest photosynthesis rate was observed in the 78% and 100% of full sunlight treatments. In addition, 78% of full sunlight treatments led to highest Fv/Fm, Fv'/Fm', PhiPS II, ETR, and qP. T. edulis was able to adapt in a wide range of light intensity, and 78% of full sunlinght was the most suitable light condition for growth of T. edulis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mockler, Todd C.
Plant growth and development, including stem elongation, flowering time, and shade-avoidance habits, are affected by wavelength composition (i.e., light quality) of the light environment. the molecular mechanisms underlying light perception and signaling pathways in plants have been best characterized in Arabidopsis thaliana where dozens of genes have been implicated in converging, complementary, and antagonistic pathways communicating light quality cues perceived by the phytochrome (red/far-red) cryptochrome (blue) and phototropin (blue) photorecptors. Light perception and signaling have been studied in grasses, including rice and sorghum but in much less detail than in Arabidopsis. During the course of the Mocker lab's DOE-funded wrokmore » generating a gene expression atlas in Brachypodium distachyon we observed that Brachypodium plants grown in continuous monochromatic red light or continuous white light enriched in far-red light accumulated significantly more biomass and exhibited significantly greater seed yield than plants grown in monochromatic blue light or white light. This phenomenon was also observed in two other grasses, switchgrass and rice. We will systematically manipulate the expression of genes predicted to function in Brachypodium phytochrome signaling and assess the phenotypic consequences in transgenic Brachypodium plants in terms of morphology, stature, biomass accumulation, and cell wall composition. We will also interrogate direct interactions between candidate phytochrome signaling transcription factors and target promoters using a high-throughput yeast one-hybrid system. Brachypodium distachyon has emerged as a model grass species and is closely related to candidate feedstock crops for bioethanol production. Identification of genes capable of modifying growth characteristics of Brachypodium, when misexpressed, in particular increasing biomass accumulation, by modulating photoreceptor signaling will provide valuable candidates for manipulation in biomass and biofuel feedstock grass crops through targeted breeding or engineering efforts.« less
ACTIVE-REGION TILT ANGLES: MAGNETIC VERSUS WHITE-LIGHT DETERMINATIONS OF JOY'S LAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.-M.; Colaninno, R. C.; Baranyi, T.
2015-01-01
The axes of solar active regions are inclined relative to the east-west direction, with the tilt angle tending to increase with latitude ({sup J}oy's law{sup )}. Observational determinations of Joy's law have been based either on white-light images of sunspot groups or on magnetograms, where the latter have the advantage of measuring directly the physically relevant quantity (the photospheric field), but the disadvantage of having been recorded routinely only since the mid-1960s. White-light studies employing the historical Mount Wilson (MW) database have yielded tilt angles that are smaller and that increase less steeply with latitude than those obtained from magneticmore » data. We confirm this effect by comparing sunspot-group tilt angles from the Debrecen Photoheliographic Database with measurements made by Li and Ulrich using MW magnetograms taken during cycles 21-23. Whether white-light or magnetic data are employed, the median tilt angles significantly exceed the mean values, and provide a better characterization of the observed distributions. The discrepancy between the white-light and magnetic results is found to have two main sources. First, a substantial fraction of the white-light ''tilt angles'' refer to sunspots of the same polarity. Of greater physical significance is that the magnetograph measurements include the contribution of plage areas, which are invisible in white-light images but tend to have greater axial inclinations than the adjacent sunspots. Given the large uncertainties inherent in both the white-light and the magnetic measurements, it remains unclear whether any systematic relationship exists between tilt angle and cycle amplitude during cycles 16-23.« less
Kinoshita, Takafumi; Yano, Takayoshi; Sugiura, Makoto; Nagasaki, Yuji
2014-01-01
To further development of a simplified fertigation system using controlled-release fertilizers (CRF), we investigated the effects of differing levels of fertilizers and plant density on leaf area index (LAI), fruit yields, and nutrient use in soilless tomato cultures with low node-order pinching and high plant density during spring-summer (SS), summer-fall (SF), and fall-winter (FW) seasons. Plants were treated with 1 of 3 levels of CRF in a closed system, or with liquid fertilizer (LF) with constant electrical conductivity (EC) in a drip-draining system. Two plant densities were examined for each fertilizer treatment. In CRF treatments, LAI at pinching increased linearly with increasing nutrient supply for all cropping seasons. In SS, both light interception by plant canopy at pinching and total marketable fruit yield increased linearly with increasing LAI up to 6 m2·m−2; the maximization point was not reached for any of the treatments. In FW, both light interception and yield were maximized at an LAI of approximately 4. These results suggest that maximizing the LAI in SS and FW to the saturation point for light interception is important for increasing yield. In SF, however, the yield maximized at an LAI of approximately 3, although the light interception linearly increased with increasing LAI, up to 4.5. According to our results, the optimal LAI at pinching may be 6 in SS, 3 in SF, and 4 in FW. In comparing LAI values with similar fruit yield, we found that nutrient supply was 32−46% lower with the CRF method than with LF. In conclusion, CRF application in a closed system enables growers to achieve a desirable LAI to maximize fruit yield with a regulated amount of nutrient supply per unit area. Further, the CRF method greatly reduced nutrient use without decreasing fruit yield at similar LAIs, as compared to the LF method. PMID:25402478
Zhang, Geng; Shen, Shanqi; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru
2015-01-01
Recently, the so-called “plant factory with artificial lighting” (PFAL) approach has been developed to provide safe and steady food production. Although PFALs can produce high-yielding and high-quality plants, the high plant density in these systems accelerates leaf senescence in the bottom (or outer) leaves owing to shading by the upper (or inner) leaves and by neighboring plants. This decreases yield and increases labor costs for trimming. Thus, the establishment of cultivation methods to retard senescence of outer leaves is an important research goal to improve PFAL yield and profitability. In the present study, we developed an LED lighting apparatus that would optimize light conditions for PFAL cultivation of a leafy vegetable. Lettuce (Lactuca sativa L.) was hydroponically grown under white, red, or blue LEDs, with light provided from above (downward), with or without supplemental upward lighting from underneath the plant. White LEDs proved more appropriate for lettuce growth than red or blue LEDs, and the supplemental lighting retarded the senescence of outer leaves and decreased waste (i.e., dead or low-quality senescent leaves), leading to an improvement of the marketable leaf fresh weight. PMID:26697055
Photocatalytic oxidation of organic dyes with visible-light-driven codoped TiO2 photocatalysts
NASA Astrophysics Data System (ADS)
Zhang, Dongfang; Zeng, Fanbin
2011-06-01
A novel copper (II) and zinc (II) codoped TiO2 photocatalyst was synthesized by a modified sol-gel method using titanium (IV) isopropoxide, Zn(NO3)2 · 6H2O and copper(Il) nitrate as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS) and photo-luminescence spectra (PL). The XRD results showed undoped and Zn, Cu-codoped TiO2 nanoparticles mainly including anatase phase and a tiny amount of Zn- and Cu-oxides exist in the mixed system, which is attributed to the decomposition of copper and zinc nitrates in the TiO2 gel to form CuO and ZnO and randomly dispersed on the TiO2 surface. On the basis of the optical characterization results, we found that the codoping of copper (II) and zinc (II) resulted a red shift of adsorption and lower recombination probability between electrons and holes, which were the reasons for high photocatalytic activity of Zn, Cu-codoped TiO2 nanoparticles under visible light (λ > 400 nm). The photocatalytic activity of samples was tested for degradation of methyl orange (MO) in solutions. The results indicated that the visible-light driven capability of the codoped catalyst were much higher than that of the pure TiO2 catalyst under visible irradiation. Because of the synergetic effect of copper (II) and zinc (II) element, the Zn, Cu-codoped TiO2 catalyst will show higher quantum yield and enhance absorption of visible light. In the end, a key mechanism was proposed in order to account for the enhanced activity.
Characterization and use of the spent beam for serial operation of LCLS
Boutet, Sébastien; Foucar, Lutz; Barends, Thomas R. M.; ...
2015-04-11
X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for amore » particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps.« less
Characterization and use of the spent beam for serial operation of LCLS
Boutet, Sébastien; Foucar, Lutz; Barends, Thomas R. M.; Botha, Sabine; Doak, R. Bruce; Koglin, Jason E.; Messerschmidt, Marc; Nass, Karol; Schlichting, Ilme; Seibert, M. Marvin; Shoeman, Robert L.; Williams, Garth J.
2015-01-01
X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for a particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps. PMID:25931079
In vivo excitation of nanoparticles using luminescent bacteria
Dragavon, Joe; Blazquez, Samantha; Rekiki, Abdessalem; Samson, Chelsea; Theodorou, Ioanna; Rogers, Kelly L.; Tournebize, Régis; Shorte, Spencer L.
2012-01-01
The lux operon derived from Photorhabdus luminescens incorporated into bacterial genomes, elicits the production of biological chemiluminescence typically centered on 490 nm. The light-producing bacteria are widely used for in vivo bioluminescence imaging. However, in living samples, a common difficulty is the presence of blue-green absorbers such as hemoglobin. Here we report a characterization of fluorescence by unbound excitation from luminescence, a phenomenon that exploits radiating luminescence to excite nearby fluorophores by epifluorescence. We show that photons from bioluminescent bacteria radiate over mesoscopic distances and induce a red-shifted fluorescent emission from appropriate fluorophores in a manner distinct from bioluminescence resonance energy transfer. Our results characterizing fluorescence by unbound excitation from luminescence, both in vitro and in vivo, demonstrate how the resulting blue-to-red wavelength shift is both necessary and sufficient to yield contrast enhancement revealing mesoscopic proximity of luminescent and fluorescent probes in the context of living biological tissues. PMID:22615349
Two-photon Microscopy and Polarimetry for Assessment of Myocardial Tissue Organization
NASA Astrophysics Data System (ADS)
Archambault-Wallenburg, Marika
Optical methods can provide useful tissue characterization tools. For this project, two-photon microscopy and polarized light examinations (polarimetry) were used to assess the organizational state of myocardium in healthy, infarcted, and stem-cell regenerated states. Two-photon microscopy visualizes collagen through second-harmonic generation and myocytes through two-photon excitation autofluorescence, providing information on the composition and structure/organization of the tissue. Polarimetry measurements yield a value of linear retardance that can serve as an indicator of tissue anisotropy, and with a dual-projection method, information about the anisotropy axis orientation can also be extracted. Two-photon microscopy results reveal that stem-cell treated tissue retains more myocytes and structure than infarcted myocardium, while polarimetry findings suggest that the injury caused by temporary ligation of a coronary artery is less severe and more diffuse that than caused by a permanent ligation. Both these methods show potential for tissue characterization.
NASA Astrophysics Data System (ADS)
Liasi, Faezeh Talebi; Samatham, Ravikant; Jacques, Steven L.
2017-11-01
Assessing the metabolic activity of a tissue, whether normal, damaged, aged, or pathologic, is useful for diagnosis and evaluating the effects of drugs. This report describes a handheld optical fiber probe that contacts the skin, applies pressure to blanch the superficial vascular plexus of the skin, then releases the pressure to allow refill of the plexus. The optical probe uses white light spectroscopy to record the time dynamics of blanching and refilling. The magnitude and dynamics of changes in blood content and hemoglobin oxygen saturation yield an estimate of the oxygen consumption rate (OCR) in units of attomoles per cell per second. The average value of OCR on nine forearm sites on five subjects was 10±5 (amol/cell/s). This low-cost, portable, rapid, noninvasive optical probe can characterize the OCR of a skin site to assess the metabolic activity of the epidermis or a superficial lesion.
Characterization of UV fluorophores for application to luminescent solar concentrators
NASA Astrophysics Data System (ADS)
Hellier, Kaitlin; Carter, Sue
The implementation of solar as an alternative energy source faces many challenges, including the competition for space with agriculture and the environmental impacts of solar farms in deserts. As a solution to these problems, the Carter Lab has developed Luminescent Solar Concentrator (LSC) panels for applications to greenhouses. These panels utilize a luminescent dye compatible with the spectrum used in photosynthesis for the plants below and front-facing PV cells, achieving power enhancement of greater than 20% compared with the cells alone. To increase this enhancement, additional portions of the unused spectrum must be harvested. In this talk, we will discuss the characterization of UV absorbing fluorophores, including spectra, quantum yield, and the enhancement of light output and power generation. We will also address the combination of these UV dyes with the original LSC dye in low and high concentration, and the FRET efficiency and potential applications associated with high concentration films.
Dam, Jan S; Yavari, Nazila; Sørensen, Søren; Andersson-Engels, Stefan
2005-07-10
We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton--Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.
Probing Cherenkov and Scintillation Light Separation for Next-Generation Neutrino Detectors
NASA Astrophysics Data System (ADS)
Caravaca, J.; Descamps, F. B.; Land, B. J.; Orebi Gann, G. D.; Wallig, J.; Yeh, M.
2017-09-01
The ability to separate Cherenkov and scintillation signals in liquid scintillator detectors would enable outstanding background rejection for next-generation neutrino experiments. Reconstruction of directional information, ring imaging, and sub-Cherenkov threshold detection all have the potential to substantially improve particle and event identification. The Cherenkov-Scintillation Separation (CHESS) experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillation medium based on photon hit times and detected charge. This setup has been used to characterize the ability to detect Cherenkov light in a range of target media. We show results with pure organic scintillator (LAB) and the prospects with scintillators with a secondary fluor (LAB/PPO). There are future plans to deploy the newly developed water-based liquid scintillator, a medium with a higher Cherenkov/Scintillation light yield ratio than conventional pure liquid scintillators, enhancing the visibility of the less abundant Cherenkov light in the presence of scintillation light. These results can inform the development of future large-scale detectors, such as the proposed Theia experiment, or other large detectors at underground laboratories such as the far-site of the new Long Baseline Neutrino Facility at the Sanford Underground Research Facility. CHESS detector calibrations and commissioning will be discussed, and the latest results will be presented.
NASA Astrophysics Data System (ADS)
Li, Hailong; Gao, Yan; Xiong, Zhuo; Liao, Chen; Shih, Kaimin
2018-05-01
A series of Au-g-C3N4 (Au-CN) catalysts were prepared through a NaBH4-reduction method using g-C3N4 (CN) from pyrolysis of urea as precursor. The catalysts' surface area, crystal structure, surface morphology, chemical state, functional group composition and optical properties were characterized by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, ultraviolet visible (UV-vis) diffuse reflectance spectra, fourier transform infrared, photoluminescence and transient photocurrent analysis. The carbon dioxide (CO2) photoreduction activities under ultraviolet visible (UV-vis) light irradiation were significantly enhanced when gold (Au) was loaded on the surface of CN. 2Au-CN catalyst with Au to CN mole ratio of 2% showed the best catalytic activity. After 2 h UV-vis light irradiation, the methane (CH4) yield over the 2Au-CN catalyst was 9.1 times higher than that over the pure CN. The CH4 selectivity also greatly improved for the 2Au-CN compared to the CN. The deposited Au nanoparticles facilitated the separation of electron-hole pairs on the CN surface. Moreover, the surface plasmon resonance effect of Au further promoted the generation of hot electrons and visible light absorption. Therefore, Au loading significantly improved CO2 photoreduction performance of CN under UV-vis light irradiation.
Tests of Scintillator+WLS Strips for Muon System at Future Colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, Dmitri; Evdokimov, Valery; Lukić, Strahinja
2015-10-11
Prototype scintilator+WLS strips with SiPM readout for muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been achieved, as well as time resolution of 0.5 ns and position resolution of ~ 7 cm.
Generation of the neutron response function of an NE213 scintillator for fusion applications
NASA Astrophysics Data System (ADS)
Binda, F.; Eriksson, J.; Ericsson, G.; Hellesen, C.; Conroy, S.; Nocente, M.; Sundén, E. Andersson; JET Contributors
2017-09-01
In this work we present a method to evaluate the neutron response function of an NE213 liquid scintillator. This method is particularly useful when the proton light yield function of the detector has not been measured, since it is based on a proton light yield function taken from literature, MCNPX simulations, measurements of gamma-rays from a calibration source and measurements of neutrons from fusion experiments with ohmic plasmas. The inclusion of the latter improves the description of the proton light yield function in the energy range of interest (around 2.46 MeV). We apply this method to an NE213 detector installed at JET, inside the radiation shielding of the magnetic proton recoil (MPRu) spectrometer, and present the results from the calibration along with some examples of application of the response function to perform neutron emission spectroscopy (NES) of fusion plasmas. We also investigate how the choice of the proton light yield function affects the NES analysis, finding that the result does not change significantly. This points to the fact that the method for the evaluation of the neutron response function is robust and gives reliable results.
Observation of {chi}{sub cJ} Radiative Decays to Light Vector Mesons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, J. V.; Mitchell, R. E.; Shepherd, M. R.
2008-10-10
Using a total of 2.74x10{sup 7} decays of the {psi}(2S) collected with the CLEO-c detector, we present a study of {chi}{sub cJ}{yields}{gamma}V, where V={rho}{sup 0}, {omega}, {phi}. The transitions {chi}{sub c1}{yields}{gamma}{rho}{sup 0} and {chi}{sub c1}{yields}{gamma}{omega} are observed with B({chi}{sub c1}{yields}{gamma}{rho}{sup 0})=(2.43{+-}0.19{+-}0.22)x10{sup -4} and B({chi}{sub c1}{yields}{gamma}{omega})=(8.3{+-}1.5{+-}1.2)x10{sup -5}. In the {chi}{sub c1}{yields}{gamma}{rho}{sup 0} transition, the final state meson is dominantly longitudinally polarized. Upper limits on the branching fractions of other {chi}{sub cJ} states to light vector mesons are presented.
Izawa, Norimitsu; Suzuki, Takeshi; Watanabe, Masakatsu; Takeda, Makio
2009-04-01
Arylalkylamine N-acetyltransferase (AANAT), constituting a large family of enzymes, catalyzes the transacetylation from acetyl-CoA to monoamine substrates, although homology among species is not very high. AANAT in vertebrates is photosensitive and mediates circadian regulation. Here, we analyzed AANAT of the cricket, Dianemobius nigrofasciatus. The central nervous system contained AANAT activity. The optimum pHs were 6.0 (a minor peak) and 10.5 (a major peak) with crude enzyme solution. We analyzed the kinetics at pH 10.5 using the sample containing collective AANAT activities, which we term AANAT. Lineweaver-Burk plot and secondary plot yielded a K(m) for tryptamine as substrate of 0.42 microM, and a V(max) of 9.39 nmol/mg protein/min. The apparent K(m) for acetyl-CoA was 59.9 microM and the V(max) was 8.14 nmol/mg protein/min. AANAT of D. nigrofasciatus was light-sensitive. The activity was higher at night-time than at day-time as in vertebrates. To investigate most effective wavelengths on AANAT activity, a series of monochromatic lights was applied (350, 400, 450, 500, 550, 600 and 650 nm). AANAT showed the highest sensitivity to around 450 nm and 550 nm. 450 nm light was more effective than 550 nm light. Therefore, the most effective light affecting AANAT activity is blue light, which corresponds to the absorption spectrum of blue wave (BW)-opsin.
Bolometric Light Curves of Peculiar Type II-P Supernovae
NASA Astrophysics Data System (ADS)
Lusk, Jeremy A.; Baron, E.
2017-04-01
We examine the bolometric light curves of five Type II-P supernovae (SNe 1998A, 2000cb, 2006V, 2006au, and 2009E), which are thought to originate from blue supergiant progenitors like that of SN 1987A, using a new python package named SuperBoL. With this code, we calculate SNe light curves using three different common techniques common from the literature: the quasi-bolometric method, which integrates the observed photometry, the direct integration method, which additionally corrects for unobserved flux in the UV and IR, and the bolometric correction method, which uses correlations between observed colors and V-band bolometric corrections. We present here the light curves calculated by SuperBoL, along with previously published light curves, as well as peak luminosities and 56Ni yields. We find that the direct integration and bolometric correction light curves largely agree with previously published light curves, but with what we believe to be more robust error calculations, with 0.2≲ δ {L}{bol}/{L}{bol}≲ 0.5. Peak luminosities and 56Ni masses are similarly comparable to previous work. SN 2000cb remains an unusual member of this sub-group, owing to the faster rise and flatter plateau than the other supernovae in the sample. Initial comparisons with the NLTE atmosphere code PHOENIX show that the direct integration technique reproduces the luminosity of a model supernova spectrum to ˜5% when given synthetic photometry of the spectrum as input. Our code is publicly available. The ability to produce bolometric light curves from observed sets of broadband light curves should be helpful in the interpretation of other types of supernovae, particularly those that are not well characterized, such as extremely luminous supernovae and faint fast objects.
Jung, Hyunchul; Chung, Wonkeun; Lee, Chang Hun; Kim, Sung Hyun
2012-07-01
White light-emitting diodes (LEDs) were fabricated using GaN-based 380-nm UV LEDs precoated with the composite of blue-emitting polymer (poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy)-1 ,4-phenylene)]), yellow green-emitting polymer (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)]), and 605-nm red-emitting quantum dots (QDs). CdSe cores were obtained by solvothermal route using CdO, Se precursors and ZnS shells were synthesized by using diethylzinc, and hexamethyldisilathiane precursors. The optical properties of CdSe/ZnS QDs were characterized by UV-visible and photoluminescence (PL) spectra. The structural data and composition of the QDs were transmission electron microscopy (TEM), and EDX technique. The quantum yield and size of the QDs were 58.7% and about 6.7 nm, respectively. Three-band white light was generated by hybridizing blue (430 nm), green (535 nm), and red (605 nm) emission. The color-rendering index (CRI) of the device was extremely improved by introducing the QDs. The CIE-1931 chromaticity coordinate, color temperature, and CRI of a white LED at 20 mA were (0.379, 0.368), 3969 K, and 90, respectively.
Chiarelli, Antonio M.; Maclin, Edward L.; Low, Kathy A.; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele
2017-01-01
Abstract. Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source–detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked. PMID:28466026
NASA Astrophysics Data System (ADS)
Hsiao, Austin; Hunter, Martin; Greiner, Cherry; Gupta, Sharad; Georgakoudi, Irene
2011-03-01
Leukemia is the most common and deadly cancer among children and one of the most prevalent cancers among adults. Improvements in its diagnosis and monitoring of leukemic patients could have a significant impact in their long-term treatment. We demonstrate that light-scattering spectroscopy (LSS)-based approaches could serve as a tool to achieve this goal. Specifically, we characterize the light scattering properties of leukemic (NALM-6) cells and compare them to those of normal lymphocytes and granulocytes in the 440-710 nm range, over +/-4 deg about the exact backscattering direction. We find that the LSS spectra are well described by an inverse power-law wavelength dependence, with a power exponent insensitive to the scattering angle but significantly higher for leukemic cells than for normal leukocytes. This is consistent with differences in the subcellular morphology of these cells, detected in differential interference contrast images. Furthermore, the residual light-scattering signal, extracted after subtracting the inverse power-law fit from the data, can be analyzed assuming a Gaussian distribution of spherical scatterers using Mie theory. This analysis yields scatterer sizes that are consistent with the diameters of cell nuclei and allows the detection of the larger nuclei of NALM-6 cells compared to those of lymphocytes and granulocytes.
Capello, Daniela; Cerri, Michaela; Muti, Giuliana; Lucioni, Marco; Oreste, Pierluigi; Gloghini, Annunziata; Berra, Eva; Deambrogi, Clara; Franceschetti, Silvia; Rossi, Davide; Alabiso, Oscar; Morra, Enrica; Rambaldi, Alessandro; Carbone, Antonino; Paulli, Marco; Gaidano, Gianluca
2006-12-01
Post-transplant lymphoproliferative disorders (PTLD) derive from antigen-experienced B-cells and represent a major complication of solid organ transplantation. We characterized usage, mutation frequency and mutation pattern of immunoglobulin variable (IGV) gene rearrangements in 50 PTLD (polymorphic PTLD, n=10; diffuse large B-cell lymphoma, n=35; and Burkitt/Burkitt-like lymphoma, n=5). Among PTLD yielding clonal IGV amplimers, a functional IGV heavy chain (IGHV) rearrangement was found in 40/50 (80.0%) cases, whereas a potentially functional IGV light chain rearrangement was identified in 36/46 (78.3%) PTLD. By combining IGHV and IGV light chain rearrangements, 10/50 (20.0%) PTLD carried crippling mutations, precluding expression of a functional B-cell receptor (BCR). Immunohistochemistry showed detectable expression of IG light chains in only 18/43 (41.9%) PTLD. Failure to detect a functional IGV rearrangement associated with lack of IGV expression. Our data suggest that a large fraction of PTLD arise from germinal centre (GC)-experienced B-cells that display impaired BCR. Since a functional BCR is required for normal B-cell survival during GC transit, PTLD development may implicate rescue from apoptosis and expansion of B-cells that have failed the GC reaction. The high frequency of IGV loci inactivation appears to be a peculiar feature of PTLD among immunodeficiency-associated lymphoproliferations.
Jang, Eun-Pyo; Yang, Heesun
2013-09-01
This work reports on a simple solvothermal synthesis of InP/ZnS core/shell quantum dots (QDs) using a much safer and cheaper phosphorus precursor of tris(dimethylamino)phosphine than the most popularly chosen tris(trimethylsilyl)phosphine. The band gap of InP QDs is facilely controlled by varying the solvothermal core growth time (4 vs. 6 h) with a fixed temperature of 150 degrees C, and the successive solvothermal ZnS shelling at 220 degrees C for 6 h results in green- and yellow-emtting InP/ZnS QD with emission quantum yield of 41-42%. The broad size distribution of as-synthesized InP/ZnS QDs, which appears to be inherent in the current solvothermal approach, is improved by a size-selective sorting procedure, and the emission properties of the resulting size-sorted QD fractions are investigated. To produce white emission for general lighting source, a blue light-emitting diode (LED) is combined with non-size-soroted green or yellow QDs as wavelength converters. Furthermore, the QD-LED that includes a blend of green and yellow QDs is fabricated to generate a white lighting source with an enhanced color rendering performance, and its electroluminescent properties are characterized in detail.
Chiarelli, Antonio M; Maclin, Edward L; Low, Kathy A; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele
2017-04-01
Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source-detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked.
How does spatial and temporal resolution of vegetation index impact crop yield estimation?
USDA-ARS?s Scientific Manuscript database
Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing data have long been used in crop yield estimation for decades. The process-based approach uses light use efficiency model to estimate crop yield. Vegetation index (VI) ...
Activation energy of light induced isomerization of resveratrol.
Figueiras, Teresa Sofia; Neves-Petersen, Maria Teresa; Petersen, Steffen B
2011-09-01
Isomerization of trans-stilbenes is known to be induced by light. The two isomers have distinct absorption, fluorescence excitation and emission spectra. Resveratrol, 3,4',5-trihydroxystilbene, is a member of the stilbene family. The interest of the scientific community in resveratrol has increased over the last years due to its biomedical properties. Whereas there is a growing confidence that trans-resveratrol is non-toxic, very little is known about the pharmacology of cis-resveratrol. Of this very reason there is considerable interest in knowing the energetics of the trans-cis conversion. Cis-resveratrol is characterized by a large fluorescence quantum yield when compared to trans-resveratrol. In the present paper we report a detailed analysis of the spectral changes induced in trans-resveratrol upon 260 nm excitation for different time periods. Spectral changes have been monitored with UV-visible absorption and steady-state fluorescence spectroscopy at pH 4 at 20, 25, 30, 35, 40, 45 and 50 °C. Continuous 260 nm excitation induces a blue shift in the absorption and fluorescence excitation spectra of resveratrol and a 14 nm blue shift in its fluorescence emission. The photoisomerization yield is reported as a function of 260 nm excitation time. 330 min continuous excitation led to ~60% isomerization yield. The kinetics of trans-cis isomerization has been monitored following the increase in fluorescence quantum yield upon continuous 260 nm excitation of trans-resveratrol. The study was carried out at the above mentioned temperatures in order to obtain the Arrhenius activation energy of photoisomerization. Activation energy and pre-exponential factor were 3.7 ± 0.3 kcal.mol(-1) and 10.6 ± 1.6 s(-1), respectively. The activation energy is comparable with previously reported values for the photoisomerization of other stilbenes.
NASA Astrophysics Data System (ADS)
Tsao, Chao-hsi; Freniere, Edward R.; Smith, Linda
2009-02-01
The use of white LEDs for solid-state lighting to address applications in the automotive, architectural and general illumination markets is just emerging. LEDs promise greater energy efficiency and lower maintenance costs. However, there is a significant amount of design and cost optimization to be done while companies continue to improve semiconductor manufacturing processes and begin to apply more efficient and better color rendering luminescent materials such as phosphor and quantum dot nanomaterials. In the last decade, accurate and predictive opto-mechanical software modeling has enabled adherence to performance, consistency, cost, and aesthetic criteria without the cost and time associated with iterative hardware prototyping. More sophisticated models that include simulation of optical phenomenon, such as luminescence, promise to yield designs that are more predictive - giving design engineers and materials scientists more control over the design process to quickly reach optimum performance, manufacturability, and cost criteria. A design case study is presented where first, a phosphor formulation and excitation source are optimized for a white light. The phosphor formulation, the excitation source and other LED components are optically and mechanically modeled and ray traced. Finally, its performance is analyzed. A blue LED source is characterized by its relative spectral power distribution and angular intensity distribution. YAG:Ce phosphor is characterized by relative absorption, excitation and emission spectra, quantum efficiency and bulk absorption coefficient. Bulk scatter properties are characterized by wavelength dependent scatter coefficients, anisotropy and bulk absorption coefficient.
Light Yield Measurements of Heavy Photon Search (HPS) Muon Scintillator Hodoscopes
NASA Astrophysics Data System (ADS)
Skolnik, Marianne; Stepanyan, Stepan
2013-10-01
The HPS is an experiment that will search for new heavy vector boson(s) in the mass range of 20 MeV/c2 to 1000 MeV/c2. One of the detectors used for this experiment is a muon hodoscope. We are interested in finding the light yield for the scintillator - wavelength-shifting fiber coupling that will be used in this muon hodoscope. The muon hodoscope will have background signals distorting the data. In order to reduce the background, a threshold cut will be made on the signal coming from the photo-detector. Precision of this cut depends on the average number of photoelectrons, Npe. Previous tests have shown that Npe with Wavelength Shifting (WLS) fibers placed through the holes that go lengthwise down the scintillator is ~12/MeV. In this new muon hodoscope the scintillators will have WLS fibers glued inside the holes. The optical epoxy allows more light, changing Npe. To find Npe, two scintillators with fibers will be used, one of which will have glued WLS fibers. Light will be readout out using photo multiplier tubes (PMTs). The system of two scintillator-fiber-PMTs and one trigger PMT with a scintillator are placed in a dark box. First, position of a single photoelectron peaks is found using an LED light, then using the signal from cosmic muons from trigger PMT light yield is measured. Data are analyzed using ROOT macros. Result of this measurement suggests that light yield form glued fibers is higher than from WLS fibers without glue by a factor of ~1.7, which is sufficient for operation of the HPS muon hodoscope.
Development of a New Class of Scintillating Fibres with Very Short Decay Time and High Light Yield
NASA Astrophysics Data System (ADS)
Borshchev, O.; Cavalcante, A. B. R.; Gavardi, L.; Gruber, L.; Joram, C.; Ponomarenko, S.; Shinji, O.; Surin, N.
2017-05-01
We present first studies of a new class of scintillating fibres which are characterised by very short decay times and high light yield. The fibres are based on a novel type of luminophores admixed to a polystyrene core matrix. These so-called Nanostructured Organosilicon Luminophores (NOL) have high photoluminescense quantum yield and decay times just above 1 ns. A blue and a green emitting prototype fibre with 250 μm diameter were produced and characterised in terms of attenuation length, ionisation light yield, decay time and tolerance to x-ray irradiation. The well-established Kuraray SCSF-78 and SCSF-3HF fibres were taken as references. Even though the two prototype fibres mark just an intermediate step in an ongoing development, their performance is already on a competitive level. In particular, their decay time constants are about a factor of two shorter than the fastest known fibres, which makes them promising candidates for time critical applications.
Measurement of light and charge yield of low-energy electronic recoils in liquid xenon
NASA Astrophysics Data System (ADS)
Goetzke, L. W.; Aprile, E.; Anthony, M.; Plante, G.; Weber, M.
2017-11-01
The dependence of the light and charge yield of liquid xenon on the applied electric field and recoil energy is important for dark matter detectors using liquid xenon time projections chambers. Few measurements have been made of this field dependence at recoil energies less than 10 keV. In this paper, we present results of such measurements using a specialized detector. Recoil energies are determined via the Compton coincidence technique at four drift fields relevant for liquid xenon dark matter detectors: 0.19, 0.48, 1.02, and 2.32 kV /cm . Mean recoil energies down to 1 keV were measured with unprecedented precision. We find that the charge and light yield are anticorrelated above ˜3 keV and that the field dependence becomes negligible below ˜6 keV . However, below 3 keV, we find a charge yield significantly higher than expectation and a reconstructed energy deviating from linearity.
NASA Astrophysics Data System (ADS)
Yang, Xiaoxue; Han, Guo; Yang, Zhen; Zhang, Xiaoa; Jiang, Shengling; Lyu, Yafei
2017-10-01
Five poly(o-carborane-benzoxazines) were synthesized via Mannich reaction of o-carborane bisphenol, paraformaldehyde, and diamine, and their structures were well characterized. Light transmission and 1H NMR in D2O confirmed that poly(o-carborane-benzoxazines) with PEG segments showed excellent water solubility and amphiphilic property. TGA analyses were conducted under nitrogen and air, and the results showed that the polymers own high initial decomposition temperatures owing to the shielding effect of carborane moiety on its adjacent aromatic structures. Besides, poly(o-carborane-benzoxazines) own high char yield at elevated temperatures, for the boron atom could combine with oxygen from the polymer structure or/and the air and be oxidized to form boron oxide, and thus the polymer weight is retained to a large extent. PEG segments had an adverse effect on the initial decomposition and char yield, and thus their concentration should be adjusted to control the polymer’s thermal stability.
Development of a Computationally Efficient, High Fidelity, Finite Element Based Hall Thruster Model
NASA Technical Reports Server (NTRS)
Jacobson, David (Technical Monitor); Roy, Subrata
2004-01-01
This report documents the development of a two dimensional finite element based numerical model for efficient characterization of the Hall thruster plasma dynamics in the framework of multi-fluid model. Effect of the ionization and the recombination has been included in the present model. Based on the experimental data, a third order polynomial in electron temperature is used to calculate the ionization rate. The neutral dynamics is included only through the neutral continuity equation in the presence of a uniform neutral flow. The electrons are modeled as magnetized and hot, whereas ions are assumed magnetized and cold. The dynamics of Hall thruster is also investigated in the presence of plasma-wall interaction. The plasma-wall interaction is a function of wall potential, which in turn is determined by the secondary electron emission and sputtering yield. The effect of secondary electron emission and sputter yield has been considered simultaneously, Simulation results are interpreted in the light of experimental observations and available numerical solutions in the literature.
High-Yield Growth and Characterization of ⟨100⟩ InP p-n Diode Nanowires.
Cavalli, Alessandro; Wang, Jia; Esmaeil Zadeh, Iman; Reimer, Michael E; Verheijen, Marcel A; Soini, Martin; Plissard, Sebastien R; Zwiller, Val; Haverkort, Jos E M; Bakkers, Erik P A M
2016-05-11
Semiconductor nanowires are nanoscale structures holding promise in many fields such as optoelectronics, quantum computing, and thermoelectrics. Nanowires are usually grown vertically on (111)-oriented substrates, while (100) is the standard in semiconductor technology. The ability to grow and to control impurity doping of ⟨100⟩ nanowires is crucial for integration. Here, we discuss doping of single-crystalline ⟨100⟩ nanowires, and the structural and optoelectronic properties of p-n junctions based on ⟨100⟩ InP nanowires. We describe a novel approach to achieve low resistance electrical contacts to nanowires via a gradual interface based on p-doped InAsP. As a first demonstration in optoelectronic devices, we realize a single nanowire light emitting diode in a ⟨100⟩-oriented InP nanowire p-n junction. To obtain high vertical yield, which is necessary for future applications, we investigate the effect of the introduction of dopants on the nanowire growth.
High-Yield Synthesis of Stoichiometric Boron Nitride Nanostructures
Nocua, José E.; Piazza, Fabrice; Weiner, Brad R.; ...
2009-01-01
Boron nimore » tride (BN) nanostructures are structural analogues of carbon nanostructures but have completely different bonding character and structural defects. They are chemically inert, electrically insulating, and potentially important in mechanical applications that include the strengthening of light structural materials. These applications require the reliable production of bulk amounts of pure BN nanostructures in order to be able to reinforce large quantities of structural materials, hence the need for the development of high-yield synthesis methods of pure BN nanostructures. Using borazine ( B 3 N 3 H 6 ) as chemical precursor and the hot-filament chemical vapor deposition (HFCVD) technique, pure BN nanostructures with cross-sectional sizes ranging between 20 and 50 nm were obtained, including nanoparticles and nanofibers. Their crystalline structure was characterized by (XRD), their morphology and nanostructure was examined by (SEM) and (TEM), while their chemical composition was studied by (EDS), (FTIR), (EELS), and (XPS). Taken altogether, the results indicate that all the material obtained is stoichiometric nanostructured BN with hexagonal and rhombohedral crystalline structure.« less
Blue phosphorescent nitrile containing C^C* cyclometalated NHC platinum(II) complexes.
Tronnier, Alexander; Metz, Stefan; Wagenblast, Gerhard; Muenster, Ingo; Strassner, Thomas
2014-02-28
Since C^C* cyclometalated Pt(II) complexes with N-heterocyclic carbene (NHC) ligands have been identified as potential emitter materials in organic light-emitting devices (OLEDs), very promising results regarding quantum yields, colour and stability have been presented. Herein, we report on four nitrile substituted complexes with a chelating NHC ligand (1-(4-cyanophenyl)-3-isopropyl-1H-benzo[d]imidazole or 4-(tert-butyl)-1-(4-cyanophenyl)-3-methyl-1H-imidazole) and a bidentate monoanionic auxiliary ligand (acetylacetone or dimesitoylmethane). The complexes have been fully characterized including extensive 2D NMR studies (COSY, HSQC, HMBC, NOESY, (195)Pt NMR), three of them also by solid-state structures. Photophysical measurements in amorphous PMMA films and pure emitter films at room temperature reveal the impact of the mesityl groups in the auxiliary ligand, which led to a significant increase of the quantum yield, while the decay lifetimes decreased. The electron withdrawing nitrile groups shift the emission towards blue colour coordinates.
NASA Astrophysics Data System (ADS)
Shirshin, Evgeny A.; Yakimov, Boris P.; Rodionov, Sergey A.; Omelyanenko, Nikolai P.; Priezzhev, Alexander V.; Fadeev, Victor V.; Lademann, Juergen; Darvin, Maxim E.
2018-07-01
Two-photon excited fluorescence of red blood cells (RBC) has been reported to be applicable for their assessment in vitro and in vivo. The corresponding fluorescence emission was ascribed to hemoglobin (Hb), however, as Hb is essentially non-fluorescent at single-photon excitation, the mechanism of two-photon excited fluorescence of RBC remains debatable. Here we show that a fluorescent photoproduct, characterized by an ultrafast decay of excitation, is formed after irradiation of Hb with femtosecond laser pulses with ca. 8 · 10‑5 quantum yield, and that it is also fluorescent at single-photon excitation. The formation of a similar photoproduct was also shown for Hb continuous wave irradiation with blue light with ca. 10‑5 formation quantum yield. The kinetics of the Hb photoproduct formation and its spectral properties were investigated. The obtained results clarify the processes responsible for RBC fluorescence observed in two-photon microscopy experiments.
Yang, Yaolong; Xu, Jie; Huang, Lichao; Leng, Yujia; Dai, Liping; Rao, Yuchun; Chen, Long; Wang, Yuqiong; Tu, Zhengjun; Hu, Jiang; Ren, Deyong; Zhang, Guangheng; Zhu, Li; Guo, Longbiao; Qian, Qian; Zeng, Dali
2016-03-01
Chlorophyll (Chl) b is a ubiquitous accessory pigment in land plants, green algae, and prochlorophytes. This pigment is synthesized from Chl a by chlorophyllide a oxygenase and plays a key role in adaptation to various environments. This study characterizes a rice mutant, pale green leaf (pgl), and isolates the gene PGL by using a map-based cloning approach. PGL, encoding chlorophyllide a oxygenase 1, is mainly expressed in the chlorenchyma and activated in the light-dependent Chl synthesis process. Compared with wild-type plants, pgl exhibits a lower Chl content with a reduced and disorderly thylakoid ultrastructure, which decreases the photosynthesis rate and results in reduced grain yield and quality. In addition, pgl exhibits premature senescence in both natural and dark-induced conditions and more severe Chl degradation and reactive oxygen species accumulation than does the wild-type. Moreover, pgl is sensitive to heat stress. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Petridis, Antonios; van der Kaay, Jeroen; Chrysanthou, Elina; McCallum, Susan; Graham, Julie; Hancock, Robert D
2018-05-25
Published evidence indicates that nearly 60% of blueberry-producing countries experience yield instability. Yield is a complex trait determined by genetic and environmental factors. Here, using physiological and biochemical approaches, we tested the hypothesis that yield instability results from year-to-year environmental variation that limits carbon assimilation, storage and partitioning. The data indicate that fruit development depends primarily on the daily production of non-structural carbohydrates by leaves, and there is no accumulation of a starch buffer to allow continuous ripening under conditions limiting for photosynthesis. Photosynthesis was saturated at moderate light irradiance and this was mainly due to stomatal and biochemical limitations. In a dynamic light environment, photosynthesis was further limited by slow stomatal response to increasing light. Finally, labelling with 13CO2 at specific stages of fruit development revealed a relatively even distribution of newly assimilated carbon between stems, roots and fruits, suggesting that the fruit is not a strong sink. We conclude that a significant component of yield variability results from limitations in photosynthetic efficiency that are compounded by an inability to accumulate starch reserves in blueberry storage tissues in a typical northern European environment. This work informs techniques for improving agronomic management and indicates key traits required for yield stability in such environments.
van der Kaay, Jeroen; Chrysanthou, Elina; McCallum, Susan
2018-01-01
Abstract Published evidence indicates that nearly 60% of blueberry-producing countries experience yield instability. Yield is a complex trait determined by genetic and environmental factors. Here, using physiological and biochemical approaches, we tested the hypothesis that yield instability results from year-to-year environmental variation that limits carbon assimilation, storage and partitioning. The data indicate that fruit development depends primarily on the daily production of non-structural carbohydrates by leaves, and there is no accumulation of a starch buffer to allow continuous ripening under conditions limiting for photosynthesis. Photosynthesis was saturated at moderate light irradiance and this was mainly due to stomatal and biochemical limitations. In a dynamic light environment, photosynthesis was further limited by slow stomatal response to increasing light. Finally, labelling with 13CO2 at specific stages of fruit development revealed a relatively even distribution of newly assimilated carbon between stems, roots and fruits, suggesting that the fruit is not a strong sink. We conclude that a significant component of yield variability results from limitations in photosynthetic efficiency that are compounded by an inability to accumulate starch reserves in blueberry storage tissues in a typical northern European environment. This work informs techniques for improving agronomic management and indicates key traits required for yield stability in such environments. PMID:29590429
{lambda}{sub b}{yields}p, {lambda} transition form factors from QCD light-cone sum rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yuming; Lue Caidian; Shen Yuelong
2009-10-01
Light-cone sum rules for the {lambda}{sub b}{yields}p, {lambda} transition form factors are derived from the correlation functions expanded by the twist of the distribution amplitudes of the {lambda}{sub b} baryon. In terms of the {lambda}{sub b} three-quark distribution amplitude models constrained by the QCD theory, we calculate the form factors at small momentum transfers and compare the results with those estimated in the conventional light-cone sum rules (LCSR) and perturbative QCD approaches. Our results indicate that the two different versions of sum rules can lead to the consistent numbers of form factors responsible for {lambda}{sub b}{yields}p transition. The {lambda}{sub b}{yields}{lambda}more » transition form factors from LCSR with the asymptotic {lambda} baryon distribution amplitudes are found to be almost 1 order larger than those obtained in the {lambda}{sub b}-baryon LCSR, implying that the preasymptotic corrections to the baryonic distribution amplitudes are of great importance. Moreover, the SU(3) symmetry breaking effects between the form factors f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup p} and f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup {lambda}} are computed as 28{sub -8}{sup +14}% in the framework of {lambda}{sub b}-baryon LCSR.« less
Miolo, Giorgia; Tucci, Marianna; Mazzoli, Alessandra; Ferrara, Santo Davide; Favretto, Donata
2016-07-15
The UVA and UVB light-induced behaviour of 6-monoacetylmorphine (6-MAM) and morphine, the main metabolites of heroin, was studied in methanol, aqueous solution and in the dry state. UVA and UVB irradiations were performed for different times (radiant energies of 20-300J/cm(2)). UV spectra of irradiated samples were compared with samples kept in the dark. To estimate the extent of photolysis, positive ion electrospray ionization experiments were performed on the irradiated samples by LC-HRMS. Tentative identification of photoproducts was performed on the basis of their elemental formula as calculated by HRMS results. Morphine and 6-MAM demonstrated to be quite stable under UVA light but very sensitive to UVB irradiation. In methanol solutions they undergo a similar pattern, both reaching 90% photodegradation after 100J/cm(2) of UVB, with a slightly faster kinetic for morphine at lower doses. In water, the yields of photodegradation are nearly one third lower than in methanol. In the solid state, the yield of photodegradation is lower than in solution. The structures of some UVB-induced degradation products are proposed. Photoaddition of the solvent and photooxidation seem the main pathways of phototransformation of these molecules. Moreover, both compounds revealed to generate singlet oxygen under UVB exposure. Copyright © 2016 Elsevier B.V. All rights reserved.
High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.
Hobbs, Richard G; Yang, Yujia; Fallahi, Arya; Keathley, Philip D; De Leo, Eva; Kärtner, Franz X; Graves, William S; Berggren, Karl K
2014-11-25
Here we demonstrate the design, fabrication, and characterization of ultrafast, surface-plasmon enhanced Au nanorod optical field emitter arrays. We present a quantitative study of electron emission from Au nanorod arrays fabricated by high-resolution electron-beam lithography and excited by 35 fs pulses of 800 nm light. We present accurate models for both the optical field enhancement of Au nanorods within high-density arrays, and electron emission from those nanorods. We have also studied the effects of surface plasmon damping induced by metallic interface layers at the substrate/nanorod interface on near-field enhancement and electron emission. We have identified the peak optical field at which the electron emission mechanism transitions from a 3-photon absorption mechanism to strong-field tunneling emission. Moreover, we have investigated the effects of nanorod array density on nanorod charge yield, including measurement of space-charge effects. The Au nanorod photocathodes presented in this work display 100-1000 times higher conversion efficiency relative to previously reported UV triggered emission from planar Au photocathodes. Consequently, the Au nanorod arrays triggered by ultrafast pulses of 800 nm light in this work may outperform equivalent UV-triggered Au photocathodes, while also offering nanostructuring of the electron pulse produced from such a cathode, which is of interest for X-ray free-electron laser (XFEL) development where nanostructured electron pulses may facilitate more efficient and brighter XFEL radiation.
USDA-ARS?s Scientific Manuscript database
Adoption of alternative lighting systems to replace traditional incandescent light sources offers the opportunity to tailor lighting systems according to spectral sensitivity needs of different species. Providing a lighting environment that accounts for poultry vision may improve bird welfare and p...
Tunable optical coherence tomography in the infrared range using visible photons
NASA Astrophysics Data System (ADS)
Paterova, Anna V.; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry A.; Krivitsky, Leonid A.
2018-04-01
Optical coherence tomography (OCT) is an appealing technique for bio-imaging, medicine, and material analysis. For many applications, OCT in mid- and far-infrared (IR) leads to significantly more accurate results. Reported mid-IR OCT systems require light sources and photodetectors which operate in mid-IR range. These devices are expensive and need cryogenic cooling. Here, we report a proof-of-concept demonstration of a wavelength tunable IR OCT technique with detection of only visible range photons. Our method is based on the nonlinear interference of frequency correlated photon pairs. The nonlinear crystal, introduced in the Michelson-type interferometer, generates photon pairs with one photon in the visible and another in the IR range. The intensity of detected visible photons depends on the phase and loss of IR photons, which interact with the sample under study. This enables us to characterize sample properties and perform imaging in the IR range by detecting visible photons. The technique possesses broad wavelength tunability and yields a fair axial and lateral resolution, which can be tailored to the specific application. The work contributes to the development of versatile 3D imaging and material characterization systems working in a broad range of IR wavelengths, which do not require the use of IR-range light sources and photodetectors.
[Optical and spectral parameters in Ce3+ -doped gadolinium gallium aluminum garnet glass-ceramics].
Gong, Hua; Zhao, Xin; Yu, Xiao-bo; Setsuhisa, Tanabe; Lin, Hai
2010-01-01
The crystalline phases of Ce3+ -doped gadolinium gallium aluminum garnet (GGAG) glass-ceramics were investigated by X-ray diffraction, and the fluorescence spectra were recorded under the pumping of blue light-emitting diode (LED) using an integrating sphere of 10-inch in diameter, which connected to a CCD detector. The spectral power distribution of the glass-ceramics was obtained from the measured spectra first, and then the quantum yield was derived based on the photon distribution. The quantum yield of Ce3+ emission in GGAG glass-ceramics is 29.2%, meanwhile, the color coordinates and the correlated color temperature (CCT) of combined white light were proved to be x = 0.319, y = 0.349 and 6086 K, respectively. Although the quantum yield is a little smaller than the value in Ce3+ -doped YAG glass-ceramics, the CCT of the combined white light is much smaller than that in the latter. The optical behavior of GGAG glass-ceramics provides new vision for developing comfortable LED lighting devices.
Li, Shang-Zhong; Fan, Ting-Lu; Wang, Yong; Zhao, Gang; Wang, Lei; Tang, Xiao-Ming; Dang, Yi; Zhao, Hui
2014-02-01
The differences on chlorophyll fluorescence parameters, yield and water use efficiency of dryland maize were compared among full plastic film mulching on double ridges and planting in catchment furrows (FFDRF), half plastic film mulching on double ridges and planting in catchment furrows (HFDRF), plastic film mulching on ridge and planting in film-side (FS), and flat planting with no plastic film mulching (NM) under field conditions in dry highland of Loess Plateau in 2007-2012. The results showed that fluorescence yield (Fo), the maximum fluorescence yield (Fm), light-adapted fluorescence yield when PS II reaction centers were totally open (F), light-adapted fluorescence yield when PS II reaction centers closed (Fm'), the maximal photochemical efficiency of PS II (Fv/Fm), the actual photochemical efficiency of PS II in the light (Phi PS II), the relative electron transport rate (ETR), photochemical quenching (qP) and non-photochemical quenching (qN) in maize leaves of FFDRF were higher than that of control (NM), and the value of 1-qP was lower than that of control, at 13:00, chlorophyll fluorescence parameters values of FFDRF was significantly higher than control, which were increased by 5.3%, 56.8%, 10.7%, 36.3%, 23.6%, 56.7%, 64.4%, 45.5%, 23.6% and -55.6%, respectively, compared with the control. Yield and water use efficiency of FFDRF were the highest in every year no matter dry year, normal year, humid year and hail disaster year. Average yield and water use efficiency of FFDRF were 12,650 kg x hm(-2) and 40.4 kg x mm(-1) x hm(-2) during 2007-2012, increased by 57.8% and 61.6% compared with the control, respectively, and also significantly higher compared with HFDRF and PS. Therefore, it was concluded that FFDRF had significantly increased the efficiency of light energy conversion and improved the production capacity of dryland maize.
Light harvesting control in plants.
Ruban, Alexander V
2018-05-23
In 1991, my colleagues and I published a hypothesis article that proposed a mechanism that controls light harvesting in plants and protects them against photodamage. The major light harvesting complex, LHCII, was suggested to undergo aggregation upon exposure of the plant to damaging levels of light. Aggregated LHCII was found to be much less efficient in light harvesting, as it promptly dissipated absorbed energy into heat, possessing a very low chlorophyll fluorescence yield. Non-photochemical quenching (NPQ) is a term coined to describe this reduction in chlorophyll fluorescence yield. This article is a story of how the hypothesis that LHCII aggregation is involved in NPQ is developed into a model that is now becoming broadly accepted by the research community. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Weight and volume yields from thinning two oak-hickory stands
E. Paul Craft; John E. Baumgras
1979-01-01
Two sample plots in oak-hickory stands of poletimber-small sawtimber were thinned to determine product yields from thinnings. One stand received a light thinning; the other was heavily thinned. Light thinning reduced basal area from 120 ft² to 84 ft² per acre and removed 22 tons of roundwopd per acre, including 2,543 board feet of sawed products and 7...
Lithium Alkaline Halides—Next Generation of Dual Mode Scintillators
NASA Astrophysics Data System (ADS)
Soundara-Pandian, L.; Hawrami, R.; Glodo, J.; Ariesanti, E.; van Loef, E. V.; Shah, K.
2016-04-01
We report on a new family of scintillators - Lithium alkaline halides, developed based on the alkaline halides by introducing lithium for dual mode gamma-neutron detection. Many different compositions were grown, among which LiSr2I5 (LSI), LiCa2I5 (LCI), LiSr2Br5 (LSB) activated with divalent Europium show good gamma and neutron detection properties. LSI shows the main emission at 497 nm under X-ray excitation. It also shows good proportionality, which in combination with the light yield as high as 60000 photons/MeV, results in an energy resolution of 3.5% at 662 keV. The electron or gamma equivalent energy (GEE) of the thermal neutron peak due to the 6Li neutron capture is 4.1 MeV, which amounts to a very high neutron light yield of 245000 photons. The decay times for neutrons are faster compared to that for gamma-rays, hence we achieved good pulse shape discrimination (PSD) between gamma and neutron events. Our initial studies on the effects of Eu concentration on the properties of LSI show that 3%-4% Eu concentration is optimal for the best performance in terms of gamma and neutron light yields and pulse shape discrimination. LCI shows the main emission at 475 nm under X-ray excitation and a very high gamma light yield of 90000 photons/MeV. The measured energy resolution is 6% at 662 keV. The electron equivalent energy for neutron detection has been measured to be around 3 MeV, which gives a neutron light yield of 270 000 photons. The measured decay times for neutrons are faster compared to gamma decays and the PSD between the gamma-rays and neutrons is not as good as LSI. LSB shows two emissions at 410 and 475 nm under X-ray excitation. The measured light yield is 32000 ph/MeV gamma-ray with an energy resolution of 6% at 662 keV. The electron equivalent energy of the 6Li capture peak was measured to be 3.3 MeV.
Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana.
Fisahn, Joachim; Klingelé, Emile; Barlow, Peter
2015-01-01
The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII).
Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana
Fisahn, Joachim; Klingelé, Emile; Barlow, Peter
2015-01-01
The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII). PMID:26376108
Velmurugan, Palanivel; Lee, Yong Hoon; Venil, Chidambaram Kulandaisamy; Lakshmanaperumalsamy, Perumalsamy; Chae, Jong-Chan; Oh, Byung-Taek
2010-04-01
The competence of the living creatures to sense and respond to light is well known. The effect of darkness and different color light quality on biomass, extracellular and intracellular pigment yield of five potent pigment producers Monascus purpureus, Isaria farinosa, Emericella nidulans, Fusarium verticillioides and Penicillium purpurogenum, with different color shades such as red, pink, reddish brown and yellow, were investigated. Incubation in total darkness increased the biomass, extracellular and intracellular pigment production in all the fungi. Extracellular red pigment produced by M. purpureus resulted maximum in darkness 36.75 + or - 2.1 OD and minimum in white unscreened light 5.90 + or - 1.1 OD. Similarly, intracellular red pigment produced by M. purpureus resulted maximum in darkness 18.27 + or - 0.9 OD/g and minimum in yellow light 8.03 + or - 0.6 OD/g of substrate. The maximum biomass production was also noticed in darkness 2.51 g/L and minimum in yellow light 0.5 g/L of dry weight. In contrast, growth of fungi in green and yellow wavelengths resulted in low biomass and pigment yield. It was found that darkness, (red 780-622 nm, blue 492-455 nm) and white light influenced pigment and biomass yield. Copyright 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
The dark side of marketing seemingly "Light" cigarettes: successful images and failed fact
Pollay, R; Dewhirst, T
2002-01-01
Methods: Analysis of trade sources and internal US tobacco company documents now available on various web sites created by corporations, litigation, or public health bodies. Results: When introducing low yield products, cigarette manufacturers were concerned about maintaining products with acceptable taste/flavour and feared consumers might become weaned from smoking. Several tactics were employed by cigarette manufacturers, leading consumers to perceive filtered and low machine yield brands as safer relative to other brands. Tactics include using cosmetic (that is, ineffective) filters, loosening filters over time, using medicinal menthol, using high tech imagery, using virtuous brand names and descriptors, adding a virtuous variant to a brand's product line, and generating misleading data on tar and nicotine yields. Conclusions: Advertisements of filtered and low tar cigarettes were intended to reassure smokers concerned about the health risks of smoking, and to present the respective products as an alternative to quitting. Promotional efforts were successful in getting smokers to adopt filtered and low yield cigarette brands. Corporate documents demonstrate that cigarette manufacturers recognised the inherent deceptiveness of cigarette brands described as "Light"or "Ultra-Light" because of low machine measured yields. PMID:11893811
Development of transgenic crops based on photo-biotechnology.
Ganesan, Markkandan; Lee, Hyo-Yeon; Kim, Jeong-Il; Song, Pill-Soon
2017-11-01
The phenotypes associated with plant photomorphogenesis such as the suppressed shade avoidance response and de-etiolation offer the potential for significant enhancement of crop yields. Of many light signal transducers and transcription factors involved in the photomorphogenic responses of plants, this review focuses on the transgenic overexpression of the photoreceptor genes at the uppermost stream of the signalling events, particularly phytochromes, crytochromes and phototropins as the transgenes for the genetic engineering of crops with improved harvest yields. In promoting the harvest yields of crops, the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the tolerance to abiotic stresses such as drought, salinity and heavy metal ions. As a genetic engineering approach, the term photo-biotechnology has been coined to convey the idea that the greater the photosynthetic efficiency that crop plants can be engineered to possess, the stronger the resistance to biotic and abiotic stresses. Development of GM crops based on photoreceptor transgenes (mainly phytochromes, crytochromes and phototropins) is reviewed with the proposal of photo-biotechnology that the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the added benefits of crops' tolerance to environmental stresses. © 2016 John Wiley & Sons Ltd.
Evaluation of GAGG:Ce scintillators for future space applications
NASA Astrophysics Data System (ADS)
Yoneyama, M.; Kataoka, J.; Arimoto, M.; Masuda, T.; Yoshino, M.; Kamada, K.; Yoshikawa, A.; Sato, H.; Usuki, Y.
2018-02-01
Cerium-doped Gd3(Ga, Al)5O12 (GAGG:Ce) is a promising novel scintillator for gamma-ray detectors. While GAGG:Ce has already been implemented in various commercial products, its detailed characteristics and response to high-energy particles and gamma rays remain unknown. In particular, knowledge is lacking on the radiation tolerance of this scintillator against the gamma-ray and proton irradiation expected in future space satellite mission applications. In this study, we first investigate the light-yield energy dependence, energy resolution, decay time, radiation tolerance, and afterglow of GAGG:Ce scintillators under various temperature conditions. We find excellent linearity of ±3% between light yields and deposited energy over a wide range of 30-1836 keV; however, a light-yield deficit of more than 10% is observed below 30 keV of deposited gamma ray energy. We confirm that the temperature dependence of the light yield, energy resolution, and scintillation decay time is within 5-20% between -20 and 20 oC. We also evaluate the GAGG:Ce activation characteristics under proton irradiation and the light-yield degradation by accumulated dose using a 60Co source. Moreover, we successfully identify various gamma-ray lines due to activation. Finally, we find a substantial afterglow for GAGG:Ce scintillators over a few hours; such an afterglow is only minimally observed in other scintillators such as CsI:Tl and Bi4Ge3O12 (BGO). However, the afterglow can be substantially reduced through additional co-doping with divalent metal ions, such as Mg ions. These results suggest that GAGG:Ce is a promising scintillator with potential application in space satellite missions in the near future.
Sweetpotato vine management for confined food production in a space life-support system
NASA Astrophysics Data System (ADS)
Massa, Gioia D.; Mitchell, Cary A.
2012-01-01
Sweetpotato (Ipomea batatas L.) 'Whatley-Loretan' was developed for space life support by researchers at Tuskegee University for its highly productive, nutritious storage roots. This promising candidate space life-support crop has a sprawling habit and aggressive growth rate in favorable environments that demands substantial growing area. Shoot pruning is not a viable option for vine control because removal of the main shoot apex drastically inhibits storage-root initiation and development, and chemical growth retardants typically are not cleared for use with food crops. As part of a large effort by the NASA Specialized Center of Research and Training in Advanced Life Support to reduce equivalent system mass (ESM) for food production in space, the dilemma of vine management for sweetpotato was addressed in effort to conserve growth area without compromising root yield. Root yields from unbranched vines trained spirally around wire frames configured either in the shapes of cones or cylinders were similar to those from vines trained horizontally along the bench, but occupying only a small fraction of the bench area. This finding indicates that sweetpotato is highly adaptable to a variety of vine-training architectures. Planting a second plant in the growth container and training the two vines in opposite directions around frames enhanced root yield and number, but had little effect on average length of each vine or bench area occupied. Once again, root yields were similar for both configurations of wire support frames. The 3-4-month crop-production cycles for sweetpotato in the greenhouse spanned all seasons of multiple years during the course of the study, and although electric lighting was used for photoperiod control and to supplement photosynthetic light during low-light seasons, there still were differences in total light available across seasons. Light variations and other environmental differences among experiments in the greenhouse had more effects on vine length than on root yield. Average vine length correlated positively with total hours of daylight received across seasons, and responses for one plant per container were higher above a threshold duration of solar exposure, suggesting that the vines of two plants per container compete for available light. In addition to the adaptability of sweetpotato to various vine-training architectures and across seasons in terms of maintaining root productivity, the open, interior volumes of the support frames tested in this study will provide future opportunity to enhance sweetpotato root yield in space by adding novel interior lighting, such as from intracanopy arrays of light-emitting diodes. This work was sponsored by NASA grant NAG 5 1286.
Non-contact pumping of light emitters via non-radiative energy transfer
Klimov, Victor I.; Achermann, Marc
2010-01-05
A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.
Photoenhanced degradation of veratraldehyde upon the heterogeneous ozone reactions.
Net, Sopheak; Gligorovski, Sasho; Pietri, Sylvia; Wortham, Henri
2010-07-21
Light-induced heterogeneous reactions between gas-phase ozone and veratraldehyde adsorbed on silica particles were performed. At an ozone mixing ratio of 250 ppb, the loss of veratraldehyde largely increased from 1.81 x 10(-6) s(-1) in the dark to 2.54 x 10(-5) s(-1) upon exposure to simulated sunlight (lambda > 300 nm). The observed rates of degradation exhibited linear dependence with the ozone in the dark ozonolysis experiments which change in the non-linear Langmuir-Hinshelwood dependence in the experiments with simultaneous ozone and light exposure of the coated particles. When the coated silica particles were exposed only to simulated sunlight in absence of ozone the loss of veratraldehyde was about three times higher i.e. 5.97 x 10(-6) s(-1) in comparison to the ozonolysis experiment under dark conditions at 250 ppb ozone mixing ratio, 1.81 x 10(-6) s(-1).These results clearly show that the most important loss of veratraldehyde occurs under simultaneous ozone and light exposure of the coated silica particles. The main identified product in the heterogeneous reactions between gaseous ozone and adsorbed veratraldehyde under dark conditions and in presence of light was veratric acid.Carbon yields of veratric acid were calculated and the obtained results indicated that at low ozone mixing ratio (250 ppb) the carbon yield obtained under dark conditions is 70% whereas the carbon yield obtained in the experiments with simultaneous ozone and light exposure of the coated particles is 40%. In both cases the carbon yield of veratric acid exponentially decayed leading to the plateau ( approximately 35% of carbon yield) at an ozone mixing ratio of 6 ppm. Two reaction products i.e. 3-hydroxy-4-methoxybenzoic acid and 4-hydroxy-3-methoxybenzoic acid were identified (confirmed with the standards) only in the experiments performed under simultaneous ozonolysis and light irradiation of the particles.
Yielding and flow of colloidal glasses.
Petekidis, Georgios; Vlassopoulos, Dimitris; Pusey, Peter N
2003-01-01
We investigate the yielding and flow of hard-sphere colloidal glasses by combining rheological measurements with the technique of light scattering echo. The polymethylmethacrylate particles used are sufficiently polydisperse that crystallization is suppressed. Creep and recovery measurements show that the glasses can tolerate surprisingly large strains, up to at least 15%, before yielding irreversibly. We attribute this behaviour to 'cage elasticity', the ability of a particle and its cage of neighbours to retain their identity under quite large distortion. Results from light scattering echo, which measures the extent of irreversible particle rearrangement under oscillatory shear, support the notion of cage elasticity. In the lower concentration glasses we find that particle trajectories are partly reversible under strains which significantly exceed the yield strain.
Positive hysteresis of Ce-doped GAGG scintillator
NASA Astrophysics Data System (ADS)
Yanagida, Takayuki; Fujimoto, Yutaka; Koshimizu, Masanori; Watanabe, Kenichi; Sato, Hiroki; Yagi, Hideki; Yanagitani, Takagimi
2014-10-01
Positive hysteresis and radiation tolerance to high-dose radiation exposure were investigated for Ce 1% and 3% doped Gd3(Al, Ga)5O12 (Ce:GAGG) crystal scintillator on comparison with other garnet scintillators such Ce:YAG, Ce:LuAG, Pr:LuAG, and ceramic Ce:GAGG. When they were irradiated by several Gy 60Co γ-rays, Ce 1% doped GAGG crystal exhibited ∼20% light yield enhancement (positive hysteresis). This is the first time to observe positive hysteresis in Ce doped GAGG. On the other hand, other garnet materials did not show the positive hysteresis and their light yields were stable after 800 Gy irradiation except Pr:LuAG. The light yield of Pr:LuAG decreased largely. When irradiated Ce:GAGG which showed positive hysteresis was evaluated in Synchrotron facility (UVSOR), new excitation band was created around 60 nm.
High fluence neutron radiation of plastic scintillators for the TileCal of the ATLAS detector.
NASA Astrophysics Data System (ADS)
Mdhluli, J. E.; Davydov, Yu I.; Baranov, V.; Mthembu, S.; Erasmus, R.; Jivan, H.; Khanye, N.; Tlou, H.; Tjale, B.; Starchenko, J.; Solovyanov, O.; Mellado, B.; Sideras-Haddad, E.
2017-09-01
We report on structural and optical properties of neutron irradiated plastic scintillators. These scintillators were subjected to a neutron beam with wide energy range of up to 10MeV and a neutron flux range of 1.2 × 1012 - 9.4 × 1012 n/cm 2 using the IBR-2 pulsed reactor at the Joint Institute for Nuclear Research in Dubna. A study between polyvinyl toluene based commercial scintillators EJ200, EJ208 and EJ260 as well as polystyrene based scintillator from Kharkov is conducted. Light transmission, Raman spectroscopy, fluorescence spectroscopy and light yield testing was performed to characterize the damage induced in the samples. Preliminary results from the tests performed indicate no change in the optical and structural properties of the scintillators. The polystyrene based scintillators were further subjected to a higher neutron flux range of 3.8 × 1012 - 1.8 × 1014 n/cm 2 using the IBR-2 pulsed reactor.
Growth and characterization of Na2Mo2O7 crystal scintillators for rare event searches
NASA Astrophysics Data System (ADS)
Pandey, Indra Raj; Kim, H. J.; Kim, Y. D.
2017-12-01
Disodium dimolybdate (Na2Mo2O7) crystals were grown using the Czochralski technique. The thermal characteristics of the compound were analyzed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) measurements. The crystal structure of the grown sample was confirmed using X-ray diffraction (XRD). Luminescence properties were measured at room and low temperatures, using a light emitting diode (LED) source. Very weak luminescence was observed at room temperature; however, the luminescence intensity was enhanced at low temperatures. The crystal's transmittance spectrum was measured for estimating its optical quality and energy band gap. The grown crystal exhibited a luminescence light yield of 55% compared with CaMoO4 crystals at 10 K, when excited by a 280-nm-wavelength LED source, but does not have the drawbacks of radioactive Ca isotopes. These results suggest that at cryogenic temperatures, Na2Mo2O7 crystal scintillators are promising for the detection of dark matter and neutrinoless double beta decay of 100Mo.
Nanoscale Imaging of Light-Matter Coupling Inside Metal-Coated Cavities with a Pulsed Electron Beam.
Moerland, Robert J; Weppelman, I Gerward C; Scotuzzi, Marijke; Hoogenboom, Jacob P
2018-05-02
Many applications in (quantum) nanophotonics rely on controlling light-matter interaction through strong, nanoscale modification of the local density of states (LDOS). All-optical techniques probing emission dynamics in active media are commonly used to measure the LDOS and benchmark experimental performance against theoretical predictions. However, metal coatings needed to obtain strong LDOS modifications in, for instance, nanocavities, are incompatible with all-optical characterization. So far, no reliable method exists to validate theoretical predictions. Here, we use subnanosecond pulses of focused electrons to penetrate the metal and excite a buried active medium at precisely defined locations inside subwavelength resonant nanocavities. We reveal the spatial layout of the spontaneous-emission decay dynamics inside the cavities with deep-subwavelength detail, directly mapping the LDOS. We show that emission enhancement converts to inhibition despite an increased number of modes, emphasizing the critical role of optimal emitter location. Our approach yields fundamental insight in dynamics at deep-subwavelength scales for a wide range of nano-optical systems.
The Road to the Common PET/CT Detector
NASA Astrophysics Data System (ADS)
Nassalski, Antoni; Moszynski, Marek; Szczesniak, Tomasz; Wolski, Dariusz; Batsch, Tadeusz
2007-10-01
Growing interest in the development of dual modality positron emission/X-rays tomography (PET/CT) systems prompts researchers to face a new challenge: to acquire both the anatomical and functional information in the same measurement, simultaneously using the same detection system and electronics. The aim of this work was to study a detector consisting of LaBr3, LSO or LYSO pixel crystals coupled to an avalanche photodiode (APD). The measurements covered tests of the detectors in PET and CT modes, respectively. The measurements included the determination of light output, energy resolution, the non-proportionality of the light yield and the time resolution for 511 keV annihilation quanta; analysis also included characterizing the PET detector, and determining the dependence of counting rate versus mean current of the APD in the X-ray detection. In the present experiment, the use of counting and current modes in the CT detection increases the dynamic range of the measured dose of X-rays by a factor of 20, compared to the counting mode alone.
NASA Astrophysics Data System (ADS)
Nagazi, Med-Yassine; Brambilla, Giovanni; Meunier, Gérard; Marguerès, Philippe; Périé, Jean-Noël; Cipelletti, Luca
2017-01-01
We couple a laser-based, space-resolved dynamic light scattering apparatus to a universal traction machine for mechanical extensional tests. We perform simultaneous optical and mechanical measurements on polyether ether ketone, a semi-crystalline polymer widely used in the industry. Due to the high turbidity of the sample, light is multiply scattered by the sample and the diffusing wave spectroscopy (DWS) formalism is used to interpret the data. Space-resolved DWS yields spatial maps of the sample strain and of the microscopic dynamics. An excellent agreement is found between the strain maps thus obtained and those measured by a conventional stereo-digital image correlation technique. The microscopic dynamics reveals both affine motion and plastic rearrangements. Thanks to the extreme sensitivity of DWS to displacements as small as 1 nm, plastic activity and its spatial localization can be detected at an early stage of the sample strain, making the technique presented here a valuable complement to existing material characterization methods.
A Cryptochrome 2 mutation yields advanced sleep phase in humans.
Hirano, Arisa; Shi, Guangsen; Jones, Christopher R; Lipzen, Anna; Pennacchio, Len A; Xu, Ying; Hallows, William C; McMahon, Thomas; Yamazaki, Maya; Ptáček, Louis J; Fu, Ying-Hui
2016-08-16
Familial Advanced Sleep Phase (FASP) is a heritable human sleep phenotype characterized by very early sleep and wake times. We identified a missense mutation in the human Cryptochrome 2 (CRY2) gene that co-segregates with FASP in one family. The mutation leads to replacement of an alanine residue at position 260 with a threonine (A260T). In mice, the CRY2 mutation causes a shortened circadian period and reduced phase-shift to early-night light pulse associated with phase-advanced behavioral rhythms in the light-dark cycle. The A260T mutation is located in the phosphate loop of the flavin adenine dinucleotide (FAD) binding domain of CRY2. The mutation alters the conformation of CRY2, increasing its accessibility and affinity for FBXL3 (an E3 ubiquitin ligase), thus promoting its degradation. These results demonstrate that CRY2 stability controlled by FBXL3 plays a key role in the regulation of human sleep wake behavior.
Yuan, Fanglong; Yuan, Ting; Sui, Laizhi; Wang, Zhibin; Xi, Zifan; Li, Yunchao; Li, Xiaohong; Fan, Louzhen; Tan, Zhan'ao; Chen, Anmin; Jin, Mingxing; Yang, Shihe
2018-06-08
Carbon quantum dots (CQDs) have emerged as promising materials for optoelectronic applications on account of carbon's intrinsic merits of high stability, low cost, and environment-friendliness. However, the CQDs usually give broad emission with full width at half maximum exceeding 80 nm, which fundamentally limit their display applications. Here we demonstrate multicolored narrow bandwidth emission (full width at half maximum of 30 nm) from triangular CQDs with a quantum yield up to 54-72%. Detailed structural and optical characterizations together with theoretical calculations reveal that the molecular purity and crystalline perfection of the triangular CQDs are key to the high color-purity. Moreover, multicolored light-emitting diodes based on these CQDs display good stability, high color-purity, and high-performance with maximum luminance of 1882-4762 cd m -2 and current efficiency of 1.22-5.11 cd A -1 . This work will set the stage for developing next-generation high-performance CQDs-based light-emitting diodes.
Fracalossi, Camila; Nagata, Juliana Yuri; Pellosi, Diogo Silva; Terada, Raquel Sano Suga; Hioka, Noboru; Baesso, Mauro Luciano; Sato, Francielle; Rosalen, Pedro Luiz; Caetano, Wilker; Fujimaki, Mitsue
2016-09-01
Photodynamic inactivation of microorganisms is based on a photosensitizing substance which, in the presence of light and molecular oxygen, produces singlet oxygen, a toxic agent to microorganisms and tumor cells. This study aimed to evaluate singlet oxygen quantum yield of erythrosine solutions illuminated with a halogen light source in comparison to a LED array (control), and the photodynamic effect of erythrosine dye in association with the halogen light source on Streptococcus mutans. Singlet oxygen quantum yield of erythrosine solutions was quantified using uric acid as a chemical-probe in an aqueous solution. The in vitro effect of the photodynamic antimicrobial activity of erythrosine in association with the halogen photopolimerizing light on Streptococcus mutans (UA 159) was assessed during one minute. Bacterial cultures treated with erythrosine alone served as negative control. Singlet oxygen with 24% and 2.8% degradation of uric acid in one minute and a quantum yield of 0.59 and 0.63 was obtained for the erythrosine samples illuminated with the halogen light and the LED array, respectively. The bacterial cultures with erythrosine illuminated with the halogen light presented a decreased number of CFU mL(-1) in comparison with the negative control, with minimal inhibitory concentrations between 0.312 and 0.156mgmL(-1). The photodynamic response of erythrosine induced by the halogen light was capable of killing S. mutans. Clinical trials should be conducted to better ascertain the use of erythrosine in association with halogen light source for the treatment of dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.
Synthesis, bioanalysis and biodistribution of photosensitizer conjugates for photodynamic therapy
Denis, Tyler GSt; Hamblin, Michael R
2013-01-01
Photodynamic therapy (PDT) was discovered in 1900 by Raab, and has since emerged as a promising tool for treating diseases characterized by unwanted cells or hyperproliferating tissue (e.g., cancer or infectious disease). PDT consists of the light excitation of a photosensitizer (PS) in the presence of O2 to yield highly reactive oxygen species. In recent years, PDT has been improved by the synthesis of targeted bioconjugates between monoclonal antibodies and PS, and by investigating PS biodistribution and PD. Here, we provide a comprehensive review of major developments in PS-immunoconjugate-based PDT and the bioanalysis of these agents, with a specific emphasis on anticancer and antimicrobial PDT. PMID:23641699
Optical diagnosis of dengue virus infected human blood using Mueller matrix polarimetry
NASA Astrophysics Data System (ADS)
Anwar, Shahzad; Firdous, Shamaraz
2016-08-01
Currently dengue fever diagnosis methods include capture ELISAs, immunofluorescence tests, and hemagglutination assays. In this study optical diagnosis of dengue virus infection in the whole blood is presented utilizing Mueller matrix polarimetry. Mueller matrices of about 50 dengue viral infected and 25 non-dengue healthy blood samples were recorded utilizing light source from 500 to 700 nm with scanning step of 10 nm. Polar decomposition of the Mueller matrices for all the blood samples was performed that yielded polarization properties including depolarization, diattenuation, degree of polarization, retardance and optical activity, out of which, depolarization index clusters up the diseased and healthy in to different separate groups. The average depolarized light in the case of dengue infection in the whole blood at 500 nm is 18%, whereas for the healthy blood samples it is 13.5%. This suggests that depolarization index of polarized light at the wavelengths of 500, 510, 520, 530 and 540 nm, we find that in case of depolarization index values are higher for dengue viral infection as compared to normal samples. This technique can effectively be used for the characterization of the dengue virus infected at an early stage of disease.
Spitzer Microlens Measurement of a Massive Remnant in a Well-separated Binary
NASA Astrophysics Data System (ADS)
Shvartzvald, Y.; Udalski, A.; Gould, A.; Han, C.; Bozza, V.; Friedmann, M.; Hundertmark, M.; and; Beichman, C.; Bryden, G.; Calchi Novati, S.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Henderson, C. B.; Kerr, T.; Pogge, R. W.; Varricatt, W.; Wibking, B.; Yee, J. C.; Zhu, W.; Spitzer Team; Poleski, R.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; OGLE Group; Choi, J.-Y.; Park, H.; Jung, Y. K.; Shin, I.-G.; Albrow, M. D.; Park, B.-G.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; KMTNet Group; Maoz, D.; Kaspi, S.; Wise Group; Street, R. A.; Tsapras, Y.; Bachelet, E.; Dominik, M.; Bramich, D. M.; Horne, Keith; Snodgrass, C.; Steele, I. A.; Menzies, J.; Figuera Jaimes, R.; Wambsganss, J.; Schmidt, R.; Cassan, A.; Ranc, C.; Mao, S.; Dong, Subo; RoboNet; D'Ago, G.; Scarpetta, G.; Verma, P.; Jørgensen, U. G.; Kerins, E.; Skottfelt, J.; MiNDSTEp
2015-12-01
We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M1 > 1.35 M⊙ (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r⊥ = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.
Ramaiah, Danaboyina; Eckert, Inge; Arun, Kalliat T; Weidenfeller, Lydia; Epe, Bernd
2002-12-01
Halogenated squaraine dyes are characterized by long wavelength absorption (>600 nm) and high triplet yields and therefore represent new types of photosensitizers that could be useful for photodynamic therapy. We have analyzed the cytotoxicity and genotoxicity of the bromo derivative 1, the iodo derivative 2 and the corresponding nonhalogenated dye 3 in the absence and presence of visible light. At concentrations of 1-2 microM, 1 and 2 reduced the cloning efficiency of AS52 Chinese hamster ovary cells to less than 1% under conditions that were well tolerated in the dark. Similarly, the proliferation of L5178Y mouse lymphoma cells was inhibited by photoexcited 1 and 2 with high selectivity. The squaraine 3 was much less efficient. Both 1 and 2 induced only few mutations in the gpt locus of the AS52 cells in the presence of light and were not mutagenic in the dark. No mutagenicity with and without irradiation was observed in Salmonella typhimurium TA100 and TA2638. However, both 1 and 2 plus light increased the frequency of micronuclei in AS52 cells. The results indicate that halogenated squaraines exhibit photobiological properties in vitro that are favorable for photodynamic therapeutical applications.
Insights from Placing Photosynthetic Light Harvesting into Context.
Demmig-Adams, Barbara; Stewart, Jared J; Burch, Tyson A; Adams, William W
2014-08-21
Solar-energy conversion through natural photosynthesis forms the base of virtually all food chains on Earth and provides fiber, materials, and fuels, as well as inspiration for the design of biomimetic energy-conversion systems. We summarize well-known as well as recently discovered feedback loops between natural light-harvesting systems and whole-organism function in natural settings. We propose that the low effective quantum yield of natural light-harvesting systems in high light is caused by downstream limitations rather than unavoidable intrinsic vulnerabilities. We evaluate potential avenues, and their costs and benefits, for increasing the maximal rate and photon yield of photosynthesis in high light in plants and photosynthetic microbes. By summarizing mechanisms observable only in complex systems (whole plants, algae, or, in some cases, intact leaves), we aim to stimulate future research efforts on reciprocal feedback loops between light harvesting and downstream processes in whole organisms and to provide additional arguments for the significance of research on photosynthetic light harvesting.
Recent Results from the WASA-at-COSY Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kupsc, Andrzej
2011-10-24
Studies of light meson decays are the key experiments for the WASA detector at COSY-Juelich. One of the world largest data samples of the {eta} meson decays have been recently collected in the pd {yields}{sup 3}He{eta} and in the pp {yields} pp{eta} reactions. The status of the analysis of various decay channels and the further plans for the light meson decay program are presented.
Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja; ...
2016-12-24
Prototype scintilator+WLS strips with SiPM readout for large muon detection systems were tested in the muon beam of the Fermilab Test Beam Facility. Furthermore, light yield of up to 137 photoelectrons per muon per strip has been observed, as well as time resolution of 330 ps and position resolution along the strip of 5.4 cm.
Quan, Li Na; Zhao, Yongbiao; García de Arquer, F Pelayo; Sabatini, Randy; Walters, Grant; Voznyy, Oleksandr; Comin, Riccardo; Li, Yiying; Fan, James Z; Tan, Hairen; Pan, Jun; Yuan, Mingjian; Bakr, Osman M; Lu, Zhenghong; Kim, Dong Ha; Sargent, Edward H
2017-06-14
Organo-metal halide perovskites are a promising platform for optoelectronic applications in view of their excellent charge-transport and bandgap tunability. However, their low photoluminescence quantum efficiencies, especially in low-excitation regimes, limit their efficiency for light emission. Consequently, perovskite light-emitting devices are operated under high injection, a regime under which the materials have so far been unstable. Here we show that, by concentrating photoexcited states into a small subpopulation of radiative domains, one can achieve a high quantum yield, even at low excitation intensities. We tailor the composition of quasi-2D perovskites to direct the energy transfer into the lowest-bandgap minority phase and to do so faster than it is lost to nonradiative centers. The new material exhibits 60% photoluminescence quantum yield at excitation intensities as low as 1.8 mW/cm 2 , yielding a ratio of quantum yield to excitation intensity of 0.3 cm 2 /mW; this represents a decrease of 2 orders of magnitude in the excitation power required to reach high efficiency compared with the best prior reports. Using this strategy, we report light-emitting diodes with external quantum efficiencies of 7.4% and a high luminescence of 8400 cd/m 2 .
Exploring growth conditions and Eu2+ concentration effects for KSr2I5:Eu scintillator crystals
NASA Astrophysics Data System (ADS)
Stand, L.; Zhuravleva, M.; Camarda, G.; Lindsey, A.; Johnson, J.; Hobbs, C.; Melcher, C. L.
2016-04-01
Our current research is focused on understanding dopant optimization, growth rate, homogeneity and their impact on the overall performance of KSr2I5:Eu2+ single crystal scintillators. In this work we have investigated the effects of Eu2+ concentration in the potassium strontium iodide matrix, and we found that the concentration needed to maximize the light yield was 4 mol%. In order to assess the effects of the pulling rate, we grew single crystals at 12, 24 and 120 mm/day via the vertical Bridgman technique. For the sample sizes measured (5×5×5 mm3), we found that the crystal grown at the fastest rate of 120 mm/day showed a light yield within ~7% of the more slowly grown boules, and no significant change was observed in the energy resolution. Therefore, light yields from 88,000 to 96,000 ph/MeV and energy resolutions from 2.4 to 3.0% (at 662 keV) were measured for KSr2I5:Eu 4% over a relatively wide range of growth conditions. In order to assess the homogeneity of KSr2I5:Eu 4%, a newly developed micro-resolution X-ray technique was used to map the light yield as a function of excitation position. In the crystals that we studied, we did not observe any significant inhomogeneity other than a smooth gradient due to light collection and self absorption effects.
Mechanical Properties of Elastomeric Impression Materials: An In Vitro Comparison
De Angelis, Francesco; Caputi, Sergio; D'Amario, Maurizio; D'Arcangelo, Camillo
2015-01-01
Purpose. Although new elastomeric impression materials have been introduced into the market, there are still insufficient data about their mechanical features. The tensile properties of 17 hydrophilic impression materials with different consistencies were compared. Materials and Methods. 12 vinylpolysiloxane, 2 polyether, and 3 hybrid vinylpolyether silicone-based impression materials were tested. For each material, 10 dumbbell-shaped specimens were fabricated (n = 10), according to the ISO 37:2005 specifications, and loaded in tension until failure. Mean values for tensile strength, yield strength, strain at break, and strain at yield point were calculated. Data were statistically analyzed using one-way ANOVA and Tukey's tests (α = 0.05). Results. Vinylpolysiloxanes consistently showed higher tensile strength values than polyethers. Heavy-body materials showed higher tensile strength than the light bodies from the same manufacturer. Among the light bodies, the highest yield strength was achieved by the hybrid vinylpolyether silicone (2.70 MPa). Polyethers showed the lowest tensile (1.44 MPa) and yield (0.94 MPa) strengths, regardless of the viscosity. Conclusion. The choice of an impression material should be based on the specific physical behavior of the elastomer. The light-body vinylpolyether silicone showed high tensile strength, yield strength, and adequate strain at yield/brake; those features might help to reduce tearing phenomena in the thin interproximal and crevicular areas. PMID:26693227
Niklaus, Pascal A; Baruffol, Martin; He, Jin-Sheng; Ma, Keping; Schmid, Bernhard
2017-04-01
Most experimental biodiversity-ecosystem functioning research to date has addressed herbaceous plant communities. Comparably little is known about how forest communities will respond to species losses, despite their importance for global biogeochemical cycling. We studied tree species interactions in experimental subtropical tree communities with 33 distinct tree species mixtures and one, two, or four species. Plots were either exposed to natural light levels or shaded. Trees grew rapidly and were intensely competing above ground after 1.5 growing seasons when plots were thinned and the vertical distribution of leaves and wood determined by separating the biomass of harvested trees into 50 cm height increments. Our aim was to analyze effects of species richness in relation to the vertical allocation of leaf biomass and wood, with an emphasis on bipartite competitive interactions among species. Aboveground productivity increased with species richness. The community-level vertical leaf and wood distribution depended on the species composition of communities. Mean height and breadth of species-level vertical leaf and wood distributions did not change with species richness. However, the extra biomass produced by mixtures compared to monocultures of the component species increased when vertical leaf distributions of monocultures were more different. Decomposition of biodiversity effects with the additive partitioning scheme indicated positive complementarity effects that were higher in light than in shade. Selection effects did not deviate from zero, irrespective of light levels. Vertical leaf distributions shifted apart in mixed stands as consequence of competition-driven phenotypic plasticity, promoting realized complementarity. Structural equation models showed that this effect was larger for species that differed more in growth strategies that were characterized by functional traits. In 13 of the 18 investigated two-species mixtures, both species benefitted relative to intraspecific competition in monoculture. In the remaining five pairwise mixtures, the relative yield gain of one species exceeded the relative yield loss of the other species, resulting in a relative yield total (RYT) exceeding 1. Overall, our analysis indicates that richness-productivity relationships are promoted by interspecific niche complementarity at early stages of stand development, and that this effect is enhanced by architectural plasticity. © 2017 by the Ecological Society of America.
Limitations to photosynthesis under light and heat stress in three high-yielding wheat genotypes.
Monneveux, Philippe; Pastenes, Claudio; Reynolds, Matthew P
2003-06-01
Three high-yielding wheat genotypes (T. aestivum L., c.v. Siete Cerros, Seri and Bacanora, released in 1966, 1982 and 1988, respectively) were grown under irrigation in two high radiation, low relative humidity environments (Tlaltizapan and Ciudad Obregon CIMMYT experimental stations, Mexico). Gas exchange and fluorescence parameters were assessed on the flag leaf during the day. Carbon isotope discrimination (delta) was analysed in flag leaf at anthesis and in grain at maturity. In both environments, gas exchange and fluorescence parameters varied markedly with irradiance and temperature. Analysis of their respective variation indicated the occurrence of photo-respiration and photo-inhibition, particularly in Tlaltizapan, the warmest environment, and in Siete Cerros. In Ciudad Obregon (high-yielding environment) lower Ci (internal CO2 concentration) and delta La (carbon isotope discrimination of the leaf) suggested a higher intrinsic photosynthetic capacity in the variety Bacanora. Higher yield of this genotype was also associated with higher Fv'/Fo' (ratio of photochemical and non photochemical rate constants in the light) and Fm'/Fm (ratio of the non photochemical rate constants in the dark and light adapted state).
A Global Analysis of Light and Charge Yields in Liquid Xenon
Lenardo, Brian; Kazkaz, Kareem; Manalaysay, Aaron; ...
2015-11-04
Here, we present an updated model of light and charge yields from nuclear recoils in liquid xenon with a simultaneously constrained parameter set. A global analysis is performed using measurements of electron and photon yields compiled from all available historical data, as well as measurements of the ratio of the two. These data sweep over energies from keV and external applied electric fields from V/cm. The model is constrained by constructing global cost functions and using a simulated annealing algorithm and a Markov Chain Monte Carlo approach to optimize and find confidence intervals on all free parameters in the model.more » This analysis contrasts with previous work in that we do not unnecessarily exclude datasets nor impose artificially conservative assumptions, do not use spline functions, and reduce the number of parameters used in NEST v 0.98. Here, we report our results and the calculated best-fit charge and light yields. These quantities are crucial to understanding the response of liquid xenon detectors in the energy regime important for rare event searches such as the direct detection of dark matter particles.« less
NASA Astrophysics Data System (ADS)
Gribble, Adam; Alali, Sanaz; Vitkin, Alex
2016-03-01
Polarized light has many applications in biomedical imaging. The interaction of a biological sample with polarized light reveals information about its composition, both structural and functional. For example, the polarimetry-derived metric of linear retardance (birefringence) is dependent on tissue structural organization (anisotropy) and can be used to diagnose myocardial infarct; circular birefringence (optical rotation) can measure glucose concentrations. The most comprehensive type of polarimetry analysis is to measure the Mueller matrix, a polarization transfer function that completely describes how a sample interacts with polarized light. To derive this 4x4 matrix it is necessary to observe how a tissue interacts with different polarizations. A well-suited approach for tissue polarimetry is to use photoelastic modulators (PEMs), which dynamically modulate the polarization of light. Previously, we have demonstrated a rapid time-gated Stokes imaging system that is capable of characterizing the state of polarized light (the Stokes vector) over a large field, after interacting with any turbid media. This was accomplished by synchronizing CCD camera acquisition times relative to two PEMs using a field-programmable gate array (FPGA). Here, we extend this technology to four PEMs, yielding a polarimetry system that is capable of rapidly measuring the complete sample Mueller matrix over a large field of view, with no moving parts and no beam steering. We describe the calibration procedure and evaluate the accuracy of the measurements. Results are shown for tissue-mimicking phantoms, as well as initial biological samples.
Ulstrup, Karin E; Kühl, Michael; Bourne, David G
2007-03-01
Brown band syndrome is a new coral affliction characterized by a local accumulation of yet-unidentified ciliates migrating as a band along the branches of coral colonies. In the current study, morphologically intact zooxanthellae (= Symbiodinium) were observed in great numbers inside the ciliates (>50 dinoflagellates per ciliate). Microscale oxygen measurements and variable chlorophyll a fluorescence analysis along with microscopic observations demonstrated that zooxanthellae within the ciliates are photosynthetically competent and do not become compromised during the progression of the brown band zone. Zooxanthellae showed similar trends in light acclimation in a comparison of rapid light curve and steady-state light curve measures of variable chlorophyll a fluorescence. Extended light exposure of steady-state light curves resulted in higher quantum yields of photosystem II. The brown band tissue exhibited higher photosynthetically active radiation absorptivity, indicating more efficient light absorption due to a higher density of zooxanthellae in the ciliate-dominated zone. This caused relatively higher gross photosynthesis rates in the zone with zooxanthella-containing ciliates compared to healthy coral tissue. The observation of photosynthetically active intracellular zooxanthellae in the ciliates suggests that the latter can benefit from photosynthates produced by ingested zooxanthellae and from photosynthetic oxygen production that alleviates diffusion limitation of oxic respiration in the densely populated brown band tissue. It remains to be shown whether the zooxanthellae form a stable symbiotic association with the ciliate or are engulfed incidentally during grazing on coral tissue and then maintained as active inside the ciliate for a period before being digested and replaced by new zooxanthellae.
Ulstrup, Karin E.; Kühl, Michael; Bourne, David G.
2007-01-01
Brown band syndrome is a new coral affliction characterized by a local accumulation of yet-unidentified ciliates migrating as a band along the branches of coral colonies. In the current study, morphologically intact zooxanthellae (= Symbiodinium) were observed in great numbers inside the ciliates (>50 dinoflagellates per ciliate). Microscale oxygen measurements and variable chlorophyll a fluorescence analysis along with microscopic observations demonstrated that zooxanthellae within the ciliates are photosynthetically competent and do not become compromised during the progression of the brown band zone. Zooxanthellae showed similar trends in light acclimation in a comparison of rapid light curve and steady-state light curve measures of variable chlorophyll a fluorescence. Extended light exposure of steady-state light curves resulted in higher quantum yields of photosystem II. The brown band tissue exhibited higher photosynthetically active radiation absorptivity, indicating more efficient light absorption due to a higher density of zooxanthellae in the ciliate-dominated zone. This caused relatively higher gross photosynthesis rates in the zone with zooxanthella-containing ciliates compared to healthy coral tissue. The observation of photosynthetically active intracellular zooxanthellae in the ciliates suggests that the latter can benefit from photosynthates produced by ingested zooxanthellae and from photosynthetic oxygen production that alleviates diffusion limitation of oxic respiration in the densely populated brown band tissue. It remains to be shown whether the zooxanthellae form a stable symbiotic association with the ciliate or are engulfed incidentally during grazing on coral tissue and then maintained as active inside the ciliate for a period before being digested and replaced by new zooxanthellae. PMID:17259357
Time and position resolution of the scintillator strips for a muon system at future colliders
Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja
2016-03-31
In this study, prototype scintilator+WLS strips with SiPM readout for a muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been observed, as well as time resolution of 0.45 ns and position resolution along the strip of 7.7 cm.
NASA Astrophysics Data System (ADS)
Jebali, R.; Scherzinger, J.; Annand, J. R. M.; Chandra, R.; Davatz, G.; Fissum, K. G.; Friederich, H.; Gendotti, U.; Hall-Wilton, R.; Håkansson, E.; Kanaki, K.; Lundin, M.; Murer, D.; Nilsson, B.; Rosborg, A.; Svensson, H.
2015-09-01
A first comparison has been made between the pulse-shape discrimination characteristics of a novel 4He-based pressurized scintillation detector and a NE-213 liquid-scintillator reference detector using an Am/Be mixed-field neutron and gamma-ray source and a high-resolution scintillation-pulse digitizer. In particular, the capabilities of the two fast neutron detectors to discriminate between neutrons and gamma-rays were investigated. The NE-213 liquid-scintillator reference cell produced a wide range of scintillation-light yields in response to the gamma-ray field of the source. In stark contrast, due to the size and pressure of the 4He gas volume, the 4He-based detector registered a maximum scintillation-light yield of 750keVee to the same gamma-ray field. Pulse-shape discrimination for particles with scintillation-light yields of more than 750keVee was excellent in the case of the 4He-based detector. Above 750keVee its signal was unambiguously neutron, enabling particle identification based entirely upon the amount of scintillation light produced.
Detection and characterization of atypical capripoxviruses among small ruminants in India.
Santhamani, Ramasamy; Venkatesan, Gnanavel; Minhas, Sanjeevna Kumari; Shivachandra, Sathish Bhadravati; Muthuchelvan, Dhanavelu; Pandey, Awadh Bihari; Ramakrishnan, Muthannan Andavar
2015-08-01
Recent developments in molecular biology shed light on cross-species transmission of SPPV and GTPV. The present study was planned to characterize the capripoxviruses which were circulating in the field condition among sheep and goats using RPO30 gene-based viral lineage (SPPV/GTPV) differentiating PCR and sequencing of RPO30 and GPCR genes from clinical samples. Out of 58 scabs (35 sheep and 23 goats) screened, 27 sheep and 18 goat scabs were found positive for capripox virus infections. With the exception of one sheep and one goat scabs, all the positive samples yielded amplicon size according to host origin, i.e. SPPV in sheep and GTPV in goats. In the above two exceptional cases, goat scab and sheep scab yielded amplicon size as that of SPPV and GTPV, respectively. Further, sequencing and phylogenetic analyses of complete ORFs of RPO30 and GPCR genes from six sheep and three goat scabs revealed that with the exception of above two samples, all had host-specific signatures and clustered according to their host origin. In case of cross-species infecting samples, sheep scab possessed GTPV-like signatures and goat scab possessed SPPV-like signatures. Our study identifies the circulation of cross-infecting SPPV and GTPV in the field and warrants the development of single-strain vaccine which can protect the animals from both sheeppox and goatpox diseases.
Light, plants, and power for life support on Mars
NASA Technical Reports Server (NTRS)
Salisbury, F. B.; Dempster, W. F.; Allen, J. P.; Alling, A.; Bubenheim, D.; Nelson, M.; Silverstone, S.
2002-01-01
Regardless of how well other growing conditions are optimized, crop yields will be limited by the available light up to saturation irradiances. Considering the various factors of clouds on Earth, dust storms on Mars, thickness of atmosphere, and relative orbits, there is roughly 2/3 as much light averaged annually on Mars as on Earth. On Mars, however, crops must be grown under controlled conditions (greenhouse or growth rooms). Because there presently exists no material that can safely be pressurized, insulated, and resist hazards of puncture and deterioration to create life support systems on Mars while allowing for sufficient natural light penetration as well, artificial light will have to be supplied. If high irradiance is provided for long daily photoperiods, the growing area can be reduced by a factor of 3-4 relative to the most efficient irradiance for cereal crops such as wheat and rice, and perhaps for some other crops. Only a small penalty in required energy will be incurred by such optimization. To obtain maximum yields, crops must be chosen that can utilize high irradiances. Factors that increase ability to convert high light into increased productivity include canopy architecture, high-yield index (harvest index), and long-day or day-neutral flowering and tuberization responses. Prototype life support systems such as Bios-3 in Siberia or the Mars on Earth Project need to be undertaken to test and further refine systems and parameters.
Light, plants, and power for life support on Mars.
Salisbury, F B; Dempster, W F; Allen, J P; Alling, A; Bubenheim, D; Nelson, M; Silverstone, S
2002-01-01
Regardless of how well other growing conditions are optimized, crop yields will be limited by the available light up to saturation irradiances. Considering the various factors of clouds on Earth, dust storms on Mars, thickness of atmosphere, and relative orbits, there is roughly 2/3 as much light averaged annually on Mars as on Earth. On Mars, however, crops must be grown under controlled conditions (greenhouse or growth rooms). Because there presently exists no material that can safely be pressurized, insulated, and resist hazards of puncture and deterioration to create life support systems on Mars while allowing for sufficient natural light penetration as well, artificial light will have to be supplied. If high irradiance is provided for long daily photoperiods, the growing area can be reduced by a factor of 3-4 relative to the most efficient irradiance for cereal crops such as wheat and rice, and perhaps for some other crops. Only a small penalty in required energy will be incurred by such optimization. To obtain maximum yields, crops must be chosen that can utilize high irradiances. Factors that increase ability to convert high light into increased productivity include canopy architecture, high-yield index (harvest index), and long-day or day-neutral flowering and tuberization responses. Prototype life support systems such as Bios-3 in Siberia or the Mars on Earth Project need to be undertaken to test and further refine systems and parameters.
NASA Astrophysics Data System (ADS)
Chong, Shau Poh; Bernucci, Marcel T.; Borycki, Dawid; Radhakrishnan, Harsha; Srinivasan, Vivek J.
2017-02-01
Visible light is absorbed by intrinsic chromophores such as photopigment, melanin, and hemoglobin, and scattered by subcellular structures, all of which are potential retinal disease biomarkers. Recently, high-resolution quantitative measurement and mapping of hemoglobin concentrations was demonstrated using visible light Optical Coherence Tomography (OCT). Yet, most high-resolution visible light OCT systems adopt free-space, or bulk, optical setups, which could limit clinical applications. Here, the construction of a multi-functional fiber-optic OCT system for human retinal imaging with <2.5 micron axial resolution is described. A detailed noise characterization of two supercontinuum light sources with differing pulse repetition rates is presented. The higher repetition rate, lower noise, source is found to enable a sensitivity of 87 dB with 0.1 mW incident power at the cornea and a 98 microsecond exposure time. Using a broadband, asymmetric, fused single-mode fiber coupler designed for visible wavelengths, the sample arm is integrated into an ophthalmoscope platform, rendering it portable and suitable for clinical use. In vivo anatomical, Doppler, and spectroscopic imaging of the human retina is further demonstrated using a single oversampled B-scan. For spectroscopic fitting of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) content in the retinal vessels, a noise bias-corrected absorbance spectrum is estimated using a sliding short-time Fourier transform of the complex OCT signal and fit using a model of light absorption and scattering. This yielded path length (L) times molar concentration, LCHbO2 and LCHb. Based on these results, we conclude that high-resolution visible light OCT has potential for depth-resolved functional imaging of the eye.
Lichtenberg, Mads; Larkum, Anthony W. D.; Kühl, Michael
2016-01-01
Coral photophysiology has been studied intensively from the colony scale down to the scale of single fluorescent pigment granules as light is one of the key determinants for coral health. We studied the photophysiology of the oral and aboral symbiont band of scleractinian coral Montastrea curta to investigate if different acclimation to light exist in hospite on a polyp scale. By combined use of electrochemical and fiber-optic microsensors for O2, scalar irradiance and variable chlorophyll fluorescence, we could characterize the physical and chemical microenvironment experienced by the symbionts and, for the first time, estimate effective quantum yields of PSII photochemistry and rates of electron transport at the position of the zooxanthellae corrected for the in-tissue gradient of scalar irradiance. The oral- and aboral Symbiodinium layers received ∼71% and ∼33% of surface scalar irradiance, respectively, and the two symbiont layers experience considerable differences in light exposure. Rates of gross photosynthesis did not differ markedly between the oral- and aboral layer and curves of PSII electron transport rates corrected for scalar irradiance in hospite, showed that the light use efficiency under sub-saturating light conditions were similar between the two layers. However, the aboral Symbiodinium band did not experience photosynthetic saturation, even at the highest investigated irradiance where the oral layer was clearly saturated. We thus found a different light acclimation response for the oral and aboral symbiont bands in hospite, and discuss whether such response could be shaped by spectral shifts caused by tissue gradients of scalar irradiance. Based on our experimental finding, combined with previous knowledge, we present a conceptual model on the photophysiology of Symbiodinium residing inside living coral tissue under natural gradients of light and chemical parameters. PMID:26955372
Lichtenberg, Mads; Larkum, Anthony W D; Kühl, Michael
2016-01-01
Coral photophysiology has been studied intensively from the colony scale down to the scale of single fluorescent pigment granules as light is one of the key determinants for coral health. We studied the photophysiology of the oral and aboral symbiont band of scleractinian coral Montastrea curta to investigate if different acclimation to light exist in hospite on a polyp scale. By combined use of electrochemical and fiber-optic microsensors for O2, scalar irradiance and variable chlorophyll fluorescence, we could characterize the physical and chemical microenvironment experienced by the symbionts and, for the first time, estimate effective quantum yields of PSII photochemistry and rates of electron transport at the position of the zooxanthellae corrected for the in-tissue gradient of scalar irradiance. The oral- and aboral Symbiodinium layers received ∼71% and ∼33% of surface scalar irradiance, respectively, and the two symbiont layers experience considerable differences in light exposure. Rates of gross photosynthesis did not differ markedly between the oral- and aboral layer and curves of PSII electron transport rates corrected for scalar irradiance in hospite, showed that the light use efficiency under sub-saturating light conditions were similar between the two layers. However, the aboral Symbiodinium band did not experience photosynthetic saturation, even at the highest investigated irradiance where the oral layer was clearly saturated. We thus found a different light acclimation response for the oral and aboral symbiont bands in hospite, and discuss whether such response could be shaped by spectral shifts caused by tissue gradients of scalar irradiance. Based on our experimental finding, combined with previous knowledge, we present a conceptual model on the photophysiology of Symbiodinium residing inside living coral tissue under natural gradients of light and chemical parameters.
NASA Technical Reports Server (NTRS)
Weber, A. L.
1981-01-01
The thioester, N,S-diacetylcysteine, is formed during the illumination of phosphate buffered (pH 7.0) aqueous solutions of acetaldehyde and N,N'-diacetylcystine with ultraviolet light. The yield of N,S-diacetylcysteine relative to N-acetylcysteine and unidentified products progressively increases as ultraviolet light below 239 nm, 253 nm and 281 nm is cut off with optical filters. When ultraviolet light below 320 nm is removed with an optical filter, there is no detectable reaction. Illumination of 0.025 M N,N'-diacetylcystine with 0.5 M and 1.0 M acetaldehyde with filtered ultraviolet light gives, respectively, 20% and 80% yields of N,S-diacetylcysteine. In the reaction with 1.0 M acetaldehyde, N-acetylcysteine forms early in the reaction and later decreases with its conversion to N,S-diacetylcysteine. The prebiotic significance of these reactions is discussed.
Lin, Liyun; Hu, Yuefang; Zhang, Liangliang; Huang, Yong; Zhao, Shulin
2017-08-15
In this work, we prepared glutathione (GSH)-capped copper nanoclusters (Cu NCs) with red emission by simply adjusting the pH of GSH/Cu 2+ mixture at room temperature. A photoluminescence light-up method for detecting Zn 2+ was then developed based on the aggregation induced emission enhancement of GSH-capped Cu NCs. Zn 2+ could trigger the aggregation of Cu NCs, inducing the enhancement of luminescence and the increase of absolute quantum yield from 1.3% to 6.2%. GSH-capped Cu NCs and the formed aggregates were characterized, and the possible mechanism was also discussed. The prepared GSH-capped Cu NCs exhibited a fast response towards Zn 2+ and a wider detection range from 4.68 to 2240μM. The detection limit (1.17μM) is much lower than that of the World Health Organization permitted in drinking water. Furthermore, taking advantages of the low cytotoxicity, large Stokes shift, red emission and light-up detection mode, we explored the use of the prepared GSH-capped Cu NCs in the imaging of Zn 2+ in living cells. The developed luminescence light-up nanoprobe may hold the potentials for Zn 2+ -related drinking water safety and biological applications. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gheno, Alexandre; Trigaud, Thierry; Bouclé, Johann; Audebert, Pierre; Ratier, Bernard; Vedraine, Sylvain
2018-01-01
In this work the use of a S-tetrazine (NITZ) molecule with down-shifting capability to improve the stability of perovskite solar cells is reported. Indeed perovskite solar cells are known to present a high sensitivity to UV light and one strategy to overcome this issue is to actually supress the UV from the illumination light. The NITZ down-shifting molecule is well suited for this application since it has the particularity to be excited in the near-UV region and to emit into the visible light spectrum, giving the possibility to recycle UV photons for additional current generation. Through current-voltage curves, incident-photon-to-electron conversion efficiency, and photoluminescence spectroscopy characterization we show that NITZ presents an emission quantum yield of 30% which allows to reduce the loss of JSC induced by the use of a conventional UV filter, even if a net gain in photocurrent is not achieved in our case. We also present a simple prediction of the ability of a down-shifting molecule to efficiently perform for a specific active material. Moreover, we finally discuss the possibility to improve using such down-shifting strategy, the performance of some perovskite solar cells based on alternatives electron-transporting layers such as WO3, which are known to alter the active layer performance following UV light absorption.
NASA Astrophysics Data System (ADS)
Nir, O.; Gruber, D. F.; Einbinder, S.; Kark, S.; Tchernov, D.
2011-12-01
The algae living endosymbiotically within coral are thought to increase algal pigmentation with increasing depth to capture the diminishing light. Here, we follow distribution of the hermatypic coral Seriatopora hystrix along a 60-m bathymetric gradient in the Gulf of Eilat, Red Sea, to study coral ecophysiology and response to light regimes. Combining work on coral morphology, pigment content and genotyping of the photosymbiont, we found that total chlorophyll concentration per zooxanthellae cell and the dark- and light-acclimated quantum yield of photosystem II did not vary significantly along the 60-m gradient. However, the chlorophyll a/c ratio increased with depth. This suggests that the symbiotic algae in S. hystrix possess a mechanism for acclimatization or adaptation that differs from previously described pathways. The accepted photoacclimatory process involves an increase in chlorophyll content per alga as light intensity decreases. Based on corallite and branch morphology, this research suggests that S. hystrix has two depth-dependent ecophenotypes. Above 10 m depth, S. hystrix exhibits sturdier colony configurations with thick branches, while below 30 m depth, colonies are characterized by thin branches and the presence of a larger polyp area. Between 10 and 30 m depth, both ecophenotypes are present, suggesting that corallite morphology may act as another axis of photoacclimation with depth.
Neumann, Miguel G; Schmitt, Carla C; Ferreira, Giovana C; Corrêa, Ivo C
2006-06-01
To evaluate the efficiency of the photopolymerization of dental resins it is necessary to know to what extent the light emitted by the light curing units is absorbed by the photoinitiators. On the other hand, the efficiency of the absorbed photons to produce species that launch the polymerization process is also of paramount importance. Therefore, the previously determined PAE (photon absorption efficiency) is used in conjunction with the polymerization quantum yields for the photoinitiators, in order to be able to compare the total process on an equivalent basis. This parameter can be used to identify the best performance for the photochemical process with specific photoinitiators. The efficiency of LED (Ultrablue IS) and QTH (Optilux 401) lamps were tested comparing their performances with the photoinitiators camphorquinone (CQ); phenylpropanedione (PPD); monoacylphosphine oxide (Lucirin TPO); and bisacylphosphine oxide (Irgacure 819). The extent of photopolymerization per absorbed photon was determined from the polymerization quantum yields obtained by using the photoinitiators to polymerize methyl methacrylate, and afterwards combined with the previously determined PAEs. Although CQ presents a rather low polymerization quantum yield, its photopolymerization efficiency is practically the highest when irradiated with the Ultrablue LED. On the other hand, Lucirin is much more efficient than the other photoinitiators when irradiated with a QTH lamp, due to its high quantum yield and the overlap between its absorption spectrum and the output of the visible lamp light. Difference in photopolymerization efficiencies arise when combinations of photoinitiators are used, and when LED sources are used in preference to QTH. Mechanistic understanding is essential to optimal initiator formulation.
Development and characterization of couscous-like product using bulgur flour as by-product.
Yuksel, Ayse Nur; Öner, Mehmet Durdu; Bayram, Mustafa
2017-12-01
Couscous is produced traditionally by agglomeration of Triticum durum semolina with water. The aims of this study were: to produce couscous-like product by substitution of semolina with bulgur by-product (undersize bulgur); to find optimum quantity of bulgur flour and processing conditions. In order to determine the optimum processing parameters and recipes; 0, 25 and 50% of bulgur containing couscous-like samples were prepared. The color, yield, sensory properties, total phenol and flavonoid contents, bulk density, protein and ash content, texture properties were determined. Two different types of dryer e.g. packed bed and microwave were used. Optimum parameters were predicted as 50% of bulgur flour for packed bed (60 °C) and microwave (180 W) drying with 50% (w/w) of water according to yields, color (L*, a*, b*) values and sensory properties (color, odor, general appearance). For packed bed drying at 60 °C yields were 54.28 ± 3.78, 47.70 ± 1.73 and 52.57 ± 7.04% for 0, 25 and 50% bulgur flour containing samples, respectively. Lightness (L*) values of couscous-like samples were decreased with increasing the quantity of bulgur flour after both drying processes. Results of sensory analysis revealed that couscous-like bulgur were more preferable for consumers.
Intrinsic light yield and light loss coefficient of Bi4Ge3O12 single crystals
NASA Astrophysics Data System (ADS)
Yawai, Nattasuda; Chewpraditkul, Weerapong; Wanarak, Chalerm; Nikl, Martin; Ratanatongchai, Wichian
2014-10-01
In this paper we present the scintillation properties of polished Bi4Ge3O12 (BGO) crystals grown by the Bridgman method. The light yield (LY) and energy resolution were measured using XP5200B photomultiplier. At 662 keV γ-rays, high LY of 9680 photons/MeV and good energy resolution of 8.6% were obtained for a 5 × 5 × 1 mm3 BGO sample. The intrinsic LY and light loss coefficient were evaluated. The photofraction in pulse height spectrum of 662 keV γ-rays and the mass attenuation coefficient at 59.5 and 662 keV γ-rays were also determined and compared with the theoretical ones calculated using the WinXCom program.
New Carrollton Federal Building Lighting Retrofit Captures Cool Savings
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2017-01-01
Case study describes how the U.S. General Services Administration cut a $291,000 annual lighting electric bill to an estimated $53,500 by upgrading their fluorescent lighting to a new LED troffer lighting and controls system in the New Carrollton Federal Building in Lanham, Maryland. The lighting project yielded an 82% reduction in energy use and earned GSA two awards for exemplary performance from the Interior Lighting Campaign in 2016.
Photochemical cycloaddition reactions of cyanoacetylene and dicyanoacetylene
NASA Technical Reports Server (NTRS)
Ferris, J. P.; Guillemin, J. C.
1990-01-01
Photolysis of cyanoacetylene with 185- or 206-nm light yields 1,3,5-tricyanobenzene while 254-nm radiation yields a mixture of tetracyanocyclooctatetraenes, 1,2,4- and 1,3,5-tricyanobenzene. A polymer of cyanoacetylene is the major photoproduct. 1,3,5-Tricarbomethoxybenzene was the only photoproduct identified from the irradiation of methyl propiolate at 254 nm. Mono-, di-, and tricyanobenzenes are formed by irradiation of mixtures of acetylene and cyanoacetylene at 185, 206, and 254 nm along with trace amounts of cyclooctatetraenes. No photoadducts were detected on photolysis of mixtures of cyanoacetylene and CO or HCN. The tetracyanocyclooctatetraene structures were established by UV, MS, and NMR analyses. The 1H NMR of the product mixture exhibited a singlet at delta 7.028 consistent with either 1 or 2 and two singlets at delta 6.85 and 6.91 assigned to 3. Photolysis of mixtures of dicyanoacetylene and acetylene with either 185- or 206-nm light yielded 1,2-dicyanobenzene and (E,Z)-1-buten-3-yne-1,4-dicarbonitrile. These products were also obtained using 254-nm light along with a mixture of tetracyanocyclooctatetraenes. The same three singlets were observed in this product mixture as were observed in the tetracyanocyclooctatetraenes obtained from cyanoacetylene. From this observation it was concluded that the delta 7.02 signal is due to 2 and not 1. The photolysis of cyanoacetylene and dicyanoacetylene in the presence of ethylene with 185-nm light yields 1-cyanocylobutene and 1,2-dicyanocyclobutene, respectively. 2-Cyanobutadiene and 2,3-dicyanobutadiene are the photoproducts with 254-nm light. Reaction pathways are proposed to explain these findings.
Studies On Particle-Accompanied Fission Of 252Cf(sf) And 235U(nth,f)
NASA Astrophysics Data System (ADS)
Kopatch, Yu N.; Tishchenko, V.; Speransky, M.; Mutterer, M.; Gönnenwein, F.; Jesinger, P.; Gagarski, A. M.; von Kalben, J.; Kojouharov, I.; Lubkiewics, E.; Mezentseva, Z.; Nezvishevsky, V.; Petrov, G. A.; Schaffner, H.; Scharma, H.; Trzaska, W. H.; Wollersheim, H.-J.
2005-11-01
In recent multi-parameter studies of spontaneous and thermal neutron induced fission, 252Cf(sf) and 235U(nth,f) respectively, the energies and emission angles of fission fragments and light charged particles were measured. Fragments were detected by an energy and angle sensitive twin ionization chamber while the light charged particles were identified by a series of ΔE-Erest telescopes. Up to Be the light particle isotopes could be disentangled. In addition, in the 252Cf(sf) experiment, gammas emitted by the fragments were analyzed by a pair of large-volume segmented clover Ge detectors. Here the main interest is to study the γ-decay and the anisotropy of gammas emitted by fragments and light particles. On the other hand, the high count rates achieved in the U-experiment performed at the high flux reactor of the ILL, Grenoble, should allow to explore fragment-particle correlations in very rare events like quaternary fission. At the present stage of data evaluation, yields and energy distributions of light particles are available. For the present contribution in particular the yields of Be-isotopes for the two reactions studied are compared and discussed. For 252Cf(sf) these isotopic yields were hitherto not known.
Cocca, Leandro H Z; Oliveira, Taise M A; Gotardo, Fernando; Teles, Amanda V; Menegatti, Ricardo; Siqueira, Jonathas P; Mendonça, Cleber R; Bataus, Luiz A M; Ribeiro, Anderson O; Souza, Thalita F M; Souza, Guilherme R L; Gonçalves, Pablo J; De Boni, Leonardo
2017-10-01
Herein we present the excited state dynamic of zinc and aluminum tetracarboxy-phthalocyanines (ZnPc and AlPc) and its application in the photodynamic inactivation (PDI) of Bovine herpesvirus type 1 (BoHV-1) in vitro. The excited state dynamic provides valuable data to describe the excited state properties of potential optical limiters and/or photosensitizers (PSs), such as: the excited state cross-sections, fluorescence lifetime and triplet state quantum yield. The excited state characterization was performed using three different Z-scan techniques: Single Pulse, White Light Continuum and Pulse Train. Considering the photodynamic inactivation of BoHV-1, an initial viral suspension containing 10 5.75 TCID 50 /mL was incubated with the PSs for 1h at 37°C under agitation and protected from light. The samples were placed in microtiter plates and irradiated (180mW/cm 2 ). During irradiation, a sample was taken every 15min and the viability of the virus was evaluated. The results show that both phthalocyanines were efficient against viruses. However, a higher photodynamic efficiency was observed by ZnPc, which can be attributed to its higher triplet and singlet quantum yields. The results presented here are important for animal health (treatment of BoHV-1) and also open up a field of studies to use AlPc and ZnPc as potential agents against a wide range of microorganisms of veterinary interest. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Esfandi, F.; Saramad, S.; Rezaei Shahmirzadi, M.
2017-07-01
In this work, a new method is proposed for extracting some X-ray detection properties of ZnO nanowires electrodeposited on Anodized Aluminum Oxide (AAO) nanoporous template. The results show that the detection efficiency for 12μm thickness of zinc oxide nano scintillator at an energy of 9.8 keV, near the K-edge of ZnO (9.65 keV), is 24%. The X-rays that interact with AAO can also generate electrons that reach the nano scintillator. The scintillation events of these electrons are seen as a low energy tail in the spectrum. In addition, it is found that all the X-rays that are absorbed in 300 nm thickness of the gold layer on the top of the zinc oxide nanowires can participate in the scintillation process with an efficiency of 6%. Hence, the scintillation detection efficiency of the whole detector for 9.8 keV X-ray energy is 30%. The simulation results from Geant4 and the experimental detected photons per MeV energy deposition are also used to extract the light yield of the zinc oxide nano scintillator. The results show that the light yield of the zinc oxide nanowires deposited by the electrochemical method is approximately the same as for single crystal zinc oxide scintillator (9000). Much better spatial resolution of this nano scintillator in comparison to the bulk ones is an advantage which candidates this nano scintillator for medical imaging applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L.; Graham, M. E.; Li, G.
The photoreduction of CO{sub 2} into methane provides a carbon-neutral energy alternative to fossil fuels, but its feasibility requires improvements in the photo-efficiency of materials tailored to this reaction. We hypothesize that mixed phase TiO{sub 2} nano-materials with high interfacial densities are extremely active photocatalysts well suited to solar fuel production by reducing CO{sub 2} to methane and shifting to visible light response. Mixed phase TiO{sub 2} films were synthesized by direct current (DC) magnetron sputtering and characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM) and transmission electron microscope (TEM). Bundles of anatase-rutile nano-columns havingmore » high densities of two kinds of interfaces (those among the bundles and those between the columns) are fabricated. Films sputtered at a low deposition angle showed the highest methane yield, compared to TiO{sub 2} fabricated under other sputtering conditions and commercial standard Degussa P25 under UV irradiation. The yield of methane could be significantly increased ({approx} 12% CO{sub 2} conversion) by increasing the CO{sub 2} to water ratio and temperature (< 100 C) as a combined effect. These films also displayed a light response strongly shifted into the visible range. This is explained by the creation of non-stoichiometric titania films having unique features that we can potentially tailor to the solar energy applications.« less
Scintillation characterization of the pure Tl2LiGdBr6 single crystal
NASA Astrophysics Data System (ADS)
Jang, Jonghun; Rooh, Gul; Kim, Sunghwan; Kim, HongJoo
2018-05-01
A pure Tl2LiGdBr6 (TLGB) single crystal was developed. This scintillator was grown by the two-zone vertical Bridgman technique. Owing to the improvement in the crystal quality of TLGB, excellent scintillation properties were observed. The characterization of this scintillation material was carried out under X- and γ-ray excitations. In the X-ray excitation emission spectrum, the Tl+ ion emission band was observed between 390 and 550 nm and peaked at 435 nm. Under 662 keV γ-ray excitation, the energy resolution and light yield of the grown sample were measured to be 7.2% (FWHM) and 27,000 ± 2,700 ph/MeV, respectively. In addition, under the same γ-ray excitation, scintillation decay time was also measured at room temperature. Three decay time components were found to be 56 ns (24%), 105 ns (53%), and 1.5 µs (23%). Further improvements in scintillation properties are expected with the good quality crystal of this compound.
Performance of a Facility for Measuring Scintillator Non-Proportionality
NASA Astrophysics Data System (ADS)
Choong, Woon-Seng; Hull, Giulia; Moses, William W.; Vetter, Kai M.; Payne, Stephen A.; Cherepy, Nerine J.; Valentine, John D.
2008-06-01
We have constructed a second-generation Compton coincidence instrument, known as the Scintillator Light Yield Non-proportionality Characterization Instrument (SLYNCI), to characterize the electron response of scintillating materials. While the SLYNCI design includes more and higher efficiency HPGe detectors than the original apparatus (five 25%-30% detectors versus one 10% detector), the most novel feature is that no collimator is placed in front of the HPGe detectors. Because of these improvements, the SLYNCI data collection rate is over 30 times higher than the original instrument. In this paper, we present a validation study of this instrument, reporting on the hardware implementation, calibration, and performance. We discuss the analysis method and present measurements of the electron response of two different NaI:Tl samples. We also discuss the systematic errors of the measurement, especially those that are unique to SLYNCI. We find that the apparatus is very stable, but that careful attention must be paid to the energy calibration of the HPGe detectors.
Khashaba, Rania M.; Moussa, Mervet; Koch, Christopher; Jurgensen, Arthur R.; Missimer, David M.; Rutherford, Ronny L.; Chutkan, Norman B.; Borke, James L.
2011-01-01
Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs) were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control). Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5–12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications. PMID:21941551
Gürel, Ekrem; Pişkin, Mehmet; Altun, Selçuk; Odabaş, Zafer; Durmuş, Mahmut
2015-04-07
This work presents the synthesis and characterization of metal-free, zinc(II), and indium(III)acetate phthalocyanines substituted with 2,3,6-trimethylphenoxy groups at the peripheral and non-peripheral positions. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation and photodegradation under light irradiation) properties of these novel phthalocyanines and unsubstituted zinc(II) and indium(III)acetate phthalocyanines were investigated in dimethylformamide solution. The effects of the types of substituents and their positions and the variety of central metal ions on the phthalocyanine core on their spectroscopic, photophysical and photochemical properties were also determined. The studied 2,3,6-trimethylphenoxy substituted metal-free, zinc(II) and indium(III)acetate phthalocyanines especially indium(III)acetate derivatives exhibited appropriate photophysical and photochemical properties such as high singlet oxygen generation and these phthalocyanines can be potential Type II photosensitizers for photodynamic therapy in cancer applications.
Electroactive Polymer Nanoparticles Exhibiting Photothermal Properties
Cantu, Travis; Rodier, Bradley; Iszard, Zachary; Kilian, Alissa; Pattani, Varun; Walsh, Kyle; Weber, Katharina; Tunnell, James; Betancourt, Tania; Irvin, Jennifer
2016-01-01
A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated aromatic precursor to give the conjugated monomer. Polymer films can be prepared via electropolymerization of the monomer and characterized using cyclic voltammetry and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. Nanoparticles (NPs) are prepared via emulsion polymerization of the monomer using a two-surfactant system to yield an aqueous dispersion of the polymer NPs. The NPs are characterized using dynamic light scattering, electron microscopy, and UV-Vis-NIR-spectroscopy. Cytocompatibility of NPs is investigated using the cell viability assay. Finally, the NP suspensions are irradiated with a NIR laser to determine their effectiveness as potential materials for photothermal therapy (PTT). PMID:26780244
An Overview on Measurement-While-Drilling Technique and its Scope in Excavation Industry
NASA Astrophysics Data System (ADS)
Rai, P.; Schunesson, H.; Lindqvist, P.-A.; Kumar, U.
2015-04-01
Measurement-while-drilling (MWD) aims at collecting accurate, speedy and high resolution information from the production blast hole drills with a target of characterization of highly variable rock masses encountered in sub-surface excavations. The essence of the technique rests on combining the physical drill variables in a manner to yield a fairly accurate description of the sub-surface rock mass much ahead of following downstream operations. In this light, the current paper presents an overview of the MWD by explaining the technique and its set-up, the existing drill-rock mass relationships and numerous on-going researches highlighting the real-time applications. Although the paper acknowledges the importance of concepts of specific energy, rock quality index and a couple of other indices and techniques for rock mass characterization, it must be distinctly borne in mind that the technique of MWD is highly site-specific, which entails derivation of site-specific calibration with utmost care.
Photodegradation of clothianidin under simulated California rice field conditions.
Mulligan, Rebecca A; Redman, Zachary C; Keener, Megan R; Ball, David B; Tjeerdema, Ronald S
2016-07-01
Photodegradation can be a major route of dissipation for pesticides applied to shallow rice field water, leading to diminished persistence and reducing the risk of offsite transport. The objective of this study was to characterize the aqueous-phase photodegradation of clothianidin under simulated California rice field conditions. Photodegradation of clothianidin was characterized in deionized, Sacramento River and rice field water samples. Pseudo-first-order rate constants and DT50 values in rice field water (mean k = 0.0158 min(-1) ; mean DT50 = 18.0 equivalent days) were significantly slower than in deionized water (k = 0.0167 min(-1) ; DT50 = 14.7 equivalent days) and river water (k = 0.0146 min(-1) ; DT50 = 16.6 equivalent days) samples. Quantum yield ϕc values demonstrate that approximately 1 and 0.5% of the light energy absorbed results in photochemical transformation in pure and field water respectively. Concentrations of the photodegradation product thiazolymethylurea in aqueous photolysis samples were determined using liquid chromatography-tandem mass spectrometry and accounted for ≤17% in deionized water and ≤8% in natural water. Photodegradation rates of clothianidin in flooded rice fields will be controlled by turbidity and light attenuation. Aqueous-phase photodegradation may reduce the risk of offsite transport of clothianidin from flooded rice fields (via drainage) and mitigate exposure to non-target organisms. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Polypeptide Grafted Hyaluronan: Synthesis and Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaojun; Messman, Jamie M; Mays, Jimmy
2010-01-01
Poly(L-leucine) grafted hyaluronan (HA-g-PLeu) has been synthesized via a Michael addition reaction between primary amine terminated poly(L-leucine) and acrylate-functionalized HA (TBAHA-acrylate). The precursor hyaluronan was first functionalized with acrylate groups by reaction with acryloyl chloride in the presence of triethylamine in N,N-dimethylformamide. 1H NMR analysis of the resulting product indicated that an increase in the concentration of acryloylchoride with respect to hydroxyl groups on HA has only a moderate effect on functionalization efficiency, f. A precise control of stoichiometry was not achieved, which could be attributed to partial solubility of intermolecular aggregates and the hygroscopic nature of HA. Michael additionmore » at high [PLeu- NH2]/[acrylate]TBAHA ratios gave a molar grafting ratio of only 0.20 with respect to the repeat unit of HA, indicating grafting limitation due to insolubility of the grafted HA-g-PLeu. Soluble HA-g-PLeu graft copolymers were obtained for low grafting ratios (<0.039) with <8.6% by mass of PLeu and were characterized thoroughly using light scattering, 1H NMR, FT-IR, and AFM techniques. Light scattering experiments showed a strong hydrophobic interaction between PLeu chains, resulting in aggregates with segregated nongrafted HA segments. This yields local networks of aggregates, as demonstrated by atomic force microscopy. Circular dichroism spectroscopy showed a -sheet conformation for aggregates of poly(L-leucine).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Chris C.; Febbraro, Michael; Massey, Thomas N.
Organic scintillation detectors have shown promise as neutron detectors for characterizing special nuclear materials in various arms-control and homeland security applications. Recent advances have yielded a new plastic scintillator - EJ299-33 - with pulse-shape-discrimination (PSD) capability. Plastic scintillators would have a much expanded range of deployment relative to liquids and crystals. Here in this paper, we present a full characterization of pulse height response to fission-energy neutrons for an EJ299-33 detector with 7.62-by-7.62-cm cylindrical active volume, and compare with an EJ309 liquid scintillator in the same assembly. Scintillation light output relations, energy resolutions, and response matrices are presented for bothmore » detectors. A Continuous spectrum neutron source, obtained via the bombardment of 27Al with 7.44-MeV deuterons at the Edwards Accelerator Facility at Ohio University, was used for the measurement. A new procedure for evaluating and comparing PSD performance is presented which accounts for the effect of the light output relation on the ability to detect low energy neutrons. The EJ299-33 is shown to have considerable deficit in matrix condition, and in PSD figure of merit when compared to EJ309, especially when neutron energy is taken into account. Furthermore the EJ299 is likely to bring a modest PSD capability into a array of held applications that are not accessible to liquids or crystals.« less
Luminescence and light yield of (Gd2Y)(Ga3Al2)O12:Pr3+ single crystal scintillators
NASA Astrophysics Data System (ADS)
Lertloypanyachai, Prapon; Pathumrangsan, Nichakorn; Sreebunpeng, Krittiya; Pattanaboonmee, Nakarin; Chewpraditkul, Weerapong; Yoshikawa, Akira; Kamada, Kei; Nikl, Martin
2017-06-01
Praseodymium-doped (Gd2Y)(Ga3Al2)O12 (GYGAG: Pr) single crystals are grown by the micro-pulling down method with different Pr concentrations. The energy transfer process between Pr3+ and Gd3+ is investigated by photoluminescence excitation (PLE) and emission (PL) spectra measurements. Photoelectron yield measurements are carried out using photomultiplier. At 662 keV γ-rays, photoelectron yield of 2520 phe/MeV obtained for the GYGAG: Pr (0.01%) sample is larger than that of 1810 phe/MeV obtained for BGO crystal. Light yield degradation for the GYGAG: Pr scintillators is presumably due to the energy transfer from 5d state of Pr3+ to 4f state of Gd3+ together with the concentration quenching in the Gd3+-sublattice.
Scintillation properties of selected oxide monocrystals activated with Ce and Pr
NASA Astrophysics Data System (ADS)
Wojtowicz, Andrzej J.; Drozdowski, Winicjusz; Wisniewski, Dariusz; Lefaucheur, Jean-Luc; Galazka, Zbigniew; Gou, Zhenhui; Lukasiewicz, Tadeusz; Kisielewski, Jaroslaw
2006-01-01
In the last 10-15 years there has been a significant effort toward development of new, more efficient and faster materials for detection of ionizing radiation. A growing demand for better scintillator crystals for detection of 511 keV gamma particles has been due mostly to recent advances in modern imaging systems employing positron emitting radionuclides for medical diagnostics in neurology, oncology and cardiology. While older imaging systems were almost exclusively based on BGO and NaI:Tl crystals the new systems, e.g., ECAT Accel, developed by Siemens/CTI, are based on recently discovered and developed LSO (Lu 2SiO 5:Ce, Ce-activated lutetium oxyorthosilicate) crystals. Interestingly, despite very good properties of LSO, there still is a strong drive toward development of new scintillator crystals that would show even better performance and characteristics. In this presentation we shall review spectroscopic and scintillator characterization of new complex oxide crystals, namely LSO, LYSO, YAG, LuAP (LuAlO 3, lutetium aluminate perovskite) and LuYAP activated with Ce and Pr. The LSO:Ce crystals have been grown by CTI Inc (USA), LYSO:Ce, LuAP:Ce and LuYAP:Ce crystals have been grown by Photonic Materials Ltd., Scotland (PML is the only company providing large LuAP:Ce crystals on a commercial scale), while YAG:Pr and LuAP:Pr crystals have been grown by Institute of Electronic Materials Technology (Poland). All these crystals have been characterized at Institute of Physics, N. Copernicus University (Poland). We will review and compare results of measurements of radioluminescence, VUV spectroscopy, scintillation light yields, scintillation time profiles and low temperature thermoluminescence performed on these crystals. We will demonstrate that all experiments clearly indicate that there is a significant room for improvement of LuAP, LuYAP and YAG. While both Ce-activated LSO and LYSO perform very well, we also note that LuYAP:Ce, LuAP:Ce and YAG:Pr offer some advantages and, after a likely improvement of some parameters, may also present a viable and desired alternative in applications that require high counting rates or better time resolution. Unfortunately, LuAP:Pr, although the fastest among all the materials studied, may be seriously limited in its achievable light yield by inherent physical processes that are responsible for nonradiative quenching of scintillation light in this material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walton, Ian M.; Cox, Jordan M.; Benson, Cassidy A.
2016-01-01
Photo-responsive metal–organic frameworks (MOFs) are one example of light controlled smart materials for use in advanced sensors, data storage, actuators and molecular switches. Herein we show the design, synthesis and characterization of a photo-responsive linker that is subsequently reacted to yield MOF single crystals. The photo-responsive properties of the resulting UBMOF-2 arise from the photo-induced cyclization of the diarylethene moiety designed into the linker. Computational modeling to assess the relative energies of linker atropisomers reveals a large energetic barrier preventing facile interconversion between key species. The role of this barrier on the observed photo-induced fatigue provides useful insight into themore » development of advanced photo-responsive nanoporous materials.« less
[Light competition and productivity of agroforestry system in loess area of Weibei in Shaanxi].
Peng, Xiao-bang; Cai, Jing; Jiang, Zai-min; Zhang, Yuan-ying; Zhang, Shuo-xin
2008-11-01
Agroforestry is the most effective way for the restoration of disturbed land on Loess Plateau and the development of poorly local economy. Taking the tree-based intercropping systems of walnut or plum with soybean or pepper in the loess area of Weibei as test objects, the photosynthesis, growth, and yield of soybean (Qindou 8) and pepper (Shanjiao 981) in the systems were studied. The results showed that the photosynthetic active radiation (PAR), net photosynthetic rate (Pn), growth, and yield of individual soybean or pepper plants were significantly decreased, with the effects increased with decreasing distance from tree rows. Leaf water potential was not significantly or poorly correlated with the Pn, growth, and yield of the two crops. However, there were significant positive correlations between the soil moisture content in 10-20 cm layer and the biomass and yield of soybean, and the above-ground biomass of pepper. PAR was highly correlated with the yield of both crops, which indicated that light competition was one of the key factors leading to the decrease of crop yield.
Effects and Mechanism of Blue Light on Monascus in Liquid Fermentation.
Zhang, Xiaowei; Liu, Wenqing; Chen, Xiying; Cai, Junhui; Wang, Changlu; He, Weiwei
2017-03-01
The effect of light on Monascus and the underlying mechanism have received a great deal of interest for the industrial application of Monascus pigments. In this study, we have examined the effects of blue light on the culture morphology, mycelium growth, pigments, and citrinin yield of Monascus in liquid-state and oscillation fermentation, and explored the mechanism at a physiological level. It was found that blue light affected the colony morphology, the composition (chitin content), and permeability of the Monascus mycelium cell wall in static liquid culture, which indicates blue light benefits pigments secreting from aerial mycelium to culture medium. In liquid oscillation fermentation, the yields of Monascus pigments in fermentation broth (darkness 1741 U/g, blue light 2206 U/g) and mycelium (darkness 2442 U/g, blue light 1900 U/g) cultured under blue light and darkness are different. The total pigments produced per gram of Monascus mycelium under blue light was also higher (4663 U/g) than that in darkness (4352 U/g). However, the production of citrinin (88 μg/g) under blue light was evidently lower than that in darkness (150 μg/g). According to the degradation of citrinin caused by blue light and hydrogen peroxide, it can be concluded that blue light could degrade citrinin and inhibit the catalase activity of Monascus mycelium, subsequently suppressing the decomposition of hydrogen peroxide, which is the active species that degrades citrinin.
NASA Astrophysics Data System (ADS)
Nelson, M.; Dempster, W. F.; Silverstone, S.; Alling, A.; Allen, J. P.; van Thillo, M.
Two crop growth experiments in the soil-based closed ecological facility, Laboratory Biosphere, were conducted from 2003 to 2004 with candidate space life support crops. Apogee wheat (Utah State University variety) was grown, planted at two densities, 400 and 800 seeds m -2. The lighting regime for the wheat crop was 16 h of light - 8 h dark at a total light intensity of around 840 μmol m -2 s -1 and 48.4 mol m -2 d -1 over 84 days. Average biomass was 1395 g m -2, 16.0 g m -2 d -1 and average seed production was 689 g m -2 and 7.9 g m -2 d -1. The less densely planted side was more productive than the denser planting, with 1634 g m -2 and 18.8 g m -2 d -1 of biomass vs. 1156 g m -2 and 13.3 g m -2 d -1; and a seed harvest of 812.3 g m -2 and 9.3 g m -2 d -1 vs. 566.5 g m -2 and 6.5 g m -2 d -1. Harvest index was 0.49 for the wheat crop. The experiment with sweet potato used TU-82-155 a compact variety developed at Tuskegee University. Light during the sweet potato experiment, on a 18 h on/6 h dark cycle, totaled 5568 total moles of light per square meter in 126 days for the sweet potatoes, or an average of 44.2 mol m -2 d -1. Temperature regime was 28 ± 3 °C day/22 ± 4 °C night. Sweet potato tuber yield was 39.7 kg wet weight, or an average of 7.4 kg m -2, and 7.7 kg dry weight of tubers since dry weight was about 18.6% wet weight. Average per day production was 58.7 g m -2 d -1 wet weight and 11.3 g m -2 d -1. For the wheat, average light efficiency was 0.34 g biomass per mole, and 0.17 g seed per mole. The best area of wheat had an efficiency of light utilization of 0.51 g biomass per mole and 0.22 g seed per mole. For the sweet potato crop, light efficiency per tuber wet weight was 1.33 g mol -1 and 0.34 g dry weight of tuber per mole of light. The best area of tuber production had 1.77 g mol -1 wet weight and 0.34 g mol -1 of light dry weight. The Laboratory Biosphere experiment's light efficiency was somewhat higher than the USU field results but somewhat below greenhouse trials at comparable light levels, and the best portion of the crop at 0.22 g mol -1 was in-between those values. Sweet potato production was overall close to 50% higher than trials using hydroponic methods with TU-82-155 at NASA JSC. Compared to projected yields for the Mars on Earth life support system, these wheat yields were about 15% higher, and the sweet potato yields averaged over 80% higher.
NASA Astrophysics Data System (ADS)
Nelson, M.; Dempster, W. F.; Silverstone, S.; Alling, A.; Allen, J. P.; van Thillo, M.
Two crop growth experiments in the soil-based closed ecological facity, Laboratory Biosphere, were conducted from 2003-2004 with candidate space life support crops. Apogee wheat (Utah State University variety) was grown, planted in 2 densities, 400 and 800 seeds m-2. The lighting regime for the wheat crop was 16 hours of light -- 8 hours dark at a total light intensity of around 840 mol m2 sec-1 and 48.4 mol m-2 d-1 over 84 days Average biomass was 1395 g m-2, 16.0 g m-2 day-1 and average seed production was 689 g m-2 and 7.9 g m2 day-1. The less densely planted side was more productive than the denser planting, with 1634 g m-2 and 18.8g m-2 day-1 of biomass vs. 1156 g m-2 and 13.3 g m-2 day-1; and a seed harvest of 812.3 g m-2 and 9.3 g m-2 day-1 vs. 566.5 g m-2 and 6.5 g m-2 day-1 Harvest index was 0.49 for the wheat crop. The experiment with sweet potato used TU-82-155, a compact variety developed at Tuskegee University. Light during the sweet potato experiment, on a 16 hour on/8 hours dark cycle, totalled 5568 total moles of light in 126 days for the sweet potatoes, or an average of 44.2 moles m-2 day-1. Temperature regime was 28 deg +/- 3 deg C day /22 deg +/- 4 deg C night. Sweet potato tuber yield was 39.7 kg wet weight, or an average of 7.4 kg m-2 and 7.7 kg dry weight of tubers since dry weight was about 18.6% wet weight.^Average per day production was 58.7 g m-2 day-1 wet weight and 11.3 g m-2 day-1. For the wheat, average light efficiency was 0.34 grams biomass per mole, and 0.17 grams seed per mole. The best area of wheat had an efficiency of light utilization of 0.51 g biomass per mole and 0.22 g seed per mole. For the sweet potato crop, light efficiency per tuber wet weight was 7.13 g/mole and 1.38 g dry weight of tuber per mole of light. The best area of tuber production had 9.49 g/mole wet weight and 1.85 g/mole of light dry weight. Production from the wheat was The Laboratory Biosphere experiment's light efficiency was somewhat higher than the USU field results but somewhat below greenhouse trials at comparable light levels, and the best portion of the crop at 0.22g/mole was inbetween those values. Sweet potato production was overall close to 50% higher than trials using hydroponic methods with TU-82-155 at NASA JSC. Compared to projected yields for the Mars on Earth life support system, these wheat yields were about 15% higher, and the sweet potato yields averaged over 80% higher
Enhanced photocatalytic CO2 reduction to CH4 over separated dual co-catalysts Au and RuO2
NASA Astrophysics Data System (ADS)
Dong, Chunyang; Hu, Songchang; Xing, Mingyang; Zhang, Jinlong
2018-04-01
A spatially separated, dual co-catalyst photocatalytic system was constructed by the stepwise introduction of RuO2 and Au nanoparticles (NPs) at the internal and external surfaces of a three dimensional, hierarchically ordered TiO2-SiO2 (HTSO) framework (the final photocatalyst was denoted as Au/HRTSO). Characterization by HR-TEM, EDS-mapping, XRD and XPS confirmed the existence and spatially separated locations of Au and RuO2. In CO2 photocatalytic reduction (CO2PR), Au/HRTSO (0.8%) shows the optimal performance in both the activity and selectivity towards CH4; the CH4 yield is almost twice that of the singular Au/HTSO or HRTSO (0.8%, weight percentage of RuO2) counterparts. Generally, Au NPs at the external surface act as electron trapping agents and RuO2 NPs at the inner surface act as hole collectors. This advanced spatial configuration could promote charge separation and transfer efficiency, leading to enhanced CO2PR performance in both the yield and selectivity toward CH4 under simulated solar light irradiation.
Richter, Johannes M.; Abdi-Jalebi, Mojtaba; Sadhanala, Aditya; Tabachnyk, Maxim; Rivett, Jasmine P.H.; Pazos-Outón, Luis M.; Gödel, Karl C.; Price, Michael; Deschler, Felix; Friend, Richard H.
2016-01-01
In lead halide perovskite solar cells, there is at least one recycling event of electron–hole pair to photon to electron–hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells. PMID:28008917
Richter, Johannes M; Abdi-Jalebi, Mojtaba; Sadhanala, Aditya; Tabachnyk, Maxim; Rivett, Jasmine P H; Pazos-Outón, Luis M; Gödel, Karl C; Price, Michael; Deschler, Felix; Friend, Richard H
2016-12-23
In lead halide perovskite solar cells, there is at least one recycling event of electron-hole pair to photon to electron-hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells.
Terashima, Ichiro; Fujita, Takashi; Inoue, Takeshi; Chow, Wah Soon; Oguchi, Riichi
2009-04-01
The literature and our present examinations indicate that the intra-leaf light absorption profile is in most cases steeper than the photosynthetic capacity profile. In strong white light, therefore, the quantum yield of photosynthesis would be lower in the upper chloroplasts, located near the illuminated surface, than that in the lower chloroplasts. Because green light can penetrate further into the leaf than red or blue light, in strong white light, any additional green light absorbed by the lower chloroplasts would increase leaf photosynthesis to a greater extent than would additional red or blue light. Based on the assessment of effects of the additional monochromatic light on leaf photosynthesis, we developed the differential quantum yield method that quantifies efficiency of any monochromatic light in white light. Application of this method to sunflower leaves clearly showed that, in moderate to strong white light, green light drove photosynthesis more effectively than red light. The green leaf should have a considerable volume of chloroplasts to accommodate the inefficient carboxylation enzyme, Rubisco, and deliver appropriate light to all the chloroplasts. By using chlorophylls that absorb green light weakly, modifying mesophyll structure and adjusting the Rubisco/chlorophyll ratio, the leaf appears to satisfy two somewhat conflicting requirements: to increase the absorptance of photosynthetically active radiation, and to drive photosynthesis efficiently in all the chloroplasts. We also discuss some serious problems that are caused by neglecting these intra-leaf profiles when estimating whole leaf electron transport rates and assessing photoinhibition by fluorescence techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, John; Mishra, Ashok Kumar
2016-01-15
It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.
Light Charged and CP-odd Higgses in MSSM-like Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dermisek, Radovan
2008-11-23
We study the Higgs sector of supersymmetric models containing two Higgs doublets with a light MSSM-like CP odd Higgs, m{sub A} < or approx. 10 GeV, and tan{beta} < or approx. 2.5. In this scenario all Higgses resulting from two Higgs doublets: light and heavy CP even Higgses, h and H, the CP odd Higgs, A, and the charged Higgs, H{sup {+-}}, could have been produced at LEP or the Tevatron, but would have escaped detection because they decay in modes that have not been searched for or the experiments are not sensitive to. Especially H{yields}ZA and H{sup {+-}}{yields}W{sup {+-}}*Amore » with A{yields}cc-bar, {tau}{sup +}{tau}{sup -} present an opportunity to discover some of the Higgses at LEP, the Tevatron and also at B factories. In addition, the 2.8{sigma} excess of the branching ratio W{yields}{tau}v with respect to the other leptons measured at LEP correlates well with the existence of the charged Higgs with properties typical for this scenario. Dominant {tau}- and c-rich decay products of all Higgses require modified strategies for their discovery at the LHC.« less
DANSS Neutrino Spectrometer: Detector Calibration, Response Stability, and Light Yield
NASA Astrophysics Data System (ADS)
Alekseev, I. G.; Belov, V. V.; Danilov, M. V.; Zhitnikov, I. V.; Kobyakin, A. S.; Kuznetsov, A. S.; Machikhiliyan, I. V.; Medvedev, D. V.; Rusinov, V. Yu.; Svirida, D. N.; Skrobova, N. A.; Starostin, A. S.; Tarkovsky, E. I.; Fomina, M. V.; Shevchik, E. A.; Shirchenko, M. V.
2018-05-01
Apart from monitoring nuclear reactor parameters, the DANSS neutrino experiment is aimed at searching for sterile neutrinos through a detailed analysis of the ratio of reactor antineutrino spectra measured at different distances from the reactor core. The light collection system of the detector is dual, comprising both the vacuum photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs). In this paper, the techniques developed to calibrate the responses of these photodetectors are discussed in detail. The long-term stability of the key parameters of the detector and their dependences on the ambient temperature are investigated. The results of detector light yield measurements, performed independently with PMTs and SiPMs are reported.
Optical Properties of Black and Brown Carbon Aerosols from Laboratory Combustion of Wildland Fuels
NASA Astrophysics Data System (ADS)
Beres, N. D.; Molzan, J.
2015-12-01
Aerosol light absorption in the solar spectral region (300 nm - 2300 nm) of the atmosphere is key for the direct aerosol radiative forcing, which is determined by aerosol single scattering albedo (SSA), asymmetry parameter, and by the albedo of the underlying surface. SSA is of key importance for the sign and quantity of aerosol direct radiative forcing; that is, does the aerosol make the earth look darker (heating) or whiter (cooling)? In addition, these optical properties are needed for satellite retrievals of aerosol optical depth and properties. During wildland fires, aerosol optical absorption is largely determined by black carbon (BC) and brown carbon (BrC) emissions. BC is strongly absorbing throughout the solar spectrum, while BrC absorption strongly increases toward shorter wavelength and can be neglected in the red and infrared. Optical properties of BrC emitted from wildland fires are poorly understood and need to be studied as function of fuel type and moisture content and combustion conditions. While much more is known about BC optical properties, knowledge for the ultraviolet (UV) spectral region is still lacking and critically needed for satellite remote sensing (e.g., TOMS, OMI) and for modeling of tropospheric photochemistry. Here, a project to better characterize biomass burning aerosol optical properties is described. It utilizes a laboratory biomass combustion chamber to generate aerosols through combustion of different wildland fuels of global and regional importance. Combustion aerosol optics is characterized with an integrating nephelometer to measure aerosol light scattering and a photoacoustic instrument to measure aerosol light absorption. These measurements will yield optical properties that are needed to improve qualitative and quantitative understanding of aerosol radiative forcing and satellite retrievals for absorbing carbonaceous aerosols from combustion of wildland fuels.
Mohr, Remus; Voss, Björn; Schliep, Martin; Kurz, Thorsten; Maldener, Iris; Adams, David G; Larkum, Anthony D W; Chen, Min; Hess, Wolfgang R
2010-11-01
Chlorophyll d is a photosynthetic pigment that, based on chemical analyses, has only recently been recognized to be widespread in oceanic and lacustrine environments. However, the diversity of organisms harbouring this pigment is not known. Until now, the unicellular cyanobacterium Acaryochloris marina is the only characterized organism that uses chlorophyll d as a major photopigment. In this study we describe a new cyanobacterium possessing a high amount of chlorophyll d, which was isolated from waters around Heron Island, Great Barrier Reef (23° 26' 31.2″ S, 151° 54' 50.4″ E). The 16S ribosomal RNA is 2% divergent from the two previously described isolates of A. marina, which were isolated from waters around the Palau islands (Pacific Ocean) and the Salton Sea lake (California), suggesting that it belongs to a different clade within the genus Acaryochloris. An overview sequence analysis of its genome based on Illumina technology yielded 871 contigs with an accumulated length of 8 371 965 nt. Their analysis revealed typical features associated with Acaryochloris, such as an extended gene family for chlorophyll-binding proteins. However, compared with A. marina MBIC11017, distinct genetic, morphological and physiological differences were observed. Light saturation is reached at lower light intensities, Chl d/a ratios are less variable with light intensity and the phycobiliprotein phycocyanin is lacking, suggesting that cyanobacteria of the genus Acaryochloris occur in distinct ecotypes. These data characterize Acaryochloris as a niche-adapted cyanobacterium and show that more rigorous attempts are worthwhile to isolate, cultivate and analyse chlorophyll d-containing cyanobacteria for understanding the ecophysiology of these organisms.
Robson, Paul R H; Farrar, Kerrie; Gay, Alan P; Jensen, Elaine F; Clifton-Brown, John C; Donnison, Iain S
2013-05-01
Energy crops can provide a sustainable source of power and fuels, and mitigate the negative effects of CO2 emissions associated with fossil fuel use. Miscanthus is a perennial C4 energy crop capable of producing large biomass yields whilst requiring low levels of input. Miscanthus is largely unimproved and therefore there could be significant opportunities to increase yield. Further increases in yield will improve the economics, energy balance, and carbon mitigation of the crop, as well as reducing land-take. One strategy to increase yield in Miscanthus is to maximize the light captured through an extension of canopy duration. In this study, canopy duration was compared among a diverse collection of 244 Miscanthus genotypes. Canopy duration was determined by calculating the number of days between canopy establishment and senescence. Yield was positively correlated with canopy duration. Earlier establishment and later senescence were also both separately correlated with higher yield. However, although genotypes with short canopy durations were low yielding, not all genotypes with long canopy durations were high yielding. Differences of yield between genotypes with long canopy durations were associated with variation in stem and leaf traits. Different methodologies to assess canopy duration traits were investigated, including visual assessment, image analysis, light interception, and different trait thresholds. The highest correlation coefficients were associated with later assessments of traits and the use of quantum sensors for canopy establishment. A model for trait optimization to enable yield improvement in Miscanthus and other bioenergy crops is discussed.
Robson, Paul R.H.; Farrar, Kerrie; Gay, Alan P.; Jensen, Elaine F.; Clifton-Brown, John C.; Donnison, Iain S.
2013-01-01
Energy crops can provide a sustainable source of power and fuels, and mitigate the negative effects of CO2 emissions associated with fossil fuel use. Miscanthus is a perennial C4 energy crop capable of producing large biomass yields whilst requiring low levels of input. Miscanthus is largely unimproved and therefore there could be significant opportunities to increase yield. Further increases in yield will improve the economics, energy balance, and carbon mitigation of the crop, as well as reducing land-take. One strategy to increase yield in Miscanthus is to maximize the light captured through an extension of canopy duration. In this study, canopy duration was compared among a diverse collection of 244 Miscanthus genotypes. Canopy duration was determined by calculating the number of days between canopy establishment and senescence. Yield was positively correlated with canopy duration. Earlier establishment and later senescence were also both separately correlated with higher yield. However, although genotypes with short canopy durations were low yielding, not all genotypes with long canopy durations were high yielding. Differences of yield between genotypes with long canopy durations were associated with variation in stem and leaf traits. Different methodologies to assess canopy duration traits were investigated, including visual assessment, image analysis, light interception, and different trait thresholds. The highest correlation coefficients were associated with later assessments of traits and the use of quantum sensors for canopy establishment. A model for trait optimization to enable yield improvement in Miscanthus and other bioenergy crops is discussed. PMID:23599277
Ben, Gui-Ying; Osmond, C. Barry; Sharkey, Thomas D.
1987-01-01
We have examined the effects of mild, chronic water stress and acute water stress on two water stress sensitive plants, Xanthium strumarium and Helianthus annuus. Using a combination of the leaf disc O2 electrode to measure the light responses of photosynthesis and 77 K fluorescence to monitor damage to the primary photochemistry, we have found the following: (a) The CO2 saturated rate of photosynthesis at high light is the most water stress sensitive parameter measured. (b) The apparent quantum yield (moles O2 per mole photons) was slightly, if at all, affected by mild water stress (>−1.5 megapascals). (c) Severe water stress (<−1.5 megapascals) reduced the quantum yield of photosynthesis regardless of whether the stress was applied in sun or shade. The light independent reduction of quantum yield was not associated with a reduction in 77 K fluorescence (Fv/Fm) indicating that the quantum yield reduction was not the result of damage to primary photochemistry. (d) The diel fluctuation in 77 K fluorescence seen in sun-exposed control leaves was greatly exaggerated in water stressed leaves because of enhanced decline in 77 K fluorescence in the morning. The rate of recovery was similar in both control and water stressed leaves. Shaded leaves showed no change in 77 K fluorescence regardless of whether water stress was imposed or not. (e) The water stress sensitive plants used in these experiments did not recover from acute water stress severe enough to reduce the quantum yield or chronic water stress which lasted long enough that light dependent damage to primary photochemistry occurred. PMID:16665465
Ben, G Y; Osmond, C B; Sharkey, T D
1987-06-01
We have examined the effects of mild, chronic water stress and acute water stress on two water stress sensitive plants, Xanthium strumarium and Helianthus annuus. Using a combination of the leaf disc O(2) electrode to measure the light responses of photosynthesis and 77 K fluorescence to monitor damage to the primary photochemistry, we have found the following: (a) The CO(2) saturated rate of photosynthesis at high light is the most water stress sensitive parameter measured. (b) The apparent quantum yield (moles O(2) per mole photons) was slightly, if at all, affected by mild water stress (>-1.5 megapascals). (c) Severe water stress (<-1.5 megapascals) reduced the quantum yield of photosynthesis regardless of whether the stress was applied in sun or shade. The light independent reduction of quantum yield was not associated with a reduction in 77 K fluorescence (F(v)/F(m)) indicating that the quantum yield reduction was not the result of damage to primary photochemistry. (d) The diel fluctuation in 77 K fluorescence seen in sun-exposed control leaves was greatly exaggerated in water stressed leaves because of enhanced decline in 77 K fluorescence in the morning. The rate of recovery was similar in both control and water stressed leaves. Shaded leaves showed no change in 77 K fluorescence regardless of whether water stress was imposed or not. (e) The water stress sensitive plants used in these experiments did not recover from acute water stress severe enough to reduce the quantum yield or chronic water stress which lasted long enough that light dependent damage to primary photochemistry occurred.
2015 U.S. Lighting Market Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The latest version of the U.S. Lighting Market Characterization estimates the installed stock, energy use, and lumen production of all general-illumination lighting products operating in the U.S. in 2015. Latest update in an ongoing series of reports.
NASA Technical Reports Server (NTRS)
Scattergood, T. W.; Mckay, C. P.; Borucki, W. J.; Giver, L. P.; Vanghyseghem, H.; Parris, J. E.; Miller, S. L.
1991-01-01
In order to study the production of organic compounds in plasmas (and shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP) and ultraviolet light. The yields of HCN and simple hydrocarbons were measured and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the yields of C2H6 and other hydrocarbons were much higher than those predicted by the model. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light, but not to the plasma or shock waves. The results of these experiments demonstrate that, in addition to the well-known efficient synthesis of organic compounds in plasmas, the yields of saturated species, e.g., ethane, may be higher than predicted by theory and that LIP provide a convenient and clean way of simulating planetary lightning and impact plasmas in the laboratory.
Increased phytochrome B alleviates density effects on tuber yield of field potato crops.
Boccalandro, Hernán E; Ploschuk, Edmundo L; Yanovsky, Marcelo J; Sánchez, Rodolfo A; Gatz, Christiane; Casal, Jorge J
2003-12-01
The possibility that reduced photomorphogenic responses could increase field crop yield has been suggested often, but experimental support is still lacking. Here, we report that ectopic expression of the Arabidopsis PHYB (phytochrome B) gene, a photoreceptor involved in detecting red to far-red light ratio associated with plant density, can increase tuber yield in field-grown transgenic potato (Solanum tuberosum) crops. Surprisingly, this effect was larger at very high densities, despite the intense reduction in the red to far-red light ratios and the concomitant narrowed differences in active phytochrome B levels between wild type and transgenics at these densities. Increased PHYB expression not only altered the ability of plants to respond to light signals, but they also modified the light environment itself. This combination resulted in larger effects of enhanced PHYB expression on tuber number and crop photosynthesis at high planting densities. The PHYB transgenics showed higher maximum photosynthesis in leaves of all strata of the canopy, and this effect was largely due to increased leaf stomatal conductance. We propose that enhanced PHYB expression could be used in breeding programs to shift optimum planting densities to higher levels.
The cytometric future: it ain't necessarily flow!
Shapiro, Howard M
2011-01-01
Initial approaches to cytometry for classifying and characterizing cells were based on microscopy; it was necessary to collect relatively high-resolution images of cells because only a few specific reagents usable for cell identification were available. Although flow cytometry, now the dominant cytometric technology, typically utilizes lenses similar to microscope lenses for light collection, improved, more quantitative reagents allow the necessary information to be acquired in the form of whole-cell measurements of the intensities of light transmission, scattering, and/or fluorescence.Much of the cost and complexity of both automated microscopes and flow cytometers arises from the necessity for them to measure one cell at a time. Recent developments in digital camera technology now offer an alternative in which one or more low-magnification, low-resolution images are made of a wide field containing many cells, using inexpensive light-emitting diodes (LEDs) for illumination. Minimalist widefield imaging cytometers can provide a smaller, less complex, and substantially less expensive alternative to flow cytometry, critical in systems intended for in resource-poor areas. Minimalism is, likewise, a good philosophy in developing instrumentation and methodology for both clinical and large-scale research use; it simplifies quality assurance and compliance with regulatory requirements, as well as reduces capital outlays, material costs, and personnel training requirements. Also, importantly, it yields "greener" technology.
SPITZER MICROLENS MEASUREMENT OF A MASSIVE REMNANT IN A WELL-SEPARATED BINARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvartzvald, Y.; Bryden, G.; Henderson, C. B.
2015-12-01
We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M{sub 1} > 1.35 M{sub ⊙} (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r{sub ⊥} = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay atmore » 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.« less
Tan, Mingqian; Zhang, Lingxin; Tang, Rong; Song, Xiaojie; Li, Yimin; Wu, Hao; Wang, Yanfang; Lv, Guojun; Liu, Wanfa; Ma, Xiaojun
2013-10-15
Carbon dots (C-dots) are a class of novel fluorescent nanomaterials, which have drawn great attention for their potential applications in bio-nanotechnology. Multicolor C-dots have been synthesized by chemical nitric acid oxidation using the reproducible plant soot as raw material. TEM analysis reveals that the prepared C-dots have an average size of 3.1 nm. The C-dots are well dispersed in aqueous solution and are strongly fluorescent under the irradiation of ultra-violet light. X-ray photoelectron spectroscopy characterization demonstrates that the O/C atomic ratio for C-dots change to from 0.207 to 0.436 due to the chemical oxidation process. The photo bleaching experiment reveals that the C-dots show excellent photostability as compared with the conventional organic dyes, fluorescein and rhodamine B. The fluorescence intensity of the C-dots did not change significantly in the pH range of 3-10. To further enhance the fluorescence quantum yield, the C-dots were surface modified with four types of passivation ligands, 4,7,10-trioxa-1,13-tridecanediamine (TTDDA), poly-L-lysine (PLL), cysteine and chitosan and the fluorescence quantum yields of the TTDDA, PLL, cysteine and chitosan passivated C-dots were improved 1.53-, 5.94-, 2.00- and 3.68-fold, respectively. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The bio-application of the C-dots as fluorescent bio-probes was evaluated in cell imaging and ex vivo fish imaging, which suggests that the C-dots may have potential applications in biolabeling and bioimaging. Copyright © 2013 Elsevier B.V. All rights reserved.
Transparent ceramic scintillators for gamma spectroscopy and MeV imaging
NASA Astrophysics Data System (ADS)
Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Swanberg, E. L.; Beck, P. R.; Schneberk, D. J.; Stone, G.; Perry, R.; Wihl, B.; Fisher, S. E.; Hunter, S. L.; Thelin, P. A.; Thompson, R. R.; Harvey, N. M.; Stefanik, T.; Kindem, J.
2015-09-01
We report on the development of two new mechanically rugged, high light yield transparent ceramic scintillators: (1) Ce-doped Gd-garnet for gamma spectroscopy, and (2) Eu-doped Gd-Lu-bixbyite for radiography. GYGAG(Ce) garnet transparent ceramics offer ρ = 5.8g/cm3, Zeff = 48, principal decay of <100 ns, and light yield of 50,000 Ph/MeV. Gdgarnet ceramic scintillators offer the best energy resolution of any oxide scintillator, as good as R(662 keV) = 3% (Si-PD readout) for small sizes and typically R(662 keV) < 5% for cubic inch sizes. For radiography, the bixbyite transparent ceramic scintillator, (Gd,Lu,Eu)2O3, or "GLO," offers excellent x-ray stopping, with ρ = 9.1 g/cm3 and Zeff = 68. Several 10" diameter by 0.1" thickness GLO scintillators have been fabricated. GLO outperforms scintillator glass for high energy radiography, due to higher light yield (55,000 Ph/MeV) and better stopping, while providing spatial resolution of >8 lp/mm.
Tubuxin, Bayaer; Rahimzadeh-Bajgiran, Parinaz; Ginnan, Yusaku; Hosoi, Fumiki; Omasa, Kenji
2015-01-01
This paper illustrates the possibility of measuring chlorophyll (Chl) content and Chl fluorescence parameters by the solar-induced Chl fluorescence (SIF) method using the Fraunhofer line depth (FLD) principle, and compares the results with the standard measurement methods. A high-spectral resolution HR2000+ and an ordinary USB4000 spectrometer were used to measure leaf reflectance under solar and artificial light, respectively, to estimate Chl fluorescence. Using leaves of Capsicum annuum cv. ‘Sven’ (paprika), the relationships between the Chl content and the steady-state Chl fluorescence near oxygen absorption bands of O2B (686nm) and O2A (760nm), measured under artificial and solar light at different growing stages of leaves, were evaluated. The Chl fluorescence yields of ΦF 686nm/ΦF 760nm ratios obtained from both methods correlated well with the Chl content (steady-state solar light: R2 = 0.73; artificial light: R2 = 0.94). The SIF method was less accurate for Chl content estimation when Chl content was high. The steady-state solar-induced Chl fluorescence yield ratio correlated very well with the artificial-light-induced one (R2 = 0.84). A new methodology is then presented to estimate photochemical yield of photosystem II (ΦPSII) from the SIF measurements, which was verified against the standard Chl fluorescence measurement method (pulse-amplitude modulated method). The high coefficient of determination (R2 = 0.74) between the ΦPSII of the two methods shows that photosynthesis process parameters can be successfully estimated using the presented methodology. PMID:26071530
Turk, Mohammad F; Baron, Alain; Vorobiev, Eugene
2010-09-08
This study explored the effect of pulsed electric field (PEF) treatment (E=450 V/cm; tt=10 ms; E<3 kJ/kg) and apple mash size on juice yield, polyphenolic compounds, sugars, and malic acid. Juice yield increased significantly after PEF treatment of large mash (Y=71.4%) and remained higher than the juice yield obtained for a control small mash (45.6%). The acid sweet balance was not altered by PEF. A correlation was established between the decrease of light absorbance (control: 1.43; treated: 1.10) and the decline of native polyphenols yield due to PEF treatment (control: 9.6%; treated: 5.9% for small mash). An enhanced oxidation of phenolic compounds in cells due to electroporation of the inner cell membrane and the adsorption of the oxidized products on the mash may explain both the lower light absorbance and the lower native polyphenol concentration.
Tian, Yonglan; Sacharz, Joanna; Ware, Maxwell A; Zhang, Huayong; Ruban, Alexander V
2017-07-10
This work examined the long-term effects of periodic high light stress on photosynthesis, morphology, and productivity of low-light-acclimated Arabidopsis plants. Significant photoinhibition of Arabidopsis seedlings grown under low light (100 μmol photons m-2 s-1) was observed at the beginning of the high light treatment (three times a day for 30 min at 1800 μmol photons m-2 s-1). However, after 2 weeks of treatment, similar photosynthesis yields (Fv/Fm) to those of control plants were attained. The daily levels of photochemical quenching measured in the dark (qPd) indicated that the plants recovered from photoinhibition within several hours once transferred back to low light conditions, with complete recovery being achieved overnight. Acclimation to high light stress resulted in the modification of the number, structure, and position of chloroplasts, and an increase in the average chlorophyll a/b ratio. During ontogenesis, high-light-exposed plants had lower total leaf areas but higher above-ground biomass. This was attributed to the consumption of starch for stem and seed production. Moreover, periodic high light exposure brought forward the reproductive phase and resulted in higher seed yields compared with control plants grown under low light. The responses to periodic high light exposure of mature Arabidopsis plants were similar to those of seedlings but had higher light tolerance. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; ...
2016-03-18
The gaseous Xenon(Xe) time projection chamber (TPC) is an attractive detector technique for neutrinoless double beta decay and WIMP dark matter searches. While it is less dense compared to Liquid Xe detectors, it has intrinsic advantages in tracking capability and better energy resolution. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which is expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). In order to test the feasibilitymore » of the performance improvements with TMA, in this paper we made the first direct measurement of Penning and fluorescence transfer efficiency with gaseous mixtures of Xe and TMA. While we observed a Penning transfer efficiency up to ~35%, we found strong suppression of primary scintillation light with TMA. We also found that the primary scintillation light with Xe and TMA mixture can be well characterized by ~3% fluorescence transfer from Xe to TMA, with further suppression due to TMA self-quenching. No evidence of the scintillation light produced by recombination of TMA ions was found. This strong suppression of scintillation light makes dark matter searches quite challenging, while the possibility of improved neutrinoless double beta decay searches remains open. Finally, this work has been carried out within the context of the NEXT collaboration.« less
Donnald, Samuel B.; Williams, Richard; Melcher, Charles L.; ...
2018-04-19
Cerium doped YAlO3 (YAP:Ce) is an interesting oxide scintillator in that it exhibits a wider range of light yield non-proportionality on a sample-to-sample basis than most other well-known oxide scintillators. In general, most oxide materials, such as BGO and LSO:Ce, are thought to have an intrinsic proportional response that is nearly constant between samples and independent of growth conditions. Since light yield nonproportionality is responsible for degrading the achievable energy resolution of all known scintillators, it is important to understand what contributes to the behavior. In this study, in an attempt to understand if the phenomenon can be affected bymore » growth parameters or by other means, seven samples of YAP:Ce were collected from various sources, and eight samples were grown inhouse using the Czochralski method. Based on optical and scintillation measurement as well as direct measurement of the cerium concentration, it was determined that the light yield proportionality in YAlO3:Ce is strongly related to the cerium concentration. Samples that were found to have a higher relative cerium concentration displayed a more proportional light yield response. In addition, it was determined that samples with a higher cerium concentration also exhibit a faster decay time and an enhanced energy resolution when compared to samples with less cerium. Finally, it was also determined that growth in a reducing atmosphere can effectively suppress a parasitic optical absorption band.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnald, Samuel B.; Williams, Richard; Melcher, Charles L.
Cerium doped YAlO3 (YAP:Ce) is an interesting oxide scintillator in that it exhibits a wider range of light yield non-proportionality on a sample-to-sample basis than most other well-known oxide scintillators. In general, most oxide materials, such as BGO and LSO:Ce, are thought to have an intrinsic proportional response that is nearly constant between samples and independent of growth conditions. Since light yield nonproportionality is responsible for degrading the achievable energy resolution of all known scintillators, it is important to understand what contributes to the behavior. In this study, in an attempt to understand if the phenomenon can be affected bymore » growth parameters or by other means, seven samples of YAP:Ce were collected from various sources, and eight samples were grown inhouse using the Czochralski method. Based on optical and scintillation measurement as well as direct measurement of the cerium concentration, it was determined that the light yield proportionality in YAlO3:Ce is strongly related to the cerium concentration. Samples that were found to have a higher relative cerium concentration displayed a more proportional light yield response. In addition, it was determined that samples with a higher cerium concentration also exhibit a faster decay time and an enhanced energy resolution when compared to samples with less cerium. Finally, it was also determined that growth in a reducing atmosphere can effectively suppress a parasitic optical absorption band.« less
THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE HUBBLE SPACE TELESCOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amanullah, R.; Goobar, A.; Johansson, J.
The wavelength dependence of the extinction of Type Ia SN 2014J in the nearby galaxy M82 has been measured using UV to near-IR photometry obtained with the Hubble Space Telescope, the Nordic Optical Telescope, and the Mount Abu Infrared Telescope. This is the first time that the reddening of an SN Ia is characterized over the full wavelength range of 0.2-2 μm. A total-to-selective extinction, R{sub V} ≥ 3.1, is ruled out with high significance. The best fit at maximum using a Galactic type extinction law yields R{sub V} = 1.4 ± 0.1. The observed reddening of SN 2014J is also compatiblemore » with a power-law extinction, A {sub λ}/A{sub V} = (λ/λ {sub V}) {sup p} as expected from multiple scattering of light, with p = –2.1 ± 0.1. After correcting for differences in reddening, SN 2014J appears to be very similar to SN 2011fe over the 14 broadband filter light curves used in our study.« less
NASA Astrophysics Data System (ADS)
Hosseini, Farnaz; Safaei, Elham; Mohebbi, Sajjad
2017-07-01
This study has focused on catalytic and photocatalytic oxidation of aromatic alcohols using WO3 nanorod and a series of Pt/WO3 nanocomposite Pt nanoparticles was loaded on WO3 nanorod with several mass ratios 0.1, 0.2, and 0.3 via a photoreduction process (PRP) and characterized by TEM, FE-SEM imaging, EDAX, XRD, DRS, ICP, and XPS. WO3 nanorods were obtained monodispersed with average 40-nm diameter and square cross section without significant size change by the loading of platinum nanoparticles on it. Progress of oxidation reaction was monitored by GC and the yield of aerobic photocatalytic oxidation of alcohols reached up to 98% for Pt/WO3 and 69% for WO3 while, no oxidation was detected in the absence of light. The highest photocatalytic performance was obtained for mass ratio 0.2 with the selectivity >99%. So, this nanocomposite has potentials to be used as high-performance heterogeneous catalyst and photocatalyst under visible light irradiation with advantages of high activity, high selectivity, and reusability.
NASA Astrophysics Data System (ADS)
Li, Cheng; Peng, Xiaobin; Liu, Qianwen; Gan, Xin; Lv, Ruitao; Fan, Shangchun
2017-02-01
Thickness measurement plays an important role for characterizing optomechanical behaviors of graphene. From the view of graphene-based Fabry-Perot (F-P) sensors, a simple, nondestructive and in situ method of determining the thickness of nanothick graphene membranes was demonstrated by using optical fiber F-P interference. Few-layer/multilayer graphene sheets were suspendedly adhered onto the endface of a ferrule with a 125 µm inner diameter by van der Waals interactions to construct micro F-P cavities. Along with the Fresnel’s law and complex index of refraction of the membrane working as a light reflector of an F-P interferometer, the optical reflectivity of graphene was modeled to investigate the effects of light wavelength and temperature. Then the average thickness of graphene membranes were extracted by F-P interference demodulation, and yielded a very strong cross-correlation coefficient of 99.95% with the experimental results observed by Raman spectrum and atomic force microscope. The method could be further extended for determining the number of layers of other 2D materials.
NASA Astrophysics Data System (ADS)
Martins, J. H. C.; Santos, N. C.; Figueira, P.; Melo, C.
2016-11-01
The direct detection of reflected light from exoplanets is an excellent probe for the characterization of their atmospheres. The greatest challenge for this task is the low planet-to-star flux ratio, which even in the most favourable case is of the order of 10-4 in the optical. This ratio decreases even more for planets in their host's habitable zone, typically lower than 10-7. To reach the signal-to-noise level required for such detections, we propose to unleash the power of the Cross Correlation Function in combination with the collecting power of next generation observing facilities. The technique we propose has already yielded positive results by detecting the reflected spectral signature of 51 Pegasi b (see Martins et al. 2015). In this work, we attempted to infer the number of hours required for the detection of several planets in their host's habitable zone using the aforementioned technique from theoretical EELT observations. Our results show that for 5 of the selected planets it should be possible to directly recover their reflected spectral signature.
Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes.
Qian, Fang; Gradecak, Silvija; Li, Yat; Wen, Cheng-Yen; Lieber, Charles M
2005-11-01
We report the growth and characterization of core/multishell nanowire radial heterostructures, and their implementation as efficient and synthetically tunable multicolor nanophotonic sources. Core/multishell nanowires were prepared by metal-organic chemical vapor deposition with an n-GaN core and InxGa1-xN/GaN/p-AlGaN/p-GaN shells, where variation of indium mole fraction is used to tune emission wavelength. Cross-sectional transmission electron microscopy studies reveal that the core/multishell nanowires are dislocation-free single crystals with a triangular morphology. Energy-dispersive X-ray spectroscopy clearly shows shells with distinct chemical compositions, and quantitatively confirms that the thickness and composition of individual shells can be well controlled during synthesis. Electrical measurements show that the p-AlGaN/p-GaN shell structure yields reproducible hole conduction, and electroluminescence measurements demonstrate that in forward bias the core/multishell nanowires function as light-emitting diodes, with tunable emission from 365 to 600 nm and high quantum efficiencies. The ability to synthesize rationally III-nitride core/multishell nanowire heterostructures opens up significant potential for integrated nanoscale photonic systems, including multicolor lasers.
Research of green emitting rare-earth doped materials as potential quantum-cutter
NASA Astrophysics Data System (ADS)
Moine, Bernard; Beauzamy, Lena; Gredin, Patrick; Wallez, Gilles; Labeguerie, Jessica
2008-03-01
Because the energy of vacuum ultraviolet (VUV) photons emitted by xenon plasma discharge is more than twice that of visible photons, quantum cutting appears to be a promising process in rare-earth doped materials in order to obtain efficient phosphors for mercury free lighting devices as well as for plasma display panels. With an aim of application, it is important to take into account the emitting color of the developed new phosphors. Most of the time, this leads to use systems with at least two kinds of rare earth ions: one of them playing the role of energy sensitizer, and the other one being in charge of emitting the light of the suitable color. We focus our attention on green rare-earth doped materials. In order to get very efficient phosphors, it is not only necessary to get the highest possible quantum yield, but also to have a material characterized by a strong absorption in the VUV range. Borate and fluoride matrices doped with Dy 3+/Tb 3+ couples of ions are selected according to the position of the 5d band of dysprosium as green emitters.
Martins, J H C; Santos, N C; Figueira, P; Melo, C
2016-11-01
The direct detection of reflected light from exoplanets is an excellent probe for the characterization of their atmospheres. The greatest challenge for this task is the low planet-to-star flux ratio, which even in the most favourable case is of the order of 10 -4 in the optical. This ratio decreases even more for planets in their host's habitable zone, typically lower than 10 -7 . To reach the signal-to-noise level required for such detections, we propose to unleash the power of the Cross Correlation Function in combination with the collecting power of next generation observing facilities. The technique we propose has already yielded positive results by detecting the reflected spectral signature of 51 Pegasi b (see Martins et al. 2015). In this work, we attempted to infer the number of hours required for the detection of several planets in their host's habitable zone using the aforementioned technique from theoretical EELT observations. Our results show that for 5 of the selected planets it should be possible to directly recover their reflected spectral signature.
Pion and kaon valence-quark parton quasidistributions
NASA Astrophysics Data System (ADS)
Xu, Shu-Sheng; Chang, Lei; Roberts, Craig D.; Zong, Hong-Shi
2018-05-01
Algebraic Ansätze for the Poincaré-covariant Bethe-Salpeter wave functions of the pion and kaon are used to calculate their light-front wave functions, parton distribution amplitudes, parton quasidistribution amplitudes, valence parton distribution functions, and parton quasidistribution functions (PqDFs). The light-front wave functions are broad, concave functions, and the scale of flavor-symmetry violation in the kaon is roughly 15%, being set by the ratio of emergent masses in the s - and u -quark sectors. Parton quasidistribution amplitudes computed with longitudinal momentum Pz=1.75 GeV provide a semiquantitatively accurate representation of the objective parton distribution amplitude, but even with Pz=3 GeV , they cannot provide information about this amplitude's end point behavior. On the valence-quark domain, similar outcomes characterize PqDFs. In this connection, however, the ratio of kaon-to-pion u -quark PqDFs is found to provide a good approximation to the true parton distribution function ratio on 0.4 ≲x ≲0.8 , suggesting that with existing resources computations of ratios of parton quasidistributions can yield results that support empirical comparison.
USDA-ARS?s Scientific Manuscript database
The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plan...
Zhou, Qin; Zhang, Panyue; Zhang, Guangming
2015-03-01
This study is aimed at enhancing biomass and pigments production together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via different light sources. Red, yellow, blue, white LED and incandescent lamp were used. Results showed different light sources had great effects on the PSB. PSB had the highest biomass production, COD removal and biomass yield with red LED. The corresponding biomass, COD removal and biomass yield reached 2580 mg/L, 88.6% and 0.49 mg-biomass/mg-COD-removal, respectively. The hydraulic retention time of wastewater treatment could be shortened to 72 h with red LED. Mechanism analysis showed higher ATP was produced with red LED than others. Light sources could significantly affect the pigments production. The pigments productions were greatly higher with LED than incandescent lamp. Yellow LED had the highest pigments production while red LED produced the highest carotenoid/bacteriochlorophyll ratio. Considering both efficiency and energy cost, red LED was the optimal light source. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Zhenguang; Susha, Andrei S.; Chen, Bingkun; Reckmeier, Claas; Tomanec, Ondrej; Zboril, Radek; Zhong, Haizheng; Rogach, Andrey L.
2016-03-01
Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92.Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92. Electronic supplementary information (ESI) available: The optical spectra of control experiments for Cu NC synthesis, optimization of the reaction conditions, and spectra for LEDs chips and blue LEDs. See DOI: 10.1039/c6nr00806b
NASA Astrophysics Data System (ADS)
Avercheva, Olga; Berkovich, Yuliy A.; Smolyanina, Svetlana; Bassarskaya, Elizaveta; Pogosyan, Sergey; Ptushenko, Vasiliy; Erokhin, Alexei; Zhigalova, Tatiana
2014-06-01
Currently light emitting diodes (LEDs) are considered to be most preferable source for space plant growth facilities. We performed a complex study of growth and photosynthesis in Chinese cabbage plants (Brassica chinensis L.) grown with continuous LED lighting based on red (650 nm) and blue (470 nm) LEDs with a red to blue photon ratio of 7:1. Plants grown with high-pressure sodium (HPS) lamps were used as a control. PPF levels used were about 100 μmol/(m2 s) (PPF 100) and nearly 400 μmol/(m2 s) (PPF 400). One group of plants was grown with PPF 100 and transferred to PPF 400 at the age of 12 days. Plants were studied at the age of 15 and 28 days (harvest age); some plants were left to naturally end their life cycle. We studied a number of parameters reflecting different stages of photosynthesis: photosynthetic pigment content; chlorophyll fluorescence parameters (photosystem II quantum yield, photochemical and non-photochemical chlorophyll fluorescence quenching); electron transport rate, proton gradient on thylakoid membranes (ΔpH), and photophosphorylation rate in isolated chloroplasts. We also tested parameters reflecting plant growth and productivity: shoot and root fresh and dry weight, sugar content and ascorbic acid content in shoots. Our results had shown that at PPF 100, plants grown with LEDs did not differ from control plants in shoot fresh weight, but showed substantial differences in photophosphorylation rate and sugar content. Differences observed in plants grown with PPF 100 become more pronounced in plants grown with PPF 400. Most parameters characterizing the plant photosynthetic performance, such as photosynthetic pigment content, electron transport rate, and ΔpH did not react strongly to light spectrum. Photophosphorylation rate differed strongly in plants grown with different spectrum and PPF level, but did not always reflect final plant yield. Results of the present work suggest that narrow-band LED lighting caused changes in Chinese cabbage plants on levels of the photosynthetic apparatus and the whole plant, concerning its development and adaptation to a varying PPF level.
Muon g -2 in an alternative quasi-Yukawa unification with a less fine-tuned seesaw mechanism
NASA Astrophysics Data System (ADS)
Altın, Zafer; Ã-zdal, Ã.-zer; Ün, Cem Salih
2018-03-01
We explore the low-scale implications of the Pati-Salam Model including the TeV scale right-handed neutrinos interacting and mixing with the MSSM fields through the inverse seesaw (IS) mechanism in light of the muon anomalous magnetic moment (muon g -2 ) resolution and highlight the solutions which are compatible with the quasi-Yukawa unification condition (QYU). We find that the presence of the right-handed neutrinos causes heavy smuons as mμ ˜≳800 GeV in order to avoid tachyonic staus at the low scale. On the other hand, the sneutrinos can be as light as about 100 GeV, and along with the light charginos of mass ≲400 GeV , they can yield such large contributions to muon g -2 that the discrepancy between the experiment and the theory can be resolved. These solutions also require mχ˜1 ±≲400 GeV and mχ˜10≲200 . We also discuss such light chargino and neutralino along with the light stau (mτ ˜≳200 GeV ) in the light of current LHC results. Besides, the gluino mass lies in a range ˜[2.5 - 3.5 ] TeV , which is tested in near future experiments. In addition, the model predicts relatively light Higgsinos (μ ≲700 GeV ); hence, the second chargino mass is also light enough (≲700 GeV ) to contribute to muon g -2 . Light Higgsinos also yield less fine-tuning at the electroweak scale, and the regions compatible with muon g -2 restrict ΔEW≲100 strictly, and this region also satisfies the QYU condition. In addition, the ratios among the Yukawa couplings should be 1.8 ≲yt/yb≲2.6 , yτ/yb˜1.3 to yield correct fermion masses. Even though the right-handed neutrino Yukawa coupling can be varied freely, the solutions bound its range to 0.8 ≲yν/yb≲1.7 .
Wang, Hui; Zhang, Yan; Chen, Lin; Cheng, Wentao; Liu, Tianzhong
2018-04-04
Fucoxanthin and eicosapentaenoic acid (EPA) provide significant health benefits for human population. Diatom is a potential natural livestock for the combined production of EPA and fucoxanthin. In this study, first, the effects of three important parameters including light intensity, nitrogen concentration and salinity were evaluated for the production of EPA and fucoxanthin in two diatom strains Phaeodactylum tricornutum and Cylindrotheca fusiformis. And then, two steps method based on light intensity were applied to produce EPA and fucoxanthin in large scale. Higher light intensity was first adopted for the high growth rate and lipid content of diatom, and after a period of time, light intensity was lowered to enhance the accumulation of fucoxanthin and EPA. In final, the highest EPA yields were 62.55 and 27.32 mg L -1 for P. tricornutum and C. fusiformis, and the fucoxanthin yield reached 8.32 and 6.05 mg L -1 , respectively.
Song, Yu-zhi; Cai, Wei; Qin, Bo-qiang
2009-03-01
Some aquatic macrophytes commonly found in Taihu Lake, including Trapa bispinosa, Nymphyoides peltatum, Vallisneria natans, and Hydrilla verticillata were collected, and their maximal quantum yield of photosystem II (Fv/Fm) as well as the rapid light curves (RLCs) under conditions of light adaptation and dark adaptation were measured in situ by using a submersible and pulse-amplitude modulated fluorometer (Diving-PAM). The results showed that floating-leaved plants T. bispinosa and N. peltatum had higher potential maximum photosynthetic capacity than submerged macrophytes V. natans and H. verticillata. The measured maximal quantum yield of T. bispinosa, N. peltatum, V. natans, and H. verticillata was 0.837, 0.831, 0.684, and 0.764, respectively. Both the maximal relative electron transport rate and the half saturation point of light intensity of T. bispinosa and N. peltatum were higher than those of V. natans and H. verticillata, especially under the condition of light adaptation.
Alfano, Robert R.; Demos, Stavros G.; Zhang, Gang
2003-12-16
Method and an apparatus for examining a tissue using the spectral wing emission therefrom induced by visible to infrared photoexcitation. In one aspect, the method is used to characterize the condition of a tissue sample and comprises the steps of (a) photoexciting the tissue sample with substantially monochromatic light having a wavelength of at least 600 nm; and (b) using the resultant far red and near infrared spectral wing emission (SW) emitted from the tissue sample to characterize the condition of the tissue sample. In one embodiment, the substantially monochromatic photoexciting light is a continuous beam of light, and the resultant steady-state far red and near infrared SW emission from the tissue sample is used to characterize the condition of the tissue sample. In another embodiment, the substantially monochromatic photoexciting light is a light pulse, and the resultant time-resolved far red and near infrared SW emission emitted from the tissue sample is used to characterize the condition of the tissue sample. In still another embodiment, the substantially monochromatic photoexciting light is a polarized light pulse, and the parallel and perpendicular components of the resultant polarized time-resolved SW emission emitted from the tissue sample are used to characterize the condition of the tissue sample.
Light activated nitric oxide releasing materials
NASA Astrophysics Data System (ADS)
Muizzi Casanas, Dayana Andreina
The ability to control the location and dosage of biologically active molecules inside the human body can be critical to maximizing effective treatment of cardiovascular diseases like angina. The current standard of treatment relies on the metabolism of organonitrate drugs into nitric oxide (NO), which are not specific, and also show problems with densitization with long-term use. There is a need then to create a treatment method that gives targeted release of NO. Metal-nitrosyl (M-NO) complexes can be used for delivery of NO since the release of NO can be controlled with light. However, the NO-releasing drug must be activated with red light to ensure maximum penetration of light through tissue. However, the release of NO from M-NO complexes with red-light activation is a significant challenge since the energy required to break the metal-NO bond is usually larger than the energy provided by red light. The goal of this project was to create red- sensitive, NO-releasing materials based on Ru-salen-nitrosyl compounds. Our approach was to first modify Ru salen complexes to sensitize the photochemistry for release of NO after red light irradiation. Next, we pursued polymerization of the Ru-salen complexes. We report the synthesis and quantitative photochemical characterization of a series of ruthenium salen nitrosyl complexes. These complexes were modified by incorporating electron donating groups in the salen ligand structure at key locations to increase electron density on the Ru. Complexes with either an --OH or --OCH3 substituent showed an improvement in the quantum yield of release of NO upon blue light irradiation compared to the unmodified salen. These --OH and --OCH3 complexes were also sensitized for NO release after red light activation, however the red-sensitive complexes were unstable and showed ligand substitution on the order of minutes. The substituted complexes remained sensitive for NO release, but only after blue light irradiation. The Ru-nitrosyl complexes could be regenerated by treatment of the complex with solutions of nitrite. Treatment of the exhaustively irradiated solutions with excess NO2- led to generation of a Ru-NO complex that was sensitive to blue light. Preliminary work on creating metallopolymers of Ru-salen-NO is also discussed.
Optimizing ZnS/6LiF scintillators for wavelength-shifting-fiber neutron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crow, Lowell; Funk, Loren L; Hannan, Bruce W
2016-01-01
In this paper we compare the performance of grooved and flat ZnS/6LiF scintillators in a wavelength shifting-fiber (WLSF) detector. Flat ZnS/6LiF scintillators with the thickness L=0.2-0.8 mm were characterized using photon counting and pulse-height analysis and compared to a grooved scintillator of approximately 0.8 mm thick. While a grooved scintillator considerably increases the apparent thickness of the scintillator to neutrons for a given coating thickness, we find that the flat scintillators perform better than the grooved scintillators in terms of both light yield and neutron detection efficiency. The flat 0.8-mm-thick scintillator has the highest light output, and it is 52%more » higher compared with a grooved scintillator of same thickness. The lower light output of the grooved scintillator as compared to the flat scintillator is consistent with the greater scintillator-WLSF separation and the much larger average emission angle of the grooved scintillator. We also find that the average light cone width, or photon travel-length as measured using time-of-flight powder diffraction of diamond and vanadium, decreases with increasing L in the range of L=0.6-0.8 mm. This result contrasts with the traditional Swank diffusion model for micro-composite scintillators, and could be explained by a decrease in photon diffusion-coefficient or an increase in micro-particle content in the flat scintillator matrix for the thicker scintillators.« less
Nelson, M; Dempster, W F; Silverstone, S; Alling, A; Allen, J P; van Thillo, M
2005-01-01
Two crop growth experiments in the soil-based closed ecological facility, Laboratory Biosphere, were conducted from 2003 to 2004 with candidate space life support crops. Apogee wheat (Utah State University variety) was grown, planted at two densities, 400 and 800 seeds m-2. The lighting regime for the wheat crop was 16 h of light-8 h dark at a total light intensity of around 840 micromoles m-2 s-1 and 48.4 mol m-2 d-1 over 84 days. Average biomass was 1395 g m-2, 16.0 g m-2 d-1 and average seed production was 689 g m-2 and 7.9 g m-2 d-1. The less densely planted side was more productive than the denser planting, with 1634 g m-2 and 18.8 g m-2 d-1 of biomass vs. 1156 g m-2 and 13.3 g m-2 d-1; and a seed harvest of 812.3 g m-2 and 9.3 g m-2 d-1 vs. 566.5 g m-2 and 6.5 g m-2 d-1. Harvest index was 0.49 for the wheat crop. The experiment with sweet potato used TU-82-155 a compact variety developed at Tuskegee University. Light during the sweet potato experiment, on a 18 h on/6 h dark cycle, totaled 5568 total moles of light per square meter in 126 days for the sweet potatoes, or an average of 44.2 mol m-2 d-1. Temperature regime was 28 +/- 3 degrees C day/22 +/- 4 degrees C night. Sweet potato tuber yield was 39.7 kg wet weight, or an average of 7.4 kg m-2, and 7.7 kg dry weight of tubers since dry weight was about 18.6% wet weight. Average per day production was 58.7 g m-2 d-1 wet weight and 11.3 g m-2 d-1. For the wheat, average light efficiency was 0.34 g biomass per mole, and 0.17 g seed per mole. The best area of wheat had an efficiency of light utilization of 0.51 g biomass per mole and 0.22 g seed per mole. For the sweet potato crop, light efficiency per tuber wet weight was 1.33 g mol-1 and 0.34 g dry weight of tuber per mole of light. The best area of tuber production had 1.77 g mol-1 wet weight and 0.34 g mol-1 of light dry weight. The Laboratory Biosphere experiment's light efficiency was somewhat higher than the USU field results but somewhat below greenhouse trials at comparable light levels, and the best portion of the crop at 0.22 g mol-1 was in-between those values. Sweet potato production was overall close to 50% higher than trials using hydroponic methods with TU-82-155 at NASA JSC. Compared to projected yields for the Mars on Earth life support system, these wheat yields were about 15% higher, and the sweet potato yields averaged over 80% higher. c2005 Published by Elsevier Ltd on behalf of COSPAR.
Whole high-quality light environment for humans and plants
NASA Astrophysics Data System (ADS)
Sharakshane, Anton
2017-11-01
Plants sharing a single light environment on a spaceship with a human being and bearing a decorative function should look as natural and attractive as possible. And consequently they can be illuminated only with white light with a high color rendering index. Can lighting optimized for a human eye be effective and appropriate for plants? Spectrum-based effects have been compared under artificial lighting of plants by high-pressure sodium lamps and general-purpose white LEDs. It has been shown that for the survey sample phytochrome photo-equilibria does not depend significantly on the parameters of white LED light, while the share of phytoactive blue light grows significantly as the color temperature increases. It has been revealed that yield photon flux is proportional to luminous efficacy and increases as the color temperature decreases, general color rendering index Ra and the special color rendering index R14 (green leaf) increase. General-purpose white LED lamps with a color temperature of 2700 K, Ra > 90 and luminous efficacy of 100 lm/W are as efficient as the best high-pressure sodium lamps, and at a higher luminous efficacy their yield photon flux per joule is even bigger in proportion. Here we show that demand for high color rendering white LED light is not contradictory to the agro-technical objectives.
Intermittent illumination increases biophotolytic hydrogen yield by Anabaena cylindrica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffries, T.W.; Leach, K.L.
Intermittent illumination increased H/sub 2/ and C/sub 2/H/sub 4/ yields per unit of light from growing cells and from nitrogen-starved cells by 1.7- and 1.35-fold, respectively, as compared with continuous illumination.
X-ray micro-Tomography at the Advanced Light Source
USDA-ARS?s Scientific Manuscript database
The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 10.5KeV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 KeV. A...
Greenhouse tomato limited cluster production systems: crop management practices affect yield
NASA Technical Reports Server (NTRS)
Logendra, L. S.; Gianfagna, T. J.; Specca, D. R.; Janes, H. W.
2001-01-01
Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.
Further Evidence for Increasing Pressure and a Non-spherical Shape in Triton's Atmosphere
NASA Astrophysics Data System (ADS)
Person, M. J.; Elliot, J. L.; McDonald, S. W.; Buie, M. W.; Dunham, E. W.; Millis, R. L.; Nye, R. A.; Olkin, C. B.; Wasserman, L. H.; Young, L. A.; Hubbard, W. B.; Hill, R.; Reitsema, H. J.; Pasachoff, J. M.; Babcock, B. A.; McConnochie, T. M.; Stone, R. C.
2000-10-01
An occultation by Triton of a star denoted as Tr176 by McDonald & Elliot (AJ 109, 1352), was observed on 1997 July 18 from various locations in Australia and North America. After an extensive prediction effort, two complete chords of the occultation were recorded by our PCCD portable data systems. These chords were combined with three others recorded by another group (Sicardy et al., BAAS 30, 1107) to provide an overall geometric solution for Triton's atmosphere at the occultation pressure. A simple circular fit to these five chords yielded a half-light radius of 1439 +/- 10 km, however least squares fitting revealed a significant deviation from the simple circular projection of a spherical atmosphere. The best fitting ellipse (a first order deviation from the circular solution) yielded a mean radius of 1440 +/- 6 km and an ellipticity of 0.040 +/- 0.003. To further characterize the non-spherical solutions to the geometric fits, methods were developed to analyze the data assuming both circular and elliptical profiles. Circular and elliptically focused light curve models corresponding to the best fitting circular and elliptical geometric solutions were fit to the data. Using these light curve fits, the mean pressure at the 1400 km radius (48 km altitude) derived from all the data was 2.23 +/- 0.28 microbar for the circular model and 2.45 +/- 0.32 microbar for the elliptical model. These pressures agree with those for the Tr180 occultation (which occurred a few months later), so these results are consistent with the conclusions of Elliot et al. (Icarus 143, 425) that Triton's surface pressure has increased from 14.0 microbar at the time of the Voyager encounter to 19.0 microbar in 1997. The mean equivalent-isothermal temperature at 1400 km was 43.6 +/- 3.7 K for the circular model and 42.0 +/- 3.6 K for the elliptical model. Within their calculated errors, the equivalent-isothermal temperatures were the same for all Triton latitudes probed.
Ghate, Minakshi; Kalyani, N Thejo; Dhoble, S J
2018-05-31
This paper reports the synthesis and characterization of 2-(4-ethoxyphenyl)-4-phenyl quinoline (OEt-DPQ) organic phosphor using an acid-catalyzed Friedlander reaction and the preparation of blended thin films by molecularly doping OEt-DPQ in poly(methyl methacrylate) (PMMA) at different wt%. The molecular structure of the synthesized phosphor was confirmed by Fourier transform infra-red (FTIR) spectroscopy and nuclear magnetic resonance spectra (NMR). Surface morphology and percent composition of the elements were assessed by scanning electron microscopy (SEM) and energy dispersive analysis of X-rays (EDAX). The thermal stability and melting point of OEt-DPQ and thin films were probed by thermo-gravimetric analysis (TGA)/differential thermal analysis (DTA) and were found to be 80°C and 113.6°C, respectively. UV-visible optical absorption spectra of OEt-DPQ in the solid state and blended films produced absorption bands in the range 260-340 nm, while photoluminescence (PL) spectra of OEt-DPQ in the solid state and blended thin films demonstrated blue emission that was registered at 432 nm when excited at 363-369 nm. However, solvated OEt-DPQ in chloroform, tetrahydrofuran or dichloromethane showed a blue shift of 31-43 nm. Optical absorption and emission parameters such as molar extinction coefficient (ε), energy gap (E g ), transmittance (T), reflectance (R), refractive index (n), oscillator energy (E 0 ) and oscillator strength (f), quantum yield (φ f ), oscillator energy (E 0 ), dispersion energy (E d ), Commission Internationale de l'Éclairage (CIE) co-ordinates and energy yield fluorescence (E F ) were calculated to assess the phosphor's suitability as a blue emissive material for opto-electronic applications such as organic light-emitting diodes (OLEDs), flexible displays and solid-state lighting technology. Copyright © 2018 John Wiley & Sons, Ltd.
Scintillating Cocktail Mixtures and the Role of Water on the Optophysical Properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordaro, Joseph Gabriel; Feng, Patrick L.; Mengesha, Wondwosen
2015-10-01
Two types of water - containing liquid scinti llation mixtures were prepared in the present work. In the first, m ixtures of 2 - phenylethanol, water, diphenyl phosphate, sodium phenyl phosphate dibasic dihydrate, and the dye 2,5 - diphenyloxazole (PPO) have been investigated as liquid scintillators. In th e second system, nonionic and mixed surfactant systems were investigated in conjunction with water and small amounts of toluene. In both cases, increasing amounts of water led to reductions in the scintillation light yield. Understanding what factors contr ibute to this phenomenon is the focus of this report. Changes in the solutionmore » microphase structure, diminishing aromatic content of the cocktail mixtures, and inefficient energy transfer to the dye a ppear to be responsible for the decreased light yield as more water is added . In the 2 - phenylethanol system, the observed experimental results are consistent with the formation of a bicontinuous microemulsion at higher water concentrations, which incorporates PPO and shields it from the quenching effects of the increasing polar matrix. Evidence for this proposed phase chan ge c ome s from light scattering data, photo - and x - ray luminescence measurements, and optical transparency measurements . In the surfactant - based system, the quenching effect of water was found to be less than both commercially - available dioxane - naphthalene mixtures used for scintillation counting as well as the 2 - phenylethanol mixtures described above. The effect of different surfactant mixtures and concentrations were studied, revealing a benefic ial effect upon the scintillation light yield for mixed surfactant mixtures. These results are interpreted in the context of r eactive radical species formation following water ionization , which leads to light - yield quenching in aqueous systems . The presenc e of surfactant(s) in these mixtures enables the formation of organic - rich regions that are spatially separated from the reactive radicals. This hypothesis is consistent with subsequent experiments that showed reduced light - yield quenching in the presence of radical - trapping additives. A notable result from these surfactant studies was the preparation of an aqueous scintillator that was transparent and showed neutron/gamma pulse - shape discrimination. Section II below provides background information on the s ignificance of this finding. The combined work described herein has implications on other efforts to make water - based solution scintillators -- without aromatic content an efficient mechanism for ionizing radiation to sensitize emission from a dye is limited.« less
Ward, W W; Cormier, M J
1975-01-01
Photoproteins, which emit light in an oxygen-independent intramolecular reaction initiated by calcium ions, have been isolated from several bioluminescent organisms, including the hydrozoan jellyfish Aequorea and the ctenophore Mnemiopsis. The system of a related anthozoan coelenterate, the sea pansy Renilla reniformis, however, is oxygen dependent, requiring two organic components, luciferin and luciferase. Previously published indirect evidence indicates that photoproteins may contain a Renilla-type luciferin. We have now extracted in high yield a Renilla-type luciferin from three photoproteins, aequorin (45% yield), mnemiopsin (98% yield), and berovin (85% yield). Photoprotein luciferin, released from the holoprotein by mercaptoethanol treatment and separated from apo-photoprotein by gel filtration, no longer responds to calcium but now requires luciferase and O2 for light production. Photoprotein luciferin is identical to Renilla luciferin with respect to reaction kinetics and bioluminescence spectral distribution. In view of these results, the generally accepted hypothesis that the photoprotein chromophore is a protein-stabilized hydroperoxide of luciferin must be modified. We believe, instead, that the chromophore is free luciferin and that oxygen is bound as an oxygenated derivative of an amino-acid side chain of the protein. We propose the general term "coelenterate luciferin" to describe the light-producing chromophore from all bioluminescent coelenterates and ctenophores. PMID:241074
NASA Astrophysics Data System (ADS)
Vorndran, Shelby D.; Wu, Yuechen; Ayala, Silvana; Kostuk, Raymond K.
2015-09-01
Concentrating and spectrum splitting photovoltaic (PV) modules have a limited acceptance angle and thus suffer from optical loss under off-axis illumination. This loss manifests itself as a substantial reduction in energy yield in locations where a significant portion of insulation is diffuse. In this work, a spectrum splitting PV system is designed to efficiently collect and convert light in a range of illumination conditions. The system uses a holographic lens to concentrate shortwavelength light onto a smaller, more expensive indium gallium phosphide (InGaP) PV cell. The high efficiency PV cell near the axis is surrounded with silicon (Si), a less expensive material that collects a broader portion of the solar spectrum. Under direct illumination, the device achieves increased conversion efficiency from spectrum splitting. Under diffuse illumination, the device collects light with efficiency comparable to a flat-panel Si module. Design of the holographic lens is discussed. Optical efficiency and power output of the module under a range of illumination conditions from direct to diffuse are simulated with non-sequential raytracing software. Using direct and diffuse Typical Metrological Year (TMY3) irradiance measurements, annual energy yield of the module is calculated for several installation sites. Energy yield of the spectrum splitting module is compared to that of a full flat-panel Si reference module.
Changes in the germination process and growth of pea in effect of laser seed irradiation
NASA Astrophysics Data System (ADS)
Podleśna, Anna; Gładyszewska, Bożena; Podleśny, Janusz; Zgrajka, Wojciech
2015-10-01
The aim of this study was to determine the effect of pre-sowing helium-neon (He-Ne) laser irradiation of pea seeds on changes in seed biochemical processes, germination rate, seedling emergence, growth rate, and yield. The first experimental factor was exposure to laser radiation: D0 - no irradiation, D3 - three exposures, D5 - five exposures, and the harvest dates were the second factor. Pre-sowing treatment of pea seeds with He-Ne laser light increased the concentrations of amylolytic enzymes and the content of indole-3-acetic acid (IAA) in pea seeds and seedlings. The exposure of seeds to He-Ne laser light improved the germination rate and uniformity and modified growth stages, which caused acceleration of flowering and ripening of pea plants. Laser light stimulation improved the morphological characteristics of plants by increasing plant height and leaf surface area. Irradiation improved the yield of vegetative and reproductive organs of pea, although the effects varied at the different growth stages. The increase in the seed yield resulted from a higher number of pods and seeds per plant, whereas no significant changes were observed in the number of seeds per pod. Both radiation doses exerted similarly stimulating effects on pea growth, development, and yield.
Romero, M J A; Pizzi, A; Toscano, G; Busca, G; Bosio, B; Arato, E
2016-01-01
Deoxygenation of waste cooking vegetable oil and Jatropha curcas oil under nitrogen atmosphere was performed in batch and semi-batch experiments using CaO and treated hydrotalcite (MG70) as catalysts at 400 °C. In batch conditions a single liquid fraction (with yields greater than 80 wt.%) was produced containing a high proportion of hydrocarbons (83%). In semi-batch conditions two liquid fractions (separated by a distillation step) were obtained: a light fraction and an intermediate fraction containing amounts of hydrocarbons between 72-80% and 85-88% respectively. In order to assess the possible use of the liquid products as alternative fuels a complete chemical characterization and measurement of their properties were carried out. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stimuli-responsive cellulose-based nematogels
NASA Astrophysics Data System (ADS)
Liu, Qingkun; Smalyukh, Ivan
Physical properties of composite materials can be pre-engineered by controlling their structure and composition at the mesoscale. Yet, approaches for achieving this are limited and rarely scalable. We introduce a new breed of self-assembled nematogels formed by an orientationally ordered network of thin cellulose nanofibers infiltrated with a thermotropic nematic fluid. The interplay of orientational ordering within the nematic network and that of the small-molecule liquid crystal around it yields a composite with highly tunable optical properties. By means of combining experimental characterization and analytical modeling, we demonstrate sub-milisecond electric switching of transparency and also facile response of the composite to temperature changes and light illumination. Finally, we discuss a host of potential technological uses of these self-assembled nematogel composites, ranging from smart and privacy windows to novel flexible display modes.
NASA Astrophysics Data System (ADS)
Das, Sourav; Manam, J.
2018-05-01
In this work, the fluorescein isothiocyanate (FITC) and rhodamine B (RhB) dyes were encapsulated in mesoporous silica nanoparticles (MSNp). The MSNp-FITC-RhB nanohybrids phosphor showed a dichromatic PL emission at green region and orange region when excited at 460 nm. A Forster Resonance Energy Transfer (FRET) was observed from FITC to RhB. The materials were further characterized by XRD, FTIR, TEM, and temperature dependent photoluminescence. The CIE coordinates were tuned from greenish yellow to the orange region and quantum yield was reached 52.04% based on FRET. So by combining the MSNp-FITC-RhB nanohybrids phosphor with the blue LED chip, the white light emission with flexible Color Correlated Temperature and improved Color Rendering Index can be obtained.
Volumetric Imaging and Characterization of Focusing Waveguide Grating Couplers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katzenmeyer, Aaron Michael; McGuinness, Hayden James Evans; Starbuck, Andrew Lea
Volumetric imaging of focusing waveguide grating coupler emission with high spatial resolution in the visible (λ = 637.3 nm) is demonstrated using a scanning near-field optical microscope with long z-axis travel range. Stacks of 2-D images recorded at fixed distance from the device are compiled to yield 3-D visualization of the light emission pattern and enable extraction of parameters, such as spot size, angle of emission, and focal height. Measurements of such parameters are not prevalent in the literature yet are necessary for efficacious design and integration. As a result, it is observed that finite-difference time-domain simulations based on fabricationmore » layout files do not perfectly predict in-hand device behavior, underscoring the merit of experimental validation, particularly for critical application.« less
Doping-Based Stabilization of the M2 Phase in Free-Standing VO2 Nanostructures at Room Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strelcov, Evgheni; Tselev, Alexander; Ivanov, Ilia N
2012-01-01
A new high-yield method of doping VO2 nanostructures with aluminum is proposed, which renders possible stabilization of the monoclinic M2 phase in free-standing nanoplatelets in ambient conditions and opens an opportunity for realization of a purely electronic Mott Transition Field-Effect Transistor without an accompanying structural transition. The synthesized free-standing M2-phase nanostructures are shown to have very high crystallinity and an extremely sharp temperature-driven metal-insulator transition. A combination of x-ray microdiffraction, micro-Raman spectroscopy, Energy-Dispersive X-ray spectroscopy, and four-probe electrical measurements allowed thorough characterization of the doped nanostructures. Light is shed onto some aspects of the nanostructure growth, and the temperature-doping levelmore » phase diagram is established.« less
Volumetric Imaging and Characterization of Focusing Waveguide Grating Couplers
Katzenmeyer, Aaron Michael; McGuinness, Hayden James Evans; Starbuck, Andrew Lea; ...
2017-08-29
Volumetric imaging of focusing waveguide grating coupler emission with high spatial resolution in the visible (λ = 637.3 nm) is demonstrated using a scanning near-field optical microscope with long z-axis travel range. Stacks of 2-D images recorded at fixed distance from the device are compiled to yield 3-D visualization of the light emission pattern and enable extraction of parameters, such as spot size, angle of emission, and focal height. Measurements of such parameters are not prevalent in the literature yet are necessary for efficacious design and integration. As a result, it is observed that finite-difference time-domain simulations based on fabricationmore » layout files do not perfectly predict in-hand device behavior, underscoring the merit of experimental validation, particularly for critical application.« less
Modeling tree crown dynamics with 3D partial differential equations.
Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry
2014-01-01
We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.
Khakbaz, Faeze; Mahani, Mohamad
2017-04-15
Carbon quantum dots have been proposed as an effective platform for miRNA detection. Carbon dots were synthesized by citric acid. The synthesized dots were characterized by dynamic light scattering, UV-Vis spectrophotometry, spectrofluorimetry, transmission electron microscopy and FT-IR spectrophotometry. The fluorescence quantum yield of the synthesized dots was determined using quinine sulfate as the standard. The FAM-labeled single stranded DNA, as sensing element, was adsorbed on dots by π-π interaction. The quenching of the dots fluorescence due to fluorescence resonance energy transfer (FRET) was used for mir 9-1 detection. In the presence of the complementary miRNA, the FRET did not take place and the fluorescence was recovered. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Morillas, Jose R.; Bombard, Antonio J. F.; de Vicente, Juan
2016-01-01
This work reports an investigation into the effect of 1-octanol concentration in the formulation of concentrated polyalphaolefin-based magnetorheological fluids. Special emphasis is paid to the understanding of their kinetic stability and redispersibility characteristics in the ‘off-state’ (absence of magnetic field). Techniques employed involve light scattering, electroacoustics and rheometry, using a vane tool, to precisely determine the yield value. The results obtained show a minimum in the rheological material functions for 1-octanol concentrations within the range 0.5-5.0 wt%. This finding is tentatively explained in terms of the potential energy of interaction between the dispersed particles as a result of the formation of 1-octanol micelles in good agreement with Bombard and Dukhin (2014 Langmuir 30 4517-21).
Chlorxanthomycin, a Fluorescent, Chlorinated, Pentacyclic Pyrene from a Bacillus sp.†
Magyarosy, Andrew; Ho, Jonathan Z.; Rapoport, Henry; Dawson, Scott; Hancock, Joe; Keasling, Jay D.
2002-01-01
A gram-positive Bacillus sp. that fluoresces yellow under long-wavelength UV light on several common culture media was isolated from soil samples. On the basis of carbon source utilization studies, fatty acid methyl ester analysis, and 16S ribosomal DNA analysis, this bacterium was most similar to Bacillus megaterium. Chemical extraction yielded a yellow-orange fluorescent pigment, which was characterized by X-ray crystallography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The fluorescent compound, chlorxanthomycin, is a pentacyclic, chlorinated molecule with the molecular formula C22H15O6Cl and a molecular weight of 409.7865. Chlorxanthomycin appears to be located in the cytoplasm, does not diffuse out of the cells into the culture medium, and has selective antibiotic activity. PMID:12147512
Auger recombination in sodium iodide
NASA Astrophysics Data System (ADS)
McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André
2014-03-01
Scintillators are an important tool used to detect high energy radiation - both in the interest of national security and in medicine. However, scintillator detectors currently suffer from lower energy resolutions than expected from basic counting statistics. This has been attributed to non-proportional light yield compared to incoming radiation, but the specific mechanism for this non-proportionality has not been identified. Auger recombination is a non-radiative process that could be contributing to the non-proportionality of scintillating materials. Auger recombination comes in two types - direct and phonon-assisted. We have used first-principles calculations to study Auger recombination in sodium iodide, a well characterized scintillating material. Our findings indicate that phonon-assisted Auger recombination is stronger in sodium iodide than direct Auger recombination. Computational resources provided by LLNL and NERSC. Funding provided by NA-22.
Sugitani, K; Mimura, K; Takeuchi, M; Yamaguchi, T; Suzuki, K; Senda, R; Asahara, Y; Wallis, S; Van Kranendonk, M J
2015-11-01
The 3.4-Ga Strelley Pool Formation (SPF) at the informally named 'Waterfall Locality' in the Goldsworthy greenstone belt of the Pilbara Craton, Western Australia, provides deeper insights into ancient, shallow subaqueous to possibly subaerial ecosystems. Outcrops at this locality contain a thin (<3 m) unit of carbonaceous and non-carbonaceous cherts and silicified sandstones that were deposited in a shallow-water coastal environment, with hydrothermal activities, consistent with the previous studies. Carbonaceous, sulfide-rich massive black cherts with coniform structures up to 3 cm high are characterized by diverse rare earth elements (REE) signatures including enrichment of light [light rare earth elements (LREE)] or middle rare earth elements and by enrichment of heavy metals represented by Zn. The massive black cherts were likely deposited by mixing of hydrothermal and non-hydrothermal fluids. Coniform structures in the cherts are characterized by diffuse laminae composed of sulfide particles, suggesting that unlike stromatolites, they were formed dominantly through physico-chemical processes related to hydrothermal activity. The cherts yield microfossils identical to previously described carbonaceous films, small and large spheres, and lenticular microfossils. In addition, new morphological types such as clusters composed of large carbonaceous spheroids (20-40 μm across each) with fluffy or foam-like envelope are identified. Finely laminated carbonaceous cherts are devoid of heavy metals and characterized by the enrichment of LREE. This chert locally contains conical to domal structures characterized by truncation of laminae and trapping of detrital grains and is interpreted as siliceous stromatolite formed by very early or contemporaneous silicification of biomats with the contribution of silica-rich hydrothermal fluids. Biological affinities of described microfossils and microbes constructing siliceous stromatolites are under investigation. However, this study emphasizes how diverse the microbial community in Paleoarchean coastal hydrothermal environment was. We propose the diversity is at least partially due to the availability of various energy sources in this depositional environment including reducing chemicals and sunlight. © 2015 John Wiley & Sons Ltd.
Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota
2015-01-01
Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.
Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota
2015-01-01
Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress. PMID:26172952
Kotwica, Kamil; Bujak, Piotr; Data, Przemyslaw; Krzywiec, Wojciech; Wamil, Damian; Gunka, Piotr A; Skorka, Lukasz; Jaroch, Tomasz; Nowakowski, Robert; Pron, Adam; Monkman, Andrew
2016-06-01
Simple modification of benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine-8,16-dione, an old and almost-forgotten vat dye, by reduction of its carbonyl groups and subsequent O-alkylation, yields solution-processable, electroactive, conjugated compounds of the periazaacene type, suitable for the use in organic electronics. Their electrochemically determined ionization potential and electron affinity of about 5.2 and -3.2 eV, respectively, are essentially independent of the length of the alkoxyl substituent and in good agreement with DFT calculations. The crystal structure of 8,16-dioctyloxybenzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine (FC-8), the most promising compound, was solved. It crystallizes in space group P1‾ and forms π-stacked columns held together in the 3D structure by dispersion forces, mainly between interdigitated alkyl chains. Molecules of FC-8 have a strong tendency to self-organize in monolayers deposited on a highly oriented pyrolytic graphite surface, as observed by STM. 8,16-Dialkoxybenzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridines are highly luminescent, and all have photoluminescence quantum yields of about 80 %. They show efficient electroluminescence, and can be used as guest molecules with a 4,4'-bis(N-carbazolyl)-1,1'-biphenyl host in guest/host-type organic light-emitting diodes. The best fabricated diodes showed a luminance of about 1900 cd m(-12) , a luminance efficiency of about 3 cd A(-1) , and external quantum efficiencies exceeding 0.9 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carmo-Silva, Elizabete; Andralojc, P John; Scales, Joanna C; Driever, Steven M; Mead, Andrew; Lawson, Tracy; Raines, Christine A; Parry, Martin A J
2017-06-15
Improving photosynthesis is a major target for increasing crop yields and ensuring food security. Phenotyping of photosynthesis in the field is critical to understand the limits to crop performance in agricultural settings. Yet, detailed phenotyping of photosynthetic traits is relatively scarce in field-grown wheat, with previous studies focusing on narrow germplasm selections. Flag leaf photosynthetic traits, crop development, and yield traits were compared in 64 field-grown wheat cultivars in the UK. Pre-anthesis and post-anthesis photosynthetic traits correlated significantly and positively with grain yield and harvest index (HI). These traits included net CO2 assimilation measured at ambient CO2 concentrations and a range of photosynthetic photon flux densities, and traits associated with the light response of photosynthesis. In most cultivars, photosynthesis decreased post-anthesis compared with pre-anthesis, and this was associated with decreased Rubisco activity and abundance. Heritability of photosynthetic traits suggests that phenotypic variation can be used to inform breeding programmes. Specific cultivars were identified with traits relevant to breeding for increased crop yields in the UK: pre-anthesis photosynthesis, post-anthesis photosynthesis, light response of photosynthesis, and Rubisco amounts. The results indicate that flag leaf longevity and operating photosynthetic activity in the canopy can be further exploited to maximize grain filling in UK bread wheat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Pan, Jui-Wen; Tu, Sheng-Han
2012-05-20
A cost-effective, high-throughput, and high-yield method for the efficiency enhancement of an optical mouse lighting module is proposed. We integrated imprinting technology and free-form surface design to obtain a lighting module with high illumination efficiency and uniform intensity distribution. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution of light-emitting diodes. A modulated light source was utilized to add a compact free-form surface element to create a lighting module with 95% uniformity and 80% optical efficiency.
NASA Astrophysics Data System (ADS)
Eriçok, Ozan Burak; Ertürk, Hakan
2018-07-01
Optical characterization of nanoparticle aggregates is a complex inverse problem that can be solved by deterministic or statistical methods. Previous studies showed that there exists a different lower size limit of reliable characterization, corresponding to the wavelength of light source used. In this study, these characterization limits are determined considering a light source wavelength range changing from ultraviolet to near infrared (266-1064 nm) relying on numerical light scattering experiments. Two different measurement ensembles are considered. Collection of well separated aggregates made up of same sized particles and that of having particle size distribution. Filippov's cluster-cluster algorithm is used to generate the aggregates and the light scattering behavior is calculated by discrete dipole approximation. A likelihood-free Approximate Bayesian Computation, relying on Adaptive Population Monte Carlo method, is used for characterization. It is found that when the wavelength range of 266-1064 nm is used, successful characterization limit changes from 21-62 nm effective radius for monodisperse and polydisperse soot aggregates.
Corn Response to Competition: Growth Alteration vs. Yield Limiting Factors
USDA-ARS?s Scientific Manuscript database
Understanding competition mechanisms among adjacent plants can improve site-specific management recommendations. This 2-yr study compared two hypotheses, yield limiting factors vs. behavior modification, to explain plant interactions. Corn was grown under different levels of stress by varying light ...
Transfer from long to short photoperiods affects production efficiency of day-neutral rice
NASA Technical Reports Server (NTRS)
Goldman, K. R.; Mitchell, C. A.
1999-01-01
The day-neutral, semidwarf rice (Oryza sativa L.) cultivar Ai-Nan-Tsao was grown in a greenhouse under summer conditions using high-pressure sodium lamps to extend the natural photoperiod. After allowing 2 weeks for germination, stand establishment, and thinning to a consistent planting density of 212 plants/m2, stands were maintained under continuous lighting for 35 or 49 days before shifting to 8- or 12-h photoperiods until harvest 76 days after planting. Non-shifted control treatments consisting of 8-, 12-, or 24-h photoperiods also were maintained throughout production. Tiller number increased as duration of exposure to continuous light increased before shifting to shorter photoperiods. However, shoot harvest index and yield efficiency rate were lower for all plants receiving continuous light than for those under the 8- or 12-h photoperiods. Stands receiving 12-h photoperiods throughout production had the highest grain yield per plant and equaled the 8-h-photoperiod control plants for the lowest tiller number per plant. As long as stands were exposed to continuous light, tiller formation continued. Shifting to shorter photoperiods late in the cropping cycle resulted in newly formed tillers that were either sterile or unable to mature grain before harvest. Late-forming tillers also suppressed yield of grain in early-forming tillers, presumably by competing for photosynthate or for remobilized assimilate during senescence. Stands receiving 12-h photoperiods throughout production not only produced the highest grain yield at harvest but had the highest shoot harvest index, which is important for resource-recovery strategies in advanced life-support systems proposed for space.
NASA Astrophysics Data System (ADS)
Mitra, B.; Basu, S.; Bereznyakov, D.; Pereira, A.; Naithani, K. J.
2015-12-01
Drought across different agro-climatic regions of the world has the capacity to drastically impact the yield potential of rice. Consequently, there is growing interest in developing drought tolerant rice varieties with high yield. We parameterized two photosynthesis models based on light and CO2 response curves for seven different rice genotypes with different drought survival mechanisms: sensitive (Nipponbar, TEJ), resistance (Bengal, TRJ), avoidance by osmotic adjustment (Kaybonnet, TRJ; IRAT177, TRJ; N22, Aus; Vandana, Aus; and O Glabberrima, 316603). All rice genotypes were grown in greenhouse conditions (24 °C ± 3°C air temperature and ~ 600 μmol m-2 s-1 light intensity) with light/dark cycles of 10/14 h in water filled trays simulating flooded conditions. Measurements were conducted on fully grown plants (35 - 60 days old) under simulated flooded and drought conditions. Preliminary results have shown that the drought sensitive genotype, Nipponbare has the lowest photosynthetic carboxylation capacity (Vcmax) and a similar electron transport rate (Jmax) compared to the drought resistant genotype IRAT 177. Mitochondrial respiration (Rd) of all the genotypes were similar while quantum yield of the drought sensitive genotype was greater than that of the drought resistant genotypes. While both drought tolerant and drought sensitive rice genotypes have the same photosynthetic yield, from an irrigation perspective the former would require less 'drop per grain'. This has enormous economic and management implications on account of dwindling water resources across the world due to drought.
Chlorophyll Fluorescence Analysis of Cyanobacterial Photosynthesis and Acclimation
Campbell, Douglas; Hurry, Vaughan; Clarke, Adrian K.; Gustafsson, Petter; Öquist, Gunnar
1998-01-01
Cyanobacteria are ecologically important photosynthetic prokaryotes that also serve as popular model organisms for studies of photosynthesis and gene regulation. Both molecular and ecological studies of cyanobacteria benefit from real-time information on photosynthesis and acclimation. Monitoring in vivo chlorophyll fluorescence can provide noninvasive measures of photosynthetic physiology in a wide range of cyanobacteria and cyanolichens and requires only small samples. Cyanobacterial fluorescence patterns are distinct from those of plants, because of key structural and functional properties of cyanobacteria. These include significant fluorescence emission from the light-harvesting phycobiliproteins; large and rapid changes in fluorescence yield (state transitions) which depend on metabolic and environmental conditions; and flexible, overlapping respiratory and photosynthetic electron transport chains. The fluorescence parameters FV/FM, FV′/FM′,qp,qN, NPQ, and φPS II were originally developed to extract information from the fluorescence signals of higher plants. In this review, we consider how the special properties of cyanobacteria can be accommodated and used to extract biologically useful information from cyanobacterial in vivo chlorophyll fluorescence signals. We describe how the pattern of fluorescence yield versus light intensity can be used to predict the acclimated light level for a cyanobacterial population, giving information valuable for both laboratory and field studies of acclimation processes. The size of the change in fluorescence yield during dark-to-light transitions can provide information on respiration and the iron status of the cyanobacteria. Finally, fluorescence parameters can be used to estimate the electron transport rate at the acclimated growth light intensity. PMID:9729605
Li, Xue; Lu, Wei; Hu, Guyue; Wang, Xiao Chan; Zhang, Yu; Sun, Guo Xiang; Fang, Zhichao
2016-12-01
The winter in the Yangtze River Delta area of China involves more than 1 month of continuous low temperature and poor light (CLTL) weather conditions, which impacts horticultural production in an unheated greenhouse; however, few greenhouses in this area are currently equipped with a heating device. The low-cost and long-living light-emitting diode (LED) was used as an artificial light source to explore the effects of supplementary lighting during the dark period in CLTL winter on the vegetative characteristics, early yield, and physiology of flowering for pepper plants grown in a greenhouse without heating. Two LED lighting sets were employed with different light source to provide 65 μmol m -2 s -1 at night: (1) LED-A: red LEDs (R, peak wavelength 660 nm) and blue LEDs (B, peak wavelength 460 nm) with an R:B ratio of 6:3; and (2) LED-B: R and B LEDs at an R:B ratio of 8:1. Plants growth parameters and chlorophyll fluorescence characteristics were compared between lighting treatments and the control group. Plants' yield and photosynthesis ability were improved by LED-A. Pepper grown under the LED-A1 strategy showed a 303.3 % greater fresh weight of fruits and a 501.3 % greater dry mass compared with the control group. Plant leaves under LED-A1 showed maximum efficiency of the light quantum yield of PSII, electron transfer rate, and the proportion of the open fraction of PSII centers, with values 113.70, 114.34, and 211.65 % higher than those of the control group, respectively, and showed the lowest rate constant of thermal energy dissipation of all groups. LED-B was beneficial to the plant height and stems diameter of the pepper plants more than LED-A. These results can serve as a guide for environment control and for realizing low energy consumption for products grown in a greenhouse in the winter in Southern China.
Light-induced Conversion of Trp to Gly and Gly Hydroperoxide in IgG1
Haywood, Jessica; Mozziconacci, Olivier; Allegre, Kevin M.; Kerwin, Bruce A.; Schöneich, Christian
2013-01-01
The exposure of IgG1 in aqueous solution to light with λ = 254 nm or λ > 295 nm yields products consistent with Trp radical cation formation followed by αC-βC cleavage of the Trp side chain. The resulting glycyl radicals are either reduced to Gly, or add oxygen prior to reduction to Gly hydroperoxide. Photoirradiation at λ = 254 nm targets Trp at positions 191 (light chain), 309 and 377 (heavy chain) while photoirradiation at λ > 295 nm targets Trp at position 309 (heavy chain). Mechanistically, the formation of Trp radical cations likely proceeds via photo-induced electron- or hydrogen-transfer to disulfide bonds, yielding thiyl radicals and thiols, where thiols may serve as reductants for the intermediary glycyl or glycylperoxyl radicals. PMID:23363477
Evolution of Starspots on LO Pegasi
NASA Astrophysics Data System (ADS)
Harmon, Robert; Bloodgood, Felise; Martin, Alec; Pellegrin, Kyle
2018-01-01
LO Pegasi is a young solar analog, a K main-sequence star that rotates with a period of 10.1538 hr. The rapid rotation yields a strong stellar dynamo associated with large starspots on the surface, which are regions where the magnetic field inhibits the convective transport of energy from below, so that the spots are cooler and thus darker than the surrounding photosphere. The star thus exhibits rotational modulation of its light curve as the starspots are carried into and out of view of Earth. CCD images of LO Peg were acquired at Perkins Observatory in Delaware, OH through standard B, V, R, and I photometric filters from 2017 June 1 to July 20. After subtracting dark frames and flat fielding the images, differential aperture photometry was performed to yield light curves through each of the four filters. The resulting light curves that were then analyzed via the Light-curve Inversion program created by one of us (Harmon) to produce surface maps. Our observations indicated that LO Pegasi’s light curve changed in both amplitude and shape between 2017 June and July, while its maximum brightness did not change. We present maps corresponding to these two distinct light curves, along with maps for data acquired from 2006-2016.
Martinez, Angel; Smalyukh, Ivan I.
2015-02-12
Oscillatory and excitable systems very commonly exhibit formation of dynamic non-equilibrium patterns. For example, rotating spiral patterns are observed in biological, chemical, and physical systems ranging from organization of slime mold cells to Belousov-Zhabotinsky reactions, and to crystal growth from nuclei with screw dislocations. Here we describe spontaneous formation of spiral waves and a large variety of other dynamic patterns in anisotropic soft matter driven by low-intensity light. The unstructured ambient or microscope light illumination of thin liquid crystal films in contact with a self-assembled azobenzene monolayer causes spontaneous formation, rich spatial organization, and dynamics of twisted domains and topologicalmore » solitons accompanied by the dynamic patterning of azobenzene group orientations within the monolayer. Linearly polarized incident light interacts with the twisted liquid crystalline domains, mimicking their dynamics and yielding patterns in the polarization state of transmitted light, which can be transformed to similar dynamic patterns in its intensity and interference color. This shows that the delicate light-soft-matter interaction can yield complex self-patterning of both. Finally, we uncover underpinning physical mechanisms and discuss potential uses.« less
NASA Astrophysics Data System (ADS)
Bellworthy, Jessica; Fine, Maoz
2017-12-01
Despite rapidly rising sea surface temperatures and recurrent positive temperature anomalies, corals in the Gulf of Aqaba (GoA) rarely experience thermal bleaching. Elsewhere, mass coral bleaching has been observed in corals when the water temperature exceeds 1-2 °C above the local maximum monthly mean (MMM). This threshold value or "bleaching rule" has been used to create predictive models of bleaching from satellite sea surface temperature observations, namely the "degree heating week" index. This study aimed to characterize the physiological changes of dominant reef building corals from the GoA in response to a temperature and light stress gradient. Coral collection and experiments began after a period of 14 consecutive days above MMM in the field. Stylophora pistillata showed negligible changes in symbiont and host physiology parameters after accumulating up to 9.4 degree heating weeks during peak summer temperatures, for which the index predicts widespread bleaching and some mortality. This result demonstrates acute thermal tolerance in S. pistillata from the GoA and deviation from the bleaching rule. In a second experiment after 4 weeks at 4 °C above peak summer temperatures, S. pistillata and Acropora eurystoma in the high-light treatment visibly paled and suffered greater midday and afternoon photoinhibition compared to corals under low-light conditions (35% of high-light treatment). However, light, not temperature (alone or in synergy with light), was the dominant factor in causing paling and the effective quantum yield of corals at 4 °C above ambient was indistinguishable from those in the ambient control. This result highlights the exceptional, atypical thermal tolerance of dominant GoA branching corals. Concomitantly, it validates the efficacy of protecting GoA reefs from local stressors if they are to serve as a coral refuge in the face of global sea temperature rise.
NASA Astrophysics Data System (ADS)
Marques, Andrew J.; Jivraj, Jamil; Reyes, Robnier; Ramjist, Joel; Gu, Xijia J.; Yang, Victor X. D.
2017-02-01
Tissue removal using electrocautery is standard practice in neurosurgery since tissue can be cut and cauterized simultaneously. Thermally mediated tissue ablation using lasers can potentially possess the same benefits but with increased precision. However, given the critical nature of the spine, brain, and nerves, the effects of direct photo-thermal interaction on neural tissue needs to be known, yielding not only high precision of tissue removal but also increased control of peripheral heat damage. The proposed use of lasers as a neurosurgical tool requires that a common ground is found between ablation rates and resulting peripheral heat damage. Most surgical laser systems rely on the conversion of light energy into heat resulting in both desirable and undesirable thermal damage to the targeted tissue. Classifying the distribution of thermal energy in neural tissue, and thus characterizing the extent of undesirable thermal damage, can prove to be exceptionally challenging considering its highly inhomogenous composition when compared to other tissues such as muscle and bone. Here we present the characterization of neural tissue ablation rate and heat affected zone of a 1.94 micron thulium doped fiber laser for neural tissue ablation. In-Vivo ablation of porcine cerebral cortex is performed. Ablation volumes are studied in association with laser parameters. Histological samples are taken and examined to characterize the extent of peripheral heat damage.
Martins, Samuel C. V.; Araújo, Wagner L.; Tohge, Takayuki; Fernie, Alisdair R.; DaMatta, Fábio M.
2014-01-01
Coffee (Coffea arabica L.) has been traditionally considered as shade-demanding, although it performs well without shade and even out-yields shaded coffee. Here we investigated how coffee plants adjust their metabolic machinery to varying light supply and whether these adjustments are supported by a reprogramming of the primary and secondary metabolism. We demonstrate that coffee plants are able to adjust its metabolic machinery to high light conditions through marked increases in its antioxidant capacity associated with enhanced consumption of reducing equivalents. Photorespiration and alternative pathways are suggested to be key players in reductant-consumption under high light conditions. We also demonstrate that both primary and secondary metabolism undergo extensive reprogramming under high light supply, including depression of the levels of intermediates of the tricarboxylic acid cycle that were accompanied by an up-regulation of a range of amino acids, sugars and sugar alcohols, polyamines and flavonoids such as kaempferol and quercetin derivatives. When taken together, the entire dataset is consistent with these metabolic alterations being primarily associated with oxidative stress avoidance rather than representing adjustments in order to facilitate the plants from utilizing the additional light to improve their photosynthetic performance. PMID:24733284
Chen, Chun-Yen; Chen, Yu-Chun; Huang, Hsiao-Chen; Ho, Shih-Hsin; Chang, Jo-Shu
2015-09-01
Binary combinations of LEDs with four different colors were used as light sources to identify the effects of multiple wavelengths on the production of eicosapentaenoic acid (EPA) by an isolated microalga Nannochloropsis oceanica CY2. Combining LED-Blue and LED-Red could give the highest EPA productivity of 13.24 mg L(-1) d(-1), which was further enhanced to 14.4 mg L(-1) d(-1) when using semi-batch operations at a 40% medium replacement ratio. A novel photobioreactor with additional immersed light sources improved light penetration efficiency and led to an 38% (0.170-0.235 g L(-1) d(-1)) increase in the microalgae biomass productivity and a 9% decrease in electricity consumption yield of EPA (10.15-9.33 kW-h (g EPA)(-1)) when compared with the control (i.e., without immersed light sources). Operating the immersed LEDs at a flashing-frequency of 9 Hz further lowered the energy consumption yield to 8.87 kW-h (g EPA)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.
Trzcinski, Antoine Prandota; Ganda, Lily; Kunacheva, Chinagarn; Zhang, Dong Qing; Lin, Li Leonard; Tao, Guihe; Lee, Yingjie; Ng, Wun Jern
2016-10-01
In light of global warming mitigation efforts, increasing sludge disposal costs, and need for reduction in the carbon footprint of wastewater treatment plants, innovation in treatment technology has been tailored towards energy self-sufficiency. The AB process is a promising technology for achieving maximal energy recovery from wastewaters with minimum energy expenditure and therefore inherently reducing excess sludge production. Characterization of this novel sludge and its comparison with the more conventional B-stage sludge are necessary for a deeper understanding of AB treatment process design. This paper presents a case study of a pilot-scale AB system treating municipal wastewaters as well as a bio- (biochemical methane potential and adenosine tri-phosphate analysis) and physico-chemical properties (chemical oxygen demand, sludge volume index, dewaterability, calorific value, zeta potential and particle size distribution) comparison of the organic-rich A-stage against the B-stage activated sludge. Compared to the B-sludge, the A-sludge yielded 1.4 to 4.9 times more methane throughout the 62-week operation.
NASA Astrophysics Data System (ADS)
Peimanifard, Zahra; Rashid-Nadimi, Sahar
2015-12-01
The aim of this study is utilizing the artificial photosynthesis, which is an attractive and challenging theme in the photoelectrocatalytic water splitting, to charge the vanadium redox flow battery (VRFB). In this work multi walled carbon nanotube/cadmium sulphide hybrid is employed as a photoanode material to oxidize VO2+ toVO2+ for charging the positive vanadium redox flow battery's half-cell. Characterization studies are also described using the scanning electron microscopic-energy-dispersive X-ray spectroscopy (SEM-EDS), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and UV-Visible methods. The phtoelectrochemical performance is characterized by cyclic voltammetry and chronoamperometry. Applied bias photon-to-current efficiency (ABPE) is achieved for both two and three-electrode configurations. The glassy carbon/multi walled carbon nanotube/cadmium sulphide yields high maximum ABPE of 2.6% and 2.12% in three and two-electrode setups, respectively. These results provide a useful guideline in designing photoelectrochemical cells for charging the vanadium redox flow batteries by sunlight as a low cost, free and abundant energy source, which does not rely on an external power input.
Making High Accuracy Null Depth Measurements for the LBTI Exozodi Survey
NASA Technical Reports Server (NTRS)
Mennesson, Bertrand; Defrere, Denis; Nowak, Matthias; Hinz, Philip; Millan-Gabet, Rafael; Absil, Oliver; Bailey, Vanessa; Bryden, Geoffrey; Danchi, William C.; Kennedy, Grant M.;
2016-01-01
The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of 12 zodis per star, for a representative ensemble of 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 sigma measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation (null) levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI.
Making High Accuracy Null Depth Measurements for the LBTI ExoZodi Survey
NASA Technical Reports Server (NTRS)
Mennesson, Bertrand; Defrere, Denis; Nowak, Matthew; Hinz, Philip; Millan-Gabet, Rafael; Absil, Olivier; Bailey, Vanessa; Bryden, Geoffrey; Danchi, William; Kennedy, Grant M.;
2016-01-01
The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of approximately 12 zodis per star, for a representative ensemble of approximately 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 sigma measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation (null) levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI.
Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry.
Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ashraf, Sumara; Ahmad, Shakil; Ikram, Masroor
2015-05-01
Mueller matrix polarimetry along with polar decomposition algorithm was employed for the characterization of ex vivo normal and adenocarcinoma human colon tissues by polarized light in the visible spectral range (425-725 nm). Six derived polarization metrics [total diattenuation (DT ), retardance (RT ), depolarization(ΔT ), linear diattenuation (DL), retardance (δ), and depolarization (ΔL)] were compared for normal and adenocarcinoma colon tissue samples. The results show that all six polarimetric properties for adenocarcinoma samples were significantly higher as compared to the normal samples for all wavelengths. The Wilcoxon rank sum test illustrated that total retardance is a good candidate for the discrimination of normal and adenocarcinoma colon samples. Support vector machine classification for normal and adenocarcinoma based on the four polarization properties spectra (ΔT , ΔL, RT ,and δ) yielded 100% accuracy, sensitivity, and specificity, while both DTa nd DL showed 66.6%, 33.3%, and 83.3% accuracy, sensitivity, and specificity, respectively. The combination of polarization analysis and given classification methods provides a framework to distinguish the normal and cancerous tissues.
YAP(Ce) crystal characterization with proton beam up to 60 MeV
NASA Astrophysics Data System (ADS)
Randazzo, N.; Sipala, V.; Aiello, S.; Lo Presti, D.; Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.
2008-02-01
A YAP(Ce) crystal was characterized with a proton beam up to 60 MeV. Tests were performed to investigate the possibility of using this detector as a proton calorimeter. The size of the crystal was chosen so that the proton energy is totally lost inside the medium. The authors propose to use the YAP(Ce) crystal in medical applications for proton therapy. In particular, in proton computed tomography (pCT) project it is necessary as a calorimeter in order to measure the proton residual energy after the phantom. Energy resolution, linearity, and light yield were measured in the Laboratori Nazionali del Sud with the CATANA proton beam [ http://www.lns.infn.it/CATANA/CATANA] and the results are shown in this paper. The crystal shows a good resolution (3% at 60 MeV proton beam) and it shows good linearity for different proton beam energies (1% at 30-60 MeV energy range). The crystal performances confirm that the YAP(Ce) crystal represents a good solution for these kinds of application.
Integrating RNA sequencing into neuro-oncology practice.
Rogawski, David S; Vitanza, Nicholas A; Gauthier, Angela C; Ramaswamy, Vijay; Koschmann, Carl
2017-11-01
Malignant tumors of the central nervous system (CNS) cause substantial morbidity and mortality, yet efforts to optimize chemo- and radiotherapy have largely failed to improve dismal prognoses. Over the past decade, RNA sequencing (RNA-seq) has emerged as a powerful tool to comprehensively characterize the transcriptome of CNS tumor cells in one high-throughput step, leading to improved understanding of CNS tumor biology and suggesting new routes for targeted therapies. RNA-seq has been instrumental in improving the diagnostic classification of brain tumors, characterizing oncogenic fusion genes, and shedding light on intratumor heterogeneity. Currently, RNA-seq is beginning to be incorporated into regular neuro-oncology practice in the form of precision neuro-oncology programs, which use information from tumor sequencing to guide implementation of personalized targeted therapies. These programs show great promise in improving patient outcomes for tumors where single agent trials have been ineffective. As RNA-seq is a relatively new technique, many further applications yielding new advances in CNS tumor research and management are expected in the coming years. Copyright © 2017 Elsevier Inc. All rights reserved.
Perret, Florent; Duffour, Marine; Chevalier, Yves; Parrot-Lopez, Hélène
2013-01-01
Acyclovir possesses low solubility in water and in lipid bilayers, so that its dosage forms do not allow suitable drug levels at target sites following oral, local, or parenteral administration. In order to improve this lack of solubility, new cyclodextrin-based amphiphilic derivatives have been designed to form nanoparticles, allowing the efficient encapsulation of this hydrophobic antiviral agent. The present work first describes the synthesis and characterization of five new O-2,O-3 permethylated O-6 alkylthio- and perfluoroalkyl-propanethio-amphiphilic β-cyclodextrins. These derivatives have been obtained with good overall yields. The capacity of these molecules to form nanoparticles in water and to encapsulate acyclovir has then been studied. The nanoparticles prepared from the new β-cyclodextrin derivatives have been characterized by dynamic light scattering and have an average size of 120nm for the fluorinated derivatives and 220nm for the hydrogenated analogs. They all allowed high loading and sustained release of acyclovir. Copyright © 2012 Elsevier B.V. All rights reserved.
Analytical model of coincidence resolving time in TOF-PET
NASA Astrophysics Data System (ADS)
Wieczorek, H.; Thon, A.; Dey, T.; Khanin, V.; Rodnyi, P.
2016-06-01
The coincidence resolving time (CRT) of scintillation detectors is the parameter determining noise reduction in time-of-flight PET. We derive an analytical CRT model based on the statistical distribution of photons for two different prototype scintillators. For the first one, characterized by single exponential decay, CRT is proportional to the decay time and inversely proportional to the number of photons, with a square root dependence on the trigger level. For the second scintillator prototype, characterized by exponential rise and decay, CRT is proportional to the square root of the product of rise time and decay time divided by the doubled number of photons, and it is nearly independent of the trigger level. This theory is verified by measurements of scintillation time constants, light yield and CRT on scintillator sticks. Trapping effects are taken into account by defining an effective decay time. We show that in terms of signal-to-noise ratio, CRT is as important as patient dose, imaging time or PET system sensitivity. The noise reduction effect of better timing resolution is verified and visualized by Monte Carlo simulation of a NEMA image quality phantom.
Switchgrass leaf area index and light extinction coefficients
USDA-ARS?s Scientific Manuscript database
Biomass production simulation modeling for plant species is often dependent upon accurate simulation or measurement of canopy light interception and radiation use efficiency. With the recent interest in converting large tracts of land to biofuel species cropping, modeling vegetative yield with grea...
Barnard, M.; Venter, C.; Harding, A. K.
2018-01-01
We performed geometric pulsar light curve modeling using static, retarded vacuum, and offset polar cap (PC) dipole B-fields (the latter is characterized by a parameter ε), in conjunction with standard two-pole caustic (TPC) and outer gap (OG) emission geometries. The offset-PC dipole B-field mimics deviations from the static dipole (which corresponds to ε = 0). In addition to constant-emissivity geometric models, we also considered a slot gap (SG) E-field associated with the offset-PC dipole B-field and found that its inclusion leads to qualitatively different light curves. Solving the particle transport equation shows that the particle energy only becomes large enough to yield significant curvature radiation at large altitudes above the stellar surface, given this relatively low E-field. Therefore, particles do not always attain the radiation-reaction limit. Our overall optimal light curve fit is for the retarded vacuum dipole field and OG model, at an inclination angle α=78−1+1° and observer angle ζ=69−1+2°. For this B-field, the TPC model is statistically disfavored compared to the OG model. For the static dipole field, neither model is significantly preferred. We found that smaller values of ε are favored for the offset-PC dipole field when assuming constant emissivity, and larger ε values favored for variable emissivity, but not significantly so. When multiplying the SG E-field by a factor of 100, we found improved light curve fits, with α and ζ being closer to best fits from independent studies, as well as curvature radiation reaction at lower altitudes. PMID:29681648
NASA Technical Reports Server (NTRS)
Barnard, M.; Venter, C.; Harding, A. K.
2016-01-01
We performed geometric pulsar light curve modeling using static, retarded vacuum, and offset polar cap (PC) dipole B-fields (the latter is characterized by a parameter epsilon), in conjunction with standard two-pole caustic (TPC) and outer gap (OG) emission geometries. The offset-PC dipole B-field mimics deviations from the static dipole (which corresponds to epsilon equals 0). In addition to constant-emissivity geometric models, we also considered a slot gap (SG) E-field associated with the offset-PC dipole B-field and found that its inclusion leads to qualitatively different light curves. Solving the particle transport equation shows that the particle energy only becomes large enough to yield significant curvature radiation at large altitudes above the stellar surface, given this relatively low E-field. Therefore, particles do not always attain the radiation-reaction limit. Our overall optimal light curve fit is for the retarded vacuum dipole field and OG model, at an inclination angle alpha equals 78 plus or minus 1 degree and observer angle zeta equals 69 plus 2 degrees or minus 1 degree. For this B-field, the TPC model is statistically disfavored compared to the OG model. For the static dipole field, neither model is significantly preferred. We found that smaller values of epsilon are favored for the offset-PC dipole field when assuming constant emissivity, and larger epsilon values favored for variable emissivity, but not significantly so. When multiplying the SG E-field by a factor of 100, we found improved light curve fits, with alpha and zeta being closer to best fits from independent studies, as well as curvature radiation reaction at lower altitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina
Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature programmed desorption, surface area measurements, and postreaction temperature-programmed oxidation (TPO) also showed that the metal-modified zeolites retained a greater percentage of their initial acidity and surface area, which was consistent between the reactor scales. These results demonstrate that the trends observed with smaller (milligram to gram) catalyst reactors are applicable to larger, more industrially relevant (kg) scales to help guide catalyst research toward application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.
2015-02-21
Initially, the alkaline-earth scintillator, CaI 2:Eu 2+, was discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI 2:Eu 2+ has the potential to exceed the excellent scintillation performance of SrI 2:Eu 2+. In fact, theoretical predictions for the light yield of CaI2:Eu 2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. Like the early SrI 2:Eu 2+ scintillator, themore » performance of CaI 2:Eu 2+ scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI 2:Eu 2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI 2:Eu 2+ and pure CaI 2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI 2:Eu 2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI 2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI 2:Eu 2+ and un-doped CaI 2. Moreover, large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI 2:Eu 2+ and pure CaI 2 single crystals are presented that include studies of the effects of plastic deformation of the crystals on the scintillator performance.« less
Reference-based optical characterization of glass-ceramic converter for high-power white LEDs
NASA Astrophysics Data System (ADS)
Engel, A.; Letz, M.; Zachau, T.; Pawlowski, E.; Seneschal-Merz, K.; Korb, T.; Enseling, D.; Hoppe, B.; Peuchert, U.; Hayden, J. S.
2007-02-01
Fluorescence techniques are known for their high sensitivity and are widely used as analytical tools and detection methods for product and process control, material sciences, environmental and bio-technical analysis, molecular genetics, cell biology, medical diagnostics and drug screening. According to DIN/ISO 17025 certified standards are used for fluorescence diagnostics having the drawback of giving relative values for fluorescence intensities only. Therefore reference materials for a quantitative characterization have to be related directly to the materials under investigation. In order to evaluate these figures it is necessary to calculate absolute numbers like absorption/excitation cross section and quantum yield. This can be done for different types of dopants in different materials like glass, glass ceramics, crystals or nano crystalline material embedded in polymer matrices. Here we consider a special type of glass ceramic with Ce doped YAG as the main crystalline phase. This material has been developed for the generation of white light realized by a blue 460 nm semiconductor transition using a yellow phosphor or converter material respectively. Our glass ceramic is a pure solid state solution for a yellow phosphor. For the production of such a kind of material a well controlled thermal treatment is employed to transfer the original glass into a glass ceramic with a specific crystalline phase. In our material Ce doped YAG crystallites of a size of several µm are embedded in a matrix of a residual glass. We present chemical, structural and spectroscopic properties of our material. Based on this we will discuss design options for white LED's with respect to heat management, scattering regime, reflection losses, chemical durability and stability against blue and UV radiation, which evolve from our recently developed material. In this paper we present first results on our approaches to evaluate quantum yield and light output. Used diagnostics are fluorescence (steady state, decay time) and absorption (remission, absorption) spectroscopy working in different temperature regimes (10 - 350 K) of the measured samples in order to get a microscopic view of the relevant physical processes and to prove the correctness of the obtained data.
Study of new FNAL-NICADD extruded scintillator as active media of large EMCal of ALICE at LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oleg A. Grachov et al.
The current conceptual design of proposed Large EMCal of ALICE at LHC is based largely on the scintillating mega-tile/fiber technology implemented in CDF Endplug upgrade project and in both barrel and endcap electromagnetic calorimeters of the STAR. The cost of scintillating material leads us to the choice of extruded polystyrene based scintillator, which is available in new FNAL-NICADD facility. Result of optical measurements, such as light yield and light yield variation, show that it is possible to use this material as active media of Large EMCal of ALICE at LHC.
NASA Astrophysics Data System (ADS)
Nelson, M.; Dempster, W. F.; Silverstone, S.; Alling, A.; Allen, J. P.; van Thillo, M.
An experiment utilizing cowpeas Vigna unguiculata pinto beans Phaseolus vulgaris L and Apogee ultra-dwarf wheat was conducted in the soil-based closed ecological facility Laboratory Biosphere from February to May 2005 The lighting regime was 13 hours light 11 hours dark at a light intensity of 960 mu mol m -2 s -1 45 moles m -2 day -1 supplied by high-pressure sodium lamps The pinto beans and cowpeas were grown at two different plant densities The pinto bean produced 710 g m -2 total aboveground biomass and 341 g m -2 at 33 5 plants per m 2 and at 37 5 plants per m 2 produced 1092 g m -2 total biomass and 537 g m -2 of dry seed an increase of almost 50 Cowpeas at 28 plants m -2 yielded 1060 g m -2 of total biomass and 387 g seed m -2 outproducing the less dense planting by more than double 209 in biomass and 86 more seed as the planting of 21 plants m -2 produced 508 g m-2 of total biomass and 209 g m-2 of seed Edible yield rate EYR for the denser cowpea bean was 4 6 g m -2 day -1 vs 2 5 g m -2 day -1 for the less dense stand average yield was 3 5 g m -2 day -1 EYR for the denser pinto bean was 8 5 g m -2 day -1 vs 5 3 g m -2 day -1 average EYR for the pinto beans was 7 0 g m -2 day -1 Yield efficiency rate YER the ratio of edible to non-edible biomass was 0 97 for the dense pinto bean 0 92 for the less dense pinto bean and average 0 94 for the entire crop The cowpeas
NASA Astrophysics Data System (ADS)
Zaidel'man, F. R.; Stepantsova, L. V.; Nikiforova, A. S.; Krasin, V. N.; Dautokov, I. M.; Krasina, T. V.
2018-04-01
Light gray soils of Tambov oblast mainly develop from sandy and loamy sandy parent materials; these are the least studied soils in this region. Despite their coarse texture, these soils are subjected to surface waterlogging. They are stronger affected by the agrogenic degradation in comparison with chernozems and dark gray soils. Morphology, major elements of water regime, physical properties, and productivity of loamy sandy light gray soils with different degrees of gleyzation have been studied in the northern part of Tambov Plain in order to substantiate the appropriate methods of their management. The texture of these soils changes at the depth of 70-100 cm. The upper part is enriched in silt particles (16-30%); in the lower part, the sand content reaches 80-85%. In the nongleyed variants, middle-profile horizons contain thin iron-cemented lamellae (pseudofibers); in surface-gleyed variants, iron nodules are present in the humus horizon. The removal of clay from the humus horizon and its accumulation at the lithological contact and in pseudofibers promote surface subsidence and formation of microlows in the years with moderate and intense winter precipitation. The low range of active moisture favors desiccation of the upper horizons to the wilting point in dry years. The yield of cereal crops reaches 3.5-4.5 t/ha in the years with high and moderate summer precipitation on nongleyed and slightly gleyed light gray soils and decreases by 20-50% on strongly gleyed light gray soils. On light gray soils without irrigation, crop yields are unstable, and productivity of pastures is low. High yields of cereals and vegetables can be obtained on irrigated soils. In this case, local drainage measures should be applied to microlows; liming can be recommended to improve soil productivity.
Whole high-quality light environment for humans and plants.
Sharakshane, Anton
2017-11-01
Plants sharing a single light environment on a spaceship with a human being and bearing a decorative function should look as natural and attractive as possible. And consequently they can be illuminated only with white light with a high color rendering index. Can lighting optimized for a human eye be effective and appropriate for plants? Spectrum-based effects have been compared under artificial lighting of plants by high-pressure sodium lamps and general-purpose white LEDs. It has been shown that for the survey sample phytochrome photo-equilibria does not depend significantly on the parameters of white LED light, while the share of phytoactive blue light grows significantly as the color temperature increases. It has been revealed that yield photon flux is proportional to luminous efficacy and increases as the color temperature decreases, general color rendering index R a and the special color rendering index R 14 (green leaf) increase. General-purpose white LED lamps with a color temperature of 2700 K, R a > 90 and luminous efficacy of 100 lm/W are as efficient as the best high-pressure sodium lamps, and at a higher luminous efficacy their yield photon flux per joule is even bigger in proportion. Here we show that demand for high color rendering white LED light is not contradictory to the agro-technical objectives. Copyright © 2017. Published by Elsevier Ltd.
The effect of red light and far-red light conditions on secondary metabolism in agarwood.
Kuo, Tony Chien-Yen; Chen, Chuan-Hung; Chen, Shu-Hwa; Lu, I-Hsuan; Chu, Mei-Ju; Huang, Li-Chun; Lin, Chung-Yen; Chen, Chien-Yu; Lo, Hsiao-Feng; Jeng, Shih-Tong; Chen, Long-Fang O
2015-06-12
Agarwood, a heartwood derived from Aquilaria trees, is a valuable commodity that has seen prevalent use among many cultures. In particular, it is widely used in herbal medicine and many compounds in agarwood are known to exhibit medicinal properties. Although there exists much research into medicinal herbs and extraction of high value compounds, few have focused on increasing the quantity of target compounds through stimulation of its related pathways in this species. In this study, we observed that cucurbitacin yield can be increased through the use of different light conditions to stimulate related pathways and conducted three types of high-throughput sequencing experiments in order to study the effect of light conditions on secondary metabolism in agarwood. We constructed genome-wide profiles of RNA expression, small RNA, and DNA methylation under red light and far-red light conditions. With these profiles, we identified a set of small RNA which potentially regulates gene expression via the RNA-directed DNA methylation pathway. We demonstrate that light conditions can be used to stimulate pathways related to secondary metabolism, increasing the yield of cucurbitacins. The genome-wide expression and methylation profiles from our study provide insight into the effect of light on gene expression for secondary metabolism in agarwood and provide compelling new candidates towards the study of functional secondary metabolic components.
NASA Astrophysics Data System (ADS)
Olweny, Ephrem O.; Tan, Yung K.; Faddegon, Stephen; Jackson, Neil; Wehner, Eleanor F.; Best, Sara L.; Park, Samuel K.; Thapa, Abhas; Cadeddu, Jeffrey A.; Zuzak, Karel J.
2012-03-01
Digital light processing hyperspectral imaging (DLP® HSI) was adapted for use during laparoscopic surgery by coupling a conventional laparoscopic light guide with a DLP-based Agile Light source (OL 490, Optronic Laboratories, Orlando, FL), incorporating a 0° laparoscope, and a customized digital CCD camera (DVC, Austin, TX). The system was used to characterize renal ischemia in a porcine model.
Multi-pass amplifier architecture for high power laser systems
Manes, Kenneth R; Spaeth, Mary L; Erlandson, Alvin C
2014-04-01
A main amplifier system includes a first reflector operable to receive input light through a first aperture and direct the input light along an optical path. The input light is characterized by a first polarization. The main amplifier system also includes a first polarizer operable to reflect light characterized by the first polarization state. The main amplifier system further includes a first and second set of amplifier modules. Each of the first and second set of amplifier modules includes an entrance window, a quarter wave plate, a plurality of amplifier slablets arrayed substantially parallel to each other, and an exit window. The main amplifier system additionally includes a set of mirrors operable to reflect light exiting the first set of amplifier modules to enter the second set of amplifier modules and a second polarizer operable to reflect light characterized by a second polarization state.
Le Pleux, Loïc; Pellegrin, Yann; Blart, Errol; Odobel, Fabrice; Harriman, Anthony
2011-05-26
A series of multiporphyrin clusters has been synthesized and characterized in which there exists a logical gradient for either energy or electron transfer between the porphyrins. A central free-base porphyrin (FbP), for example, is equipped with peripheral zinc(II) porphyrins (ZnP) which act as ancillary light harvesters and transfer excitation energy to the FbP under visible light illumination. Additional energy-transfer steps occur at the triplet level, and the series is expanded by including magnesium(II) porphyrins and/or tin(IV) porphyrins as chromophores. Light-induced electron transfer is made possible by incorporating a gold(III) porphyrin (AuP(+)) into the array. Although interesting by themselves, these clusters serve as control compounds by which to understand the photophysical processes occurring within a three-stage dendrimer comprising an AuP(+) core, a second layer formed from four FbP units, and an outer layer containing 12 ZnP residues. Here, illumination into a peripheral ZnP leads to highly efficient electronic energy transfer to FbP, followed by charge transfer to the central AuP(+). Charge recombination within the resultant charge-shift state is intercepted by secondary hole transfer to the ZnP, which occurs with a quantum yield of around 20%. The final charge-shift state survives for some microseconds in fluid solution at room temperature.
Photodissociation of pernitric acid (HO2NO2) at 248 nm
NASA Technical Reports Server (NTRS)
Macleod, Helene; Smith, Gregory P.; Golden, David M.
1989-01-01
The photodissociation of pernitric acid (PNA) was studied at 248 nm. The quantum yield for production of OH radicals is 34 + or - 16 percent. The yield of OH from PNA was measured relative to that of H2O2. The translational and rotational energy content of the OH photofragment from PNA was characterized. A fluorescent emission was also observed and characterized. It is attributed to electronically excited NO2 produced in the PNA photodissociation. A maximum yield of 30 percent for NO2 production was determined. The intensity of this emission, and a mass spectrometric peak at m/e = 33, were found to be useful means of characterizing the purity of the PNA sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Chenkun; Worku, Michael; Neu, Jennifer
Here, we report the synthesis and characterization of (Ph 4P) 2SbCl 5, a novel ionically bonded organic metal halide hybrid with a zero-dimensional (0D) structure at the molecular level. By cocrystallization of tetraphenylphosphonium (Ph 4P +) and antimony (Sb 3+) chloride salts, (Ph 4P) 2SbCl 5 bulk single crystals can be prepared in high yield, which exhibit a highly efficient broadband red emission peaked at 648 nm with a photoluminescence quantum efficiency (PLQE) of around 87%. Density functional theory (DFT) calculations reveal the origin of emission as phosphorescence from the excitons localized at SbCl 5 2– with strong excited-state structuralmore » distortion. Interestingly, (Ph 4P) 2SbCl 5 bulk crystals with a PLQE of around 100% can be prepared via a rapid crystal growth process within minutes, followed by a spontaneous structural transformation. It was found that the rapid growth process yielded a yellow emitting kinetically favored metastable product containing solvent molecules, which turned into the red emitting thermodynamically stable product slowly at room temperature or quickly upon thermal treatment.« less
Zhou, Chenkun; Worku, Michael; Neu, Jennifer; ...
2018-03-12
Here, we report the synthesis and characterization of (Ph 4P) 2SbCl 5, a novel ionically bonded organic metal halide hybrid with a zero-dimensional (0D) structure at the molecular level. By cocrystallization of tetraphenylphosphonium (Ph 4P +) and antimony (Sb 3+) chloride salts, (Ph 4P) 2SbCl 5 bulk single crystals can be prepared in high yield, which exhibit a highly efficient broadband red emission peaked at 648 nm with a photoluminescence quantum efficiency (PLQE) of around 87%. Density functional theory (DFT) calculations reveal the origin of emission as phosphorescence from the excitons localized at SbCl 5 2– with strong excited-state structuralmore » distortion. Interestingly, (Ph 4P) 2SbCl 5 bulk crystals with a PLQE of around 100% can be prepared via a rapid crystal growth process within minutes, followed by a spontaneous structural transformation. It was found that the rapid growth process yielded a yellow emitting kinetically favored metastable product containing solvent molecules, which turned into the red emitting thermodynamically stable product slowly at room temperature or quickly upon thermal treatment.« less
NASA Astrophysics Data System (ADS)
Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Aghazadeh, Mustafa; Ganjali, Mohammad Reza; Karimi, Meisam Sadeghpour; Norouzi, Parviz
2017-12-01
This work focuses on the application of an orthogonal array design to the optimization of the facile direct carbonization reaction for the synthesis of neodymium carbonate nanoparticles, were the product particles are prepared based on the direct precipitation of their ingredients. To optimize the method the influences of the major operating conditions on the dimensions of the neodymium carbonate particles were quantitatively evaluated through the analysis of variance (ANOVA). It was observed that the crystalls of the carbonate salt can be synthesized by controlling neodymium concentration and flow rate, as well as reactor temperature. Based on the results of ANOVA, 0.03 M, 2.5 mL min-1 and 30 °C are the optimum values for the above-mentioend parameters and controlling the parameters at these values yields nanoparticles with the sizes of about of 31 ± 2 nm. The product of this former stage was next used as the feed for a thermal decomposition procedure which yielding neodymium oxide nanoparticles. The products were studied through X-ray diffraction (XRD), SEM, TEM, FT-IR and thermal analysis techniques. In addition, the photocatalytic activity of dyspersium carbonate and dyspersium oxide nanoparticles were investigated using degradation of methyl orange (MO) under ultraviolet light.
Zhao, Jiang; Yu, Yue; Yang, Xiaolong; Yan, Xiaogang; Zhang, Huiming; Xu, Xianbin; Zhou, Guijiang; Wu, Zhaoxin; Ren, Yixia; Wong, Wai-Yeung
2015-11-11
A series of heteroleptic functional Ir(III) complexes bearing different fluorinated aromatic sulfonyl groups has been synthesized. Their photophysical features, electrochemical behaviors, and electroluminescent (EL) properties have been characterized in detail. These complexes emit intense yellow phosphorescence with exceptionally high quantum yields (ΦP > 0.9) at room temperature, and the emission maxima of these complexes can be finely tuned depending upon the number of the fluorine substituents on the pendant phenyl ring of the sulfonyl group. Furthermore, the electrochemical properties and electron injection/transporting (EI/ET) abilities of these Ir(III) phosphors can also be effectively tuned by the fluorinated aromatic sulfonyl group to furnish some desired characters for enhancing the EL performance. Hence, the maximum luminance efficiency (ηL) of 81.2 cd A(-1), corresponding to power efficiency (ηP) of 64.5 lm W(-1) and external quantum efficiency (ηext) of 19.3%, has been achieved, indicating the great potential of these novel phosphors in the field of organic light-emitting diodes (OLEDs). Furthermore, a clear picture has been drawn for the relationship between their optoelectronic properties and chemical structures. These results should provide important information for developing highly efficient phosphors.
Discrimination and quantification of autofluorescence spectra of human lung cells
NASA Astrophysics Data System (ADS)
Rahmani, Mahya; Khani, Mohammad Mehdi; Khazaei Koohpar, Zeinab; Molik, Paria
2016-10-01
To study laser-induced autofluorescence spectroscopy of the human lung cell line, we evaluated the native fluorescence properties of cancer QU-DB and normal MRC-5 human lung cells during continuous exposure to 405 nm laser light. Two emission bands centered at ~470 nm and ~560 nm were observed. These peaks are most likely attributable to mitochondrial fluorescent reduced nicotinamide adenine dinucleotide and riboflavin fluorophores, respectively. This article highlights lung cell autofluorescence characterization and signal discrimination by collective investigation of different spectral features. The absolute intensity, the spectral shape factor or redox ratio, the full width of half-maximum and the full width of quarter maximum was evaluated. Moreover, the intensity ratio, the area under the peak and the area ratio as a contrast factor for normal and cancerous cells were also calculated. Among all these features it seems that the contrast factor precisely and significantly discriminates the spectral differences of normal and cancerous lung cells. On the other hand, the relative quantum yield for both cell types were found by comparing the quantum yield of an unknown compound with known fluorescein sodium as a reference solution.
Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis
NASA Astrophysics Data System (ADS)
Bhunia, Susanta Kumar; Nandi, Sukhendu; Shikler, Rafi; Jelinek, Raz
2016-02-01
Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies.Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08400h
75 FR 9901 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
...). Background and Brief Description Cigarettes are currently ranked as full-flavor, light or ultralight on the... smokers of cigarettes of different machine-smoked yield categories. Comparison of cigarette smoke... cigarette yield category, biomarkers of exposure, and measures of cardiovascular reactivity. The study has...
75 FR 53311 - Agency Forms Undergoing Paperwork Reduction Act Review
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
... Brief Description Cigarettes have been ranked as full-flavor, light or ultralight on the basis of... cigarettes of different machine-smoked yield categories. In 2007, the Centers for Disease Control and... smoking behavior modifies the relationship between cigarette yield category, biomarkers of exposure, and...
Farrelly, Matthew C; Loomis, Brett R; Mann, Nathan H
2007-10-01
We used scanner data on cigarette prices and sales collected from supermarkets across the United States from 1994 to 2004 to test the hypothesis that cigarette prices are positively correlated with sales of cigarettes with higher tar and nicotine content. During this period the average inflation-adjusted price for menthol cigarettes increased 55.8%. Price elasticities from multivariate regression models suggest that this price increase led to an increase of 1.73% in sales-weighted average tar yields and a 1.28% increase in sales-weighted average nicotine yields for menthol cigarettes. The 50.5% price increase of nonmenthol varieties over the same period yielded an estimated increase of 1% in tar per cigarette but no statistically significant increase in nicotine yields. An ordered probit model of the impact of cigarette prices on cigarette strength (ultra-light, light, full flavor, unfiltered) offers an explanation: As cigarette prices increase, the probability that stronger cigarette types will be sold increases. This effect is larger for menthol than for nonmenthol cigarettes. Our results are consistent with earlier population-based cross-sectional and longitudinal studies showing that higher cigarette prices and taxes are associated with increasing consumption of higher-yield cigarettes by smokers.
Recent decline in crop water productivity in the United States: a call to grow "more crop per drop"
NASA Astrophysics Data System (ADS)
Marshall, M. T.; Tu, K. P.; Thenkabail, P.; Brown, J. F.
2016-12-01
Irrigation for agriculture accounts for approximately 80 to 90% of U.S. consumptive water use. Recent declines in freshwater supply for irrigated agriculture in the western U.S. is particularly alarming, because climate change, water withdrawals from growing and competing sectors, and water pollution, are projected to put further strain on this vital sector. Innovative water management strategies are being proposed to combat this eminent water crisis and include: developing water markets, improving crop water productivity (CWP: "more crop per drop"), and coordinating the use of surface and groundwater supplies. The increase in CWP through crop type or variety selection is particularly lucrative, because it aims to increase the marketable yield of a crop, while reducing the cost of consumptive water use. Here we estimated CWP from 2000-2015 for the Contiguous United States over the primary growing season (mid May - late October) using a recently developed and validated light-use efficiency model for estimating crop yield and the transpiration component of the Priestley-Taylor Jet Propulsion Laboratory evapotranspiration model. The models were parameterized with daily DAYMET 1 km meteorological and 7-day EROS Moderate Resolution Imaging Spectroradiometer 250 m vegetation data. An analysis will be performed on CWP and its components to characterize the magnitude, direction, and persistence of trends. CWP estimates and trends will be overlaid with the U.S. Department of Agriculture's Cropland Data Layer to rank major crops by water use versus marketable yield and to characterize intervention hotspots, respectively. County-level data on surface and ground water withdrawals for irrigated agriculture available through the U.S. Geological Survey will be used to further scrutinize emerging patterns. It is anticipated that over much of the irrigated areas of the western U.S. that persistent and decreasing trends in CWP for major water users (e.g. alfalfa) due to temperature-driven increases in atmospheric moisture demand or potential evapotranspiration will correspond to a decrease (increase) in surface (ground) water use for irrigation.
Erdrich, Philipp; Knoop, Henning; Steuer, Ralf; Klamt, Steffen
2014-09-19
Cyanobacteria are increasingly recognized as promising cell factories for the production of renewable biofuels and chemical feedstocks from sunlight, CO2, and water. However, most biotechnological applications of these organisms are still characterized by low yields. Increasing the production performance of cyanobacteria remains therefore a crucial step. In this work we use a stoichiometric network model of Synechocystis sp. PCC 6803 in combination with CASOP and minimal cut set analysis to systematically identify and characterize suitable strain design strategies for biofuel synthesis, specifically for ethanol and isobutanol. As a key result, improving upon other works, we demonstrate that higher-order knockout strategies exist in the model that lead to coupling of growth with high-yield biofuel synthesis under phototrophic conditions. Enumerating all potential knockout strategies (cut sets) reveals a unifying principle behind the identified strain designs, namely to reduce the ratio of ATP to NADPH produced by the photosynthetic electron transport chain. Accordingly, suitable knockout strategies seek to block cyclic and other alternate electron flows, such that ATP and NADPH are exclusively synthesized via the linear electron flow whose ATP/NADPH ratio is below that required for biomass synthesis. The products of interest are then utilized by the cell as sinks for reduction equivalents in excess. Importantly, the calculated intervention strategies do not rely on the assumption of optimal growth and they ensure that maintenance metabolism in the absence of light remains feasible. Our analyses furthermore suggest that a moderately increased ATP turnover, realized, for example, by ATP futile cycles or other ATP wasting mechanisms, represents a promising target to achieve increased biofuel yields. Our study reveals key principles of rational metabolic engineering strategies in cyanobacteria towards biofuel production. The results clearly show that achieving obligatory coupling of growth and product synthesis in photosynthetic bacteria requires fundamentally different intervention strategies compared to heterotrophic organisms.
NASA Astrophysics Data System (ADS)
Padilla, D.; Steiner, J. C.
2005-12-01
Fourier Transform Infrared (FTIR) examination of the combustion products of selected forest materials using a meeker burner flame at temperatures up to 500 degrees Celsius produces a cluster of broad distinct peaks throughout the 400 to 4000 cm-1 wavenumber interval. Distinct bands bracketed by wavenumbers 400-700, 1500-1700, 2200-2400 and 3300-3600 cm-1 show variable intensity with an average difference between the least absorbing and most strongly absorbing species of approximately fifty percent. Given that spectral band differences of ten percent are within the range of modern satellite spectrometers, these band differences are of potential value for discriminating between fires that are impacting a range of vegetation types. Corresponding scanning electron microscope and energy dispersive micro-chemical (SEM/ED) analysis establishes that the evolved soot particles exhibit a characteristic rounded morphology, are carbon rich and host a wide range of adsorbed elements, including calcium, aluminum, potassium, silicon, sulfur and trace nitrogen. Combustion experiments involving leaves and branches as a subset of the biomass experiments at 200-500 degrees Celsius yield a similar broad background, but with peak shifts for maxima residing at less than 1700 cm-1. Additional peaks appear in the ranges 1438-1444, 875 and 713 cm-1. These peak are of potential use for discriminating between hot and smoldering fires, and between soot and smoke yields from green woods and whole-wood or lumber. The spectral shifts noted for low temperature smoldering conditions are in the vicinity of those cited for green vegetation and may not be resolved by present satellite platforms. Nevertheless, the experimental peak data set is of potential use for discriminating between a conflagration or accentuated fire and one characterized by smoldering at low temperature. SEM/ED analysis of the combusted leaf, branch, bark and various crown assemblages yields comparable morphological and geochemical signatures although potassium and light elements are slightly concentrated in effluent from the leafy matrix.
Predicted Exoplanet Yields for the HabEx Mission Concept
NASA Astrophysics Data System (ADS)
Stark, Christopher; Mennesson, Bertrand; HabEx STDT
2018-01-01
The Habitable Exoplanet Imaging Mission (HabEx) is a concept for a flagship mission to directly image and characterize extrasolar planets around nearby stars and to enable a broad range of general astrophysics. The HabEx Science and Technology Definition Team (STDT) is currently studying two architectures for HabEx. Here we summarize the exoplanet science yield of Architecture A, a 4 m monolithic off-axis telescope that uses a vortex coronagraph and a 72m external starshade occulter. We summarize the instruments' capabilities, present science goals and observation strategies, and discuss astrophysical assumptions. Using a yield optimization code, we predict the yield of potentially Earth-like extrasolar planets that could be detected, characterized, and searched for signs of habitability and/or life by HabEx. We demonstrate that HabEx could also detect and characterize a wide variety of exoplanets while searching for potentially Earth-like planets.
Multifunctional two-stage riser fluid catalytic cracking process.
Zhang, Jinhong; Shan, Honghong; Chen, Xiaobo; Li, Chunyi; Yang, Chaohe
This paper described the discovering process of some shortcomings of the conventional fluid catalytic cracking (FCC) process and the proposed two-stage riser (TSR) FCC process for decreasing dry gas and coke yields and increasing light oil yield, which has been successfully applied in 12 industrial units. Furthermore, the multifunctional two-stage riser (MFT) FCC process proposed on the basis of the TSR FCC process was described, which were carried out by the optimization of reaction conditions for fresh feedstock and cycle oil catalytic cracking, respectively, by the coupling of cycle oil cracking and light FCC naphtha upgrading processes in the second-stage riser, and the specially designed reactor for further reducing the olefin content of gasoline. The pilot test showed that it can further improve the product quality, increase the diesel yield, and enhance the conversion of heavy oil.
Fast Radio Bursts from Extragalactic Light Sails
NASA Astrophysics Data System (ADS)
Lingam, Manasvi; Loeb, Abraham
2017-03-01
We examine the possibility that fast radio bursts (FRBs) originate from the activity of extragalactic civilizations. Our analysis shows that beams used for powering large light sails could yield parameters that are consistent with FRBs. The characteristic diameter of the beam emitter is estimated through a combination of energetic and engineering constraints, and both approaches intriguingly yield a similar result that is on the scale of a large rocky planet. Moreover, the optimal frequency for powering the light sail is shown to be similar to the detected FRB frequencies. These “coincidences” lend some credence to the possibility that FRBs might be artificial in origin. Other relevant quantities, such as the characteristic mass of the light sail, and the angular velocity of the beam, are also derived. By using the FRB occurrence rate, we infer upper bounds on the rate of FRBs from extragalactic civilizations in a typical galaxy. The possibility of detecting fainter signals is briefly discussed, and the wait time for an exceptionally bright FRB event in the Milky Way is estimated.
Ma, Huiying; Zhang, Keke; Jiang, Qing; Dai, Diya; Li, Hongli; Bi, Wentao; Chen, David Da Yong
2018-04-27
Plant polysaccharides have numerous medicinal functions. Due to the differences in their origins, regions of production, and cultivation conditions, the quality and the functions of polysaccharides can vary significantly. They are macromolecules with large molecular weight (MW) and complex structure, and pose great challenge for the analytical technology used. Taking Dendrobium officinale (DO) from various origins and locations as model samples. In this investigation, mechanochemical extraction method was used to successfully extract polysaccharides from DO using water as solvent, the process is simple, fast (40 s) and with high yield. The MWs of the intact saccharides from calibration curve and light scattering measurement were determined and compared after separation with size exclusion chromatography (SEC). The large polysaccharide was acid hydrolyzed to oligosaccharides and the products were efficiently separated and identified using liquid chromatography coupled to a high resolution tandem mass spectrometry (LC-MS 2 ). Obvious differences were observed among LC-MS 2 chromatograms of digested products, and the chemical structures for the products were proposed based on accurate mass values. More importantly, isomeric digested carbohydrate compounds were explored and characterized. All the chromatographic and mass spectrometric results in this study provided a multi-dimensional characterization, fingerprint analysis, and molecular structure level assessment of plant polysaccharides. Copyright © 2018 Elsevier B.V. All rights reserved.
Sulfates as chromophores for multiwavelength photoacoustic imaging phantoms
NASA Astrophysics Data System (ADS)
Fonseca, Martina; An, Lu; Beard, Paul; Cox, Ben
2017-12-01
As multiwavelength photoacoustic imaging becomes increasingly widely used to obtain quantitative estimates, the need for validation studies conducted on well-characterized experimental phantoms becomes ever more pressing. One challenge that such studies face is the design of stable, well-characterized phantoms and absorbers with properties in a physiologically realistic range. This paper performs a full experimental characterization of aqueous solutions of copper and nickel sulfate, whose properties make them close to ideal as chromophores in multiwavelength photoacoustic imaging phantoms. Their absorption varies linearly with concentration, and they mix linearly. The concentrations needed to yield absorption values within the physiological range are below the saturation limit. The shape of their absorption spectra makes them useful analogs for oxy- and deoxyhemoglobin. They display long-term photostability (no indication of bleaching) as well as resistance to transient effects (no saturable absorption phenomena), and are therefore suitable for exposure to typical pulsed photoacoustic light sources, even when exposed to the high number of pulses required in scanning photoacoustic imaging systems. In addition, solutions with tissue-realistic, predictable, and stable scattering can be prepared by mixing sulfates and Intralipid, as long as an appropriate emulsifier is used. Finally, the Grüneisen parameter of the sulfates was found to be larger than that of water and increased linearly with concentration.
Ociepa, Ewa; Mrowiec, Maciej; Lach, Joanna
2017-07-01
The aim of the study was to evaluate the effect of using a fertilizer obtained from waste substances on selected physical and chemical properties of soil and biomass yield Spartina pectinate. The fertilizer used for soil (C) fertilisation contained sewage sludge (SS), waste soil fractions of brown coal (BC), brown coal ash (BCA) enriched with mineral potassium (K) fertilizer (C+SS+BC+BCA+K). The composition of the preparation was developed by the authors and adjusted to the quality of the fertilised soil and the individual characteristics of the plant. It was assumed that the preparation should replace expensive conventional fertilisation methods, allow for management of waste substances and improve soil properties, leading to a high yield of Spartina pectinata used as energy crop. The plants were grown on the soil from the Huta Częstochowa steelworks effect zone. The soil was light, with acid reaction (pH KCl =5.5), with small contents of such contaminants as Cd and Zn and elevated Pb content. Based on a three-year pot experiment, the paper presents the results of the examinations concerning the effect of fertilisation on soil pH, hydrolytic acidity, sorptive properties, content of humic acids, organic coal and total nitrogen in soil and crop yielding. The effect of the use of the fertilizer (C+SS+BC+BCA+K) was compared with the use of the sludge (C+SS), sludge with mineral fertilizers (C+SS+NPK), mixture of brown coal and mineral fertilizers (C+BC+NPK) and effect of only mineral fertilizers (C+NPK). Fertilisation with (C+SS+BC+BCA+K) led to the increase in soil pH from 5.5 to 6.0, which is considered sufficient for light soils. The fertilised soil was characterized by sorption capacity of ca. 5.8 cmol(+)/kg, and, after fertilisation with O+W+P, reached the value of ca. 8.0 cmol(+)kg -1 . Consequently the soil can be regarded as of good quality in terms of its capability to store nutrients. The C:N ratio was also extended from 11:1 (control soil) to 14:1 (C+SS+BC+BCA+K). The yield of Spartina pectinata in the first year was 1.6 and in the third year 2.7 times higher in the case of fertilisation with the investigated mixture as compared to the control. Copyright © 2017 Elsevier Inc. All rights reserved.
Characterization of Anisotropic Leaky Mode Modulators for Holovideo
Gneiting, Scott; Kimball, Jacob; Henrie, Andrew; McLaughlin, Stephen; DeGraw, Taylor; Smalley, Daniel
2016-01-01
Holovideo displays are based on light-bending spatial light modulators. One such spatial light modulator is the anisotropic leaky mode modulator. This modulator is particularly well suited for holographic video experimentation as it is relatively simple and inexpensive to fabricate1-3. Some additional advantages of leaky mode devices include: large aggregate bandwidth, polarization separation of signal light from noise, large angular deflection and frequency control of color1. In order to realize these advantages, it is necessary to be able to adequately characterize these devices as their operation is strongly dependent on waveguide and transducer parameters4. To characterize the modulators, the authors use a commercial prism coupler as well as a custom characterization apparatus to identify guided modes, calculate waveguide thickness and finally to map the device's frequency input and angular output of leaky mode modulators. This work gives a detailed description of the measurement and characterization of leaky mode modulators suitable for full-color holographic video. PMID:27023115
Comparing modeled productivity to historical data in New England potato production systems
USDA-ARS?s Scientific Manuscript database
Potato yields in Northern Maine have remained fairly constant for the last 70 years. Many long-term projects have sought to identify the limitations to potato yield, but identifying limiting factors is difficult without first identifying the upper limits of potato production. A simple, light-driven ...
Brickett, K E; Dahiya, J P; Classen, H L; Gomis, S
2007-10-01
The objective of this study was to examine main and interactive effects of nutrient density (ND), feed form (FF; mash, pellet), and lighting program (12L:12D, 20L:4D) on production characteristics and meat yield of broilers raised to 35 d of age. Diets (starter, grower, and finisher) were formulated so that amino acid levels were in proportion to the dietary energy level. Lighting programs were initiated at 4 d of age. Body weight was not affected by ND when diets were fed in a pellet form but decreased in a linear manner with lower ND when fed as a mash. Final BW of birds fed mash were less than those of birds fed pellet diets. Feed to gain ratio decreased with increasing ND but was not affected by FF. Feed intake decreased with increasing ND and was lower for birds fed mash. The effect of ND on feed intake was less when birds were fed mash in contrast to pellet diets (P(ND x F) < 0.0001). Dietary ND had no effect on mortality, but feeding mash decreased mortality (3.8%) compared with feeding pelleted feed (5.6%). Lighting programs affected production characteristics independently of ND and FF. Use of 12L:12D reduced BW, feed to gain ratio, feed intake, and mortality compared with 20L:4D. Similarly, carcass components were not affected by ND when fed in pellet form but decreased with lower ND when fed as a mash. Overall, carcass yields were reduced when broilers were fed mash or provided with 12L:12D. Female birds had higher carcass yields and increased proportional breast meat deposition compared with males.
Metabolic Architecture of the Cereal Grain and Its Relevance to Maximize Carbon Use Efficiency1[OPEN
Rolletschek, Hardy; Grafahrend-Belau, Eva; Munz, Eberhard; Radchuk, Volodymyr; Kartäusch, Ralf; Tschiersch, Henning; Melkus, Gerd; Schreiber, Falk; Jakob, Peter M.; Borisjuk, Ljudmilla
2015-01-01
Here, we have characterized the spatial heterogeneity of the cereal grain’s metabolism and demonstrated how, by integrating a distinct set of metabolic strategies, the grain has evolved to become an almost perfect entity for carbon storage. In vivo imaging revealed light-induced cycles in assimilate supply toward the ear/grain of barley (Hordeum vulgare) and wheat (Triticum aestivum). In silico modeling predicted that, in the two grain storage organs (the endosperm and embryo), the light-induced shift in solute influx does cause adjustment in metabolic flux without changes in pathway utilization patterns. The enveloping, leaf-like pericarp, in contrast, shows major shifts in flux distribution (starch metabolism, photosynthesis, remobilization, and tricarboxylic acid cycle activity) allow to refix 79% of the CO2 released by the endosperm and embryo, allowing the grain to achieve an extraordinary high carbon conversion efficiency of 95%. Shading experiments demonstrated that ears are autonomously able to raise the influx of solutes in response to light, but with little effect on the steady-state levels of metabolites or transcripts or on the pattern of sugar distribution within the grain. The finding suggests the presence of a mechanism(s) able to ensure metabolic homeostasis in the face of short-term environmental fluctuation. The proposed multicomponent modeling approach is informative for predicting the metabolic effects of either an altered level of incident light or a momentary change in the supply of sucrose. It is therefore of potential value for assessing the impact of either breeding and/or biotechnological interventions aimed at increasing grain yield. PMID:26395842
Metabolic Architecture of the Cereal Grain and Its Relevance to Maximize Carbon Use Efficiency.
Rolletschek, Hardy; Grafahrend-Belau, Eva; Munz, Eberhard; Radchuk, Volodymyr; Kartäusch, Ralf; Tschiersch, Henning; Melkus, Gerd; Schreiber, Falk; Jakob, Peter M; Borisjuk, Ljudmilla
2015-11-01
Here, we have characterized the spatial heterogeneity of the cereal grain's metabolism and demonstrated how, by integrating a distinct set of metabolic strategies, the grain has evolved to become an almost perfect entity for carbon storage. In vivo imaging revealed light-induced cycles in assimilate supply toward the ear/grain of barley (Hordeum vulgare) and wheat (Triticum aestivum). In silico modeling predicted that, in the two grain storage organs (the endosperm and embryo), the light-induced shift in solute influx does cause adjustment in metabolic flux without changes in pathway utilization patterns. The enveloping, leaf-like pericarp, in contrast, shows major shifts in flux distribution (starch metabolism, photosynthesis, remobilization, and tricarboxylic acid cycle activity) allow to refix 79% of the CO2 released by the endosperm and embryo, allowing the grain to achieve an extraordinary high carbon conversion efficiency of 95%. Shading experiments demonstrated that ears are autonomously able to raise the influx of solutes in response to light, but with little effect on the steady-state levels of metabolites or transcripts or on the pattern of sugar distribution within the grain. The finding suggests the presence of a mechanism(s) able to ensure metabolic homeostasis in the face of short-term environmental fluctuation. The proposed multicomponent modeling approach is informative for predicting the metabolic effects of either an altered level of incident light or a momentary change in the supply of sucrose. It is therefore of potential value for assessing the impact of either breeding and/or biotechnological interventions aimed at increasing grain yield. © 2015 American Society of Plant Biologists. All Rights Reserved.
Modeling the effects of light, carbon dioxide, and temperature on the growth of potato
NASA Technical Reports Server (NTRS)
Yandell, B. S.; Najar, A.; Wheeler, R.; Tibbitts, T. W.
1988-01-01
This study examined the effects of light, temperature and carbon dioxide on the growth of potato (Solanum tuberosum L.) in a controlled environment in order to ascertain the best growing conditions for potato in life support systems in space. 'Norland' and 'Russet Burbank' were grown in 6-L pots of peat-vermiculite for 56 d in growth chambers at the University of Wisconsin Biotron. Environmental factor levels included continuous light (24-h photoperiod) at 250, 400, and 550 micromoles m-2 s-1 PPF; constant temperature at 16, 20, and 24 degrees C; and CO2 at approximately 400, 1000, and 1600 microliters L-1. Separate effects analysis and ridge analysis provided a means to examine the effects of individual environmental factors and to determine combinations of factors that are expected to give the best increases in yields over the central design point. The response surface of Norland indicated that tuber yields were highest with moderately low temperature (18.7 degrees C), low CO2 (400 microliters L-1) and high light (550 micromoles m-2 s-1 PPF). These conditions also favored shorter stem growth. Russet Burbank tuber yields were highest at moderately low temperature (17.5 degrees C), high CO2 (1600 microliters L-1) and medium analyses will be used to project the most efficient conditions for growth of potatoes in closed ecological life support systems (CELSS) in space colonies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Titova, L. V.; Bulychev, A. O.
An analysis of basicmechanisms of binary and ternary fission of nuclei led to the conclusion that true ternary and quaternary fission of nuclei has a sequential two-step (three-step) character, where, at the first step, a fissile nucleus emits a third light particle (third and fourth light particles) under shakeup effects associated with a nonadiabatic character of its collective deformation motion, whereupon the residual nucleus undergoes fission to two fission fragments. Owing to this, the formulas derived earlier for the widths with respect to sequential two- and three-step decays of nuclei in constructing the theory of two-step twoproton decays and multistepmore » decays in chains of genetically related nuclei could be used to describe the relative yields and angular and energy distributions of third and fourth light particles emitted in (α, α), (t, t), and (α, t) pairs upon the true quaternary spontaneous fission of {sup 252}Cf and thermal-neutron-induced fission of {sup 235}U and {sup 233}U target nuclei. Mechanisms that explain a sharp decrease in the yield of particles appearing second in time and entering into the composition of light-particle pairs that originate from true quaternary fission of nuclei in relation to the yields of analogous particles in true ternary fission of nuclei are proposed.« less
Bellasio, Chandra; Beerling, David J; Griffiths, Howard
2016-06-01
Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel-based fitting tool (EFT) that will be of use to specialists and non-specialists alike. We use data acquired in concurrent variable fluorescence-gas exchange experiments, where A/Ci and light-response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis-Menten constant, and Rubisco CO2 -saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models. © 2015 John Wiley & Sons Ltd.
Gd2O3:Eu3+/PPO/POPOP/PS composites for digital imaging radiation detectors
NASA Astrophysics Data System (ADS)
Oliveira, J.; Martins, P. M.; Martins, P.; Correia, V.; Rocha, J. G.; Lanceros-Mendez, S.
2015-11-01
Polymer-based scintillator composites have been produced by combining polystyrene (PS) and Gd2O3:Eu3+ scintillator nanoparticles. Polystyrene has been used since it is a flexible and stable binder matrix, resistant to thermal and light deterioration and with suitable optical properties. Gd2O3:Eu3+ has been selected as scintillator material due to its wide band gap, high density and visible light yield. The optical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. Additionally 1 wt.% of 2,5-diphenyloxazole (PPO) and 0.01 wt.% of 1,4 di[2-(5phenyloxazolyl)]benzene (POPOP) were introduced in the polymer matrix in order to strongly improve light yield, i.e., the measured intensity of the output visible radiation, under X-ray irradiation. Increasing scintillator filler concentration (from 0.25 to 7.5 wt.%) increases scintillator light yield and decreases the optical transparency of the composite. The addition of PPO and POPOP strongly increased the overall transduction performance of the composite due to specific absorption and re-emission processes. It is thus shown that Gd2O3:Eu3+/PPO/POPOP/PS composites with 0.25 wt.% of scintillator content with fluorescence molecules are suitable for the development of innovative large-area X-ray radiation detectors with huge demand from the industries.
Gao, Jia; Cui, Hai Yan; Shi, Jian Guo; Dong, Shu Ting; Liu, Peng; Zhao, Bin; Zhang, Ji Wang
2018-03-01
We examined the changes of photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize in response to different light intensities in the field, with the summer maize hybrid Denghai 605 as experimental material. Two treatments of both shading (S) and increasing light (L) from flowering to physiological maturity stage were designed, with the ambient sunlight treatment as control (CK). Under shading treatment, poorly developed thylakoid structure, blurry lamellar structure, loose granum, large gap between slices and warping granum were the major characteristics in chloroplast. Meanwhile, photosynthetic rate (P n ), transpiration rate, stomatal conductance, chlorophyll content, and actual photo-chemical efficiency (Φ PSII ) decreased, whereas the maximal photochemical efficiency and non-photochemical quenching increased, which resulted in decreases in grain yield under shading treatment. However, a better development was observed in chloroplasts for L treatment, with the number of grana and lamellae increased and lamellae arranged compactly. In addition, P n and Φ PSII increased under L treatment, which increased grain yield. The chloroplast arrangement dispersed in mesophyll cells and chloroplast ultrastructure was destroyed after shading, and then chlorophyll synthesis per unit leaf area and photosynthetic capacity decreased. In contrast, the number of grana and lamellae increased and lamellae arranged compactly after increasing light, which are beneficial for corn yield.
NASA Astrophysics Data System (ADS)
Galvis, D.; Exposito, C.; Osma, G.; Amado, L.; Ordóñez, G.
2016-07-01
This paper presents an analysis of hybrid lighting systems of Electrical Engineering Building in the Industrial University of Santander, which is a pilot of green building for warm- tropical conditions. Analysis of lighting performance of inner spaces is based on lighting curves obtained from characterization of daylighting systems of these spaces. A computation tool was made in Excel-Visual Basic to simulate the behaviour of artificial lighting system considering artificial control system, user behaviour and solar condition. Also, this tool allows to estimate the electrical energy consumption of the lighting system for a day, a month and a year.
Energy Balance for a Sonoluminescence Bubble Yields a Measure of Ionization Potential Lowering
NASA Astrophysics Data System (ADS)
Kappus, B.; Bataller, A.; Putterman, S. J.
2013-12-01
Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.
Energy balance for a sonoluminescence bubble yields a measure of ionization potential lowering.
Kappus, B; Bataller, A; Putterman, S J
2013-12-06
Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6 eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.
Poly[n]catenanes: Synthesis of molecular interlocked chains
NASA Astrophysics Data System (ADS)
Wu, Qiong; Rauscher, Phillip M.; Lang, Xiaolong; Wojtecki, Rudy J.; de Pablo, Juan J.; Hore, Michael J. A.; Rowan, Stuart J.
2017-12-01
As the macromolecular version of mechanically interlocked molecules, mechanically interlocked polymers are promising candidates for the creation of sophisticated molecular machines and smart soft materials. Poly[n]catenanes, where the molecular chains consist solely of interlocked macrocycles, contain one of the highest concentrations of topological bonds. We report, herein, a synthetic approach toward this distinctive polymer architecture in high yield (~75%) via efficient ring closing of rationally designed metallosupramolecular polymers. Light-scattering, mass spectrometric, and nuclear magnetic resonance characterization of fractionated samples support assignment of the high-molar mass product (number-average molar mass ~21.4 kilograms per mole) to a mixture of linear poly[7-26]catenanes, branched poly[13-130]catenanes, and cyclic poly[4-7]catenanes. Increased hydrodynamic radius (in solution) and glass transition temperature (in bulk materials) were observed upon metallation with Zn2+.
Manipulating cyanobacteria: Spirulina for potential CELSS diet
NASA Technical Reports Server (NTRS)
Tadros, Mahasin G.; Smith, Woodrow; Mbuthia, Peter; Joseph, Beverly
1989-01-01
Spirulina sp. as a bioregenerative photosynthetic and an edible alga for spacecraft crew in a CELSS, was characterized for the biomass yield in batch cultures, under various environmental conditions. The partitioning of the assimalitory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental growth conditions. Experiments with Spirulina have shown that under stress conditions (i.e., high light 160 uE/sq m/s, temperature 38 C, nitrogen or phosphate limitation; 0.1 M sodium chloride) carbohydrates increased at the expense of proteins. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total of the algal could be manipulated by growth conditions. These results support the feasibility of considering Spirulina as a subsystem in CELSS because of the ease with which its nutrient content can be manipulated.
Carbon isotope evidence for a magmatic origin for Archaean gold-quartz vein ore deposits
NASA Technical Reports Server (NTRS)
Burrows, D. R.; Wood, P. C.; Spooner, E. T. C.
1986-01-01
Sediments from three sites in the Santa Barbara Basin were examined with a 160X power light microscope and TEM equipment to characterize the magnetostatic bacteria (MB) in the samples. Both the free magnetite and the crystals in the MB in the samples had lengths from 40-60 nm in length and increased in size from one end to the next. An intact magnetosome was also observed. Scanning the sediments with saturation isothermal remanent magnetization (SIRM) and altering field demagnetization techniques using a SQUID magnetometer yielded coercivity spectra which showed that the primary remanence carrier in the sediments was single domain magnetite. Although it is expected that the predominance of the bacterial magnetite component will decrease with depth in the open ocean basin, single-domain bacteria as old as 50 Myr have been observed in oceanic sediments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qiong; Rauscher, Phillip M.; Lang, Xiaolong
As the macromolecular version of mechanically interlocked molecules, mechanically interlocked polymers are promising candidates for the creation of sophisticated molecular machines and smart soft materials. Poly[n]catenanes, where the molecular chains consist solely of interlocked macrocycles, contain one of the highest concentrations of topological bonds. We report, herein, a synthetic approach toward this distinctive polymer architecture in high yield (similar to 75%) via efficient ring closing of rationally designed metallosupramolecular polymers. Light-scattering, mass spectrometric, and nuclear magnetic resonance characterization of fractionated samples support assignment of the high-molar mass product (number-average molar mass similar to 21.4 kilograms per mole) to a mixturemore » of linear poly[7-26]catenanes, branched poly[13-130]catenanes, and cyclic poly[4-7]catenanes. Increased hydrodynamic radius (in solution) and glass transition temperature (in bulk materials) were observed upon metallation with Zn2+.« less
Systematic studies of small scintillators for new sampling calorimeter
NASA Astrophysics Data System (ADS)
Jacosalem, E. P.; Iba, S.; Nakajima, N.; Ono, H.; Sanchez, A. L. C.; Bacala, A. M.; Miyata, H.
2007-12-01
A new sampling calorimeter using very thin scintillators and the multi-pixel photon counter (MPPC) has been proposed to produce better position resolution for the international linear collider (ILC) experiment. As part of this R&D study, small plastic scintillators of different sizes, thickness and wrapping reflectors are systematically studied. The scintillation light due to beta rays from a collimated ^{90}Sr source are collected from the scintillator by wavelength-shifting (WLS) fiber and converted into electrical signals at the PMT. The wrapped scintillator that gives the best light yield is determined by comparing the measured pulse height of each 10 × 40 × 2 mm strip scintillator covered with 3M reflective mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of the 3M reflective mirror film and teflon wrapped scintillators are measured. Results show that the 3M radiant mirror film-wrapped scintillator has the greatest light yield with an average of 9.2 photoelectrons. It is observed that light yield slightly increases with scintillator length, but increases to about 100% when WLS fiber diameter is increased from 1.0 mm to 1.6 mm. The position dependence measurement along the strip scintillator showed the uniformity of light transmission from the sensor to the PMT. A dip across the strip is observed which is 40% of the maximum pulse height. The block type scintillator pulse height, on the other hand, is found to be almost proportional to scintillator thickness.
NASA Astrophysics Data System (ADS)
Svimonishvili, Tengiz; Zameroski, Nathan; Gilmore, Mark; Schamiloglu, Edl; Gaudet, John; Yan, Lincan
2004-11-01
Secondary Electron Emission (SEE) results from bombarding materials with electrons, atoms, or ions. The amount of secondary emission depends on factors such as bulk and surface properties of materials, energy of incident particles, and their angle of incidence. Total secondary electron emission yield, defined as the number of secondary electrons ejected per primary electron, is an important material parameter. Materials with high yield find use, for instance, in photomultiplier tubes, whereas materials with low yield, such as graphite, are used for SEE suppression in high-power microwave devices. The lower the SEE yield, the better the performance of high-power microwave devices (for example, gyrotrons). Employing a low-energy electron gun (energy range from 5 eV to 2000 eV), our work aims at characterizing and eventually identifying novel materials (with the lowest possible SEE yield) that will enhance operation and efficiency of high-power microwave devices.
Effects of monochromatic light on quality properties and antioxidation of meat in broilers.
Ke, Y Y; Liu, W J; Wang, Z X; Chen, Y X
2011-11-01
Our previous study demonstrated that blue monochromatic light was better to promote the growth and development of broilers than red light. However, consumer research suggests that the eating quality of the meat is more important. The present study was, therefore, designed to further evaluate the effects of various monochromatic lights on the muscle growth and quality properties and antioxidation of meat. A total of 288 newly hatched Arbor Acre male broilers were exposed to blue light (BL), green light (GL), red light (RL), and white light (WL) by a light-emitting diode system for 49 d, respectively. Results showed that the broilers reared under BL significantly increased BW and carcass yield as compared with RL, WL, and GL (P < 0.05), but no statistical difference was found between GL and BL in weight of thigh muscle and carcass yield (P > 0.05). Compared with RL, the muscles of breast and thigh in GL and BL had higher pH, water-holding capacity, and protein content, whereas cooking loss, lightness value, shear value, and fat content were lower (P < 0.05). Moreover, BL significantly elevated superoxide dismutase, glutathione peroxidase, and total antioxidant capability activities and reduced malondialdehyde content both in breast and thigh muscles as compared with RL and WL (P < 0.05), but there was no significant difference in the superoxide dismutase and glutathione peroxidase activities between GL and BL (P > 0.05). These results suggest that BL better improves meat quality of Arbor Acre broilers by elevating antioxidative capacity than does RL.
Real-time optical image processing techniques
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang
1988-01-01
Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.
Ullah, Habib; Wilfred, Cecilia Devi; Shaharun, Maizatul Shima
2018-06-06
The present work reports the extraction of phenolic compounds from Polygonum minus using ionic liquid as extracting solvent. In this work, 1-Butyl-3-methylimidazolium hydrogen sulfate [BMIM][HSO 4 ] was used for the extraction of bioactive compounds. Accordingly, ionic liquids based microwave-assisted extraction treatment for separating of bioactive compounds from polygonum minus was first performed in the present study. The results obtained in this work have high extraction yield in comparison with conventional solvent. UV/Vis results showed that microwave synthesis was fast, well dispersed and nanosized copper nanoparticle (CuNPs) in comparison with conventional synthesis. CuNPs was characterized by X-Rays diffractometer (XRD), Fourier transform infrared (FTIR), dynamic light scattering (DLS), field emission scanning electron microscopy combined with energy dispersive x-rays (FESEM-EDX), and thermogravimetric analysis (TGA). All the instrumental analyses confirmed the particles were nanosized. Furthermore, the antibacterial activity of as-synthesized CuNPs showed effective inhibitory zone against three different bacteria. The photocatalytic degradation of copper nanoparticles was studied using methylene blue (MB) and methyl orange (MO) dyes under UV light and degraded 99.9% within short time 8 and 7 minutes.
NASA Astrophysics Data System (ADS)
Cheema, Mohammad Arif; Siddiq, Mohammad; Barbosa, Silvia; Castro, Emilio; Egea, José A.; Antelo, Luis T.; Taboada, Pablo; Mosquera, Víctor
2007-07-01
Thioridazine hydrochloride is a drug used in treatment of mental illness that shows side effects. Therefore, it is interesting to study the change of the physico-chemical properties of the drug in different environments to understand the mechanism of action of the drug. Thioridazine can be considered as a hydrotrope if we considered that the term comprise hydrophilic and hydrophobic moieties that form aggregates by a stacking mechanism as it is the case of all the phenothiazine tranquillizing drugs. The association properties of the amphiphilic phenothiazine drug thioridazine hydrochloride were investigated by density, ultrasound, isothermal titration calorimetry and dynamic light scattering (DLS), yielding values of the critical concentration, adiabatic apparent compressibilities and hydrodynamic radius. The DLS data were analyzed according to the treatment of the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory to study the stability of the system. The aim of the study is to obtain information about the physico-chemical characterization of the drug in aqueous solution and the effect of ethanol on the aggregate stability of this amphiphilic drug. The phenothiazine tranquillizing drugs have interesting association characteristics that derive from their rigid, tricyclic hydrophobic groups.
NASA Astrophysics Data System (ADS)
Kuo, Tsung-Rong; Hung, Shih-Ting; Lin, Yen-Ting; Chou, Tzu-Lin; Kuo, Ming-Cheng; Kuo, Ya-Pei; Chen, Chia-Chun
2017-09-01
Quantum dot light-emitting diodes (QD-LEDs) have been considered as potential display technologies with the characterizations of high color purity, flexibility, transparency, and cost efficiency. For the practical applications, the development of heavy-metal-free QD-LEDs from environment-friendly materials is the most important issue to reduce the impacts on human health and environmental pollution. In this work, heavy-metal-free InP/ZnS core/shell QDs with different fluorescence were prepared by green synthesis method with low cost, safe, and environment-friendly precursors. The InP/ZnS core/shell QDs with maximum fluorescence peak at 530 nm, superior fluorescence quantum yield of 60.1%, and full width at half maximum of 55 nm were applied as an emission layer to fabricate multilayered QD-LEDs. The multilayered InP/ZnS core/shell QD-LEDs showed the turn-on voltage at 5 V, the highest luminance (160 cd/m2) at 12 V, and the external quantum efficiency of 0.223% at 6.7 V. Overall, the multilayered InP/ZnS core/shell QD-LEDs reveal potential to be the heavy-metal-free QD-LEDs for future display applications.
de Monchy, Romain; Rouyer, Julien; Destrempes, François; Chayer, Boris; Cloutier, Guy; Franceschini, Emilie
2018-04-01
Quantitative ultrasound techniques based on the backscatter coefficient (BSC) have been commonly used to characterize red blood cell (RBC) aggregation. Specifically, a scattering model is fitted to measured BSC and estimated parameters can provide a meaningful description of the RBC aggregates' structure (i.e., aggregate size and compactness). In most cases, scattering models assumed monodisperse RBC aggregates. This study proposes the Effective Medium Theory combined with the polydisperse Structure Factor Model (EMTSFM) to incorporate the polydispersity of aggregate size. From the measured BSC, this model allows estimating three structural parameters: the mean radius of the aggregate size distribution, the width of the distribution, and the compactness of the aggregates. Two successive experiments were conducted: a first experiment on blood sheared in a Couette flow device coupled with an ultrasonic probe, and a second experiment, on the same blood sample, sheared in a plane-plane rheometer coupled to a light microscope. Results demonstrated that the polydisperse EMTSFM provided the best fit to the BSC data when compared to the classical monodisperse models for the higher levels of aggregation at hematocrits between 10% and 40%. Fitting the polydisperse model yielded aggregate size distributions that were consistent with direct light microscope observations at low hematocrits.
The Low Energy Neutrino Spectrometry (LENS) Experiment and LENS prototype, μLENS, initial results
NASA Astrophysics Data System (ADS)
Yokley, Zachary
2012-03-01
LENS is a low energy solar neutrino detector that will measure the solar neutrino spectrum above 115 keV, >95% of the solar neutrino flux, in real time. The fundamental neutrino reaction in LENS is charged-current based capture on 115-In detected in a liquid scintillator medium. The reaction yields the prompt emission of an electron and the delayed emission of 2 gamma rays that serve as a time & space coincidence tag. Sufficient spatial resolution is used to exploit this signature and suppress background, particularly due to 115-In beta decay. A novel design of optical segmentation (Scintillation Lattice or SL) channels the signal light along the three primary axes. The channeling is achieved via total internal reflection by suitable low index gaps in the segmentation. The spatial resolution of a nuclear event is obtained digitally, much more precisely than possible by common time of flight methods. Advanced Geant4 analysis methods have been developed to suppress adequately the severe background due to 115-In beta decay, achieving at the same time high detection efficiency. LENS physics and detection methods along with initial results characterizing light transport in the as built μLENS prototype will be presented.
Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.
Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco
2017-02-25
In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.
Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry
Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco
2017-01-01
In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time. PMID:28245603
Development of Phase-Stable Photon Upconverters for Efficient Solar Energy Utilization
NASA Astrophysics Data System (ADS)
Murakami, Yoichi
Photon upconversion based on triplet-triplet annihilation (TTA) of excited triplet molecules is drawing attention due to its applicability for weak incident light, possessing a potential for improving efficiencies of solar energy conversion devices. Since energy transfer between triplet levels of different molecules and TTA are based on the Dexter mechanism, inter-molecular collision is necessary and hence the majority of previous studies have been done with organic solvents, which are volatile and flammable. This paper presents the development and characterization of phase-stable photon upconverters fabricated with ionic liquids, which are room temperature molten salts with negligible vapor pressure and high thermal stability. The employed aromatic molecules, which are carrier of photo-created energies and are non-polar (or weakly polar) molecules, are found to be stable in the polar environment of ionic liquids, contrary to expectation. The mechanism of the stable solvation is proposed. The upconversion quantum yields are found to rapidly saturate as the excitation light power increases. An analytical model was developed and compared with the experimental data. It is shown that ionic liquids are not viscous media for the purpose of TTA-based upconversion.
Goegan, Bastien; Terzi, Firat; Bolze, Frédéric; Cambridge, Sidney; Specht, Alexandre
2018-06-18
We report the synthesis and photolytic properties of caged 9-aminodoxycycline derivatives modified with 2-{4'-bis-[2-(2methoxyethoxy)ethyl]-4-nitrobiphenyl-3-yl}prop-1-oxy (EANBP) and PEG7-ylated (7-diethylamino-2-oxo-2H-chromen-4-yl)methyl (PEG7-DEACM) groups. 9-Aminodoxycycline is a tetracycline analogue capable of activating transcription through the inducible TetOn transgene expression system and can be regioselectively coupled to two-photon-sensitive photo-removable protecting groups by carbamoylation. The EANBP-based caged 9-aminodoxycycline showed complex photochemical reactions but did release 10 % of 9-aminodoxycycline. However, 9-(PEG7-DEACMamino)doxycycline exhibited excellent photolysis efficiency at 405 nm with quantitative release of 9-aminodoxycycline and a 0.21 uncaging quantum yield. Thanks to the good two-photon sensitivity of the DEACM chromophore, 9-aminodoxycycline release by two-photon photolysis is possible, with calculated action cross-sections of up to 4.0 GM at 740 nm. Therefore, 9-(PEG7-DEACMamino)doxycycline represents a very attractive tool for the development of a light-induced gene expression method in living cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical quality of the living cat eye
Bonds, A. B.
1974-01-01
1. The optical quality of the living cat eye was measured under conditions similar to those of cat retinal ganglion cell experiments by recording the aerial image of a nearly monochromatic thin line of light. 2. Experiments were performed to assess the nature of the fundal reflexion of the cat eye, which was found to behave essentially as a diffuser. 3. The optical Modulation Transfer Function (MTF) was calculated from the measured aerial linespread using Fourier mathematics; the MTF of a `typical' cat eye was averaged from data collected from ten eyes. 4. The state of focus of the optical system, the pupil size and the angle of the light incident on the eye were all varied to determine their effect on image quality. 5. By using an image rotator, the aerial linespread was measured for several orientations of the line; these measurements yielded an approximation of the two-dimensional pointspread completely characterizing the optical system. 6. Evidence is reviewed to show that the optical resolution of the cat, albeit some 3-5 times worse than that of human, appears to be better than the neural resolution of its retina and its visual system as a whole. PMID:4449081
Optical quality of the living cat eye.
Bonds, A B
1974-12-01
1. The optical quality of the living cat eye was measured under conditions similar to those of cat retinal ganglion cell experiments by recording the aerial image of a nearly monochromatic thin line of light.2. Experiments were performed to assess the nature of the fundal reflexion of the cat eye, which was found to behave essentially as a diffuser.3. The optical Modulation Transfer Function (MTF) was calculated from the measured aerial linespread using Fourier mathematics; the MTF of a ;typical' cat eye was averaged from data collected from ten eyes.4. The state of focus of the optical system, the pupil size and the angle of the light incident on the eye were all varied to determine their effect on image quality.5. By using an image rotator, the aerial linespread was measured for several orientations of the line; these measurements yielded an approximation of the two-dimensional pointspread completely characterizing the optical system.6. Evidence is reviewed to show that the optical resolution of the cat, albeit some 3-5 times worse than that of human, appears to be better than the neural resolution of its retina and its visual system as a whole.
Development of the new generation of glass-based neutron detection materials
NASA Astrophysics Data System (ADS)
Dosovitskiy, Alexey E.; Dosovitskiy, Georgy A.; Korjik, Mikhail V.
2012-10-01
Approach to obtaining of neutron detector material alternative to 3He containing ionization gas detectors is proposed. Recently, a severe deficit of the 3He has pushed its price up strongly, so alternative cheaper detecting materials are demanded. Possible alternatives to 3He are materials containing 10B and 6Li isotopes. These two elements form many inorganic materials, either crystalline or amorphous. Glass scintillators look very advantageous as detector materials, especially for large area detectors, as their manufacturing could be cheaper and easier-to-scale, compared to single crystals and ceramics. A poor exciton transport, which is a fundamental feature of glass scintillators, limits their light yield and, therefore, practical use. Here we discuss a possibility to improve energy transfer to luminescent centers by creation of high concentration of crystalline luminophore particles in the glass matrix. This could be achieved through the controlled crystallization of the glass. We demonstrate how this approach works in well known Li-Al-Si (LAS) glass system. Partially crystallized Ce3+-doped glass with nanocrystalline inclusions is obtained, which shows the superior scintillation properties compared to amorphous glass. The material is characterized by an emission spectrum shift towards shorter wavelengths, which provides low light self-absorption.
Apsidal rotation in the eclipsing binary AG Persei
NASA Technical Reports Server (NTRS)
Koch, Robert H.; Woodward, Edith J.
1987-01-01
New three-filter light curves of AG Per are given. These yield times of minimum light in accord with the known rate of apsidal rotation but do not improve that rate. These light curves and all other published historical ones have been treated with the code EBOP and are shown to give largely consistent geometric and photometric parameters no matter which orientation of the orbit is displayed to the observer.
Direct measurement of lateral transport in membranes by using time-resolved spatial photometry.
Kapitza, H G; McGregor, G; Jacobson, K A
1985-01-01
Spatially resolving light detectors allow, with proper calibration, quantitative analysis of the variations in two-dimensional intensity distributions over time. An ultrasensitive microfluorometer was assembled by using as a detector a microchannel plate-intensified video camera. The camera was interfaced with a software-based digital video analysis system to digitize, average, and process images and to directly control the timing of the experiments to minimize exposure of the specimen to light. The detector system has been characterized to allow its use as a photometer. A major application has been to perform fluorescence recovery after photobleaching measurements by using the camera in place of a photomultiplier tube (video-FRAP) with the goal of detecting possible anisotropic diffusion or convective flow. Analysis of the data on macromolecular diffusion in homogenous aqueous glycol solutions yielded diffusion constants in agreement with previous measurements. Results on lipid probe diffusion in dimyristoylphosphatidylcholine multibilayers indicated that at temperatures above the gel-to-liquid crystalline phase transition diffusion is isotropic, and analysis of video-FRAP data yielded diffusion coefficients consistent with those measured previously by using spot photobleaching. However, lipid probes in these multibilayers held just below the main phase transition temperature exhibited markedly anisotropic diffusive fluxes when the bleaching beam was positioned proximate to domain boundaries in the P beta' phase. Lipid probes and lectin receptor complexes diffused isotropically in fibroblast surface membranes with little evidence for diffusion channeled parallel to stress fibers. A second application was to trace the time evolution of cell surface reactions such as patching. The feasibility of following, on the optical scale, the growth of individual receptor clusters induced by the ligand wheat germ agglutinin was demonstrated. PMID:3858869
Direct measurement of lateral transport in membranes by using time-resolved spatial photometry.
Kapitza, H G; McGregor, G; Jacobson, K A
1985-06-01
Spatially resolving light detectors allow, with proper calibration, quantitative analysis of the variations in two-dimensional intensity distributions over time. An ultrasensitive microfluorometer was assembled by using as a detector a microchannel plate-intensified video camera. The camera was interfaced with a software-based digital video analysis system to digitize, average, and process images and to directly control the timing of the experiments to minimize exposure of the specimen to light. The detector system has been characterized to allow its use as a photometer. A major application has been to perform fluorescence recovery after photobleaching measurements by using the camera in place of a photomultiplier tube (video-FRAP) with the goal of detecting possible anisotropic diffusion or convective flow. Analysis of the data on macromolecular diffusion in homogenous aqueous glycol solutions yielded diffusion constants in agreement with previous measurements. Results on lipid probe diffusion in dimyristoylphosphatidylcholine multibilayers indicated that at temperatures above the gel-to-liquid crystalline phase transition diffusion is isotropic, and analysis of video-FRAP data yielded diffusion coefficients consistent with those measured previously by using spot photobleaching. However, lipid probes in these multibilayers held just below the main phase transition temperature exhibited markedly anisotropic diffusive fluxes when the bleaching beam was positioned proximate to domain boundaries in the P beta' phase. Lipid probes and lectin receptor complexes diffused isotropically in fibroblast surface membranes with little evidence for diffusion channeled parallel to stress fibers. A second application was to trace the time evolution of cell surface reactions such as patching. The feasibility of following, on the optical scale, the growth of individual receptor clusters induced by the ligand wheat germ agglutinin was demonstrated.
Küpper, Hendrik; Götz, Birgit; Mijovilovich, Ana; Küpper, Frithjof C; Meyer-Klaucke, Wolfram
2009-10-01
The amphibious water plant Crassula helmsii is an invasive copper (Cu)-tolerant neophyte in Europe. It now turned out to accumulate Cu up to more than 9,000 ppm in its shoots at 10 microm (=0.6 ppm) Cu(2+) in the nutrient solution, indicating that it is a Cu hyperaccumulator. We investigated uptake, binding environment, and toxicity of Cu in this plant under emerged and submerged conditions. Extended x-ray absorption fine structure measurements on frozen-hydrated samples revealed that Cu was bound almost exclusively by oxygen ligands, likely organic acids, and not any sulfur ligands. Despite significant differences in photosynthesis biochemistry and biophysics between emerged and submerged plants, no differences in Cu ligands were found. While measurements of tissue pH confirmed the diurnal acid cycle typical for Crassulacean acid metabolism, Delta(13)C measurements showed values typical for regular C3 photosynthesis. Cu-induced inhibition of photosynthesis mainly affected the photosystem II (PSII) reaction center, but with some unusual features. Most obviously, the degree of light saturation of electron transport increased during Cu stress, while maximal dark-adapted PSII quantum yield did not change and light-adapted quantum yield of PSII photochemistry decreased particularly in the first 50 s after onset of actinic irradiance. This combination of changes, which were strongest in submerged cultures, shows a decreasing number of functional reaction centers relative to the antenna in a system with high antenna connectivity. Nonphotochemical quenching, in contrast, was modified by Cu mainly in emerged cultures. Pigment concentrations in stressed plants strongly decreased, but no changes in their ratios occurred, indicating that cells either survived intact or died and bleached quickly.
Effect of photocatalytic reduction of carbon dioxide by N-Zr co-doped nano TiO2.
Zhang, Ru; Wang, Li; Kang, Zhuo; Li, Qiang; Pan, Huixian
2017-11-01
Modified sol-gel method was adopted to prepare TiO 2 , Zr-TiO 2 and N/Zr-TiO 2 composite catalyst. The as-synthesized photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunner- Emmet- Teller measurement and UV-Vis diffuse reflectance spectroscopy. And the photocatalytic performance toward CO 2 reduction was evaluated under ultraviolet light. The catalyst particles were demonstrated in the nanometer level size. When N and Zr are co-doped, on the one hand, Ti 4+ can be replaced by Zr 4 +, which leads to lattice distortion and inhibits electron-hole recombination. On the other hand, N enters into TiO 2 lattice gap to form O-Ti-N bond structure, and partial Ti 4+ are reduced to Ti 3+ . Compared with pristine TiO 2 , the specific surface area and the band gap of N/Zr-TiO 2 were improved and reduced, respectively. The N and Zr synergistically contribute to the obviously strengthened absorption intensity in visible region, as well as significantly improved photocatalytic activity. In the gas phase reactor, when the calcination temperature was 550°C, 0.125N/0.25Zr-TiO 2 composite performed the highest photocatalytic activity UV irradiation for 8 h, and the corresponding CH 4 yield was 11.837 µmol/g, which was 87.8% higher than that of pristine TiO 2 . For the visible light, the CH 4 yield was 9.003 µmol/g after 8 h irradiation, which was 83.9% higher than that of pristine TiO 2 .
Materials and Designs for High-Efficacy LED Light Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibbetson, James; Gresback, Ryan
Cree, Inc. conducted a narrow-band downconverter (NBD) materials development and implementation program which will lead to warm-white LED light engines with enhanced efficacy via improved spectral efficiency with respect to the human eye response. New red (600-630nm) NBD materials could result in as much as a 20% improvement in warm-white efficacy at high color quality relative to conventional phosphor-based light sources. Key program innovations included: high quantum yield; narrow peak width; minimized component-level losses due to “cross-talk” and light scattering among red and yellow-green downconverters; and improved reliability to reach parity with conventional phosphors. NBD-enabled downconversion efficiency gains relative tomore » conventional phosphors yielded an end-of-project LED light engine efficacy of >160 lm/W at room temperature and 35 A/cm2, with a correlated color temperature (CCT) of ~3500K and >90 CRI (Color Rending Index). NBD-LED light engines exhibited equivalent luminous flux and color point maintenance at >1,000 hrs. of highly accelerated reliability testing as conventional phosphor LEDs. A demonstration luminaire utilizing an NBD-based LED light engine had a steady-state system efficacy of >150 lm/W at ~3500K and >90 CRI, which exceeded the 2014 DOE R&D Plan luminaire milestone for FY17 of >150 lm/W at just 80 CRI.« less
Buckley, Thomas N; Adams, Mark A
2011-01-01
Leaf respiration continues in the light but at a reduced rate. This inhibition is highly variable, and the mechanisms are poorly known, partly due to the lack of a formal model that can generate testable hypotheses. We derived an analytical model for non-photorespiratory CO₂ release by solving steady-state supply/demand equations for ATP, NADH and NADPH, coupled to a widely used photosynthesis model. We used this model to evaluate causes for suppression of respiration by light. The model agrees with many observations, including highly variable suppression at saturating light, greater suppression in mature leaves, reduced assimilatory quotient (ratio of net CO₂ and O₂ exchange) concurrent with nitrate reduction and a Kok effect (discrete change in quantum yield at low light). The model predicts engagement of non-phosphorylating pathways at moderate to high light, or concurrent with processes that yield ATP and NADH, such as fatty acid or terpenoid synthesis. Suppression of respiration is governed largely by photosynthetic adenylate balance, although photorespiratory NADH may contribute at sub-saturating light. Key questions include the precise diel variation of anabolism and the ATP : 2e⁻ ratio for photophosphorylation. Our model can focus experimental research and is a step towards a fully process-based model of CO₂ exchange. © 2010 Blackwell Publishing Ltd.
Greer, Dennis H; Weedon, Mark M
2012-05-01
High-light intensities and temperatures of the warm climate regions of Australia and elsewhere have a major effect on the growth and development of grapevines (Vitis vinifera L.). The objective of this research was to assess interactions between the light and seasonal temperatures by shading some vines and comparing these with vines exposed to high-light intensities. Canopy temperatures were monitored using infrared radiometers and budbreak, phenology, growth, yield, berry ripening and gas exchange determined over three growing seasons. Results showed canopies were generally about 4 °C cooler than air and shading extended this cooling. Irradiance, irrespective of seasonal temperatures, had no effect on time of budbreak, shoot phenology, stem growth, yield and bunch fresh weights while bunch and leaf dry weights were reduced in low-light. Bunch ripening was initially delayed by low-light but thereafter the ripening process was highly temperature-dependent. Rates increased linearly with increasing temperature in both low and high-light and were optimal at about 35 °C. Maximum photosynthetic capacity was impaired by low irradiance, in accordance with shade leaf attributes, and attributable to stomatal closure. No effects of the low photosynthetic capacity apparently carried-over to sugar accumulation, consistent with the strong sink capacity of bunches. Crown Copyright © 2012. Published by Elsevier Masson SAS. All rights reserved.
Niinemets, Ülo; Sun, Zhihong; Talts, Eero
2018-01-01
Leaf age alters the balance between the use of end-product of plastidic isoprenoid synthesis pathway, dimethylallyl diphosphate (DMADP), in prenyltransferase reactions leading to synthesis of pigments of photosynthetic machinery and in isoprene synthesis, but the implications of such changes on environmental responses of isoprene emission have not been studied. Because under light-limited conditions, isoprene emission rate is controlled by DMADP pool size (SDMADP), shifts in the share of different processes are expected to particularly strongly alter the light dependency of isoprene emission. We examined light responses of isoprene emission in young fully-expanded, mature and old non-senescent leaves of hybrid aspen (Populus tremula x P. tremuloides) and estimated in vivo SDMADP and isoprene synthase activity from postillumination isoprene release. Isoprene emission capacity was 1.5-fold larger in mature than in young and old leaves. The initial quantum yield of isoprene emission (αI) increased by 2.5-fold with increasing leaf age primarily as the result of increasing SDMADP. The saturating light intensity (QI90) decreased by 2.3-fold with increasing leaf age, and this mainly reflected limited light-dependent increase of SDMADP possibly due to feedback inhibition by DMADP. These major age-dependent changes in the shape of the light response need consideration in modeling canopy isoprene emission. PMID:26037962
Niinemets, Ülo; Sun, Zhihong; Talts, Eero
2015-12-01
Leaf age alters the balance between the use of end-product of plastidic isoprenoid synthesis pathway, dimethylallyl diphosphate (DMADP), in prenyltransferase reactions leading to synthesis of pigments of photosynthetic machinery and in isoprene synthesis, but the implications of such changes on environmental responses of isoprene emission have not been studied. Because under light-limited conditions, isoprene emission rate is controlled by DMADP pool size (SDMADP ), shifts in the share of different processes are expected to particularly strongly alter the light dependency of isoprene emission. We examined light responses of isoprene emission in young fully expanded, mature and old non-senescent leaves of hybrid aspen (Populus tremula x P. tremuloides) and estimated in vivo SDMADP and isoprene synthase activity from post-illumination isoprene release. Isoprene emission capacity was 1.5-fold larger in mature than in young and old leaves. The initial quantum yield of isoprene emission (αI ) increased by 2.5-fold with increasing leaf age primarily as the result of increasing SDMADP . The saturating light intensity (QI90 ) decreased by 2.3-fold with increasing leaf age, and this mainly reflected limited light-dependent increase of SDMADP possibly due to feedback inhibition by DMADP. These major age-dependent changes in the shape of the light response need consideration in modelling canopy isoprene emission. © 2015 John Wiley & Sons Ltd.
Guo, Zhen; Li, Ying; Guo, Haiyan
2017-12-01
To improve the photoproduction of hydrogen (H 2 ) by a green algae-based system, the effect of light/dark regimens on H 2 photoproduction regulated by carbonyl cyanide m-chlorophenylhydrazone (CCCP) was investigated. A fuel cell was integrated into a photobioreactor to allow online monitoring of the H 2 evolution rate and decrease potential H 2 feedback inhibition by consuming the generated H 2 in situ. During the first 15 h of H 2 evolution, the system was subjected to dark treatment after initial light illumination (L/D = 6/9 h, 9/6 h, and 12/3 h). After the dark period, all systems were again exposed to light illumination until H 2 evolution stopped. Two peaks were observed in the H 2 evolution rate under all three light/dark regimens. Additionally, a high H 2 yield of 126 ± 10 mL L -1 was achieved using a light/dark regimen of L 9 h/D 6 h/L until H 2 production ceased, which was 1.6 times higher than that obtained under continuous illumination. H 2 production was accompanied by some physiological and morphological changes in the cells. The results indicated that light/dark regimens improved the duration and yield of H 2 photoproduction by the CCCP-regulated process of Tetraselmis subcordiformis.
Maximized exoEarth candidate yields for starshades
NASA Astrophysics Data System (ADS)
Stark, Christopher C.; Shaklan, Stuart; Lisman, Doug; Cady, Eric; Savransky, Dmitry; Roberge, Aki; Mandell, Avi M.
2016-10-01
The design and scale of a future mission to directly image and characterize potentially Earth-like planets will be impacted, to some degree, by the expected yield of such planets. Recent efforts to increase the estimated yields, by creating observation plans optimized for the detection and characterization of Earth-twins, have focused solely on coronagraphic instruments; starshade-based missions could benefit from a similar analysis. Here we explore how to prioritize observations for a starshade given the limiting resources of both fuel and time, present analytic expressions to estimate fuel use, and provide efficient numerical techniques for maximizing the yield of starshades. We implemented these techniques to create an approximate design reference mission code for starshades and used this code to investigate how exoEarth candidate yield responds to changes in mission, instrument, and astrophysical parameters for missions with a single starshade. We find that a starshade mission operates most efficiently somewhere between the fuel- and exposuretime-limited regimes and, as a result, is less sensitive to photometric noise sources as well as parameters controlling the photon collection rate in comparison to a coronagraph. We produced optimistic yield curves for starshades, assuming our optimized observation plans are schedulable and future starshades are not thrust-limited. Given these yield curves, detecting and characterizing several dozen exoEarth candidates requires either multiple starshades or an η≳0.3.
Ruffing, Anne M.; Jones, Howland D.T.
2012-01-01
The direct conversion of carbon dioxide into biofuels by photosynthetic microorganisms is a promising alternative energy solution. In this study, a model cyanobacterium, Synechococcus elongatus PCC 7942, is engineered to produce free fatty acids (FFA), potential biodiesel precursors, via gene knockout of the FFA-recycling acyl-ACP synthetase and expression of a thioesterase for release of the FFA. Similar to previous efforts, the engineered strains produce and excrete FFA, but the yields are too low for large-scale production. While other efforts have applied additional metabolic engineering strategies in an attempt to boost FFA production, we focus on characterizing the engineered strains to identify the physiological effects that limit cell growth and FFA synthesis. The strains engineered for FFA-production show reduced photosynthetic yields, chlorophyll-a degradation, and changes in the cellular localization of the light-harvesting pigments, phycocyanin and allophycocyanin. Possible causes of these physiological effects are also identified. The addition of exogenous linolenic acid, a polyunsaturated FFA, to cultures of S. elongatus 7942 yielded a physiological response similar to that observed in the FFA-producing strains with only one notable difference. In addition, the lipid constituents of the cell and thylakoid membranes in the FFA-producing strains show changes in both the relative amounts of lipid components and the degree of saturation of the fatty acid side chains. These changes in lipid composition may affect membrane integrity and structure, the binding and diffusion of phycobilisomes, and the activity of membrane-bound enzymes including those involved in photosynthesis. Thus, the toxicity of unsaturated FFA and changes in membrane composition may be responsible for the physiological effects observed in FFA-producing S. elongatus 7942. These issues must be addressed to enable the high yields of FFA synthesis necessary for large-scale biofuel production. PMID:22473793
Asymmetric radical alkylation of N-sulfinimines under visible light photocatalytic conditions.
Garrido-Castro, Alberto F; Choubane, Houcine; Daaou, Mortada; Maestro, M Carmen; Alemán, José
2017-07-06
In this communication, a new photocatalytic strategy for the addition of alkyl-radical derivatives to N-sulfinimines with complete diastereoselectivity and moderate to good yields is presented. This is the first asymmetric photocatalytic addition to N-sulfinimines under visible light irradiation with smooth conditions and functional group tolerance.
2008-01-01
With the increasing demand for confocal and two-photon fluorescence imaging, the availability of reactive probes that possess high two-photon absorptivity, high fluorescence quantum yield, and high photostability is of paramount importance. To address the demand for better-performing probes, we prepared two-photon absorbing amine-reactive fluorenyl-based probes 2-(9,9-bis(2-(2-methoxyethoxy)ethyl)-2-isothiocyanato-9H-fluoren-7-yl)benzothiazole (1) and 2-(4-(2-(9,9-bis(2-(2-ethoxyethoxy)ethyl)-2-isothiocyanato-9H-fluoren-7-yl)vinyl)phenyl)benzothiazole (2), incorporating the isothiocyanate as a reactive linker. Probe design was augmented by integrating high optical nonlinearities, increased hydrophilicity, and coupling with reactive functional groups for specific targeting of biomolecules, assuring a better impact on two-photon fluorescence microscopy (2PFM) imaging. The isothiocyanate (NCS) derivatives were conjugated with cyclic peptide RGDfK and Reelin protein. The study of the chemical and photophysical properties of the new labeling reagents, as well as the conjugates, is described. The conjugates displayed high chemical stability and photostability. The NCS derivatives had low fluorescence quantum yields, while their bioconjugates exhibited high fluorescence quantum yields, essentially “lighting up” after conjugation. Conventional and 2PFM imaging and fluorescence lifetime imaging (FLIM) of HeLa, NT2, and H1299 cells, incubated with two-photon absorbing amine-reactive probe (1), RGDfK-dye conjugate (7), and Reelin-dye conjugate (6), was demonstrated. PMID:19090700
A refined 'standard' thermal model for asteroids based on observations of 1 Ceres and 2 Pallas
NASA Technical Reports Server (NTRS)
Lebofsky, Larry A.; Sykes, Mark V.; Tedesco, Edward F.; Veeder, Glenn J.; Matson, Dennis L.
1986-01-01
An analysis of ground-based thermal IR observations of 1 Ceres and 2 Pallas in light of their recently determined occultation diameters and small amplitude light curves has yielded a new value for the IR beaming parameter employed in the standard asteroid thermal emission model which is significantly lower than the previous one. When applied to the reduction of thermal IR observations of other asteroids, this new value is expected to yield model diameters closer to actual values. The present formulation incorporates the IAU magnitude convention for asteroids that employs zero-phase magnitudes, including the opposition effect.
Touliatos, Dionysios; Dodd, Ian C; McAinsh, Martin
2016-08-01
Vertical farming systems (VFS) have been proposed as an engineering solution to increase productivity per unit area of cultivated land by extending crop production into the vertical dimension. To test whether this approach presents a viable alternative to horizontal crop production systems, a VFS (where plants were grown in upright cylindrical columns) was compared against a conventional horizontal hydroponic system (HHS) using lettuce ( Lactuca sativa L . cv. "Little Gem") as a model crop. Both systems had similar root zone volume and planting density. Half-strength Hoagland's solution was applied to plants grown in perlite in an indoor controlled environment room, with metal halide lamps providing artificial lighting. Light distribution (photosynthetic photon flux density, PPFD) and yield (shoot fresh weight) within each system were assessed. Although PPFD and shoot fresh weight decreased significantly in the VFS from top to base, the VFS produced more crop per unit of growing floor area when compared with the HHS. Our results clearly demonstrate that VFS presents an attractive alternative to horizontal hydroponic growth systems and suggest that further increases in yield could be achieved by incorporating artificial lighting in the VFS.
Pluto's Atmosphere, Then and Now
NASA Astrophysics Data System (ADS)
Elliot, J. L.; Buie, M.; Person, M. J.; Qu, S.
2002-09-01
The KAO light curve for the 1988 stellar occultation by Pluto exhibits a sharp drop just below half light, but above this level the light curve is consistent with that of an isothermal atmosphere (T = 105 +/- 8 K, with N2 as its major constituent). The sharp drop in the light curve has been interpreted as being caused by: (i) a haze layer, (ii) a large thermal gradient, or (iii) some combination of these two. Modeling Pluto's atmosphere with a haze layer yields a normal optical depth >= 0.145 (Elliot & Young 1992, AJ 103, 991). On the other hand, if Pluto's atmosphere is assumed to be clear, the occultation light curve can be inverted with a new method that avoids the large-body approximations. Inversion of the KAO light curve with this method yields an upper isothermal part, followed by a sharp thermal gradient that reaches a maximum magnitude of -3.9 +/- 0.6 K km-1 at the end of the inversion (r = 1206 +/- 10 km). Even though we do not yet understand the cause of the sharp drop, the KAO light curve can be used as a benchmark for examining subsequent Pluto occultation light curves to determine whether Pluto's atmospheric structure has changed since 1988. As an example, the Mamiña light curve for the 2002 July 20 Pluto occultation of P126A was compared with the KAO light curve by Buie et al. (this conference), who concluded that Pluto's atmospheric structure has changed significantly since 1988. Further analysis and additional light curves from this and subsequent occultations (e.g. 2002 August 21) will allow us to elucidate the nature of these changes. This work was supported, in part, by grants from NASA (NAG5-9008 and NAG5-10444) and NSF (AST-0073447).
Behrendt, Lars; Schrameyer, Verena; Qvortrup, Klaus; Lundin, Luisa; Sørensen, Søren J.; Larkum, Anthony W. D.
2012-01-01
The cyanobacterium Acaryochloris marina is the only known phototroph harboring chlorophyll (Chl) d. It is easy to cultivate it in a planktonic growth mode, and A. marina cultures have been subject to detailed biochemical and biophysical characterization. In natural situations, A. marina is mainly found associated with surfaces, but this growth mode has not been studied yet. Here, we show that the A. marina type strain MBIC11017 inoculated into alginate beads forms dense biofilm-like cell clusters, as in natural A. marina biofilms, characterized by strong O2 concentration gradients that change with irradiance. Biofilm growth under both visible radiation (VIS, 400 to 700 nm) and near-infrared radiation (NIR, ∼700 to 730 nm) yielded maximal cell-specific growth rates of 0.38 per day and 0.64 per day, respectively. The population doubling times were 1.09 and 1.82 days for NIR and visible light, respectively. The photosynthesis versus irradiance curves showed saturation at a photon irradiance of Ek (saturating irradiance) >250 μmol photons m−2 s−1 for blue light but no clear saturation at 365 μmol photons m−2 s−1 for NIR. The maximal gross photosynthesis rates in the aggregates were ∼1,272 μmol O2 mg Chl d−1 h−1 (NIR) and ∼1,128 μmol O2 mg Chl d−1 h−1 (VIS). The photosynthetic efficiency (α) values were higher in NIR-irradiated cells [(268 ± 0.29) × 10−6 m2 mg Chl d−1 (mean ± standard deviation)] than under blue light [(231 ± 0.22) × 10−6 m2 mg Chl d−1]. A. marina is well adapted to a biofilm growth mode under both visible and NIR irradiance and under O2 conditions ranging from anoxia to hyperoxia, explaining its presence in natural niches with similar environmental conditions. PMID:22467501
Hernandez-Perez, Augusto C; Caron, Antoine; Collins, Shawn K
2015-11-09
An evaluation of both a visible-light- and UV-light-mediated synthesis of carbazoles from various triarylamines with differing electronic properties under continuous-flow conditions has been conducted. In general, triarylamines bearing electron-rich groups tend to produce higher yields than triarylamines possessing electron-withdrawing groups. The incorporation of nitrogen-based heterocycles, as well as halogen-containing arenes in carbazole skeletons, was well tolerated, and often synthetically useful complementarity was observed between the UV-light and visible-light (photoredox) methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guo, Xiaoning; Hao, Caihong; Jin, Guoqiang; Zhu, Huai-Yong; Guo, Xiang-Yun
2014-02-10
Copper is a low-cost plasmonic metal. Efficient photocatalysts of copper nanoparticles on graphene support are successfully developed for controllably catalyzing the coupling reactions of aromatic nitro compounds to the corresponding azoxy or azo compounds under visible-light irradiation. The coupling of nitrobenzene produces azoxybenzene with a yield of 90 % at 60 °C, but azobenzene with a yield of 96 % at 90 °C. When irradiated with natural sunlight (mean light intensity of 0.044 W cm(-2) ) at about 35 °C, 70 % of the nitrobenzene is converted and 57 % of the product is azobenzene. The electrons of the copper nanoparticles gain the energy of the incident light through a localized surface plasmon resonance effect and photoexcitation of the bound electrons. The excited energetic electrons at the surface of the copper nanoparticles facilitate the cleavage of the NO bonds in the aromatic nitro compounds. Hence, the catalyzed coupling reaction can proceed under light irradiation and moderate conditions. This study provides a green photocatalytic route for the production of azo compounds and highlights a potential application for graphene. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization and effect of light on the plasma membrane H(+) -ATPase of bean leaves
NASA Technical Reports Server (NTRS)
Linnemeyer, P. A.; Van Volkenburgh, E.; Cleland, R. E.
1990-01-01
Proton excretion from bean (Phaseolus vulgaris L.) leaf cells is increased by bright white light. To test whether this could be due, at least in part, to an increase in plasma membrane (PM) ATPase activity, PM vesicles were isolated from primary leaves by phase partitioning and used to characterize PM ATPase activity and changes in response to light. ATPase activity was characterized as magnesium ion dependent, vanadate sensitive, and slightly stimulated by potassium chloride. The pH optimum was 6.5, the Km was approximately 0.30 millimolar ATP, and the activity was about 60% latent. PM vesicles were prepared from leaves of plants grown for 11 days in dim red light (growing slowly) or grown for 10 days in dim red light and then transferred to bright white-light for 1 day (growing rapidly). For both light treatments, ATPase specific activity was approximately 600 to 700 nanomoles per milligram protein per minute, and the latency, Km, and sensitivity to potassium chloride were also similar. PM vesicles from plants grown in complete darkness, however, exhibited a twofold greater specific activity. We conclude that the promotion of leaf growth and proton excretion by bright white light is not due to an increase in ATPase specific activity. Light does influence ATPase activity, however; both dim red light and bright white light decreased the ATPase specific activity by nearly 50% as compared with dark-grown leaves.
Super Dwarf Wheat for Growth in Confined Spaces
NASA Technical Reports Server (NTRS)
Bugbee, Bruce
2011-01-01
USU-Perigee is a dwarf red spring wheat that is a hybrid of a high-yield early tall wheat (USU-Apogee) and a low-yield, extremely short wheat that has poor agronomic characteristics. USU-Perigee was selected for its extremely short height (.0.3 m) and high yield . characteristics that make it suitable for growth in confined spaces in controlled environments. Other desirable characteristics include rapid development and resistance to a leaf-tip necrosis, associated with calcium deficiency, that occurs in other wheat cultivars under rapid-growth conditions (particularly, continuous light). Heads emerge after only 21 days of growth in continuous light at a constant temperature of 25 C. In tests, USU-Perigee was found to outyield other full dwarf (defined as <0.4 m tall) wheat cultivars: The yield advantage at a constant temperature of 23 C was found to be about 30 percent. Originally intended as a candidate food crop to be grown aboard spacecraft on long missions, this cultivar could also be grown in terrestrial growth chambers and could be useful for plant-physiology and -pathology studies.
King, Bill; Borland, Ron; Abdul-Salaam, Shadeed; Polzin, Gregory; Ashley, David; Watson, Clifford; O'Connor, Richard J
2010-10-01
To investigate how the tobacco industry is adapting to regulatory action in accordance with provisions of the Framework Convention on Tobacco Control that targets misleading packaging and labelling. To relate the packaging and labelling of new cigarette varieties to their construction and performance. The principal design features and tar, nicotine and carbon monoxide yields of the Marlboro 'brand family' in Australia were measured and compared with those of the US equivalents. Marlboro Red and Blue/Medium, could not be differentiated in preliminary tests in Australia, but were different in the USA. However, yield testing showed Marlboro Blue/Medium did not have lower tar and nicotine yields in either country, indeed being higher in Australia. Colour can be used to market cigarettes as 'milder', independently of ISO yields and 'Light'/'Mild' descriptors. Banning of 'Light' and 'Mild' brand descriptors may be inadequate to end belief in less harmful cigarettes so long as the tobacco industry remains free to engineer 'mildness' and to use colours, other descriptors and design features to characterise varieties it wants to market as 'milder'.
Monitoring Crop Productivity over the U.S. Corn Belt using an Improved Light Use Efficiency Model
NASA Astrophysics Data System (ADS)
Wu, X.; Xiao, X.; Zhang, Y.; Qin, Y.; Doughty, R.
2017-12-01
Large-scale monitoring of crop yield is of great significance for forecasting food production and prices and ensuring food security. Satellite data that provide temporally and spatially continuous information that by themselves or in combination with other data or models, raises possibilities to monitor and understand agricultural productivity regionally. In this study, we first used an improved light use efficiency model-Vegetation Photosynthesis Model (VPM) to simulate the gross primary production (GPP). Model evaluation showed that the simulated GPP (GPPVPM) could well captured the spatio-temporal variation of GPP derived from FLUXNET sites. Then we applied the GPPVPM to further monitor crop productivity for corn and soybean over the U.S. Corn Belt and benchmarked with county-level crop yield statistics. We found VPM-based approach provides pretty good estimates (R2 = 0.88, slope = 1.03). We further showed the impacts of climate extremes on the crop productivity and carbon use efficiency. The study indicates the great potential of VPM in estimating crop yield and in understanding of crop yield responses to climate variability and change.
Analysis of atomic force microscopy data for surface characterization using fuzzy logic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Mousa, Amjed, E-mail: aalmousa@vt.edu; Niemann, Darrell L.; Niemann, Devin J.
2011-07-15
In this paper we present a methodology to characterize surface nanostructures of thin films. The methodology identifies and isolates nanostructures using Atomic Force Microscopy (AFM) data and extracts quantitative information, such as their size and shape. The fuzzy logic based methodology relies on a Fuzzy Inference Engine (FIE) to classify the data points as being top, bottom, uphill, or downhill. The resulting data sets are then further processed to extract quantitative information about the nanostructures. In the present work we introduce a mechanism which can consistently distinguish crowded surfaces from those with sparsely distributed structures and present an omni-directional searchmore » technique to improve the structural recognition accuracy. In order to demonstrate the effectiveness of our approach we present a case study which uses our approach to quantitatively identify particle sizes of two specimens each with a unique gold nanoparticle size distribution. - Research Highlights: {yields} A Fuzzy logic analysis technique capable of characterizing AFM images of thin films. {yields} The technique is applicable to different surfaces regardless of their densities. {yields} Fuzzy logic technique does not require manual adjustment of the algorithm parameters. {yields} The technique can quantitatively capture differences between surfaces. {yields} This technique yields more realistic structure boundaries compared to other methods.« less
NASA Astrophysics Data System (ADS)
Auffray, E.; Ben Mimoun Bel Hadj, F.; Cortinovis, D.; Doroud, K.; Garutti, E.; Lecoq, P.; Liu, Z.; Martinez, R.; Paganoni, M.; Pizzichemi, M.; Silenzi, A.; Xu, C.; Zvolský, M.
2015-06-01
This paper describes the characterization of crystal matrices and silicon photomultiplier arrays for a novel Positron Emission Tomography (PET) detector, namely the external plate of the EndoTOFPET-US system. The EndoTOFPET-US collaboration aims to integrate Time-Of-Flight PET with ultrasound endoscopy in a novel multimodal device, capable to support the development of new biomarkers for prostate and pancreatic tumors. The detector consists in two parts: a PET head mounted on an ultrasound probe and an external PET plate. The challenging goal of 1 mm spatial resolution for the PET image requires a detector with small crystal size, and therefore high channel density: 4096 LYSO crystals individually readout by Silicon Photomultipliers (SiPM) make up the external plate. The quality and properties of these components must be assessed before the assembly. The dark count rate, gain, breakdown voltage and correlated noise of the SiPMs are measured, while the LYSO crystals are evaluated in terms of light yield and energy resolution. In order to effectively reduce the noise in the PET image, high time resolution for the gamma detection is mandatory. The Coincidence Time Resolution (CTR) of all the SiPMs assembled with crystals is measured, and results show a value close to the demanding goal of 200 ps FWHM. The light output is evaluated for every channel for a preliminary detector calibration, showing an average of about 1800 pixels fired on the SiPM for a 511 keV interaction. Finally, the average energy resolution at 511 keV is about 13 %, enough for effective Compton rejection.
Characterization of Pr:LuAG scintillating crystals for X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Bertoni, R.; Bonesini, M.; Cervi, T.; Clemenza, M.; De Bari, A.; Falcone, A.; Mazza, R.; Menegolli, A.; Nastasi, M.; Rossella, M.
2016-07-01
The main features of the Pr doped Lu3Al5O12 (Pr:LuAG) scintillating crystals for X-ray spectroscopy applications have been studied using different radioactive sources and photo-detectors. Pr:LuAG is cheaper, compared to a Germanium detector, but with remarkable properties which make it useful for many applications, from fundamental physics measurements to the PET imaging for medical purposes: high density, elevate light yield, fast response, high energy resolution, no hygroscopicity. A sample of Pr:LuAG crystals with 14 mm×14 mm surface area and 13 mm thickness and a NaI crystal of the same surface and 26 mm thickness used as a reference have been characterized with several radioactive sources, emitting photons in the range 100-1000keV. Different light detectors were adopted for the Pr:LuAG studies, sensitive to its UV emission (peak at 310 nm): a 3 in. PMT (Hamamatsu R11065) and new arrays of Hamamatsu SiPM S13361, with siliconic resin as a window. Preliminary results are presented on the performance of the Pr:LuAG crystals, to be mounted in a 2 × 2 array to be tested in the 2015 run of the FAMU experiment at RIKEN-RAL muon facility. The goal is the detection of the X-rays (around 130 keV) emitted during the de-excitation processes of the muonic hydrogen after the excitation with an IR laser with wavelength set at the resonance of the hyperfine splitting, to measure the muonic atom proton radius with unprecedented precision.
Wang, Hsinkai; Yang, Ya-Tang
2017-09-15
The current standard protocols for characterizing the optogenetic circuit of bacterial cells using flow cytometry in light tubes and light exposure of culture plates are tedious, labor-intensive, and cumbersome. In this work, we engineer a bioreactor with working volume of ∼10 mL for in vivo real-time optogenetic characterization of E. coli with a CcaS-CcaR light-sensing system. In the bioreactor, optical density measurements, reporter protein fluorescence detection, and light input stimuli are provided by four light-emitting diode sources and two photodetectors. Once calibrated, the device can cultivate microbial cells and record their growth and gene expression without human intervention. We measure gene expression during cell growth with different organic substrates (glucose, succinate, acetate, pyruvate) as carbon sources in minimal medium and demonstrate evolutionary tuning of the optogenetic circuit by serial dilution passages.