Science.gov

Sample records for light-activated rna interference

  1. RNA Interference

    MedlinePlus

    ... NIGMS Home > Science Education > RNA Interference Fact Sheet RNA Interference Fact Sheet Tagline (Optional) Middle/Main Content Area What is RNA interference? RNA interference (RNAi) is a natural process ...

  2. RNA interference: unraveling a mystery.

    PubMed

    Montgomery, Mary K

    2006-12-01

    Andrew Fire and Craig Mello have won the Nobel Prize in Medicine or Physiology for their discovery of RNA interference. Mary K. Montgomery, then a postdoc in the Fire laboratory, participated in some of the key experiments.

  3. Structural insights into RNA interference.

    PubMed

    Sashital, Dipali G; Doudna, Jennifer A

    2010-02-01

    Virtually all animals and plants utilize small RNA molecules to control protein expression during different developmental stages and in response to viral infection. Structural and mechanistic studies have begun to illuminate three fundamental aspects of these pathways: small RNA biogenesis, formation of RNA-induced silencing complexes (RISCs), and targeting of complementary mRNAs. Here we review exciting recent progress in understanding how regulatory RNAs are produced and how they trigger specific destruction of mRNAs during RNA interference (RNAi).

  4. Using RNA interference to identify genes required for RNA interference

    PubMed Central

    Dudley, Nathaniel R.; Labbé, Jean-Claude; Goldstein, Bob

    2002-01-01

    RNA interference (RNAi) is a phenomenon in which double-stranded RNA (dsRNA) silences endogenous gene expression. By injecting pools of dsRNAs into Caenorhabditis elegans, we identified a dsRNA that acts as a potent suppressor of the RNAi mechanism. We have used coinjection of dsRNAs to identify four additional candidates for genes involved in the RNAi mechanism in C. elegans. Three of the genes are C. elegans mes genes, some of which encode homologs of the Drosophila chromatin-binding Polycomb-group proteins. We have used loss-of-function mutants to confirm a role for mes-3, -4, and -6 in RNAi. Interestingly, introducing very low levels of dsRNA can bypass a requirement for these genes in RNAi. The finding that genes predicted to encode proteins that associate with chromatin are involved in RNAi in C. elegans raises the possibility that chromatin may play a role in RNAi in animals, as it does in plants. PMID:11904378

  5. Molecular mechanisms of RNA interference.

    PubMed

    Wilson, Ross C; Doudna, Jennifer A

    2013-01-01

    Small RNA molecules regulate eukaryotic gene expression during development and in response to stresses including viral infection. Specialized ribonucleases and RNA-binding proteins govern the production and action of small regulatory RNAs. After initial processing in the nucleus by Drosha, precursor microRNAs (pre-miRNAs) are transported to the cytoplasm, where Dicer cleavage generates mature microRNAs (miRNAs) and short interfering RNAs (siRNAs). These double-stranded products assemble with Argonaute proteins such that one strand is preferentially selected and used to guide sequence-specific silencing of complementary target mRNAs by endonucleolytic cleavage or translational repression. Molecular structures of Dicer and Argonaute proteins, and of RNA-bound complexes, have offered exciting insights into the mechanisms operating at the heart of RNA-silencing pathways.

  6. Generation of siRNA Nanosheets for Efficient RNA Interference

    NASA Astrophysics Data System (ADS)

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-04-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances.

  7. Spatiotemporal control of microRNA function using light-activated antagomirs.

    PubMed

    Connelly, Colleen M; Uprety, Rajendra; Hemphill, James; Deiters, Alexander

    2012-11-01

    MicroRNAs (miRNAs) are small non-coding RNAs that act as post-transcriptional gene regulators and have been shown to regulate many biological processes including embryonal development, cell differentiation, apoptosis, and proliferation. Variations in the expression of certain miRNAs have been linked to a wide range of human diseases - especially cancer - and the diversity of miRNA targets suggests that they are involved in various cellular networks. Several tools have been developed to control the function of individual miRNAs and have been applied to study their biogenesis, biological role, and therapeutic potential; however, common methods lack a precise level of control that allows for the study of miRNA function with high spatial and temporal resolution. Light-activated miRNA antagomirs for mature miR-122 and miR-21 were developed through the site-specific installation of caging groups on the bases of selected nucleotides. Installation of caged nucleotides led to complete inhibition of the antagomir-miRNA hybridization and thus inactivation of antagomir function. The miRNA-inhibitory activity of the caged antagomirs was fully restored upon decaging through a brief UV irradiation. The synthesized antagomirs were applied to the photochemical regulation of miRNA function in mammalian cells. Moreover, spatial control over antagomir activity was obtained in mammalian cells through localized UV exposure. The presented approach enables the precise regulation of miRNA function and miRNA networks with unprecedented spatial and temporal resolution using UV irradiation and can be extended to any miRNA of interest.

  8. Origins and evolution of eukaryotic RNA interference

    PubMed Central

    Shabalina, Svetlana A.; Koonin, Eugene V.

    2009-01-01

    Small interfering RNAs (siRNAs) and genome-encoded microRNAs (miRNAs) silence genes via complementary interactions with mRNAs. With thousands of miRNA genes identified and genome sequences of diverse eukaryotes available for comparison, the opportunity emerges for insights into origin and evolution of RNA interference (RNAi). The miRNA repertoires of plants and animals appear to have evolved independently. However, conservation of the key proteins involved in RNAi suggests that the last common ancestor of modern eukaryotes possessed siRNA-based mechanisms. Prokaryotes have a RNAi-like defense system that is functionally analogous but not homologous to eukaryotic RNAi. The protein machinery of eukaryotic RNAi seems to have been pieced together from ancestral proteins of archaeal, bacterial and phage origins that are involved in DNA repair and RNA-processing pathways. PMID:18715673

  9. RNA interference spreading in C. elegans.

    PubMed

    May, Robin C; Plasterk, Ronald H A

    2005-01-01

    The phenomenon of RNA interference (RNAi) occurs in eukaryotic organisms from across the boundaries of taxonomic kingdoms. In all cases, the basic mechanism of RNAi appears to be conserved--an initial trigger [double-stranded RNA (dsRNA) containing perfect homology over at least 19-21/bp with an endogenous gene] is processed into short interfering RNA (siRNA) molecules and these siRNAs stimulate degradation of the homologous mRNA. In the vast majority of species, RNAi can only be initiated following the deliberate introduction of dsRNA into a cell by microinjection, electroporation, or transfection. However, in the nematode worm Caenorhabditis elegans, RNAi can be simply initiated by supplying dsRNA in the surrounding medium or in the diet. Following uptake, this dsRNA triggers a systemic effect, initiating RNAi against the corresponding target gene in tissues that are not in direct contact with the external milieu. This phenomenon of systemic RNAi, or RNAi spreading, is notably absent from mammalian species, a fact that is likely to prove a substantial barrier to the wider use of RNAi as a clinical therapy. An understanding of the mechanism of systemic RNAi is therefore of considerable importance, and several advances of the last few years have begun to shed light on this process. Here we review our current understanding of systemic RNAi in C. elegans and draw comparisons with systemic RNAi pathways in other organisms.

  10. Symbiont-mediated RNA interference in insects.

    PubMed

    Whitten, Miranda M A; Facey, Paul D; Del Sol, Ricardo; Fernández-Martínez, Lorena T; Evans, Meirwyn C; Mitchell, Jacob J; Bodger, Owen G; Dyson, Paul J

    2016-02-24

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects.

  11. RNA interference in neuroscience: progress and challenges.

    PubMed

    Miller, Victor M; Paulson, Henry L; Gonzalez-Alegre, Pedro

    2005-12-01

    1.RNA interference (RNAi) is a recently discovered biological pathway that mediates post-transcriptional gene silencing. The process of RNAi is orchestrated by an increasingly well-understood cellular machinery. 2. The common entry point for both natural and engineered RNAi are double stranded RNA molecules known as short interfering RNAs (siRNAs), that mediate the sequence-specific identification and degradation of the targeted messenger RNA (mRNA). The study and manipulation of these siRNAs has recently revolutionized biomedical research. 3. In this review, we first provide a brief overview of the process of RNAi, focusing on its potential role in brain function and involvement in neurological disease. We then describe the methods developed to manipulate RNAi in the laboratory and its applications to neuroscience. Finally, we focus on the potential therapeutic application of RNAi to neurological disease.

  12. Symbiont-mediated RNA interference in insects

    PubMed Central

    Whitten, Miranda M. A.; Facey, Paul D.; Del Sol, Ricardo; Fernández-Martínez, Lorena T.; Evans, Meirwyn C.; Mitchell, Jacob J.; Bodger, Owen G.

    2016-01-01

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects. PMID:26911963

  13. Fluorescence microscopy-based RNA interference screening.

    PubMed

    Gunkel, Manuel; Beil, Nina; Beneke, Jürgen; Reymann, Jürgen; Erfle, Holger

    2015-01-01

    Using RNAi interference (RNAi), it is possible to study the effect of specific gene knockdowns in mammalian cells. In this protocol we present the automated preparation of "ready to transfect" multiwell plates and cell arrays, on which cells can be grown which are then reversely transfected with one type of siRNA in every individual well or spot. Additionally, different microscope types for screening approaches are compared and considerations about the information workflow are made.

  14. RNA interference in designing transgenic crops.

    PubMed

    Ali, Nusrat; Datta, Swapan K; Datta, Karabi

    2010-01-01

    RNA interference (RNAi) is a sequence specific gene silencing mechanism, triggered by the introduction of dsRNA leading to mRNA degradation. It helps in switching on and off the targeted gene, which might have significant impact in developmental biology. Discovery of RNAi represents one of the most promising and rapidly advancing frontiers in plant functional genomics and in crop improvement by plant metabolic engineering and also plays an important role in reduction of allergenicity by silencing specific plant allergens. In plants the RNAi technology has been employed successfully in improvement of several plant species- by increasing their nutritional value, overall quality and by conferring resistance against pathogens and diseases. The review gives an insight to the perspective use of the technology in designing crops with innovation, to bring improvement to crop productivity and quality.

  15. RNA interference in head and neck oncology

    PubMed Central

    Sobecka, Agnieszka; Barczak, Wojciech; Suchorska, Wiktoria Maria

    2016-01-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cause of cancer worldwide. The treatment of choice in case of head and neck cancer is surgery, followed by chemo- or/and radiotherapy. A potentially effective instrument to improve the outcome of numerous diseases, including viral infections, diabetes and cancer, is RNA interference (RNAi). It has been demonstrated that small interfering RNA and microRNA molecules are strongly involved in the regulation of various different pathological processes in cancer development. RNAi has become a valuable research tool allowing a better understanding of the mechanisms regulating cancer pathogenesis. Considering those advantages over other current therapeutics (including specificity and high efficacy), RNAi appears to be a potentially useful tool in cancer treatment. The present review discusses the current knowledge about the possibility of using RNAi in HNSCC therapy. PMID:27899959

  16. RNA Interference: Biology, Mechanism, and Applications

    PubMed Central

    Agrawal, Neema; Dasaradhi, P. V. N.; Mohmmed, Asif; Malhotra, Pawan; Bhatnagar, Raj K.; Mukherjee, Sunil K.

    2003-01-01

    Double-stranded RNA-mediated interference (RNAi) is a simple and rapid method of silencing gene expression in a range of organisms. The silencing of a gene is a consequence of degradation of RNA into short RNAs that activate ribonucleases to target homologous mRNA. The resulting phenotypes either are identical to those of genetic null mutants or resemble an allelic series of mutants. Specific gene silencing has been shown to be related to two ancient processes, cosuppression in plants and quelling in fungi, and has also been associated with regulatory processes such as transposon silencing, antiviral defense mechanisms, gene regulation, and chromosomal modification. Extensive genetic and biochemical analysis revealed a two-step mechanism of RNAi-induced gene silencing. The first step involves degradation of dsRNA into small interfering RNAs (siRNAs), 21 to 25 nucleotides long, by an RNase III-like activity. In the second step, the siRNAs join an RNase complex, RISC (RNA-induced silencing complex), which acts on the cognate mRNA and degrades it. Several key components such as Dicer, RNA-dependent RNA polymerase, helicases, and dsRNA endonucleases have been identified in different organisms for their roles in RNAi. Some of these components also control the development of many organisms by processing many noncoding RNAs, called micro-RNAs. The biogenesis and function of micro-RNAs resemble RNAi activities to a large extent. Recent studies indicate that in the context of RNAi, the genome also undergoes alterations in the form of DNA methylation, heterochromatin formation, and programmed DNA elimination. As a result of these changes, the silencing effect of gene functions is exercised as tightly as possible. Because of its exquisite specificity and efficiency, RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes. PMID:14665679

  17. Inhibition of Henipavirus infection by RNA interference.

    PubMed

    Mungall, Bruce A; Schopman, Nick C T; Lambeth, Luke S; Doran, Tim J

    2008-12-01

    Nipah virus (NiV) and Hendra virus (HeV) are recently emerged zoonotic paramyxoviruses exclusively grouped within a new genus, Henipavirus. These viruses cause fatal disease in a wide range of species, including humans. Both NiV and HeV have continued to re-emerge sporadically in Bangladesh and Australia, respectively. There are currently no therapeutics or vaccines available to treat Henipavirus infection and both are classified as BSL4 pathogens. RNA interference (RNAi) is a process by which double-stranded RNA directs sequence-specific degradation of messenger RNA in animal and plant cells. Small interfering RNAs (siRNAs) mediate RNAi by inhibiting gene expression of homologous mRNA and our preliminary studies suggest RNAi may be a useful approach to developing novel therapies for these highly lethal pathogens. Eight NiV siRNA molecules (four L and four N gene specific), two HeV N gene specific, and two non-specific control siRNA molecules were designed and tested for their ability to inhibit a henipavirus minigenome replication system (which does not require the use of live virus) in addition to live virus infections in vitro. In the minigenome assay three out of the four siRNAs that targeted the L gene of NiV effectively inhibited replication. In contrast, only NiV N gene siRNAs were effective in reducing live NiV replication, suggesting inhibition of early, abundantly expressed gene transcripts may be more effective than later, less abundant transcripts. Additionally, some of the siRNAs effective against NiV infection were only partially effective inhibitors of HeV infection. An inverse correlation between the number of nucleotide mismatches and the efficacy of siRNA inhibition was observed. The demonstration that RNAi effectively inhibits henipavirus replication in vitro, is a novel approach and may provide an effective therapy for these highly lethal, zoonotic pathogens.

  18. RNA interference as therapeutics for hepatocellular carcinoma.

    PubMed

    Xu, Chuanrui; Lee, Susie A; Chen, Xin

    2011-01-01

    Hepatocellular carcinoma (HCC), a major form of primary liver cancer, is one of the leading causes of cancer related deaths worldwide. Hepatitis B and C infections are major risk factors for the development of HCC. Currently, the treatment options are rather limited, and the prognosis for this malignancy is poor for most of these patients. RNA interference has emerged as an innovative technology for gene silencing and as a potential therapeutic for various diseases, including cancer. HCC has been widely chosen as a model system for the development of RNAi therapy due to the convenience and availability of effective delivery of RNA molecules into liver tissues. Targets for HCC treatment include HBV and HCV viruses, oncogenes, as well as cellular genes mediating angiogenesis, tumor growth and metastasis. Here, we summarized the progress of RNAi therapeutics in HCC treatment, relevant patents, potential challenges and prospects in the future.

  19. RNA interference Pathways in Filamentous Fungi

    PubMed Central

    Liu, Yi

    2015-01-01

    RNA interference is a conserved eukaryotic homology-dependent post-transcriptional gene silencing mechanism. The filamentous fungus Neurospora crassa is one of the first organisms used for RNAi studies. Quelling and Meiotic Silencing by Unpaired DNA (MSUD) are two RNAi related phenomena discovered in Neurospora and their characterizations have contributed significantly to our understanding of RNAi mechanisms in eukaryotes. More recently, a type of DNA damage-induced small RNA, microRNA-like small RNAs and Dicer-independent small silencing RNAs have been discovered in Neurospora crassa which can regulate gene expression. In addition, there are at least six different pathways responsible for the production of these small RNAs, indicating that this fungus is an important model system to study small RNA function and biogenesis. The RNAi studies in other filamentous fungi such as Cryphonectria paracitica and Aspergillus provide evidences that RNAi plays an important role in antiviral defense and RNAi mechanism is widely conserved in filamentous fungi, and RNAi has been commonly used as an efficient tool for studying the gene function. The discovery of the endogenous small RNAs from M. circinelloides further indicates the richness and complex of the RNAi field in eukaryotes. PMID:20680389

  20. Role of RNA interference in plant improvement

    NASA Astrophysics Data System (ADS)

    Jagtap, Umesh Balkrishna; Gurav, Ranjit Gajanan; Bapat, Vishwas Anant

    2011-06-01

    Research to alter crops for their better performance involving modern technology is underway in numerous plants, and achievements in transgenic plants are impacting crop improvements in unparalleled ways. Striking progress has been made using genetic engineering technology over the past two decades in manipulating genes from diverse and exotic sources, and inserting them into crop plants for inducing desirable characteristics. RNA interference (RNAi) has recently been identified as a natural mechanism for regulation of gene expression in all higher organisms from plants to humans and promises greater accuracy and precision to plant improvement. The expression of any gene can be down-regulated in a highly explicit manner exclusive of affecting the expression of any other gene by using RNAi technologies. Additional research in this field has been focused on a number of other areas including microRNAs, hairpin RNA, and promoter methylation. Manipulating new RNAi pathways, which generate small RNA molecules to amend gene expression in crops, can produce new quality traits and having better potentiality of protection against abiotic and biotic stresses. Nutritional improvement, change in morphology, or enhanced secondary metabolite synthesis are some of the other advantages of RNAi technology. In addition to its roles in regulating gene expression, RNAi is also used as a natural defense mechanism against molecular parasites such as jumping genes and viral genetic elements that affect genome stability. Even though much advancement has been made on the field of RNAi over the preceding few years, the full prospective of RNAi for crop improvement remains to be fully realized. The intricacy of RNAi pathway, the molecular machineries, and how it relates to plant development are still to be explained.

  1. [Immunoregulation by interference RNA (iRNA) - mechanisms, role, perspective].

    PubMed

    Sikora, Emilia; Ptak, Włodzimierz; Bryniarski, Krzysztof

    2011-08-05

    The functioning of an organism depends on the precise control mechanisms, constantly adjusted to the actual state. Therefore, there is a need for efficient communication between both adjacent and distant cells, which may be executed by proteins such as hormones, neurotransmitters and cytokines. Recently another means of regulation has emerged - short regulatory RNAs (srRNAs). Although discovered only a couple of years ago, the mechanism of RNA interference has already become a topic of thousands of publications, defining its roles in both physiological and pathological processes, such as cancerogenesis and autoimmunization. RNAs regulating cell function may be coded in its genome (both exons and introns) or be introduced from the external environment. In mammals microRNAs (miRNAs) cooperate with proteins from the Ago/PIWI family to form effector ribonucleoprotein complexes, and owing to their complementarity to the target mRNA, control genes' expression at the posttranscriptional level, either through the suppression of mRNA translation or through mRNA degradation. SrRNAs are crucial regulators throughout the development of immune cells, starting from hematopoietic stem cells, up to the effector cells of the adaptive immune response. Moreover, some of the regulatory cells perform their function by releasing miRNAs, which are then transported to the target cells, possibly enclosed in the exosomes.

  2. Bringing RNA Interference (RNAi) into the High School Classroom

    ERIC Educational Resources Information Center

    Sengupta, Sibani

    2013-01-01

    RNA interference (abbreviated RNAi) is a relatively new discovery in the field of mechanisms that serve to regulate gene expression (a.k.a. protein synthesis). Gene expression can be regulated at the transcriptional level (mRNA production, processing, or stability) and at the translational level (protein synthesis). RNAi acts in a gene-specific…

  3. Bringing RNA Interference (RNAi) into the High School Classroom

    ERIC Educational Resources Information Center

    Sengupta, Sibani

    2013-01-01

    RNA interference (abbreviated RNAi) is a relatively new discovery in the field of mechanisms that serve to regulate gene expression (a.k.a. protein synthesis). Gene expression can be regulated at the transcriptional level (mRNA production, processing, or stability) and at the translational level (protein synthesis). RNAi acts in a gene-specific…

  4. RNA interference with special reference to combating viruses of crustacea.

    PubMed

    La Fauce, Kathy; Owens, Leigh

    2012-09-01

    RNA interference has evolved from being a nuisance biological phenomenon to a valuable research tool to determine gene function and as a therapeutic agent. Since pioneering observations regarding RNA interference were first reported in the 1990s from the nematode worm, plants and Drosophila, the RNAi phenomenon has since been reported in all eukaryotic organisms investigated from protozoans, plants, arthropods, fish and mammals. The design of RNAi therapeutics has progressed rapidly to designing dsRNA that can specifically and effectively silence disease related genes. Such technology has demonstrated the effective use of short interfering as therapeutics. In the absence of a B cell lineage in arthropods, and hence no long term vaccination strategy being available, the introduction of using RNA interference in crustacea may serve as an effective control and preventative measure for viral diseases for application in aquaculture.

  5. The Fascinating World of RNA Interference

    PubMed Central

    Naqvi, Afsar Raza; Islam, Md. Nazrul; Choudhury, Nirupam Roy; Haq., Qazi Mohd. Rizwanul

    2009-01-01

    Micro- and short-interfering RNAs represent small RNA family that are recognized as critical regulatory species across the eukaryotes. Recent high-throughput sequencing have revealed two more hidden players of the cellular small RNA pool. Reported in mammals and Caenorhabditis elegans respectively, these new small RNAs are named piwi-interacting RNAs (piRNAs) and 21U-RNAs. Moreover, small RNAs including miRNAs have been identified in unicellular alga Chlamydomonas reinhardtii, redefining the earlier concept of multi-cellularity restricted presence of these molecules. The discovery of these species of small RNAs has allowed us to understand better the usage of genome and the number of genes present but also have complicated the situation in terms of biochemical attributes and functional genesis of these molecules. Nonetheless, these new pools of knowledge have opened up avenues for unraveling the finer details of the small RNA mediated pathways. PMID:19173032

  6. RNA interference-mediated intrinsic antiviral immunity in invertebrates.

    PubMed

    Nayak, Arabinda; Tassetto, Michel; Kunitomi, Mark; Andino, Raul

    2013-01-01

    In invertebrates such as insects and nematodes, RNA interference (RNAi) provides RNA-based protection against viruses. This form of immunity restricts viral replication and dissemination from infected cells and viruses, in turn, have evolved evasion mechanisms or RNAi suppressors to counteract host defenses. Recent advances indicate that, in addition to RNAi, other related small RNA pathways contribute to antiviral functions in invertebrates. This has led to a deeper understanding of fundamental aspects of small RNA-based antiviral immunity in invertebrates and its contribution to viral spread and pathogenesis.

  7. Modulation of Flavivirus Population Diversity by RNA Interference

    PubMed Central

    Schirtzinger, Erin E.; Harrison, Thomas D.; Ebel, Gregory D.; Hanley, Kathryn A.

    2015-01-01

    To test the hypothesis that RNA interference (RNAi) imposes diversifying selection on RNA virus genomes, we quantified West Nile virus (WNV) quasispecies diversity after passage in Drosophila cells in which RNAi was left intact, depleted, or stimulated against WNV. As predicted, WNV diversity was significantly lower in RNAi-depleted cells and significantly greater in RNAi-stimulated cells relative to that in controls. These findings reveal that an innate immune defense can shape viral population structure. PMID:25631077

  8. Chemical modification: the key to clinical application of RNA interference?

    PubMed Central

    Corey, David R.

    2007-01-01

    RNA interference provides a potent and specific method for controlling gene expression in human cells. To translate this potential into a broad new family of therapeutics, it is necessary to optimize the efficacy of the RNA-based drugs. As discussed in this Review, it might be possible to achieve this optimization using chemical modifications that improve their in vivo stability, cellular delivery, biodistribution, pharmacokinetics, potency, and specificity. PMID:18060019

  9. Silencing structural and nonstructural genes in baculovirus by RNA interference.

    PubMed

    Flores-Jasso, C Fabian; Valdes, Victor Julian; Sampieri, Alicia; Valadez-Graham, Viviana; Recillas-Targa, Felix; Vaca, Luis

    2004-06-01

    We review several aspects of RNAi and gene silencing with baculovirus. We show that the potency of RNAi in Spodoptera frugiperda (Sf21) insect cells correlates well with the efficiency of transfection of the siRNA. Using a fluorescein-labeled siRNA we found that the siRNA localized in areas surrounding the endoplasmic reticulum (ER). Both long (700 nucleotides long) and small ( approximately 25 nucleotides long) interfering RNAs were equally effective in initiating RNA interference (RNAi), and the duration of the interfering effect was indistinguishable. Even though RNAi in Sf21 cells is very effective, in vitro experiments show that these cells fragment the long dsRNA into siRNA poorly, when compared to HEK cells. Finally, we show that in vivo inhibition of baculovirus infection with dsRNA homologous to genes that are essential for baculovirus infectivity depends strongly on the amount of dsRNA used in the assays. Five hundred nanogram of dsRNA directly injected into the haemolymph of insects prevent animal death to over 95%. In control experiments, over 96% of insects not injected with dsRNA or injected with an irrelevant dsRNA died within a week. These results demonstrate the efficiency of dsRNA for in vivo prevention of a viral infection by virus that is very cytotoxic and lytic in animals.

  10. Study of claudin function by RNA interference.

    PubMed

    Hou, Jianghui; Gomes, Antonio S; Paul, David L; Goodenough, Daniel A

    2006-11-24

    Claudins are tight junction proteins that play a key selectivity role in the paracellular conductance of ions. Numerous studies of claudin function have been carried out using the overexpression strategy to add new claudin channels to an existing paracellular protein background. Here, we report the systematic knockdown of endogenous claudin gene expression in Madin-Darby canine kidney (MDCK) cells and in LLC-PK1 cells using small interfering RNA against claudins 1-4 and 7. In MDCK cells (showing cation selectivity), claudins 2, 4, and 7 are powerful effectors of paracellular Na+ permeation. Removal of claudin-2 depressed the permeation of Na+ and resulted in the loss of cation selectivity. Loss of claudin-4 or -7 expression elevated the permeation of Na+ and enhanced the proclivity of the tight junction for cations. On the other hand, LLC-PK1 cells express little endogenous claudin-2 and show anion selectivity. In LLC-PK1 cells, claudin-4 and -7 are powerful effectors of paracellular Cl- permeation. Knockdown of claudin-4 or -7 expression depressed the permeation of Cl- and caused the tight junction to lose the anion selectivity. In conclusion, claudin-2 functions as a paracellular channel to Na+ to increase the cation selectivity of the tight junction; claudin-4 and -7 function either as paracellular barriers to Na+ or as paracellular channels to Cl-, depending upon the cellular background, to decrease the cation selectivity of the tight junction.

  11. Modeling oncogene addiction using RNA interference

    PubMed Central

    Rothenberg, S. Michael; Engelman, Jeffrey A.; Le, Sheila; Riese, David J.; Haber, Daniel A.; Settleman, Jeffrey

    2008-01-01

    The clinical efficacy of selective kinase inhibitors suggests that some cancer cells may become dependent on a single oncogene for survival. RNAi has been increasingly used to understand such “oncogene addiction” and validate new therapeutic targets. However, RNAi approaches suffer from significant off-target effects that limit their utility. Here, we combine carefully titrated lentiviral-mediated short hairpin RNA knockdown of the epidermal growth factor receptor (EGFR) with heterologous reconstitution by EGFR mutants to rigorously analyze the structural features and signaling activities that determine addiction to the mutationally activated EGFR in human lung cancer cells. EGFR dependence is differentially rescued by distinct EGFR variants and oncogenic mutants, is critically dependent on its heterodimerization partner ErbB-3, and surprisingly, does not require autophosphorylation sites in the cytoplasmic domain. Quantitative “oncogene rescue” analysis allows mechanistic dissection of oncogene addiction, and, when broadly applied, may provide functional validation for potential therapeutic targets identified through large-scale RNAi screens. PMID:18711136

  12. Exploring Fusarium head blight disease control by RNA interference

    USDA-ARS?s Scientific Manuscript database

    RNA interference (RNAi) technology provides a novel tool to study gene function and plant protection strategies. Fusarium graminearum is the causal agent of Fusarium head blight (FHB), which reduces crop yield and quality by producing trichothecene mycotoxins including 3-acetyl deoxynivalenol (3-ADO...

  13. RNA interference, arthropod-borne viruses, and mosquitoes.

    PubMed

    Sanchez-Vargas, Irma; Travanty, Emily A; Keene, Kimberly M; Franz, Alexander W E; Beaty, Barry J; Blair, Carol D; Olson, Ken E

    2004-06-01

    RNA interference (RNAi) probably functions as an antiviral mechanism in most eukaryotic organisms. Variations in the activity of this antiviral pathway in mosquitoes could explain, in part, why some mosquitoes are competent vectors of medically important, arthropod-borne viruses (arboviruses) and others are not. There are three lines of evidence that show the RNAi pathway exists in Aedes species that transmit arboviruses. The first is that recombinant Sindbis viruses expressing a RNA fragment from a genetically unrelated dengue-2 virus (DENV-2) interfere with DENV-2 replication in Aedes aegypti mosquitoes by a mechanism similar to virus-induced gene silencing described in plants. The second is that transfection of C6/36 (Aedes albopictus) cells with either double-stranded RNA or synthetic small interfering RNAs derived from an arbovirus genome interferes with replication of the homologous virus. The third is that a hairpin DENV-2-specific RNA transcribed from a plasmid can generate virus-resistant C6/36 cells. We hypothesize that genetically modified mosquitoes can be generated that transcribe a flavivirus-specific dsRNA, triggering the RNAi response soon after ingestion of a blood meal. This could induce the RNAi pathway in the midgut prior to establishment of virus infection and profoundly change vector competence. Towards this goal, we are developing transgenic A. aegypti lines that are refractory to DENV by exploiting the RNAi pathway.

  14. RNA Interference of Human α-Synuclein in Mouse

    PubMed Central

    Kim, Young-Cho; Miller, Adam; Lins, Livia C. R. F.; Han, Sang-Woo; Keiser, Megan S.; Boudreau, Ryan L.; Davidson, Beverly L.; Narayanan, Nandakumar S.

    2017-01-01

    α-Synuclein is postulated to play a key role in the pathogenesis of Parkinson’s disease (PD). Aggregates of α-synuclein contribute to neurodegeneration and cell death in humans and in mouse models of PD. Here, we use virally mediated RNA interference to knockdown human α-synuclein in mice. We used an siRNA design algorithm to identify eight siRNA sequences with minimal off-targeting potential. One RNA-interference sequence (miSyn4) showed maximal protein knockdown potential in vitro. We then designed AAV vectors expressing miSyn4 and injected them into the mouse substantia nigra. miSyn4 was robustly expressed and did not detectably change dopamine neurons, glial proliferation, or mouse behavior. We then injected AAV2-miSyn4 into Thy1-hSNCA mice over expressing α-synuclein and found decreased human α-synuclein (hSNCA) in both midbrain and cortex. In separate mice, co-injection of AAV2-hSNCA and AAV2-miSyn4 demonstrated decreased hSNCA expression and rescue of hSNCA-mediated behavioral deficits. These data suggest that virally mediated RNA interference can knockdown hSNCA in vivo, which could be helpful for future therapies targeting human α-synuclein. PMID:28197125

  15. RNA interference: from biology to drugs and therapeutics.

    PubMed

    Appasani, Krishnarao

    2004-07-01

    RNA interference (RNAi) is a newly discovered and popular technology platform among researchers not only in the fields of RNA biology and molecular cell biology. It has created excitement in clinical sciences such as oncology, neurology, endocrinology, infectious diseases and drug discovery. There is an urgent need to educate and connect academic and industry researchers for the purpose of knowledge transfer. Thus, GeneExpression Systems of Waltham organized its Second International Conference in Waltham City (May 2-4, 2004, MA, USA) on the theme of 'RNA interference: From Biology to Drugs & Therapeutics.' About 200 participants and 32 speakers attended this two and half-day event which was arranged in six scientific and three technology sessions and ended with a panel discussion. This report covers a few representative talks from academia, biotech and the drug industry.

  16. Prokaryotic Argonautes - variations on the RNA interference theme

    PubMed Central

    van der Oost, John; Swarts, Daan C.; Jore, Matthijs M.

    2014-01-01

    The discovery of RNA interference (RNAi) has been a major scientific breakthrough. This RNA-guided RNA interference system plays a crucial role in a wide range of regulatory and defense mechanisms in eukaryotes. The key enzyme of the RNAi system is Argonaute (Ago), an endo-ribonuclease that uses a small RNA guide molecule to specifically target a complementary RNA transcript. Two functional classes of eukaryotic Ago have been described: catalytically active Ago that cleaves RNA targets complementary to its guide, and inactive Ago that uses its guide to bind target RNA to down-regulate translation efficiency. A recent comparative genomics study has revealed that Argonaute-like proteins are also encoded by prokaryotic genomes. Interestingly, there is a lot of variation among these prokaryotic Argonaute (pAgo) proteins with respect to domain architecture: some resemble the eukaryotic Ago (long pAgo) containing a complete or disrupted catalytic site, while others are truncated versions (short pAgo) that generally contain an incomplete catalytic site. Prokaryotic Agos with an incomplete catalytic site often co-occur with (predicted) nucleases. Based on this diversity, and on the fact that homologs of other RNAi-related protein components (such as Dicer nucleases) have never been identified in prokaryotes, it has been predicted that variations on the eukaryotic RNAi theme may occur in prokaryotes. PMID:28357239

  17. Antigenic variation in Giardia lamblia is regulated by RNA interference.

    PubMed

    Prucca, César G; Slavin, Ileana; Quiroga, Rodrigo; Elías, Eliana V; Rivero, Fernando D; Saura, Alicia; Carranza, Pedro G; Luján, Hugo D

    2008-12-11

    Giardia lamblia (also called Giardia intestinalis) is one of the most common intestinal parasites of humans. To evade the host's immune response, Giardia undergoes antigenic variation-a process that allows the parasite to develop chronic and recurrent infections. From a repertoire of approximately 190 variant-specific surface protein (VSP)-coding genes, Giardia expresses only one VSP on the surface of each parasite at a particular time, but spontaneously switches to a different VSP by unknown mechanisms. Here we show that regulation of VSP expression involves a system comprising RNA-dependent RNA polymerase, Dicer and Argonaute, known components of the RNA interference machinery. Clones expressing a single surface antigen efficiently transcribe several VSP genes but only accumulate transcripts encoding the VSP to be expressed. Detection of antisense RNAs corresponding to the silenced VSP genes and small RNAs from the silenced but not for the expressed vsp implicate the RNA interference pathway in antigenic variation. Remarkably, silencing of Dicer and RNA-dependent RNA polymerase leads to a change from single to multiple VSP expression in individual parasites.

  18. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus.

    PubMed

    Karvelis, Tautvydas; Gasiunas, Giedrius; Miksys, Algirdas; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2013-05-01

    The Cas9-crRNA complex of the Streptococcus thermophilus DGCC7710 CRISPR3-Cas system functions as an RNA-guided endonuclease with crRNA-directed target sequence recognition and protein-mediated DNA cleavage. We show here that an additional RNA molecule, tracrRNA (trans-activating CRISPR RNA), co-purifies with the Cas9 protein isolated from the heterologous E. coli strain carrying the S. thermophilus DGCC7710 CRISPR3-Cas system. We provide experimental evidence that tracrRNA is required for Cas9-mediated DNA interference both in vitro and in vivo. We show that Cas9 specifically promotes duplex formation between the precursor crRNA (pre-crRNA) transcript and tracrRNA, in vitro. Furthermore, the housekeeping RNase III contributes to primary pre-crRNA-tracrRNA duplex cleavage for mature crRNA biogenesis. RNase III, however, is not required in the processing of a short pre-crRNA transcribed from a minimal CRISPR array containing a single spacer. Finally, we show that an in vitro-assembled ternary Cas9-crRNA-tracrRNA complex cleaves DNA. This study further specifies the molecular basis for crRNA-based re-programming of Cas9 to specifically cleave any target DNA sequence for precise genome surgery. The processes for crRNA maturation and effector complex assembly established here will contribute to the further development of the Cas9 re-programmable system for genome editing applications.

  19. RNA interference-based nanosystems for inflammatory bowel disease therapy

    PubMed Central

    Guo, Jian; Jiang, Xiaojing; Gui, Shuangying

    2016-01-01

    Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn’s disease, is a chronic, recrudescent disease that invades the gastrointestinal tract, and it requires surgery or lifelong medicinal therapy. The conventional medicinal therapies for IBD, such as anti-inflammatories, glucocorticoids, and immunosuppressants, are limited because of their systemic adverse effects and toxicity during long-term treatment. RNA interference (RNAi) precisely regulates susceptibility genes to decrease the expression of proinflammatory cytokines related to IBD, which effectively alleviates IBD progression and promotes intestinal mucosa recovery. RNAi molecules generally include short interfering RNA (siRNA) and microRNA (miRNA). However, naked RNA tends to degrade in vivo as a consequence of endogenous ribonucleases and pH variations. Furthermore, RNAi treatment may cause unintended off-target effects and immunostimulation. Therefore, nanovectors of siRNA and miRNA were introduced to circumvent these obstacles. Herein, we introduce non-viral nanosystems of RNAi molecules and discuss these systems in detail. Additionally, the delivery barriers and challenges associated with RNAi molecules will be discussed from the perspectives of developing efficient delivery systems and potential clinical use. PMID:27789943

  20. RNA interference-based nanosystems for inflammatory bowel disease therapy.

    PubMed

    Guo, Jian; Jiang, Xiaojing; Gui, Shuangying

    Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is a chronic, recrudescent disease that invades the gastrointestinal tract, and it requires surgery or lifelong medicinal therapy. The conventional medicinal therapies for IBD, such as anti-inflammatories, glucocorticoids, and immunosuppressants, are limited because of their systemic adverse effects and toxicity during long-term treatment. RNA interference (RNAi) precisely regulates susceptibility genes to decrease the expression of proinflammatory cytokines related to IBD, which effectively alleviates IBD progression and promotes intestinal mucosa recovery. RNAi molecules generally include short interfering RNA (siRNA) and microRNA (miRNA). However, naked RNA tends to degrade in vivo as a consequence of endogenous ribonucleases and pH variations. Furthermore, RNAi treatment may cause unintended off-target effects and immunostimulation. Therefore, nanovectors of siRNA and miRNA were introduced to circumvent these obstacles. Herein, we introduce non-viral nanosystems of RNAi molecules and discuss these systems in detail. Additionally, the delivery barriers and challenges associated with RNAi molecules will be discussed from the perspectives of developing efficient delivery systems and potential clinical use.

  1. Advances with RNA interference in Alzheimer's disease research.

    PubMed

    Chen, Shun; Ge, Xuemei; Chen, Yinghui; Lv, Nan; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized clinically by memory and cognitive dysfunction. Unfortunately, there is no effective therapeutic method for AD treatment or ways to halt disease progression. Many mechanisms are involved in the disease, including genes mutation and protein dysfunction. RNA interference (RNAi) technology may potentially be able to control AD. It can inhibit the protein expression of specific genes by activating a sequence-specific RNA degradation process. This is a powerful tool with which to study gene function, investigate the mechanism of the disease, and validate drug targets. In this review, we highlight the advances in RNAi technology in the investigation and treatment of AD.

  2. RNA-based drugs: from RNA interference to short interfering RNAs.

    PubMed

    Poliseno, L; Mercatanti, A; Citti, L; Rainaldi, G

    2004-08-01

    RNA interference consists of a sequence specific post-transcriptional gene silencing phenomenon triggered by a double strand RNA molecule homologous to the silenced gene. The dsRNA is cleaved by DICER enzyme in small dsRNA pieces, named short interfering RNAs (siRNAs). These fragments are thereafter associated to RISC complex where the cleavage of target RNA occurs. The observation that siRNAs can trigger the RNA interference mechanism in mammalian cells represents a fundamental discovery that discloses new horizons in genetic researches in that theoretically each gene can be silenced. The relative simplicity by which active short interfering RNAs can be designed and synthesized explains their widespread use in basic and applied researches, even if appropriate controls that exclude off-target effects are strictly required. The findings that siRNAs are active even when expressed in viral vectors open the possibility that they can be very soon used for gene therapy of several human diseases.

  3. Cardiovascular RNA interference therapy: the broadening tool and target spectrum.

    PubMed

    Poller, Wolfgang; Tank, Juliane; Skurk, Carsten; Gast, Martina

    2013-08-16

    Understanding of the roles of noncoding RNAs (ncRNAs) within complex organisms has fundamentally changed. It is increasingly possible to use ncRNAs as diagnostic and therapeutic tools in medicine. Regarding disease pathogenesis, it has become evident that confinement to the analysis of protein-coding regions of the human genome is insufficient because ncRNA variants have been associated with important human diseases. Thus, inclusion of noncoding genomic elements in pathogenetic studies and their consideration as therapeutic targets is warranted. We consider aspects of the evolutionary and discovery history of ncRNAs, as far as they are relevant for the identification and selection of ncRNAs with likely therapeutic potential. Novel therapeutic strategies are based on ncRNAs, and we discuss here RNA interference as a highly versatile tool for gene silencing. RNA interference-mediating RNAs are small, but only parts of a far larger spectrum encompassing ncRNAs up to many kilobasepairs in size. We discuss therapeutic options in cardiovascular medicine offered by ncRNAs and key issues to be solved before clinical translation. Convergence of multiple technical advances is highlighted as a prerequisite for the translational progress achieved in recent years. Regarding safety, we review properties of RNA therapeutics, which may immunologically distinguish them from their endogenous counterparts, all of which underwent sophisticated evolutionary adaptation to specific biological contexts. Although our understanding of the noncoding human genome is only fragmentary to date, it is already feasible to develop RNA interference against a rapidly broadening spectrum of therapeutic targets and to translate this to the clinical setting under certain restrictions.

  4. Regulation of Human Adenovirus Replication by RNA Interference

    PubMed Central

    Nikitenko, N. A.; Speiseder, T.; Lam, E.; Rubtsov, P. M.; Tonaeva, Kh. D.; Borzenok, S. A.; Dobner, T.; Prassolov, V. S.

    2015-01-01

    Adenoviruses cause a wide variety of human infectious diseases. Adenoviral conjunctivitis and epidemic keratoconjunctivitis are commonly associated with human species D adenoviruses. Currently, there is no sufficient or appropriate treatment to counteract these adenovirus infections. Thus, there is an urgent need for new etiology-directed therapies with selective activity against human adenoviruses. To address this problem, the adenoviral early genes E1A and E2B (viral DNA polymerase) seem to be promising targets. Here, we propose an effective approach to downregulate the replication of human species D adenoviruses by means of RNA interference. We generated E1A expressing model cell lines enabling fast evaluation of the RNA interference potential. Small interfering RNAs complementary to the E1A mRNA sequences of human species D adenoviruses mediate significant suppression of the E1A expression in model cells. Furthermore, we observed a strong downregulation of replication of human adenoviruses type D8 and D37 by small hairpin RNAs complementary to the E1A or E2B mRNA sequences in primary human limbal cells. We believe that our results will contribute to the development of efficient anti-adenoviral therapy. PMID:26483965

  5. Regulation of Human Adenovirus Replication by RNA Interference.

    PubMed

    Nikitenko, N A; Speiseder, T; Lam, E; Rubtsov, P M; Tonaeva, Kh D; Borzenok, S A; Dobner, T; Prassolov, V S

    2015-01-01

    Adenoviruses cause a wide variety of human infectious diseases. Adenoviral conjunctivitis and epidemic keratoconjunctivitis are commonly associated with human species D adenoviruses. Currently, there is no sufficient or appropriate treatment to counteract these adenovirus infections. Thus, there is an urgent need for new etiology-directed therapies with selective activity against human adenoviruses. To address this problem, the adenoviral early genes E1A and E2B (viral DNA polymerase) seem to be promising targets. Here, we propose an effective approach to downregulate the replication of human species D adenoviruses by means of RNA interference. We generated E1A expressing model cell lines enabling fast evaluation of the RNA interference potential. Small interfering RNAs complementary to the E1A mRNA sequences of human species D adenoviruses mediate significant suppression of the E1A expression in model cells. Furthermore, we observed a strong downregulation of replication of human adenoviruses type D8 and D37 by small hairpin RNAs complementary to the E1A or E2B mRNA sequences in primary human limbal cells. We believe that our results will contribute to the development of efficient anti-adenoviral therapy.

  6. Self-assembled RNA interference microsponges for efficient siRNA delivery

    NASA Astrophysics Data System (ADS)

    Lee, Jong Bum; Hong, Jinkee; Bonner, Daniel K.; Poon, Zhiyong; Hammond, Paula T.

    2012-04-01

    The encapsulation and delivery of short interfering RNA (siRNA) has been realized using lipid nanoparticles, cationic complexes, inorganic nanoparticles, RNA nanoparticles and dendrimers. Still, the instability of RNA and the relatively ineffectual encapsulation process of siRNA remain critical issues towards the clinical translation of RNA as a therapeutic. Here we report the synthesis of a delivery vehicle that combines carrier and cargo: RNA interference (RNAi) polymers that self-assemble into nanoscale pleated sheets of hairpin RNA, which in turn form sponge-like microspheres. The RNAi-microsponges consist entirely of cleavable RNA strands, and are processed by the cell’s RNA machinery to convert the stable hairpin RNA to siRNA only after cellular uptake, thus inherently providing protection for siRNA during delivery and transport to the cytoplasm. More than half a million copies of siRNA can be delivered to a cell with the uptake of a single RNAi-microsponge. The approach could lead to novel therapeutic routes for siRNA delivery.

  7. Inducing RNA interference in the arbovirus vector, Culicoides sonorensis

    PubMed Central

    Mills, Mary K.; Nayduch, D.; Michel, K.

    2014-01-01

    Biting midges in the genus Culicoides are important vectors of arboviral diseases, including epizootic hemorrhagic disease, bluetongue, and likely Schmallenberg, which cause significant economic burden worldwide. Research on these vectors has been hindered by the lack of a sequenced genome, the difficulty of consistent culturing of certain species, and the absence of molecular techniques such as RNA interference (RNAi). Here, we report the establishment of RNAi as a research tool for the adult midge, Culicoides sonorensis. Based on previous research and transcriptome analysis, which revealed putative siRNA pathway member orthologs, we hypothesized that adult C. sonorensis midges have the molecular machinery needed to preform RNA silencing. Injection of control dsRNA, dsGFP, into the hemocoel 2–3 day old adult female midges resulted in survival curves that support virus transmission. DsRNA injection targeting the newly identified C. sonorensis inhibitor of apoptosis protein 1 (CsIAP1) ortholog, resulted in a 40% decrease of transcript levels and 73% shortened median survivals as compared to dsGFP-injected controls. These results reveal the conserved function of IAP1. Importantly, they also demonstrate the feasibility of RNAi by dsRNA injection in adult midges, which will greatly facilitate studies of the underlying mechanisms of vector competence in C. sonorensis. PMID:25293805

  8. Abasic pivot substitution harnesses target specificity of RNA interference.

    PubMed

    Lee, Hye-Sook; Seok, Heeyoung; Lee, Dong Ha; Ham, Juyoung; Lee, Wooje; Youm, Emilia Moonkyung; Yoo, Jin Seon; Lee, Yong-Seung; Jang, Eun-Sook; Chi, Sung Wook

    2015-12-18

    Gene silencing via RNA interference inadvertently represses hundreds of off-target transcripts. Because small interfering RNAs (siRNAs) can function as microRNAs, avoiding miRNA-like off-target repression is a major challenge. Functional miRNA-target interactions are known to pre-require transitional nucleation, base pairs from position 2 to the pivot (position 6). Here, by substituting nucleotide in pivot with abasic spacers, which prevent base pairing and alleviate steric hindrance, we eliminate miRNA-like off-target repression while preserving on-target activity at ∼ 80-100%. Specifically, miR-124 containing dSpacer pivot substitution (6pi) loses seed-mediated transcriptome-wide target interactions, repression activity and biological function, whereas other conventional modifications are ineffective. Application of 6pi allows PCSK9 siRNA to efficiently lower plasma cholesterol concentration in vivo, and abolish potentially deleterious off-target phenotypes. The smallest spacer, C3, also shows the same improvement in target specificity. Abasic pivot substitution serves as a general means to harness the specificity of siRNA experiments and therapeutic applications.

  9. Who Watches the Watchmen: Roles of RNA Modifications in the RNA Interference Pathway.

    PubMed

    Shelton, Samantha B; Reinsborough, Calder; Xhemalce, Blerta

    2016-07-01

    RNA levels are widely thought to be predictive of RNA function. However, the existence of more than a hundred chemically distinct modifications of RNA alone is a major indication that these moieties may impart distinct functions to subgroups of RNA molecules that share a primary sequence but display distinct RNA "epigenetic" marks. RNAs can be modified on many sites, including 5' and 3' ends, the sugar phosphate backbone, or internal bases, which collectively provide many opportunities for posttranscriptional regulation through a variety of mechanisms. Here, we will focus on how modifications on messenger and microRNAs may affect the process of RNA interference in mammalian cells. We believe that taking RNA modifications into account will not only advance our understanding of this crucial pathway in disease and cancer but will also open the path to exploiting the enzymes that "write" and "erase" them as targets for therapeutic drug development.

  10. Who Watches the Watchmen: Roles of RNA Modifications in the RNA Interference Pathway

    PubMed Central

    Xhemalce, Blerta

    2016-01-01

    RNA levels are widely thought to be predictive of RNA function. However, the existence of more than a hundred chemically distinct modifications of RNA alone is a major indication that these moieties may impart distinct functions to subgroups of RNA molecules that share a primary sequence but display distinct RNA “epigenetic” marks. RNAs can be modified on many sites, including 5′ and 3′ ends, the sugar phosphate backbone, or internal bases, which collectively provide many opportunities for posttranscriptional regulation through a variety of mechanisms. Here, we will focus on how modifications on messenger and microRNAs may affect the process of RNA interference in mammalian cells. We believe that taking RNA modifications into account will not only advance our understanding of this crucial pathway in disease and cancer but will also open the path to exploiting the enzymes that “write” and “erase” them as targets for therapeutic drug development. PMID:27441695

  11. RNA Interference in Moths: Mechanisms, Applications, and Progress

    PubMed Central

    Xu, Jin; Wang, Xia-Fei; Chen, Peng; Liu, Fang-Tao; Zheng, Shuai-Chao; Ye, Hui; Mo, Ming-He

    2016-01-01

    The vast majority of lepidopterans, about 90%, are moths. Some moths, particularly their caterpillars, are major agricultural and forestry pests in many parts of the world. However, some other members of moths, such as the silkworm Bombyx mori, are famous for their economic value. Fire et al. in 1998 initially found that exogenous double-stranded RNA (dsRNA) can silence the homolog endogenous mRNA in organisms, which is called RNA interference (RNAi). Soon after, the RNAi technique proved to be very promising not only in gene function determination but also in pest control. However, later studies demonstrate that performing RNAi in moths is not as straightforward as shown in other insect taxa. Nevertheless, since 2007, especially after 2010, an increasing number of reports have been published that describe successful RNAi experiments in different moth species either on gene function analysis or on pest management exploration. So far, more than 100 peer-reviewed papers have reported successful RNAi experiments in moths, covering 10 families and 25 species. By using classic and novel dsRNA delivery methods, these studies effectively silence the expression of various target genes and determine their function in larval development, reproduction, immunology, resistance against chemicals, and other biological processes. In addition, a number of laboratory and field trials have demonstrated that RNAi is also a potential strategy for moth pest management. In this review, therefore, we summarize and discuss the mechanisms and applications of the RNAi technique in moths by focusing on recent progresses. PMID:27775569

  12. Abasic pivot substitution harnesses target specificity of RNA interference

    PubMed Central

    Lee, Hye-Sook; Seok, Heeyoung; Lee, Dong Ha; Ham, Juyoung; Lee, Wooje; Youm, Emilia Moonkyung; Yoo, Jin Seon; Lee, Yong-Seung; Jang, Eun-Sook; Chi, Sung Wook

    2015-01-01

    Gene silencing via RNA interference inadvertently represses hundreds of off-target transcripts. Because small interfering RNAs (siRNAs) can function as microRNAs, avoiding miRNA-like off-target repression is a major challenge. Functional miRNA–target interactions are known to pre-require transitional nucleation, base pairs from position 2 to the pivot (position 6). Here, by substituting nucleotide in pivot with abasic spacers, which prevent base pairing and alleviate steric hindrance, we eliminate miRNA-like off-target repression while preserving on-target activity at ∼80–100%. Specifically, miR-124 containing dSpacer pivot substitution (6pi) loses seed-mediated transcriptome-wide target interactions, repression activity and biological function, whereas other conventional modifications are ineffective. Application of 6pi allows PCSK9 siRNA to efficiently lower plasma cholesterol concentration in vivo, and abolish potentially deleterious off-target phenotypes. The smallest spacer, C3, also shows the same improvement in target specificity. Abasic pivot substitution serves as a general means to harness the specificity of siRNA experiments and therapeutic applications. PMID:26679372

  13. Functional annotation of deubiquitinating enzymes using RNA interference.

    PubMed

    Dirac, Annette M G; Nijman, Sebastian M B; Brummelkamp, Thijn R; Bernards, René

    2005-01-01

    Protein ubiquitination is a dynamic process, depending on a tightly regulated balance between the activity of ubiquitin ligases and their antagonists, the ubiquitin-specific proteases or deubiquitinating enzymes. The family of ubiquitin ligases has been studied intensively and it is well established that their deregulation contributes to diverse disease processes, including cancer. Much less is known about the function and regulation of the large group of deubiquitinating enzymes. This chapter describes how RNA interference against deubiquitinating enzymes can be used to elucidate their function. The application of this technology will greatly improve the functional annotation of this family of proteases.

  14. Rp-phosphorothioate modifications in RNase P RNA that interfere with tRNA binding.

    PubMed Central

    Hardt, W D; Warnecke, J M; Erdmann, V A; Hartmann, R K

    1995-01-01

    We have used Rp-phosphorothioate modifications and a binding interference assay to analyse the role of phosphate oxygens in tRNA recognition by Escherichia coli ribonuclease P (RNase P) RNA. Total (100%) Rp-phosphorothioate modification at A, C or G positions of RNase P RNA strongly impaired tRNA binding and pre-tRNA processing, while effects were less pronounced at U positions. Partially modified E. coli RNase P RNAs were separated into tRNA binding and non-binding fractions by gel retardation. Rp-phosphorothioate modifications that interfered with tRNA binding were found 5' of nucleotides A67, G68, U69, C70, C71, G72, A130, A132, A248, A249, G300, A317, A330, A352, C353 and C354. Manganese rescue at positions U69, C70, A130 and A132 identified, for the first time, sites of direct metal ion coordination in RNase P RNA. Most sites of interference are at strongly conserved nucleotides and nine reside within a long-range base-pairing interaction present in all known RNase P RNAs. In contrast to RNase P RNA, 100% Rp-phosphorothioate substitutions in tRNA showed only moderate effects on binding to RNase P RNAs from E. coli, Bacillus subtilis and Chromatium vinosum, suggesting that pro-Rp phosphate oxygens of mature tRNA contribute relatively little to the formation of the tRNA-RNase P RNA complex. Images PMID:7540978

  15. Biological mechanisms determining the success of RNA interference in insects.

    PubMed

    Wynant, Niels; Santos, Dulce; Vanden Broeck, Jozef

    2014-01-01

    Insects constitute the largest group of animals on this planet, having a huge impact on our environment, as well as on our quality of life. RNA interference (RNAi) is a posttranscriptional gene silencing mechanism triggered by double-stranded (ds)RNA fragments. This process not only forms the basis of a widely used reverse genetics research method in many different eukaryotes but also holds great promise to contribute to the species-specific control of agricultural pests and to combat viral infections in beneficial and disease vectoring insects. However, in many economically important insect species, such as flies, mosquitoes, and caterpillars, systemic delivery of naked dsRNA does not trigger effective gene silencing. Although many components of the RNAi pathway have initially been deciphered in the fruit fly, Drosophila melanogaster, it will be of major importance to investigate this process in a wider variety of species, including dsRNA-sensitive insects such as locusts and beetles, to elucidate the factors responsible for the remarkable variability in RNAi efficiency, as observed in different insects. In this chapter, we review the current knowledge on the RNAi pathway, as well as the most recent insights into the mechanisms that might determine successful RNAi in insects.

  16. Efficient implementation of RNA interference in the pathogenic yeast Cryptococcus neoformans

    PubMed Central

    Bose, Indrani; Doering, Tamara L.

    2011-01-01

    An improved method has been developed for RNA interference in Cryptococcus neoformans, using opposing promoters to facilitate cloning and RNA interference targeting URA5 to allow selection of cells in which silencing is most effective. These advances significantly reduce the variability of silencing and the effort required for interference plasmid construction. PMID:21554906

  17. Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors.

    PubMed

    Palmer, Adam C; Egan, J Barry; Shearwin, Keith E

    2011-01-01

    Transcriptional interference is the in cis suppression of one transcriptional process by another. Mathematical modeling shows that promoter occlusion by elongating RNA polymerases cannot produce strong interference. Interference may instead be generated by (1) dislodgement of slow-to-assemble pre-initiation complexes and transcription factors and (2) prolonged occlusion by paused RNA polymerases.

  18. RNA interference targets arbovirus replication in Culicoides cells.

    PubMed

    Schnettler, Esther; Ratinier, Maxime; Watson, Mick; Shaw, Andrew E; McFarlane, Melanie; Varela, Mariana; Elliott, Richard M; Palmarini, Massimo; Kohl, Alain

    2013-03-01

    Arboviruses are transmitted to vertebrate hosts by biting arthropod vectors such as mosquitoes, ticks, and midges. These viruses replicate in both arthropods and vertebrates and are thus exposed to different antiviral responses in these organisms. RNA interference (RNAi) is a sequence-specific RNA degradation mechanism that has been shown to play a major role in the antiviral response against arboviruses in mosquitoes. Culicoides midges are important vectors of arboviruses, known to transmit pathogens of humans and livestock such as bluetongue virus (BTV) (Reoviridae), Oropouche virus (Bunyaviridae), and likely the recently discovered Schmallenberg virus (Bunyaviridae). In this study, we investigated whether Culicoides cells possess an antiviral RNAi response and whether this is effective against arboviruses, including those with double-stranded RNA (dsRNA) genomes, such as BTV. Using reporter gene-based assays, we established the presence of a functional RNAi response in Culicoides sonorensis-derived KC cells which is effective in inhibiting BTV infection. Sequencing of small RNAs from KC and Aedes aegypti-derived Aag2 cells infected with BTV or the unrelated Schmallenberg virus resulted in the production of virus-derived small interfering RNAs (viRNAs) of 21 nucleotides, similar to the viRNAs produced during arbovirus infections of mosquitoes. In addition, viRNA profiles strongly suggest that the BTV dsRNA genome is accessible to a Dicer-type nuclease. Thus, we show for the first time that midge cells target arbovirus replication by mounting an antiviral RNAi response mainly resembling that of other insect vectors of arboviruses.

  19. RNA Interference Targets Arbovirus Replication in Culicoides Cells

    PubMed Central

    Schnettler, Esther; Ratinier, Maxime; Watson, Mick; Shaw, Andrew E.; McFarlane, Melanie; Varela, Mariana; Elliott, Richard M.; Palmarini, Massimo

    2013-01-01

    Arboviruses are transmitted to vertebrate hosts by biting arthropod vectors such as mosquitoes, ticks, and midges. These viruses replicate in both arthropods and vertebrates and are thus exposed to different antiviral responses in these organisms. RNA interference (RNAi) is a sequence-specific RNA degradation mechanism that has been shown to play a major role in the antiviral response against arboviruses in mosquitoes. Culicoides midges are important vectors of arboviruses, known to transmit pathogens of humans and livestock such as bluetongue virus (BTV) (Reoviridae), Oropouche virus (Bunyaviridae), and likely the recently discovered Schmallenberg virus (Bunyaviridae). In this study, we investigated whether Culicoides cells possess an antiviral RNAi response and whether this is effective against arboviruses, including those with double-stranded RNA (dsRNA) genomes, such as BTV. Using reporter gene-based assays, we established the presence of a functional RNAi response in Culicoides sonorensis-derived KC cells which is effective in inhibiting BTV infection. Sequencing of small RNAs from KC and Aedes aegypti-derived Aag2 cells infected with BTV or the unrelated Schmallenberg virus resulted in the production of virus-derived small interfering RNAs (viRNAs) of 21 nucleotides, similar to the viRNAs produced during arbovirus infections of mosquitoes. In addition, viRNA profiles strongly suggest that the BTV dsRNA genome is accessible to a Dicer-type nuclease. Thus, we show for the first time that midge cells target arbovirus replication by mounting an antiviral RNAi response mainly resembling that of other insect vectors of arboviruses. PMID:23269795

  20. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells.

    PubMed

    Schnettler, Esther; Sterken, Mark G; Leung, Jason Y; Metz, Stefan W; Geertsema, Corinne; Goldbach, Rob W; Vlak, Just M; Kohl, Alain; Khromykh, Alexander A; Pijlman, Gorben P

    2012-12-01

    West Nile virus (WNV) and dengue virus (DENV) are highly pathogenic, mosquito-borne flaviviruses (family Flaviviridae) that cause severe disease and death in humans. WNV and DENV actively replicate in mosquitoes and human hosts and thus encounter different host immune responses. RNA interference (RNAi) is the predominant antiviral response against invading RNA viruses in insects and plants. As a countermeasure, plant and insect RNA viruses encode RNA silencing suppressor (RSS) proteins to block the generation/activity of small interfering RNA (siRNA). Enhanced flavivirus replication in mosquitoes depleted for RNAi factors suggests an important biological role for RNAi in restricting virus replication, but it has remained unclear whether or not flaviviruses counteract RNAi via expression of an RSS. First, we established that flaviviral RNA replication suppressed siRNA-induced gene silencing in WNV and DENV replicon-expressing cells. Next, we showed that none of the WNV encoded proteins displayed RSS activity in mammalian and insect cells and in plants by using robust RNAi suppressor assays. In contrast, we found that the 3'-untranslated region-derived RNA molecule known as subgenomic flavivirus RNA (sfRNA) efficiently suppressed siRNA- and miRNA-induced RNAi pathways in both mammalian and insect cells. We also showed that WNV sfRNA inhibits in vitro cleavage of double-stranded RNA by Dicer. The results of the present study suggest a novel role for sfRNA, i.e., as a nucleic acid-based regulator of RNAi pathways, a strategy that may be conserved among flaviviruses.

  1. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155

    PubMed Central

    Chung, Kwan-Ho; Hart, Christopher C.; Al-Bassam, Sarmad; Avery, Adam; Taylor, Jennifer; Patel, Paresh D.; Vojtek, Anne B.; Turner, David L.

    2006-01-01

    Vector-based RNA interference (RNAi) has emerged as a valuable tool for analysis of gene function. We have developed new RNA polymerase II expression vectors for RNAi, designated SIBR vectors, based upon the non-coding RNA BIC. BIC contains the miR-155 microRNA (miRNA) precursor, and we find that expression of a short region of the third exon of mouse BIC is sufficient to produce miR-155 in mammalian cells. The SIBR vectors use a modified miR-155 precursor stem–loop and flanking BIC sequences to express synthetic miRNAs complementary to target RNAs. Like RNA polymerase III driven short hairpin RNA vectors, the SIBR vectors efficiently reduce target mRNA and protein expression. The synthetic miRNAs can be expressed from an intron, allowing coexpression of a marker or other protein with the miRNAs. In addition, intronic expression of a synthetic miRNA from a two intron vector enhances RNAi. A SIBR vector can express two different miRNAs from a single transcript for effective inhibition of two different target mRNAs. Furthermore, at least eight tandem copies of a synthetic miRNA can be expressed in a polycistronic transcript to increase the inhibition of a target RNA. The SIBR vectors are flexible tools for a variety of RNAi applications. PMID:16614444

  2. Chemical Modification of siRNA Bases to Probe and Enhance RNA Interference

    PubMed Central

    Peacock, Hayden; Kannan, Arunkumar; Beal, Peter A.; Burrows, Cynthia J.

    2011-01-01

    Considerable attention has focused on the use of alternatives to the native ribose and phosphate backbone of small interfering RNAs for therapeutic applications of the RNA interference pathway. In this synopsis, we highlight the less common chemical modifications, namely those of the RNA nucleobases. Base modifications have the potential to lend insight into the mechanism of gene silencing and to lead to novel methods to overcome off-target effects that arise due to deleterious protein binding or mis-targeting of mRNA. PMID:21834582

  3. Scavenger receptor mediates systemic RNA interference in ticks.

    PubMed

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Xuenan, Xuan; Suzuki, Hiroshi; Galay, Remil Linggatong; Tanaka, Tetsuya; Fujisaki, Kozo

    2011-01-01

    RNA interference is an efficient method to silence gene and protein expressions. Here, the class B scavenger receptor CD36 (SRB) mediated the uptake of exogenous dsRNAs in the induction of the RNAi responses in ticks. Unfed female Haemaphysalis longicornis ticks were injected with a single or a combination of H. longicornis SRB (HlSRB) dsRNA, vitellogenin-1 (HlVg-1) dsRNA, and vitellogenin receptor (HlVgR) dsRNA. We found that specific and systemic silencing of the HlSRB, HlVg-1, and HlVgR genes was achieved in ticks injected with a single dsRNA of HlSRB, HlVg-1, and HlVgR. In ticks injected first with HlVg-1 or HlVgR dsRNA followed 96 hours later with HlSRB dsRNA (HlVg-1/HlSRB or HlVgR/HlSRB), gene silencing of HlSRB was achieved in addition to first knockdown in HlVg-1 or HlVgR, and prominent phenotypic changes were observed in engorgement, mortality, and hatchability, indicating that a systemic and specific double knockdown of target genes had been simultaneously attained in these ticks. However, in ticks injected with HlSRB dsRNA followed 96 hours later with HlVg-1 or HlVgR dsRNAs, silencing of HlSRB was achieved, but no subsequent knockdown in HlVgR or HlVg-1 was observed. The Westernblot and immunohistochemical examinations revealed that the endogenous HlSRB protein was fully abolished in midguts of ticks injected with HlSRB/HlVg-1 dsRNAs but HlVg-1 was normally expressed in midguts, suggesting that HlVg-1 dsRNA-mediated RNAi was fully inhibited by the first knockdown of HlSRB. Similarly, the abolished localization of HlSRB protein was recognized in ovaries of ticks injected with HlSRB/HlVgR, while normal localization of HlVgR was observed in ovaries, suggesting that the failure to knock-down HlVgR could be attributed to the first knockdown of HlSRB. In summary, we demonstrated for the first time that SRB may not only mediate the effective knock-down of gene expression by RNAi but also play essential roles for systemic RNAi of ticks.

  4. Scavenger Receptor Mediates Systemic RNA Interference in Ticks

    PubMed Central

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Xuenan, Xuan; Suzuki, Hiroshi; Linggatong Galay, Remil; Tanaka, Tetsuya; Fujisaki, Kozo

    2011-01-01

    RNA interference is an efficient method to silence gene and protein expressions. Here, the class B scavenger receptor CD36 (SRB) mediated the uptake of exogenous dsRNAs in the induction of the RNAi responses in ticks. Unfed female Haemaphysalis longicornis ticks were injected with a single or a combination of H. longicornis SRB (HlSRB) dsRNA, vitellogenin-1 (HlVg-1) dsRNA, and vitellogenin receptor (HlVgR) dsRNA. We found that specific and systemic silencing of the HlSRB, HlVg-1, and HlVgR genes was achieved in ticks injected with a single dsRNA of HlSRB, HlVg-1, and HlVgR. In ticks injected first with HlVg-1 or HlVgR dsRNA followed 96 hours later with HlSRB dsRNA (HlVg-1/HlSRB or HlVgR/HlSRB), gene silencing of HlSRB was achieved in addition to first knockdown in HlVg-1 or HlVgR, and prominent phenotypic changes were observed in engorgement, mortality, and hatchability, indicating that a systemic and specific double knockdown of target genes had been simultaneously attained in these ticks. However, in ticks injected with HlSRB dsRNA followed 96 hours later with HlVg-1 or HlVgR dsRNAs, silencing of HlSRB was achieved, but no subsequent knockdown in HlVgR or HlVg-1 was observed. The Westernblot and immunohistochemical examinations revealed that the endogenous HlSRB protein was fully abolished in midguts of ticks injected with HlSRB/HlVg-1 dsRNAs but HlVg-1 was normally expressed in midguts, suggesting that HlVg-1 dsRNA-mediated RNAi was fully inhibited by the first knockdown of HlSRB. Similarly, the abolished localization of HlSRB protein was recognized in ovaries of ticks injected with HlSRB/HlVgR, while normal localization of HlVgR was observed in ovaries, suggesting that the failure to knock-down HlVgR could be attributed to the first knockdown of HlSRB. In summary, we demonstrated for the first time that SRB may not only mediate the effective knock-down of gene expression by RNAi but also play essential roles for systemic RNAi of ticks. PMID:22145043

  5. RNA interference by feeding in vitro synthesized double-stranded RNA to planarians: methodology and dynamics

    PubMed Central

    Rouhana, Labib; Weiss, Jennifer A.; Forsthoefel, David J.; Lee, Hayoung; King, Ryan S.; Inoue, Takeshi; Shibata, Norito; Agata, Kiyokazu; Newmark, Phillip A.

    2013-01-01

    Background The ability to assess gene function is essential for understanding biological processes. Currently, RNA interference (RNAi) is the only technique available to assess gene function in planarians, in which it has been induced via injection of double-stranded RNA (dsRNA), soaking, or ingestion of bacteria expressing dsRNA. Results We describe a simple and robust RNAi protocol, involving in vitro synthesis of dsRNA that is fed to the planarians. Advantages of this protocol include the ability to produce dsRNA from any vector without subcloning, resolution of ambiguities in quantity and quality of input dsRNA, as well as time, and ease of application. We have evaluated the logistics of inducing RNAi in planarians using this methodology in careful detail, from the ingestion and processing of dsRNA in the intestine, to timing and efficacy of knockdown in neoblasts, germline, and soma. We also present systematic comparisons of effects of amount, frequency, and mode of dsRNA delivery. Conclusions This method gives robust and reproducible results and is amenable to high-throughput studies. Overall, this RNAi methodology provides a significant advance by combining the strengths of current protocols available for dsRNA delivery in planarians and has the potential to benefit RNAi methods in other systems. PMID:23441014

  6. Shortcomings of short hairpin RNA-based transgenic RNA interference in mouse oocytes

    PubMed Central

    2010-01-01

    Background RNA interference (RNAi) is a powerful approach to study a gene function. Transgenic RNAi is an adaptation of this approach where suppression of a specific gene is achieved by expression of an RNA hairpin from a transgene. In somatic cells, where a long double-stranded RNA (dsRNA) longer than 30 base-pairs can induce a sequence-independent interferon response, short hairpin RNA (shRNA) expression is used to induce RNAi. In contrast, transgenic RNAi in the oocyte routinely employs a long RNA hairpin. Transgenic RNAi based on long hairpin RNA, although robust and successful, is restricted to a few cell types, where long double-stranded RNA does not induce sequence-independent responses. Transgenic RNAi in mouse oocytes based on a shRNA offers several potential advantages, including simple cloning of the transgenic vector and an ability to use the same targeting construct in any cell type. Results Here we report our experience with shRNA-based transgenic RNAi in mouse oocytes. Despite optimal starting conditions for this experiment, we experienced several setbacks, which outweigh potential benefits of the shRNA system. First, obtaining an efficient shRNA is potentially a time-consuming and expensive task. Second, we observed that our transgene, which was based on a common commercial vector, was readily silenced in transgenic animals. Conclusions We conclude that, the long RNA hairpin-based RNAi is more reliable and cost-effective and we recommend it as a method-of-choice when a gene is studied selectively in the oocyte. PMID:20939886

  7. Delivery strategies: RNA interference in agriculture and human health.

    PubMed

    Heidebrecht, Richard W

    2017-04-01

    Crop protection through expression of introduced insecticidal proteins is a well-established technique. Modifications of endogenous gene expression have also been used successfully to produce safe and effective agrochemical products. The existing gene expression regulatory apparatus can be employed to alter messenger ribonucleic acid (mRNA) stability in the host species through a ribonucleic acid interference (RNAi) mechanism. Such solutions are currently delivered by incorporation of new genes into the host plant. Direct delivery of RNAi is being extensively explored in the clinic to treat selected human diseases and could be advantageous in agriculture. What are the unifying characteristics of successful delivery agents, and how can we project those observations into the future? © 2016 Society of Chemical Industry.

  8. RNA interference for the identification of ectoparasite vaccine candidates.

    PubMed

    Marr, E J; Sargison, N D; Nisbet, A J; Burgess, S T G

    2014-11-01

    Ectoparasites present a major challenge for disease management globally. With drug resistance increasingly observed in many disease-causing species, the need for novel control measures is pressing. Ever-expanding genomic resources from 'next generation' sequencing are now available for a number of arthropod ectoparasites, necessitating an effective means of screening these data for novel candidates for vaccine antigens or targets for chemotherapeutics. Such in vitro screening methods must be developed if we are to make discoveries in a timely and cost-effective manner. This review will discuss the potential that RNA interference (RNAi) has demonstrated thus far in the context of arthropod ectoparasites and the potential roles for this technology in the development of novel methods for parasite control.

  9. Emerging strategies for RNA interference (RNAi) applications in insects.

    PubMed

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.

  10. Emerging strategies for RNA interference (RNAi) applications in insects

    PubMed Central

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response. PMID:25424593

  11. RNA Interference in Insect Vectors for Plant Viruses

    PubMed Central

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-01-01

    Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists. PMID:27973446

  12. RNA Interference in Insect Vectors for Plant Viruses.

    PubMed

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-12-12

    Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.

  13. Role of RNA Interference (RNAi) in the Moss Physcomitrella patens

    PubMed Central

    Arif, Muhammad Asif; Frank, Wolfgang; Khraiwesh, Basel

    2013-01-01

    RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species. PMID:23344055

  14. A small molecule enhances RNA interference and promotes microRNA processing

    PubMed Central

    Shan, Ge; Li, Yujing; Zhang, Junliang; Li, Wendi; Szulwach, Keith E; Duan, Ranhui; Faghihi, Mohammad A; Khalil, Ahmad M; Lu, Lianghua; Paroo, Zain; Chan, Anthony W S; Shi, Zhangjie; Liu, Qinghua; Wahlestedt, Claes; He, Chuan; Jin, Peng

    2010-01-01

    Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are sequence-specific post-transcriptional regulators of gene expression. Although major components of the RNA interference (RNAi) pathway have been identified, regulatory mechanisms for this pathway remain largely unknown. Here we demonstrate that the RNAi pathway can be modulated intracellularly by small molecules. We have developed a cell-based assay to monitor the activity of the RNAi pathway and find that the small-molecule enoxacin (Penetrex) enhances siRNA-mediated mRNA degradation and promotes the biogenesis of endogenous miRNAs. We show that this RNAi-enhancing activity depends on the trans-activation-responsive region RNA-binding protein. Our results provide a proof-of-principle demonstration that small molecules can be used to modulate the activity of the RNAi pathway. RNAi enhancers may be useful in the development of research tools and therapeutics. PMID:18641635

  15. Specific RNA Interference in Caenorhabditis elegans by Ingested dsRNA Expressed in Bacillus subtilis

    PubMed Central

    Lezzerini, Marco; van de Ven, Koen; Veerman, Martijn; Brul, Stanley; Budovskaya, Yelena V.

    2015-01-01

    In nematodes, genome-wide RNAi-screening has been widely used as a rapid and efficient method to identify genes involved in the aging processes. By far the easiest way of inducing RNA interference (RNAi) in Caenorhabditis elegans is by feeding Escherichia coli that expresses specific double stranded RNA (dsRNA) to knockdown translation of targeted mRNAs. However, it has been shown that E. coli is mildly pathogenic to C. elegans and this pathogenicity might influence aging and the accuracy of the RNAi-screening during aging may as well be affected. Here, we describe a novel system that utilizes the non-pathogenic bacterium Bacillus subtilis, to express dsRNA and therefore eliminates the effects of bacterial pathogenicity from the genetic analysis of aging. PMID:25928543

  16. RNA interference: concept to reality in crop improvement.

    PubMed

    Saurabh, Satyajit; Vidyarthi, Ambarish S; Prasad, Dinesh

    2014-03-01

    The phenomenon of RNA interference (RNAi) is involved in sequence-specific gene regulation driven by the introduction of dsRNA resulting in inhibition of translation or transcriptional repression. Since the discovery of RNAi and its regulatory potentials, it has become evident that RNAi has immense potential in opening a new vista for crop improvement. RNAi technology is precise, efficient, stable and better than antisense technology. It has been employed successfully to alter the gene expression in plants for better quality traits. The impact of RNAi to improve the crop plants has proved to be a novel approach in combating the biotic and abiotic stresses and the nutritional improvement in terms of bio-fortification and bio-elimination. It has been employed successfully to bring about modifications of several desired traits in different plants. These modifications include nutritional improvements, reduced content of food allergens and toxic compounds, enhanced defence against biotic and abiotic stresses, alteration in morphology, crafting male sterility, enhanced secondary metabolite synthesis and seedless plant varieties. However, crop plants developed by RNAi strategy may create biosafety risks. So, there is a need for risk assessment of GM crops in order to make RNAi a better tool to develop crops with biosafety measures. This article is an attempt to review the RNAi, its biochemistry, and the achievements attributed to the application of RNAi in crop improvement.

  17. Endogenous RNA interference is driven by copy number

    PubMed Central

    Cruz, Cristina; Houseley, Jonathan

    2014-01-01

    A plethora of non-protein coding RNAs are produced throughout eukaryotic genomes, many of which are transcribed antisense to protein-coding genes and could potentially instigate RNA interference (RNAi) responses. Here we have used a synthetic RNAi system to show that gene copy number is a key factor controlling RNAi for transcripts from endogenous loci, since transcripts from multi-copy loci form double stranded RNA more efficiently than transcripts from equivalently expressed single-copy loci. Selectivity towards transcripts from high-copy DNA is therefore an emergent property of a minimal RNAi system. The ability of RNAi to selectively degrade transcripts from high-copy loci would allow suppression of newly emerging transposable elements, but such a surveillance system requires transcription. We show that low-level genome-wide pervasive transcription is sufficient to instigate RNAi, and propose that pervasive transcription is part of a defense mechanism capable of directing a sequence-independent RNAi response against transposable elements amplifying within the genome. DOI: http://dx.doi.org/10.7554/eLife.01581.001 PMID:24520161

  18. A kinetic model for RNA-interference of focal adhesions

    PubMed Central

    2013-01-01

    Background Focal adhesions are integrin-based cell-matrix contacts that transduce and integrate mechanical and biochemical cues from the environment. They develop from smaller and more numerous focal complexes under the influence of mechanical force and are key elements for many physiological and disease-related processes, including wound healing and metastasis. More than 150 different proteins localize to focal adhesions and have been systematically classified in the adhesome project (http://www.adhesome.org). First RNAi-screens have been performed for focal adhesions and the effect of knockdown of many of these components on the number, size, shape and location of focal adhesions has been reported. Results We have developed a kinetic model for RNA interference of focal adhesions which represents some of its main elements: a spatially layered structure, signaling through the small GTPases Rac and Rho, and maturation from focal complexes to focal adhesions under force. The response to force is described by two complementary scenarios corresponding to slip and catch bond behavior, respectively. Using estimated and literature values for the model parameters, three time scales of the dynamics of RNAi-influenced focal adhesions are identified: a sub-minute time scale for the assembly of focal complexes, a sub-hour time scale for the maturation to focal adhesions, and a time scale of days that controls the siRNA-mediated knockdown. Our model shows bistability between states dominated by focal complexes and focal adhesions, respectively. Catch bonding strongly extends the range of stability of the state dominated by focal adhesions. A sensitivity analysis predicts that knockdown of focal adhesion components is more efficient for focal adhesions with slip bonds or if the system is in a state dominated by focal complexes. Knockdown of Rho leads to an increase of focal complexes. Conclusions The suggested model provides a kinetic description of the effect of RNA-interference

  19. Applicability of RNA interference in cancer therapy: Current status.

    PubMed

    Maduri, S

    2015-01-01

    Cancer is a manifestation of dysregulated gene function arising from a complex interplay of oncogenes and tumor suppressor genes present in our body. Cancer has been constantly chased using various therapies but all in vain as most of them are highly effective only in the early stages of cancer. Recently, RNA interference (RNAi) therapy, a comparatively new entrant is evolving as a promising player in the battle against cancer due to its post-transcriptional gene silencing ability. The most alluring feature of this non-invasive technology lies in its utility in the cancer detection and the cancer treatment at any stage. Once this technology is fully exploited it can bring a whole new era of therapeutics capable of curing cancer at any stage mainly due to its ability to target the vital processes required for cell proliferation such as response to growth factors, nutrient uptake/synthesis, and energy generation. This therapy can also be used to treat stage IV cancer, the most difficult to treat till date, by virtue of its metastasis inhibiting capability. Recent research has also proved that cancer can even be prevented by proper modulation of physiological RNAi pathways and researchers have found that many nutrients, which are a part of routine diet, can effectively modulate these pathways and prevent cancer. Even after having all these advantages the potential of RNAi therapy could not be fully tapped earlier, due to many limitations associated with the administration of RNAi based therapeutics. However, recent advancements in this direction, such as the development of small interfering RNA (siRNA) tolerant to nucleases and the development of non-viral vectors such as cationic liposomes and nanoparticles, can overcome this obstacle and facilitate the clinical use of RNAi based therapeutics in the treatment of cancer. The present review focuses on the current status of RNAi therapeutics and explores their potential as future diagnostics and therapeutics against

  20. dsRNA interference on expression of a RNA-dependent RNA polymerase gene of Bombyx mori cytoplasmic polyhedrosis virus.

    PubMed

    Pan, Zhong-Hua; Gao, Kun; Hou, Cheng-Xiang; Wu, Ping; Qin, Guang-Xing; Geng, Tao; Guo, Xi-Jie

    2015-07-01

    Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is one of the major viral pathogens in silkworm. Its infection often results in significant losses to sericulture. Studies have demonstrated that RNAi is one of the important anti-viral mechanisms in organisms. In this study, three dsRNAs targeting the RNA-dependent RNA polymerase (RDRP) gene of BmCPV were designed and synthesized with 2'-F modification to explore their interference effects on BmCPV replication in silkworm larvae. The results showed that injecting dsRNA in the dosage of 4-6 ng per mg body weight into the 5th instar larvae can interfere with the BmCPV-RDRP expression by 93% after virus infection and by 99.9% before virus infection. In addition, the expression of two viral structural protein genes (genome RNA segments 1 and 5) was also decreased with the decrease of RDRP expression, suggesting that RNAi interference of BmCPV-RDRP expression could affect viral replication. The study provides an effective method for investigating virus replication as well as the virus-host interactions in the silkworm larvae using dsRNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. lncRNA in the liver: Prospects for fundamental research and therapy by RNA interference.

    PubMed

    Smekalova, Elena M; Kotelevtsev, Yuri V; Leboeuf, Dominique; Shcherbinina, Evgeniya Y; Fefilova, Anna S; Zatsepin, Timofei S; Koteliansky, Victor

    2016-12-01

    Long non-coding RNAs constitute the most abundant part of the transcribed mammalian genome. lncRNAs affect all essential processes in the living cell including transcription, splicing, translation, replication, shaping of chromatin and post translational modification of proteins. Alterations in lncRNA expression have been linked to a number of diseases; thus, modulation of lncRNA expression holds a huge potential for gene-based therapy. In this review we summarize published data about lncRNAs in the context of hepatic carcinogenesis and liver fibrosis, and the corresponding potential targets for gene therapy. Recent advancements in targeted delivery to the liver made RNA interference an invaluable tool to decipher hepatic lncRNA function and to develop lncRNA-oriented therapies for liver-involved diseases in the future. Different approaches for RNA delivery that can be used for functional studies in the lab and for clinical lncRNA based applications are critically discussed in this review.

  2. Evaluation and control of miRNA-like off-target repression for RNA interference.

    PubMed

    Seok, Heeyoung; Lee, Haejeong; Jang, Eun-Sook; Chi, Sung Wook

    2017-09-13

    RNA interference (RNAi) has been widely adopted to repress specific gene expression and is easily achieved by designing small interfering RNAs (siRNAs) with perfect sequence complementarity to the intended target mRNAs. Although siRNAs direct Argonaute (Ago), a core component of the RNA-induced silencing complex (RISC), to recognize and silence target mRNAs, they also inevitably function as microRNAs (miRNAs) and suppress hundreds of off-targets. Such miRNA-like off-target repression is potentially detrimental, resulting in unwanted toxicity and phenotypes. Despite early recognition of the severity of miRNA-like off-target repression, this effect has often been overlooked because of difficulties in recognizing and avoiding off-targets. However, recent advances in genome-wide methods and knowledge of Ago-miRNA target interactions have set the stage for properly evaluating and controlling miRNA-like off-target repression. Here, we describe the intrinsic problems of miRNA-like off-target effects caused by canonical and noncanonical interactions. We particularly focus on various genome-wide approaches and chemical modifications for the evaluation and prevention of off-target repression to facilitate the use of RNAi with secured specificity.

  3. Inhibition of Marek's disease virus replication by retroviral vector-based RNA interference

    USDA-ARS?s Scientific Manuscript database

    RNA interference (RNAi) is a promising antiviral methodology. We recently demonstrated that retroviral vectors expressing short hairpin RNAs (shRNA-mirs) in the context of a modified endogenous micro-RNA (miRNA) can be effective in reducing replication of other retroviruses in chicken cells. In thi...

  4. RNA interference in nematodes and the chance that favored Sydney Brenner

    PubMed Central

    Félix, Marie-Anne

    2008-01-01

    The efficiency of RNA interference varies between different organisms, even among nematodes. A recent report of successful RNA interference in the nematode Panagrolaimus superbus in BMC Molecular Biology has implications for the comparative study of the functional genomics of nematode species, and prompts reflections on the choice of Caenorhabditis elegans as a model organism. PMID:19014674

  5. RNA interference-based resistance against a legume mastrevirus

    PubMed Central

    2011-01-01

    Background RNA interference (RNAi) is a homology-dependant gene silencing mechanism and has been widely used to engineer resistance in plants against RNA viruses. However, its usefulness in delivering resistance against plant DNA viruses belonging to family Geminiviridae is still being debated. Although the RNAi approach has been shown, using a transient assay, to be useful in countering monocotyledonous plant-infecting geminiviruses of the genus Mastrevirus, it has yet to be investigated as a means of delivering resistance to dicot-infecting mastreviruses. Chickpea chlorotic dwarf Pakistan virus (CpCDPKV) is a legume-infecting mastrevirus that affects chickpea and other leguminous crops in Pakistan. Results Here a hairpin (hp)RNAi construct containing sequences encompassing part of replication-associated protein gene, intergenic region and part of the movement protein gene of CpCDPKV under the control of the Cauliflower mosaic virus 35S promoter has been produced and stably transformed into Nicotiana benthamiana. Plants harboring the hairpin construct were challenged with CpCDPKV. All non-transgenic N. benthamiana plants developed symptoms of CpCDPKV infection within two weeks post-inoculation. In contrast, none of the inoculated transgenic plants showed symptoms of infection and no viral DNA could be detected by Southern hybridization. A real-time quantitative PCR analysis identified very low-level accumulation of viral DNA in the inoculated transgenic plants. Conclusions The results presented show that the RNAi-based resistance strategy is useful in protecting plants from a dicot-infecting mastrevirus. The very low levels of virus detected in plant tissue of transgenic plants distal to the inoculation site suggest that virus movement and/or viral replication was impaired leading to plants that showed no discernible signs of virus infection. PMID:22047503

  6. Exposure to dsRNA elicits RNA interference in Brachionus manjavacas (Rotifera).

    PubMed

    Snell, Terry W; Shearer, Tonya L; Smith, Hilary A

    2011-04-01

    RNA interference (RNAi) is a powerful technique for functional genomics, yet no studies have reported its successful application to zooplankton. Many zooplankton, particularly microscopic metazoans of phylum Rotifera, have unique life history traits for which genetic investigation has been limited. In this paper, we report the development of RNAi methods for rotifers, with the exogenous introduction of double-stranded RNA (dsRNA) through the use of a lipofection reagent. Transfection with dsRNA for heat shock protein 90, the membrane-associated progesterone receptor, and mitogen-activated protein kinase significantly increased the proportion of non-reproductive females. Additionally, a fluorescence-based lectin binding assay confirmed the significant suppression of four of six glycosylation enzymes that were targeted with dsRNA. Suppression of mRNA transcripts was confirmed with quantitative PCR. Development of RNAi for rotifers promises to enhance the ability for assessing genetic regulation of features critical to their life history and represents a key step toward functional genomics research in zooplankton.

  7. RNA Interference for Mosquito and Mosquito-Borne Disease Control

    PubMed Central

    Airs, Paul M.; Bartholomay, Lyric C.

    2017-01-01

    RNA interference (RNAi) is a powerful tool to silence endogenous mosquito and mosquito-borne pathogen genes in vivo. As the number of studies utilizing RNAi in basic research grows, so too does the arsenal of physiological targets that can be developed into products that interrupt mosquito life cycles and behaviors and, thereby, relieve the burden of mosquitoes on human health and well-being. As this technology becomes more viable for use in beneficial and pest insect management in agricultural settings, it is exciting to consider its role in public health entomology. Existing and burgeoning strategies for insecticide delivery could be adapted to function as RNAi trigger delivery systems and thereby expedite transformation of RNAi from the lab to the field for mosquito control. Taken together, development of RNAi-based vector and pathogen management techniques & strategies are within reach. That said, tools for successful RNAi design, studies exploring RNAi in the context of vector control, and studies demonstrating field efficacy of RNAi trigger delivery have yet to be honed and/or developed for mosquito control. PMID:28067782

  8. RNA interference and its role in cancer therapy.

    PubMed

    Mansoori, Behzad; Sandoghchian Shotorbani, Siamak; Baradaran, Behzad

    2014-12-01

    In todays' environment, it is becoming increasingly difficult to ignore the role of cancer in social health. Although a huge budget is allocated on cancer research every year, cancer remains the second global cause of death. And, exclusively, less than 50% of patients afflicted with advanced cancer live one year subsequent to standard cancer treatments. RNA interference (RNAi) is a mechanism for gene silencing. Such mechanism possesses uncanny ability in targeting cancer-related genes. A majority of gene products involved in tumorigenesis have recently been utilized as targets in RNAi based therapy. The evidence from these studies indicates that RNAi application for targeting functional carcinogenic molecules, tumor resistance to chemotherapy and radiotherapy is required in today's cancer treatment. Knock downing of gene products by RNAi technology exerts antiproliferative and proapoptotic effects upon cell culture systems, animal models and in clinical trials in the most studies. The recognition of RNAi mechanism and the progress in this field leaded several new RNAi-based drugs to Clinical Trial phases. This has also developed genome based personalized cancer therapeutics. Hopefully, this type of treatment will work as one of the efficient one for cancer patients.

  9. Discovery of novel targets with high throughput RNA interference screening.

    PubMed

    Kassner, Paul D

    2008-03-01

    High throughput technologies have the potential to affect all aspects of drug discovery. Considerable attention is paid to high throughput screening (HTS) for small molecule lead compounds. The identification of the targets that enter those HTS campaigns had been driven by basic research until the advent of genomics level data acquisition such as sequencing and gene expression microarrays. Large-scale profiling approaches (e.g., microarrays, protein analysis by mass spectrometry, and metabolite profiling) can yield vast quantities of data and important information. However, these approaches usually require painstaking in silico analysis and low-throughput basic wet-lab research to identify the function of a gene and validate the gene product as a potential therapeutic drug target. Functional genomic screening offers the promise of direct identification of genes involved in phenotypes of interest. In this review, RNA interference (RNAi) mediated loss-of-function screens will be discussed and as well as their utility in target identification. Some of the genes identified in these screens should produce similar phenotypes if their gene products are antagonized with drugs. With a carefully chosen phenotype, an understanding of the biology of RNAi and appreciation of the limitations of RNAi screening, there is great potential for the discovery of new drug targets.

  10. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference

    PubMed Central

    Xu, Zhongping; Li, Jingwen; Guo, Xiaoping; Jin, Shuangxia; Zhang, Xianlong

    2016-01-01

    Cottonseed oil is recognized as an important oil in food industry for its unique characters: low flavor reversion and the high level of antioxidants (VitaminE) as well as unsaturated fatty acid. However, the cottonseed oil content of cultivated cotton (Gossypium hirsutum) is only around 20%. In this study, we modified the accumulation of oils by the down-regulation of phosphoenolpyruvate carboxylase 1 (GhPEPC1) via RNA interference in transgenic cotton plants. The qRT-PCR and enzyme activity assay revealed that the transcription and expression of GhPEPC1 was dramatically down-regulated in transgenic lines. Consequently, the cottonseed oil content in several transgenic lines showed a significant (P < 0.01) increase (up to 16.7%) without obvious phenotypic changes under filed condition when compared to the control plants. In order to elucidate the molecular mechanism of GhPEPC1 in the regulation of seed oil content, we quantified the expression of the carbon metabolism related genes of transgenic GhPEPC1 RNAi lines by transcriptome analysis. This analysis revealed the decrease of GhPEPC1 expression led to the increase expression of triacylglycerol biosynthesis-related genes, which eventually contributed to the lipid biosynthesis in cotton. This result provides a valuable information for cottonseed oil biosynthesis pathway and shows the potential of creating high cottonseed oil germplasm by RNAi strategy for cotton breeding. PMID:27620452

  11. Compressed sensing methods for DNA microarrays, RNA interference, and metagenomics.

    PubMed

    Rao, Aditya; P, Deepthi; Renumadhavi, C H; Chandra, M Girish; Srinivasan, Rajgopal

    2015-02-01

    Compressed sensing (CS) is a sparse signal sampling methodology for efficiently acquiring and reconstructing a signal from relatively few measurements. Recent work shows that CS is well-suited to be applied to problems in genomics, including probe design in microarrays, RNA interference (RNAi), and taxonomic assignment in metagenomics. The principle of using different CS recovery methods in these applications has thus been established, but a comprehensive study of using a wide range of CS methods has not been done. For each of these applications, we apply three hitherto unused CS methods, namely, l1-magic, CoSaMP, and l1-homotopy, in conjunction with CS measurement matrices such as randomly generated CS m matrix, Hamming matrix, and projective geometry-based matrix. We find that, in RNAi, the l1-magic (the standard package for l1 minimization) and l1-homotopy methods show significant reduction in reconstruction error compared to the baseline. In metagenomics, we find that l1-homotopy as well as CoSaMP estimate concentration with significantly reduced time when compared to the GPSR and WGSQuikr methods.

  12. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    SciTech Connect

    Wu, William Ka Kei; Lee, Chung Wa; Cho, Chi Hin; Chan, Francis Ka Leung; Yu, Jun; Sung, Joseph Jao Yiu

    2011-06-10

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G{sub 0}/G{sub 1}-phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D{sub 3} and p21{sup Waf1}, which stabilizes cyclin D/cdk4 complex for G{sub 1}-S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  13. RNA Interference for Mosquito and Mosquito-Borne Disease Control.

    PubMed

    Airs, Paul M; Bartholomay, Lyric C

    2017-01-05

    RNA interference (RNAi) is a powerful tool to silence endogenous mosquito and mosquito-borne pathogen genes in vivo. As the number of studies utilizing RNAi in basic research grows, so too does the arsenal of physiological targets that can be developed into products that interrupt mosquito life cycles and behaviors and, thereby, relieve the burden of mosquitoes on human health and well-being. As this technology becomes more viable for use in beneficial and pest insect management in agricultural settings, it is exciting to consider its role in public health entomology. Existing and burgeoning strategies for insecticide delivery could be adapted to function as RNAi trigger delivery systems and thereby expedite transformation of RNAi from the lab to the field for mosquito control. Taken together, development of RNAi-based vector and pathogen management techniques & strategies are within reach. That said, tools for successful RNAi design, studies exploring RNAi in the context of vector control, and studies demonstrating field efficacy of RNAi trigger delivery have yet to be honed and/or developed for mosquito control.

  14. RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi?

    PubMed Central

    Unniyampurath, Unnikrishnan; Pilankatta, Rajendra; Krishnan, Manoj N.

    2016-01-01

    The recent emergence of multiple technologies for modifying gene structure has revolutionized mammalian biomedical research and enhanced the promises of gene therapy. Over the past decade, RNA interference (RNAi) based technologies widely dominated various research applications involving experimental modulation of gene expression at the post-transcriptional level. Recently, a new gene editing technology, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system, has received unprecedented acceptance in the scientific community for a variety of genetic applications. Unlike RNAi, the CRISPR/Cas9 system is bestowed with the ability to introduce heritable precision insertions and deletions in the eukaryotic genome. The combination of popularity and superior capabilities of CRISPR/Cas9 system raises the possibility that this technology may occupy the roles currently served by RNAi and may even make RNAi obsolete. We performed a comparative analysis of the technical aspects and applications of the CRISPR/Cas9 system and RNAi in mammalian systems, with the purpose of charting out a predictive picture on whether the CRISPR/Cas9 system will eclipse the existence and future of RNAi. The conclusion drawn from this analysis is that RNAi will still occupy specific domains of biomedical research and clinical applications, under the current state of development of these technologies. However, further improvements in CRISPR/Cas9 based technology may ultimately enable it to dominate RNAi in the long term. PMID:26927085

  15. FOXO regulates RNA interference in Drosophila and protects from RNA virus infection

    PubMed Central

    Spellberg, Michael J.; Marr, Michael T.

    2015-01-01

    Small RNA pathways are important players in posttranscriptional regulation of gene expression. These pathways play important roles in all aspects of cellular physiology from development to fertility to innate immunity. However, almost nothing is known about the regulation of the central genes in these pathways. The forkhead box O (FOXO) family of transcription factors is a conserved family of DNA-binding proteins that responds to a diverse set of cellular signals. FOXOs are crucial regulators of cellular homeostasis that have a conserved role in modulating organismal aging and fitness. Here, we show that Drosophila FOXO (dFOXO) regulates the expression of core small RNA pathway genes. In addition, we find increased dFOXO activity results in an increase in RNA interference (RNAi) efficacy, establishing a direct link between cellular physiology and RNAi. Consistent with these findings, dFOXO activity is stimulated by viral infection and is required for effective innate immune response to RNA virus infection. Our study reveals an unanticipated connection among dFOXO, stress responses, and the efficacy of small RNA-mediated gene silencing and suggests that organisms can tune their gene silencing in response to environmental and metabolic conditions. PMID:26553999

  16. RNAimmuno: A database of the nonspecific immunological effects of RNA interference and microRNA reagents

    PubMed Central

    Olejniczak, Marta; Galka-Marciniak, Paulina; Polak, Katarzyna; Fligier, Andrzej; Krzyzosiak, Wlodzimierz J.

    2012-01-01

    The RNAimmuno database was created to provide easy access to information regarding the nonspecific effects generated in cells by RNA interference triggers and microRNA regulators. Various RNAi and microRNA reagents, which differ in length and structure, often cause non-sequence-specific immune responses, in addition to triggering the intended sequence-specific effects. The activation of the cellular sensors of foreign RNA or DNA may lead to the induction of type I interferon and proinflammatory cytokine release. Subsequent changes in the cellular transcriptome and proteome may result in adverse effects, including cell death during therapeutic treatments or the misinterpretation of experimental results in research applications. The manually curated RNAimmuno database gathers the majority of the published data regarding the immunological side effects that are caused in investigated cell lines, tissues, and model organisms by different reagents. The database is accessible at http://rnaimmuno.ibch.poznan.pl and may be helpful in the further application and development of RNAi- and microRNA-based technologies. PMID:22411954

  17. The virion-associated incoming HIV-1 RNA genome is not targeted by RNA interference

    PubMed Central

    Westerhout, Ellen M; ter Brake, Olivier; Berkhout, Ben

    2006-01-01

    Background RNA interference (RNAi) has proven to be a powerful tool to suppress gene expression and can be used as a therapeutic strategy against human pathogenic viruses such as human immunodeficiency virus type 1 (HIV-1). Theoretically, RNAi-mediated inhibition can occur at two points in the replication cycle, upon viral entry before reverse transcription of the RNA genome, and on the newly transcribed viral RNA transcripts. There have been conflicting results on whether RNAi can target the RNA genome of infecting HIV-1 particles. We have addressed this issue with HIV-1-based lentiviral vectors. Results We determined the transduction efficiency of a lentiviral vector, as measured by GFP expressing cells, which reflects the number of successful integration events in a cell line stably expressing shNef. We did not observe a difference in the transduction efficiency comparing lentiviral vectors with or without the Nef target sequence in their genome. The results were similar with particles pseudotyped with either the VSV-G or HIV-1 envelope. Additionally, no reduced transduction efficiencies were observed with multiple other shRNAs targeting the vector genome or with synthetic siNef when transiently transfected prior to transduction. Conclusion Our findings indicate that the incoming HIV-1 RNA genome is not targeted by RNAi, probably due to inaccessibility to the RNAi machinery. Thus, therapeutic RNAi strategies aimed at preventing proviral integration should be targeting cellular receptors or co-factors involved in pre-integration events. PMID:16948865

  18. RNA Interference against Animal Viruses: How Morbilliviruses Generate Extended Diversity To Escape Small Interfering RNA Control

    PubMed Central

    Holz, Carine L.; Albina, Emmanuel; Minet, Cécile; Lancelot, Renaud; Kwiatek, Olivier; Libeau, Geneviève

    2012-01-01

    Viruses are serious threats to human and animal health. Vaccines can prevent viral diseases, but few antiviral treatments are available to control evolving infections. Among new antiviral therapies, RNA interference (RNAi) has been the focus of intensive research. However, along with the development of efficient RNAi-based therapeutics comes the risk of emergence of resistant viruses. In this study, we challenged the in vitro propensity of a morbillivirus (peste des petits ruminants virus), a stable RNA virus, to escape the inhibition conferred by single or multiple small interfering RNAs (siRNAs) against conserved regions of the N gene. Except with the combination of three different siRNAs, the virus systematically escaped RNAi after 3 to 20 consecutive passages. The genetic modifications involved consisted of single or multiple point nucleotide mutations and a deletion of a stretch of six nucleotides, illustrating that this virus has an unusual genomic malleability. PMID:22072768

  19. Suppression of Bedbug's Reproduction by RNA Interference of Vitellogenin.

    PubMed

    Moriyama, Minoru; Hosokawa, Takahiro; Tanahashi, Masahiko; Nikoh, Naruo; Fukatsu, Takema

    2016-01-01

    Recent resurgence of the bedbug Cimex lectularius is a global problem on the public health. On account of the worldwide rise of insecticide-resistant bedbug populations, exploration of new approaches to the bedbug control and management is anticipated. In this context, gene silencing by RNA interference (RNAi) has been considered for its potential application to pest control and management, because RNAi enables specific suppression of target genes and thus flexible selection of target traits to be disrupted. In this study, in an attempt to develop a control strategy targeting reproduction of the bedbug, we investigated RNAi-mediated gene silencing of vitellogenin (Vg), a major yolk protein precursor essential for oogenesis. From the bedbug transcriptomes, we identified a typical Vg gene and a truncated Vg gene, which were designated as ClVg and ClVg-like, respectively. ClVg gene was highly expressed mainly in the fat body of adult females, which was more than 100 times higher than the expression level of ClVg-like gene, indicating that ClVg gene is the primary functional Vg gene in the bedbug. RNAi-mediated suppression of ClVg gene expression in adult females resulted in drastically reduced egg production, atrophied ovaries, and inflated abdomen due to hypertrophied fat bodies. These phenotypic consequences are expected not only to suppress the bedbug reproduction directly but also to deteriorate its feeding and survival indirectly via behavioral modifications. These results suggest the potential of ClVg gene as a promising target for RNAi-based population management of the bedbug.

  20. Silencing E1A mRNA by RNA interference inhibits adenovirus replication.

    PubMed

    Chung, Y-S; Kim, M-K; Lee, W-J; Kang, C

    2007-01-01

    The adenovirus family contains 51 human serotypes, and most human adenoviruses cause widespread respiratory tract infections. Adenovirus infections can result in severe complications in some cases, such as in adenovirus type 11 infection in immunocompromised patients. However, effective treatment methods for adenovirus infections are currently unavailable. This prompted the search for antiviral agents effective against adenovirus infections. In the present study, adenovirus E1A was targeted by RNA interference (RNAi) using synthetic small interfering RNAs (siRNAs) in an attempt to inhibit viral replication, since adenovirus E1A proteins are known to be involved in the transcriptional activation of the viral and cellular genes necessary for controlling the cell cycle and viral replication. The results indicated that the siRNAs effectively reduced the amount of adenovirus E1A mRNA and the levels of replicative intermediates. Additionally, siRNA-mediated gene silencing inhibited adenovirus replication by suppressing the E1A mRNA. These results suggest that the RNAi-mediated targeting of adenovirus E1A may have a potentially therapeutic effect in controlling adenovirus infections.

  1. Double strand RNA-mediated RNA interference through feeding in larval gypsy moth, Lymantria dispar (Lepidoptera: Erebidae)

    USDA-ARS?s Scientific Manuscript database

    RNA interference (RNAi) has gained popularity in several fields of research, silencing targeted genes by degradation of RNA. The objective of this study was to develop RNAi for use as a molecular tool in the control of the invasive pest Lymantria dispar (Lepidoptera: Erebidae), gypsy moth, which ha...

  2. Echinococcus multilocularis primary cells: improved isolation, small-scale cultivation and RNA interference.

    PubMed

    Spiliotis, Markus; Mizukami, Chiaki; Oku, Yuzaburo; Kiss, Ferenc; Brehm, Klaus; Gottstein, Bruno

    2010-11-01

    In this study we demonstrate RNA interference mediated knock-down of target gene expression in Echinococcus multilocularis primary cells on both the transcriptional and translational level. In addition, we report on an improved method for generating E. multilocularis primary cell mini-aggregates from in vitro cultivated metacestode vesicles, and on the cultivation of small numbers of small interfering RNA-transfected cells in vitro over an extended period of time. This allows assessments on the effects of RNA interference performed on Echinococcus primary cells with regard to growth, proliferation, differentiation of the parasite and the formation of novel metacestode vesicles in vitro.

  3. Viral interference of the bacterial RNA metabolism machinery.

    PubMed

    Dendooven, Tom; Van den Bossche, An; Hendrix, Hanne; Ceyssens, Pieter-Jan; Voet, Marleen; Bandyra, K J; De Maeyer, Marc; Aertsen, Abram; Noben, Jean-Paul; Hardwick, Steven W; Luisi, Ben F; Lavigne, Rob

    2017-01-02

    In a recent publication, we reported a unique interaction between a protein encoded by the giant myovirus phiKZ and the Pseudomonas aeruginosa RNA degradosome. Crystallography, site-directed mutagenesis and interactomics approaches revealed this 'degradosome interacting protein' or Dip, to adopt an 'open-claw' dimeric structure that presents acidic patches on its outer surface which hijack 2 conserved RNA binding sites on the scaffold domain of the RNase E component of the RNA degradosome. This interaction prevents substrate RNAs from being bound and degraded by the RNA degradosome during the virus infection cycle. In this commentary, we provide a perspective into the biological role of Dip, its structural analysis and its mysterious evolutionary origin, and we suggest some therapeutic and biotechnological applications of this distinctive viral protein.

  4. Versatile RNA Interference Nanoplatform for Systemic Delivery of RNAs

    PubMed Central

    2015-01-01

    Development of nontoxic, tumor-targetable, and potent in vivo RNA delivery systems remains an arduous challenge for clinical application of RNAi therapeutics. Herein, we report a versatile RNAi nanoplatform based on tumor-targeted and pH-responsive nanoformulas (NFs). The NF was engineered by combination of an artificial RNA receptor, Zn(II)-DPA, with a tumor-targetable and drug-loadable hyaluronic acid nanoparticle, which was further modified with a calcium phosphate (CaP) coating by in situ mineralization. The NF can encapsulate small-molecule drugs within its hydrophobic inner core and strongly secure various RNA molecules (siRNAs, miRNAs, and oligonucleotides) by utilizing Zn(II)-DPA and a robust CaP coating. We substantiated the versatility of the RNAi nanoplatform by demonstrating effective delivery of siRNA and miRNA for gene silencing or miRNA replacement into different human types of cancer cells in vitro and into tumor-bearing mice in vivo by intravenous administration. The therapeutic potential of NFs coloaded with an anticancer drug doxorubicin (Dox) and multidrug resistance 1 gene target siRNA (siMDR) was also demonstrated in this study. NFs loaded with Dox and siMDR could successfully sensitize drug-resistant OVCAR8/ADR cells to Dox and suppress OVCAR8/ADR tumor cell proliferation in vitro and tumor growth in vivo. This gene/drug delivery system appears to be a highly effective nonviral method to deliver chemo- and RNAi therapeutics into host cells. PMID:24779637

  5. [Perspectives of RNA interference application in the therapy of diseases associated with defects in alternative RNA splicing].

    PubMed

    Wysokiński, Daniel; Błasiak, Janusz

    2012-09-18

    The primary transcript of an eukaryotic gene (pre-mRNA) is composed of coding regions--exons intervened by non-coding introns--which are removed in the RNA splicing process, leading to the formation of mature, intron-free mRNA. Alternative splicing of pre-mRNA is responsible for high complexity of the cellular proteome and expresses effective use of genetic information contained in genomic DNA. Alternative splicing plays important roles in the organism, including apoptosis regulation or development and plasticity of the nervous system. The main role of alternative splicing is differential, dependent on conditions and the cell type, splicing of mRNA, generating diverse transcripts from one gene, and, after the translation, different isoforms of a particular protein. Because of the high complexity of this mechanism, alternative splicing is particularly prone to errors. The perturbations resulting from mutations in the key sequences for splicing regulations are especially harmful. The pathogenesis of numerous diseases results from disturbed alternative RNA splicing, and those include cancers and neurodegenerative disorders. The treatment of these conditions is problematic due to their genetic background and currently RNA interference, which is a common mechanism of eukaryotic gene regulation, is being studied. Initial successes in the attempts of silencing the expression of faulty protein isoforms support the idea of using RNA interference in targeting disease related to disturbances in alternative splicing of RNA.

  6. Small RNAs tackle large viruses: RNA interference-based antiviral defense against DNA viruses in insects.

    PubMed

    Bronkhorst, Alfred W; Miesen, Pascal; van Rij, Ronald P

    2013-01-01

    The antiviral RNA interference (RNAi) pathway processes viral double-stranded RNA (dsRNA) into viral small interfering RNAs (vsiRNA) that guide the recognition and cleavage of complementary viral target RNAs. In RNA virus infections, viral replication intermediates, dsRNA genomes or viral structured RNAs have been implicated as Dicer-2 substrates. In a recent publication, we demonstrated that a double-stranded DNA virus, Invertebrate iridescent virus 6, is a target of the Drosophila RNAi machinery, and we proposed that overlapping converging transcripts base pair to form the dsRNA substrates for vsiRNA biogenesis. Here, we discuss the role of RNAi in antiviral defense to DNA viruses in Drosophila and other invertebrate model systems.

  7. SUMOylation of Argonaute-2 regulates RNA interference activity

    PubMed Central

    Josa-Prado, Fernando; Henley, Jeremy M.; Wilkinson, Kevin A.

    2015-01-01

    Post-translational modification of substrate proteins by small ubiquitin-like modifier (SUMO) regulates a vast array of cellular processes. SUMOylation occurs through three sequential enzymatic steps termed E1, E2 and E3. Substrate selection can be determined through interactions between the target protein and the SUMO E2 conjugating enzyme Ubc9 and specificity can be enhanced by substrate interactions with E3 ligase enzymes. We used the putative substrate recognition (PINIT) domain from the SUMO E3 PIAS3 as bait to identify potential SUMO substrates. One protein identified was Argonaute-2 (Ago2), which mediates RNA-induced gene silencing through binding small RNAs and promoting degradation of complimentary target mRNAs. We show that Ago2 can be SUMOylated in mammalian cells by both SUMO1 and SUMO2. SUMOylation occurs primarily at K402, and mutation of the SUMO consensus site surrounding this lysine reduces Ago2-mediated siRNA-induced silencing in a luciferase-based reporter assay. These results identify SUMOylation as a potential regulator of Ago2 activity and open new avenues for research into the mechanisms underlying the regulation of RNA-induced gene silencing. PMID:26188511

  8. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea

    PubMed Central

    Marraffini, Luciano A.; Sontheimer, Erik J.

    2010-01-01

    Sequence-directed genetic interference pathways control gene expression and preserve genome integrity in all kingdoms of life. The importance of such pathways is highlighted by the extensive study of RNA interference (RNAi) and related processes in eukaryotes. In many bacteria and most archaea, clustered, regularly interspaced short palindromic repeats (CRISPRs) are involved in a more recently discovered interference pathway that protects cells from bacteriophages and conjugative plasmids. CRISPR sequences provide an adaptive, heritable record of past infections and express CRISPR RNAs — small RNAs that target invasive nucleic acids. Here, we review the mechanisms of CRISPR interference and its roles in microbial physiology and evolution. We also discuss potential applications of this novel interference pathway. PMID:20125085

  9. RNA interference can target pre-mRNA: consequences for gene expression in a Caenorhabditis elegans operon.

    PubMed Central

    Bosher, J M; Dufourcq, P; Sookhareea, S; Labouesse, M

    1999-01-01

    In nematodes, flies, trypanosomes, and planarians, introduction of double-stranded RNA results in sequence-specific inactivation of gene function, a process termed RNA interference (RNAi). We demonstrate that RNAi against the Caenorhabditis elegans gene lir-1, which is part of the lir-1/lin-26 operon, induced phenotypes very different from a newly isolated lir-1 null mutation. Specifically, lir-1(RNAi) induced embryonic lethality reminiscent of moderately strong lin-26 alleles, whereas the lir-1 null mutant was viable. We show that the lir-1(RNAi) phenotypes resulted from a severe loss of lin-26 gene expression. In addition, we found that RNAi directed against lir-1 or lin-26 introns induced similar phenotypes, so we conclude that lir-1(RNAi) targets the lir-1/lin-26 pre-mRNA. This provides direct evidence that RNA interference can prevent gene expression by targeting nuclear transcripts. Our results highlight that caution may be necessary when interpreting RNA interference without the benefit of mutant alleles. PMID:10545456

  10. The development of RNA interference (RNAi) in gastrointestinal nematodes.

    PubMed

    Selkirk, Murray E; Huang, Stanley C; Knox, David P; Britton, Collette

    2012-04-01

    Despite the utility of RNAi for defining gene function in Caenorhabditis elegans and early successes reported in parasitic nematodes, RNAi has proven to be stubbornly inconsistent or ineffective in the animal parasitic nematodes examined to date. Here, we summarise some of our experiences with RNAi in parasitic nematodes affecting animals and discuss the available data in the context of our own unpublished work, taking account of mode of delivery, larval activation, site of gene transcription and the presence/absence of essential RNAi pathway genes as defined by comparisons to C. elegans. We discuss future directions briefly including the evaluation of nanoparticles as a means to enhance delivery of interfering RNA to the target worm tissue.

  11. Exosomes: Nanoparticulate tools for RNA interference and drug delivery.

    PubMed

    Shahabipour, Fahimeh; Barati, Nastaran; Johnston, Thomas P; Derosa, Giuseppe; Maffioli, Pamela; Sahebkar, Amirhossein

    2017-07-01

    Exosomes are naturally occurring extracellular vesicles released by most mammalian cells in all body fluids. Exosomes are known as key mediators in cell-cell communication and facilitate the transfer of genetic and biochemical information between distant cells. Structurally, exosomes are composed of lipids, proteins, and also several types of RNAs which enable these vesicles to serve as important disease biomarkers. Moreover, exosomes have emerged as novel drug and gene delivery tools owing to their multiple advantages over conventional delivery systems. Recently, increasing attention has been focused on exosomes for the delivery of drugs, including therapeutic recombinant proteins, to various target tissues. Exosomes are also promising vehicles for the delivery of microRNAs and small interfering RNAs, which is usually hampered by rapid degradation of these RNAs, as well as inefficient tissue specificity of currently available delivery strategies. This review highlights the most recent accomplishments and trends in the use of exosomes for the delivery of drugs and therapeutic RNA molecules.

  12. RNA interference in mosquito: understanding immune responses, double-stranded RNA delivery systems and potential applications in vector control.

    PubMed

    Balakrishna Pillai, A; Nagarajan, U; Mitra, A; Krishnan, U; Rajendran, S; Hoti, S L; Mishra, R K

    2017-04-01

    RNA interference (RNAi) refers to the process of post-transcriptional silencing of cellular mRNA by the application of double-stranded RNA (dsRNA). RNAi strategies have been widely employed to regulate gene expression in plants and animals including insects. With the availability of the full genome sequences of major vector mosquitoes, RNAi has been increasingly used to conduct genetic studies of human pathogens in mosquito vectors and to study the evolution of insecticide resistance in mosquitoes. This review summarizes the recent progress in our understanding of mosquito-pathogen interactions using RNAi and various methods of dsRNA delivery in mosquitoes at different stages. We also discuss potential applications of this technology to develop novel tools for vector control.

  13. Using RNA Interference to Reveal Genetic: Vulnerabilities in Human Cancer Cells

    DTIC Science & Technology

    2006-07-01

    insights can be obtained through RNAi (RNA interference) genetic studies RNAi is a cellular process that regulates gene expression in a sequence ... sequence -verified more than 200,000 shRNAs covering almost all of the predicted genes in the mouse and human genomes15. Our shRNA library can function...barcodes to custom microarrays that contain the complement of these sequences . One can assess cellular response to different treatments by

  14. Identification of giant Mimivirus protein functions using RNA interference

    PubMed Central

    Sobhy, Haitham; Scola, Bernard La; Pagnier, Isabelle; Raoult, Didier; Colson, Philippe

    2015-01-01

    Genomic analysis of giant viruses, such as Mimivirus, has revealed that more than half of the putative genes have no known functions (ORFans). We knocked down Mimivirus genes using short interfering RNA as a proof of concept to determine the functions of giant virus ORFans. As fibers are easy to observe, we targeted a gene encoding a protein absent in a Mimivirus mutant devoid of fibers as well as three genes encoding products identified in a protein concentrate of fibers, including one ORFan and one gene of unknown function. We found that knocking down these four genes was associated with depletion or modification of the fibers. Our strategy of silencing ORFan genes in giant viruses opens a way to identify its complete gene repertoire and may clarify the role of these genes, differentiating between junk DNA and truly used genes. Using this strategy, we were able to annotate four proteins in Mimivirus and 30 homologous proteins in other giant viruses. In addition, we were able to annotate >500 proteins from cellular organisms and 100 from metagenomic databases. PMID:25972846

  15. Identification of giant Mimivirus protein functions using RNA interference.

    PubMed

    Sobhy, Haitham; Scola, Bernard La; Pagnier, Isabelle; Raoult, Didier; Colson, Philippe

    2015-01-01

    Genomic analysis of giant viruses, such as Mimivirus, has revealed that more than half of the putative genes have no known functions (ORFans). We knocked down Mimivirus genes using short interfering RNA as a proof of concept to determine the functions of giant virus ORFans. As fibers are easy to observe, we targeted a gene encoding a protein absent in a Mimivirus mutant devoid of fibers as well as three genes encoding products identified in a protein concentrate of fibers, including one ORFan and one gene of unknown function. We found that knocking down these four genes was associated with depletion or modification of the fibers. Our strategy of silencing ORFan genes in giant viruses opens a way to identify its complete gene repertoire and may clarify the role of these genes, differentiating between junk DNA and truly used genes. Using this strategy, we were able to annotate four proteins in Mimivirus and 30 homologous proteins in other giant viruses. In addition, we were able to annotate >500 proteins from cellular organisms and 100 from metagenomic databases.

  16. Efficient delivery of RNA interference oligonucleotides to polarized airway epithelia in vitro

    PubMed Central

    Ramachandran, Shyam; Krishnamurthy, Sateesh; Jacobi, Ashley M.; Wohlford-Lenane, Christine; Behlke, Mark A.; Davidson, Beverly L.

    2013-01-01

    Polarized and pseudostratified primary airway epithelia present barriers that significantly reduce their transfection efficiency and the efficacy of RNA interference oligonucleotides. This creates an impediment in studies of the airway epithelium, diminishing the utility of loss-of-function as a research tool. Here we outline methods to introduce RNAi oligonucleotides into primary human and porcine airway epithelia grown at an air-liquid interface and difficult-to-transfect transformed epithelial cell lines grown on plastic. At the time of plating, we reverse transfect small-interfering RNA (siRNA), Dicer-substrate siRNA, or microRNA oligonucleotides into cells by use of lipid or peptide transfection reagents. Using this approach we achieve significant knockdown in vitro of hypoxanthine-guanine phosphoribosyltransferase, IL-8, and CFTR expression at the mRNA and protein levels in 1–3 days. We also attain significant reduction of secreted IL-8 in polarized primary pig airway epithelia 3 days posttransfection and inhibition of CFTR-mediated Cl− conductance in polarized air-liquid interface cultures of human airway epithelia 2 wk posttransfection. These results highlight an efficient means to deliver RNA interference reagents to airway epithelial cells and achieve significant knockdown of target gene expression and function. The ability to reliably conduct loss-of-function assays in polarized primary airway epithelia offers benefits to research in studies of epithelial cell homeostasis, candidate gene function, gene-based therapeutics, microRNA biology, and targeting the replication of respiratory viruses. PMID:23624792

  17. RNA interference for functional genomics and improvement of cotton (Gossypium species)

    USDA-ARS?s Scientific Manuscript database

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium ssp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function ...

  18. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design

    USDA-ARS?s Scientific Manuscript database

    Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive ex...

  19. How Golden Is Silence? Teaching Undergraduates the Power and Limits of RNA Interference

    ERIC Educational Resources Information Center

    Kuldell, Natalie H.

    2006-01-01

    It is hard and getting harder to strike a satisfying balance in teaching. Time dedicated to student-generated models or ideas is often sacrificed in an effort to "get through the syllabus." I describe a series of RNA interference (RNAi) experiments for undergraduate students that simultaneously explores fundamental concepts in gene regulation,…

  20. A Simple Laboratory Practical to Illustrate RNA Mediated Gene Interference Using Drosophila Cell Culture

    ERIC Educational Resources Information Center

    Buluwela, Laki; Kamalati, Tahereh; Photiou, Andy; Heathcote, Dean A.; Jones, Michael D.; Ali, Simak

    2010-01-01

    RNA mediated gene interference (RNAi) is now a key tool in eukaryotic cell and molecular biology research. This article describes a five session laboratory practical, spread over a seven day period, to introduce and illustrate the technique. During the exercise, students working in small groups purify PCR products that encode "in vitro"…

  1. How Golden Is Silence? Teaching Undergraduates the Power and Limits of RNA Interference

    ERIC Educational Resources Information Center

    Kuldell, Natalie H.

    2006-01-01

    It is hard and getting harder to strike a satisfying balance in teaching. Time dedicated to student-generated models or ideas is often sacrificed in an effort to "get through the syllabus." I describe a series of RNA interference (RNAi) experiments for undergraduate students that simultaneously explores fundamental concepts in gene regulation,…

  2. A Simple Laboratory Practical to Illustrate RNA Mediated Gene Interference Using Drosophila Cell Culture

    ERIC Educational Resources Information Center

    Buluwela, Laki; Kamalati, Tahereh; Photiou, Andy; Heathcote, Dean A.; Jones, Michael D.; Ali, Simak

    2010-01-01

    RNA mediated gene interference (RNAi) is now a key tool in eukaryotic cell and molecular biology research. This article describes a five session laboratory practical, spread over a seven day period, to introduce and illustrate the technique. During the exercise, students working in small groups purify PCR products that encode "in vitro"…

  3. siRNA-Mediated RNA Interference in Precision-Cut Tissue Slices Prepared from Mouse Lung and Kidney.

    PubMed

    Ruigrok, Mitchel J R; Maggan, Nalinie; Willaert, Delphine; Frijlink, Henderik W; Melgert, Barbro N; Olinga, Peter; Hinrichs, Wouter L J

    2017-09-11

    Small interfering RNA (siRNA)-mediated RNAi interference (RNAi) is a powerful post-transcriptional gene silencing mechanism which can be used to study the function of genes in vitro (cell cultures) and in vivo (animal models). However, there is a translational gap between these models. Hence, there is a need for novel experimental models that combine the advantages of in vitro and in vivo models (e.g., simplicity, flexibility, throughput, and representability) to study the effects of siRNA. This need may be addressed by precision-cut tissue slices (PCTS), which represent an ex vivo model that mimics the structural and functional characteristics of a whole organ. The goal of this study was to investigate whether self-deliverable siRNA (Accell siRNA) can be used in precision-cut lung slices (PCLuS) and precision-cut kidney slices (PCKS) to achieve RNAi ex vivo. PCLuS and PCKS were prepared from mouse tissue, and they were subsequently incubated up to 48 h with no siRNA (untransfected), non-targeting Accell siRNA, or Gapdh-targeting Accell siRNA. Significant Gapdh mRNA silencing was achieved (PCLuS ~ 55%; PCKS ~ 40%) without compromising the viability and morphology of slices. Fluorescence microscopy confirmed that Accell siRNA diffused into PCLuS and PCKS. Spontaneous inflammation upon incubation was observed in PCLuS and PCKS as shown by a higher mRNA expression of pro-inflammatory cytokines Il1b, Il6, and Tnfa, although Accell siRNA appeared to diminish this response in PCLuS after 24 h. In conclusion, this ex vivo transfection model can be used to evaluate the effects of siRNA in relevant biological environments.

  4. Accumulation of dsRNA in endosomes contributes to inefficient RNA interference in the fall armyworm, Spodoptera frugiperda.

    PubMed

    Yoon, June-Sun; Gurusamy, Dhandapani; Palli, Subba Reddy

    2017-09-23

    RNA interference (RNAi) efficiency varies among insects studied. The barriers for successful RNAi include the presence of double-stranded ribonucleases (dsRNase) in the lumen and hemolymph that could potentially digest double-stranded RNA (dsRNA) and the variability in the transport of dsRNA into and within the cells. We recently showed that the dsRNAs are transported into lepidopteran cells, but they are not processed into small interference RNAs (siRNAs) because they are trapped in acidic bodies. In the current study, we focused on the identification of acidic bodies in which dsRNAs accumulate in Sf9 cells. Time-lapse imaging studies showed that dsRNAs enter Sf9 cells and accumulate in acidic bodies within 20 min after their addition to the medium. CypHer-5E-labeled dsRNA also accumulated in the midgut and fat body dissected from Spodoptera frugiperda larvae with similar patterns observed in Sf9 cells. Pharmacological inhibitor assays showed that the dsRNAs use clathrin mediated endocytosis pathway for transport into the cells. We investigated the potential dsRNA accumulation sites employing LysoTracker and double labeling experiments using the constructs to express a fusion of green fluorescence protein with early or late endosomal marker proteins and CypHer-5E-labeled dsRNA. Interestingly, CypHer-5E-labeled dsRNA accumulated predominantly in early and late endosomes. These data suggest that entrapment of internalized dsRNA in endosomes is one of the major factors contributing to inefficient RNAi response in lepidopteran insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Inhibition of vemurafenib-resistant melanoma by interference with pre-mRNA splicing

    PubMed Central

    Salton, Maayan; Kasprzak, Wojciech K.; Voss, Ty; Shapiro, Bruce A.; Poulikakos, Poulikos I.; Misteli, Tom

    2015-01-01

    Mutations in the serine/threonine kinase BRAF are found in more than 60% of melanomas. The most prevalent melanoma mutation is BRAF(V600E), which constitutively activates downstream MAPK signaling. Vemurafenib is a potent RAF kinase inhibitor with remarkable clinical activity in BRAF(V600E)-positive melanoma tumors. However, patients rapidly develop resistance to vemurafenib treatment. One resistance mechanism is the emergence of BRAF alternative splicing isoforms leading to elimination of the RAS-binding domain. Here we identify interference with pre-mRNA splicing as a mechanism to combat vemurafenib resistance. We find that small molecule pre-mRNA splicing modulators reduce BRAF3-9 production and limit in-vitro cell growth of vemurafenib-resistant cells. In xenograft models, interference with pre-mRNA splicing prevents tumor formation and slows growth of vemurafenib-resistant tumors. Our results identify an intronic mutation as a molecular basis for RNA splicing-mediated RAF inhibitor resistance and we identify pre-mRNA splicing interference as a potential therapeutic strategy for drug resistance in BRAF melanoma. PMID:25971842

  6. Inhibition of vemurafenib-resistant melanoma by interference with pre-mRNA splicing.

    PubMed

    Salton, Maayan; Kasprzak, Wojciech K; Voss, Ty; Shapiro, Bruce A; Poulikakos, Poulikos I; Misteli, Tom

    2015-05-14

    Mutations in the serine/threonine kinase BRAF are found in more than 60% of melanomas. The most prevalent melanoma mutation is BRAF(V600E), which constitutively activates downstream MAPK signalling. Vemurafenib is a potent RAF kinase inhibitor with remarkable clinical activity in BRAF(V600E)-positive melanoma tumours. However, patients rapidly develop resistance to vemurafenib treatment. One resistance mechanism is the emergence of BRAF alternative splicing isoforms leading to elimination of the RAS-binding domain. Here we identify interference with pre-mRNA splicing as a mechanism to combat vemurafenib resistance. We find that small-molecule pre-mRNA splicing modulators reduce BRAF3-9 production and limit in-vitro cell growth of vemurafenib-resistant cells. In xenograft models, interference with pre-mRNA splicing prevents tumour formation and slows growth of vemurafenib-resistant tumours. Our results identify an intronic mutation as the molecular basis for a RNA splicing-mediated RAF inhibitor resistance mechanism and we identify pre-mRNA splicing interference as a potential therapeutic strategy for drug resistance in BRAF melanoma.

  7. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.

    PubMed

    Crook, Nathan C; Schmitz, Alexander C; Alper, Hal S

    2014-05-16

    Reduction of endogenous gene expression is a fundamental operation of metabolic engineering, yet current methods for gene knockdown (i.e., genome editing) remain laborious and slow, especially in yeast. In contrast, RNA interference allows facile and tunable gene knockdown via a simple plasmid transformation step, enabling metabolic engineers to rapidly prototype knockdown strategies in multiple strains before expending significant cost to undertake genome editing. Although RNAi is naturally present in a myriad of eukaryotes, it has only been recently implemented in Saccharomyces cerevisiae as a heterologous pathway and so has not yet been optimized as a metabolic engineering tool. In this study, we elucidate a set of design principles for the construction of hairpin RNA expression cassettes in yeast and implement RNA interference to quickly identify routes for improvement of itaconic acid production in this organism. The approach developed here enables rapid prototyping of knockdown strategies and thus accelerates and reduces the cost of the design-build-test cycle in yeast.

  8. Use of the giant multinucleate plasmodium of Physarum polycephalum to study RNA interference in the myxomycete.

    PubMed

    Haindl, Markus; Holler, Eggehard

    2005-07-15

    The plasmodium of Physarum polycephalum harbors billions of synchronized nuclei in a single cell of complex structure. Due to its synchrony and extreme size, it is used as a model to study events on a single cell level, such as cell cycle and differentiation. We show here for the first time that this model, despite its enormous size and structural complexity, is accessible to RNA interference by simple injection of dsRNA or siRNA. The targeted gene is that of polymalatase, an intracellular adapter of poly(beta-l-malate) involved in the maintenance of the synchrony and functioning as an extracellular hydrolase of this polymer. Real-time reverse transcriptase polymerase chain reaction analysis revealed that the specific mRNA was knocked down to about 10% of the original level. The suppression of a single injection lasted for approximately 14 cell cycles (144 h) and could be prolonged for any time by repeated dsRNA injections. Western blots indicated that the knockdown of RNA was paralleled by a strong reduction in polymalatase synthesis. However, a change in the phenotype of the plasmodium could not be clearly observed. In principle, the plasmodium offers an easy system for studying gene knockdown by RNA interference.

  9. Potential applications of RNA interference-based therapeutics in the treatment of cardiovascular disease.

    PubMed

    Hassan, Ali

    2006-06-01

    RNA interference (RNAi) in eukaryotes is a recently identified phenomenon in which small double stranded RNA molecules called short interfering RNA (siRNA) interact with messenger RNA (mRNA) containing homologous sequences in a sequence-specific manner. Ultimately, this interaction results in degradation of the target mRNA. Because of the high sequence specificity of the RNAi process, and the apparently ubiquitous expression of the endogenous protein components necessary for RNAi, there appears to be little limitation to the genes that can be targeted for silencing by RNAi. Thus, RNAi has enormous potential, both as a research tool and as a mode of therapy. Several recent patents have described advances in RNAi technology that are likely to lead to new treatments for cardiovascular disease. These patents have described methods for increased delivery of siRNA to cardiovascular target tissues, chemical modifications of siRNA that improve their pharmacokinetic characteristics, and expression vectors capable of expressing RNAi effectors in situ. Though RNAi has only recently been demonstrated to occur in mammalian tissues, work has advanced rapidly in the development of RNAi-based therapeutics. Recently, therapeutic silencing of apoliporotein B, the ligand for the low density lipoprotein receptor, has been demonstrated in adult mice by systemic administration of chemically modified siRNA. This demonstrates the potential for RNAi-based therapeutics, and suggests that the future for RNAi in the treatment of cardiovascular disease is bright.

  10. A virus-encoded inhibitor that blocks RNA interference in mammalian cells.

    PubMed

    Sullivan, Christopher S; Ganem, Don

    2005-06-01

    Nodamura virus (NoV) is a small RNA virus that is infectious for insect and mammalian hosts. We have developed a highly sensitive assay of RNA interference (RNAi) in mammalian cells that shows that the NoV B2 protein functions as an inhibitor of RNAi triggered by either short hairpin RNAs or small interfering RNAs. In the cell, NoV B2 binds to pre-Dicer substrate RNA and RNA-induced silencing complex (RISC)-processed RNAs and inhibits the Dicer cleavage reaction and, potentially, one or more post-Dicer activities. In vitro, NoV B2 inhibits Dicer-mediated RNA cleavage in the absence of any other host factors and specifically binds double-stranded RNAs corresponding in structure to Dicer substrates and products. Its abilities to bind to Dicer precursor and post-Dicer RISC-processed RNAs suggest a mechanism of inhibition that is unique among known viral inhibitors of RNAi.

  11. Recent advances in exosome-based nanovehicles as RNA interference therapeutic carriers.

    PubMed

    Maheshwari, Rahul; Tekade, Muktika; Gondaliya, Piyush; Kalia, Kiran; D'Emanuele, Antony; Tekade, Rakesh Kumar

    2017-09-29

    RNA interference (RNAi) therapeutics (siRNA, miRNA, etc.) represent an emerging medicinal remedy for a variety of ailments. However, their low serum stability and low cellular uptake significantly restrict their clinical applications. Exosomes are biologically derived nanodimensional vesicle ranging from a few nanometers to a hundred. In the last few years, several reports have been published demonstrating the emerging applications of these exogenous membrane vesicles, particularly in carrying different RNAi therapeutics to adjacent or distant targeted cells. In this report, we explored the numerous aspects of exosomes from structure to clinical implications with special emphasis on their application in delivering RNAi-based therapeutics. siRNA and miRNA have attracted great interest in recent years due to their specific application in treating many complex diseases including cancer. We highlight strategies to obviate the challenges of their low bioavailability for gene therapy.

  12. eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference

    NASA Astrophysics Data System (ADS)

    Yi, Tingfang; Arthanari, Haribabu; Akabayov, Barak; Song, Huaidong; Papadopoulos, Evangelos; Qi, Hank H.; Jedrychowski, Mark; Güttler, Thomas; Guo, Cuicui; Luna, Rafael E.; Gygi, Steven P.; Huang, Stephen A.; Wagner, Gerhard

    2015-05-01

    MicroRNA (miRNA) biogenesis and miRNA-guided RNA interference (RNAi) are essential for gene expression in eukaryotes. Here we report that translation initiation factor eIF1A directly interacts with Ago2 and promotes Ago2 activities in RNAi and miR-451 biogenesis. Biochemical and NMR analyses demonstrate that eIF1A binds to the MID domain of Ago2 and this interaction does not impair translation initiation. Alanine mutation of the Ago2-facing Lys56 in eIF1A impairs RNAi activities in human cells and zebrafish. The eIF1A-Ago2 assembly facilitates Dicer-independent biogenesis of miR-451, which mediates erythrocyte maturation. Human eIF1A (heIF1A), but not heIF1A(K56A), rescues the erythrocyte maturation delay in eif1axb knockdown zebrafish. Consistently, miR-451 partly compensates erythrocyte maturation defects in zebrafish with eif1axb knockdown and eIF1A(K56A) expression, supporting a role of eIF1A in miRNA-451 biogenesis in this model. Our results suggest that eIF1A is a novel component of the Ago2-centred RNA-induced silencing complexes (RISCs) and augments Ago2-dependent RNAi and miRNA biogenesis.

  13. RNA interference in the appendicularian Oikopleura dioica reveals the function of the Brachyury gene.

    PubMed

    Omotezako, Tatsuya; Nishino, Atsuo; Onuma, Takeshi A; Nishida, Hiroki

    2013-07-01

    The appendicularian Oikopleura dioica is a chordate that has a remarkably simple adult body with small cell number. Its transparency, stereotyped cell lineages, short life cycle, and small genome make it a promising new experimental model of chordate developmental biology. However, the functions of its various genes are still poorly understood due to lack of a tool for suppression of gene expression. Here, we applied a double-stranded RNA (dsRNA)-based-RNA interference (RNAi) method in O. dioica. For introducing dsRNA into eggs and embryos, we injected dsRNAs into the ovary. dsRNA, which is specific to EGFP or mCherry mRNA, decreased the exogenous mRNA-derived fluorescence in both eggs and embryos. dsRNA specific to the Brachyury gene of O. dioica, which is a homologous gene of a key notochord transcriptional factor in ascidians, triggered degradation of endogenous Brachyury mRNA and induced malformation or loss of the notochord in the tail. This effect was Brachyury sequence specific, as three dsRNAs covering different sequences produced the same phenotype. The result is in accordance with its expression site and also with the key regulatory function of Brachyury in notochord formation in other chordates. RNAi in O. dioica would be a useful tool for gaining insight into the oogenesis and early developmental processes in chordates.

  14. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy

    PubMed Central

    Xiao, Bo; Laroui, Hamed; Ayyadurai, Saravanan; Viennois, Emilie; Charania, Moiz A.; Zhang, Yuchen; Merlin, Didier

    2013-01-01

    The application of RNA interference (RNAi) for inflammatory bowel disease (IBD) therapy has been limited by the lack of non-cytotoxic, efficient and targetable small interfering RNA (siRNA) carriers. TNF-α is the major pro-inflammatory cytokine mainly secreted by macrophages during IBD. Here, a mannosylated bioreducible cationic polymer (PPM) was synthesized and further spontaneously assembled nanoparticles (NPs) assisted by sodium triphosphate (TPP). The TPP-PPM/siRNA NPs exhibited high uniformity (polydispersity index = 0.004), a small particle size (211–275 nm), excellent bioreducibility, and enhanced cellular uptake. Additionally, the generated NPs had negative cytotoxicity compared to control NPs fabricated by branched polyethylenimine (bPEI, 25 kDa) or Oligofectamine (OF) and siRNA. In vitro gene silencing experiments revealed that TPP-PPM/TNF-α siRNA NPs with a weight ratio of 40:1 showed the most efficient inhibition of the expression and secretion of TNF-α (approximately 69.9%, which was comparable to the 71.4% obtained using OF/siRNA NPs), and its RNAi efficiency was highly inhibited in the presence of mannose (20 mM). Finally, TPP-PPM/siRNA NPs showed potential therapeutic effects on colitis tissues, remarkably reducing TNF-α level. Collectively, these results suggest that non-toxic TPP-PPM/siRNA NPs can be exploited as efficient, macrophage-targeted carriers for IBD therapy. PMID:23820013

  15. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy.

    PubMed

    Xiao, Bo; Laroui, Hamed; Ayyadurai, Saravanan; Viennois, Emilie; Charania, Moiz A; Zhang, Yuchen; Merlin, Didier

    2013-10-01

    The application of RNA interference (RNAi) for inflammatory bowel disease (IBD) therapy has been limited by the lack of non-cytotoxic, efficient and targetable small interfering RNA (siRNA) carriers. TNF-α is the major pro-inflammatory cytokine mainly secreted by macrophages during IBD. Here, a mannosylated bioreducible cationic polymer (PPM) was synthesized and further spontaneously assembled nanoparticles (NPs) assisted by sodium triphosphate (TPP). The TPP-PPM/siRNA NPs exhibited high uniformity (polydispersity index = 0.004), a small particle size (211-275 nm), excellent bioreducibility, and enhanced cellular uptake. Additionally, the generated NPs had negative cytotoxicity compared to control NPs fabricated by branched polyethylenimine (bPEI, 25 kDa) or Oligofectamine (OF) and siRNA. In vitro gene silencing experiments revealed that TPP-PPM/TNF-α siRNA NPs with a weight ratio of 40:1 showed the most efficient inhibition of the expression and secretion of TNF-α (approximately 69.9%, which was comparable to the 71.4% obtained using OF/siRNA NPs), and its RNAi efficiency was highly inhibited in the presence of mannose (20 mm). Finally, TPP-PPM/siRNA NPs showed potential therapeutic effects on colitis tissues, remarkably reducing TNF-α level. Collectively, these results suggest that non-toxic TPP-PPM/siRNA NPs can be exploited as efficient, macrophage-targeted carriers for IBD therapy.

  16. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing.

    PubMed

    Burroughs, Alexander Maxwell; Ando, Yoshinari; Aravind, L

    2014-01-01

    Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently known small RNA classes and place them in context of the reconstructed evolutionary history of the RNA interference (RNAi) protein machinery. This synthesis indicates that the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: (1) sense-antisense transcriptional products, (2) genome-encoded, imperfectly complementary hairpin sequences, and (3) larger noncoding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNAi. They were recruited alongside RNaseIII domains and RNA-dependent RNA polymerase (RdRP) domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleocytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs. © 2013 John Wiley & Sons, Ltd.

  17. RNA interference against aldehyde dehydrogenase-2: development of tools for alcohol research.

    PubMed

    Cortínez, Gabriel; Sapag, Amalia; Israel, Yedy

    2009-03-01

    Liver alcohol dehydrogenase oxidizes ethanol to acetaldehyde, which is further oxidized to acetate by aldehyde dehydrogenase-2 (ALDH2*1). Individuals who carry a low-activity ALDH2 (ALDH2*2) display high blood acetaldehyde levels after ethanol consumption, which leads to dysphoric effects, such as facial flushing, nausea, dizziness, and headache ("Asian alcohol phenotype"), which result in an aversion to alcohol and protection against alcohol abuse and alcoholism. Mimicking this phenotype may reduce alcohol consumption in alcoholics. RNA interference (RNAi) is a cell process in which a short interfering RNA (siRNA) of 21-25 bp guides the degradation of a complementary target mRNA. Thus, siRNAs may be useful in mimicking the Asian phenotype by inhibiting ALDH2 gene expression. We determined the inhibitory effect of three chemically synthesized siRNAs targeted against rat ALDH2 mRNA in human embryonic kidney cells (HEK-293 cell lines) transfected with a plasmid carrying the rat ALDH2 cDNA. Two of the three siRNAs were active, yielding a 65-75% reduction of ALDH2 activity. Based on the most promising siRNA sequence, three short hairpin RNA (shRNA) genes driven by the human U6 RNA promoter were designed and cloned in a plasmid. After transfection of HEK-293 cells, one of the genes was shown to be active, yielding a 50% reduction of ALDH2 activity. This effect is consistent with a 50% reduction in ALDH2 mRNA, whereas neither beta-actin mRNA nor the interferon-inducible transmembrane protein-1 mRNA levels were affected. This study describes chemically synthesized siRNAs and an endogenously synthesized shRNA, which reduce ALDH2 activity and constitute tools that should be of value for further alcohol research.

  18. The Role of RNA Interference (RNAi) in Arbovirus-Vector Interactions

    PubMed Central

    Blair, Carol D.; Olson, Ken E.

    2015-01-01

    RNA interference (RNAi) was shown over 18 years ago to be a mechanism by which arbovirus replication and transmission could be controlled in arthropod vectors. During the intervening period, research on RNAi has defined many of the components and mechanisms of this antiviral pathway in arthropods, yet a number of unexplored questions remain. RNAi refers to RNA-mediated regulation of gene expression. Originally, the term described silencing of endogenous genes by introduction of exogenous double-stranded (ds)RNA with the same sequence as the gene to be silenced. Further research has shown that RNAi comprises three gene regulation pathways that are mediated by small RNAs: the small interfering (si)RNA, micro (mi)RNA, and Piwi-interacting (pi)RNA pathways. The exogenous (exo-)siRNA pathway is now recognized as a major antiviral innate immune response of arthropods. More recent studies suggest that the piRNA and miRNA pathways might also have important roles in arbovirus-vector interactions. This review will focus on current knowledge of the role of the exo-siRNA pathway as an arthropod vector antiviral response and on emerging research into vector piRNA and miRNA pathway modulation of arbovirus-vector interactions. Although it is assumed that arboviruses must evade the vector’s antiviral RNAi response in order to maintain their natural transmission cycles, the strategies by which this is accomplished are not well defined. RNAi is also an important tool for arthropod gene knock-down in functional genomics studies and in development of arbovirus-resistant mosquito populations. Possible arbovirus strategies for evasion of RNAi and applications of RNAi in functional genomics analysis and arbovirus transmission control will also be reviewed. PMID:25690800

  19. RNA interference in the Colorado potato beetle, Leptinotarsa decemlineata: Identification of key contributors.

    PubMed

    Yoon, June-Sun; Shukla, Jayendra Nath; Gong, Zhong Jun; Mogilicherla, Kanakachari; Palli, Subba Reddy

    2016-11-01

    RNA interference (RNAi) is a useful reverse genetics tool for investigation of gene function as well as for practical applications in many fields including medicine and agriculture. RNAi works very well in coleopteran insects including the Colorado potato beetle (CPB), Leptinotarsa decemlineata. We used a cell line (Lepd-SL1) developed from CPB to identify genes that play key roles in RNAi. We screened 50 genes with potential functions in RNAi by exposing Lepd-SL1 cells to dsRNA targeting one of the potential RNAi pathway genes followed by incubation with dsRNA targeting inhibitor of apoptosis (IAP, silencing of this gene induces apoptosis). Out of 50 genes tested, silencing of 29 genes showed an effect on RNAi. Silencing of five genes (Argonaute-1, Argonaute-2a, Argonaute-2b, Aubergine and V-ATPase 16 kDa subunit 1, Vha16) blocked RNAi suggesting that these genes are essential for functioning of RNAi in Lepd-SL1 cells. Interestingly, Argonaute-1 and Aubergine which are known to function in miRNA and piRNA pathways respectively are also critical to siRNA pathway. Using (32)P labeled dsRNA, we showed that these miRNA and piRNA Argonautes but not Argonaute-2 are required for processing of dsRNA to siRNA. Transfection of pIZT/V5 constructs containing these five genes into Sf9 cells (the cells where RNAi does not work well) showed that expression of all genes tested, except the Argonaute-2a, improved RNAi in these cells. Results from Vha16 gene silencing and bafilomycin-A1 treatment suggest that endosomal escape plays an important role in dsRNA-mediated RNAi in Lepd-SL1 cells.

  20. Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape.

    PubMed

    Cecere, Germano; Hoersch, Sebastian; O'Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla

    2014-04-01

    Argonaute proteins and their small RNA cofactors short interfering RNAs are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) that are antisense to germline transcripts. However, its role in gene expression regulation remains controversial. Here we used genome-wide profiling of nascent RNA transcripts and found that the CSR-1 RNA interference pathway promoted sense-oriented RNA polymerase II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. On the basis of these findings, we propose that the CSR-1 pathway helps maintain the directionality of active transcription, thereby propagating the distinction between transcriptionally active and silent genomic regions.

  1. Applications of RNA interference in cancer therapeutics as a powerful tool for suppressing gene expression.

    PubMed

    He, Song; Zhang, Dechun; Cheng, Fang; Gong, Fanghong; Guo, Yanan

    2009-11-01

    Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. The history of RNA interference (RNAi) has only a dozen years, however, further studies have revealed that it is a potent method of gene silencing that has developed rapidly over the past few years as a result of its extensive importance in the study of genetics, molecular biology and physiology. RNAi is a natural process by which small interfering RNA (siRNA) duplex directs sequence specific post-transcriptional silencing of homologous genes by binding to its complementary mRNA and triggering its elimination. RNAi has been extensively used as a novel and effective gene silencing tool for the fundamental research of cancer therapeutics, and has displayed great potential in clinical treatment.

  2. Several Grassland Soil Nematode Species Are Insensitive to RNA-Mediated Interference

    PubMed Central

    Wheeler, David; Darby, Brian J.; Todd, Timothy C.; Herman, Michael A.

    2012-01-01

    Phenotypic analysis of defects caused by RNA mediated interference (RNAi) in Caenorhabditis elegans has proven to be a powerful tool for determining gene function. In this study we investigated the effectiveness of RNAi in four non-model grassland soil nematodes, Oscheius sp FVV-2., Rhabditis sp, Mesorhabditis sp., and Acrobeloides sp. In contrast to reference experiments performed using C. elegans and Caenorhabditis briggsae, feeding bacteria expressing dsRNA and injecting dsRNA into the gonad did not produce the expected RNAi knockdown phenotypes in any of the grassland nematodes. Quantitative reverse-transcribed PCR (qRT-PCR) assays did not detect a statistically significant reduction in the mRNA levels of endogenous genes targeted by RNAi in Oscheius sp., and Mesorhabditis sp. From these studies we conclude that due to low effectiveness and inconsistent reproducibility, RNAi knockdown phenotypes in non-Caenorhabditis nematodes should be interpreted cautiously. PMID:23483038

  3. Identification of nonviable genes affecting touch sensitivity in Caenorhabditis elegans using neuronally enhanced feeding RNA interference.

    PubMed

    Chen, Xiaoyin; Cuadros, Margarete Diaz; Chalfie, Martin

    2015-01-09

    Caenorhabditis elegans senses gentle touch along the body via six touch receptor neurons. Although genetic screens and microarray analyses have identified several genes needed for touch sensitivity, these methods miss pleiotropic genes that are essential for the viability, movement, or fertility of the animals. We used neuronally enhanced feeding RNA interference to screen genes that cause lethality or paralysis when mutated, and we identified 61 such genes affecting touch sensitivity, including five positive controls. We confirmed 18 genes by using available alleles, and further studied one of them, tag-170, now renamed txdc-9. txdc-9 preferentially affects anterior touch response but is needed for tubulin acetylation and microtubule formation in both the anterior and posterior touch receptor neurons. Our results indicate that neuronally enhanced feeding RNA interference screens complement traditional mutageneses by identifying additional nonviable genes needed for specific neuronal functions.

  4. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies.

    PubMed

    Deng, Yan; Wang, Chi Chiu; Choy, Kwong Wai; Du, Quan; Chen, Jiao; Wang, Qin; Li, Lu; Chung, Tony Kwok Hung; Tang, Tao

    2014-04-01

    During recent decades there have been remarkable advances in biology, in which one of the most important discoveries is RNA interference (RNAi). RNAi is a specific post-transcriptional regulatory pathway that can result in silencing gene functions. Efforts have been done to translate this new discovery into clinical applications for disease treatment. However, technical difficulties restrict the development of RNAi, including stability, off-target effects, immunostimulation and delivery problems. Researchers have attempted to surmount these barriers and improve the bioavailability and safety of RNAi-based therapeutics by optimizing the chemistry and structure of these molecules. This paper aimed to describe the principles of RNA interference, review the therapeutic potential in various diseases and discuss the new strategies for in vivo delivery of RNAi to overcome the challenges.

  5. Tobamovirus-resistant tobacco generated by RNA interference directed against host genes.

    PubMed

    Asano, Momoko; Satoh, Rena; Mochizuki, Atsuko; Tsuda, Shinya; Yamanaka, Takuya; Nishiguchi, Masamichi; Hirai, Katsuyuki; Meshi, Tetsuo; Naito, Satoshi; Ishikawa, Masayuki

    2005-08-15

    Two homologous Nicotiana tabacum genes NtTOM1 and NtTOM3 have been identified. These genes encode polypeptides with amino acid sequence similarity to Arabidopsis thaliana TOM1 and TOM3, which function in parallel to support tobamovirus multiplication. Simultaneous RNA interference against NtTOM1 and NtTOM3 in N. tabacum resulted in nearly complete inhibition of the multiplication of Tomato mosaic virus and other tobamoviruses, but did not affect plant growth or the ability of Cucumber mosaic virus to multiply. As TOM1 and TOM3 homologues are present in a variety of plant species, their inhibition via RNA interference should constitute a useful method for generating tobamovirus-resistant plants.

  6. Novel siRNA-loaded Bubble Liposomes with Ultrasound Exposure for RNA Interference

    NASA Astrophysics Data System (ADS)

    Endo-Takahashi, Yoko; Negishi, Yoichi; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko

    2011-09-01

    Recently, we have developed novel polyethyleneglycol (PEG) modified liposomes (Bubble liposomes; BLs) entrapping an ultrasound (US) imaging gas, which can work as a gene delivery tool with US exposure. We have shown that the combination of BLs and US was also useful for the delivery of siRNA. However, for use in intravenous administration, there is room for improvement in the colocalization of BLs and siRNA in blood vessels and the stability of siRNA. In this study, we have attempted to prepare novel siRNA-loaded BLs (si-BLs) using cationic lipid, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). As a result, siRNA loaded onto the surface of BLs could be observed. Furthermore, siRNA-loaded BLs were stable even in the presence of serum. The specific gene silencing effect caused by transfection with si-BLs and US could be also observed. Thus, si-BLs with US-exposure may be a useful novel transfection method for siRNA delivery to a target tissue or organ via systemic injection.

  7. Tumor-targeted RNA-interference: functional non-viral nanovectors

    PubMed Central

    Pan, Xinghua; Thompson, Rachel; Meng, Xiaojie; Wu, Daocheng; Xu, Liang

    2011-01-01

    While small interfering RNA (siRNA) and microRNA (miRNA) have attracted extensive attention and showed significant promise for the study, diagnosis and treatment of human cancers, delivering siRNA or miRNA specifically and efficiently into tumor cells in vivo remains a great challenge. Delivery barriers, which arise mainly from the routes of administration associated with complex physiochemical microenvironments of the human body and the unique properties of RNAs, hinder the development of RNA-interference (RNAi)-based therapeutics in clinical practice. However, in available delivery systems, non-viral nanoparticle-based gene/RNA-delivery vectors, or nanovectors, are showing powerful delivery capacities and huge potential for improvements in functional nanomaterials, including novel fabrication approaches which would greatly enhance delivery performance. In this review, we summarize the currently recognized RNAi delivery barriers and the anti-barrier requirements related to vectors' properties. Recent efforts and achievements in the development of novel nanomaterials, nanovectors fabrication methods, and delivery approaches are discussed. We also review the outstanding needs in the areas of material synthesis and assembly, multifunction combinations, proper delivery and assisting approaches that require more intensive investigation for the comprehensive and effective delivery of RNAi by non-viral nanovectors. PMID:21572539

  8. Colorado potato beetle (Coleoptera) gut transcriptome analysis: expression of RNA interference-related genes.

    PubMed

    Swevers, L; Huvenne, H; Menschaert, G; Kontogiannatos, D; Kourti, A; Pauchet, Y; ffrench-Constant, R; Smagghe, G

    2013-12-01

    In the search for new methods of pest control, the potential of RNA interference (RNAi) is being explored. Because the gut is the first barrier for the uptake of double-stranded (ds)RNA, pyrosequencing of the gut transcriptome is a powerful tool for obtaining the necessary sequences for specific dsRNA-mediated pest control. In the present study, a dataset representing the gut transcriptome of the Colorado potato beetle (CPB; Leptinotarsa decemlineata) was generated and analysed for the presence of RNAi-related genes. Almost all selected genes that were implicated in silencing efficiency at different levels in the RNAi pathway (core machinery, associated intracellular factors, dsRNA uptake, antiviral RNAi, nucleases), which uses different types of small RNA (small interfering RNA, microRNA and piwi-RNA), were expressed in the CPB gut. Although the database is of lower quality, the majority of the RNAi genes are also found to be present in the gut transcriptome of the tobacco hornworm [TH; Manduca sexta (19 out of 35 genes analysed)]. The high quality of the CPB transcriptome database will lay the foundation for future gene expression and functional studies regarding the gut and RNAi. © 2013 Royal Entomological Society.

  9. Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference.

    PubMed

    Li, Xiaoxue; Dong, Xiaolong; Zou, Cong; Zhang, Hongyu

    2015-03-03

    RNA interference (RNAi) is a powerful and convenient tool for sequence-specific gene silencing, and it is triggered by double-stranded RNA (dsRNA). RNAi can be easily achieved in many eukaryotes by either injecting or feeding dsRNAs. This mechanism has demonstrated its potential in fundamental research on genetics, medicine and agriculture. However, the possibility that insects might develop refractoriness to RNAi remains unexplored. In this study, we report that the oriental fruit fly, Bactrocera dorsalis, became refractory to RNAi using orally administered dsRNA targeting endogenous genes. Furthermore, refractoriness to RNAi is not gene-specific, and its duration depends on the dsRNA concentration. RNAi blockage requires the endocytic pathway. Fluorescence microscopy indicated that in RNAi refractory flies, dsRNA uptake is blocked. Genes involved in the entry of dsRNAs into cells, including chc, cog3, light and others, are down-regulated in RNAi refractory flies. Increasing the endocytic capacity by improving F-actin polymerization disrupts RNAi refractoriness after both primary and secondary dsRNA exposures. Our results demonstrate that an insect can become refractory to RNAi by preventing the entry of dsRNA into its cells.

  10. MIMEAnTo: profiling functional RNA in mutational interference mapping experiments.

    PubMed

    Smith, Maureen R; Smyth, Redmond P; Marquet, Roland; von Kleist, Max

    2016-11-01

    The mutational interference mapping experiment (MIME) is a powerful method that, coupled to a bioinformatics analysis pipeline, allows the identification of domains and structures in RNA that are important for its function. In MIME, target RNAs are randomly mutated, selected by function, physically separated and sequenced using next-generation sequencing (NGS). Quantitative effects of each mutation at each position in the RNA can be recovered with statistical certainty using the herein developed user-friendly, cross-platform software MIMEAnTo (MIME Analysis Tool).

  11. Gold Nanoparticle Interference Study during the Isolation, Quantification, Purity and Integrity Analysis of RNA

    PubMed Central

    Sanabria, Natasha M.; Vetten, Melissa; Andraos, Charlene; Boodhia, Kailen; Gulumian, Mary

    2014-01-01

    Investigations have been conducted regarding the interference of nanoparticles (NPs) with different toxicological assay systems, but there is a lack of validation when conducting routine tests for nucleic acid isolation, quantification, integrity, and purity analyses. The interference of citrate-capped gold nanoparticles (AuNPs) was investigated herein. The AuNPs were added to either BEAS-2B bronchial human cells for 24 h, the isolated pure RNA, or added during the isolation procedure, and the resultant interaction was assessed. Total RNA that was isolated from untreated BEAS-2B cells was spiked with various concentrations (v/v%) of AuNPs and quantified. A decrease in the absorbance spectrum (220–340 nm) was observed in a concentration-dependent manner. The 260 and 280 nm absorbance ratios that traditionally infer RNA purity were also altered. Electrophoresis was performed to determine RNA integrity, but could not differentiate between AuNP-exposed samples. However, the spiked post-isolation samples did produce differences in spectra (190–220 nm), where shifts were observed at a shorter wavelength. These shifts could be due to alterations to chromophores found in nucleic acids. The co-isolation samples, spiked with 100 µL AuNP during the isolation procedure, displayed a peak shift to a longer wavelength and were similar to the results obtained from a 24 h AuNP treatment, under non-cytotoxic test conditions. Moreover, hyperspectral imaging using CytoViva dark field microscopy did not detect AuNP spectral signatures in the RNA isolated from treated cells. However, despite the lack of AuNPs in the final RNA product, structural changes in RNA could still be observed between 190–220 nm. Consequently, full spectral analyses should replace the traditional ratios based on readings at 230, 260, and 280 nm. These are critical points of analyses, validation, and optimization for RNA-based techniques used to assess AuNPs effects. PMID:25470814

  12. Gold nanoparticle interference study during the isolation, quantification, purity and integrity analysis of RNA.

    PubMed

    Sanabria, Natasha M; Vetten, Melissa; Andraos, Charlene; Boodhia, Kailen; Gulumian, Mary

    2014-01-01

    Investigations have been conducted regarding the interference of nanoparticles (NPs) with different toxicological assay systems, but there is a lack of validation when conducting routine tests for nucleic acid isolation, quantification, integrity, and purity analyses. The interference of citrate-capped gold nanoparticles (AuNPs) was investigated herein. The AuNPs were added to either BEAS-2B bronchial human cells for 24 h, the isolated pure RNA, or added during the isolation procedure, and the resultant interaction was assessed. Total RNA that was isolated from untreated BEAS-2B cells was spiked with various concentrations (v/v%) of AuNPs and quantified. A decrease in the absorbance spectrum (220-340 nm) was observed in a concentration-dependent manner. The 260 and 280 nm absorbance ratios that traditionally infer RNA purity were also altered. Electrophoresis was performed to determine RNA integrity, but could not differentiate between AuNP-exposed samples. However, the spiked post-isolation samples did produce differences in spectra (190-220 nm), where shifts were observed at a shorter wavelength. These shifts could be due to alterations to chromophores found in nucleic acids. The co-isolation samples, spiked with 100 µL AuNP during the isolation procedure, displayed a peak shift to a longer wavelength and were similar to the results obtained from a 24 h AuNP treatment, under non-cytotoxic test conditions. Moreover, hyperspectral imaging using CytoViva dark field microscopy did not detect AuNP spectral signatures in the RNA isolated from treated cells. However, despite the lack of AuNPs in the final RNA product, structural changes in RNA could still be observed between 190-220 nm. Consequently, full spectral analyses should replace the traditional ratios based on readings at 230, 260, and 280 nm. These are critical points of analyses, validation, and optimization for RNA-based techniques used to assess AuNPs effects.

  13. Minimizing off-target effects by using diced siRNAs for RNA interference

    PubMed Central

    Myers, Jason W; Chi, Jen-Tsan; Gong, Delquin; Schaner, Marci E; Brown, Patrick O; Ferrell, James E

    2006-01-01

    Microarray studies have shown that individual synthetic small interfering RNAs (siRNAs) can have substantial off-target effects. Pools of siRNAs, produced by incubation of dsRNAs with recombinant Dicer or RNase III, can also be used to silence genes. Here we show that diced siRNA pools are highly complex, containing hundreds of different individual siRNAs. This high complexity could either compound the problem of off-target effects, since the number of potentially problematic siRNAs is high, or it could diminish the problem, since the concentration of any individual problematic siRNA is low. We therefore compared the off-target effects of diced siRNAs to chemically synthesized siRNAs. In agreement with previous reports, we found that two chemically synthesized siRNAs targeted against p38α MAPK (MAPK14) induced off-target changes in the abundance of hundreds of mRNAs. In contrast, three diced siRNA pools against p38α MAPK had almost no off-target effects. The off-target effects of a synthetic siRNA were reduced when the siRNA was diluted 3-fold in a diced pool and completely alleviated when it was diluted 30- or 300-fold, suggesting that when problematic siRNAs are present within a diced pool, their absolute concentration is too low to result in significant off-target effects. These data rationalize the observed high specificity of RNA interference in C. elegans and D. melanogaster, where gene suppression is mediated by endogenously-generated diced siRNA pools, and provide a strategy for improving the specificity of RNA interference experiments and screens in mammalian cells. PMID:19771225

  14. Oligonucleotide Antiviral Therapeutics: Antisense and RNA Interference for Highly Pathogenic RNA Viruses

    DTIC Science & Technology

    2008-01-01

    disrupt RNA virus gene expression as first demonstrated using Rous sarcoma virus and respira- ory syncytial virus, respectively (Stephenson and Zamecnik...specialized lipo - omes can be used to form a stable nucleic acid-lipid particle SNALP) (Geisbert et al., 2006). SNALP-encapsulated siRNAs gainst EBOV L...Dev. 4 (2), 67–69. tephenson, M.L., Zamecnik, P.C., 1978. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide

  15. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing

    PubMed Central

    Burroughs, Alexander Maxwell; Ando, Yoshinari; Aravind, L

    2014-01-01

    Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently-known small RNA classes and place them in context of the reconstructed evolutionary history of the RNAi protein machinery. This synthesis indicates the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: 1) sense-antisense transcriptional products, 2) genome-encoded, imperfectly-complementary hairpin sequences, and 3) larger non-coding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNA interference. They were recruited alongside RNaseIII domains and RdRP domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleo-cytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs. PMID:24311560

  16. Lingo-1 inhibited by RNA interference promotes functional recovery of experimental autoimmune encephalomyelitis.

    PubMed

    Wang, Chun-Juan; Qu, Chuan-Qiang; Zhang, Jie; Fu, Pei-Cai; Guo, Shou-Gang; Tang, Rong-Hua

    2014-12-01

    Lingo-1 is a negative regulator of myelination. Repairment of demyelinating diseases, such as multiple sclerosis (MS)/experimental autoimmune encephalomyelitis (EAE), requires activation of the myelination program. In this study, we observed the effect of RNA interference on Lingo-1 expression, and the impact of Lingo-1 suppression on functional recovery and myelination/remyelination in EAE mice. Lentiviral vectors encoding Lingo-1 short hairpin RNA (LV/Lingo-1-shRNA) were constructed to inhibit Lingo-1 expression. LV/Lingo-1-shRNA of different titers were transferred into myelin oligodendrocyte glycoprotein-induced EAE mice by intracerebroventricular (ICV) injection. Meanwhile, lentiviral vectors carrying nonsense gene sequence (LVCON053) were used as negative control. The Lingo-1 expression was detected and locomotor function was evaluated at different time points (on days 1,3,7,14,21, and 30 after ICV injection). Myelination was investigated by luxol fast blue (LFB) staining.LV/Lingo-1-shRNA administration via ICV injection could efficiently down-regulate the Lingo-1 mRNA and protein expression in EAE mice on days 7,14,21, and 30 (P < 0.01), especially in the 5 × 10(8) TU/mL and 5 × 10(9) TU/mL LV/Lingo-1-shRNA groups. The locomotor function score in the LV/Lingo-1-shRNA treated groups were significantly lower than the untreated or LVCON053 group from day 7 on. The 5 × 10(8) TU/mL LV/Lingo-1-shRNA group achieved the best functional improvement (0.87 ± 0.11 vs. 3.05 ± 0.13, P < 0.001). Enhanced myelination/remyelination was observed in the 5 × 10(7) , 5 × 10(8) , 5 × 10(9) TU/mL LV/Lingo-1-shRNA groups by LFB staining (P < 0.05, P < 0.01, and P < 0.05).The data showed that administering LV/Lingo-1-shRNA by ICV injection could efficiently knockdown Lingo-1 expression in vivo, improve functional recovery and enhance myelination/remyelination. Antagonism of Lingo-1 by RNA interference is, therefore, a promising approach for the

  17. A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference.

    PubMed

    Samakoglu, Selda; Lisowski, Leszek; Budak-Alpdogan, Tulin; Usachenko, Yelena; Acuto, Santina; Di Marzo, Rosalba; Maggio, Aurelio; Zhu, Ping; Tisdale, John F; Rivière, Isabelle; Sadelain, Michel

    2006-01-01

    The application of RNA interference (RNAi) to stem cell-based therapies will require highly specific and lineage-restricted gene silencing. Here we show the feasibility and therapeutic potential of coregulating transgene expression and RNAi in hematopoietic stem cells. We encoded promoterless small-hairpin RNA (shRNA) within the intron of a recombinant gamma-globin gene. Expression of both gamma-globin and the lariat-embedded small interfering RNA (siRNA) was induced upon erythroid differentiation, specifically downregulating the targeted gene in tissue- and differentiation stage-specific fashion. The position of the shRNA within the intron was critical to concurrently achieve high-level transgene expression, effective siRNA generation and minimal interferon induction. Lentiviral transduction of CD34(+) cells from patients with sickle cell anemia led to erythroid-specific expression of the gamma-globin transgene and concomitant reduction of endogenous beta(S) transcripts, thus providing proof of principle for therapeutic strategies that require synergistic gene addition and gene silencing in stem cell progeny.

  18. RNA Interference Induced by the Cationic Lipid Delivery of siRNA

    NASA Astrophysics Data System (ADS)

    Bouxsein, Nathan

    2005-03-01

    Recent discoveries demonstrate that the introduction of synthetically prepared duplexes of 19-21 bp short interfering RNAs (siRNA) into mammalian cells results in the cleavage of target mRNA leading to post transcriptional gene silencing [1]. Our work focuses on the cationic-lipid (CL) mediated delivery of siRNA into mammalian cell lines in an approach similar to CL based gene delivery [2]. Co-transfection of a target and a non-target reporter plasmid followed by the CL delivery of a sequence specific siRNA allows us to probe the silencing efficiency (SE) of the target plasmid relative to non-specific silencing of both plasmids. We have created a phase diagram for SE as a function of the complex membrane charge density and as a function of the CL:siRNA charge ratio. X-ray diffraction was performed to probe the structure of the complexes at points along the phase diagram. Funding provided by NIH AI-12520, AI-20611 and GM-59288. [1] Elbashir et. al., Nature, 411 494-498 (2001) [2] Ewert et. al., Curr. Med. Chem. 11 133-149 (2004)

  19. Reversal of chemoresistance with small interference RNA (siRNA) in etoposide resistant acute myeloid leukemia cells (HL-60).

    PubMed

    Kachalaki, Saeed; Baradaran, Behzad; Majidi, Jafar; Yousefi, Mehdi; Shanehbandi, Dariush; Mohammadinejad, Sina; Mansoori, Behzad

    2015-10-01

    Overexpression of ATP-binding cassette (ABC) drug transporters is a major barrier in the success of cancer chemotherapy. One way to overcome overexpression of ABC drug transporter-mediated chemoresistance in acute myeloid leukemia is to suppress ABC drug transporter genes expression by small interference RNA (siRNA). In this study was assessed the involvement of ABCB1 gene in the mechanisms of resistance to etoposide in AML cells. The etoposide-resistant HL-60 cells were generated by stepwise exposure increasing concentrations of etoposide. The etoposide-resistant HL-60 cells were transfected with siRNAs using Transfection Reagent. The ABCB1 mRNA expression were assessed by real-time quantitative PCR. The MDR1/P-gp levels were measured by Western blotting. The sensitivity of resistant HL-60 cells to etoposide after transfection was determined using MTT assay. Apoptosis of resistant HL-60 cells after transfection was detected by flow cytometer. It was found that siRNA effectively inhibited ABCB1 expression at both mRNA and protein levels. Knockdown of the ABCB1 gene correlated with increased sensitivity of the resistant HL-60 cells to etoposide and was observed to lower the cytotoxic index (IC50 etoposide value) after transfection. Our results indicate that product of the ABCB1 gene have effective role in resistance to etoposide in acute myeloid leukemia cells. Copyright © 2015. Published by Elsevier Masson SAS.

  20. Prediction of effective RNA interference targets and pathway-related genes in lepidopteran insects by RNA sequencing analysis.

    PubMed

    Guan, Ruo-Bing; Li, Hai-Chao; Miao, Xue-Xia

    2017-01-06

    When using RNA interference (RNAi) to study gene functions in Lepidoptera insects, we discovered that some genes could not be suppressed; instead, their expression levels could be up-regulated by double-stranded RNA (dsRNA). To predict which genes could be easily silenced, we treated the Asian corn borer (Ostrinia furnacalis) with dsGFP (green fluorescent protein) and dsMLP (muscle lim protein). A transcriptome sequence analysis was conducted using the cDNAs 6 h after treatment with dsRNA. The results indicated that 160 genes were up-regulated and 44 genes were down-regulated by the two dsRNAs. Then, 50 co-up-regulated, 25 co-down-regulated and 43 unaffected genes were selected to determine their RNAi responses. All the 25 down-regulated genes were knocked down by their corresponding dsRNA. However, several of the up-regulated and unaffected genes were up-regulated when treated with their corresponding dsRNAs instead of being knocked down. The genes up-regulated by the dsGFP treatment may be involved in insect immune responses or the RNAi pathway. When the immune-related genes were excluded, only seven genes were induced by dsGFP, including ago-2 and dicer-2. These results not only provide a reference for efficient RNAi target predications, but also provide some potential RNAi pathway-related genes for further study.

  1. Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system.

    PubMed

    Bivalkar-Mehla, Shalmali; Vakharia, Janaki; Mehla, Rajeev; Abreha, Measho; Kanwar, Jagat Rakesh; Tikoo, Akshay; Chauhan, Ashok

    2011-01-01

    Pathogenic viruses have developed a molecular defense arsenal for their survival by counteracting the host anti-viral system known as RNA interference (RNAi). Cellular RNAi, in addition to regulating gene expression through microRNAs, also serves as a barrier against invasive foreign nucleic acids. RNAi is conserved across the biological species, including plants, animals and invertebrates. Viruses in turn, have evolved mechanisms that can counteract this anti-viral defense of the host. Recent studies of mammalian viruses exhibiting RNA silencing suppressor (RSS) activity have further advanced our understanding of RNAi in terms of host-virus interactions. Viral proteins and non-coding viral RNAs can inhibit the RNAi (miRNA/siRNA) pathway through different mechanisms. Mammalian viruses having dsRNA-binding regions and GW/WG motifs appear to have a high chance of conferring RSS activity. Although, RSSs of plant and invertebrate viruses have been well characterized, mammalian viral RSSs still need in-depth investigations to present the concrete evidences supporting their RNAi ablation characteristics. The information presented in this review together with any perspective research should help to predict and identify the RSS activity-endowed new viral proteins that could be the potential targets for designing novel anti-viral therapeutics.

  2. Effects of chemokine receptor 3 gene silencing by RNA interference on eosinophils

    PubMed Central

    Liu, Yuehui; Zhu, Xinhua; Zhang, Hao

    2017-01-01

    The present study aimed to use RNA interference (RNAi) to silence chemokine receptor 3 (CCR3) and observe the effects on eosinophils (EOS) in mice with allergic rhinitis (AR). CCR3 small interfering RNA (siRNA) lentiviral vectors were transduced into purified EOS cells cultured in vitro. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analyses were also used to detect the efficiency of silencing, and flow cytometry was used to detect the EOS apoptosis rates. Experimental mice were grouped for nasal administration, and the lentivirus was then dispensed to AR mice. RT-PCR and western blots were performed to detect the expression levels of CCR3 mRNA and protein in EOS extracted from bone marrow, peripheral blood and nasal mucosa. Furthermore, flow cytometry was performed to detect changes to CD34-positive (CD34+) cells in each group. The CCR3 siRNA lentiviral vector exhibited high efficiency in silencing CCR3 mRNA and protein expression, inhibited growth and promoted apoptosis of EOS. In addition, the expression of CCR3 mRNA and protein in the bone marrow, peripheral blood and nasal mucosa of mice in the CCR3 siRNA treatment group were lower than those in the control group (P<0.05), whereas the number of CD34+ cells in the CCR3 siRNA treatment group was not significantly different compared with that in the control group (P>0.05). CCR3 RNAi could effectively silence the expression of CCR3 mRNA and protein both in vitro and in vivo, thus promoting apoptosis of EOS and inhibiting its growth, migration and invasion. PMID:28123492

  3. Importance of translation and nonnucleolytic ago proteins for on-target RNA interference.

    PubMed

    Wu, Ligang; Fan, Jihua; Belasco, Joel G

    2008-09-09

    In animals, both siRNAs and miRNAs are thought to diminish protein synthesis from transcripts that are perfectly complementary by directing endonucleolytic cleavage where they anneal, thereby triggering rapid degradation of the entire message [1-4]. By contrast, partially complementary messages are downregulated by a combination of translational repression and accelerated decay caused by rapid poly(A) tail removal [3, 5-12]. Here we present evidence that translational repression can also make a substantial contribution to the downregulation of fully complementary messages by RNA interference. Unlike mRNA destabilization, this inhibitory effect on translation is greater for perfectly complementary elements located in the 3' untranslated region rather than in the protein-coding region. In addition to known disparities in their endonucleolytic activity [13, 14], the four Ago proteins with which siRNAs associate in humans differ significantly in their capacity to direct translational repression. As a result, the relative effect of siRNA on targets that are fully versus partially complementary is influenced by the comparative abundance of the three nonnucleolytic Ago proteins, causing this on-target/off-target ratio to vary in a cell-type-dependent manner because of the dissimilar tissue distribution of these proteins. These findings have important implications for the efficacy and specificity of RNA interference.

  4. RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems

    PubMed Central

    Jansen, Stephanie; Fall, Gamou; Lorenzen, Stephan; Rudolf, Martin; Huber, Katrin; Heitmann, Anna; Schicht, Sabine; Ndiaye, El Hadji; Watson, Mick; Castelli, Ilaria; Elliott, Richard M.; Diallo, Mawlouth; Sall, Amadou A.; Failloux, Anna-Bella; Schnettler, Esther

    2017-01-01

    ABSTRACT The emerging bunyavirus Rift Valley fever virus (RVFV) is transmitted to humans and livestock by a large number of mosquito species. RNA interference (RNAi) has been characterized as an important innate immune defense mechanism used by mosquitoes to limit replication of positive-sense RNA flaviviruses and togaviruses; however, little is known about its role against negative-strand RNA viruses such as RVFV. We show that virus-specific small RNAs are produced in infected mosquito cells, in Drosophila melanogaster cells, and, most importantly, also in RVFV vector mosquitoes. By addressing the production of small RNAs in adult Aedes sp. and Culex quinquefasciatus mosquitoes, we showed the presence of virus-derived Piwi-interacting RNAs (piRNAs) not only in Aedes sp. but also in C. quinquefasciatus mosquitoes, indicating that antiviral RNA interference in C. quinquefasciatus mosquitoes is similar to the described activities of RNAi in Aedes sp. mosquitoes. We also show that these have antiviral activity, since silencing of RNAi pathway effectors enhances viral replication. Moreover, our data suggest that RVFV does not encode a suppressor of RNAi. These findings point toward a significant role of RNAi in the control of RVFV in mosquitoes. IMPORTANCE Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is an emerging zoonotic mosquito-borne pathogen of high relevance for human and animal health. Successful strategies of intervention in RVFV transmission by its mosquito vectors and the prevention of human and veterinary disease rely on a better understanding of the mechanisms that govern RVFV-vector interactions. Despite its medical importance, little is known about the factors that govern RVFV replication, dissemination, and transmission in the invertebrate host. Here we studied the role of the antiviral RNA interference immune pathways in the defense against RVFV in natural vector mosquitoes and mosquito cells and draw comparisons to the model insect

  5. RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems.

    PubMed

    Dietrich, Isabelle; Jansen, Stephanie; Fall, Gamou; Lorenzen, Stephan; Rudolf, Martin; Huber, Katrin; Heitmann, Anna; Schicht, Sabine; Ndiaye, El Hadji; Watson, Mick; Castelli, Ilaria; Brennan, Benjamin; Elliott, Richard M; Diallo, Mawlouth; Sall, Amadou A; Failloux, Anna-Bella; Schnettler, Esther; Kohl, Alain; Becker, Stefanie C

    2017-01-01

    The emerging bunyavirus Rift Valley fever virus (RVFV) is transmitted to humans and livestock by a large number of mosquito species. RNA interference (RNAi) has been characterized as an important innate immune defense mechanism used by mosquitoes to limit replication of positive-sense RNA flaviviruses and togaviruses; however, little is known about its role against negative-strand RNA viruses such as RVFV. We show that virus-specific small RNAs are produced in infected mosquito cells, in Drosophila melanogaster cells, and, most importantly, also in RVFV vector mosquitoes. By addressing the production of small RNAs in adult Aedes sp. and Culex quinquefasciatus mosquitoes, we showed the presence of virus-derived Piwi-interacting RNAs (piRNAs) not only in Aedes sp. but also in C. quinquefasciatus mosquitoes, indicating that antiviral RNA interference in C. quinquefasciatus mosquitoes is similar to the described activities of RNAi in Aedes sp. mosquitoes. We also show that these have antiviral activity, since silencing of RNAi pathway effectors enhances viral replication. Moreover, our data suggest that RVFV does not encode a suppressor of RNAi. These findings point toward a significant role of RNAi in the control of RVFV in mosquitoes. IMPORTANCE Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is an emerging zoonotic mosquito-borne pathogen of high relevance for human and animal health. Successful strategies of intervention in RVFV transmission by its mosquito vectors and the prevention of human and veterinary disease rely on a better understanding of the mechanisms that govern RVFV-vector interactions. Despite its medical importance, little is known about the factors that govern RVFV replication, dissemination, and transmission in the invertebrate host. Here we studied the role of the antiviral RNA interference immune pathways in the defense against RVFV in natural vector mosquitoes and mosquito cells and draw comparisons to the model insect Drosophila

  6. Potent and Specific Inhibition of Human Immunodeficiency Virus Type 1 Replication by RNA Interference

    PubMed Central

    Coburn, Glen A.; Cullen, Bryan R.

    2002-01-01

    Synthetic small interfering RNAs (siRNAs) have been shown to induce the degradation of specific mRNA targets in human cells by inducing RNA interference (RNAi). Here, we demonstrate that siRNA duplexes targeted against the essential Tat and Rev regulatory proteins encoded by human immunodeficiency virus type 1 (HIV-1) can specifically block Tat and Rev expression and function. More importantly, we show that these same siRNAs can effectively inhibit HIV-1 gene expression and replication in cell cultures, including those of human T-cell lines and primary lymphocytes. These observations demonstrate that RNAi can effectively block virus replication in human cells and raise the possibility that RNAi could provide an important innate protective response, particularly against viruses that express double-stranded RNAs as part of their replication cycle. PMID:12186906

  7. Development of RNA interference-based therapeutics and application of multi-target small interfering RNAs.

    PubMed

    Li, Tiejun; Wu, Meihua; Zhu, York Yuanyuan; Chen, Jianxin; Chen, Li

    2014-08-01

    RNA interference (RNAi) has been proven in recent years to be a newly advanced and powerful tool for development of therapeutic agents toward various unmet medical needs such as cancer, in particular, a great attention has been paid to the development of antineoplastic agents. Recent success in clinical trials related to RNAi-based therapeutics on cancer and ocular disease has validated that small interfering RNAs (siRNAs) constitute a new promising class of therapeutics. Currently, a great wealth of multi-target based siRNA structural modifications is available for promoting siRNA-mediated gene silencing with low side effects. Here, the latest developments in RNAi-based therapeutics and novel structural modifications described for siRNAs--in particular multi-target siRNAs--are reviewed.

  8. Interference of hepatitis C virus RNA replication by short interfering RNAs

    NASA Astrophysics Data System (ADS)

    Kapadia, Sharookh B.; Brideau-Andersen, Amy; Chisari, Francis V.

    2003-02-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, which can lead to the development of liver cirrhosis and hepatocellular carcinoma. Current therapy of patients with chronic HCV infection includes treatment with IFN in combination with ribavirin. Because most treated patients do not resolve the infection, alternative treatment is essential. RNA interference (RNAi) is a recently discovered antiviral mechanism present in plants and animals that induces double-stranded RNA degradation. Using a selectable subgenomic HCV replicon cell culture system, we have shown that RNAi can specifically inhibit HCV RNA replication and protein expression in Huh-7 cells that stably replicate the HCV genome, and that this antiviral effect is independent of IFN. These results suggest that RNAi may represent a new approach for the treatment of persistent HCV infection.

  9. [Silencing HSV1 gD expression in cultured cells by RNA interference].

    PubMed

    Zhu, Qin-Chang; Ren, Zhe; Zhang, Chun-Long; Zhang, Mei-Ying; Liao, Hong-Juan; Liu, Qiu-Ying; Zhang, Pei-Zhuo; Li, Jiu-Xiang; Hu, Chao-Feng; Wang, Hua-Dong; Wang, Yi-Fei

    2007-01-01

    To explore the anti-HSV-1 effect of silencing gD gene expression by RNA interference, five 21-nucleotide duplex small interfering RNAs(siRNAs) targeting the HSV1 gD sequence were designed and the gD-EGFP fusion gene expression vector was constructed, then co-transfected into Vero cell, and screened the effective siRNA through analyzing the intensity of the EGFP fluorescence. Finally, the anti-HSV1 effect was confirmed by plaque reduction assay, real-time PCR and daughter virus titration of HSV1 infected Vero cells transfected with siRNAs. The study demonstrated that siRNAs could effectively and specifically inhibit gD gene expression in HSV1-infected cells, but only had a little effect on HSV1 infection, so taking gD as the target of siRNA against HSV1 needs further study.

  10. Functional analysis of the cellulose gene of the pine wood nematode, Bursaphelenchus xylophilus, using RNA interference.

    PubMed

    Ma, H B; Lu, Q; Liang, J; Zhang, X Y

    2011-08-30

    Cellulases are pathogenic substances suspected to be responsible for the development of the early symptoms of nematode disease. The pine wood nematode, Bursaphelenchus xylophilus (Parasitaphelenchidae), is the causal agent of pine wilt disease, which kills millions of pine trees. We used RNA interference (RNAi), a reverse genetic tool, to analyze the function of the endo-β-1,4-glucanase gene of B. xylophilus, which causes the most serious forest tree disease in China and the rest of eastern Asia. Silencing of this gene was detected through real-time PCR and cellulase activity assays after soaking for 24 h in dsRNA. The cellulase gene silencing effects differed among various siRNAs. The propagation and dispersal ability of these nematodes decreased when the endo-β-1,4-glucanase gene was silenced. It is important to select an effective siRNA before performing an RNAi test.

  11. Isolation of small interfering RNAs using viral suppressors of RNA interference.

    PubMed

    van den Beek, Marius; Antoniewski, Christophe; Carré, Clément

    2014-01-01

    The tombusvirus P19 VSR (viral suppressor of RNA interference) binds siRNAs with high affinity, whereas the Flockhouse Virus (FHV) B2 VSR binds both long double-stranded RNA (dsRNA) and small interfering RNAs (siRNAs). Both VSRs are small proteins and function in plant and animal cells. Fusing a Nuclear Localization Signal (NLS) to the N-terminus shifts the localization of the VSR from cytoplasmic to nuclear, allowing researchers to specifically probe the subcellular distribution of siRNAs, and to investigate the function of nuclear and cytoplasmic siRNAs. This chapter provides a detailed protocol for the immunoprecipitation of siRNAs bound to epitope-tagged VSR and subsequent analysis by 3'-end-labeling using cytidine-3',5'-bis phosphate ([5'-(32)P]pCp) and northern blotting.

  12. RNA-interference-mediated downregulation of Pin1 suppresses tumorigenicity of malignant melanoma A375 cells.

    PubMed

    Jin, J; Zhang, Y; Li, Y; Zhang, H; Li, H; Yuan, X; Li, X; Zhou, W; Xu, B; Zhang, C; Zhang, Z; Zhu, L; Chen, X

    2013-01-01

    The peptidyl-prolyl isomerase Pin1 is overexpressed in many human cancers, including melanoma. To investigate its possible role in oncogenesis of melanoma and as a therapeutic target, we suppressed Pin1 expression in the human melanoma cell line A375 by microRNA (miRNA) interference technology. Two stable clones with suppressed Pin1 were established by stable transfection of miRNA plasmid targeting Pin1 into A375 cells. Both clones showed reduced proliferation and invasion in vitro and suppressed tumorigenic potential in athymic mice. Furthermore, Pin1 inhibition also resulted in decreased phosphorylation of Akt and repressed expression of C-Jun N-terminal kinase and pro-matrix metalloproteinase 2, which were associated closely with the development of melanoma. These findings indicate that Pin1 plays an important role in the tumorigenesis of melanoma and might serve as a promising therapeutic target.

  13. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti.

    PubMed

    Franz, Alexander W E; Sanchez-Vargas, Irma; Adelman, Zach N; Blair, Carol D; Beaty, Barry J; James, Anthony A; Olson, Ken E

    2006-03-14

    Mosquitoes (Aedes aegypti) were genetically modified to exhibit impaired vector competence for dengue type 2 viruses (DENV-2). We exploited the natural antiviral RNA interference (RNAi) pathway in the mosquito midgut by constructing an effector gene that expresses an inverted-repeat (IR) RNA derived from the premembrane protein coding region of the DENV-2 RNA genome. The A. aegypti carboxypeptidase A promoter was used to express the IR RNA in midgut epithelial cells after ingestion of a bloodmeal. The promoter and effector gene were inserted into the genome of a white-eye Puerto Rico Rexville D (Higgs' white eye) strain by using the nonautonomous mariner MosI transformation system. A transgenic family, Carb77, expressed IR RNA in the midgut after a bloodmeal. Carb77 mosquitoes ingesting an artificial bloodmeal containing DENV-2 exhibited marked reduction of viral envelope antigen in midguts and salivary glands after infection. DENV-2 titration of individual mosquitoes showed that most Carb77 mosquitoes poorly supported virus replication. Transmission in vitro of virus from the Carb77 line was significantly diminished when compared to control mosquitoes. The presence of DENV-2-derived siRNAs in RNA extracts from midguts of Carb77 and the loss of the resistance phenotype when the RNAi pathway was interrupted proved that DENV-2 resistance was caused by a RNAi response. Engineering of transgenic A. aegypti that show a high level of resistance against DENV-2 provides a powerful tool for developing population replacement strategies to control transmission of dengue viruses.

  14. Darwin's "Abominable Mystery": the role of RNA interference in the evolution of flowering plants.

    PubMed

    Cibrián-Jaramillo, A; Martienssen, R A

    2009-01-01

    Darwin was famously concerned that the sudden appearance and rapid diversification of flowering plants in the mid-Cretaceous could not have occurred by gradual change. Here, we review our attempts to resolve the relationships among the major seed plant groups, i.e., cycads, ginkgo, conifers, gnetophytes, and flowering plants, and to provide a pipeline in which these relationships can be used as a platform for identifying genes of functional importance in plant diversification. Using complete gene sets and unigenes from 16 plant species, genes with positive partitioned Bremer support at major nodes were used to identify overrepresented gene ontology (GO) terms. Posttranscriptional silencing via RNA interference (RNAi) was overrepresented at several major nodes, including between monocots and dicots during early angiosperm divergence. One of these genes, RNA-dependent RNA polymerase 6, is required for the biogenesis of trans-acting small interfering RNA (tasiRNA), confers heteroblasty and organ polarity, and restricts maternal specification of the germline. Processing of small RNA and transfer between neighboring cells underlies these roles and may have contributed to distinct mutant phenotypes in plants, and in particular in the early split of the monocots and eudicots.

  15. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference

    PubMed Central

    Murphy, Katherine A.; Tabuloc, Christine A.; Cervantes, Kevin R.; Chiu, Joanna C.

    2016-01-01

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest. PMID:26931800

  16. Long-term effect of systemic RNA interference on circadian clock genes in hemimetabolous insects.

    PubMed

    Uryu, Outa; Kamae, Yuichi; Tomioka, Kenji; Yoshii, Taishi

    2013-04-01

    RNA interference (RNAi) strategy, which enables gene-specific knock-down of transcripts, has been spread across a wide area of insect studies for investigating gene function without regard to model and non-model insects. This technique is of particular benefit to promote molecular studies on non-model insects. However, the optimal conditions for RNAi are still not well understood because of its variable efficiency depending on the species, target genes, and experimental conditions. To apply RNAi technique to long-running experiments such as chronobiological studies, the effects of RNAi have to persist throughout the experiment. In this study, we attempted to determine the optimal concentration of double-stranded RNA (dsRNA) for systemic RNAi and its effective period in two different insect species, the cricket Gryllus bimaculatus and the firebrat Thermobia domestica. In both species, higher concentrations of dsRNA principally yielded a more efficient knock-down of mRNA levels of tested clock genes, although the effect depended on the gene and the species. Surprisingly, the effect of the RNAi reached its maximum effect 1-2 weeks and 1 month after the injection of dsRNA in the crickets and the firebrats, respectively, suggesting a slow but long-term effect of RNAi. Our study provides fundamental information for utilizing RNAi technique in any long-running experiment.

  17. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference.

    PubMed

    Murphy, Katherine A; Tabuloc, Christine A; Cervantes, Kevin R; Chiu, Joanna C

    2016-03-02

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest.

  18. A majority of Huntington's disease patients may be treatable by individualized allele-specific RNA interference.

    PubMed

    Lombardi, Maria Stella; Jaspers, Leonie; Spronkmans, Christine; Gellera, Cinzia; Taroni, Franco; Di Maria, Emilio; Donato, Stefano Di; Kaemmerer, William F

    2009-06-01

    Use of RNA interference to reduce huntingtin protein (htt) expression in affected brain regions may provide an effective treatment for Huntington disease (HD), but it remains uncertain whether suppression of both wild-type and mutant alleles in a heterozygous patient will provide more benefit than harm. Previous research has shown suppression of just the mutant allele is achievable using siRNA targeted to regions of HD mRNA containing single nucleotide polymorphisms (SNPs). To determine whether more than a minority of patients may be eligible for an allele-specific therapy, we genotyped DNA from 327 unrelated European Caucasian HD patients at 26 SNP sites in the HD gene. Over 86% of the patients were found to be heterozygous for at least one SNP among those tested. Because the sites are genetically linked, one cannot use the heterozygosity rates of the individual SNPs to predict how many sites (and corresponding allele-specific siRNA) would be needed to provide at least one treatment possibility for this percentage of patients. By computing all combinations, we found that a repertoire of allele-specific siRNA corresponding to seven sites can provide at least one allele-specific siRNA treatment option for 85.6% of our sample. Moreover, we provide evidence that allele-specific siRNA targeting these sites are readily identifiable using a high throughput screening method, and that allele-specific siRNA identified using this method indeed show selective suppression of endogenous mutant htt protein in fibroblast cells from HD patients. Therefore, allele-specific siRNA are not so rare as to be impractical to find and use therapeutically.

  19. Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy

    PubMed Central

    Bisset, Darren R.; Stepniak-Konieczna, Ewa A.; Zavaljevski, Maja; Wei, Jessica; Carter, Gregory T.; Weiss, Michael D.; Chamberlain, Joel R.

    2015-01-01

    RNA interference (RNAi) offers a promising therapeutic approach for dominant genetic disorders that involve gain-of-function mechanisms. One candidate disease for RNAi therapy application is myotonic dystrophy type 1 (DM1), which results from toxicity of a mutant mRNA. DM1 is caused by expansion of a CTG repeat in the 3′ UTR of the DMPK gene. The expression of DMPK mRNA containing an expanded CUG repeat (CUGexp) leads to defects in RNA biogenesis and turnover. We designed miRNA-based RNAi hairpins to target the CUGexp mRNA in the human α-skeletal muscle actin long-repeat (HSALR) mouse model of DM1. RNAi expression cassettes were delivered to HSALR mice using recombinant adeno-associated viral (rAAV) vectors injected intravenously as a route to systemic gene therapy. Vector delivery significantly reduced disease pathology in muscles of the HSALR mice, including a reduction in the CUGexp mRNA, a reduction in myotonic discharges, a shift toward adult pre-mRNA splicing patterns, reduced myofiber hypertrophy and a decrease in myonuclear foci containing the CUGexp mRNA. Significant reversal of hallmarks of DM1 in the rAAV RNAi-treated HSALR mice indicate that defects characteristic of DM1 can be mitigated with a systemic RNAi approach targeting the nuclei of terminally differentiated myofibers. Efficient rAAV-mediated delivery of RNAi has the potential to provide a long-term therapy for DM1 and other dominant muscular dystrophies. PMID:26082468

  20. Disruption of amylase genes by RNA interference affects reproduction in the Pacific oyster Crassostrea gigas.

    PubMed

    Huvet, Arnaud; Béguel, Jean-Philippe; Cavaleiro, Nathalia Pereira; Thomas, Yoann; Quillien, Virgile; Boudry, Pierre; Alunno-Bruscia, Marianne; Fabioux, Caroline

    2015-06-01

    Feeding strategies and digestive capacities can have important implications for variation in energetic pathways associated with ecological and economically important traits, such as growth or reproduction in bivalve species. Here, we investigated the role of amylase in the digestive processes of Crassostrea gigas, using in vivo RNA interference. This approach also allowed us to investigate the relationship between energy intake by feeding and gametogenesis in oysters. Double-stranded (ds)RNA designed to target the two α-amylase genes A and B was injected in vivo into the visceral mass of oysters at two doses. These treatments caused significant reductions in mean mRNA levels of the amylase genes: -50.7% and -59% mRNA A, and -71.9% and -70.6% mRNA B in 15 and 75 µg dsRNA-injected oysters, respectively, relative to controls. Interestingly, reproductive knock-down phenotypes were observed for both sexes at 48 days post-injection, with a significant reduction of the gonad area (-22.5% relative to controls) and germ cell under-proliferation revealed by histology. In response to the higher dose of dsRNA, we also observed reductions in amylase activity (-53%) and absorption efficiency (-5%). Based on these data, dynamic energy budget modeling showed that the limitation of energy intake by feeding that was induced by injection of amylase dsRNA was insufficient to affect gonadic development at the level observed in the present study. This finding suggests that other driving mechanisms, such as endogenous hormonal modulation, might significantly change energy allocation to reproduction, and increase the maintenance rate in oysters in response to dsRNA injection. © 2015. Published by The Company of Biologists Ltd.

  1. Transgenic Sugarcane Resistant to Sorghum mosaic virus Based on Coat Protein Gene Silencing by RNA Interference

    PubMed Central

    Guo, Jinlong; Gao, Shiwu; Lin, Qinliang; Wang, Hengbo; Que, Youxiong; Xu, Liping

    2015-01-01

    As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV) and/or Sorghum mosaic virus (SrMV), with additional differences in viral strains. RNA interference (RNAi) is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP) genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms. PMID:25685813

  2. An RNA aptamer that interferes with the DNA binding of the HSF transcription activator.

    PubMed

    Zhao, Xiaoching; Shi, Hua; Sevilimedu, Aarti; Liachko, Nicole; Nelson, Hillary C M; Lis, John T

    2006-01-01

    Heat shock factor (HSF) is a conserved and highly potent transcription activator. It is involved in a wide variety of important biological processes including the stress response and specific steps in normal development. Reagents that interfere with HSF function would be useful for both basic studies and practical applications. We selected an RNA aptamer that binds to HSF with high specificity. Deletion analysis defined the minimal binding motif of this aptamer to be two stems and one stem-loop joined by a three-way junction. This RNA aptamer interferes with normal interaction of HSF with its DNA element, which is a key regulatory step for HSF function. The DNA-binding domain plus a flanking linker region on the HSF (DL) is essential for the RNA binding. Additionally, this aptamer inhibits HSF-induced transcription in vitro in the complex milieu of a whole cell extract. In contrast to the previously characterized NF-kappaB aptamer, the HSF aptamer does not simply mimic DNA binding, but rather binds to HSF in a manner distinct from DNA binding to HSF.

  3. Identification of chemosensory receptor genes in Manduca sexta and knockdown by RNA interference

    PubMed Central

    2012-01-01

    Background Insects detect environmental chemicals via a large and rapidly evolving family of chemosensory receptor proteins. Although our understanding of the molecular genetic basis for Drosophila chemoreception has increased enormously in the last decade, similar understanding in other insects remains limited. The tobacco hornworm, Manduca sexta, has long been an important model for insect chemosensation, particularly from ecological, behavioral, and physiological standpoints. It is also a major agricultural pest on solanaceous crops. However, little sequence information and lack of genetic tools has prevented molecular genetic analysis in this species. The ability to connect molecular genetic mechanisms, including potential lineage-specific changes in chemosensory genes, to ecologically relevant behaviors and specializations in M. sexta would be greatly beneficial. Results Here, we sequenced transcriptomes from adult and larval chemosensory tissues and identified chemosensory genes based on sequence homology. We also used dsRNA feeding as a method to induce RNA interference in larval chemosensory tissues. Conclusions We report identification of new chemosensory receptor genes including 17 novel odorant receptors and one novel gustatory receptor. Further, we demonstrate that systemic RNA interference can be used in larval olfactory neurons to reduce expression of chemosensory receptor transcripts. Together, our results further the development of M. sexta as a model for functional analysis of insect chemosensation. PMID:22646846

  4. Reversal of pathology in CHMP2B-mediated frontotemporal dementia patient cells using RNA interference.

    PubMed

    Nielsen, Troels Tolstrup; Mizielinska, Sarah; Hasholt, Lis; Isaacs, Adrian M; Nielsen, Jørgen E

    2012-08-01

    Frontotemporal dementia is the second most common form of young-onset dementia after Alzheimer's disease, and several genetic forms of frontotemporal dementia are known. A rare genetic variant is caused by a point mutation in the CHMP2B gene. CHMP2B is a component of the ESCRT-III complex, which is involved in endosomal trafficking of proteins targeted for degradation in lysosomes. Mutations in CHMP2B result in abnormal endosomal structures in patient fibroblasts and patient brains, probably through a gain-of-function mechanism, suggesting that the endosomal pathway plays a central role in the pathogenesis of the disease. In the present study, we used lentiviral vectors to efficiently knockdown CHMP2B by delivering microRNA embedded small hairpin RNAs. We show that CHMP2B can be efficiently knocked down in patient fibroblasts using an RNA interference approach and that the knockdown causes reversal of the abnormal endosomal phenotype observed in patient fibroblasts. This is the first description of a treatment that reverses the cellular pathology caused by mutant CHMP2B and suggests that RNA interference might be a feasible therapeutic strategy. Furthermore, it provides the first proof of a direct link between the disease-causing mutation and the cellular phenotype in cells originating from CHMP2B mutation patients. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Non-Target Effects of Green Fluorescent Protein (GFP)-Derived Double-Stranded RNA (dsRNA-GFP) Used in Honey Bee RNA Interference (RNAi) Assays.

    PubMed

    Nunes, Francis M F; Aleixo, Aline C; Barchuk, Angel R; Bomtorin, Ana D; Grozinger, Christina M; Simões, Zilá L P

    2013-01-04

    RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding) on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.

  6. Drosophila oncogene Gas41 is an RNA interference modulator that intersects heterochromatin and the small interfering RNA pathway.

    PubMed

    Gandhi, Sumit G; Bag, Indira; Sengupta, Saswati; Pal-Bhadra, Manika; Bhadra, Utpal

    2015-01-01

    Glioma amplified sequence41 (Gas41) is a highly conserved putative transcription factor that is frequently abundant in human gliomas. Gas41 shows oncogenic activity by promoting cell growth and viability. In the present study, we show that Gas41 is required for proper functioning of RNA interference (RNAi) machinery in the nuclei, although three basic structural domains of RNAi components PAZ, PIWI and dsRNA with respect to binding are absent in the structural sequences. Variations of structural domains are highly conserved among prokaryotes and eukaryotes. Gas41 interacts with cytological RNase III enzyme Dicer1 both biochemically and genetically. However, Drosophila Gas41 functions as chromatin remodeler and interacts with different heterochromatin markers and repeat-induced transgene silencing by modulating position effect variegation. We also show that transcriptional inactive Gas41 mutant interferes with the functional assembly of heterochromatin-associated proteins, dimethylated lysine 9 of histone H3 and heterochromatic protein 1 in developing embryos. A reduction of heterochromatic markers is accompanied by the mini-w promoter sequence in Gas41 mutants. These findings suggest that Drosophila Gas41 guides the repeat associated gene silencing and the Dicer1 interaction, thereby depicting a new role for Gas41. Gas41 is a critical RNAi component. In Drosophila, Gas41 plays a dual role. On the one hand, it appears to participate with Dicer 1 in the RNAi pathway and, alternatively, it also participates in repeat-induced gene silencing by accumulating heterochromatin proteins at the mini-w array promoters. Therefore, it represents an intriguing and apparently paradoxical new finding in RNA technology with respect to the process of heterochromatin gene silencing.

  7. VEGFR-2 silencing by small interference RNA (siRNA) suppresses LPA-induced epithelial ovarian cancer (EOC) invasion.

    PubMed

    Wang, Feng-qiang; Barfield, Elaine; Dutta, Sonia; Pua, Tarah; Fishman, David A

    2009-12-01

    The VEGF-VEGF receptor (VEGFR) signaling axis has emerged as a promising target for cancer therapy, attributing to its vital role in tumor angiogenesis and growth. We have previously reported the regulation of epithelial ovarian cancer (EOC) invasion and migration by VEGF and the implication of VEGF-VEGFR-2 axis in lysophosphatidic acid (LPA)-induced EOC invasion. However, the expression profile of VEGF and VEGFRs in EOC, their association with tumor aggressiveness, and their regulation by LPA remain unclear. In this study, we examined the expression of VEGFR-1, VEGFR-2, neuropilin-1 (NRP-1), NRP-2, VEGF(121), and VEGF(165) in established EOC cell lines and assessed their correlation with cell invasiveness. Moreover, using an ovarian cancer tissue qPCR array, we analyzed VEGFR-2 expression across a panel of 48 tissues with different disease stages and histological grades. We also tested the effect of LPA on VEGF and VEGFR-2 expression and examined whether blocking VEGFR-2 by RNA interference (RNAi) affects LPA-induced EOC invasion. We show that VEGF and VEGFR-2 expression correlates with cell invasiveness and VEGFR-2 expression in ovarian cancer tissues correlate with tumor grade. In addition, LPA, at 20 muM, significantly induced the expression of VEGF(121), VEGF(165), and VEGFR-2 in SKOV3 and DOV13 cells (P<0.05). VEGFR-2 small interference RNA (siRNA) transfection remarkably decreased LPA's invasion-promoting effect (P<0.001) in SKOV3 cells without significantly decreasing SKOV3 cells' basal invasiveness. In DOV13 cells, VEGFR-2 silencing significantly decreases both the basal level cell invasion and LPA's invasion promoting effect (P<0.001). These results suggest that decreasing VEGFR-2 expression by RNAi may prove to be an effective method to reduce the metastatic potential of EOC cells exposed to elevated levels of LPA.

  8. Discovery of midgut genes for the RNA interference control of corn rootworm

    PubMed Central

    Hu, Xu; Richtman, Nina M.; Zhao, Jian-Zhou; Duncan, Keith E.; Niu, Xiping; Procyk, Lisa A.; Oneal, Meghan A.; Kernodle, Bliss M.; Steimel, Joseph P.; Crane, Virginia C.; Sandahl, Gary; Ritland, Julie L.; Howard, Richard J.; Presnail, James K.; Lu, Albert L.; Wu, Gusui

    2016-01-01

    RNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively. These genes encode membrane proteins associated with smooth septate junctions (SSJ) which are required for intestinal barrier function. Based on bioinformatics analysis, dvssj1 appears to be an arthropod-specific gene. Diet based insect feeding assays using double-stranded RNA (dsRNA) targeting dvssj1 and dvssj2 demonstrate targeted mRNA suppression, larval growth inhibition, and mortality. In RNAi treated WCR, injury to the midgut was manifested by “blebbing” of the midgut epithelium into the gut lumen. Ultrastructural examination of midgut epithelial cells revealed apoptosis and regenerative activities. Transgenic plants expressing dsRNA targeting dvssj1 show insecticidal activity and significant plant protection from WCR damage. The data indicate that dvssj1 and dvssj2 are effective gene targets for the control of WCR using RNAi technology, by apparent suppression of production of their respective smooth septate junction membrane proteins located within the intestinal lining, leading to growth inhibition and mortality. PMID:27464714

  9. Inhibition of pds gene expression via the RNA interference approach in Dunaliella salina (Chlorophyta).

    PubMed

    Sun, Guohua; Zhang, Xuecheng; Sui, Zhenghong; Mao, Yunxiang

    2008-01-01

    To investigate the potential of double-stranded RNA interferencing with gene expression in Dunaliella salina, a plasmid pBIRNAI-Dsa was constructed to express hairpin RNA (hpRNA) containing sequences homologous to phytoene desaturase gene (pds), a key gene in carotenoid biosynthesis, and transformed into D. salina by electroporation. The relative transcription level of pds in pBIRNAI-Dsa-treated cells to nontreated cells was quantitated and the gene silencing efficiency by RNAi was evaluated via real-time polymerase chain reaction (PCR). The transcriptions of pds of the pBIRNAI-Dsa-treated group changed compared to those of the control group, and the 2(-delta deltaC)(T) was lowest on the 7th day, corresponding to 0.281265-fold of the relative pds control transcript; a relatively strong gene inhibition effect was therefore deduced. The transcript of pds may be modulated in a wide range, and a reduced transcription even to 28% of the normal level may be tolerated for its survival. This study shows that dsRNA-mediated genetic interference can induce sequence-specific inhibition of gene expression and pBIRNAI-Dsa can be used for transient suppression of gene expression in D. salina. The aim of this study was to exploit dsRNA-mediated gene silencing and to provide a foundation for gene function research in D. salina.

  10. Enzymatic synthesis and RNA interference of nucleosides incorporating stable isotopes into a base moiety.

    PubMed

    Hatano, Akihiko; Shiraishi, Mitsuya; Terado, Nanae; Tanabe, Atsuhiro; Fukuda, Kenji

    2015-10-15

    Thymidine phosphorylase was used to catalyze the conversion of thymidine (or methyluridine) and uracil incorporating stable isotopes to deoxyuridine (or uridine) with the uracil base incorporating the stable isotope. These base-exchange reactions proceeded with high conversion rates (75-96%), and the isolated yields were also good (64-87%). The masses of all synthetic compounds incorporating stable isotopes were identical to the theoretical molecular weights via EIMS. (13)C NMR spectra showed spin-spin coupling between (13)C and (15)N in the synthetic compounds, and the signals were split, further proving incorporation of the isotopes into the compounds. The RNA interference effects of this siRNA with uridine incorporating stable isotopes were also investigated. A 25mer siRNA had a strong knockdown effect on the MARCKS protein. The insertion position and number of uridine moieties incorporating stable isotopes introduced into the siRNA had no influence on the silencing of the target protein. This incorporation of stable isotopes into RNA and DNA has the potential to function as a chemically benign tracer in cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. RNA interference of timeless gene does not disrupt circadian locomotor rhythms in the cricket Gryllus bimaculatus.

    PubMed

    Danbara, Yoshiki; Sakamoto, Tomoaki; Uryu, Outa; Tomioka, Kenji

    2010-12-01

    Molecular studies revealed that autoregulatory negative feedback loops consisting of so-called "clock genes" constitute the circadian clock in Drosophila. However, this hypothesis is not fully supported in other insects and is thus to be examined. In the cricket Gryllus bimaculatus, we have previously shown that period (per) plays an essential role in the rhythm generation. In the present study, we cloned cDNA of the clock gene timeless (tim) and investigated its role in the cricket circadian oscillatory mechanism using RNA interference. Molecular structure of the cricket tim has rather high similarity to those of other insect species. Real-time RT-PCR analysis revealed that tim mRNA showed rhythmic expression in both LD and DD similar to that of per, peaking during the (subjective) night. When injected with tim double-stranded RNA (dstim), tim mRNA levels were significantly reduced and its circadian expression rhythm was eliminated. After the dstim treatment, however, adult crickets showed a clear locomotor rhythm in DD, with a free-running period significantly shorter than that of control crickets injected with Discosoma sp. Red2 (DsRed2) dsRNA. These results suggest that in the cricket, tim plays some role in fine-tuning of the free-running period but may not be essential for oscillation of the circadian clock.

  12. Direct pharmacological inhibition of β-catenin by RNA interference in tumors of diverse origin

    PubMed Central

    Ganesh, Shanthi; Koser, Martin; Cyr, Wendy; Chopda, Girish; Tao, Junyan; Shui, Xue; Ying, Bo; Chen, Dongyu; Pandya, Purva; Chipumuro, Edmond; Siddiquee, Zakir; Craig, Kevin; Lai, Chengjung; Dudek, Henryk; Monga, Satdarshan; Wang, Weimin; Brown, Bob D.; Abrams, Marc

    2016-01-01

    The Wnt/β-catenin pathway is among the most frequently altered signaling networks in human cancers. Despite decades of preclinical and clinical research, efficient therapeutic targeting of Wnt/β-catenin has been elusive. RNA interference (RNAi) technology silences genes at the mRNA level, and therefore can be applied to previously-undruggable targets. Lipid nanoparticles (LNPs) represent an elegant solution for delivery of RNAi-triggering oligonucleotides to disease-relevant tissues, but have been mostly restricted to applications in the liver. In this study, we systematically tuned the composition of a prototype LNP to enable tumor-selective delivery of a Dicer-substrate siRNA (DsiRNA) targeting CTNNB1, the gene encoding β-catenin. This formulation, termed EnCore-R, demonstrated pharmacodynamic activity in subcutaneous human tumor xenografts, orthotopic patient-derived xenograft (PDx) tumors, disseminated hematopoietic tumors, genetically induced primary liver tumors, metastatic colorectal tumors, murine metastatic melanoma. DsiRNA delivery was homogeneous in tumor sections, selective over normal liver and independent of apolipoprotein-E binding. Significant tumor growth inhibition was achieved in Wnt-dependent colorectal and hepatocellular carcinoma models, but not in Wnt-independent tumors. Finally, no evidence of accelerated blood clearance or sustained liver transaminase elevation was observed after repeated dosing in nonhuman primates. These data support further investigation to gain mechanistic insight, optimize dose regimens and identify efficacious combinations with standard-of-care therapeutics. PMID:27390343

  13. Evolutionarily conserved roles of the dicer helicase domain in regulating RNA interference processing.

    PubMed

    Kidwell, Mary Anne; Chan, Jessica M; Doudna, Jennifer A

    2014-10-10

    The enzyme Dicer generates 21-25 nucleotide RNAs that target specific mRNAs for silencing during RNA interference and related pathways. Although their active sites and RNA binding regions are functionally conserved, the helicase domains have distinct activities in the context of different Dicer enzymes. To examine the evolutionary origins of Dicer helicase functions, we investigated two related Dicer enzymes from the thermophilic fungus Sporotrichum thermophile. RNA cleavage assays showed that S. thermophile Dicer-1 (StDicer-1) can process hairpin precursor microRNAs, whereas StDicer-2 can only cleave linear double-stranded RNAs. Furthermore, only StDicer-2 possesses robust ATP hydrolytic activity in the presence of double-stranded RNA. Deletion of the StDicer-2 helicase domain increases both StDicer-2 cleavage activity and affinity for hairpin RNA. Notably, both StDicer-1 and StDicer-2 could complement the distantly related yeast Schizosaccharomyces pombe lacking its endogenous Dicer gene but only in their full-length forms, underscoring the importance of the helicase domain. These results suggest an in vivo regulatory function for the helicase domain that may be conserved from fungi to humans.

  14. GENE SILENCING BY PARENTAL RNA INTERFERENCE IN THE GREEN RICE LEAFHOPPER, Nephotettix cincticeps (HEMIPTERA: CICADELLIDAE).

    PubMed

    Matsumoto, Yukiko; Hattori, Makoto

    2016-03-01

    RNA interference (RNAi) has been widely used for investigating gene function in many nonmodel insect species. Parental RNAi causes gene knockdown in the next generation through the administration of double-strand RNA (dsRNA) to the mother generation. In this study, we demonstrate that parental RNAi mediated gene silencing is effective in determining the gene function of the cuticle and the salivary glands in green rice leafhopper (GRH), Nephotettix cincticeps (Uhler). Injection of dsRNA of NcLac2 (9 ng/female) to female parents caused a strong knockdown of laccase-2 gene of first instar nymphs, which eventually led to high mortality rates and depigmentation of side lines on the body. The effects of parental RNAi on the mortality of the nymphs were maintained through 12-14 days after the injections. We also confirmed the effectiveness of parental RNAi induced silencing on the gene expressed in the salivary gland, the gene product of which is passed from instar to instar. The parental RNAi method can be used to examine gene function by phenotyping many offspring nymphs with injection of dsRNA into a small number of parent females, and may be applicable to high-efficiency determination of gene functions in this species.

  15. Transcriptional interference by RNA polymerase III affects expression of the Polr3e gene

    PubMed Central

    Yeganeh, Meghdad; Praz, Viviane; Cousin, Pascal; Hernandez, Nouria

    2017-01-01

    Overlapping gene arrangements can potentially contribute to gene expression regulation. A mammalian interspersed repeat (MIR) nested in antisense orientation within the first intron of the Polr3e gene, encoding an RNA polymerase III (Pol III) subunit, is conserved in mammals and highly occupied by Pol III. Using a fluorescence assay, CRISPR/Cas9-mediated deletion of the MIR in mouse embryonic stem cells, and chromatin immunoprecipitation assays, we show that the MIR affects Polr3e expression through transcriptional interference. Our study reveals a mechanism by which a Pol II gene can be regulated at the transcription elongation level by transcription of an embedded antisense Pol III gene. PMID:28289142

  16. Transcriptional interference by RNA polymerase III affects expression of the Polr3e gene.

    PubMed

    Yeganeh, Meghdad; Praz, Viviane; Cousin, Pascal; Hernandez, Nouria

    2017-02-15

    Overlapping gene arrangements can potentially contribute to gene expression regulation. A mammalian interspersed repeat (MIR) nested in antisense orientation within the first intron of the Polr3e gene, encoding an RNA polymerase III (Pol III) subunit, is conserved in mammals and highly occupied by Pol III. Using a fluorescence assay, CRISPR/Cas9-mediated deletion of the MIR in mouse embryonic stem cells, and chromatin immunoprecipitation assays, we show that the MIR affects Polr3e expression through transcriptional interference. Our study reveals a mechanism by which a Pol II gene can be regulated at the transcription elongation level by transcription of an embedded antisense Pol III gene.

  17. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond.

    PubMed

    Castel, Stephane E; Martienssen, Robert A

    2013-02-01

    A growing number of functions are emerging for RNA interference (RNAi) in the nucleus, in addition to well-characterized roles in post-transcriptional gene silencing in the cytoplasm. Epigenetic modifications directed by small RNAs have been shown to cause transcriptional repression in plants, fungi and animals. Additionally, increasing evidence indicates that RNAi regulates transcription through interaction with transcriptional machinery. Nuclear small RNAs include small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) and are implicated in nuclear processes such as transposon regulation, heterochromatin formation, developmental gene regulation and genome stability.

  18. Long-term expression of miRNA for RNA interference using a novel vector system based on a negative-strand RNA virus

    PubMed Central

    Honda, Tomoyuki; Yamamoto, Yusuke; Daito, Takuji; Matsumoto, Yusuke; Makino, Akiko; Tomonaga, Keizo

    2016-01-01

    RNA interference (RNAi) has emerged as a promising technique for gene therapy. However, the safe and long-term expression of small RNA molecules is a major concern for the application of RNAi therapies in vivo. Borna disease virus (BDV), a non-segmented, negative-strand RNA virus, establishes a persistent infection without obvious cytopathic effects. Unique among animal non-retroviral RNA viruses, BDV persistently establishes a long-lasting persistent infection in the nucleus. These features make BDV ideal for RNA virus vector persistently expressing small RNAs. Here, we demonstrated that the recombinant BDV (rBDV) containing the miR-155 precursor, rBDV-miR-155, persistently expressed miR-155 and efficiently silenced its target gene. The stem region of the miR-155 precursor in rBDV-miR-155 was replaceable by any miRNA sequences of interest and that such rBDVs efficiently silence the expression of target genes. Collectively, BDV vector would be a novel RNA virus vector enabling the long-term expression of miRNAs for RNAi therapies. PMID:27189575

  19. HIV-1 RNAs are Not Part of the Argonaute 2 Associated RNA Interference Pathway in Macrophages

    PubMed Central

    Kishore, Shivendra; Jaskiewicz, Lukasz; Hall, Jonathan; Günthard, Huldrych F.; Beerenwinkel, Niko; Metzner, Karin J.

    2015-01-01

    Background MiRNAs and other small noncoding RNAs (sncRNAs) are key players in post-transcriptional gene regulation. HIV-1 derived small noncoding RNAs (sncRNAs) have been described in HIV-1 infected cells, but their biological functions still remain to be elucidated. Here, we approached the question whether viral sncRNAs may play a role in the RNA interference (RNAi) pathway or whether viral mRNAs are targeted by cellular miRNAs in human monocyte derived macrophages (MDM). Methods The incorporation of viral sncRNAs and/or their target RNAs into RNA-induced silencing complex was investigated using photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) as well as high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP), which capture Argonaute2-bound miRNAs and their target RNAs. HIV-1 infected monocyte-derived macrophages (MDM) were chosen as target cells, as they have previously been shown to express HIV-1 sncRNAs. In addition, we applied small RNA deep sequencing to study differential cellular miRNA expression in HIV-1 infected versus non-infected MDMs. Results and Conclusion PAR-CLIP and HITS-CLIP data demonstrated the absence of HIV-1 RNAs in Ago2-RISC, although the presence of a multitude of HIV-1 sncRNAs in HIV-1 infected MDMs was confirmed by small RNA sequencing. Small RNA sequencing revealed that 1.4% of all sncRNAs were of HIV-1 origin. However, neither HIV-1 derived sncRNAs nor putative HIV-1 target sequences incorporated into Ago2-RISC were identified suggesting that HIV-1 sncRNAs are not involved in the canonical RNAi pathway nor is HIV-1 targeted by this pathway in HIV-1 infected macrophages. PMID:26226348

  20. RNA interference as a gene silencing tool to control Tuta absoluta in tomato (Solanum lycopersicum)

    PubMed Central

    Camargo, Roberto A.; Barbosa, Guilherme O.; Possignolo, Isabella Presotto; Peres, Lazaro E. P.; Lam, Eric; Lima, Joni E.

    2016-01-01

    RNA interference (RNAi), a gene-silencing mechanism that involves providing double-stranded RNA molecules that match a specific target gene sequence, is now widely used in functional genetic studies. The potential application of RNAi-mediated control of agricultural insect pests has rapidly become evident. The production of transgenic plants expressing dsRNA molecules that target essential insect genes could provide a means of specific gene silencing in larvae that feed on these plants, resulting in larval phenotypes that range from loss of appetite to death. In this report, we show that the tomato leafminer (Tuta absoluta), a major threat to commercial tomato production, can be targeted by RNAi. We selected two target genes (Vacuolar ATPase-A and Arginine kinase) based on the RNAi response reported for these genes in other pest species. In view of the lack of an artificial diet for T. absoluta, we used two approaches to deliver dsRNA into tomato leaflets. The first approach was based on the uptake of dsRNA by leaflets and the second was based on “in planta-induced transient gene silencing” (PITGS), a well-established method for silencing plant genes, used here for the first time to deliver in planta-transcribed dsRNA to target insect genes. Tuta absoluta larvae that fed on leaves containing dsRNA of the target genes showed an ∼60% reduction in target gene transcript accumulation, an increase in larval mortality and less leaf damage. We then generated transgenic ‘Micro-Tom’ tomato plants that expressed hairpin sequences for both genes and observed a reduction in foliar damage by T. absoluta in these plants. Our results demonstrate the feasibility of RNAi as an alternative method for controlling this critical tomato pest. PMID:27994959

  1. RNA interference as a gene silencing tool to control Tuta absoluta in tomato (Solanum lycopersicum).

    PubMed

    Camargo, Roberto A; Barbosa, Guilherme O; Possignolo, Isabella Presotto; Peres, Lazaro E P; Lam, Eric; Lima, Joni E; Figueira, Antonio; Marques-Souza, Henrique

    2016-01-01

    RNA interference (RNAi), a gene-silencing mechanism that involves providing double-stranded RNA molecules that match a specific target gene sequence, is now widely used in functional genetic studies. The potential application of RNAi-mediated control of agricultural insect pests has rapidly become evident. The production of transgenic plants expressing dsRNA molecules that target essential insect genes could provide a means of specific gene silencing in larvae that feed on these plants, resulting in larval phenotypes that range from loss of appetite to death. In this report, we show that the tomato leafminer ( Tuta absoluta ), a major threat to commercial tomato production, can be targeted by RNAi. We selected two target genes (Vacuolar ATPase-A and Arginine kinase) based on the RNAi response reported for these genes in other pest species. In view of the lack of an artificial diet for T. absoluta, we used two approaches to deliver dsRNA into tomato leaflets. The first approach was based on the uptake of dsRNA by leaflets and the second was based on "in planta-induced transient gene silencing" (PITGS), a well-established method for silencing plant genes, used here for the first time to deliver in planta-transcribed dsRNA to target insect genes. Tuta absoluta larvae that fed on leaves containing dsRNA of the target genes showed an ∼60% reduction in target gene transcript accumulation, an increase in larval mortality and less leaf damage. We then generated transgenic 'Micro-Tom' tomato plants that expressed hairpin sequences for both genes and observed a reduction in foliar damage by T. absoluta in these plants. Our results demonstrate the feasibility of RNAi as an alternative method for controlling this critical tomato pest.

  2. RNA interference of carboxyesterases causes nymph mortality in the Asian citrus psyllid, Diaphorina citri.

    PubMed

    Kishk, Abdelaziz; Anber, Helmy A I; AbdEl-Raof, Tsamoh K; El-Sherbeni, AbdEl-Hakeem D; Hamed, Sobhy; Gowda, Siddarame; Killiny, Nabil

    2017-03-01

    Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important pest of citrus. In addition, D. citri is the vector of Huanglongbing, a destructive disease in citrus, also known as citrus greening disease caused by Candidatus Liberibacter asiaticus. Huanglongbing causes huge losses for citrus industries. Insecticide application for D. citri is the major strategy to prevent disease spread. The heavy use of insecticides causes development of insecticide resistance. We used RNA interference (RNAi) to silence genes implicated in pesticide resistance in order to increase the susceptibility. The activity of dsRNA to reduce the expression of carboxyesterases including esterases FE4 (EstFE4) and acetylcholinesterases (AChe) in D. citri was investigated. The dsRNA was applied topically to the fourth and fifth instars of nymphs. We targeted several EstFE4 and AChe genes using dsRNA against a consensus sequence for each of them. Five concentrations (25, 50, 75, 100, 125 ng/μl) from both dsRNAs were used. The treatments with the dsRNA caused concentration dependent nymph mortality. The highest gene expression levels of both AChe and EstFE4 were found in the fourth and fifth nymphal instars. Gene expression analysis showed that AChe genes were downregulated in emerged adults from dsRNA-AChe-treated nymphs compared to controls. However, EstFE4 genes were not affected. In the same manner, treatment with dsRNA-EstFE4 reduced expression level of EstFE4 genes in emerged adults from treated nymphs, but did not affect the expression of AChe genes. In the era of environmentally friendly control strategies, RNAi is a new promising venue to reduce pesticide applications. © 2017 Wiley Periodicals, Inc.

  3. Gene silencing in non-model insects: Overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference: Sustained RNA interference in insects mediated by symbiotic bacteria: Applications as a genetic tool and as a biocide.

    PubMed

    Whitten, Miranda; Dyson, Paul

    2017-03-01

    Insight into animal biology and development provided by classical genetic analysis of the model organism Drosophila melanogaster was an incentive to develop advanced genetic tools for this insect. But genetic systems for the over one million other known insect species are largely undeveloped. With increasing information about insect genomes resulting from next generation sequencing, RNA interference is now the method of choice for reverse genetics, although it is constrained by the means of delivery of interfering RNA. A recent advance to ensure sustained delivery with minimal experimental intervention or trauma to the insect is to exploit commensal bacteria for symbiont-mediated RNA interference. This technology not only offers an efficient means for RNA interference in insects in laboratory conditions, but also has potential for use in the control of human disease vectors, agricultural pests and pathogens of beneficial insects. © 2017 WILEY Periodicals, Inc.

  4. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast.

    PubMed

    Iida, Tetsushi; Iida, Naoko; Tsutsui, Yasuhiro; Yamao, Fumiaki; Kobayashi, Takehiko

    2012-10-12

    Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1(+), the overexpression of ago1(+) alleviated the cell cycle defect in dcr1Δ. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1(+) is dependent on ptr1(+). Nuclear accumulation of poly(A)(+) RNAs was detected in mutants of ago1(+) and ptr1(+), suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. A novel measurement of allele discrimination for assessment of allele-specific silencing by RNA interference.

    PubMed

    Takahashi, Masaki; Hohjoh, Hirohiko

    2014-11-01

    Allele-specific silencing by RNA interference (ASP-RNAi) is an atypical RNAi that is capable of discriminating target alleles from non-target alleles, and may be therapeutically useful for specific inhibition of disease-causing alleles without affecting their corresponding normal alleles. However, it is difficult to design and select small interfering RNA (siRNAs) that confer ASP-RNAi. A major problem is that there are few appropriate measures in determining optimal allele-specific siRNAs. Here we show two novel formulas for calculating a new measure of allele-discrimination, named "ASP-score". The formulas and ASP-score allow for an unbiased determination of optimal siRNAs, and may contribute to characterizing such allele-specific siRNAs.

  6. Virus-Derived Gene Expression and RNA Interference Vector for Grapevine

    PubMed Central

    Kurth, Elizabeth G.; Peremyslov, Valera V.; Prokhnevsky, Alexey I.; Kasschau, Kristin D.; Miller, Marilyn; Carrington, James C.

    2012-01-01

    The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests. PMID:22438553

  7. Transiently expressed short hairpin RNA targeting 126 kDa protein of tobacco mosaic virus interferes with virus infection.

    PubMed

    Zhao, Ming-Min; An, De-Rong; Zhao, Jian; Huang, Guang-Hua; He, Zu-Hua; Chen, Jiang-Ye

    2006-01-01

    RNA interference (RNAi) silences gene expression by guiding mRNA degradation in a sequence-specific fashion. Small interfering RNA (siRNA), an intermediate of the RNAi pathway, has been shown to be very effective in inhibiting virus infection in mammalian cells and cultured plant cells. Here, we report that Agrobacterium tumefaciens-mediated transient expression of short hairpin RNA (shRNA) could inhibit tobacco mosaic virus (TMV) RNA accumulation by targeting the gene encoding the replication-associated 126 kDa protein in intact plant tissue. Our results indicate that transiently expressed shRNA efficiently interfered with TMV infection. The interference observed is sequence-specific, and time- and site-dependent. Transiently expressed shRNA corresponding to the TMV 126 kDa protein gene did not inhibit cucumber mosaic virus (CMV), an unrelated tobamovirus. In order to interfere with TMV accumulation in tobacco leaves, it is essential for the shRNA constructs to be infiltrated into the same leaves as TMV inoculation. Our results support the view that RNAi opens the door for novel therapeutic procedures against virus diseases. We propose that a combination of the RNAi technique and Agrobacterium-mediated transient expression could be employed as a potent antiviral treatment in plants.nt antiviral treatment in plants.

  8. RNA interference can be used to disrupt gene function in tardigrades

    PubMed Central

    Tenlen, Jennifer R.; McCaskill, Shaina; Goldstein, Bob

    2012-01-01

    How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We show that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions, and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments. PMID:23187800

  9. RNA interference can be used to disrupt gene function in tardigrades.

    PubMed

    Tenlen, Jennifer R; McCaskill, Shaina; Goldstein, Bob

    2013-05-01

    How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We showed that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments.

  10. RNA interference mediated in human primary cells via recombinant baculoviral vectors.

    PubMed

    Nicholson, Linda J; Philippe, Marie; Paine, Alan J; Mann, Derek A; Dolphin, Colin T

    2005-04-01

    The success of RNA interference (RNAi) in mammalian cells, mediated by siRNAs or shRNA-generating plasmids, is dependent, to an extent, upon transfection efficiency. This is a particular problem with primary cells, which are often difficult to transfect using cationic lipid vehicles. Effective RNAi in primary cells is thus best achieved with viral vectors, and retro-, adeno-, and lentivirus RNAi systems have been described. However, the use of such human viral vectors is inherently problematic, e.g., Class 2 status and requirement of secondary helper functions. Although insect cells are their natural host, baculoviruses also transduce a range of vertebrate cell lines and primary cells with high efficiency. The inability of baculoviral vectors to replicate in mammalian cells, their Class 1 status, and the simplicity of their construction make baculovirus an attractive alternative gene delivery vector. We have developed a baculoviral-based RNAi system designed to express shRNAs and GFP from U6 and CMV promoters, respectively. Transduction of Saos2, HepG2, Huh7, and primary human hepatic stellate cells with a baculoviral construct expressing shRNAs targeting lamin A/C resulted in effective knockdown of the corresponding mRNA and protein. Development of this baculoviral-based system provides an additional shRNA delivery option for RNAi-based investigations in mammalian cells.

  11. RNA interference of cytosolic leucine aminopeptidase reduces fecundity in the hard tick, Haemaphysalis longicornis.

    PubMed

    Hatta, Takeshi; Umemiya, Rika; Liao, Min; Gong, Haiyan; Harnnoi, Thasaneeya; Tanaka, Miho; Miyoshi, Takeharu; Boldbaatar, Damdinsuren; Battsetseg, Badgar; Zhou, Jinlin; Xuan, Xuenan; Tsuji, Naotoshi; Taylor, Demar; Fujisaki, Kozo

    2007-03-01

    Ticks are effective vectors of pathogens because of their blood feeding and high fecundity. This high fecundity is related to the size of the blood meal. Therefore, knowledge of how blood proteins are degraded and converted to proteins, including yolk protein, is important for the development of ways to inhibit the utilization of blood proteins by ticks. RNA interference (RNAi) is becoming a powerful post-transcriptional gene silencing technique that provides insight into gene function. We constructed a double-stranded RNA (dsRNA) based on a previously cloned Haemaphysalis longicornis leucine aminopeptidase (HlLAP) gene to reevaluate the biological role in tick blood digestion. Gene specific transcriptional, translational, and functional disruptions were achieved by the introduction of dsRNA into the ticks. Significantly delayed onset of egg-laying and reduced egg oviposition resulted from the RNAi for the HlLAP gene. These results suggest that HlLAP actually works as a blood digestive enzyme and affects tick fecundity via unknown mechanisms. The reduction of egg oviposition may be caused by a decrease in nutrients, especially free amino acids generated by HlLAP, from the blood meal. This is the first report of an impact on tick reproduction caused by gene silencing of a blood digestion-related molecule.

  12. RNA Interference (RNAi) Induced Gene Silencing: A Promising Approach of Hi-Tech Plant Breeding

    PubMed Central

    Younis, Adnan; Siddique, Muhammad Irfan; Kim, Chang-Kil; Lim, Ki-Byung

    2014-01-01

    RNA interference (RNAi) is a promising gene regulatory approach in functional genomics that has significant impact on crop improvement which permits down-regulation in gene expression with greater precise manner without affecting the expression of other genes. RNAi mechanism is expedited by small molecules of interfering RNA to suppress a gene of interest effectively. RNAi has also been exploited in plants for resistance against pathogens, insect/pest, nematodes, and virus that cause significant economic losses. Keeping beside the significance in the genome integrity maintenance as well as growth and development, RNAi induced gene syntheses are vital in plant stress management. Modifying the genes by the interference of small RNAs is one of the ways through which plants react to the environmental stresses. Hence, investigating the role of small RNAs in regulating gene expression assists the researchers to explore the potentiality of small RNAs in abiotic and biotic stress management. This novel approach opens new avenues for crop improvement by developing disease resistant, abiotic or biotic stress tolerant, and high yielding elite varieties. PMID:25332689

  13. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens

    PubMed Central

    Meliopoulos, Victoria A.; Andersen, Lauren E.; Birrer, Katherine F.; Simpson, Kaylene J.; Lowenthal, John W.; Bean, Andrew G. D.; Stambas, John; Stewart, Cameron R.; Tompkins, S. Mark; van Beusechem, Victor W.; Fraser, Iain; Mhlanga, Musa; Barichievy, Samantha; Smith, Queta; Leake, Devin; Karpilow, Jon; Buck, Amy; Jona, Ghil; Tripp, Ralph A.

    2012-01-01

    Influenza virus encodes only 11 viral proteins but replicates in a broad range of avian and mammalian species by exploiting host cell functions. Genome-wide RNA interference (RNAi) has proven to be a powerful tool for identifying the host molecules that participate in each step of virus replication. Meta-analysis of findings from genome-wide RNAi screens has shown influenza virus to be dependent on functional nodes in host cell pathways, requiring a wide variety of molecules and cellular proteins for replication. Because rapid evolution of the influenza A viruses persistently complicates the effectiveness of vaccines and therapeutics, a further understanding of the complex host cell pathways coopted by influenza virus for replication may provide new targets and strategies for antiviral therapy. RNAi genome screening technologies together with bioinformatics can provide the ability to rapidly identify specific host factors involved in resistance and susceptibility to influenza virus, allowing for novel disease intervention strategies.—Meliopoulos, V. A., Andersen, L. E., Birrer, K. F., Simpson, K. J., Lowenthal, J. W., Bean, A. G. D., Stambas, J., Stewart, C. R., Tompkins, S. M., van Beusechem, V. W., Fraser, I., Mhlanga, M., Barichievy, S., Smith, Q., Leake, D., Karpilow, J., Buck, A., Jona, G., Tripp, R. A. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. PMID:22247330

  14. Variant surface glycoprotein RNA interference triggers a precytokinesis cell cycle arrest in African trypanosomes.

    PubMed

    Sheader, Karen; Vaughan, Sue; Minchin, James; Hughes, Katie; Gull, Keith; Rudenko, Gloria

    2005-06-14

    Trypanosoma brucei is a protozoan parasite that causes African sleeping sickness. T. brucei multiplies extracellularly in the bloodstream, relying on antigenic variation of a dense variant surface glycoprotein (VSG) coat to escape antibody-mediated lysis. We investigated the role of VSG in proliferation and pathogenicity by using inducible RNA interference to ablate VSG transcript down to 1-2% normal levels. Inhibiting VSG synthesis in vitro triggers a rapid and specific cell cycle checkpoint blocking cell division. Parasites arrest at a discrete precytokinesis stage with two full-length flagella and opposing flagellar pockets, without undergoing additional rounds of S phase and mitosis. A subset (<10%) of the stalled cells have internal flagella, indicating that the progenitors of these cells were already committed to cytokinesis when VSG restriction was sensed. Although there was no obvious VSG depletion in vitro after 24-h induction of VSG RNA interference, there was rapid clearance of these cells in vivo. We propose that a stringent block in VSG synthesis produces stalled trypanosomes with a minimally compromised VSG coat, which can be targeted by the immune system. Our data indicate that VSG protein or transcript is monitored during cell cycle progression in bloodstream-form T. brucei and describes precise precytokinesis cell cycle arrest. This checkpoint before cell division provides a link between the protective VSG coat and cell cycle progression and could function as a novel parasite safety mechanism, preventing extensive dilution of the protective VSG coat in the absence of VSG synthesis.

  15. Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNA-seq, RNA interference and irradiation approach

    PubMed Central

    2012-01-01

    Background Planarian stem cells, or neoblasts, drive the almost unlimited regeneration capacities of freshwater planarians. Neoblasts are traditionally described by their morphological features and by the fact that they are the only proliferative cell type in asexual planarians. Therefore, they can be specifically eliminated by irradiation. Irradiation, however, is likely to induce transcriptome-wide changes in gene expression that are not associated with neoblast ablation. This has affected the accurate description of their specific transcriptomic profile. Results We introduce the use of Smed-histone-2B RNA interference (RNAi) for genetic ablation of neoblast cells in Schmidtea mediterranea as an alternative to irradiation. We characterize the rapid, neoblast-specific phenotype induced by Smed-histone-2B RNAi, resulting in neoblast ablation. We compare and triangulate RNA-seq data after using both irradiation and Smed-histone-2B RNAi over a time course as means of neoblast ablation. Our analyses show that Smed-histone-2B RNAi eliminates neoblast gene expression with high specificity and discrimination from gene expression in other cellular compartments. We compile a high confidence list of genes downregulated by both irradiation and Smed-histone-2B RNAi and validate their expression in neoblast cells. Lastly, we analyze the overall expression profile of neoblast cells. Conclusions Our list of neoblast genes parallels their morphological features and is highly enriched for nuclear components, chromatin remodeling factors, RNA splicing factors, RNA granule components and the machinery of cell division. Our data reveal that the regulation of planarian stem cells relies on posttranscriptional regulatory mechanisms and suggest that planarians are an ideal model for this understudied aspect of stem cell biology. PMID:22439894

  16. A rationally designed nanoparticle for RNA interference therapy in B-lineage lymphoid malignancies

    PubMed Central

    Uckun, Fatih M.; Qazi, Sanjive; Ma, Hong; Yin, Lichen; Cheng, Jianjun

    2014-01-01

    The purposes of the present study were to further evaluate the biologic significance of the CD22ΔE12 molecular lesion and determine if it could serve as a molecular target for RNA interference (RNAi) therapy. We show that both pediatric and adult B-lineage lymphoid malignancies are characterized by a very high incidence of the CD22ΔE12 genetic defect. We provide unprecedented experimental evidence for a previously unrecognized causal link between CD22ΔE12 and aggressive biology of BPL cells by demonstrating that siRNA-mediated knockdown of CD22ΔE12 in primary BPL cells is associated with a marked inhibition of their clonogenicity. These findings provide the preclinical proof-of-concept that siRNA-mediated depletion of CD22ΔE12 may help develop effective treatments for high-risk and relapsed BPL patients who are in urgent need for therapeutic innovations. We also describe a unique polypeptide-based nanoparticle formulation of CD22ΔE12-siRNA as an RNAi therapeutic candidate targeting CD22ΔE12 that is capable of delivering its siRNA cargo into the cytoplasm of leukemia cells causing effective CD22ΔE12 depletion and marked inhibition of leukemic cell growth. Further development and optimization of this nanoparticle or other nanoformulation platforms for CD22ΔE12-siRNA may facilitate the development of an effective therapeutic RNAi strategy against a paradigm shift in therapy of aggressive or chemotherapy-resistant B-lineage lymphoid malignancies. PMID:25599086

  17. Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells.

    PubMed

    Li, Yang; Basavappa, Megha; Lu, Jinfeng; Dong, Shuwei; Cronkite, D Alexander; Prior, John T; Reinecker, Hans-Christian; Hertzog, Paul; Han, Yanhong; Li, Wan-Xiang; Cheloufi, Sihem; Karginov, Fedor V; Ding, Shou-Wei; Jeffrey, Kate L

    2016-12-05

    Influenza A virus (IAV) causes annual epidemics and occasional pandemics, and is one of the best-characterized human RNA viral pathogens(1). However, a physiologically relevant role for the RNA interference (RNAi) suppressor activity of the IAV non-structural protein 1 (NS1), reported over a decade ago(2), remains unknown(3). Plant and insect viruses have evolved diverse virulence proteins to suppress RNAi as their hosts produce virus-derived small interfering RNAs (siRNAs) that direct specific antiviral defence(4-7) by an RNAi mechanism dependent on the slicing activity of Argonaute proteins (AGOs)(8,9). Recent studies have documented induction and suppression of antiviral RNAi in mouse embryonic stem cells and suckling mice(10,11). However, it is still under debate whether infection by IAV or any other RNA virus that infects humans induces and/or suppresses antiviral RNAi in mature mammalian somatic cells(12-21). Here, we demonstrate that mature human somatic cells produce abundant virus-derived siRNAs co-immunoprecipitated with AGOs in response to IAV infection. We show that the biogenesis of viral siRNAs from IAV double-stranded RNA (dsRNA) precursors in infected cells is mediated by wild-type human Dicer and potently suppressed by both NS1 of IAV as well as virion protein 35 (VP35) of Ebola and Marburg filoviruses. We further demonstrate that the slicing catalytic activity of AGO2 inhibits IAV and other RNA viruses in mature mammalian cells, in an interferon-independent fashion. Altogether, our work shows that IAV infection induces and suppresses antiviral RNAi in differentiated mammalian somatic cells.

  18. Using RNA interference to develop dengue virus resistance in genetically modified Aedes aegypti.

    PubMed

    Travanty, Emily A; Adelman, Zach N; Franz, Alexander W E; Keene, Kimberly M; Beaty, Barry J; Blair, Carol D; James, Anthony A; Olson, Ken E

    2004-07-01

    Diseases caused by arthropod-borne viruses are significant public health problems, and novel methods are needed to control pathogen transmission. We hypothesize that genetic manipulation of Aedes aegypti mosquitoes can profoundly and permanently reduce vector competence and subsequent transmission of dengue viruses (DENV) to human hosts. We have identified RNA interference (RNAi) as a potential anti-viral, intracellular pathway in the vector that can be triggered by expression of virus-specific, double stranded RNAs (dsRNAs) to reduce vector competence to DENV. We identified DENV-derived RNA segments using recombinant Sindbis viruses to trigger RNAi, that when expressed in mosquitoes ablate homologous DENV replication and transmission. We also demonstrated that heritable expression of DENV-derived dsRNA in cultured mosquito cells can silence virus replication. We now have developed a number of transgenic mosquito lines that transcribe the effector dsRNA from constitutive promoters such as immediate early 1 (baculovirus) and polyubiquitin (Drosophila melanogaster). We have detected DENV-specific small interfering RNAs, the hallmark of RNAi, in at least one of these lines. Surprisingly, none of these lines expressed dsRNA in relevant tissues (e.g., midguts) that will ultimately affect transmission. A major challenge now is to express the effector dsRNA from tissue-specific promoters to allow RNAi to silence virus replication at critical sites in the vector such as midguts and salivary glands. If successful, this strategy has the advantage of harnessing a naturally occurring vector response to block DENV infection in a mosquito vector and profoundly affect virus transmission.

  19. RNA interference of GGTA1 physiological and immune functions in immortalized porcine aortic endothelial cells.

    PubMed

    Han, Wei; Zhou, Jingshi; Li, Xiao; Wang, Jianfeng; Li, Junjie; Zhang, Zhuochao; Yang, Zhaoxu; Wang, Desheng; Tao, Kaishan; Dou, Kefeng

    2013-11-01

    Pig organs are commonly used in xenotransplantation, and α-1,3-galactose has been shown to be the main cause of hyperacute rejection. The development of transgenic pigs that lack α-1,3-galactosyltransferase (GGTA1) has overcome this problem to a certain extent, but transgenic pigs are difficult to maintain, making their usefulness in basic research limited. For this reason, we propose to establish a cell model to study hyperacute rejection. Immortalized primary porcine aortic endothelial cells were transfected with a short hairpin RNA targeted to GGTA1. Cell proliferation, apoptosis, complement C3 activation, and the binding of human immunoglobulins and components of the complement system, including IgM, IgG, C3, and C5b-9, were examined. After RNA interference, GGTA1 was found to be reduced at both the transcript and protein level as assessed by quantitative polymerase chain reaction and flow cytometry, respectively. When cultured in the presence of human serum, the proliferation rate of the transfected cells was higher than that of untransfected cells, and the apoptosis rate was lower. Additionally, activation of C3 and the binding of human immunoglobulins IgM and IgG and complement component C3 and C5b-9 to the transfected cells were lower than in the immortalized group but higher than in untransfected cells. RNA interference of GGTA1 in cultured porcine endothelial cells reduces the reaction of immunoglobulin and complement system with the cells. Therefore, this in vitro cell model could be useful for further study of xenotransplantation. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium

    PubMed Central

    Tomoyasu, Yoshinori; Miller, Sherry C; Tomita, Shuichiro; Schoppmeier, Michael; Grossmann, Daniela; Bucher, Gregor

    2008-01-01

    Background RNA interference (RNAi) is a highly conserved cellular mechanism. In some organisms, such as Caenorhabditis elegans, the RNAi response can be transmitted systemically. Some insects also exhibit a systemic RNAi response. However, Drosophila, the leading insect model organism, does not show a robust systemic RNAi response, necessitating another model system to study the molecular mechanism of systemic RNAi in insects. Results We used Tribolium, which exhibits robust systemic RNAi, as an alternative model system. We have identified the core RNAi genes, as well as genes potentially involved in systemic RNAi, from the Tribolium genome. Both phylogenetic and functional analyses suggest that Tribolium has a somewhat larger inventory of core component genes than Drosophila, perhaps allowing a more sensitive response to double-stranded RNA (dsRNA). We also identified three Tribolium homologs of C. elegans sid-1, which encodes a possible dsRNA channel. However, detailed sequence analysis has revealed that these Tribolium homologs share more identity with another C. elegans gene, tag-130. We analyzed tag-130 mutants, and found that this gene does not have a function in systemic RNAi in C. elegans. Likewise, the Tribolium sid-like genes do not seem to be required for systemic RNAi. These results suggest that insect sid-1-like genes have a different function than dsRNA uptake. Moreover, Tribolium lacks homologs of several genes important for RNAi in C. elegans. Conclusion Although both Tribolium and C. elegans show a robust systemic RNAi response, our genome-wide survey reveals significant differences between the RNAi mechanisms of these organisms. Thus, insects may use an alternative mechanism for the systemic RNAi response. Understanding this process would assist with rendering other insects amenable to systemic RNAi, and may influence pest control approaches. PMID:18201385

  1. Broad RNA interference-mediated antiviral immunity and virus-specific inducible responses in Drosophila1

    PubMed Central

    Kemp, Cordula; Mueller, Stefanie; Goto, Akira; Barbier, Vincent; Paro, Simona; Bonnay, François; Dostert, Catherine; Troxler, Laurent; Hetru, Charles; Meignin, Carine; Pfeffer, Sébastien; Hoffmann, Jules A.; Imler, Jean-Luc

    2012-01-01

    The fruit fly Drosophila melanogaster is a good model to unravel the molecular mechanisms of innate immunity, and has led to some important discoveries on the sensing and signaling of microbial infections. The response of Drosophila to virus infections remains poorly characterized, and appears to involve two facets. On one hand RNA interference (RNAi) involves the recognition and processing of double stranded (ds) RNA into small interfering (si) RNAs by the host ribonuclease Dicer-2 (Dcr-2), whereas on the other hand an inducible response controlled by the evolutionarily conserved JAK-STAT pathway contributes to the antiviral host defense. In order to clarify the contribution of the siRNA and JAK-STAT pathways to the control of viral infections, we have compared the resistance of flies wild-type and mutant for Dcr-2 or the JAK kinase Hopscotch (Hop) to infections by seven RNA or DNA viruses belonging to different families. Our results reveal a unique susceptibility of hop mutant flies to infection by DCV and CrPV, two members of the Dicistroviridae family, which contrasts with the susceptibility of Dcr-2 mutant flies to many viruses, including the DNA virus IIV-6. Genome-wide microarray analysis confirmed that different sets of genes were induced following infection by DCV or by two unrelated RNA viruses, FHV and SINV. Overall, our data reveal that RNAi is an efficient antiviral mechanism, operating against a large range of viruses, including a DNA virus. By contrast, the antiviral contribution of the JAK-STAT pathway appears to be virus-specific. PMID:23255357

  2. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila.

    PubMed

    Cernilogar, Filippo M; Onorati, Maria Cristina; Kothe, Greg O; Burroughs, A Maxwell; Parsi, Krishna Mohan; Breiling, Achim; Lo Sardo, Federica; Saxena, Alka; Miyoshi, Keita; Siomi, Haruhiko; Siomi, Mikiko C; Carninci, Piero; Gilmour, David S; Corona, Davide F V; Orlando, Valerio

    2011-11-06

    RNA interference (RNAi) pathways have evolved as important modulators of gene expression that operate in the cytoplasm by degrading RNA target molecules through the activity of short (21-30 nucleotide) RNAs. RNAi components have been reported to have a role in the nucleus, as they are involved in epigenetic regulation and heterochromatin formation. However, although RNAi-mediated post-transcriptional gene silencing is well documented, the mechanisms of RNAi-mediated transcriptional gene silencing and, in particular, the role of RNAi components in chromatin dynamics, especially in animal multicellular organisms, are elusive. Here we show that the key RNAi components Dicer 2 (DCR2) and Argonaute 2 (AGO2) associate with chromatin (with a strong preference for euchromatic, transcriptionally active, loci) and interact with the core transcription machinery. Notably, loss of function of DCR2 or AGO2 showed that transcriptional defects are accompanied by the perturbation of RNA polymerase II positioning on promoters. Furthermore, after heat shock, both Dcr2 and Ago2 null mutations, as well as missense mutations that compromise the RNAi activity, impaired the global dynamics of RNA polymerase II. Finally, the deep sequencing of the AGO2-associated small RNAs (AGO2 RIP-seq) revealed that AGO2 is strongly enriched in small RNAs that encompass the promoter regions and other regions of heat-shock and other genetic loci on both the sense and antisense DNA strands, but with a strong bias for the antisense strand, particularly after heat shock. Taken together, our results show that DCR2 and AGO2 are globally associated with transcriptionally active loci and may have a pivotal role in shaping the transcriptome by controlling the processivity of RNA polymerase II.

  3. RNA interference inhibits herpes simplex virus type 1 isolated from saliva samples and mucocutaneous lesions.

    PubMed

    Silva, Amanda Perse da; Lopes, Juliana Freitas; Paula, Vanessa Salete de

    2014-01-01

    The aim of this study was to evaluate the use of RNA interference to inhibit herpes simplex virus type-1 replication in vitro. For herpes simplex virus type-1 gene silencing, three different small interfering RNAs (siRNAs) targeting the herpes simplex virus type-1 UL39 gene (sequence si-UL 39-1, si-UL 39-2, and si-UL 39-3) were used, which encode the large subunit of ribonucleotide reductase, an essential enzyme for DNA synthesis. Herpes simplex virus type-1 was isolated from saliva samples and mucocutaneous lesions from infected patients. All mucocutaneous lesions' samples were positive for herpes simplex virus type-1 by real-time PCR and by virus isolation; all herpes simplex virus type-1 from saliva samples were positive by real-time PCR and 50% were positive by virus isolation. The levels of herpes simplex virus type-1 DNA remaining after siRNA treatment were assessed by real-time PCR, whose results demonstrated that the effect of siRNAs on gene expression depends on siRNA concentration. The three siRNA sequences used were able to inhibit viral replication, assessed by real-time PCR and plaque assays and among them, the sequence si-UL 39-1 was the most effective. This sequence inhibited 99% of herpes simplex virus type-1 replication. The results demonstrate that silencing herpes simplex virus type-1 UL39 expression by siRNAs effectively inhibits herpes simplex virus type-1 replication, suggesting that siRNA based antiviral strategy may be a potential therapeutic alternative.

  4. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference.

    PubMed

    Hochstrasser, Megan L; Taylor, David W; Bhat, Prashant; Guegler, Chantal K; Sternberg, Samuel H; Nogales, Eva; Doudna, Jennifer A

    2014-05-06

    In bacteria, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) DNA-targeting complex Cascade (CRISPR-associated complex for antiviral defense) uses CRISPR RNA (crRNA) guides to bind complementary DNA targets at sites adjacent to a trinucleotide signature sequence called the protospacer adjacent motif (PAM). The Cascade complex then recruits Cas3, a nuclease-helicase that catalyzes unwinding and cleavage of foreign double-stranded DNA (dsDNA) bearing a sequence matching that of the crRNA. Cascade comprises the CasA-E proteins and one crRNA, forming a structure that binds and unwinds dsDNA to form an R loop in which the target strand of the DNA base pairs with the 32-nt RNA guide sequence. Single-particle electron microscopy reconstructions of dsDNA-bound Cascade with and without Cas3 reveal that Cascade positions the PAM-proximal end of the DNA duplex at the CasA subunit and near the site of Cas3 association. The finding that the DNA target and Cas3 colocalize with CasA implicates this subunit in a key target-validation step during DNA interference. We show biochemically that base pairing of the PAM region is unnecessary for target binding but critical for Cas3-mediated degradation. In addition, the L1 loop of CasA, previously implicated in PAM recognition, is essential for Cas3 activation following target binding by Cascade. Together, these data show that the CasA subunit of Cascade functions as an essential partner of Cas3 by recognizing DNA target sites and positioning Cas3 adjacent to the PAM to ensure cleavage.

  5. [Suppression of Aurora-A by RNA interference inhibits laryngeal cancer Hep-2 cell growth].

    PubMed

    Zhang, Hao; Chen, Xue-hua; Cai, Chang-ping; Wang, Shi-li; Liu, Bing-ya; Zhou, Liang

    2012-01-01

    To investigate the effects of knockdown of Aurora-A by RNA interference on laryngeal cancer Hep-2 cell growth in vitro and in vivo. A plasmid containing siRNA against Aurora-A was constructed and transfected into human laryngeal cancer cell line Hep-2. Measurements included the CCK-8 assay for viability and proliferation, Transwell assay for invasion, colony formation assay for cell anchorage-independent growth. Western blot and immunohistochemistry assay for protein expression. Tumorigenicity was observed in vivo. In Hep-2 cells transfected by Aurora-A siRNA (designated as siRNA-3), protein expression of Aurora-A was suppressed by 52%. In CCK-8 assay, absorbance value of siRNA-3 cells (3.268 ± 0.106, (x(-) ± s)) was lower than that of Hep-2 cells (3.722 ± 0.152, F = 17.634, P < 0.001). In Transwell assay, the average invasive cells per field in siRNA-3 cells (110.0 ± 18.0) was less than that in Hep-2 cells (236.0 ± 26.0, F = 26.462, P < 0.01). In colony formation assay, the average colony number of siRNA-3 cells (31.0 ± 6.6) was lower than that of Hep-2 cells (104.0 ± 14.0). The average tumor size in siRNA-3 group was (127.77 ± 174.83) mm(3), which was less than Hep-2 cell group (837.26 ± 101.80) mm(3), (F = 28.187, P < 0.001). Silencing of Aurora-A decreased the expression of focal adhesion kinase (FAK) and matrix metalloproteinase-2 (MMP-2), key regulators in cell adhesion and invasion. The knockdown of Aurora-A inhibits the growth and invasiveness of Hep-2 cells in vitro and in vivo, which may be a promising therapeutic strategy for LSCC.

  6. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast

    SciTech Connect

    Iida, Tetsushi; Iida, Naoko; Tsutsui, Yasuhiro; Yamao, Fumiaki; Kobayashi, Takehiko

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer RNAi is linked to the cell cycle checkpoint in fission yeast. Black-Right-Pointing-Pointer Ptr1 co-purifies with Ago1. Black-Right-Pointing-Pointer The ptr1-1 mutation impairs the checkpoint but does not affect gene silencing. Black-Right-Pointing-Pointer ago1{sup +} and ptr1{sup +} regulate the cell cycle checkpoint via the same pathway. Black-Right-Pointing-Pointer Mutations in ago1{sup +} and ptr1{sup +} lead to the nuclear accumulation of poly(A){sup +} RNAs. -- Abstract: Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1{sup +}, the overexpression of ago1{sup +} alleviated the cell cycle defect in dcr1{Delta}. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1{sup +} is dependent on ptr1{sup +}. Nuclear accumulation of poly(A){sup +} RNAs was detected in mutants of ago1{sup +} and ptr1{sup +}, suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control.

  7. Control of Western Corn Rootworm (Diabrotica virgifera virgifera) Reproduction through Plant-Mediated RNA Interference.

    PubMed

    Niu, Xiping; Kassa, Adane; Hu, Xu; Robeson, Jonathan; McMahon, Mollie; Richtman, Nina M; Steimel, Joseph P; Kernodle, Bliss M; Crane, Virginia C; Sandahl, Gary; Ritland, Julie L; Presnail, James K; Lu, Albert L; Wu, Gusui

    2017-10-03

    RNA interference (RNAi) in transgenic maize has recently emerged as an alternative mode of action for western corn rootworm (Diabrotica virgifera virgifera) control which can be combined with protein-based rootworm control options for improved root protection and resistance management. Currently, transgenic RNAi-based control has focused on suppression of genes that when silenced lead to larval mortality. We investigated control of western corn rootworm reproduction through RNAi by targeting two reproductive genes, dvvgr and dvbol, with the goal of reducing insect fecundity as a new tool for pest management. The results demonstrated that exposure of adult beetles, as well as larvae to dvvgr or dvbol dsRNA in artificial diet, caused reduction of fecundity. Furthermore, western corn rootworm beetles that emerged from larval feeding on transgenic maize roots expressing dvbol dsRNA also showed significant fecundity reduction. This is the first report of reduction of insect reproductive fitness through plant-mediated RNAi, demonstrating the feasibility of reproductive RNAi as a management tool for western corn rootworm.

  8. RNA interference in plant parasitic nematodes: a summary of the current status.

    PubMed

    Lilley, C J; Davies, L J; Urwin, P E

    2012-04-01

    SUMMARYRNA interference (RNAi) has emerged as an invaluable gene-silencing tool for functional analysis in a wide variety of organisms, particularly the free-living model nematode Caenorhabditis elegans. An increasing number of studies have now described its application to plant parasitic nematodes. Genes expressed in a range of cell types are silenced when nematodes take up double stranded RNA (dsRNA) or short interfering RNAs (siRNAs) that elicit a systemic RNAi response. Despite many successful reports, there is still poor understanding of the range of factors that influence optimal gene silencing. Recent in vitro studies have highlighted significant variations in the RNAi phenotype that can occur with different dsRNA concentrations, construct size and duration of soaking. Discrepancies in methodology thwart efforts to reliably compare the efficacy of RNAi between different nematodes or target tissues. Nevertheless, RNAi has become an established experimental tool for plant parasitic nematodes and also offers the prospect of being developed into a novel control strategy when delivered from transgenic plants.

  9. RNA interference is required for normal centromere function in fission yeast.

    PubMed

    Volpe, Tom; Schramke, Vera; Hamilton, Georgina L; White, Sharon A; Teng, Grace; Martienssen, Robert A; Allshire, Robin C

    2003-01-01

    In plants, animals and fungi, active centromeres are associated with arrays of repetitive DNA sequences. The outer repeats at fission yeast (Schizosaccharomyces pombe) centromeres are heterochromatic and are required for the assembly of an active centromere. Components of the RNA interference (RNAi) machinery process transcripts derived from these repeats and mediate the formation of silent chromatin. A subfragment of the repeat (dg) is known to induce silencing of marker genes at euchromatic sites and is required for centromere formation. We show that the RNAi components, Argonaute (Ago1), Dicer (Dcr1) and RNA-dependent RNA polymerase (Rdp1), are required to maintain silencing, lysine 9 methylation of histone H3 and association of Swi6 via this dg ectopic silencer. Deletion of Ago1, Dcr1 or Rdp1 disrupts chromosome segregation leading to a high incidence of lagging chromosomes on late anaphase spindles and sensitivity to a microtubule poison. Analysis of dg transcription indicates that csp mutants, previously shown to abrogate centromere silencing and chromosome segregation, are also defective in the regulation of non-coding centromeric RNAs. In addition, histone H3 lysine 9 methylation at, and recruitment of Swi6 and cohesin to, centromeric repeats is disrupted in these mutants. Thus the formation of silent chromatin on dg repeats and the development of a fully functional centromere is dependent on RNAi.

  10. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes

    PubMed Central

    Banerjee, Sagar; Banerjee, Anamika; Gill, Sarvajeet S.; Gupta, Om P.; Dahuja, Anil; Jain, Pradeep K.; Sirohi, Anil

    2017-01-01

    Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi) to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes. PMID:28580003

  11. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes.

    PubMed

    Banerjee, Sagar; Banerjee, Anamika; Gill, Sarvajeet S; Gupta, Om P; Dahuja, Anil; Jain, Pradeep K; Sirohi, Anil

    2017-01-01

    Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi) to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes.

  12. RNA Interference-Induced Innate Immunity, Off-Target Effect, or Immune Adjuvant?

    PubMed Central

    Meng, Zhongji; Lu, Mengji

    2017-01-01

    RNA interference (RNAi) is a natural cellular mechanism that inhibits gene expression in a sequence-specific manner. In the last decade, RNAi has become a cornerstone in basic biological systems research and drug development efforts. The RNAi-based manipulation of mammalian cells facilitates target identification and validation; assists in identifying human disease etiologies; and expedites the development of treatments for infectious diseases, cancer, and other conditions. Several RNAi-based approaches are currently undergoing assessment in phase I and II clinical trials. However, RNAi-associated immune stimulation might act as a hurdle to safe and effective RNAi, particularly in clinical applications. The induction of innate immunity may originate from small interfering RNA (siRNA) sequence-dependent delivery vehicles and even the RNAi process itself. However, in the case of antagonistic cancers and viral infection, immune activation is beneficial; thus, immunostimulatory small interfering RNAs were designed to create bifunctional small molecules with RNAi and immunostimulatory activities. This review summarizes the research studies of RNAi-associated immune stimulation and the approaches for manipulating immunostimulatory activities. PMID:28386261

  13. Evidence for Dicer-dependent RNA interference in the industrial penicillin producer Penicillium chrysogenum.

    PubMed

    Janus, Danielle; Hoff, Birgit; Kück, Ulrich

    2009-12-01

    RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing system that downregulates target gene expression. Here, we provide several lines of evidence for RNA silencing in the industrial beta-lactam antibiotic producer Penicillium chrysogenum using the DsRed reporter gene under the control of the constitutive trpC promoter or the inducible xylP promoter. The functional RNAi system was verified by detection of siRNAs that hybridized exclusively with gene-specific (32)P-labelled RNA probes. Moreover, when RNAi was used to silence the endogenous PcbrlA morphogene that controls conidiophore development, a dramatic reduction in the formation of conidiospores was observed in 47 % of the corresponding transformants. Evidence that RNAi in P. chrysogenum is dependent on a Dicer peptide was provided with a strain lacking Pcdcl2. In the DeltaPcdcl2 background, silencing of the PcbrlA gene was tested. None of the transformants analysed showed a developmental defect. The applicability of the RNAi system in P. chrysogenum was finally demonstrated by silencing the Pcku70 gene to increase homologous recombination frequency. This led to the generation of single and double knockout mutants.

  14. Cholecystokinin down-regulation by RNA interference impairs Ewing tumor growth.

    PubMed

    Carrillo, Jaime; García-Aragoncillo, Eva; Azorín, Daniel; Agra, Noelia; Sastre, Ana; González-Mediero, Imelda; García-Miguel, Purificación; Pestaña, Angel; Gallego, Soledad; Segura, Dolores; Alonso, Javier

    2007-04-15

    Tumors of the Ewing family are characterized by chromosomal translocations that yield chimeric transcription factors, such as EWS/FLI1, which regulate the expression of specific genes that contribute to the malignant phenotype. In the present study, we show that cholecystokinin (CCK) is a new target of the EWS/FLI1 oncoprotein and assess its functional role in Ewing tumor pathogenesis. Relevant EWS/FLI1 targets were identified using a combination of cell systems with inducible EWS/FLI1 expression, Ewing tumors and cell lines, microarrays, and RNA interference with doxycycline-inducible small hairpin RNA (shRNA) vectors. A doxycycline-inducible CCK-shRNA vector was stably transfected in A673 and SK-PN-DW Ewing cell lines to assess the role of CCK in cell proliferation and tumor growth. Microarray analysis revealed that CCK was up-regulated by EWS/FLI1 in HeLa cells. CCK was overexpressed in Ewing tumors as compared with other pediatric malignancies such as rhabdomyosarcoma and neuroblastoma, with levels close to those detected in normal tissues expressing the highest levels of CCK. Furthermore, EWS/FLI1 knockdown in A673 and SK-PN-DW Ewing cells using two different doxycycline-inducible EWS/FLI1-specific shRNA vectors down-regulated CCK mRNA expression and diminished the levels of secreted CCK, showing that CCK is a EWS/FLI1 specific target gene in Ewing cells. A doxycycline-inducible CCK-specific shRNA vector successfully down-regulated CCK expression, reduced the levels of secreted CCK in Ewing cell lines, and inhibited cell growth and proliferation in vitro and in vivo. Finally, we show that Ewing cell lines and tumors express CCK receptors and that the growth inhibition produced by CCK silencing can be rescued by culturing the cells with medium containing CCK. Our data support the hypothesis that CCK acts as an autocrine growth factor stimulating the proliferation of Ewing cells and suggest that therapies targeting CCK could be promising in the treatment of

  15. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes.

    PubMed

    Göertz, G P; Fros, J J; Miesen, P; Vogels, C B F; van der Bent, M L; Geertsema, C; Koenraadt, C J M; van Rij, R P; van Oers, M M; Pijlman, G P

    2016-11-15

    Flaviviruses, such as Zika virus, yellow fever virus, dengue virus, and West Nile virus (WNV), are a serious concern for human health. Flaviviruses produce an abundant noncoding subgenomic flavivirus RNA (sfRNA) in infected cells. sfRNA results from stalling of the host 5'-3' exoribonuclease XRN1/Pacman on conserved RNA structures in the 3' untranslated region (UTR) of the viral genomic RNA. sfRNA production is conserved in insect-specific, mosquito-borne, and tick-borne flaviviruses and flaviviruses with no known vector, suggesting a pivotal role for sfRNA in the flavivirus life cycle. Here, we investigated the function of sfRNA during WNV infection of Culex pipiens mosquitoes and evaluated its role in determining vector competence. An sfRNA1-deficient WNV was generated that displayed growth kinetics similar to those of wild-type WNV in both RNA interference (RNAi)-competent and -compromised mosquito cell lines. Small-RNA deep sequencing of WNV-infected mosquitoes indicated an active small interfering RNA (siRNA)-based antiviral response for both the wild-type and sfRNA1-deficient viruses. Additionally, we provide the first evidence that sfRNA is an RNAi substrate in vivo Two reproducible small-RNA hot spots within the 3' UTR/sfRNA of the wild-type virus mapped to RNA stem-loops SL-III and 3' SL, which stick out of the three-dimensional (3D) sfRNA structure model. Importantly, we demonstrate that sfRNA-deficient WNV displays significantly decreased infection and transmission rates in vivo when administered via the blood meal. Finally, we show that transmission and infection rates are not affected by sfRNA after intrathoracic injection, thereby identifying sfRNA as a key driver to overcome the mosquito midgut infection barrier. This is the first report to describe a key biological function of sfRNA for flavivirus infection of the arthropod vector, providing an explanation for the strict conservation of sfRNA production. Understanding the flavivirus transmission

  16. An update on RNA interference-mediated gene silencing in cancer therapy.

    PubMed

    Ren, Yi-Jie; Zhang, Yi

    2014-11-01

    Based on our previous review, this article presents the new progress in RNA interference (RNAi)-mediated gene silencing in cancer therapy, and reviews the hurdles and how they might be overcome. RNAi-mediated gene silencing approaches have been demonstrated in humans, and ongoing clinical trials hold promise for treating cancer or providing alternatives to traditional chemotherapies. Here we describe the broad range of approaches to achieve targeted gene silencing for cancer therapy, discuss the progress made in developing RNAi as therapeutics for cancer and highlight challenges and emerging solutions associated with its clinical development. Although the field of RNAi-based cancer therapy is still an emerging one, we have yet to get solutions for overcoming all obstacles associated with its clinical development. The current rapid advances in development of new targeted delivery strategies and noninvasive imaging methods will be big steps to explore RNAi as a new and potent clinical modality in humans.

  17. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.).

    PubMed

    Abdurakhmonov, Ibrokhim Y; Ayubov, Mirzakamol S; Ubaydullaeva, Khurshida A; Buriev, Zabardast T; Shermatov, Shukhrat E; Ruziboev, Haydarali S; Shapulatov, Umid M; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z; Percy, Richard G; Devor, Eric J; Sharma, Govind C; Sripathi, Venkateswara R; Kumpatla, Siva P; van der Krol, Alexander; Kater, Hake D; Khamidov, Khakimdjan; Salikhov, Shavkat I; Jenkins, Johnie N; Abdukarimov, Abdusattor; Pepper, Alan E

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization.

  18. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.)

    PubMed Central

    Abdurakhmonov, Ibrokhim Y.; Ayubov, Mirzakamol S.; Ubaydullaeva, Khurshida A.; Buriev, Zabardast T.; Shermatov, Shukhrat E.; Ruziboev, Haydarali S.; Shapulatov, Umid M.; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z.; Percy, Richard G.; Devor, Eric J.; Sharma, Govind C.; Sripathi, Venkateswara R.; Kumpatla, Siva P.; van der Krol, Alexander; Kater, Hake D.; Khamidov, Khakimdjan; Salikhov, Shavkat I.; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization. PMID:26941765

  19. Analysis of Nuclear RNA Interference (RNAi) in Human Cells by Subcellular Fractionation and Argonaute Loading

    PubMed Central

    Gagnon, Keith T.; Li, Liande; Janowski, Bethany A.; Corey, David R.

    2014-01-01

    RNA interference (RNAi) is well known for its ability to regulate gene expression in the cytoplasm of mammalian cells. In mammalian cell nuclei, however, the impact of RNAi has remained more controversial. A key technical hurdle has been a lack of optimized protocols for the isolation and analysis of cell nuclei. Here we describe a simplified protocol for nuclei isolation from cultured cells that incorporates a method for obtaining nucleoplasmic and chromatin fractions and removing cytoplasmic contamination. Cell fractions can then be used to detect the presence and activity of RNAi factors in the nucleus. We present a protocol for investigating an early step in RNAi, Argonaute protein loading with small RNAs, which is enabled by our improved extract preparations. These protocols facilitate characterization of nuclear RNAi and can be applied to the analysis of other nuclear proteins and pathways. From cellular fractionation to analysis of Argonaute loading results, this protocol takes 4–6 d to complete. PMID:25079428

  20. Mutant CAG Repeats Effectively Targeted by RNA Interference in SCA7 Cells

    PubMed Central

    Fiszer, Agnieszka; Wroblewska, Joanna P.; Nowak, Bartosz M.; Krzyzosiak, Wlodzimierz J.

    2016-01-01

    Spinocerebellar ataxia type 7 (SCA7) is a human neurodegenerative polyglutamine (polyQ) disease caused by a CAG repeat expansion in the open reading frame of the ATXN7 gene. The allele-selective silencing of mutant transcripts using a repeat-targeting strategy has previously been used for several polyQ diseases. Herein, we demonstrate that the selective targeting of a repeat tract in a mutant ATXN7 transcript by RNA interference is a feasible approach and results in an efficient decrease of mutant ataxin-7 protein in patient-derived cells. Oligonucleotides (ONs) containing specific base substitutions cause the downregulation of the ATXN7 mutant allele together with the upregulation of its normal allele. The A2 ON shows high allele selectivity at a broad range of concentrations and also restores UCHL1 expression, which is downregulated in SCA7. PMID:27999335

  1. Illuminating the gateway of gene silencing: perspective of RNA interference technology in clinical therapeutics.

    PubMed

    Sindhu, Annu; Arora, Pooja; Chaudhury, Ashok

    2012-07-01

    A novel laboratory revolution for disease therapy, the RNA interference (RNAi) technology, has adopted a new era of molecular research as the next generation "Gene-targeted prophylaxis." In this review, we have focused on the chief technological challenges associated with the efforts to develop RNAi-based therapeutics that may guide the biomedical researchers. Many non-curable maladies, like neurodegenerative diseases and cancers have effectively been cured using this technology. Rapid advances are still in progress for the development of RNAi-based technologies that will be having a major impact on medical research. We have highlighted the recent discoveries associated with the phenomenon of RNAi, expression of silencing molecules in mammals along with the vector systems used for disease therapeutics.

  2. RNA INTERFERENCE AGAINST CFTR AFFECTS HL60-DERIVED NEUTROPHIL MICROBICIDAL FUNCTION

    PubMed Central

    Bonvillain, Ryan W.; Painter, Richard G.; Adams, Daniel E.; Viswanathan, Anand; Lanson, Nicholas A.; Wang, Guoshun

    2010-01-01

    Biosynthesis of hypochlorous acid (HOCl), a potent anti-microbial oxidant, in phagosomes is one of the chief mechanisms employed by polymorphonuclear neutrophils (PMNs) to combat infections. This reaction, catalyzed by myeloperoxidase, requires chloride anion (Cl−) as a substrate. Thus, Cl− availability is a rate-limiting factor that affects neutrophil microbicidal function. Our previous research demonstrated that defective CFTR, a cAMP-activated chloride channel, present in cystic fibrosis (CF) patients leads to deficient chloride transport to neutrophil phagosomes and impaired bacterial killing (Painter et al., 2008 & 2010). To confirm this finding, here we used RNA interference against this chloride channel to abate CFTR expression in the neutrophil-like cells derived from HL60 cells, a promyelocytic leukemia cell line, with DMSO. The resultant CFTR deficiency in the phagocytes compromised their bactericidal capability, thereby recapitulating the phenotype seen in CF patient cells. The results provide further evidence suggesting that CFTR plays an important role in phagocytic host defense. PMID:20870018

  3. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference

    PubMed Central

    Barrangou, Rodolphe; Birmingham, Amanda; Wiemann, Stefan; Beijersbergen, Roderick L.; Hornung, Veit; Smith, Anja van Brabant

    2015-01-01

    The discovery that the machinery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 bacterial immune system can be re-purposed to easily create deletions, insertions and replacements in the mammalian genome has revolutionized the field of genome engineering and re-invigorated the field of gene therapy. Many parallels have been drawn between the newly discovered CRISPR-Cas9 system and the RNA interference (RNAi) pathway in terms of their utility for understanding and interrogating gene function in mammalian cells. Given this similarity, the CRISPR-Cas9 field stands to benefit immensely from lessons learned during the development of RNAi technology. We examine how the history of RNAi can inform today's challenges in CRISPR-Cas9 genome engineering such as efficiency, specificity, high-throughput screening and delivery for in vivo and therapeutic applications. PMID:25800748

  4. Exogenous RNA interference exposes contrasting roles for sugar exudation in host-finding by plant pathogens.

    PubMed

    Warnock, Neil D; Wilson, Leonie; Canet-Perez, Juan V; Fleming, Thomas; Fleming, Colin C; Maule, Aaron G; Dalzell, Johnathan J

    2016-07-01

    Plant parasitic nematodes (PPN) locate host plants by following concentration gradients of root exudate chemicals in the soil. We present a simple method for RNA interference (RNAi)-induced knockdown of genes in tomato seedling roots, facilitating the study of root exudate composition, and PPN responses. Knockdown of sugar transporter genes, STP1 and STP2, in tomato seedlings triggered corresponding reductions of glucose and fructose, but not xylose, in collected root exudate. This corresponded directly with reduced infectivity and stylet thrusting of the promiscuous PPN Meloidogyne incognita, however we observed no impact on the infectivity or stylet thrusting of the selective Solanaceae PPN Globodera pallida. This approach can underpin future efforts to understand the early stages of plant-pathogen interactions in tomato and potentially other crop plants. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  5. Bactrocera dorsalis male sterilization by targeted RNA interference of spermatogenesis: empowering sterile insect technique programs

    PubMed Central

    Dong, Yong-Cheng; Wang, Zhi-Jian; Chen, Zhen-Zhong; Clarke, Anthony R.; Niu, Chang-Ying

    2016-01-01

    RNA interference (RNAi) is a genetic technique which has novel application for sustainable pest control. The Sterile Insect Technique (SIT) uses releases of mass-produced, sterile male insects to out-compete wild males for mates to reduce pest populations. RNAi sterilization of SIT males would have several advantages over radiation sterilization, but to achieve this appropriate target genes must first be identified and then targeted with interference technology. With this goal, eight spermatogenesis related candidate genes were cloned and tested for potential activity in Bactrocera dorsalis. The knockdown of candidate genes by oral delivery of dsRNAs did not influence the mating of male flies, but significantly affected the daily average number of eggs laid by females, and reduced egg hatching rate by 16–60%. RNAi negatively affected spermatozoa quantitatively and qualitatively. Following the mating of lola-/topi-/rac-/rho-/upd-/magu-silenced males, we recorded a significant decrease in number and length of spermatozoa in female spermatheca compared to gfp-silenced control group. In a greenhouse trial, the number of damaged oranges and B. dorsalis larvae were significantly reduced in a dsrho-treated group compared with the dsgfp group. This study provides strong evidence for the use RNAi in pest management, especially for the improvement of SIT against B. dorsalis and other species. PMID:27767174

  6. Bactrocera dorsalis male sterilization by targeted RNA interference of spermatogenesis: empowering sterile insect technique programs.

    PubMed

    Dong, Yong-Cheng; Wang, Zhi-Jian; Chen, Zhen-Zhong; Clarke, Anthony R; Niu, Chang-Ying

    2016-10-21

    RNA interference (RNAi) is a genetic technique which has novel application for sustainable pest control. The Sterile Insect Technique (SIT) uses releases of mass-produced, sterile male insects to out-compete wild males for mates to reduce pest populations. RNAi sterilization of SIT males would have several advantages over radiation sterilization, but to achieve this appropriate target genes must first be identified and then targeted with interference technology. With this goal, eight spermatogenesis related candidate genes were cloned and tested for potential activity in Bactrocera dorsalis. The knockdown of candidate genes by oral delivery of dsRNAs did not influence the mating of male flies, but significantly affected the daily average number of eggs laid by females, and reduced egg hatching rate by 16-60%. RNAi negatively affected spermatozoa quantitatively and qualitatively. Following the mating of lola-/topi-/rac-/rho-/upd-/magu-silenced males, we recorded a significant decrease in number and length of spermatozoa in female spermatheca compared to gfp-silenced control group. In a greenhouse trial, the number of damaged oranges and B. dorsalis larvae were significantly reduced in a dsrho-treated group compared with the dsgfp group. This study provides strong evidence for the use RNAi in pest management, especially for the improvement of SIT against B. dorsalis and other species.

  7. In vitro RNA interference targeting the DNA polymerase gene inhibits orf virus replication in primary ovine fetal turbinate cells.

    PubMed

    Wang, Gaili; He, Wenqi; Song, Deguang; Li, Jida; Bao, Yingfu; Lu, Rongguang; Bi, Jingying; Zhao, Kui; Gao, Feng

    2014-05-01

    Orf, which is caused by orf virus (ORFV), is distributed worldwide and is endemic in most sheep- and/or goat-raising countries. RNA interference (RNAi) pathways have emerged as important regulators of virus-host cell interactions. In this study, the specific effect of RNAi on the replication of ORFV was explored. The application of RNA interference (RNAi) inhibited the replication of ORFV in cell culture by targeting the ORF025 gene of ORFV, which encodes the viral polymerase. Three small interfering RNA (siRNA) (named siRNA704, siRNA1017 and siRNA1388) were prepared by in vitro transcription. The siRNAs were evaluated for antiviral activity against the ORFV Jilin isolate by the observation of cytopathic effects (CPE), virus titration, and real-time PCR. After 48 h of infection, siRNA704, siRNA1017 and siRNA1388 reduced virus titers by 59- to 199-fold and reduced the level of viral replication by 73-89 %. These results suggest that these three siRNAs can efficiently inhibit ORFV genome replication and infectious virus production. RNAi targeting of the DNA polymerase gene is therefore potentially useful for studying the replication of ORFV and may have potential therapeutic applications.

  8. RNA Interference Is Responsible for Reduction of Transgene Expression after Sleeping Beauty Transposase Mediated Somatic Integration

    PubMed Central

    Rauschhuber, Christina; Ehrhardt, Anja

    2012-01-01

    Background Integrating non-viral vectors based on transposable elements are widely used for genetically engineering mammalian cells in functional genomics and therapeutic gene transfer. For the Sleeping Beauty (SB) transposase system it was demonstrated that convergent transcription driven by the SB transposase inverted repeats (IRs) in eukaryotic cells occurs after somatic integration. This could lead to formation of double-stranded RNAs potentially presenting targets for the RNA interference (RNAi) machinery and subsequently resulting into silencing of the transgene. Therefore, we aimed at investigating transgene expression upon transposition under RNA interference knockdown conditions. Principal Findings To establish RNAi knockdown cell lines we took advantage of the P19 protein, which is derived from the tomato bushy stunt virus. P19 binds and inhibits 21 nucleotides long, small-interfering RNAs and was shown to sufficiently suppress RNAi. We found that transgene expression upon SB mediated transposition was enhanced, resulting into a 3.2-fold increased amount of colony forming units (CFU) after transposition. In contrast, if the transgene cassette is insulated from the influence of chromosomal position effects by the chicken-derived cHS4 insulating sequences or when applying the Forg Prince transposon system, that displays only negligible transcriptional activity, similar numbers of CFUs were obtained. Conclusion In summary, we provide evidence for the first time that after somatic integration transposon derived transgene expression is regulated by the endogenous RNAi machinery. In the future this finding will help to further improve the molecular design of the SB transposase vector system. PMID:22570690

  9. The influence of lentivirus-mediated CXCR4 RNA interference on hepatic metastasis of colorectal cancer.

    PubMed

    Wang, Tian-Bao; Hu, Bao-Guang; Liu, Da-Wei; Shi, Han-Ping; Dong, Wen-Guang

    2014-06-01

    The aim of this study was to construct a lentiviral vector of CXCR4-siRNA (Lenti-CXCR4-siRNA) and investigate whether the vector can inhibit the growth, migration, invasion and hepatic metastasis of colorectal cancer (CRC). RT-PCR and western blotting were employed to identify the ideal RNA interference sequence. Lenti-CXCR4-siRNA was constructed and transfected into the SW480 cell line. We used RT-PCR and western blotting to measure the expression of CXCR4 RNA and protein, respectively; the MTS assay to assess the proliferation of SW480 cells; transwell chambers to estimate the inhibitory effect on migration and invasion; and the Balb/c nude mouse model of CRC to examine the inhibition of hepatic metastasis. The relative expression of the CXCR4 gene and protein was 5.4 and 18.95%, respectively, in the siCXCR4 group. The genes in the expression plasmid pLenti-CXCR4-siRNA were in the correct order. In the SW480, nonsense control (NC) and the Lenti-CXCR4-siRNA groups CXCR4 RNA levels were, respectively, 0.54±0.06, 1.00±0.03 and 0.11±0.04 (P=0.0001); CXCR4 protein levels were 0.60±0.03, 0.72±0.03 and 0.18±0.02 (P=0.0001); the OD value was 1.38±0.04 (P=0.0050), 1.28±0.05 (P=0.0256) and 0.92±0.06; SW480 cell number in migration test was 32±6.85, 32.63±1.69 and 0.75±0.71 (P=0.0000); SW480 cell number in the invasion test was 29.13±10.3, 30.38±6.09 and 0.63±0.74 (P=0.0000); hepatic metastasis number was 7.10±3.98 (P=0.034), 7.50±4.09 (P=0.019) and (3.50±2.51); hepatic metastasis mean weight (in g) was 2.25±2.51 (P=0.000), 2.11±2.38 (P=0.000) and 1.45±2.07. Lenti-CXCR4-siRNA constructs were correctly constructed and effectively inhibit the expression of CXCR4 RNA and protein, reducing the proliferation, migration, invasion capacity of SW480 cells and hepatic metastasis of CRC.

  10. Effects of chitosan nanoparticle-mediated BRAF siRNA interference on invasion and metastasis of gastric cancer cells.

    PubMed

    Huo, Jian

    2016-08-01

    To observe the changes in invasion capacity of gastric cancer BGC823 cells after being treated with chitosan-encapsulated BRAF siRNA nanoparticles, and to evaluate the effects of the nanoparticle-mediated BRAF siRNA interference on cell invasion and metastasis, BRAF siRNA was encapsulated with chitosan into nanoparticles sized 350 nm to treat gastric cancer cells. Silencing of BRAF was detected by Western blot and PCR, and cell invasion was observed by the Transwell assay. The nanoparticles significantly downregulated BRAF expression in BGC823 cells (P < 0.01) and inhibited their invasion (P < 0.001). Chitosan nanoparticle-mediated BRAF siRNA interference evidently reduced the invasion capacity of gastric cancers.

  11. RNA interference: a promising biopesticide strategy against the African Sweetpotato Weevil Cylas brunneus

    PubMed Central

    Christiaens, Olivier; Prentice, Katterinne; Pertry, Ine; Ghislain, Marc; Bailey, Ana; Niblett, Chuck; Gheysen, Godelieve; Smagghe, Guy

    2016-01-01

    The African sweetpotato weevil Cylas brunneus is one of the most devastating pests affecting the production of sweetpotatoes, an important staple food in Sub-Saharan Africa. Current available control methods against this coleopteran pest are limited. In this study, we analyzed the potential of RNA interference as a novel crop protection strategy against this insect pest. First, the C. brunneus transcriptome was sequenced and RNAi functionality was confirmed by successfully silencing the laccase2 gene. Next, 24 potential target genes were chosen, based on their critical role in vital biological processes. A first screening via injection of gene-specific dsRNAs showed that the dsRNAs were highly toxic for C. brunneus. Injected doses of 200ng/mg body weight led to mortality rates of 90% or higher for 14 of the 24 tested genes after 14 days. The three best performing dsRNAs, targeting prosα2, rps13 and the homolog of Diabrotica virgifera snf7, were then used in further feeding trials to investigate RNAi by oral delivery. Different concentrations of dsRNAs mixed with artificial diet were tested and concentrations as low as 1 μg dsRNA/ mL diet led to significant mortality rates higher than 50%.These results proved that dsRNAs targeting essential genes show great potential to control C. brunneus. PMID:27941836

  12. From The Cover: Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation

    NASA Astrophysics Data System (ADS)

    Nollen, Ellen A. A.; Garcia, Susana M.; van Haaften, Gijs; Kim, Soojin; Chavez, Alejandro; Morimoto, Richard I.; Plasterk, Ronald H. A.

    2004-04-01

    Protein misfolding and the formation of aggregates are increasingly recognized components of the pathology of human genetic disease and hallmarks of many neurodegenerative disorders. As exemplified by polyglutamine diseases, the propensity for protein misfolding is associated with the length of polyglutamine expansions and age-dependent changes in protein-folding homeostasis, suggesting a critical role for a protein homeostatic buffer. To identify the complement of protein factors that protects cells against the formation of protein aggregates, we tested transgenic Caenorhabditis elegans strains expressing polyglutamine expansion yellow fluorescent protein fusion proteins at the threshold length associated with the age-dependent appearance of protein aggregation. We used genome-wide RNA interference to identify genes that, when suppressed, resulted in the premature appearance of protein aggregates. Our screen identified 186 genes corresponding to five principal classes of polyglutamine regulators: genes involved in RNA metabolism, protein synthesis, protein folding, and protein degradation; and those involved in protein trafficking. We propose that each of these classes represents a molecular machine collectively comprising the protein homeostatic buffer that responds to the expression of damaged proteins to prevent their misfolding and aggregation. protein misfolding | neurodegenerative diseases

  13. Effects of downregulating TEAD4 transcripts by RNA interference on early development of bovine embryos.

    PubMed

    Sakurai, Nobuyuki; Takahashi, Kazuki; Emura, Natsuko; Hashizume, Tsutomu; Sawai, Ken

    2017-04-21

    Transcription factor TEA domain family transcription factor 4 (Tead4) is one of the key factors involved in the differentiation of the trophectoderm (TE) in murine embryos. However, knowledge on the roles of TEAD4 in preimplantation development during bovine embryos is currently limited. This study examined the transcript and protein expression patterns of TEAD4 and attempted to elucidate the functions of TEAD4 during bovine preimplantation development using RNA interference. TEAD4 mRNA was found to be upregulated between the 16-cell and morula stages, and nuclear localization of the TEAD4 protein was detected at the morula stage, as well as in subsequent developmental stages. TEAD4 downregulation did not affect embryonic development until the blastocyst stage, and TEAD4-downregulated embryos were capable of forming the TE under both 5% and 21% O2 conditions. Results of gene expression analysis showed that TEAD4 downregulation did not affect the expression levels of POU class 5 transcription factor 1 (OCT-4), NANOG, caudal-type homeobox 2 (CDX2), GATA binding protein 3 (GATA3), and interferon-tau (IFNT). In conclusion, TEAD4 might be dispensable for development until the blastocyst stage and TE differentiation in bovine embryos.

  14. A new opaque variant of maize by a single dominant RNA-interference-inducing transgene.

    PubMed Central

    Segal, Gregorio; Song, Rentao; Messing, Joachim

    2003-01-01

    In maize, alpha-zeins, the main protein components of seed stores, are major determinants of nutritional imbalance when maize is used as the sole food source. Mutations like opaque-2 (o2) are used in breeding varieties with improved nutritional quality. However, o2 works in a recessive fashion by affecting the expression of a subset of 22-kD alpha-zeins, as well as additional endosperm gene functions. Thus, we sought a dominant mutation that could suppress the storage protein genes without interrupting O2 synthesis. We found that maize transformed with RNA interference (RNAi) constructs derived from a 22-kD zein gene could produce a dominant opaque phenotype. This phenotype segregates in a normal Mendelian fashion and eliminates 22-kD zeins without affecting the accumulation of other zein proteins. A system for regulated transgene expression generating antisense RNA also reduced the expression of 22-kD zein genes, but failed to give an opaque phenotype. Therefore, it appears that small interfering RNAs not only may play an important regulatory role during plant development, but also are effective genetic tools for dissecting the function of gene families. Since the dominant phenotype is also correlated with increased lysine content, the new mutant illustrates an approach for creating more nutritious crop plants. PMID:14504244

  15. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design.

    PubMed

    Terenius, Olle; Papanicolaou, Alexie; Garbutt, Jennie S; Eleftherianos, Ioannis; Huvenne, Hanneke; Kanginakudru, Sriramana; Albrechtsen, Merete; An, Chunju; Aymeric, Jean-Luc; Barthel, Andrea; Bebas, Piotr; Bitra, Kavita; Bravo, Alejandra; Chevalier, François; Collinge, Derek P; Crava, Cristina M; de Maagd, Ruud A; Duvic, Bernard; Erlandson, Martin; Faye, Ingrid; Felföldi, Gabriella; Fujiwara, Haruhiko; Futahashi, Ryo; Gandhe, Archana S; Gatehouse, Heather S; Gatehouse, Laurence N; Giebultowicz, Jadwiga M; Gómez, Isabel; Grimmelikhuijzen, Cornelis J P; Groot, Astrid T; Hauser, Frank; Heckel, David G; Hegedus, Dwayne D; Hrycaj, Steven; Huang, Lihua; Hull, J Joe; Iatrou, Kostas; Iga, Masatoshi; Kanost, Michael R; Kotwica, Joanna; Li, Changyou; Li, Jianghong; Liu, Jisheng; Lundmark, Magnus; Matsumoto, Shogo; Meyering-Vos, Martina; Millichap, Peter J; Monteiro, Antónia; Mrinal, Nirotpal; Niimi, Teruyuki; Nowara, Daniela; Ohnishi, Atsushi; Oostra, Vicencio; Ozaki, Katsuhisa; Papakonstantinou, Maria; Popadic, Aleksandar; Rajam, Manchikatla V; Saenko, Suzanne; Simpson, Robert M; Soberón, Mario; Strand, Michael R; Tomita, Shuichiro; Toprak, Umut; Wang, Ping; Wee, Choon Wei; Whyard, Steven; Zhang, Wenqing; Nagaraju, Javaregowda; Ffrench-Constant, Richard H; Herrero, Salvador; Gordon, Karl; Swevers, Luc; Smagghe, Guy

    2011-02-01

    Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive experiments have not been collected in such a way that they are possible to analyze. In this review, we have collected detailed data from more than 150 experiments including all to date published and many unpublished experiments. Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the innate immune response. Our general understanding of RNAi in Lepidoptera will be further aided in the future as our public database at http://insectacentral.org/RNAi will continue to gather information on RNAi experiments.

  16. Mcam Silencing With RNA Interference Using Magnetofection has Antitumor Effect in Murine Melanoma.

    PubMed

    Prosen, Lara; Markelc, Bostjan; Dolinsek, Tanja; Music, Branka; Cemazar, Maja; Sersa, Gregor

    2014-10-28

    The melanoma cell adhesion molecule (MCAM) is involved in melanoma development and its progression, including invasiveness, metastatic potential and angiogenesis. Therefore, MCAM represents a potential target for gene therapy of melanoma, whose expression could be hindered with posttranscriptional specific gene silencing with RNA interference technology. In this study, we constructed a plasmid DNA encoding short hairpin RNA against MCAM (pMCAM) to explore the antitumor and antiangiogenic effects. The experiments were performed in vitro on murine melanoma and endothelial cells, as well as in vivo on melanoma tumors in mice. The antiproliferative, antimigratory, antiangiogenic and antitumor effects were examined after gene therapy with pMCAM. Gene delivery was performed by magnetofection, and its efficacy compared to gene electrotransfer. Gene therapy with pMCAM has proved to be an effective approach in reducing the proliferation and migration of melanoma cells, as well as having antiangiogenic effect in endothelial cells and antitumor effect on melanoma tumors. Magnetofection as a developing nonviral gene delivery system was effective in the transfection of melanoma cells and tumors with pMCAM, but less efficient than gene electrotransfer in in vivo tumor gene therapy due to the lack of antiangiogenic effect after silencing Mcam by magnetofection.

  17. RNA interference technology used for the study of aquatic virus infections.

    PubMed

    Reshi, Mohammad Latif; Wu, Jen-Leih; Wang, Hao-Ven; Hong, Jiann-Ruey

    2014-09-01

    Aquaculture is one of the most important economic activities in Asia and is presently the fastest growing sector of food production in the world. Explosive increases in global fish farming have been accompanied by an increase in viral diseases. Viral infections are responsible for huge economic losses in fish farming, and control of these viral diseases in aquaculture remains a serious challenge. Recent advances in biotechnology have had a significant impact on disease reduction in aquaculture. RNAi is one of the most important technological breakthroughs in modern biology, allowing us to directly observe the effects of the loss of specific genes in living systems. RNA interference technology has emerged as a powerful tool for manipulating gene expression in the laboratory. This technology represents a new therapeutic approach for treating aquatic diseases, including viral infections. RNAi technology is based on a naturally occurring post-transcriptional gene silencing process mediated by the formation of dsRNA. RNAi has been proven widely effective for gene knockdown in mammalian cultured cells, but its utility in fish remains unexplored. This review aims to highlight the RNAi technology that has made significant contributions toward the improvement of aquatic animal health and will also summarize the current status and future strategies concerning the therapeutic applications of RNAi to combat viral disease in aquacultured organisms.

  18. Modeling of congenital erythropoietic porphyria by RNA interference: a new tool for preclinical gene therapy evaluation.

    PubMed

    Robert-Richard, Elodie; Lalanne, Magalie; Lamrissi-Garcia, Isabelle; Guyonnet-Duperat, Véronique; Richard, Emmanuel; Pitard, Vincent; Mazurier, Fréderic; Moreau-Gaudry, François; Ged, Cécile; de Verneuil, Hubert

    2010-08-01

    Congenital erythropoietic porphyria (CEP) is a severe autosomal recessive disorder characterized by a deficiency in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthetic pathway. We recently demonstrated the definitive cure of a murine model of CEP by lentiviral vector-mediated hematopoietic stem cell (HSC) gene therapy. In the perspective of a gene therapy clinical trial, human cellular models are required to evaluate the therapeutic potential of lentiviral vectors in UROS-deficient cells. However, the rare incidence of the disease makes difficult the availability of HSCs derived from patients. RNA interference (RNAi) has been used to develop a new human model of the disease from normal cord blood HSCs. Lentivectors were developed for this purpose. We were able to down-regulate the level of human UROS in human cell lines and primary hematopoietic cells. A 97% reduction of UROS activity led to spontaneous uroporphyrin accumulation in human erythroid bone marrow cells of transplanted immune-deficient mice, recapitulating the phenotype of cells derived from patients. A strong RNAi-induced UROS inhibition allowed us to test the efficiency of different lentiviral vectors with the aim of selecting a safer vector. Restoration of UROS activity in these small hairpin RNA-transduced CD34(+) cord blood cells by therapeutic lentivectors led to a partial correction of the phenotype in vivo. The RNAi strategy is an interesting new tool for preclinical gene therapy evaluation. Copyright 2010 John Wiley & Sons, Ltd.

  19. RNA interference for glioblastoma therapy: Innovation ladder from the bench to clinical trials.

    PubMed

    Lozada-Delgado, Eunice L; Grafals-Ruiz, Nilmary; Vivas-Mejía, Pablo E

    2017-11-01

    Glioblastoma multiforme (GBM) is the most common and deadliest type of primary brain tumor with a prognosis of 14months after diagnosis. Current treatment for GBM patients includes "total" tumor resection, temozolomide-based chemotherapy, radiotherapy or a combination of these options. Although, several targeted therapies, gene therapy, and immunotherapy are currently in the clinic and/or in clinical trials, the overall survival of GBM patients has hardly improved over the last two decades. Therefore, novel multitarget modalities are urgently needed. Recently, RNA interference (RNAi) has emerged as a novel strategy for the treatment of most cancers, including GBM. RNAi-based therapies consist of using small RNA oligonucleotides to regulate protein expression at the post-transcriptional level. Despite the therapeutic potential of RNAi molecules, systemic limitations including short circulatory stability and low release into the tumor tissue have halted their progress to the clinic. The effective delivery of RNAi molecules through the blood-brain barrier (BBB) represents an additional challenge. This review focuses on connecting the translational process of RNAi-based therapies from in vitro evidence to pre-clinical studies. We delineate the effect of RNAi in GBM cell lines, describe their effectiveness in glioma mouse models, and compare the proposed drug carriers for the effective transport of RNAi molecules through the BBB to reach the tumor in the brain. Furthermore, we summarize the most important obstacles to overcome before RNAi-based therapy becomes a reality for GBM treatment. Published by Elsevier Inc.

  20. Specific Silencing of L392V PSEN1 Mutant Allele by RNA Interference

    PubMed Central

    Sierant, Malgorzata; Paduszynska, Alina; Kazmierczak-Baranska, Julia; Nacmias, Benedetta; Sorbi, Sandro; Bagnoli, Silvia; Sochacka, Elzbieta; Nawrot, Barbara

    2011-01-01

    RNA interference (RNAi) technology provides a powerful molecular tool to reduce an expression of selected genes in eukaryotic cells. Short interfering RNAs (siRNAs) are the effector molecules that trigger RNAi. Here, we describe siRNAs that discriminate between the wild type and mutant (1174 C→G) alleles of human Presenilin1 gene (PSEN1). This mutation, resulting in L392V PSEN1 variant, contributes to early onset familial Alzheimer's disease. Using the dual fluorescence assay, flow cytometry and fluorescent microscopy we identified positions 8th–11th, within the central part of the antisense strand, as the most sensitive to mismatches. 2-Thiouridine chemical modification introduced at the 3′-end of the antisense strand improved the allele discrimination, but wobble base pairing adjacent to the mutation site abolished the siRNA activity. Our data indicate that siRNAs can be designed to discriminate between the wild type and mutant alleles of genes that differ by just a single nucleotide. PMID:21559198

  1. RNA interference as a resistance mechanism against crop parasites in Africa: a 'Trojan horse' approach.

    PubMed

    Runo, Steven; Alakonya, Amos; Machuka, Jesse; Sinha, Neelima

    2011-02-01

    Biological crop pests cause serious economic losses. In Africa, the most prevalent parasites are insect pests, plant pathogenic root-knot nematodes, viruses and parasitic plants. African smallholder farmers struggle to overcome these parasitic constraints to agricultural production. Crop losses and the host range of these parasites have continued to increase in spite of the use of widely advocated control methods. A sustainable method to overcome biological pests in Africa would be to develop crop germplasm resistant to parasites. This is achievable using either genetic modification (GM) or a non-GM approach. However, there is a paucity of resistant genes available for introduction. Additionally, the biological processes underpinning host parasite resistance are not sufficiently well understood. The authors review a technology platform for using RNA-mediated interference (RNAi) as bioengineered resistance to important crop parasites in Africa. To achieve acquired resistance, a host crop is stably transformed with a transgene that encodes a hairpin RNA targeting essential parasitic genes. The RNAi sequence is chosen in such a way that it shares no homology with the host's genes, so it remains 'inactive' until parasitism. Upon parasitism, the RNAi sequence enters the parasite and post-transcriptional gene silencing (PTGS) mechanisms are activated, leading to the death of the parasite. Copyright © 2010 Society of Chemical Industry.

  2. A laboratory-intensive course on RNA interference and model organisms.

    PubMed

    Miller, Joanna A; Witherow, D Scott; Carson, Susan

    2009-01-01

    RNA interference (RNAi) is a powerful method to silence gene expression in a variety of organisms and is generating interest not only as a useful tool for research scientists but also as a novel class of therapeutics in clinical trials. Here, we report that undergraduate and graduate students with a basic molecular biology background were able to demonstrate conceptual knowledge and technical skills for using RNAi as a research tool upon completion of an intensive 8-wk RNAi course with a 2-h lecture and 5-h laboratory per week. Students were instructed on design of RNAi experiments in model organisms and perform multiweek laboratory sessions based on journal articles read and discussed in class. Using Nicotiana benthamiana, Caenorhabditis elegans, and mammalian cell culture, students analyzed the extent of silencing using both qualitative assessment of phenotypic variations and quantitative measurements of RNA levels or protein levels. We evaluated the course over two semesters, each with a separate instructor. In both semesters, we show students met expected learning outcomes as demonstrated by successful laboratory experiment results, as well as positive instructor assessments of exams and lab reports. Student self-assessments revealed increased confidence in conceptual knowledge and practical skills. Our data also suggest that the course is adaptable to different instructors with varying expertise.

  3. Development of an efficient RNA interference method by feeding for the microcrustacean Daphnia.

    PubMed

    Schumpert, Charles A; Dudycha, Jeffry L; Patel, Rekha C

    2015-10-07

    RNA interference (RNAi) is an important molecular tool for analysis of gene function in vivo. Daphnia, a freshwater microcrustacean, is an emerging model organism for studying cellular and molecular processes involved in aging, development, and ecotoxicology especially in the context of environmental variation. However, in spite of the availability of a fully sequenced genome of Daphnia pulex, meaningful mechanistic studies have been hampered by a lack of molecular techniques to alter gene expression. A microinjection method for gene knockdown by RNAi has been described but the need for highly specialized equipment as well as technical expertise limits the wider application of this technique. In addition to being expensive and technically challenging, microinjections can only target genes expressed during embryonic stages, thus making it difficult to achieve effective RNAi in adult organisms. In our present study we present a bacterial feeding method for RNAi in Daphnia. We used a melanic Daphnia species (Daphnia melanica) that exhibits dark pigmentation to target phenoloxidase, a key enzyme in the biosynthesis of melanin. We demonstrate that our RNAi method results in a striking phenotype and that the phenoloxidase mRNA expression and melanin content, as well as survival following UV insults, are diminished as a result of RNAi. Overall, our results establish a new method for RNAi in Daphnia that significantly advances further use of Daphnia as a model organism for functional genomics studies. The method we describe is relatively simple and widely applicable for knockdown of a variety of genes in adult organisms.

  4. Interspecific RNA interference of SHOOT MERISTEMLESS-like disrupts Cuscuta pentagona plant parasitism.

    PubMed

    Alakonya, Amos; Kumar, Ravi; Koenig, Daniel; Kimura, Seisuke; Townsley, Brad; Runo, Steven; Garces, Helena M; Kang, Julie; Yanez, Andrea; David-Schwartz, Rakefet; Machuka, Jesse; Sinha, Neelima

    2012-07-01

    Infection of crop species by parasitic plants is a major agricultural hindrance resulting in substantial crop losses worldwide. Parasitic plants establish vascular connections with the host plant via structures termed haustoria, which allow acquisition of water and nutrients, often to the detriment of the infected host. Despite the agricultural impact of parasitic plants, the molecular and developmental processes by which host/parasitic interactions are established are not well understood. Here, we examine the development and subsequent establishment of haustorial connections by the parasite dodder (Cuscuta pentagona) on tobacco (Nicotiana tabacum) plants. Formation of haustoria in dodder is accompanied by upregulation of dodder KNOTTED-like homeobox transcription factors, including SHOOT MERISTEMLESS-like (STM). We demonstrate interspecific silencing of a STM gene in dodder driven by a vascular-specific promoter in transgenic host plants and find that this silencing disrupts dodder growth. The reduced efficacy of dodder infection on STM RNA interference transgenics results from defects in haustorial connection, development, and establishment. Identification of transgene-specific small RNAs in the parasite, coupled with reduced parasite fecundity and increased growth of the infected host, demonstrates the efficacy of interspecific small RNA-mediated silencing of parasite genes. This technology has the potential to be an effective method of biological control of plant parasite infection.

  5. The Role of RNA Interference in Stem Cell Biology: Beyond the Mutant Phenotypes.

    PubMed

    Bodak, Maxime; Cirera-Salinas, Daniel; Luitz, Janina; Ciaudo, Constance

    2017-05-19

    Complex gene regulation systems ensure the maintenance of cellular identity during early development in mammals. Eukaryotic small RNAs have emerged as critical players in RNA interference (RNAi) by mediating gene silencing during embryonic stem cell self-renewal. Most of the proteins involved in the biogenesis of small RNAs are essential for proliferation and differentiation into the three germ layers of mouse embryonic stem cells. In the last decade, new functions for some RNAi proteins, independent of their roles in RNAi pathways, have been demonstrated in different biological systems. In parallel, new concepts in stem cell biology have emerged. Here, we review and integrate the current understanding of how RNAi proteins regulate stem cell identity with the new advances in the stem cell field and the recent non-canonical functions of the RNAi proteins. Finally, we propose a reevaluation of all RNAi mutant phenotypes, as non-canonical (small non-coding RNA independent) functions may contribute to the molecular mechanisms governing mouse embryonic stem cells commitment. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. RNA Interference by Single- and Double-stranded siRNA With a DNA Extension Containing a 3' Nuclease-resistant Mini-hairpin Structure.

    PubMed

    Allison, Simon J; Milner, Jo

    2014-01-07

    Selective gene silencing by RNA interference (RNAi) involves double-stranded small interfering RNA (ds siRNA) composed of single-stranded (ss) guide and passenger RNAs. siRNA is recognized and processed by Ago2 and C3PO, endonucleases of the RNA-induced silencing complex (RISC). RISC cleaves passenger RNA, exposing the guide RNA for base-pairing with its homologous mRNA target. Remarkably, the 3' end of passenger RNA can accommodate a DNA extension of 19-nucleotides without loss of RNAi function. This construct is termed passenger-3'-DNA/ds siRNA and includes a 3'-nuclease-resistant mini-hairpin structure. To test this novel modification further, we have now compared the following constructs: (I) guide-3'-DNA/ds siRNA, (II) passenger-3'-DNA/ds siRNA, (III) guide-3'-DNA/ss siRNA, and (IV) passenger-3'-DNA/ss siRNA. The RNAi target was SIRT1, a cancer-specific survival factor. Constructs I-III each induced selective knock-down of SIRT1 mRNA and protein in both noncancer and cancer cells, accompanied by apoptotic cell death in the cancer cells. Construct IV, which lacks the SIRT1 guide strand, had no effect. Importantly, the 3'-DNA mini-hairpin conferred nuclease resistance to constructs I and II. Resistance required the double-stranded RNA structure since single-stranded guide-3'-DNA/ss siRNA (construct III) was susceptible to serum nucleases with associated loss of RNAi activity. The potential applications of 3'-DNA/siRNA constructs are discussed.Molecular Therapy-Nucleic Acids (2014) 2, e141; doi:10.1038/mtna.2013.68; published online 7 January 2014.

  7. RNA Interference by Single- and Double-stranded siRNA With a DNA Extension Containing a 3' Nuclease-resistant Mini-hairpin Structure.

    PubMed

    Allison, Simon J; Milner, Jo

    2014-01-01

    Selective gene silencing by RNA interference (RNAi) involves double-stranded small interfering RNA (ds siRNA) composed of single-stranded (ss) guide and passenger RNAs. siRNA is recognized and processed by Ago2 and C3PO, endonucleases of the RNA-induced silencing complex (RISC). RISC cleaves passenger RNA, exposing the guide RNA for base-pairing with its homologous mRNA target. Remarkably, the 3' end of passenger RNA can accommodate a DNA extension of 19-nucleotides without loss of RNAi function. This construct is termed passenger-3'-DNA/ds siRNA and includes a 3'-nuclease-resistant mini-hairpin structure. To test this novel modification further, we have now compared the following constructs: (I) guide-3'-DNA/ds siRNA, (II) passenger-3'-DNA/ds siRNA, (III) guide-3'-DNA/ss siRNA, and (IV) passenger-3'-DNA/ss siRNA. The RNAi target was SIRT1, a cancer-specific survival factor. Constructs I-III each induced selective knock-down of SIRT1 mRNA and protein in both noncancer and cancer cells, accompanied by apoptotic cell death in the cancer cells. Construct IV, which lacks the SIRT1 guide strand, had no effect. Importantly, the 3'-DNA mini-hairpin conferred nuclease resistance to constructs I and II. Resistance required the double-stranded RNA structure since single-stranded guide-3'-DNA/ss siRNA (construct III) was susceptible to serum nucleases with associated loss of RNAi activity. The potential applications of 3'-DNA/siRNA constructs are discussed.

  8. RNA Interference Technology to Control Pest Sea Lampreys - A Proof-of-Concept

    PubMed Central

    Heath, George; Childs, Darcy; Docker, Margaret F.; McCauley, David W.; Whyard, Steven

    2014-01-01

    The parasitic sea lamprey (Petromyzon marinus) has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol) to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs) into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin) reduced transcript levels 2.5, 3.6, and 5.0–fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species. PMID:24505485

  9. RNA interference technology to control pest sea lampreys--a proof-of-concept.

    PubMed

    Heath, George; Childs, Darcy; Docker, Margaret F; McCauley, David W; Whyard, Steven

    2014-01-01

    The parasitic sea lamprey (Petromyzon marinus) has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol) to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs) into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin) reduced transcript levels 2.5, 3.6, and 5.0-fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species.

  10. Design and Construction of Shrimp Antiviral DNA Vaccines Expressing Long and Short Hairpins for Protection by RNA Interference.

    PubMed

    Chaudhari, Aparna; Pathakota, Gireesh-Babu; Annam, Pavan-Kumar

    2016-01-01

    DNA vaccines present the aquaculture industry with an effective and economically viable method of controlling viral pathogens that drastically affect productivity. Since specific immune response is rudimentary in invertebrates, the presence of RNA interference (RNAi) pathway in shrimps provides a promising new approach to vaccination. Plasmid DNA vaccines that express short or long double stranded RNA in vivo have shown protection against viral diseases. The design, construction and considerations for preparing such vaccines are discussed.

  11. RNA interference targeting Bcl-6 ameliorates experimental autoimmune myasthenia gravis in mice.

    PubMed

    Xin, Ning; Fu, Linlin; Shao, Zhen; Guo, Mingfeng; Zhang, Xiuying; Zhang, Yong; Dou, Changxin; Zheng, Shuangshuang; Shen, Xia; Yao, Yuanhu; Wang, Jiao; Wang, Jinhua; Cui, Guiyun; Liu, Yonghai; Geng, Deqin; Xiao, Chenghua; Zhang, Zunsheng; Dong, Ruiguo

    2014-01-01

    Follicular helper T (Tfh) cells are dedicated to providing help to B cells and are strongly associated with antibody-mediated autoimmune disease. B cell lymphoma 6 (Bcl-6) is a key transcription factor of Tfh cells, and IL-21 is known to be a critical cytokine produced by Tfh cells. We silenced Bcl-6 gene expression using RNA interference (RNAi) delivered by a lentiviral vector, to evaluate the therapeutic role of Bcl-6 short hairpin RNAs (shRNAs) in experimental autoimmune myasthenia gravis (EAMG). Our data demonstrate that CD4(+)CXCR5(+)PD-1(+) Tfh cells, Bcl-6 and IL-21 were significantly increased in EAMG mice, compared with controls. In addition, we found that frequencies of Tfh cells were positively correlated with the levels of serum anti-AChR Ab. In-vivo transduction of lenti-siRNA-Bcl6 ameliorates the severity of ongoing EAMG with decreased Tfh cells, Bcl-6 and IL-21 expression, and leads to decreased anti-AChR antibody levels. Furthermore, we found that siRNA knockdown of Bcl-6 expression increases the expression of Th1(IFN-γ, T-bet) and Th2 markers (IL-4 and GATA3), but failed to alter the expression of Th17-related markers (RORγt, IL-17) and Treg markers (FoxP3). Our study suggests that Tfh cells contribute to the antibody production and could be one of the most important T cell subsets responsible for development and progression of EAMG or MG. Bcl-6 provides a promising therapeutic target for immunotherapy not only for MG, but also for other antibody-mediated autoimmune diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Development of a microinjection system for RNA interference in the water flea Daphnia pulex

    PubMed Central

    2013-01-01

    Background The ubiquitous, freshwater microcrustacean Daphnia pulex provides a model system for both human health research and monitoring ecosystem integrity. It is the first crustacean to have a well annotated, reference genome assembly that revealed an unusually high gene count highlighted by a large gene orphanage,-i.e., previously uncharacterized genes. Daphnia are capable of either clonal or sexual reproduction, making them ideally suited for genetic manipulation, but the establishment of gene manipulation techniques is needed to accurately define gene functions. Although previous investigations developed an RNA interference (RNAi) system for one congener D. magna, these methods are not appropriate for D. pulex because of the smaller size of their early embryos. In these studies, we develop RNAi techniques for D. pulex by first determining the optimum culture conditions of their isolated embryos and then applying these conditions to the development of microinjection techniques and proof-of-principle RNAi experiments. Results We found that isolated embryos were best cultured on a 2% agar plate bathed in 60 mM sucrose dissolved in M4 media, providing optimal conditions for microinjections. Then, we injected double-stranded (ds)RNA specific to the Distal-less gene (Dll), which is a homeobox transcription factor essential for limb development in invertebrates and vertebrates. Injected embryos presented with defects in the second antenna and appendage development, and dsRNA induced the degradation of Dll mRNAs, indicating that this technique successfully inhibited transcription of the target gene. Conclusions We developed a microinjection system for RNAi studies in D. pulex. These techniques add to the growing genomic toolbox and enhance the genetic tractability of this important model for environmental, evolutionary, and developmental genomics. PMID:24188141

  13. Development of a microinjection system for RNA interference in the water flea Daphnia pulex.

    PubMed

    Hiruta, Chizue; Toyota, Kenji; Miyakawa, Hitoshi; Ogino, Yukiko; Miyagawa, Shinichi; Tatarazako, Norihisa; Shaw, Joseph R; Iguchi, Taisen

    2013-11-05

    The ubiquitous, freshwater microcrustacean Daphnia pulex provides a model system for both human health research and monitoring ecosystem integrity. It is the first crustacean to have a well annotated, reference genome assembly that revealed an unusually high gene count highlighted by a large gene orphanage,-i.e., previously uncharacterized genes. Daphnia are capable of either clonal or sexual reproduction, making them ideally suited for genetic manipulation, but the establishment of gene manipulation techniques is needed to accurately define gene functions. Although previous investigations developed an RNA interference (RNAi) system for one congener D. magna, these methods are not appropriate for D. pulex because of the smaller size of their early embryos. In these studies, we develop RNAi techniques for D. pulex by first determining the optimum culture conditions of their isolated embryos and then applying these conditions to the development of microinjection techniques and proof-of-principle RNAi experiments. We found that isolated embryos were best cultured on a 2% agar plate bathed in 60 mM sucrose dissolved in M4 media, providing optimal conditions for microinjections. Then, we injected double-stranded (ds)RNA specific to the Distal-less gene (Dll), which is a homeobox transcription factor essential for limb development in invertebrates and vertebrates. Injected embryos presented with defects in the second antenna and appendage development, and dsRNA induced the degradation of Dll mRNAs, indicating that this technique successfully inhibited transcription of the target gene. We developed a microinjection system for RNAi studies in D. pulex. These techniques add to the growing genomic toolbox and enhance the genetic tractability of this important model for environmental, evolutionary, and developmental genomics.

  14. Improvement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interference.

    PubMed

    Zhang, Zhi-Yong; Yang, Lin; Zhou, Shu-Feng; Wang, Han-Guang; Li, Wan-Chen; Fu, Feng-Ling

    2011-05-20

    To overcome the low efficiency of agronomic protection from maize dwarf mosaic disease, susceptible maize inbred line was transformed by Agrobacterium tumefaciens harboring hpRNA expression vectors containing inverted-repeat sequences of different lengths targeting coat protein gene (CP) of maize dwarf mosaic virus (MDMV). After PCR screening and Southern blotting, the flanking sequences of the integration sites were amplified by thermal asymmetric interlaced PCR (TAIL-PCR) and used for analysis of T-DNA integration patterns. The T₂ plant lines were evaluated for their MDMV resistance in field inoculation trials under two environments. Of the nineteen T₂ plant lines positive in Southern blotting, six were evaluated as resistant to MDMV, and four of them had resistance non-significantly different from the highly resistant control "H9-21", while the resistance of the other eleven was proved to be significantly improved when compared to their non-transformed parent line. These improvements in MDMV resistance were verified by the relative amount of virus CP gene expression measured by quantitative real time PCR. Comparing the results of Southern blotting and TAIL-PCR analysis, different integration patterns of one or two copies of the inverted-repeat sequences were identified from non-repetitive and repetitive sequences of the maize genome. The MDMV resistance mediated by RNA interference is relative to the length of the inverted-repeat sequence, the copy number of T-DNA integration and the repeatability of integration sites. A longer hpRNA expression construct shows more efficiency than a shorter one.

  15. Effect of North Bicyclo[3.1.0]hexane 2'-Deoxypseudosugars on RNA Interference: A Novel Class of siRNA Modification | Center for Cancer Research

    Cancer.gov

    The inside cover picture shows how siRNAs modified with North bicyclo[3.1.0]hexane 2'-deoxy-pseudosugars are able to activate the RNA interference machinery. The paper confirms that the North conformation is critical for RNAi activity.

  16. Does the Mutant CAG Expansion in Huntingtin mRNA Interfere with Exonucleolytic Cleavage of its First Exon?

    PubMed

    Liu, Wanzhao; Pfister, Edith L; Kennington, Lori A; Chase, Kathryn O; Mueller, Christian; DiFiglia, Marian; Aronin, Neil

    2016-01-01

    Silencing mutant huntingtin mRNA by RNA interference (RNAi) is a therapeutic strategy for Huntington's disease. RNAi induces specific endonucleolytic cleavage of the target HTT mRNA, followed by exonucleolytic processing of the cleaved mRNA fragments. We investigated the clearance of huntingtin mRNA cleavage products following RNAi, to find if particular huntingtin mRNA sequences persist. We especially wanted to find out if the expanded CAG increased production of a toxic mRNA species by impeding degradation of human mutant huntingtin exon 1 mRNA. Mice expressing the human mutant HTT transgene with 128 CAG repeats (YAC128 mice) were injected in the striatum with self-complementary AAV9 vectors carrying a miRNA targeting exon 48 of huntingtin mRNA (scAAV-U6-miRNA-HTT-GFP). Transgenic huntingtin mRNA levels were measured in striatal lysates after two weeks. For qPCR, we used species specific primer-probe combinations that together spanned 6 positions along the open reading frame and untranslated regions of the human huntingtin mRNA. Knockdown was also measured in the liver following tail vein injection. Two weeks after intrastriatal administration of scAAV9-U6-miRNA-HTT-GFP, we measured transgenic mutant huntingtin in striatum using probes targeting six different sites along the huntingtin mRNA. Real time PCR showed a reduction of 29% to 36% in human HTT. There was no significant difference in knockdown measured at any of the six sites, including exon 1. In liver, we observed a more pronounced HTT mRNA knockdown of 70% to 76% relative to the untreated mice, and there were also no significant differences among sites. Our results demonstrate that degradation is equally distributed across the human mutant huntingtin mRNA following RNAi-induced cleavage.

  17. Does the mutant CAG expansion in huntingtin mRNA interfere with exonucleolytic cleavage of its first exon?

    PubMed Central

    Liu, Wanzhao; Pfister, Edith L.; Kennington, Lori A.; Chase, Kathryn O.; Mueller, Christian; DiFiglia, Marian; Aronin, Neil

    2016-01-01

    Background Silencing mutant huntingtin mRNA by RNA interference (RNAi) is a therapeutic strategy for Huntington’s disease. RNAi induces specific endonucleolytic cleavage of the target HTT mRNA, followed by exonucleolytic processing of the cleaved mRNA fragments. Objectives We investigated the clearance of huntingtin mRNA cleavage products following RNAi, to find if particular huntingtin mRNA sequences persist. We especially wanted to find out if the expanded CAG increased production of a toxic mRNA species by impeding degradation of human mutant huntingtin exon 1 mRNA. Methods Mice expressing the human mutant HTT transgene with 128 CAG repeats (YAC128 mice) were injected in the striatum with self-complementary AAV9 vectors carrying a miRNA targeting exon 48 of huntingtin mRNA (scAAV-U6-miRNA-HTT-GFP). Transgenic huntingtin mRNA levels were measured in striatal lysates after two weeks. For qPCR, we used species specific primer-probe combinations that together spanned 6 positions along the open reading frame and untranslated regions of the human huntingtin mRNA. Knockdown was also measured in the liver following tail vein injection. Results Two weeks after intrastriatal administration of scAAV9-U6-miRNA-HTT-GFP, we measured transgenic mutant huntingtin in striatum using probes targeting six different sites along the huntingtin mRNA. Real time PCR showed a reduction of 29% to 36% in human HTT. There was no significant difference in knockdown measured at any of the six sites, including exon 1. In liver, we observed a more pronounced HTT mRNA knockdown of 70% to 76% relative to the untreated mice, and there were also no significant differences among sites. Conclusions Our results demonstrate that degradation is equally distributed across the human mutant huntingtin mRNA following RNAi-induced cleavage. PMID:27003665

  18. In vivo silencing of aquaporin-1 by RNA interference inhibits angiogenesis in the chick embryo chorioallantoic membrane assay.

    PubMed

    Camerino, G M; Nicchia, G P; Dinardo, M M; Ribatti, D; Svelto, M; Frigeri, A

    2006-10-30

    Aquaporin-1 (AQP1) is a water channel protein mainly expressed in endothelial and epithelial cells of many tissues, including the vasculature where it serves to increase cell membrane water permeability. Previous studies in active multiple myeloma patients and in AQP1 KO mice indicated an involvement of AQP1 in physiological and tumor angiogenesis. To understand the physiological role of AQP1 in angiogenesis, we used a 21-nucleotide small interfering RNA duplexes (siRNA) to knockdown AQP1 in the chick embryo chorioallantoic membrane (CAM), a commonly used in vivo assay to study both angiogenic and angiostatic molecules. Chicken AQP1 sequence was identified and utilized to synthesize a siRNA directed to the AQP1 sequence. We then tested the efficiency of the siRNA in vitro, using an AQP1 transfected cell line. The level of AQP1 protein reduction obtained using siRNA was 98 % and 92 % after 1 and 2 day transfection respectively. RNA interference experiments were then performed in vivo by using the CAM assay. Results showed that after 4 days of treatment, AQP1 siRNA was able to strongly inhibit angiogenesis. This is the first study showing the in vivo use of RNA interference technique in the CAM assay. Our results strongly support the hypothesis that AQP1 could have a key role in physiological and pathological angiogenesis.

  19. RNA Interference Based Approach to Down Regulate Osmoregulators of Whitefly (Bemisia tabaci): Potential Technology for the Control of Whitefly

    USDA-ARS?s Scientific Manuscript database

    Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) could offer potential for insect pest management. Insects feeding exclusively on plant sap depend on osmotic pressure...

  20. RNA interference as a method for target-site screening in the Western Corn Rootworm, Diabrotica virgifera virgifera

    USDA-ARS?s Scientific Manuscript database

    RNA interference (RNAi) is one of the most powerful and extraordinarily-specific means by which to silence genes. The ability of RNAi to silence genes makes it possible to ascertain function from genomic data, thereby making it an excellent choice for target-site screening. To test the efficacy of...

  1. Interchangeable SF3B1 inhibitors interfere with pre-mRNA splicing at multiple stages.

    PubMed

    Effenberger, Kerstin A; Urabe, Veronica K; Prichard, Beth E; Ghosh, Arun K; Jurica, Melissa S

    2016-03-01

    The protein SF3B1 is a core component of the spliceosome, the large ribonucleoprotein complex responsible for pre-mRNA splicing. Interest in SF3B1 intensified when tumor exome sequencing revealed frequent specific SF3B1 mutations in a variety of neoplasia and when SF3B1 was identified as the target of three different cancer cell growth inhibitors. A better mechanistic understanding of SF3B1's role in splicing is required to capitalize on these discoveries. Using the inhibitor compounds, we probed SF3B1 function in the spliceosome in an in vitro splicing system. Formerly, the inhibitors were shown to block early steps of spliceosome assembly, consistent with a previously determined role of SF3B1 in intron recognition. We now report that SF3B1 inhibitors also interfere with later events in the spliceosome cycle, including exon ligation. These observations are consistent with a requirement for SF3B1 throughout the splicing process. Additional experiments aimed at understanding how three structurally distinct molecules produce nearly identical effects on splicing revealed that inactive analogs of each compound interchangeably compete with the active inhibitors to restore splicing. The competition indicates that all three types of compounds interact with the same site on SF3B1 and likely interfere with its function by the same mechanism, supporting a shared pharmacophore model. It also suggests that SF3B1 inhibition does not result from binding alone, but is consistent with a model in which the compounds affect a conformational change in the protein. Together, our studies reveal new mechanistic insight into SF3B1 as a principal player in the spliceosome and as a target of inhibitor compounds.

  2. [Effects of expression silencing of MAGE3 by RNA interference on location and metastasis of lung carcinoma cells].

    PubMed

    Zhang, Guo-jun; Zhao, Guo-qiang; Hu, Jun; Zhang, Shi-jie

    2006-06-13

    To construct small interfering RNA (siRNA) expression vectors targeting human MAGE3 gene and to observe the effects of gene silencing of MAGE3 by RNA interference on location and metastasis of lung carcinoma cells. MAGE3 mRNA targeted hairpin siRNA was devised and the oligonucleotide strands of DNA fragments encoding the above siRNA were synthesized. After annealing of the complementary strands, the DNA fragments were cloned into pSUPERneoGFP, followed by amplification and DNA sequencing, then transfected into human lung carcinoma NCI-H446. The expression of MAGE3 gene mRNA and protein were examined by RT-PCR and Western blotting. Colony formation assay and Boyden chamber assay were performed to detect the effects of MAGE3 on colony formation and metastasis. The DNA fragments encoding MAGE3-targeted siRNA were cloned into the pSUPERneoGFP and confirmed by restrictive enzyme digestion and DNA sequencing. RT-PCR and Western blotting revealed a strongly decreased expression level of MAGE3. The lung carcinoma cells transfected by siRNA group was significantly lower than others, an effect on its colony formation and invasiveness. The colony formation of lung carcinoma cells transfected by siRNA in soft agar and the number of cells penetrating matrigel both reduced, there is significant difference compared with untransfected group and transfected empty vector. An siRNA vector targeting human MAGE3 gene has been successfully constructed. Expression silencing of MAGE3 by RNA interference could reduce location and metastasis of lung carcinoma cells effectively.

  3. Systemic RNA-interference in the honeybee Apis mellifera: tissue dependent uptake of fluorescent siRNA after intra-abdominal application observed by laser-scanning microscopy.

    PubMed

    Jarosch, A; Moritz, R F A

    2011-07-01

    RNA interference has been successfully used in adult honeybees, but there are only few reports about abdominal application of dsRNA/siRNA which have reached more distant tissues than the fat body. We studied systemic RNAi in honeybees by injecting fluorescent siRNA of the ubiquitously expressed honeybee homologue of the Glycerol-3-Phosphate Dehydrogenase (amGpdh) into the abdomens of adult bees and followed them by laser scanning microscopy and qPCR. The fat body was the sole tissue emitting fluorescence and showing a decreased gene expression, whereas the siRNA had apparently not reached the other tissues. Therefore, we conclude that certain genes in other tissues than the fat body cannot be easily reached by injecting siRNA into the body cavity. In particular, the lack of amGpdh knock down in ovaries after amGpdh dsRNA injection, supports that in some cases it may be particularly difficult to interfere with gene expression in ovaries by intra-abdominal injection. In these cases alternative inhibition techniques may be required to achieve an organismic non-lethal disruption of transcription. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Identification of protective antigens by RNA interference for control of the lone star tick, Amblyomma americanum.

    PubMed

    de la Fuente, José; Manzano-Roman, Raúl; Naranjo, Victoria; Kocan, Katherine M; Zivkovic, Zorica; Blouin, Edmour F; Canales, Mario; Almazán, Consuelo; Galindo, Ruth C; Step, Douglas L; Villar, Margarita

    2010-02-17

    The lone star tick, Amblyomma americanum, vectors pathogens of emerging diseases of humans and animals in the United States. Currently, measures are not available for effective control of A. americanum infestations. Development of vaccines directed against tick proteins may reduce tick infestations and the transmission of tick-borne pathogens. However, the limiting step in tick vaccine development has been the identification of tick protective antigens. Herein, we report the application of RNA interference (RNAi) for screening an A. americanum cDNA library for discovery of tick protective antigens that reduce tick survival and weights after feeding. Four cDNA clones, encoding for putative threonyl-tRNA synthetase (2C9), 60S ribosomal proteins L13a (2D10) and L13e (2B7), and interphase cytoplasm foci protein 45 (2G7), were selected for vaccine studies in cattle, along with subolesin, a tick protective protein identified previously. In vaccinated cattle, an overall efficacy (E)>30% was obtained when considering the vaccine effect on both nymphs and adults, but only 2D10, 2G7 and subolesin affected both tick stages. The highest efficacy of control for adult ticks (E>55%) was obtained in cattle vaccinated with recombinant 2G7 or subolesin. These collective results demonstrated the feasibility of developing vaccines for the control of lone star tick infestations. The use of RNAi for identification of tick protective antigens proved to be a rapid and cost-effective tool for discovery of candidate vaccine antigens, and this approach could likely be applied to other parasites of veterinary and medical importance.

  5. Computational design of antiviral RNA interference strategies that resist human immunodeficiency virus escape.

    PubMed

    Leonard, Joshua N; Schaffer, David V

    2005-02-01

    Recently developed antiviral strategies based upon RNA interference (RNAi), which harnesses an innate cellular system for the targeted down-regulation of gene expression, appear highly promising and offer alternative approaches to conventional highly active antiretroviral therapy or efforts to develop an AIDS vaccine. However, RNAi is faced with several challenges that must be overcome to fully realize its promise. Specifically, it degrades target RNA in a highly sequence-specific manner and is thus susceptible to viral mutational escape, and there are also challenges in delivery systems to induce RNAi. To aid in the development of anti-human immunodeficiency virus (anti-HIV) RNAi therapies, we have developed a novel stochastic computational model that simulates in molecular-level detail the propagation of an HIV infection in cells expressing RNAi. The model provides quantitative predictions on how targeting multiple locations in the HIV genome, while keeping the overall RNAi strength constant, significantly improves efficacy. Furthermore, it demonstrates that delivery systems must be highly efficient to preclude leaving reservoirs of unprotected cells where the virus can propagate, mutate, and eventually overwhelm the entire system. It also predicts how therapeutic success depends upon a relationship between RNAi strength and delivery efficiency and uniformity. Finally, targeting an essential viral element, in this case the HIV TAR region, can be highly successful if the RNAi target sequence is correctly selected. In addition to providing specific predictions for how to optimize a clinical therapy, this system may also serve as a future tool for investigating more fundamental questions of viral evolution.

  6. Transcriptome analysis in cotton boll weevil (Anthonomus grandis) and RNA interference in insect pests.

    PubMed

    Firmino, Alexandre Augusto Pereira; Fonseca, Fernando Campos de Assis; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; Antonino de Souza, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas-Jr, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.

  7. Transgenic RNA interference (RNAi)-derived field resistance to cassava brown streak disease.

    PubMed

    Ogwok, Emmanuel; Odipio, John; Halsey, Mark; Gaitán-Solís, Eliana; Bua, Anton; Taylor, Nigel J; Fauquet, Claude M; Alicai, Titus

    2012-12-01

    Cassava brown streak disease (CBSD), caused by the Ipomoviruses Cassava brown streak virus (CBSV) and Ugandan Cassava brown streak virus (UCBSV), is considered to be an imminent threat to food security in tropical Africa. Cassava plants were transgenically modified to generate small interfering RNAs (siRNAs) from truncated full-length (894-bp) and N-terminal (402-bp) portions of the UCBSV coat protein (ΔCP) sequence. Seven siRNA-producing lines from each gene construct were tested under confined field trials at Namulonge, Uganda. All nontransgenic control plants (n = 60) developed CBSD symptoms on aerial tissues by 6 months after planting, whereas plants transgenic for the full-length ΔCP sequence showed a 3-month delay in disease development, with 98% of clonal replicates within line 718-001 remaining symptom free over the 11-month trial. Reverse transcriptase-polymerase chain reaction (RT-PCR) diagnostics indicated the presence of UCBSV within the leaves of 57% of the nontransgenic controls, but in only two of 413 plants tested (0.5%) across the 14 transgenic lines. All transgenic plants showing CBSD were PCR positive for the presence of CBSV, except for line 781-001, in which 93% of plants were confirmed to be free of both pathogens. At harvest, 90% of storage roots from nontransgenic plants were severely affected by CBSD-induced necrosis. However, transgenic lines 718-005 and 718-001 showed significant suppression of disease, with 95% of roots from the latter line remaining free from necrosis and RT-PCR negative for the presence of both viral pathogens. Cross-protection against CBSV by siRNAs generated from the full-length UCBSV ΔCP confirms a previous report in tobacco. The information presented provides proof of principle for the control of CBSD by RNA interference-mediated technology, and progress towards the potential control of this damaging disease.

  8. Transcriptome Analysis in Cotton Boll Weevil (Anthonomus grandis) and RNA Interference in Insect Pests

    PubMed Central

    Coelho, Roberta Ramos; Antonino de Souza Jr, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas-Jr, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families’ data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects. PMID:24386449

  9. Evaluation of potential RNA-interference-target genes to control cotton mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcuidae).

    PubMed

    Khan, Arif M; Ashfaq, Muhammad; Khan, Azhar A; Naseem, Muhammad T; Mansoor, Shahid

    2017-03-18

    RNA interference (RNAi) of vital insect genes is a potential tool for targeted pest control. However, selection of the right target genes is a challenge because the RNAi efficacy is known to vary among insect species. Cotton mealybug, Phenacoccus solenopsis, is a phloem-feeding economically important crop pest. We evaluated the RNAi of two vital genes, Bursicon (PsBur) and V-ATPase (PsV-ATPase) as potential targets in P. solenopsis for its control. PCR fragments of PsBur and PsV-ATPase were amplified using cDNA synthesized from the total RNA. The PCR amplicons were cloned into Potato virus X (PVX) to develop recombinant PVX for the inoculation of Nicotiana tabacum plants for bioassays with healthy P. solenopsis. Reverse-transcription-polymerase chain reaction (RT-PCR) was used to validate the expression of transgenes in the recombinant-PVX-inoculated plants (treated), and suppression of the target genes in the mealybugs exposed to them. The RT-PCR confirmed the expression of transgenes in the treated plants. Mealybug individuals on treated plants either died or showed physical deformities. Further, the population of mealybug was significantly reduced by feeding on N. tabacum expressing RNAi triggers against PsBur and PsV-ATPase. The results conclude that RNAi is activated in P. solenopsis by feeding on N. tabacum expressing RNAi triggering elements of PsBur and PsV-ATPase genes through recombinant PVX vector. Further, V-ATPase and Bursicon genes are potential targets for RNAi mediated control of P. solenopsis. This article is protected by copyright. All rights reserved.

  10. Phenotypic changes associated with RNA interference silencing of chalcone synthase in apple (Malus × domestica).

    PubMed

    Dare, Andrew P; Tomes, Sumathi; Jones, Midori; McGhie, Tony K; Stevenson, David E; Johnson, Ross A; Greenwood, David R; Hellens, Roger P

    2013-05-01

    We have identified in apple (Malus × domestica) three chalcone synthase (CHS) genes. In order to understand the functional redundancy of this gene family RNA interference knockout lines were generated where all three of these genes were down-regulated. These lines had no detectable anthocyanins and radically reduced concentrations of dihydrochalcones and flavonoids. Surprisingly, down-regulation of CHS also led to major changes in plant development, resulting in plants with shortened internode lengths, smaller leaves and a greatly reduced growth rate. Microscopic analysis revealed that these phenotypic changes extended down to the cellular level, with CHS-silenced lines showing aberrant cellular organisation in the leaves. Fruit collected from one CHS-silenced line was smaller than the 'Royal Gala' controls, lacked flavonoids in the skin and flesh and also had changes in cell morphology. Auxin transport experiments showed increased rates of auxin transport in a CHS-silenced line compared with the 'Royal Gala' control. As flavonoids are well known to be key modulators of auxin transport, we hypothesise that the removal of almost all flavonoids from the plant by CHS silencing creates a vastly altered environment for auxin transport to occur and results in the observed changes in growth and development. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.

  11. RNA interference improves myopathic phenotypes in mice over-expressing FSHD region gene 1 (FRG1).

    PubMed

    Wallace, Lindsay M; Garwick-Coppens, Sara E; Tupler, Rossella; Harper, Scott Q

    2011-11-01

    Muscular dystrophies, and other diseases of muscle, arise from recessive and dominant gene mutations. Gene replacement strategies may be beneficial for the former, while gene silencing approaches may provide treatment for the latter. In the last two decades, muscle-directed gene therapies were primarily focused on treating recessive disorders. This disparity at least partly arose because feasible mechanisms to silence dominant disease genes lagged behind gene replacement strategies. With the discovery of RNA interference (RNAi) and its subsequent development as a promising new gene silencing tool, the landscape has changed. In this study, our objective was to demonstrate proof-of-principle for RNAi therapy of a dominant myopathy in vivo. We tested the potential of adeno-associated viral (AAV)-delivered therapeutic microRNAs, targeting the human Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1), to correct myopathic features in mice expressing toxic levels of human FRG1 (FRG1(-high) mice). We found that FRG1 gene silencing improved muscle mass, strength, and histopathological abnormalities associated with muscular dystrophy in FRG1(-high) mice, thereby demonstrating therapeutic promise for treatment of dominantly inherited myopathies using RNAi. This approach potentially applies to as many as 29 different gene mutations responsible for myopathies inherited as dominant disorders.

  12. Molecular Dissection of Cytokinesis by RNA Interference in Drosophila Cultured Cells

    PubMed Central

    Somma, Maria Patrizia; Fasulo, Barbara; Cenci, Giovanni; Cundari, Enrico; Gatti, Maurizio

    2002-01-01

    We have used double-stranded RNA-mediated interference (RNAi) to study Drosophila cytokinesis. We show that double-stranded RNAs for anillin, acGAP, pavarotti, rho1, pebble, spaghetti squash, syntaxin1A, and twinstar all disrupt cytokinesis in S2 tissue culture cells, causing gene-specific phenotypes. Our phenotypic analyses identify genes required for different aspects of cytokinesis, such as central spindle formation, actin accumulation at the cell equator, contractile ring assembly or disassembly, and membrane behavior. Moreover, the cytological phenotypes elicited by RNAi reveal simultaneous disruption of multiple aspects of cytokinesis. These phenotypes suggest interactions between central spindle microtubules, the actin-based contractile ring, and the plasma membrane, and lead us to propose that the central spindle and the contractile ring are interdependent structures. Finally, our results indicate that RNAi in S2 cells is a highly efficient method to detect cytokinetic genes, and predict that genome-wide studies using this method will permit identification of the majority of genes involved in Drosophila mitotic cytokinesis. PMID:12134082

  13. Increased keratinocyte proliferation initiated through downregulation of desmoplakin by RNA interference

    SciTech Connect

    Wan Hong . E-mail: hong.wan@cancer.org.uk; South, Andrew P.; Hart, Ian R.

    2007-07-01

    The intercellular adhesive junction desmosomes are essential for the maintenance of tissue structure and integrity in skin. Desmoplakin (Dp) is a major obligate plaque protein which plays a fundamental role in anchoring intermediate filaments to desmosomal cadherins. Evidence from hereditary human disease caused by mutations in the gene encoding Dp, e.g. Dp haploinsufficiency, suggests that alterations in Dp expression result not only in the disruption of tissue structure and integrity but also could evoke changes in keratinocyte proliferation. We have used transient RNA interference (RNAi) to downregulate Dp specifically in HaCaT keratinocytes. We showed that this Dp downregulation also caused reduced expression of several other desmosomal proteins. Increased cell proliferation and enhanced G{sub 1}-to-S-phase entry in the cell cycle, as monitored by colonial cellular density and BrdU incorporation, were seen in Dp RNAi-treated cells. These proliferative changes were associated with elevated phospho-ERK1/2 and phospho-Akt levels. Furthermore, this increase in phospho-ERK/1/2 and phospho-Akt levels was sustained in Dp RNAi-treated cells at confluence whereas in control cells there was a significant reduction in phosphorylation of ERK1/2. This study indicates that Dp may participate in the regulation of keratinocyte cell proliferation by, in part at least, regulating cell cycle progression.

  14. RNA interference: Applications and advances in insect toxicology and insect pest management.

    PubMed

    Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan

    2015-05-01

    Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Applications of RNA interference-based gene silencing in animal agriculture.

    PubMed

    Long, Charles R; Tessanne, Kimberly J; Golding, Michael C

    2010-01-01

    Classical genetic selection, recently aided by genomic selection tools, has been successful in achieving remarkable progress in livestock improvement. However, genetic selection has led to decreased genetic diversity and, in some cases, acquisition of undesirable traits. In order to meet the increased demands of our expanding population, new technologies and practices must be developed that contend with zoonotic and animal disease, environmental impacts of large farming operations and the increased food and fibre production needed to feed and clothe our society. Future increases in productivity may be dependent upon the acquisition of genetic traits not currently encoded by the genomes of animals used in standard agricultural practice, thus making classical genetic selection impossible. Genetic engineering of livestock is commonly used to produce pharmaceuticals or to impart enhanced production characteristics to animals, but has also demonstrated its usefulness in producing animals with disease resistance. However, significant challenges remain because it has been more difficult to produce animals in which specific genes have been removed. It is now possible to modify livestock genomes to block expression of endogenous and exogenous genes (such as those expressed following virus infection). In the present review, we discuss mechanisms of silencing gene expression via the biology of RNA interference (RNAi), the technology of activating the RNAi pathway and the application of this technology to enhance livestock production through increased production efficiency and prevention of disease. An increased demand for sustainable food production is at the forefront of scientific challenges and RNAi technology will undoubtedly play a key role.

  16. RNA Interference Inhibits DUX4-induced Muscle Toxicity In Vivo: Implications for a Targeted FSHD Therapy

    PubMed Central

    Wallace, Lindsay M; Liu, Jian; Domire, Jacqueline S; Garwick-Coppens, Sara E; Guckes, Susan M; Mendell, Jerry R; Flanigan, Kevin M; Harper, Scott Q.

    2012-01-01

    No treatment exists for facioscapulohumeral muscular dystrophy (FSHD), one of the most common inherited muscle diseases. Although FSHD can be debilitating, little effort has been made to develop targeted therapies. This lack of focus on targeted FSHD therapy perpetuated because the genes and pathways involved in the disorder were not understood. Now, more than 2 decades after efforts to decipher the root cause of FSHD began, this barrier to translation is finally lowering. Specifically, several recent studies support an FSHD pathogenesis model involving overexpression of the myopathic DUX4 gene. DUX4 inhibition has therefore emerged as a promising therapeutic strategy for FSHD. In this study, we tested a preclinical RNA interference (RNAi)-based DUX4 gene silencing approach as a prospective treatment for FSHD. We found that adeno-associated viral (AAV) vector-delivered therapeutic microRNAs corrected DUX4-associated myopathy in mouse muscle. These results provide proof-of-principle for RNAi therapy of FSHD through DUX4 inhibition. PMID:22508491

  17. Targeting Th17 Cells with Small Molecules and Small Interference RNA.

    PubMed

    Lin, Hui; Song, Pingfang; Zhao, Yi; Xue, Li-Jia; Liu, Yi; Chu, Cong-Qiu

    2015-01-01

    T helper 17 (Th17) cells play a central role in inflammatory and autoimmune diseases via the production of proinflammatory cytokines interleukin- (IL-) 17, IL-17F, and IL-22. Anti-IL-17 monoclonal antibodies show potent efficacy in psoriasis but poor effect in rheumatoid arthritis (RA) and Crohn's disease. Alternative agents targeting Th17 cells may be a better way to inhibit the development and function of Th17 cells than antibodies of blocking a single effector cytokine. Retinoic acid-related orphan receptor gamma t (RORγt) which acts as the master transcription factor of Th17 differentiation has been an attractive pharmacologic target for the treatment of Th17-mediated autoimmune disease. Recent progress in technology of chemical screen and engineering nucleic acid enable two new classes of therapeutics targeting RORγt. Chemical screen technology identified several small molecule specific inhibitors of RORγt from a small molecule library. Systematic evolution of ligands by exponential enrichment (SELEX) technology enabled target specific aptamers to be isolated from a random sequence oligonucleotide library. In this review, we highlight the development and therapeutic potential of small molecules inhibiting Th17 cells by targeting RORγt and aptamer mediated CD4(+) T cell specific delivery of small interference RNA against RORγt gene expression to inhibit pathogenic effector functions of Th17 lineage.

  18. RNA interference unveils the importance of Pseudotrichonympha grassii cellobiohydrolase, a protozoan exoglucanase, in termite cellulose degradation.

    PubMed

    Liu, X-J; Xie, L; Liu, N; Zhan, S; Zhou, X-G; Wang, Q

    2017-04-01

    Based on prior work, a cellulase from glycosyl hydrolase family 7 (GHF7) was identified and found to be expressed at a high level in Coptotermes formosanus. To determine the function of GHF7 family members in vivo, we used RNA interference (RNAi) to functionally analyse the exoglucanase gene Pseudotrichonympha grassii cellobiohydrolase gene (PgCBH), which was highly expressed in Pseudotrichonympha grassii, a flagellate found in the hindgut of C. formosanus. In this study, the expression level of PgCBH was down-regulated by RNAi, causing the death of P. grassii, but no effect was observed for other flagellates found in C. formosanus. RNAi also resulted in significantly reduced exoglucanase activity, and no effect was observed for endoglucanase and β-glucosidase activities. This result demonstrated that the PgCBH gene plays a role in the protist lignocellulolytic process and is also important for host survival. PgCBH can be used as a target gene and has potential as a bioinsecticide for use against termites. © 2016 The Royal Entomological Society.

  19. Promise and challenge of RNA interference-based therapy for cancer.

    PubMed

    Petrocca, Fabio; Lieberman, Judy

    2011-02-20

    Cancer therapeutics still fall far short of our goals for treating patients with locally advanced or metastatic disease. Until recently, almost all cancer drugs were crude cytotoxic agents that discriminate poorly between cancer cells and normally dividing cells. The development of targeted biologics that recognize tumor cell surface antigens and of specific inhibitors of pathways dysregulated in cancer cells or normal cellular pathways on which a cancer cell differentially depends has provided hope for converting our increasing understanding of cellular transformation into intelligently designed anticancer therapeutics. However, new drug development is painfully slow, and the pipeline of new therapeutics is thin. The discovery of RNA interference (RNAi), a ubiquitous cellular pathway of gene regulation that is dysregulated in cancer cells, provides an exciting opportunity for relatively rapid and revolutionary approaches to cancer drug design. Small RNAs that harness the RNAi machinery may become the next new class of drugs for treating a variety of diseases. Although it has only been 9 years since RNAi was shown to work in mammalian cells, about a dozen phase I to III clinical studies have already been initiated, including four for cancer. So far there has been no unexpected toxicity and suggestions of benefit in one phase II study. However, the obstacles for RNAi-based cancer therapeutics are substantial. This article will discuss how the endogenous RNAi machinery might be harnessed for cancer therapeutics, why academic researchers and biotech and pharmaceutical companies are so excited, and what the obstacles are and how they might be overcome.

  20. A genome-wide RNA interference screen identifies two novel components of the metazoan secretory pathway

    PubMed Central

    Wendler, Franz; Gillingham, Alison K; Sinka, Rita; Rosa-Ferreira, Cláudia; Gordon, David E; Franch-Marro, Xavier; Peden, Andrew A; Vincent, Jean-Paul; Munro, Sean

    2010-01-01

    Genetic screens in the yeast Saccharomyces cerevisiae have identified many proteins involved in the secretory pathway, most of which have orthologues in higher eukaryotes. To investigate whether there are additional proteins that are required for secretion in metazoans but are absent from yeast, we used genome-wide RNA interference (RNAi) to look for genes required for secretion of recombinant luciferase from Drosophila S2 cells. This identified two novel components of the secretory pathway that are conserved from humans to plants. Gryzun is distantly related to, but distinct from, the Trs130 subunit of the TRAPP complex but is absent from S. cerevisiae. RNAi of human Gryzun (C4orf41) blocks Golgi exit. Kish is a small membrane protein with a previously uncharacterised orthologue in yeast. The screen also identified Drosophila orthologues of almost 60% of the yeast genes essential for secretion. Given this coverage, the small number of novel components suggests that contrary to previous indications the number of essential core components of the secretory pathway is not much greater in metazoans than in yeasts. PMID:19942856

  1. Variable photosynthetic roles of two leaf-type ferredoxins in arabidopsis, as revealed by RNA interference.

    PubMed

    Hanke, Guy Thomas; Hase, Toshiharu

    2008-01-01

    Ferredoxin (Fd) is the soluble protein that accepts electrons from photosystem I (PSI) and makes them available to stromal enzymes in higher plant chloroplasts. In linear electron flow, Fd mainly donates electrons to Fd:NADPH reductase (FNR) which generates NADPH for use in the Calvin cycle, but Fd may also return electrons to the thylakoid plastoquinone pool, forming a cyclic electron flow. Many higher plants contain two different photosynthetic Fd proteins, but there are no conserved sequence differences that allow their division into evolutionary groups. In the model C3 photosynthesizing dicot, Arabidopsis thaliana, there are two such photosynthetic Fds, and we have exploited RNA interference (RNAi) techniques to specifically decrease transcript abundance of different Fds in this plant. Surprisingly, the perturbation of photosynthesis, as measured by cholorophyll fluorescence, in RNAi lines of the two different photosynthetic Fds shows opposite trends. Linear electron flow is retarded in lines with lower Fd2 (the most abundant Fd species) levels and under certain circumstances enhanced in lines with lower Fd1 (the minor isoprotein) levels. These data are evidences for at least partially differentiated roles of Fd1 and Fd2 in photosynthetic electron transfer, possibly in the partition of electrons into linear and cyclic electron flow.

  2. RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii.

    PubMed

    Moellering, Eric R; Benning, Christoph

    2010-01-01

    Eukaryotic cells store oils in the chemical form of triacylglycerols in distinct organelles, often called lipid droplets. These dynamic storage compartments have been intensely studied in the context of human health and also in plants as a source of vegetable oils for human consumption and for chemical or biofuel feedstocks. Many microalgae accumulate oils, particularly under conditions limiting to growth, and thus have gained renewed attention as a potentially sustainable feedstock for biofuel production. However, little is currently known at the cellular or molecular levels with regard to oil accumulation in microalgae, and the structural proteins and enzymes involved in the biogenesis, maintenance, and degradation of algal oil storage compartments are not well studied. Focusing on the model green alga Chlamydomonas reinhardtii, the accumulation of triacylglycerols and the formation of lipid droplets during nitrogen deprivation were investigated. Mass spectrometry identified 259 proteins in a lipid droplet-enriched fraction, among them a major protein, tentatively designated major lipid droplet protein (MLDP). This protein is specific to the green algal lineage of photosynthetic organisms. Repression of MLDP gene expression using an RNA interference approach led to increased lipid droplet size, but no change in triacylglycerol content or metabolism was observed.

  3. RNA interference in the treatment of renal stone disease: Current status and future potentials.

    PubMed

    Wood, Kyle D; Holmes, Ross P; Knight, John

    2016-12-01

    Recent advances in RNA interference (RNAi) delivery and chemistry have resulted in the development of more than 20 RNAi-based therapeutics, several of which are now in Phase III trials. The most advanced clinical trials have utilized modifications such as lipid nanoparticles and conjugation to N-acetyl galactosamine to treat liver specific diseases. Recent reports have suggested that reducing endogenous oxalate synthesis by RNAi may be a safe and effective therapy for patients with the rare disease, Primary Hyperoxaluria (PH). Our current understanding of endogenous oxalate synthesis indicates that two enzymes, hydroxyproline dehydrogenase and glycolate oxidase (GO), are suitable targets for oxalate reduction therapy. Our studies in a mouse model of PH type 1 have demonstrated that reducing the expression of either of these enzymes in the liver with RNAi significantly reduces urinary oxalate excretion. Early human phase clinical trials are now under way in PH1 patients with RNAi targeting GO. Future elaboration of other contributors of stone disease and improvement in tissue specific targeting with RNAi may lead to further therapies that target idiopathic stone disease. Published by Elsevier Ltd.

  4. RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development.

    PubMed

    Ivashuta, Sergey; Liu, Jinyuan; Liu, Junqi; Lohar, Dasharath P; Haridas, Sajeet; Bucciarelli, Bruna; VandenBosch, Kathryn A; Vance, Carroll P; Harrison, Maria J; Gantt, J Stephen

    2005-11-01

    Changes in cellular or subcellular Ca2+ concentrations play essential roles in plant development and in the responses of plants to their environment. However, the mechanisms through which Ca2+ acts, the downstream signaling components, as well as the relationships among the various Ca2+-dependent processes remain largely unknown. Using an RNA interference-based screen for gene function in Medicago truncatula, we identified a gene that is involved in root development. Silencing Ca2+-dependent protein kinase1 (CDPK1), which is predicted to encode a Ca2+-dependent protein kinase, resulted in significantly reduced root hair and root cell lengths. Inactivation of CDPK1 is also associated with significant diminution of both rhizobial and mycorrhizal symbiotic colonization. Additionally, microarray analysis revealed that silencing CDPK1 alters cell wall and defense-related gene expression. We propose that M. truncatula CDPK1 is a key component of one or more signaling pathways that directly or indirectly modulates cell expansion or cell wall synthesis, possibly altering defense gene expression and symbiotic interactions.

  5. Suppression of RNA interference on expression of c-myc of SKOV3 ovarian carcinoma cell line.

    PubMed

    Ai, Z-H; Wang, J; Xu, Y-L; Zhu, X-L; Teng, Y-C

    2013-11-01

    To investigate suppression of RNA interference (RNAi) on expression of c-myc of SKOV3 ovarian carcinoma cell line. The c-myc -siRNA was designed and synthesized, then transfected to SKOV3 ovarian carcinoma cell lines. The cell lines were divided into four groups, including the blank control group, the siRNA transfection group, the mock transfection group and the negative control group. The expression level of c-myc mRNA and protein were detected by RT-PCR and Western blotting, respectively. The growth and proliferation of SKOV3 ovarian carcinoma cell lines were observed with CCK-8 assay. After transfected with c-myc -siRNA, the expression level of c-myc mRNA and protein were down-regulated, the growth and proliferation of SKOV3 ovarian carcinoma cell line were inhibited in the siRNA transfection group. There were significant differences between the siRNA transfection group and the blank control group (p < 0.05). The silencing efficiency was 77.78%, the protein suppression rate was 67.78%, and the inhibition ratio was 56.35% by CCK-8 assay in siRNA transfection group. The down-regulation of c-myc expression of SKOV3 ovarian carcinoma cell line by c-myc -siRNA can lead to the suppression of cancer cell proliferation. The small interfering RNAs technique can inhibit the proliferation of carcinoma cell by oncogene silencing.

  6. Functional analysis of two polygalacturonase genes in Apolygus lucorum associated with eliciting plant injury using RNA interference.

    PubMed

    Zhang, Wanna; Liu, Bing; Lu, Yanhui; Liang, Gemei

    2017-04-01

    Salivary enzymes of many piercing-sucking insects lead to host plant injury. The salivary enzymes, polygalacturonase (PGs), act in insect feeding. PG family genes have been cloned from the mirid bug Apolygus lucorum, a pest of cotton and other host crops in China. We investigated the function of two PG genes that are highly expressed in A. lucorum nymphs (PG3-4) and adults (PG3-5), using siRNA injection-based RNA interference (RNAi). Accumulation of mRNA encoding both genes and their cognate proteins was significantly reduced (>60%) in experimental compared control green fluorescent protein (GFP) siRNA-treated mirids at 48 h post injection. Injury levels of cotton buds were also significantly reduced after injecting saliva isolated from PG3-4 and PG3-5 siRNA-treated A. lucorum. These results demonstrate that these two PG act in A. lucorum elicitation of plant injury.

  7. Dicer and Argonaute Genes Involved in RNA Interference in the Entomopathogenic Fungus Metarhizium robertsii.

    PubMed

    Meng, Huimin; Wang, Zhangxun; Wang, Yulong; Zhu, Hong; Huang, Bo

    2017-04-01

    RNA interference (RNAi) is a gene-silencing mechanism that plays an important role in gene regulation in a number of eukaryotic organisms. Two core components, Dicer and Argonaute, are central in the RNAi machinery. However, the physiological roles of Dicer and Argonaute in the entomopathogenic fungus Metarhizium robertsii have remained unclear. Here, the roles of genes encoding Dicer (M. robertsiidcl1 [Mrdcl1] and Mrdcl2) and Argonaute (Mrago1 and Mrago2) proteins in M. robertsii were investigated. The results showed that the Dicer-like protein MrDCL2 and Argonaute protein MrAGO1 are the major components of the RNAi process occurring in M. robertsii The Dicer and Argonaute genes were not involved in the regulation of growth and diverse abiotic stress response in M. robertsii under the tested conditions. Moreover, our results showed that the Dicer and Argonaute gene mutants demonstrated reduced abilities to produce conidia, compared to the wild type (WT) and the gene-rescued mutant. In particular, the conidial yields in the Δdcl2 and Δago1 mutants were reduced by 55.8% and 59.3%, respectively, compared with those from the control strains. Subsequently, for the WT and Δdcl2 mutant strains, digital gene expression (DGE) profiling analysis of the stage of mycelium growth and conidiogenesis revealed that modest changes occur in development or metabolism processes, which may explain the reduction in conidiation in the Δdcl2 mutant. In addition, we further applied high-throughput sequencing technology to identify small RNAs (sRNAs) that are differentially expressed in the WT and the Δdcl2 mutant and found that 4 known microRNA-like small RNAs (milRNAs) and 8 novel milRNAs were Mrdcl2 dependent in M. robertsiiIMPORTANCE The identification and characterization of components in RNAi have contributed significantly to our understanding of the mechanism and functions of RNAi in eukaryotes. Here, we found that Dicer and Argonaute genes play an important role in regulating

  8. Modulating Drug Resistance by Targeting BCRP/ABCG2 Using Retrovirus-Mediated RNA Interference

    PubMed Central

    Yuan, Jianhui; Liu, Wenlan; Deng, Tingting; Li, Zigang; Jin, Yi; Hu, Zhangli

    2014-01-01

    Background The BCRP/ABCG2 transporter, which mediates drug resistance in many types of cells, depends on energy provided by ATP hydrolysis. Here, a retrovirus encoding a shRNA targeting the ATP-binding domain of this protein was used to screen for highly efficient agents that could reverse drug resistance and improve cell sensitivity to drugs, thus laying the foundation for further studies and applications. Methodology/Principal Findings To target the ATP-binding domain of BCRP/ABCG2, pLenti6/BCRPsi shRNA recombinant retroviruses, with 20 bp target sequences starting from the 270th, 745th and 939th bps of the 6th exon, were constructed and packaged. The pLenti6/BCRPsi retroviruses (V-BCRPi) that conferred significant knockdown effects were screened using a drug-sensitivity experiment and flow cytometry. The human choriocarcinoma cell line JAR, which highly expresses endogenous BCRP/ABCG2, was injected under the dorsal skin of a hairless mouse to initiate a JAR cytoma. After injecting V-BCRPi-infected JAR tumor cells into the dorsal skin of hairless mice, BCRP/ABCG2 expression in the tumor tissue was determined using immunohistochemistry, fluorescent quantitative RT-PCR and Western blot analyses. After intraperitoneal injection of BCRP/ABCG2-tolerant 5-FU, the tumor volume, weight change, and apoptosis rate of the tumor tissue were determined using in situ hybridization. V-BCRPi increased the sensitivity of the tumor histiocytes to 5-FU and improved the cell apoptosis-promoting effects of 5-FU in the tumor. Conclusions/Significance The goal of the in vivo and in vitro studies was to screen for an RNA interference recombinant retrovirus capable of stably targeting the ATP-binding domain of BCRP/ABCG2 (V-BCRPi) to inhibit its function. A new method to improve the chemo-sensitivity of breast cancer and other tumor cells was discovered, and this method could be used for gene therapy and functional studies of malignant tumors. PMID:25076217

  9. Modulating drug resistance by targeting BCRP/ABCG2 using retrovirus-mediated RNA interference.

    PubMed

    Xie, Ni; Mou, Lisha; Yuan, Jianhui; Liu, Wenlan; Deng, Tingting; Li, Zigang; Jing, Yi; Jin, Yi; Hu, Zhangli

    2014-01-01

    The BCRP/ABCG2 transporter, which mediates drug resistance in many types of cells, depends on energy provided by ATP hydrolysis. Here, a retrovirus encoding a shRNA targeting the ATP-binding domain of this protein was used to screen for highly efficient agents that could reverse drug resistance and improve cell sensitivity to drugs, thus laying the foundation for further studies and applications. To target the ATP-binding domain of BCRP/ABCG2, pLenti6/BCRPsi shRNA recombinant retroviruses, with 20 bp target sequences starting from the 270th, 745th and 939th bps of the 6th exon, were constructed and packaged. The pLenti6/BCRPsi retroviruses (V-BCRPi) that conferred significant knockdown effects were screened using a drug-sensitivity experiment and flow cytometry. The human choriocarcinoma cell line JAR, which highly expresses endogenous BCRP/ABCG2, was injected under the dorsal skin of a hairless mouse to initiate a JAR cytoma. After injecting V-BCRPi-infected JAR tumor cells into the dorsal skin of hairless mice, BCRP/ABCG2 expression in the tumor tissue was determined using immunohistochemistry, fluorescent quantitative RT-PCR and Western blot analyses. After intraperitoneal injection of BCRP/ABCG2-tolerant 5-FU, the tumor volume, weight change, and apoptosis rate of the tumor tissue were determined using in situ hybridization. V-BCRPi increased the sensitivity of the tumor histiocytes to 5-FU and improved the cell apoptosis-promoting effects of 5-FU in the tumor. The goal of the in vivo and in vitro studies was to screen for an RNA interference recombinant retrovirus capable of stably targeting the ATP-binding domain of BCRP/ABCG2 (V-BCRPi) to inhibit its function. A new method to improve the chemo-sensitivity of breast cancer and other tumor cells was discovered, and this method could be used for gene therapy and functional studies of malignant tumors.

  10. A targeted RNA interference screen reveals novel epigenetic factors that regulate herpesviral gene expression.

    PubMed

    Oh, Hyung Suk; Bryant, Kevin F; Nieland, Thomas J F; Mazumder, Aprotim; Bagul, Mukta; Bathe, Mark; Root, David E; Knipe, David M

    2014-02-04

    Herpes simplex virus (HSV) utilizes and subverts host chromatin mechanisms to express its lytic gene products in mammalian cells. The host cell attempts to silence the incoming viral genome by epigenetic mechanisms, but the viral VP16 and ICP0 proteins promote active chromatin on the viral genome by recruiting other host epigenetic factors. However, the dependence on VP16 and ICP0 differs in different cell lines, implying cell type-dependent functional contributions of epigenetic factors for HSV gene expression. In this study, we performed a targeted RNA interference (RNAi) screen for cellular chromatin factors that are involved in regulation of herpes simplex virus (HSV) gene expression in U2OS osteosarcoma cells, a cell line that complements ICP0 mutant and VP16 mutant virus replication. In this screen, we found the same general classes of chromatin factors that regulate HSV gene expression in U2OS cells as in other cell types, including histone demethylases (HDMs), histone deacetylases (HDACs), histone acetyltransferases (HATs), and chromatin-remodeling factors, but the specific factors within these classes are different from those identified previously for other cell types. For example, KDM3A and KDM1A (LSD1) both demethylate mono- and dimethylated H3K9, but KDM3A emerged in our screen of U2OS cells. Further, small interfering RNA (siRNA) and inhibitor studies support the idea that KDM1A is more critical in HeLa cells, as observed previously, while KDM3A is more critical in U2OS cells. These results argue that different cellular chromatin factors are critical in different cell lines to carry out the positive and negative epigenetic effects exerted on the HSV genome. Upon entry into the host cell nucleus, the herpes simplex virus genome is subjected to host epigenetic silencing mechanisms. Viral proteins recruit cellular epigenetic activator proteins to reverse and counter the cellular silencing mechanisms. Some of the host silencing and activator functions

  11. Development of an insect vector cell culture and RNA interference system to investigate the functional role of fijivirus replication protein.

    PubMed

    Jia, Dongsheng; Chen, Hongyan; Zheng, Ailing; Chen, Qian; Liu, Qifei; Xie, Lianhui; Wu, Zujian; Wei, Taiyun

    2012-05-01

    An in vitro culture system of primary cells from white-backed planthopper, an insect vector of Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus, was established to study replication of the virus. Viroplasms, putative sites of viral replication, contained the nonstructural viral protein P9-1, viral RNA, outer-capsid proteins, and viral particles in virus-infected cultured insect vector cells, as revealed by transmission electron and confocal microscopy. Formation of viroplasm-like structures in non-host insect cells upon expression of P9-1 suggested that the matrix of viroplasms observed in virus-infected cells was composed basically of P9-1. In cultured insect vector cells, knockdown of P9-1 expression due to RNA interference (RNAi) induced by synthesized double-stranded RNA (dsRNA) from the P9-1 gene strongly inhibited viroplasm formation and viral infection. RNAi induced by ingestion of dsRNA strongly abolished viroplasm formation, preventing efficient viral spread in the body of intact vector insects. All these results demonstrated that P9-1 was essential for viroplasm formation and viral replication. This system, combining insect vector cell culture and RNA interference, can further advance our understanding of the biological activities of fijivirus replication proteins.

  12. Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: evidence from Manduca sexta and Blattella germanica.

    PubMed

    Garbutt, Jennie S; Bellés, Xavier; Richards, Elaine H; Reynolds, Stuart E

    2013-02-01

    RNA interference (RNAi) is a specific gene silencing mechanism mediated by double-stranded RNA (dsRNA), which has been harnessed as a useful reverse genetics tool in insects. Unfortunately, however, this technology has been limited by the variable sensitivity of insect species to RNAi. We propose that rapid degradation of dsRNA in insect hemolymph could impede gene silencing by RNAi and experimentally investigate the dynamics of dsRNA persistence in two insects, the tobacco hornworm, Manduca sexta, a species in which experimental difficulty has been experienced with RNAi protocols and the German cockroach, Blattella germanica, which is known to be highly susceptible to experimental RNAi. An ex vivo assay revealed that dsRNA was rapidly degraded by an enzyme in M. sexta hemolymph plasma, whilst dsRNA persisted much longer in B. germanica plasma. A quantitative reverse transcription PCR-based assay revealed that dsRNA, accordingly, disappeared rapidly from M. sexta hemolymph in vivo. The M. sexta dsRNAse is inactivated by exposure to high temperature and is inhibited by EDTA. These findings lead us to propose that the rate of persistence of dsRNA in insect hemolymph (mediated by the action of one or more nucleases) could be an important factor in determining the susceptibility of insect species to RNAi.

  13. Breast cancer cell line MDA-MB-231 miRNA profile expression after BIK interference: BIK involvement in autophagy.

    PubMed

    Ruiz Esparza-Garrido, Ruth; Torres-Márquez, María Eugenia; Viedma-Rodríguez, Rubí; Velázquez-Wong, Ana Claudia; Salamanca-Gómez, Fabio; Rosas-Vargas, Haydeé; Velázquez-Flores, Miguel Ángel

    2016-05-01

    B-cell lymphoma 2 (BCL2)-interacting killer (apoptosis inducing) (BIK) has been proposed as a tumor suppressor in diverse types of cancers. However, BIK's overexpression in breast cancer (BC) and in non-small lung cancer cells (NSCLCs), associated with a poor prognosis, suggests its participation in tumor progression. In this study, we evaluated the global expression pattern of microRNAs (miRNAs), messenger RNA (mRNA) expression changes in autophagy, and autophagic flux after BIK interference. BIK gene expression was silenced by small interfering RNA (siRNA) in BC cell MDA-MB-231, and BIK interference efficiency was tested by real-time PCR and by Western blotting. BIK expression levels decreased by 75 ± 18 % in the presence of 600 nM siRNA, resulting in the abolishment of BIK expression by 94 ± 30 %. BIK interference resulted in the overexpression of 17 miRNAs that, according to the DIANA-miRPath v3.0 database, are mainly implied in the control of cell signaling, gene expression, and autophagy. The autophagy array revealed downregulation of transcripts which participate in autophagy, and their interactome revealed a complex network, where hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), α-synuclein (SNCA), unc-51-like autophagy activating kinase 1/2 (ULK1/2), and mitogen-activated protein kinase 3 (MAPK3) were shown to be signaling hubs. LC3-II expression-an autophagy marker-was increased by 169 ± 25 % after BIK interference, which indicates the involvement of BIK in autophagy. Altogether, our results indicate-for the first time-that BIK controls the expression of miRNAs, as well as the autophagic flux in MDA-MB-231 cells.

  14. The efficiency of RNA interference for conferring stable resistance to Plum Pox Virus

    USDA-ARS?s Scientific Manuscript database

    Plum transformed with an intron hairpin RNA CP (ihRNA-CP) were resistant to PPV infection through the specific process of RNA silencing involving both small interfering -RNA interfering (siRNA) and a methylated virus transgene. This recognition process specifically targeted the triggered PPV genome...

  15. Combining RNA interference and kinase inhibitors against cell signalling components involved in cancer

    PubMed Central

    O'Grady, Michael; Raha, Debasish; Hanson, Bonnie J; Bunting, Michaeline; Hanson, George T

    2005-01-01

    Background The transcription factor activator protein-1 (AP-1) has been implicated in a large variety of biological processes including oncogenic transformation. The tyrosine kinases of the epidermal growth factor receptor (EGFR) constitute the beginning of one signal transduction cascade leading to AP-1 activation and are known to control cell proliferation and differentiation. Drug discovery efforts targeting this receptor and other pathway components have centred on monoclonal antibodies and small molecule inhibitors. Resistance to such inhibitors has already been observed, guiding the prediction of their use in combination therapies with other targeted agents such as RNA interference (RNAi). This study examines the use of RNAi and kinase inhibitors for qualification of components involved in the EGFR/AP-1 pathway of ME180 cells, and their inhibitory effects when evaluated individually or in tandem against multiple components of this important disease-related pathway. Methods AP-1 activation was assessed using an ME180 cell line stably transfected with a beta-lactamase reporter gene under the control of AP-1 response element following epidermal growth factor (EGF) stimulation. Immunocytochemistry allowed for further quantification of small molecule inhibition on a cellular protein level. RNAi and RT-qPCR experiments were performed to assess the amount of knockdown on an mRNA level, and immunocytochemistry was used to reveal cellular protein levels for the targeted pathway components. Results Increased potency of kinase inhibitors was shown by combining RNAi directed towards EGFR and small molecule inhibitors acting at proximal or distal points in the pathway. After cellular stimulation with EGF and analysis at the level of AP-1 activation using a β-lactamase reporter gene, a 10–12 fold shift or 2.5–3 fold shift toward greater potency in the IC50 was observed for EGFR and MEK-1 inhibitors, respectively, in the presence of RNAi targeting EGFR. Conclusion EGFR

  16. RNA interference revealed the roles of two carboxylesterase genes in insecticide detoxification in Locusta migratoria.

    PubMed

    Zhang, Jianqin; Li, Daqi; Ge, Pingting; Yang, Meiling; Guo, Yaping; Zhu, Kun Yan; Ma, Enbo; Zhang, Jianzhen

    2013-10-01

    Carboxylesterases (CarEs) play key roles in metabolism of specific hormones and detoxification of dietary and environmental xenobiotics in insects. We sequenced and characterized CarE cDNAs putatively derived from two different genes named LmCesA1 and LmCesA2 from the migratory locust, Locusta migratoria, one of the most important agricultural pests in the world. The full-length cDNAs of LmCesA1 (1892 bp) and LmCesA2 (1643 bp) encode 543 and 501 amino acid residues, respectively. The two deduced CarEs share a characteristic α/β-hydrolase structure, including a catalytic triad composed of Ser-Glu (Asp)-His and a consensus sequence GQSAG, which suggests that both CarEs are biologically active. Phylogenetic analysis grouped both LmCesA1 and LmCesA2 into clade A which has been suggested to be involved in dietary detoxification. Both transcripts were highly expressed in all the nymphal and adult stages, but only slightly expressed in eggs. Analyses of tissue-dependent expression and in situ hybridization revealed that both transcripts were primarily expressed in gastric caeca. RNA interference (RNAi) of LmCesA1 and LmCesA2 followed by a topical application of carbaryl or deltamethrin did not lead to a significantly increased mortality with either insecticide. However, RNAi of LmCesA1 and LmCesA2 increased insect mortalities by 20.9% and 14.5%, respectively, when chlorpyrifos was applied. These results suggest that these genes might not play a significant role in detoxification of carbaryl and deltamethrin but are most likely to be involved in detoxification of chlorpyrifos in L. migratoria.

  17. Development of RNA Interference Trigger-Mediated Gene Silencing in Entamoeba invadens

    PubMed Central

    Suresh, Susmitha; Ehrenkaufer, Gretchen; Zhang, Hanbang

    2016-01-01

    Entamoeba histolytica, a protozoan parasite, is an important human pathogen and a leading parasitic cause of death. The organism has two life cycle stages, trophozoites, which are responsible for tissue invasion, and cysts, which are involved in pathogen transmission. Entamoeba invadens is the model system to study Entamoeba developmental biology, as high-grade regulated encystation and excystation are readily achievable. However, the lack of gene-silencing tools in E. invadens has limited the molecular studies that can be performed. Using the endogenous RNA interference (RNAi) pathway in Entamoeba, we developed an RNAi-based trigger gene-silencing approach in E. invadens. We demonstrate that a gene's coding region that has abundant antisense small RNAs (sRNAs) can trigger silencing of a gene that is fused to it. The trigger fusion leads to the generation of abundant antisense sRNAs that map to the target gene, with silencing occurring independently of trigger location at the 5′ or 3′ end of a gene. Gene silencing is stably maintained during development, including encystation and excystation. We have used this approach to successfully silence two E. invadens genes: a putative rhomboid protease gene and a SHAQKY family Myb gene. The Myb gene is upregulated during oxidative stress and development, and its downregulation led, as predicted, to decreased viability under oxidative stress and decreased cyst formation. Thus, the RNAi trigger silencing method can be used to successfully investigate the molecular functions of genes in E. invadens. Dissection of the molecular basis of Entamoeba stage conversion is now possible, representing an important technical advance for the system. PMID:26787723

  18. Suppression of Bedbug’s Reproduction by RNA Interference of Vitellogenin

    PubMed Central

    Moriyama, Minoru; Hosokawa, Takahiro; Tanahashi, Masahiko; Nikoh, Naruo; Fukatsu, Takema

    2016-01-01

    Recent resurgence of the bedbug Cimex lectularius is a global problem on the public health. On account of the worldwide rise of insecticide-resistant bedbug populations, exploration of new approaches to the bedbug control and management is anticipated. In this context, gene silencing by RNA interference (RNAi) has been considered for its potential application to pest control and management, because RNAi enables specific suppression of target genes and thus flexible selection of target traits to be disrupted. In this study, in an attempt to develop a control strategy targeting reproduction of the bedbug, we investigated RNAi-mediated gene silencing of vitellogenin (Vg), a major yolk protein precursor essential for oogenesis. From the bedbug transcriptomes, we identified a typical Vg gene and a truncated Vg gene, which were designated as ClVg and ClVg-like, respectively. ClVg gene was highly expressed mainly in the fat body of adult females, which was more than 100 times higher than the expression level of ClVg-like gene, indicating that ClVg gene is the primary functional Vg gene in the bedbug. RNAi-mediated suppression of ClVg gene expression in adult females resulted in drastically reduced egg production, atrophied ovaries, and inflated abdomen due to hypertrophied fat bodies. These phenotypic consequences are expected not only to suppress the bedbug reproduction directly but also to deteriorate its feeding and survival indirectly via behavioral modifications. These results suggest the potential of ClVg gene as a promising target for RNAi-based population management of the bedbug. PMID:27096422

  19. RNA Interference-Mediated Simultaneous Suppression of Seed Storage Proteins in Rice Grains

    PubMed Central

    Cho, Kyoungwon; Lee, Hye-Jung; Jo, Yeong-Min; Lim, Sun-Hyung; Rakwal, Randeep; Lee, Jong-Yeol; Kim, Young-Mi

    2016-01-01

    Seed storage proteins (SSPs) such as glutelin, prolamin, and globulin are abundant components in some of the most widely consumed food cereals in the world. Synthesized in the rough endoplasmic reticulum (ER), SSPs are translocated to the protein bodies. Prolamins are located at the spherical protein body I derived from the ER, whereas, glutelins and globulin are accumulated in the irregularly shaped protein bodies derived from vacuoles. Our previous studies have shown that the individual suppression of glutelins, 13-kDa prolamins and globulin caused the compensative accumulation of other SSPs. Herein, to investigate the phenotypic and molecular features of SSP deficiency transgenic rice plants suppressing all glutelins, prolamins, and globulin were generated using RNA interference (RNAi). The results revealed that glutelin A, cysteine-rich 13-kDa prolamin and globulin proteins were less accumulated but that glutelin B and ER chaperones, such as binding protein 1 (BiP1) and protein disulfide isomerase-like 1-1 (PDIL1-1), were highly accumulated at the transcript and protein levels in seeds of the transformants compared to those in the wild-type seeds. Further, the transcription of starch synthesis-related genes was reduced in immature seeds at 2 weeks after flowering, and the starch granules were loosely packaged with various sphere sizes in seed endosperms of the transformants, resulting in a floury phenotype. Interestingly, the rates of sprouting and reducing sugar accumulation during germination were found to be delayed in the transformants compared to the wild-type. In all, our results provide new insight into the role of SSPs in the formation of intracellular organelles and in germination. PMID:27843443

  20. Development of RNA Interference Trigger-Mediated Gene Silencing in Entamoeba invadens.

    PubMed

    Suresh, Susmitha; Ehrenkaufer, Gretchen; Zhang, Hanbang; Singh, Upinder

    2016-04-01

    Entamoeba histolytica, a protozoan parasite, is an important human pathogen and a leading parasitic cause of death. The organism has two life cycle stages, trophozoites, which are responsible for tissue invasion, and cysts, which are involved in pathogen transmission. Entamoeba invadens is the model system to study Entamoeba developmental biology, as high-grade regulated encystation and excystation are readily achievable. However, the lack of gene-silencing tools in E. invadens has limited the molecular studies that can be performed. Using the endogenous RNA interference (RNAi) pathway in Entamoeba, we developed an RNAi-based trigger gene-silencing approach inE. invadens We demonstrate that a gene's coding region that has abundant antisense small RNAs (sRNAs) can trigger silencing of a gene that is fused to it. The trigger fusion leads to the generation of abundant antisense sRNAs that map to the target gene, with silencing occurring independently of trigger location at the 5' or 3' end of a gene. Gene silencing is stably maintained during development, including encystation and excystation. We have used this approach to successfully silence two E. invadens genes: a putative rhomboid protease gene and a SHAQKY family Myb gene. The Myb gene is upregulated during oxidative stress and development, and its downregulation led, as predicted, to decreased viability under oxidative stress and decreased cyst formation. Thus, the RNAi trigger silencing method can be used to successfully investigate the molecular functions of genes inE. invadens Dissection of the molecular basis of Entamoeba stage conversion is now possible, representing an important technical advance for the system. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. RNA interference targeting leucine aminopeptidase blocks hatching of Schistosoma mansoni eggs.

    PubMed

    Rinaldi, Gabriel; Morales, Maria E; Alrefaei, Yousef N; Cancela, Martín; Castillo, Estela; Dalton, John P; Tort, José F; Brindley, Paul J

    2009-10-01

    Schistosoma mansoni leucine aminopeptidase (LAP) is thought to play a central role in hatching of the miracidium from the schistosome egg. We identified two discrete LAPs genes in the S. mansoni genome, and their orthologs in S. japonicum. The similarities in sequence and exon/intron structure of the two genes, LAP1 and LAP2, suggest that they arose by gene duplication and that this occurred before separation of the mansoni and japonicum lineages. The SmLAP1 and SmLAP2 genes have different expression patterns in diverse stages of the cycle; whereas both are equally expressed in the blood dwelling stages (schistosomules and adult), SmLAP2 expression was higher in free living larval (miracidia) and in parasitic intra-snail (sporocysts) stages. We investigated the role of each enzyme in hatching of schistosome eggs and the early stages of schistosome development by RNA interference (RNAi). Using RNAi, we observed marked and specific reduction of mRNAs, along with a loss of exopeptidase activity in soluble parasite extracts against the diagnostic substrate l-leucine-7-amido-4-methylcoumarin hydroxide. Strikingly, knockdown of either SmLAP1 or SmLAP2, or both together, was accompanied by >or=80% inhibition of hatching of schistosome eggs showing that both enzymes are important to the escape of miracidia from the egg. The methods employed here refine the utility of RNAi for functional genomics studies in helminth parasites and confirm these can be used to identify potential drug targets, in this case schistosome aminopeptidases.

  2. dsRNA uptake and persistence account for tissue-dependent susceptibility to RNA interference in the migratory locust, Locusta migratoria.

    PubMed

    Ren, D; Cai, Z; Song, J; Wu, Z; Zhou, S

    2014-04-01

    RNA interference (RNAi) by introducing double-stranded RNA (dsRNA) is a powerful approach to the analysis of gene function in insects; however, RNAi responses vary dramatically in different insect species and tissues, and the underlying mechanisms remain poorly understood. The migratory locust, a destructive insect pest and a hemimetabolic insect with panoistic ovaries, is considered to be a highly susceptible species to RNAi via dsRNA injection, but its ovary appears to be completely insensitive. In the present study, we showed that dsRNA persisted only briefly in locust haemolymph. The ovariole sheath was permeable to dsRNA, but injected dsRNA was not present in the follicle cells and oocytes. The lack of dsRNA uptake into the follicle cells and oocytes is likely to be the primary factor that contributes to the ineffective RNAi response in locust ovaries. These observations provide insights into tissue-dependent variability of RNAi and help in achieving successful gene silencing in insensitive tissues.

  3. Cationized gelatin delivery of a plasmid DNA expressing small interference RNA for VEGF inhibits murine squamous cell carcinoma.

    PubMed

    Matsumoto, Goichi; Kushibiki, Toshihiro; Kinoshita, Yukihiko; Lee, Ushaku; Omi, Yasushi; Kubota, Eiro; Tabata, Yasuhiko

    2006-04-01

    Double-stranded RNA (dsRNA) plays a major role in RNA interference (RNAi), a process in which segments of dsRNA are initially cleaved by the Dicer into shorter segments (21-23 nt) called small interfering RNA (siRNA). These siRNA then specifically target homologous mRNA molecules causing them to be degraded by cellular ribonucleases. RNAi down regulates endogenous gene expression in mammalian cells. Vascular endothelial growth factor (VEGF) is a key molecule in vasculogenesis as well as in angiogenesis. Tumor growth is an angiogenesis-dependent process, and therapeutic strategies aimed at inhibiting angiogenesis are theoretically attractive. To investigate the feasibility of using siRNA for VEGF in the specific knockdown of VEGF mRNA, thereby inhibiting angiogenesis, we have performed experiments with a DNA vector based on a siRNA system that targets VEGF (siVEGF). It almost completely inhibited the expression of three different isoforms (VEGF120, VEGF164 and VEGF188) of VEGF mRNA and the secretion of VEGF protein in mouse squamous cell carcinoma NRS-1 cells. The siVEGF released from cationized gelatin microspheres suppressed tumor growth in vivo. A marked reduction in vascularity accompanied the inhibition of a siVEGF-transfected tumor. Fluorescent microscopic study showed that the complex of siVEGF with cationized gelatin microspheres was still present around the tumor 10 days after injection, while free siVEGF had vanished by that time. siVEGF gene therapy increased the fraction of vessels covered by pericytes and induced expression of angiopoietin-1 by pericytes. These data suggest that cationized-gelatin microspheres containing siVEGF can be used to normalize tumor vasculature and inhibit tumor growth in a NRS-1 squamous cell carcinoma xenograft model.

  4. Silencing of CXCR4 and CXCR7 expression by RNA interference suppresses human endometrial carcinoma growth in vivo

    PubMed Central

    Huang, Yu; Ye, Yuanying; Long, Ping; Zhao, Shuping; Zhang, Lei; A, Yanni

    2017-01-01

    In this paper, the effect of silencing the expression of CXCR4 and CXCR7 by RNAi on the growth of endometrial carcinoma (EC), in vivo, was evaluated. To establish endometrial carcinoma model, thirty nude mice were subcutaneously inoculated with 1 × 107 Ishikawa cells. All tumor-bearing mice were randomly assigned to five groups (six mice in each group) when the tumor xenografts reached 5-7 mm in diameter, and treated with CXCR4-siRNA (5 nmol), CXCR7-siRNA (5 nmol), CXCR4-siRNA (5 nmol) plus CXCR7-siRNA (5 nmol), negative-siRNA (5 nmol) and normal saline, respectively. Following intra-tumor injection, the growth rate of tumor xenografts in the three treatment groups was significantly delayed compared with those in Ne-si and NS group (P<0.05). The results of QRT-PCR and immunohistochemical assessment showed that the expression levels of CXCR4 and CXCR7 could be down regulated by RNA interference. We also observed that treatment with CXCR4-siRNA and CXCR7-siRNA reduced cell proliferation, but there was no significant difference in apoptosis among the five groups. CXCR4 and CXCR7 silencing by RNAi inhibit the growth of human endometrial carcinoma xenografts by inhibiting cancer cell proliferation, in vivo. These results indicate that CXCR4 and CXCR7 could serve as potential alternative targets for gene therapy in endometrial carcinoma. PMID:28469794

  5. Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer–small molecule interaction

    PubMed Central

    An, Chung-Il; Trinh, Vu B.; Yokobayashi, Yohei

    2006-01-01

    Recent studies have uncovered extensive presence and functions of small noncoding RNAs in gene regulation in eukaryotes. In particular, RNA interference (RNAi) has been the subject of significant investigations for its unique role in post-transcriptional gene regulation and utility as a tool for artificial gene knockdown. Here, we describe a novel strategy for post-transcriptional gene regulation in mammalian cells in which RNAi is specifically modulated through RNA aptamer–small molecule interaction. Incorporation of an RNA aptamer for theophylline in the loop region of a short hairpin RNA (shRNA) designed to silence fluorescent reporter genes led to dose-dependent inhibition of RNAi by theophylline. shRNA cleavage experiments using recombinant Dicer demonstrated that theophylline inhibited cleavage of an aptamer-fused shRNA by Dicer in vitro. Inhibition of siRNA production by theophylline was also observed in vivo. The results presented here provide the first evidence of specific RNA–small molecule interaction affecting RNAi, and a novel strategy to regulate mammalian gene expression by small molecules without engineered proteins. PMID:16606868

  6. Silencing of CXCR4 and CXCR7 expression by RNA interference suppresses human endometrial carcinoma growth in vivo.

    PubMed

    Huang, Yu; Ye, Yuanying; Long, Ping; Zhao, Shuping; Zhang, Lei; A, Yanni

    2017-01-01

    In this paper, the effect of silencing the expression of CXCR4 and CXCR7 by RNAi on the growth of endometrial carcinoma (EC), in vivo, was evaluated. To establish endometrial carcinoma model, thirty nude mice were subcutaneously inoculated with 1 × 10(7) Ishikawa cells. All tumor-bearing mice were randomly assigned to five groups (six mice in each group) when the tumor xenografts reached 5-7 mm in diameter, and treated with CXCR4-siRNA (5 nmol), CXCR7-siRNA (5 nmol), CXCR4-siRNA (5 nmol) plus CXCR7-siRNA (5 nmol), negative-siRNA (5 nmol) and normal saline, respectively. Following intra-tumor injection, the growth rate of tumor xenografts in the three treatment groups was significantly delayed compared with those in Ne-si and NS group (P<0.05). The results of QRT-PCR and immunohistochemical assessment showed that the expression levels of CXCR4 and CXCR7 could be down regulated by RNA interference. We also observed that treatment with CXCR4-siRNA and CXCR7-siRNA reduced cell proliferation, but there was no significant difference in apoptosis among the five groups. CXCR4 and CXCR7 silencing by RNAi inhibit the growth of human endometrial carcinoma xenografts by inhibiting cancer cell proliferation, in vivo. These results indicate that CXCR4 and CXCR7 could serve as potential alternative targets for gene therapy in endometrial carcinoma.

  7. Altered stoichiometry Escherichia coli Cascade complexes with shortened CRISPR RNA spacers are capable of interference and primed adaptation

    PubMed Central

    Kuznedelov, Konstantin; Mekler, Vladimir; Lemak, Sofia; Tokmina-Lukaszewska, Monika; Datsenko, Kirill A.; Jain, Ishita; Savitskaya, Ekaterina; Mallon, John; Shmakov, Sergey; Bothner, Brian; Bailey, Scott; Yakunin, Alexander F.; Severinov, Konstantin; Semenova, Ekaterina

    2016-01-01

    The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo. Shortened crRNAs assemble into altered-stoichiometry Cascade effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multisubunit type I CRISPR effectors may have evolved from much simpler ancestral complexes. PMID:27738137

  8. piggyBac transposon-derived targeting shRNA interference against the Bombyx mori nucleopolyhedrovirus (BmNPV).

    PubMed

    Zhou, Fang; Chen, Rui-ting; Lu, Yan; Liang, Shuang; Wang, Mei-xian; Miao, Yun-gen

    2014-12-01

    The Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the most destructive diseases in silkworm, which has caused the main damage to sericulture industry. In this study, we developed a system of RNAi to prevent the BmNPV infection using the piggyBac transposon-derived targeting short hairpin RNA (shRNA) interference. The shRNAs targeting the genes of i.e.-1, lef-1, lef-2 and lef-3 of BmNPV were designed and used to inhibit the intracellular replication or multiplication of BmNPV in Bm cells. The highest activity was presented in the shRNA targeting the i.e.-1c of BmNPV, of which the inhibition rate reached 94.5 % in vitro. Further a stable Bm cell line of piggyBac transposon-derived targeting shRNA interference against BmNPV was established, which has a highly efficacious suppression on virus proliferation. These results indicated that the recombinant shRNA expression system was a useful tool for resistance to BmNPV in vitro. The approach by recombinant shRNAs opens a door of RNAi technology as a strategy that offering technically simpler, cheaper, and quicker gene knockdown for promising research and biotechnology application on silkworm lethal diseases.

  9. Genome-wide exonic small interference RNA-mediated gene silencing regulates sexual reproduction in the homothallic fungus Fusarium graminearum

    PubMed Central

    Park, Ae Ran; Lim, Jae Yun; Shin, Chanseok

    2017-01-01

    Various ascomycete fungi possess sex-specific molecular mechanisms, such as repeat-induced point mutations, meiotic silencing by unpaired DNA, and unusual adenosine-to-inosine RNA editing, for genome defense or gene regulation. Using a combined analysis of functional genetics and deep sequencing of small noncoding RNA (sRNA), mRNA, and the degradome, we found that the sex-specifically induced exonic small interference RNA (ex-siRNA)-mediated RNA interference (RNAi) mechanism has an important role in fine-tuning the transcriptome during ascospore formation in the head blight fungus Fusarium graminearum. Approximately one-third of the total sRNAs were produced from the gene region, and sRNAs with an antisense direction or 5′-U were involved in post-transcriptional gene regulation by reducing the stability of the corresponding gene transcripts. Although both Dicers and Argonautes partially share their functions, the sex-specific RNAi pathway is primarily mediated by FgDicer1 and FgAgo2, while the constitutively expressed RNAi components FgDicer2 and FgAgo1 are responsible for hairpin-induced RNAi. Based on our results, we concluded that F. graminearum primarily utilizes ex-siRNA-mediated RNAi for ascosporogenesis but not for genome defenses and other developmental stages. Each fungal species appears to have evolved RNAi-based gene regulation for specific developmental stages or stress responses. This study provides new insights into the regulatory role of sRNAs in fungi and other lower eukaryotes. PMID:28146558

  10. [Evaluation of the binding affinity and RNA interference of low-molecular-weight chitosan/siRNA complexes using an imaging system].

    PubMed

    Kawaguchi, Yasuhisa; Okuda, Tomoyuki; Ban, Tatsunori; Danjo, Kazumi; Okamoto, Hirokazu

    2009-04-01

    Chitosan is one of the attractive non-viral carriers for gene delivery including siRNA. However, common chitosan, which has a relatively high molecular weight, is insoluble in water, which might make it difficult to apply clinically. In this study, we investigated the efficacy of low-molecular-weight chitosan (LMWC), which is soluble in water, as a carrier for siRNA delivery. To evaluate the binding affinity and RNA interference (RNAi) of LMWC/siRNA complexes, a multi-well imaging system (IVIS) was adapted. CT26 cells stably expressing firefly luciferase (CT26/Luc cells) were established to evaluate RNAi. Evaluation of RNAi using lipofectamine(TM) 2000 was carried out by employing a luminometer with cell lysis and IVIS without cell lysis. The results were closely correlated, suggesting the advantages of the multi-well imaging system regarding screening, the visualization of results, and nondestructive evaluation. Fluorescence generated by ethidium bromide intercalated in the double strand of siRNA was markedly quenched at a higher ratio of LMWC to siRNA (N/P) and lower pH. Evaluation of the particle size and zeta potential of LMWC/siRNA complexes also indicated the higher binding affinity of LMWC with siRNA. At N/P=300 and pH 6.5, which satisfied the high-level binding affinity of LMWC with siRNA, significantly lower luminescence was detected in CT26/Luc cells treated with LMWC/siRNA compared with those treated with LMWC alone, suggesting the presence of RNAi. These results suggested that LMWC may be an effective carrier for siRNA delivery, and that the multi-well imaging system may be a powerful tool to evaluate the binding affinity and RNAi.

  11. Knockdown of RNA Interference Pathway Genes in Western Corn Rootworms (Diabrotica virgifera virgifera Le Conte) Demonstrates a Possible Mechanism of Resistance to Lethal dsRNA.

    PubMed

    Vélez, Ana María; Khajuria, Chitvan; Wang, Haichuan; Narva, Kenneth E; Siegfried, Blair D

    2016-01-01

    RNA interference (RNAi) is being developed as a potential tool for insect pest management. Increased understanding of the RNAi pathway in target insect pests will provide information to use this technology effectively and to inform decisions related to resistant management strategies for RNAi based traits. Dicer 2 (Dcr2), an endonuclease responsible for formation of small interfering RNA's and Argonaute 2 (Ago2), an essential catalytic component of the RNA-induced silencing complex (RISC) have both been associated with the RNAi pathway in a number of different insect species including the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). We identified both genes from a transcriptome library generated from different tissues and developmental stages of the western corn rootworm, an important target pest for transgenic plants expressing dsRNA targeting essential genes. The expression of these genes was suppressed by more than 90% after injecting gene specific dsRNA into adult rootworms. The injected beetles were then fed vATPase A dsRNA which has previously been demonstrated to cause mortality in western corn rootworm adults. The suppression of both RNAi pathway genes resulted in reduced mortality after subsequent exposure to lethal concentrations of vATPase A dsRNA as well as increased vATPase A expression relative to control treatments. Injections with dsRNA for a non-lethal target sequence (Laccase 2) did not affect mortality or expression caused by vATPase A dsRNA indicating that the results observed with Argo and Dicer dsRNA were not caused by simple competition among different dsRNA's. These results confirm that both genes play an important role in the RNAi pathway for western corn rootworms and indicate that selection pressures that potentially affect the expression of these genes may provide a basis for future studies to understand potential mechanisms of resistance.

  12. Functional silencing of guanylyl cyclase/natriuretic peptide receptor-A by microRNA interference: analysis of receptor endocytosis

    PubMed Central

    Somanna, Naveen K; Pandey, Amitabh C; Arise, Kiran K; Nguyen, Vickie; Pandey, Kailash N

    2013-01-01

    Guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) is the principal receptor for the regulatory action of atrial and brain natriuretic peptides (ANP and BNP) and an important effector molecule in controlling of extracellular fluid volume and blood pressure homeostasis. We have utilized RNA interference to silence the expression of GC-A/NPRA gene (Npr1), providing a novel system to study the internalization and trafficking of NPRA in intact cells. MicroRNA (miRNA)-mediated small interfering RNA (siRNA) elicited functional gene-knockdown of NPRA in stably transfected human embryonic kidney 293 (HEK-293) cells expressing a high density of recombinant NPRA. We artificially expressed three RNA polymerase II-driven miRNAs that specifically targeted the Npr1 gene, but shared no significant sequence homology with any other known mouse genes. Reverse transcription-PCR (RT-PCR) and Northern blot analyses identified two highly efficient Npr1 miRNA sequences to knockdown the expression of NPRA. The Npr1 miRNA in chains or clusters decreased NPRA expression more than 90% as compared with control cells. ANP-dependent stimulation of intracellular accumulation of cGMP and guanylyl cyclase activity of NPRA were significantly reduced in Npr1 miRNA-expressing cells by 90-95% as compared with control cells. Treatment with Npr1 miRNA caused a drastic reduction in the receptor density subsequently a deceased internalization of radiolabeled 125I-ANP-NPRA ligand-receptor complexes. Only 12%-15% of receptor population was localized in the intracellular compartments of microRNA silenced cells as compared to 70%-80% in control cells. PMID:23638320

  13. Functional silencing of guanylyl cyclase/natriuretic peptide receptor-A by microRNA interference: analysis of receptor endocytosis.

    PubMed

    Somanna, Naveen K; Pandey, Amitabh C; Arise, Kiran K; Nguyen, Vickie; Pandey, Kailash N

    2013-01-01

    Guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) is the principal receptor for the regulatory action of atrial and brain natriuretic peptides (ANP and BNP) and an important effector molecule in controlling of extracellular fluid volume and blood pressure homeostasis. We have utilized RNA interference to silence the expression of GC-A/NPRA gene (Npr1), providing a novel system to study the internalization and trafficking of NPRA in intact cells. MicroRNA (miRNA)-mediated small interfering RNA (siRNA) elicited functional gene-knockdown of NPRA in stably transfected human embryonic kidney 293 (HEK-293) cells expressing a high density of recombinant NPRA. We artificially expressed three RNA polymerase II-driven miRNAs that specifically targeted the Npr1 gene, but shared no significant sequence homology with any other known mouse genes. Reverse transcription-PCR (RT-PCR) and Northern blot analyses identified two highly efficient Npr1 miRNA sequences to knockdown the expression of NPRA. The Npr1 miRNA in chains or clusters decreased NPRA expression more than 90% as compared with control cells. ANP-dependent stimulation of intracellular accumulation of cGMP and guanylyl cyclase activity of NPRA were significantly reduced in Npr1 miRNA-expressing cells by 90-95% as compared with control cells. Treatment with Npr1 miRNA caused a drastic reduction in the receptor density subsequently a deceased internalization of radiolabeled (125)I-ANP-NPRA ligand-receptor complexes. Only 12%-15% of receptor population was localized in the intracellular compartments of microRNA silenced cells as compared to 70%-80% in control cells.

  14. Prevention of neointimal hyperplasia in balloon-injured rat carotid artery via small interference RNA mediated downregulation of osteopontin gene.

    PubMed

    Xu, Jian; Sun, Yingxian; Wang, Tairan; Liu, Guinan

    2013-05-01

    The aim of the present study was to take osteopontin (OPN) as molecular target to study its effects on injured intima model of carotid artery in rat using perivascular transfer of OPN-small interference RNA (siRNA). OPN mRNA in cultured VSMCs was quantified by real-time RT-PCR, and OPN-siRNA-002 was determined as the most sensitive sequence and used as transfected siRNA in the subsequent animal experiments. We established rat carotid arterial intima-injured model with balloon-injured method, and then perivascularly transfected OPN-siRNA-002 to study the role of OPN-siRNA in regulating several related genes including proliferating cell nuclear antigen (PCNA), transforming growth factor β1(TGF-β1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-14 (MMP-14), as well as its role in neointimal formation. OPN mRNA and protein decreased about 50 % with corresponding decrease in intima thickness after transfecting with specific OPN-siRNA-002 compared with Pluronic control group and OPN-SCR-siRNA group on each time point (n = 6, p < 0.001), and this inhibiting effects persisted up to 14 days after balloon injury. PCNA, TGF-β1, MMP-2, and MMP-14 mRNA and protein correlated directly with the respective levels of OPN, suggesting its functions via regulating these downstream factors (n = 6, p < 0.001). OPN may be a potential target gene in reducing the risk for arterial restenosis after vascular intervention.

  15. RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae.

    PubMed

    Keene, Kimberly M; Foy, Brian D; Sanchez-Vargas, Irma; Beaty, Barry J; Blair, Carol D; Olson, Ken E

    2004-12-07

    RNA interference (RNAi) is triggered in eukaryotic organisms by double-stranded RNA (dsRNA), and it destroys any mRNA that has sequence identity with the dsRNA trigger. The RNAi pathway in Anopheles gambiae can be silenced by transfecting cells with dsRNA derived from exon sequence of the A. gambiae Argonaute2 (AgAgo2) gene. We hypothesized that RNAi may also act as an antagonist to alphavirus replication in A. gambiae because RNA viruses form dsRNA during replication. Silencing AgAgo2 expression would make A. gambiae mosquitoes more permissive to virus infection. To determine whether RNAi conditions the vector competence of A. gambiae for O'nyong-nyong virus (ONNV), we engineered a genetically modified ONNV that expresses enhanced GFP (eGFP) as a marker. After intrathoracic injection, ONNV-eGFP slowly spread to other A. gambiae tissues over a 9-day incubation period. Mosquitoes were then coinjected with virus and either control beta-galactosidase dsRNA (dsbetagal; note that "ds" is used as a prefix to indicate the dsRNA derived from a given gene throughout) or ONNV dsnsP3. Treatment with dsnsP3 inhibited virus spread significantly, as determined by eGFP expression patterns. ONNV-eGFP titers from mosquitoes coinjected with dsnsP3 were significantly lower at 3 and 6 days after injection than in mosquitoes coinjected with dsbetagal. Mosquitoes were then coinjected with ONNV-eGFP and dsAgAgo2. Mosquitoes coinjected with virus and AgAgo2 dsRNA displayed widespread eGFP expression and virus titers 16-fold higher than dsbetagal controls after 3 or 6 days after injection. These observations provide direct evidence that RNAi is an antagonist of ONNV replication in A. gambiae, and they suggest that the innate immune response conditions vector competence.

  16. RNA Interference of the Salivary Gland Nitrophorin 2 in the Triatomine Bug Rhodnius Prolixus (Hemiptera: Reduviidae) by dsRNA Ingestion or Injection

    PubMed Central

    Araujo, R.N.; Santos, A.; Pinto, F.S.; Gontijo, N.F.; Lehane, M.J.; Pereira, M.H.

    2007-01-01

    Mass sequencing of cDNA libraries from salivary glands of triatomines has resulted in the identification of many novel genes of unknown function. The aim of the present work was to develop a functional RNA interference (RNAi) technique for Rhodnius prolixus, which could be widely used for functional genomics studies in triatomine bugs. To this end, we investigated whether double-stranded RNA (dsRNA) can inhibit gene expression of R. prolixus salivary nitrophorin 2 (NP2) and what impact this might have on anticoagulant and apyrase activity in the saliva. dsRNA was introduced by two injections or by ingestion. RT-PCR of the salivary glands showed that injections of 15 μg of NP2 dsRNA in fourth-instar nymphs reduced gene expression by 75±14% and that feeding 1 μg/μL of NP2 dsRNA into second-instar nymphs (approx. 13 μg in total) reduced gene expression by 42±10%. Phenotype analysis showed that saliva of normal bugs prolonged plasma coagulation by about four-fold when compared to saliva of knockdown bugs. These results and the light color of the salivary gland content from some insects are consistent with the knockdown findings. The findings suggest that RNAi will prove a highly valuable functional genomics technique in triatomine bugs. The finding that feeding dsRNA can induce knockdown is novel for insects. PMID:16935217

  17. Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast.

    PubMed

    Ard, Ryan; Tong, Pin; Allshire, Robin C

    2014-11-27

    Most long non-coding RNAs (lncRNAs) encoded by eukaryotic genomes remain uncharacterized. Here we focus on a set of intergenic lncRNAs in fission yeast. Deleting one of these lncRNAs exhibited a clear phenotype: drug sensitivity. Detailed analyses of the affected locus revealed that transcription of the nc-tgp1 lncRNA regulates drug tolerance by repressing the adjacent phosphate-responsive permease gene transporter for glycerophosphodiester 1 (tgp1(+)). We demonstrate that the act of transcribing nc-tgp1 over the tgp1(+) promoter increases nucleosome density, prevents transcription factor access and thus represses tgp1(+) without the need for RNA interference or heterochromatin components. We therefore conclude that tgp1(+) is regulated by transcriptional interference. Accordingly, decreased nc-tgp1 transcription permits tgp1(+) expression upon phosphate starvation. Furthermore, nc-tgp1 loss induces tgp1(+) even in repressive conditions. Notably, drug sensitivity results directly from tgp1(+) expression in the absence of the nc-tgp1 RNA. Thus, transcription of an lncRNA governs drug tolerance in fission yeast.

  18. Integrated genomic, transcriptomic, and RNA-interference analysis of genes in somatic copy number gains in pancreatic ductal adenocarcinoma.

    PubMed

    Samuel, Nardin; Sayad, Azin; Wilson, Gavin; Lemire, Mathieu; Brown, Kevin R; Muthuswamy, Lakshmi; Hudson, Thomas J; Moffat, Jason

    2013-08-01

    This study used an integrated analysis of copy number, gene expression, and RNA interference screens for identification of putative driver genes harbored in somatic copy number gains in pancreatic ductal adenocarcinoma (PDAC). Somatic copy number gain data on 60 PDAC genomes were extracted from public data sets to identify genomic loci that are recurrently gained. Array-based data from a panel of 29 human PDAC cell lines were used to quantify associations between copy number and gene expression for the set of genes found in somatic copy number gains. The most highly correlated genes were assessed in a compendium of pooled short hairpin RNA screens on 27 of the same human PDAC cell lines. A catalog of 710 protein-coding and 46 RNA genes mapping to 20 recurrently gained genomic loci were identified. The gene set was further refined through stringent integration of copy number, gene expression, and RNA interference screening data to uncover 34 candidate driver genes. Among the candidate genes from the integrative analysis, ECT2 was found to have significantly higher essentiality in specific PDAC cell lines with genomic gains at the 3q26.3 locus, which harbors this gene, suggesting that ECT2 may play an oncogenic role in the PDAC neoplastic process.

  19. The RNA interference pathway affects midgut infection- and escape barriers for Sindbis virus in Aedes aegypti

    PubMed Central

    2010-01-01

    Background The RNA interference (RNAi) pathway acts as an innate antiviral immune response in Aedes aegypti, modulating arbovirus infection of mosquitoes. Sindbis virus (SINV; family: Togaviridae, genus: Alphavirus) is an arbovirus that infects Ae. aegypti in the laboratory. SINV strain TR339 encounters a midgut escape barrier (MEB) during infection of Ae. aegypti. The nature of this barrier is not well understood. To investigate the role of the midgut as the central organ determining vector competence for arboviruses, we generated transgenic mosquitoes in which the RNAi pathway was impaired in midgut tissue of bloodfed females. We used these mosquitoes to reveal effects of RNAi impairment in the midgut on SINV replication, midgut infection and dissemination efficiencies, and mosquito longevity. Results As a novel tool for studying arbovirus-mosquito interactions, we engineered a transgenic mosquito line with an impaired RNAi pathway in the midgut of bloodfed females by silencing expression of the Aa-dcr2 gene. In midgut tissue of the transgenic Carb/dcr16 line, Aa-dcr2 expression was reduced ~50% between 1-7 days post-bloodmeal (pbm) when compared to the recipient mosquito strain. After infection with SINV-TR339EGFP, Aa-dcr2 expression levels were enhanced in both mosquito strains. In the RNAi pathway impaired mosquito strain SINV titers and midgut infection rates were significantly higher at 7 days pbm. There was also a strong tendency for increased virus dissemination rates among the transgenic mosquitoes. Between 7-14 days pbm, SINV was diminished in midgut tissue of the transgenic mosquitoes. Transgenic impairment of the RNAi pathway and/or SINV infection did not affect longevity of the mosquitoes. Conclusions We showed that RNAi impaired transgenic mosquitoes are a useful tool for studying arbovirus-mosquito interactions at the molecular level. Following ingestion by Ae. aegypti, the recombinant SINV-TR339EGFP was confronted with both MEB and a midgut

  20. Lentivirus-mediated RNA interference of vascular endothelial growth factor in monkey eyes with iris neovascularization

    PubMed Central

    Yuan, Meng-Ke; Tao, Yong; Yu, Wen-Zhen; Kai, Wang

    2010-01-01

    Purpose To explore the in vivo anti-angiogenesis effects resulting from lentivirus-mediated RNAi of vascular endothelial growth factor (VEGF) in monkeys with iris neovascularization (INV). Methods Five specific recombinant lentiviral vectors for RNA interference, targeting Macaca mulatta VEGFA, were designed and the one with best knock down efficacy (LV-GFP-VEGFi1) in H1299 cells and RF/6A cells was selected by real-time PCR for in vivo use. A laser-induced retinal vein occlusion model was established in one eye of seven cynomolgus monkeys. In monkeys number1, 3, and 5 (Group 1), the virus (1×108 particles) was intravitreally injected into the preretinal space of the animal's eye immediately after laser coagulation; and in monkeys number 2, 4, and 6 (Group 2), the virus (1×108 particles) was injected at 10 days after laser coagulation. In monkey number 7, a blank control injection was performed. In monkeys number 1 and 2, virus without RNAi sequence was used; in monkeys number 3 and 4, virus with nonspecific RNAi sequence was used; and in monkeys 5 and 6, LV-GFP-VEGFi1 was used. Results In monkey number 5, at 23 days after laser treatment, no obvious INV was observed, while fluorescein angiography of the iris revealed high fluorescence at the margin of pupil and point posterior synechiae. At 50 days after laser treatment, only a slight ectropion uvea was found. However, in the other eyes, obvious INV or hyphema was observed. The densities of new iridic vessels all significantly varied: between monkey number 5 and number 3 (36.01±4.49/mm2 versus 48.68±9.30/mm2, p=0.025), between monkey number 3 and monkey number 7 (48.68±9.30/mm2 versus 74.38±9.23/mm2, p=0.002), and between monkey number 5 and number 7 (36.01±4.49/mm2 versus 74.38±9.23/mm2, p<0.001). Conclusions Lentivirus-mediated RNAi of VEGF may be a new strategy to treat iris neovascularization, while further studies are needed to investigate the long-term effect. PMID:20806089

  1. Lentivirus-mediated RNA interference of vascular endothelial growth factor in monkey eyes with iris neovascularization.

    PubMed

    Yuan, Meng-Ke; Tao, Yong; Yu, Wen-Zhen; Kai, Wang; Jiang, Yan-Rong

    2010-08-25

    To explore the in vivo anti-angiogenesis effects resulting from lentivirus-mediated RNAi of vascular endothelial growth factor (VEGF) in monkeys with iris neovascularization (INV). Five specific recombinant lentiviral vectors for RNA interference, targeting Macaca mulatta VEGFA, were designed and the one with best knock down efficacy (LV-GFP-VEGFi1) in H1299 cells and RF/6A cells was selected by real-time PCR for in vivo use. A laser-induced retinal vein occlusion model was established in one eye of seven cynomolgus monkeys. In monkeys number 1, 3, and 5 (Group 1), the virus (1x10(8) particles) was intravitreally injected into the preretinal space of the animal's eye immediately after laser coagulation; and in monkeys number 2, 4, and 6 (Group 2), the virus (1x10(8) particles) was injected at 10 days after laser coagulation. In monkey number 7, a blank control injection was performed. In monkeys number 1 and 2, virus without RNAi sequence was used; in monkeys number 3 and 4, virus with nonspecific RNAi sequence was used; and in monkeys 5 and 6, LV-GFP-VEGFi1 was used. In monkey number 5, at 23 days after laser treatment, no obvious INV was observed, while fluorescein angiography of the iris revealed high fluorescence at the margin of pupil and point posterior synechiae. At 50 days after laser treatment, only a slight ectropion uvea was found. However, in the other eyes, obvious INV or hyphema was observed. The densities of new iridic vessels all significantly varied: between monkey number 5 and number 3 (36.01+/-4.49/mm(2) versus 48.68+/-9.30/mm(2), p=0.025), between monkey number 3 and monkey number 7 (48.68+/-9.30/mm(2) versus 74.38+/-9.23/mm(2), p=0.002), and between monkey number 5 and number 7 (36.01+/-4.49/mm(2) versus 74.38+/-9.23/mm(2), p<0.001). Lentivirus-mediated RNAi of VEGF may be a new strategy to treat iris neovascularization, while further studies are needed to investigate the long-term effect.

  2. RNA interference (RNAi) screening approach identifies agents that enhance paclitaxel activity in breast cancer cells

    PubMed Central

    2010-01-01

    Introduction Paclitaxel is a widely used drug in the treatment of patients with locally advanced and metastatic breast cancer. However, only a small portion of patients have a complete response to paclitaxel-based chemotherapy, and many patients are resistant. Strategies that increase sensitivity and limit resistance to paclitaxel would be of clinical use, especially for patients with triple-negative breast cancer (TNBC). Methods We generated a gene set from overlay of the druggable genome and a collection of genomically deregulated gene transcripts in breast cancer. We used loss-of-function RNA interference (RNAi) to identify gene products in this set that, when targeted, increase paclitaxel sensitivity. Pharmacological agents that targeted the top scoring hits/genes from our RNAi screens were used in combination with paclitaxel, and the effects on the growth of various breast cancer cell lines were determined. Results RNAi screens performed herein were validated by identification of genes in pathways that, when previously targeted, enhanced paclitaxel sensitivity in the pre-clinical and clinical settings. When chemical inhibitors, CCT007093 and mithramycin, against two top hits in our screen, PPMID and SP1, respectively, were used in combination with paclitaxel, we observed synergistic growth inhibition in both 2D and 3D breast cancer cell cultures. The transforming growth factor beta (TGFβ) receptor inhibitor, LY2109761, that targets the signaling pathway of another top scoring hit, TGFβ1, was synergistic with paclitaxel when used in combination on select breast cancer cell lines grown in 3D culture. We also determined the relative paclitaxel sensitivity of 22 TNBC cell lines and identified 18 drug-sensitive and four drug-resistant cell lines. Of significance, we found that both CCT007093 and mithramycin, when used in combination with paclitaxel, resulted in synergistic inhibition of the four paclitaxel-resistant TNBC cell lines. Conclusions RNAi screening can

  3. Technical advances in trigger-induced RNA interference gene silencing in the parasite Entamoeba histolytica.

    PubMed

    Khalil, Mohamed I; Foda, Bardees M; Suresh, Susmitha; Singh, Upinder

    2016-03-01

    Entamoeba histolytica has a robust endogenous RNA interference (RNAi) pathway. There are abundant 27 nucleotide (nt) anti-sense small RNAs (AS sRNAs) that target genes for silencing and the genome encodes many genes involved in the RNAi pathway such as Argonaute proteins. Importantly, an E. histolytica gene with numerous AS sRNAs can function as a "trigger" to induce silencing of a gene that is fused to the trigger. Thus, the amebic RNAi pathway regulates gene expression relevant to amebic biology and has additionally been harnessed as a tool for genetic manipulation. In this study we have further improved the trigger-induced gene silencing method. We demonstrate that rather than using the full-length gene, a short portion of the coding region fused to a trigger is sufficient to induce silencing; the first 537 bp of the E. histolytica rhomboid gene (EhROM1) fused in-frame to the trigger was sufficient to silence EhROM1. We also demonstrated that the trigger method could silence two amebic genes concomitantly; fusion of the coding regions of EhROM1 and transcription factor, EhMyb, in-frame to a trigger gene resulted in both genes being silenced. Alternatively, two genes can be silenced sequentially: EhROM1-silenced parasites with no drug selection plasmid were transfected with trigger-EhMyb, resulting in parasites with both EhROM1 and EhMyb silenced. With all approaches tested, the trigger-mediated silencing was substantive and silencing was maintained despite loss of the G418 selectable marker. All gene silencing was associated with generation of AS sRNAs to the silenced gene. We tested the reversibility of the trigger system using inhibitors of histone modifications but found that the silencing was highly stable. This work represents a technical advance in the trigger gene silencing method in E. histolytica. Approaches that readily silence multiple genes add significantly to the genetic toolkit available to the ameba research community.

  4. RNA interference in marine and freshwater sponges: actin knockdown in Tethya wilhelma and Ephydatia muelleri by ingested dsRNA expressing bacteria

    PubMed Central

    2011-01-01

    Background The marine sponge Tethya wilhelma and the freshwater sponge Ephydatia muelleri are emerging model organisms to study evolution, gene regulation, development, and physiology in non-bilaterian animal systems. Thus far, functional methods (i.e., loss or gain of function) for these organisms have not been available. Results We show that soaking developing freshwater sponges in double-stranded RNA and/or feeding marine and freshwater sponges bacteria expressing double-stranded RNA can lead to RNA interference and reduction of targeted transcript levels. These methods, first utilized in C. elegans, have been adapted for the development and feeding style of easily cultured marine and freshwater poriferans. We demonstrate phenotypic changes result from 'knocking down' expression of the actin gene. Conclusion This technique provides an easy, efficient loss-of-function manipulation for developmental and gene regulatory studies in these important non-bilaterian animals. PMID:21679422

  5. cSSMD: assessing collective activity for addressing off-target effects in genome-scale RNA interference screens.

    PubMed

    Zhang, Xiaohua Douglas; Santini, Francesca; Lacson, Raul; Marine, Shane D; Wu, Qian; Benetti, Luca; Yang, Ruojing; McCampbell, Alex; Berger, Joel P; Toolan, Dawn M; Stec, Erica M; Holder, Daniel J; Soper, Keith A; Heyse, Joseph F; Ferrer, Marc

    2011-10-15

    Off-target activity commonly exists in RNA interference (RNAi) screens and often generates false positives. Existing analytic methods for addressing the off-target effects are demonstrably inadequate in RNAi confirmatory screens. Here, we present an analytic method assessing the collective activity of multiple short interfering RNAs (siRNAs) targeting a gene. Using this method, we can not only reduce the impact of off-target activities, but also evaluate the specific effect of an siRNA, thus providing information about potential off-target effects. Using in-house RNAi screens, we demonstrate that our method obtains more reasonable and sensible results than current methods such as the redundant siRNA activity (RSA) method, the RNAi gene enrichment ranking (RIGER) method, the frequency approach and the t-test. xiaohua_zhang@merck.com Supplementary data are available at Bioinformatics online.

  6. cSSMD: assessing collective activity for addressing off-target effects in genome-scale RNA interference screens

    PubMed Central

    Zhang, Xiaohua Douglas; Santini, Francesca; Lacson, Raul; Marine, Shane D.; Wu, Qian; Benetti, Luca; Yang, Ruojing; McCampbell, Alex; Berger, Joel P.; Toolan, Dawn M.; Stec, Erica M.; Holder, Daniel J.; Soper, Keith A.; Heyse, Joseph F.; Ferrer, Marc

    2011-01-01

    Motivation: Off-target activity commonly exists in RNA interference (RNAi) screens and often generates false positives. Existing analytic methods for addressing the off-target effects are demonstrably inadequate in RNAi confirmatory screens. Results: Here, we present an analytic method assessing the collective activity of multiple short interfering RNAs (siRNAs) targeting a gene. Using this method, we can not only reduce the impact of off-target activities, but also evaluate the specific effect of an siRNA, thus providing information about potential off-target effects. Using in-house RNAi screens, we demonstrate that our method obtains more reasonable and sensible results than current methods such as the redundant siRNA activity (RSA) method, the RNAi gene enrichment ranking (RIGER) method, the frequency approach and the t-test. Contact: xiaohua_zhang@merck.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21846737

  7. Knockdown of RNA Interference Pathway Genes in Western Corn Rootworms (Diabrotica virgifera virgifera Le Conte) Demonstrates a Possible Mechanism of Resistance to Lethal dsRNA

    PubMed Central

    Vélez, Ana María; Khajuria, Chitvan; Wang, Haichuan; Narva, Kenneth E.; Siegfried, Blair D.

    2016-01-01

    RNA interference (RNAi) is being developed as a potential tool for insect pest management. Increased understanding of the RNAi pathway in target insect pests will provide information to use this technology effectively and to inform decisions related to resistant management strategies for RNAi based traits. Dicer 2 (Dcr2), an endonuclease responsible for formation of small interfering RNA’s and Argonaute 2 (Ago2), an essential catalytic component of the RNA-induced silencing complex (RISC) have both been associated with the RNAi pathway in a number of different insect species including the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). We identified both genes from a transcriptome library generated from different tissues and developmental stages of the western corn rootworm, an important target pest for transgenic plants expressing dsRNA targeting essential genes. The expression of these genes was suppressed by more than 90% after injecting gene specific dsRNA into adult rootworms. The injected beetles were then fed vATPase A dsRNA which has previously been demonstrated to cause mortality in western corn rootworm adults. The suppression of both RNAi pathway genes resulted in reduced mortality after subsequent exposure to lethal concentrations of vATPase A dsRNA as well as increased vATPase A expression relative to control treatments. Injections with dsRNA for a non-lethal target sequence (Laccase 2) did not affect mortality or expression caused by vATPase A dsRNA indicating that the results observed with Argo and Dicer dsRNA were not caused by simple competition among different dsRNA’s. These results confirm that both genes play an important role in the RNAi pathway for western corn rootworms and indicate that selection pressures that potentially affect the expression of these genes may provide a basis for future studies to understand potential mechanisms of resistance. PMID:27310918

  8. Effect of silencing HOXA5 gene expression using RNA interference on cell cycle and apoptosis in Jurkat cells.

    PubMed

    Huang, Hui-Ping; Liu, Wen-Jun; Guo, Qu-Lian; Bai, Yong-Qi

    2016-03-01

    Acute lymphocytic leukemia (ALL) is a common malignant tumor with a high morbidity rate among children, accounting for approximately 80% of leukemia cases. Although there have been improvements in the treatment of patients frequent relapse lead to a poor prognosis. The aim of the present study was to determine whether HOXA5 may be used as a target for gene therapy in leukemia in order to provide a new treatment. Mononuclear cells were extracted from the bone marrow according to the clinical research aims. After testing for ALL in the acute stage, the relative mRNA and protein expression of HOXA5 was detected in the ALL remission groups (n=25 cases per group) and the control group [n=20 cases, immune thrombocytopenia (ITP)]. Gene silencing by RNA interference (RNAi) was used to investigate the effect of silencing HOXA5 after small interfering RNA (siRNA) transfection to Jurkat cells. The HOXA5-specific siRNA was transfected to Jurkat cells using lipofectamine. The experiment was divided into the experimental group (liposomal transfection of HOXA5 targeting siRNA), the negative control group (liposomal transfection of cells with negative control siRNA) and the control group (plus an equal amount of cells and culture media only). Western blotting and quantitative fluorescent polymerase chain reaction (QF‑PCR) were used to detect the relative HOXA5 mRNA expression and protein distribution in each cell group. Cell distribution in the cell cycle and the rate of cells undergoing apoptosis were determined using flow cytometry. The expression of HOXA5 at the mRNA and protein levels in the acute phase of ALL was significantly higher than that in ALL in the remission and control groups. In cells transfected with HOXA5-specific siRNA, the expression of HOXA5 at the mRNA and protein levels decreased significantly (P<0.05). The distribution of cells in the cell cycle was also altered. Specifically, more cells were present in the G0/G1 phase compared to the S phase (P<0.05). In

  9. Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference.

    PubMed

    Zhao, Lina; Yang, Mengmeng; Shen, Qida; Liu, Xiaojun; Shi, Zuokun; Wang, Shigui; Tang, Bin

    2016-06-22

    RNA interference (RNAi) is an effective gene-silencing tool, and double stranded RNA (dsRNA) is considered a powerful strategy for gene function studies in insects. In the present study, we aimed to investigate the function of trehalase (TRE) genes (TRE 1-1, TRE 1-2, and TRE-2) isolated from the brown planthopper Nilaparvata lugens, a typical piercing-sucking insect in rice, and investigate their regulating roles in chitin synthesis by injecting larvae with dsRNA. The results showed that TRE1 and TRE2 had compensatory function, and the expression of each increased when the other was silenced. The total rate of insects with phenotypic deformities ranged from 19.83 to 24.36% after dsTRE injection, whereas the mortality rate ranged from 14.16 to 31.78%. The mRNA levels of genes involved in the chitin metabolism pathway in RNA-Seq and DGEP, namely hexokinase (HK), glucose-6-phosphate isomerase (G6PI) and chitinase (Cht), decreased significantly at 72 h after single dsTREs injection, whereas two transcripts of chitin synthase (CHS) genes decreased at 72 h after dsTRE1-1 and dsTREs injection. These results demonstrated that TRE silencing could affect the regulation of chitin biosynthesis and degradation, causing moulting deformities. Therefore, expression inhibitors of TREs might be effective tools for the control of planthoppers in rice.

  10. Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference

    PubMed Central

    Zhao, Lina; Yang, Mengmeng; Shen, Qida; Liu, Xiaojun; Shi, Zuokun; Wang, Shigui; Tang, Bin

    2016-01-01

    RNA interference (RNAi) is an effective gene-silencing tool, and double stranded RNA (dsRNA) is considered a powerful strategy for gene function studies in insects. In the present study, we aimed to investigate the function of trehalase (TRE) genes (TRE 1-1, TRE 1-2, and TRE-2) isolated from the brown planthopper Nilaparvata lugens, a typical piercing-sucking insect in rice, and investigate their regulating roles in chitin synthesis by injecting larvae with dsRNA. The results showed that TRE1 and TRE2 had compensatory function, and the expression of each increased when the other was silenced. The total rate of insects with phenotypic deformities ranged from 19.83 to 24.36% after dsTRE injection, whereas the mortality rate ranged from 14.16 to 31.78%. The mRNA levels of genes involved in the chitin metabolism pathway in RNA-Seq and DGEP, namely hexokinase (HK), glucose-6-phosphate isomerase (G6PI) and chitinase (Cht), decreased significantly at 72 h after single dsTREs injection, whereas two transcripts of chitin synthase (CHS) genes decreased at 72 h after dsTRE1-1 and dsTREs injection. These results demonstrated that TRE silencing could affect the regulation of chitin biosynthesis and degradation, causing moulting deformities. Therefore, expression inhibitors of TREs might be effective tools for the control of planthoppers in rice. PMID:27328657

  11. Down-regulation of Mcl-1 by small interference RNA induces apoptosis and sensitizes HL-60 leukemia cells to etoposide.

    PubMed

    Karami, Hadi; Baradaran, Behzad; Esfehani, Ali; Sakhinia, Masoud; Sakhinia, Ebrahim

    2014-01-01

    Acute myeloid leukemia (AML) is a fatal hematological malignancy which is resistant to a variety of chemotherapy drugs. Myeloid cell leukemia-1 (Mcl-1), a death-inhibiting protein that regulates apoptosis, has been shown to be overexpressed in numerous malignancies. In addition, it has been demonstrated that the expression level of the Mcl-1 gene increases at the time of leukemic relapse following chemotherapy. The aim of this study was to target Mcl-1 by small interference RNA (siRNA) and analyze its effects on survival and chemosensitivity of acute myeloid leukemia cell line HL-60. siRNA transfection was performed with a liposome approach. The expression levels of mRNA and protein were measured by real-time quantitative PCR and Western blot analysis, respectively. Trypan blue assays were performed to evaluate tumor cell growth after siRNA transfection. The cytotoxic effects of Mcl-1 siRNA (siMcl-1) and etoposide were determined using MTT assay on their own and in combination. Apoptosis was quantified using a DNA-histone ELISA assay. Transfection with siMcl-1 significantly suppressed the expression of Mcl-1 mRNA and protein in a time- dependent manner, resulting in strong growth inhibition and spontaneous apoptosis. Surprisingly, pretreatment with siMcl-1 synergistically enhanced the cytotoxic effect of etoposide. Furthermore, Mcl-1 down-regulation significantly increased apoptosis sensitivity to etoposide. No significant biological effects were observed with negative control siRNA treatment. Our results suggest that specific suppression of Mcl-1 by siRNA can effectively induce apoptosis and overcome chemoresistance of leukemic cells. Therefore, siMcl-1 may be a potent adjuvant in leukemia chemotherapy.

  12. Matrix metalloproteinase-9 silencing by RNA interference promotes the adhesive-invasive switch in HT1080 human fibrosarcoma cells.

    PubMed

    Zhu, Xishan; Tai, Weiping; Shi, Wei; Song, Yuguang; Zhang, Hongmei; An, Guangyu

    2012-01-01

    A high level of matrix metalloproteinase-9 (MMP-9) is associated with human tumor invasion and/or metastasis. The HT1080 human fibrosarcoma cell line is highly invasive and metastatic which constitutively express MMP-9. HT1080 cells transfected with a double stranded RNA that targeted the MMP-9 mRNA and the cellular characteristics were examined before and after interference. The inhibition effects of MMP-9 interference on the tumor growth of HT1080 cells in nude mice was also tested by xenograft assay. MMP-9 extinction in HT1080 resulted in the following: (1) inhibited cell mobility; (2) increased cell adhesion, and (3) attenuated tumor cell migration. In addition, MMP-9 knockdown concomitantly resulted in decreased levels of soluble ICAM-1, leading to an adhesion defect and tumor metastasis. Moreover, in vivo assay further demonstrated MMP-9 interference affecting the tumorigenesis of HT1080 cells in mice as follows (1) inhibition of tumor growth; (2) reduced tumor volume, and (3) prolonged survival time. Our observations defined a novel critical role for MMP-9 in the progression of HT1080 fibrosarcoma by changing the inter-cellular adhesion molecular-1 from membrane-anchored state to a soluble one which provides a target for promising tumor therapy in clinics.

  13. Interplay between RNA interference and heat shock response systems in Drosophila melanogaster

    PubMed Central

    Funikov, S. Yu; Kanapin, A. A.; Logacheva, M. D.; Penin, A. A.; Snezhkina, A. V.; Shilova, V. Yu.; Garbuz, D. G.; Zatsepina, O. G.

    2016-01-01

    The genome expression pattern is strongly modified during the heat shock response (HSR) to form an adaptive state. This may be partly achieved by modulating microRNA levels that control the expression of a great number of genes that are embedded within the gene circuitry. Here, we investigated the cross-talk between two highly conserved and universal house-keeping systems, the HSR and microRNA machinery, in Drosophila melanogaster. We demonstrated that pronounced interstrain differences in the microRNA levels are alleviated after heat shock (HS) to form a uniform microRNA pattern. However, individual strains exhibit different patterns of microRNA expression during the course of recovery. Importantly, HS-regulated microRNAs may target functionally similar HS-responsive genes involved in the HSR. Despite the observed general downregulation of primary microRNA precursor expression as well as core microRNA pathway genes after HS, the levels of many mature microRNAs are upregulated. This indicates that the regulation of miRNA expression after HS occurs at transcriptional and post-transcriptional levels. It was also shown that deletion of all hsp70 genes had no significant effect on microRNA biogenesis but might influence the dynamics of microRNA expression during the HSR. PMID:27805906

  14. RNA interference mitigates motor and neuropathological deficits in a cerebellar mouse model of Machado-Joseph disease.

    PubMed

    Nóbrega, Clévio; Nascimento-Ferreira, Isabel; Onofre, Isabel; Albuquerque, David; Déglon, Nicole; de Almeida, Luís Pereira

    2014-01-01

    Machado-Joseph disease or Spinocerebellar ataxia type 3 is a progressive fatal neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Recent studies demonstrate that RNA interference is a promising approach for the treatment of Machado-Joseph disease. However, whether gene silencing at an early time-point is able to prevent the appearance of motor behavior deficits typical of the disease when initiated before onset of the disease had not been explored. Here, using a lentiviral-mediated allele-specific silencing of mutant ataxin-3 in an early pre-symptomatic cerebellar mouse model of Machado-Joseph disease we show that this strategy hampers the development of the motor and neuropathological phenotypic characteristics of the disease. At the histological level, the RNA-specific silencing of mutant ataxin-3 decreased formation of mutant ataxin-3 aggregates, preserved Purkinje cell morphology and expression of neuronal markers while reducing cell death. Importantly, gene silencing prevented the development of impairments in balance, motor coordination, gait and hyperactivity observed in control mice. These data support the therapeutic potential of RNA interference for Machado-Joseph disease and constitute a proof of principle of the beneficial effects of early allele-specific silencing for therapy of this disease.

  15. Inhibition of the gene expression for granule-bound starch synthase I by RNA interference in sweet potato plants.

    PubMed

    Otani, Motoyasu; Hamada, Tatsuro; Katayama, Kenji; Kitahara, Kakefumi; Kim, Sun-Hyung; Takahata, Yasuhiro; Suganuma, Toshihiko; Shimada, Takiko

    2007-10-01

    Granule-bound starch synthase I (GBSSI) is one of the key enzymes catalyzing the formation of amylose, a linear alpha(1,4)D-glucan polymer, from ADP-glucose. Amylose-free transgenic sweet potato plants were produced by inhibiting sweet potato GBSSI gene expression through RNA interference. The gene construct consisting of an inverted repeat of the first exon separated by intron 1 of GBSSI driven by the CaMV 35S promoter was integrated into the sweet potato genome by Agrobacterium tumefaciens-mediated transformation. In over 70% of the regenerated transgenic plants, the expression of GBSSI was inactivated giving rise to storage roots containing amylopectin but not amylose. Electrophoresis analysis failed to detect the GBSSI protein, suggesting that gene silencing of the GBSSI gene had occurred. These results clearly demonstrate that amylose synthesis is completely inhibited in storage roots of sweet potato plants by the constitutive production of the double-stranded RNA of GBSSI fragments. We conclude that RNA interference is an effective method for inhibiting gene expression in the starch metabolic pathway.

  16. Knockdown of Nogo gene by short hairpin RNA interference promotes functional recovery of spinal cord injury in a rat model.

    PubMed

    Liu, Guo-Min; Luo, Yun-Gang; Li, Juan; Xu, Kun

    2016-05-01

    The specific myelin component Nogo protein is one of the major inhibitory molecules of spinal cord axonal outgrowth following spinal cord injury. The present study aimed to investigate the effects of silencing Nogo protein with shRNA interference on the promotion of functional recovery in a rat model with spinal cord hemisection. Nogo-A short hairpin RNAs (Nogo shRNAs) were constructed and transfected into rats with spinal cord hemisection by adenovirus-mediated transfection. Reverse transcription‑polymerase chain reaction and western blotting were performed to analyze the expression of Nogo-A and Growth Associated Protein 43 (GAP-43). In addition, Basso Beattie Bresnahan (BBB) scores were used to assess the functional recovery of rats following spinal cord injury. The results demonstrated that expression of the Nogo‑A gene was observed to be downregulated following transfection and GAP‑43 expression was observed to increase. The BBB scores were increased following treatment with Nogo shRNAs, indicating functional recovery of the injured nerves. Thus, Nogo-A shRNA interference can knockdown Nogo gene expression and upregulate GAP-43 to promote the functional recovery of spinal cord injury in rats. This finding may advance progress toward assisting the regeneration of injured neurons through the use of Nogo-A shRNA.

  17. RNA Interference Mitigates Motor and Neuropathological Deficits in a Cerebellar Mouse Model of Machado-Joseph Disease

    PubMed Central

    Onofre, Isabel; Albuquerque, David; Déglon, Nicole; Pereira de Almeida, Luís

    2014-01-01

    Machado-Joseph disease or Spinocerebellar ataxia type 3 is a progressive fatal neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Recent studies demonstrate that RNA interference is a promising approach for the treatment of Machado-Joseph disease. However, whether gene silencing at an early time-point is able to prevent the appearance of motor behavior deficits typical of the disease when initiated before onset of the disease had not been explored. Here, using a lentiviral-mediated allele-specific silencing of mutant ataxin-3 in an early pre-symptomatic cerebellar mouse model of Machado-Joseph disease we show that this strategy hampers the development of the motor and neuropathological phenotypic characteristics of the disease. At the histological level, the RNA-specific silencing of mutant ataxin-3 decreased formation of mutant ataxin-3 aggregates, preserved Purkinje cell morphology and expression of neuronal markers while reducing cell death. Importantly, gene silencing prevented the development of impairments in balance, motor coordination, gait and hyperactivity observed in control mice. These data support the therapeutic potential of RNA interference for Machado-Joseph disease and constitute a proof of principle of the beneficial effects of early allele-specific silencing for therapy of this disease. PMID:25144231

  18. Parental RNA interference of genes involved in embryonic development of the western corn rootworm, Diabrotica virgifera virgifera LeConte.

    PubMed

    Khajuria, Chitvan; Vélez, Ana M; Rangasamy, Murugesan; Wang, Haichuan; Fishilevich, Elane; Frey, Meghan L F; Carneiro, Newton Portilho; Gandra, Premchand; Narva, Kenneth E; Siegfried, Blair D

    2015-08-01

    RNA interference (RNAi) is being developed as a potential tool for insect pest management and one of the most likely target pest species for transgenic plants that express double stranded RNA (dsRNA) is the western corn rootworm. Thus far, most genes proposed as targets for RNAi in rootworm cause lethality in the larval stage. In this study, we describe RNAi-mediated knockdown of two developmental genes, hunchback (hb) and brahma (brm), in the western corn rootworm delivered via dsRNA fed to adult females. dsRNA feeding caused a significant decrease in hb and brm transcripts in the adult females. Although total oviposition was not significantly affected, there was almost complete absence of hatching in the eggs collected from females exposed to dsRNA for either gene. These results confirm that RNAi is systemic in nature for western corn rootworms. These results also indicate that hunchback and brahma play important roles in rootworm embryonic development and could provide useful RNAi targets in adult rootworms to prevent crop injury by impacting the population of larval progeny of exposed adults. The ability to deliver dsRNA in a trans-generational manner by feeding to adult rootworms may offer an additional approach to utilizing RNAi for rootworm pest management. The potential to develop parental RNAi technology targeting progeny of adult rootworms in combination with Bt proteins or dsRNA lethal to larvae may increase opportunities to develop sustainable approaches to rootworm management involving RNAi technologies for rootworm control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Improving model predictions for RNA interference activities that use support vector machine regression by combining and filtering features

    PubMed Central

    Peek, Andrew S

    2007-01-01

    Background RNA interference (RNAi) is a naturally occurring phenomenon that results in the suppression of a target RNA sequence utilizing a variety of possible methods and pathways. To dissect the factors that result in effective siRNA sequences a regression kernel Support Vector Machine (SVM) approach was used to quantitatively model RNA interference activities. Results Eight overall feature mapping methods were compared in their abilities to build SVM regression models that predict published siRNA activities. The primary factors in predictive SVM models are position specific nucleotide compositions. The secondary factors are position independent sequence motifs (N-grams) and guide strand to passenger strand sequence thermodynamics. Finally, the factors that are least contributory but are still predictive of efficacy are measures of intramolecular guide strand secondary structure and target strand secondary structure. Of these, the site of the 5' most base of the guide strand is the most informative. Conclusion The capacity of specific feature mapping methods and their ability to build predictive models of RNAi activity suggests a relative biological importance of these features. Some feature mapping methods are more informative in building predictive models and overall t-test filtering provides a method to remove some noisy features or make comparisons among datasets. Together, these features can yield predictive SVM regression models with increased predictive accuracy between predicted and observed activities both within datasets by cross validation, and between independently collected RNAi activity datasets. Feature filtering to remove features should be approached carefully in that it is possible to reduce feature set size without substantially reducing predictive models, but the features retained in the candidate models become increasingly distinct. Software to perform feature prediction and SVM training and testing on nucleic acid sequences can be found at

  20. Delivery of dsRNA through topical feeding for RNA interference in the citrus sap piercing-sucking hemipteran, Diaphorina citri.

    PubMed

    Killiny, Nabil; Kishk, Abdelaziz

    2017-06-01

    RNA interference (RNAi) is a powerful means to study functional genomics in insects. The delivery of dsRNA is a challenging step in the development of RNAi assay. Here, we describe a new delivery method to increase the effectiveness of RNAi in the Asian citrus psyllid Diaphorina citri. Bromophenol blue droplets were topically applied to fifth instar nymphs and adults on the ventral side of the thorax between the three pairs of legs. In addition to video recordings that showed sucking of the bromophenol blue by the stylets, dissected guts turned blue indicating that the uptake was through feeding. Thus, we called the method topical feeding. We targeted the abnormal wing disc gene (awd), also called nucleoside diphosphate kinase (NDPK), as a reporter gene to prove the uptake of dsRNA via this method of delivery. Our results showed that dsRNA-awd caused reduction of awd expression and nymph mortality. Survival and lifespan of adults emerged from treated nymphs and treated adults were affected. Silencing awd caused wing malformation in the adults emerged from treated nymphs. Topical feeding as a delivery of dsRNA is highly efficient for both nymphs and adults. The described method could be used to increase the efficiency of RNAi in D. citri and other sap piercing-sucking hemipterans. © 2017 Wiley Periodicals, Inc.

  1. Down-regulation of long non-coding RNA MALAT1 by RNA interference inhibits proliferation and induces apoptosis in multiple myeloma.

    PubMed

    Liu, Hui; Wang, Huihan; Wu, Bin; Yao, Kun; Liao, Aijun; Miao, Miao; Li, Yang; Yang, Wei

    2017-10-01

    Multiple myeloma (MM) is a neoplastic plasma-cell disorder characterized by abnormal proliferation of monoclonal plasma cells in the bone marrow. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an evolutionarily highly conserved long non-coding RNA was originally identified in metastatic non-small cell lung cancer and has been reported to be up-regulated in many other cancers. However, the function of MALAT1 in MM remains unknown. In the present study, by transfecting MM cells with MALAT1-specific short hairpin RNA (shRNA) expression plasmids, the role of MALAT1 in the proliferation and apoptosis of MM cells was investigated in vitro, and the tumorigenicity of MALAT1-silenced cells was evaluated in vivo. MALAT1 was found to be highly expressed in RPMI8226 and U266 cells. Down-regulation of MALAT1 via RNA interference significantly inhibited the proliferation of MM cells through cell cycle arrest at G1 phase. Moreover, knockdown of MALAT1 induced apoptosis, which was closely associated with the activation of caspase-3/-9, down-regulation of Bcl-2 and up-regulation of Bax. In addition, silencing of MALAT1 by intratumoral injection of MALAT1 shRNA attenuated the tumour growth in mice bearing myeloma xenograft and led to massive apoptosis in the xenograft tumour. Therefore, MALAT1 may serve as a promising target in the genetic therapeutic strategy for MM treatment. © 2017 John Wiley & Sons Australia, Ltd.

  2. Analysis of RNA Interference Lines Identifies New Functions of Maternally-Expressed Genes Involved in Embryonic Patterning in Drosophila melanogaster.

    PubMed

    Liu, Niankun; Lasko, Paul

    2015-03-31

    Embryonic patterning in Drosophila melanogaster is initially established through the activity of a number of maternally expressed genes that are expressed during oogenesis. mRNAs from some of these genes accumulate in the posterior pole plasm of the oocyte and early embryo and localize further into RNA islands, which are transient ring-like structures that form around the nuclei of future primordial germ cells (pole cells) at stage 3 of embryogenesis. As mRNAs from several genes with known functions in anterior-posterior patterning and/or germ cell specification accumulate in RNA islands, we hypothesized that some other mRNAs that localize in this manner might also function in these developmental processes. To test this, we investigated the developmental functions of 51 genes whose mRNAs accumulate in RNA islands by abrogating their activity in the female germline using RNA interference. This analysis revealed requirements for ttk, pbl, Hip14, eIF5, eIF4G, and CG9977 for progression through early oogenesis. We observed dorsal appendage defects in a proportion of eggs produced by females expressing double-stranded RNA targeting Mkrn1 or jvl, implicating these two genes in dorsal-ventral patterning. In addition, posterior patterning defects and a reduction in pole cell number were seen in the progeny of Mkrn1 females. Because the mammalian ortholog of Mkrn1 acts as an E3 ubiquitin ligase, these results suggest an additional link between protein ubiquitination and pole plasm activity.

  3. In silico molecular docking analysis of the human Argonaute 2 PAZ domain reveals insights into RNA interference

    NASA Astrophysics Data System (ADS)

    Kandeel, Mahmoud; Kitade, Yukio

    2013-07-01

    RNA interference (RNAi) is a critical cellular pathway activated by double stranded RNA and regulates the gene expression of target mRNA. During RNAi, the 3' end of siRNA binds with the PAZ domain, followed by release and rebinding in a cyclic manner, which deemed essential for proper gene silencing. Recently, we provided the forces underlying the recognition of small interfering RNA by PAZ in a computational study based on the structure of Drosophila Argonaute 2 (Ago2) PAZ domain. We have now reanalyzed these data within the view of the new available structures from human Argonauts. While the parameters of weak binding are correlated with higher (RNAi) in the Drosophila model, a different profile is predicted with the human Ago2 PAZ domain. On the basis of the human Ago2 PAZ models, the indicators of stronger binding as the total binding energy and the free energy were associated with better RNAi efficacy. This discrepancy might be attributable to differences in the binding site topology and the difference in the conformation of the bound nucleotides.

  4. In silico molecular docking analysis of the human Argonaute 2 PAZ domain reveals insights into RNA interference.

    PubMed

    Kandeel, Mahmoud; Kitade, Yukio

    2013-07-01

    RNA interference (RNAi) is a critical cellular pathway activated by double stranded RNA and regulates the gene expression of target mRNA. During RNAi, the 3' end of siRNA binds with the PAZ domain, followed by release and rebinding in a cyclic manner, which deemed essential for proper gene silencing. Recently, we provided the forces underlying the recognition of small interfering RNA by PAZ in a computational study based on the structure of Drosophila Argonaute 2 (Ago2) PAZ domain. We have now reanalyzed these data within the view of the new available structures from human Argonauts. While the parameters of weak binding are correlated with higher (RNAi) in the Drosophila model, a different profile is predicted with the human Ago2 PAZ domain. On the basis of the human Ago2 PAZ models, the indicators of stronger binding as the total binding energy and the free energy were associated with better RNAi efficacy. This discrepancy might be attributable to differences in the binding site topology and the difference in the conformation of the bound nucleotides.

  5. Analysis of RNA Interference Lines Identifies New Functions of Maternally-Expressed Genes Involved in Embryonic Patterning in Drosophila melanogaster

    PubMed Central

    Liu, Niankun; Lasko, Paul

    2015-01-01

    Embryonic patterning in Drosophila melanogaster is initially established through the activity of a number of maternally expressed genes that are expressed during oogenesis. mRNAs from some of these genes accumulate in the posterior pole plasm of the oocyte and early embryo and localize further into RNA islands, which are transient ring-like structures that form around the nuclei of future primordial germ cells (pole cells) at stage 3 of embryogenesis. As mRNAs from several genes with known functions in anterior–posterior patterning and/or germ cell specification accumulate in RNA islands, we hypothesized that some other mRNAs that localize in this manner might also function in these developmental processes. To test this, we investigated the developmental functions of 51 genes whose mRNAs accumulate in RNA islands by abrogating their activity in the female germline using RNA interference. This analysis revealed requirements for ttk, pbl, Hip14, eIF5, eIF4G, and CG9977 for progression through early oogenesis. We observed dorsal appendage defects in a proportion of eggs produced by females expressing double-stranded RNA targeting Mkrn1 or jvl, implicating these two genes in dorsal–ventral patterning. In addition, posterior patterning defects and a reduction in pole cell number were seen in the progeny of Mkrn1 females. Because the mammalian ortholog of Mkrn1 acts as an E3 ubiquitin ligase, these results suggest an additional link between protein ubiquitination and pole plasm activity. PMID:25834215

  6. Control of larval and egg development in Aedes aegypti with RNA interference against juvenile hormone acid methyl transferase.

    PubMed

    Van Ekert, Evelien; Powell, Charles A; Shatters, Robert G; Borovsky, Dov

    2014-11-01

    RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including mosquitoes and many other insects. Little has been done, however, to harness this approach in order to control adult and larval mosquitoes. Juvenile hormone (JH) plays a pivotal role in the control of reproduction in adults and metamorphism in larval mosquitoes. This report describes an approach to control Aedes aegypti using RNAi against JH acid methyl transferase (AeaJHAMT), the ultimate enzyme in the biosynthetic pathway of JH III that converts JH acid III (JHA III) into JH III. In female A. aegypti that were injected or fed jmtA dsRNA targeting the AeaJHAMT gene (jmtA) transcript, egg development was inhibited in 50% of the treated females. In mosquito larvae that were fed transgenic Pichia pastoris cells expressing long hair pin (LHP) RNA, adult eclosion was delayed by 3 weeks causing high mortality. Northern blot analyses and qPCR studies show that jmtA dsRNA causes inhibition of jmtA transcript in adults and larvae, which is consistent with the observed inhibition of egg maturation and larval development. Taken together, these results suggest that jmtA LHP RNA expressed in heat inactivated genetically modified P. pastoris cells could be used to control mosquito populations in the marsh.

  7. Efficacy of RNA interference knockdown using aerosolized short interfering RNAs bound to nanoparticles in three diverse aphid species.

    PubMed

    Thairu, M W; Skidmore, I H; Bansal, R; Nováková, E; Hansen, T E; Li-Byarlay, H; Wickline, S A; Hansen, A K

    2017-03-17

    RNA interference (RNAi) has emerged as a promising method for validating gene function; however, its utility in nonmodel insects has proven problematic, with delivery methods being one of the main obstacles. This study investigates a novel method of RNAi delivery in aphids, the aerosolization of short interfering RNA (siRNA)-nanoparticle complexes. By using nanoparticles as a siRNA carrier, the likelihood of cellular uptake is increased, when compared to methods previously used in insects. To determine the efficacy of this RNAi delivery system, siRNAs were aerosolized with and without nanoparticles in three aphid species: Acyrthosiphon pisum, Aphis glycines and Schizaphis graminum. The genes targeted for knockdown were carotene dehydrogenase (tor), which is important for pigmentation in Ac. pisum, and branched chain-amino acid transaminase (bcat), which is essential in the metabolism of branched-chain amino acids in all three aphid species. Overall, we observed modest gene knockdown of tor in Ac. pisum and moderate gene knockdown of bcat in Ap. glycines along with its associated phenotype. We also determined that the nanoparticle emulsion significantly increased the efficacy of gene knockdown. Overall, these results suggest that the aerosolized siRNA-nanoparticle delivery method is a promising new high-throughput and non-invasive RNAi delivery method in some aphid species.

  8. RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide

    PubMed Central

    Palli, Subba Reddy

    2015-01-01

    Colorado potato beetle (CPB) is a notorious pest on potatoes and has a remarkable ability to detoxify plant chemicals and develop resistance against insecticides. dsRNA targeting CPB genes could be expressed in potato plants to control this pest. However, previous attempts at introducing transgenic potato plants to control CPB were not highly successful. Recent studies showed that feeding dsRNA expressed in bacteria works very well to kill CPB. To realize the potential of RNAi to control this and other economically important pests, more efficient methods for production and delivery of dsRNA need to be developed. Extensive research to determine off-target and non-target effects, environmental fate and potential for resistance development is also essential. PMID:26705514

  9. [RNA interference silencing expression of survivin gene and reversing drug resistance of ovarian cancer cell line SKOV3/ADM].

    PubMed

    Deng, Kai-xian; Zhong, Ling; Jiang, Mei-xian; Wang, Ping-ling; Chen, Ying

    2005-12-01

    To examine expression of survivin gene in ovarian epithelial carcinoma drug resistant cell line SKOV3/ADM and its parental cell line SKOV3, and induction of cells apoptosis and reversal of drug resistance in SKOV3/ADM after RNA interference (RNAi) silencing survivin gene. The transcription of survivin gene in cells was detected by semi-quantitative RT-PCR, the protein expression level of survivin gene was analyzed by immunofluorescence staining. SKOV3/ADM cells were treated with pshRNA-survivin and paclitaxel (Taxol), and acridine orange (AO)/ethidium bromide (EB) staining was performed to evaluate the apoptosis of cells. Survivin gene mRNA expressed by 99.1% and 75.3% respectively in cell lines SKOV3/ADM and SKOV3, while fluorescent cells were 59 +/- 5 and 42 +/- 3 (P < 0.05). After the introduction of pshRNA-survivin into SKOV3/ADM, mRNA transcription level of survivin gene decreased distinctly from 99.1% to 7.9%. The apoptotic cells of control group detected by AO/EB staining was 3.6 +/- 0.6, of Taxol group 10.2 +/- 1.0, of RNAi group 48.5 +/- 4.9, of RNAi + Taxol group 71.5 +/- 6.8. Apoptosis ratio between RNAi + Taxol group and RNAi group had significant difference (P < 0.05), and that between RNAi + Taxol group and Taxol group also had significant difference (P < 0.05). Both survivin gene mRNA and its protein are over-expressed in ovarian epithelial carcinoma cell lines SKOV3 and SKOV3/ADM, the level of survivin gene expressed in SKOV3/ADM is obviously different compared with that in its parental cell line SKOV3. RNA interference targeted against specific sequences of survivin in SKOV3/ADM cell could significantly reduce the level of survivin mRNA transcripts and protein, effectively induce the cells apoptosis and restore the sensitivity of cell to conventional chemotherapeutic agents Taxol.

  10. Genome-Wide RNA Interference: Functional Genomics in the Postgenomics Era.

    PubMed

    Politi, Katerina; Wajapeyee, Narendra

    2017-09-01

    This introduction briefly describes the types of RNAi libraries (both shRNA-based and double-stranded siRNA-based) that are available for understanding diverse biological questions and then discusses recent advances in RNAi screening methodologies in mouse, rat, humans, Drosophila, and worms. © 2017 Cold Spring Harbor Laboratory Press.

  11. Decreased expression of RNA interference machinery, Dicer and Drosha, is associated with poor outcome in ovarian cancer patients

    SciTech Connect

    Merritt, William M.; Lin, Yvonne G.; Han, Liz Y.; Kamat, Aparna A.; Spannuth, Whitney A.; Schmandt, Rosemarie; Urbauer, Diana; Pennacchio, Len A.; Cheng, Jan-Fang; Zeidan, Alexandra; Wang, Hua; Mueller, Peter; Lenburg, Marc E.; Gray, Joe W.; Mok, Samuel; Birrer, Michael J.; Lopez-Berestein, Gabriel; Coleman, Robert L.; Bar-Eli, Menashe; Sood, Anil K.

    2008-05-06

    The clinical and functional significance of RNA interference (RNAi) machinery, Dicer and Drosha, in ovarian cancer is not known and was examined. Dicer and Drosha expression was measured in ovarian cancer cell lines (n=8) and invasive epithelial ovarian cancer specimens (n=111) and correlated with clinical outcome. Validation was performed with previously published cohorts of ovarian, breast, and lung cancer patients. Anti-Galectin-3 siRNA and shRNA transfections were used for in vitro functional studies. Dicer and Drosha mRNA and protein levels were decreased in 37% to 63% of ovarian cancer cell lines and in 60% and 51% of human ovarian cancer specimens, respectively. Low Dicer was significantly associated with advanced tumor stage (p=0.007), and low Drosha with suboptimal surgical cytoreduction (p=0.02). Tumors with both high Dicer and Drosha were associated with increased median patient survival (>11 years vs. 2.66 years for other groups; p<0.001). In multivariate analysis, high Dicer (HR=0.48; p=0.02), high-grade histology (HR=2.46; p=0.03), and poor chemoresponse (HR=3.95; p<0.001) were identified as independent predictors of disease-specific survival. Findings of poor clinical outcome with low Dicer expression were validated in separate cohorts of cancer patients. Galectin-3 silencing with siRNA transfection was superior to shRNA in cell lines with low Dicer (78-95% vs. 4-8% compared to non-targeting sequences), and similar in cell lines with high Dicer. Our findings demonstrate the clinical and functional impact of RNAi machinery alterations in ovarian carcinoma and support the use of siRNA constructs that do not require endogenous Dicer and Drosha for therapeutic applications.

  12. Transgene-induced RNA interference: a strategy for overcoming gene redundancy in polyploids to generate loss-of-function mutations.

    PubMed

    Lawrence, Richard J; Pikaard, Craig S

    2003-10-01

    Gene redundancy in polyploid species complicates genetic analyses by making the generation of recessive, loss-of-function alleles impractical. We show that this problem can be circumvented using RNA interference (RNAi) to achieve dominant loss of function of targeted genes. Arabidopsis suecica is an allotetraploid (amphidiploid) hybrid of A. thaliana and A. arenosa. We demonstrate that A. suecica can be genetically transformed using the floral dip method for Agrobacterium-mediated transformation. Transgenes segregate as in a diploid, indicating that chromosome pairing occurs exclusively (or almost so) among homologs and not among homeologs. Expressing a double-stranded (ds) RNA corresponding to the A. thaliana gene, decrease in DNA methylation 1 (DDM1) caused the elimination of DDM1 mRNAs and the loss of methylation at both A. thaliana- and A. arenosa-derived centromere repeats. These results indicate that a single RNAi-inducing transgene can dominantly repress multiple orthologs.

  13. DICER-ARGONAUTE2 complex in continuous fluorogenic assays of RNA interference enzymes.

    PubMed

    Bernard, Mark A; Wang, Leyu; Tachado, Souvenir D

    2015-01-01

    Mechanistic studies of RNA processing in the RNA-Induced Silencing Complex (RISC) have been hindered by lack of methods for continuous monitoring of enzymatic activity. "Quencherless" fluorogenic substrates of RNAi enzymes enable continuous monitoring of enzymatic reactions for detailed kinetics studies. Recombinant RISC enzymes cleave the fluorogenic substrates targeting human thymidylate synthase (TYMS) and hypoxia-inducible factor 1-α subunit (HIF1A). Using fluorogenic dsRNA DICER substrates and fluorogenic siRNA, DICER+ARGONAUTE2 mixtures exhibit synergistic enzymatic activity relative to either enzyme alone, and addition of TRBP does not enhance the apparent activity. Titration of AGO2 and DICER in enzyme assays suggests that AGO2 and DICER form a functional high-affinity complex in equimolar ratio. DICER and DICER+AGO2 exhibit Michaelis-Menten kinetics with DICER substrates. However, AGO2 cannot process the fluorogenic siRNA without DICER enzyme, suggesting that AGO2 cannot self-load siRNA into its active site. The DICER+AGO2 combination processes the fluorogenic siRNA substrate (Km=74 nM) with substrate inhibition kinetics (Ki=105 nM), demonstrating experimentally that siRNA binds two different sites that affect Dicing and AGO2-loading reactions in RISC. This result suggests that siRNA (product of DICER) bound in the active site of DICER may undergo direct transfer (as AGO2 substrate) to the active site of AGO2 in the DICER+AGO2 complex. Competitive substrate assays indicate that DICER+AGO2 cleavage of fluorogenic siRNA is specific, since unlabeled siRNA and DICER substrates serve as competing substrates that cause a concentration-dependent decrease in fluorescent rates. Competitive substrate assays of a series of DICER substrates in vitro were correlated with cell-based assays of HIF1A mRNA knockdown (log-log slope=0.29), suggesting that improved DICER substrate designs with 10-fold greater processing by the DICER+AGO2 complex can provide a strong (~2800

  14. [The study of siRNA interference after laryngeal cancer Hep-2 cells to cisplatin sensitivity of β-catenin gene expression].

    PubMed

    Yu, Feng; Huang, Xin; Ai, Maomao; Lin, Ying

    2015-07-01

    To investigate the changes of laryngeal cancer Hep-2 cells to cisplatin chemosensitivity after the interference of siRNA of β-catenin gene expression. Using a small interference RNA (siRNA) technology interfere β-catenin gene of Hep-2 cells . The mRNA and protein levels of β-catenin in the Hep-2 cells of different groups were detected by qPCR and Western blot. It was divided into siRNA-β-catenin-Hep-2 siRNA group, β-catenin-Neg negative control group and blank control group. Cell proliferation inhibition rate of different concentrations of cisplatin on three groups was detected by MTT assay. Calculate the 50% inhibitory effective concentration IC50 value. Check the change of three groups of cells' apoptosis rate by flow cytometry after the same concentrations of cisplatin stimulation. β-catenin-siRNA interference fragment can specifically reduce the expression levels of β-catenin mRNA and protein. qPCR illustrated the expression of mRNA in β-catenin-siR-NA-Hep-2 interference group decreased 70% (P < 0.05) compared with the control group, Western blot results showed that the β-catenin protein expression of interference group (0. 545 ± 0.111) decreased significantly compared with blank control group (1.507 ± 0.139) and negative control group (1.429 ± 0.089), P < 0.05. The IC50 calculation software showed that IC50 of cisplatin on β-catenin-siRNA IC50 interference group is (5.81 ± 0.46)μg/ml, the blank control group is (10.10 ± 1.01) μg/ml, the difference between the two groups has statistical signifi- cance (P < 0.01). Cell apoptosis rate of β-catenin-siRNA interference group was (26.15 ± 0.60)%, significantly higher than the control group (14.16 ± 0.05)%, P < 0.05. To interfere the expression of β-catenin can effectively enhance the sensitivity of laryngeal cancer cells to chemotherapeutic drugs cisplatin. It provides a theoretical support for the reduction of laryngeal cancer chemotherapy drug cisplatin dosage.

  15. RNA Interference towards the Potato Psyllid, Bactericera cockerelli, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV)

    PubMed Central

    Wuriyanghan, Hada; Falk, Bryce W.

    2013-01-01

    The potato/tomato psyllid, Bactericera cockerelli (B. cockerelli), is an important plant pest and the vector of the phloem-limited bacterium Candidatus Liberibacter psyllaurous (solanacearum), which is associated with the zebra chip disease of potatoes. Previously, we reported induction of RNA interference effects in B. cockerelli via in vitro-prepared dsRNA/siRNAs after intrathoracic injection, and after feeding of artificial diets containing these effector RNAs. In order to deliver RNAi effectors via plant hosts and to rapidly identify effective target sequences in plant-feeding B. cockerelli, here we developed a plant virus vector-based in planta system for evaluating candidate sequences. We show that recombinant Tobacco mosaic virus (TMV) containing B. cockerelli sequences can efficiently infect and generate small interfering RNAs in tomato (Solanum lycopersicum), tomatillo (Physalis philadelphica) and tobacco (Nicotiana tabacum) plants, and more importantly delivery of interfering sequences via TMV induces RNAi effects, as measured by actin and V-ATPase mRNA reductions, in B. cockerelli feeding on these plants. RNAi effects were primarily detected in the B. cockerelli guts. In contrast to our results with TMV, recombinant Potato virus X (PVX) and Tobacco rattle virus (TRV) did not give robust infections in all plants and did not induce detectable RNAi effects in B. cockerelli. The greatest RNA interference effects were observed when B. cockerelli nymphs were allowed to feed on leaf discs collected from inoculated or lower expanded leaves from corresponding TMV-infected plants. Tomatillo plants infected with recombinant TMV containing B. cockerelli actin or V-ATPase sequences also showed phenotypic effects resulting in decreased B. cockerelli progeny production as compared to plants infected by recombinant TMV containing GFP. These results showed that RNAi effects can be achieved in plants against the phloem feeder, B. cockerelli, and the TMV-plant system will

  16. RNA Interference towards the Potato Psyllid, Bactericera cockerelli, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV).

    PubMed

    Wuriyanghan, Hada; Falk, Bryce W

    2013-01-01

    The potato/tomato psyllid, Bactericera cockerelli (B. cockerelli), is an important plant pest and the vector of the phloem-limited bacterium Candidatus Liberibacter psyllaurous (solanacearum), which is associated with the zebra chip disease of potatoes. Previously, we reported induction of RNA interference effects in B. cockerelli via in vitro-prepared dsRNA/siRNAs after intrathoracic injection, and after feeding of artificial diets containing these effector RNAs. In order to deliver RNAi effectors via plant hosts and to rapidly identify effective target sequences in plant-feeding B. cockerelli, here we developed a plant virus vector-based in planta system for evaluating candidate sequences. We show that recombinant Tobacco mosaic virus (TMV) containing B. cockerelli sequences can efficiently infect and generate small interfering RNAs in tomato (Solanum lycopersicum), tomatillo (Physalis philadelphica) and tobacco (Nicotiana tabacum) plants, and more importantly delivery of interfering sequences via TMV induces RNAi effects, as measured by actin and V-ATPase mRNA reductions, in B. cockerelli feeding on these plants. RNAi effects were primarily detected in the B. cockerelli guts. In contrast to our results with TMV, recombinant Potato virus X (PVX) and Tobacco rattle virus (TRV) did not give robust infections in all plants and did not induce detectable RNAi effects in B. cockerelli. The greatest RNA interference effects were observed when B. cockerelli nymphs were allowed to feed on leaf discs collected from inoculated or lower expanded leaves from corresponding TMV-infected plants. Tomatillo plants infected with recombinant TMV containing B. cockerelli actin or V-ATPase sequences also showed phenotypic effects resulting in decreased B. cockerelli progeny production as compared to plants infected by recombinant TMV containing GFP. These results showed that RNAi effects can be achieved in plants against the phloem feeder, B. cockerelli, and the TMV-plant system will

  17. In Vitro Gene Silencing of the Fish Microsporidian Heterosporis saurida by RNA Interference

    PubMed Central

    Kumar, Gokhlesh; Abdel-Baki, Abdel-Azeem; Dkhil, Mohamed A.; El-Matbouli, Mansour; Al-Quraishy, Saleh

    2016-01-01

    Heterosporis saurida, a microsporidian parasite of lizardfish, Saurida undosquamis, causes severe economic losses in marine aquaculture. Among the novel approaches being explored for treatment of parasitic infections in aquaculture is small interfering RNA molecules. The aim of the present study was to investigate the efficiency of using siRNA to knock down expression of specific genes of H. saurida in vitro. For this purpose, siRNAs specific for ATP/ADP antiporter 1 and methionine aminopeptidase II genes were designed and tested using a previously developed in vitro cultivation model. Silencing of H. saurida target genes was assessed and the efficacy of using siRNA for inhibition of gene expression was measured by quantitative real-time polymerase chain reaction (PCR). Silencing of ATP/ADP antiporter 1 or methionine aminopeptidase II by siRNA reduced H. saurida infection levels in EK-1 cells 40% and 60%, respectively, as measured by qRT-PCR and spore counts. Combined siRNA treatment of both ATP/ADP antiporter 1 and methionine aminopeptidase II siRNAs was more effective against H. saurida infection as seen by the 16S rRNA level and spore counts. Our study concluded that siRNA could be used to advance development of novel approaches to inhibit H. saurida and provide an alternative approach to combat microsporidia. PMID:27228357

  18. Prevention of Chinese sacbrood virus infection in Apis cerana using RNA interference.

    PubMed

    Liu, Xuejiao; Zhang, Yi; Yan, Xun; Han, Richou

    2010-11-01

    Chinese sacbrood virus (CSBV) is the pathogen of Chinese sacbrood disease, which poses a serious threat to honeybee Apis cerana, and tends to cause bee colony and even the whole apiary collapse. Here we report on prevention of CSBV infection by feeding second instar larvae of A. cerana with specific sequences of CSBV double-stranded RNA (dsRNA). Protection of the bee larvae from CSBV by ingestion of CSBV-derived dsRNA was further demonstrated by quantitative real-time PCR (qRT-PCR) and northern blot analysis. The result provides a potential method to protect A. cerana from CSBV infection.

  19. Homo sapiens Systemic RNA Interference-defective-1 Transmembrane Family Member 1 (SIDT1) Protein Mediates Contact-dependent Small RNA Transfer and MicroRNA-21-driven Chemoresistance*

    PubMed Central

    Elhassan, Mohamed O.; Christie, Jennifer; Duxbury, Mark S.

    2012-01-01

    Locally initiated RNA interference (RNAi) has the potential for spatial propagation, inducing posttranscriptional gene silencing in distant cells. In Caenorhabditis elegans, systemic RNAi requires a phylogenetically conserved transmembrane channel, SID-1. Here, we show that a human SID-1 orthologue, SIDT1, facilitates rapid, contact-dependent, bidirectional small RNA transfer between human cells, resulting in target-specific non-cell-autonomous RNAi. Intercellular small RNA transfer can be both homotypic and heterotypic. We show SIDT1-mediated intercellular transfer of microRNA-21 to be a driver of resistance to the nucleoside analog gemcitabine in human adenocarcinoma cells. Documentation of a SIDT1-dependent small RNA transfer mechanism and the associated phenotypic effects on chemoresistance in human cancer cells raises the possibility that conserved systemic RNAi pathways contribute to the acquisition of drug resistance. Mediators of non-cell-autonomous RNAi may be tractable targets for novel therapies aimed at improving the efficacy of current cytotoxic agents. PMID:22174421

  20. Targeting of EWS/FLI-1 by RNA interference attenuates the tumor phenotype of Ewing's sarcoma cells in vitro.

    PubMed

    Chansky, Howard A; Barahmand-Pour, Fariba; Mei, Qi; Kahn-Farooqi, Waqqar; Zielinska-Kwiatkowska, Anna; Blackburn, Michael; Chansky, Kari; Conrad, Ernest U; Bruckner, James D; Greenlee, Theodore K; Yang, Liu

    2004-07-01

    The defining cytogenetic abnormality of Ewing's sarcoma is the presence of a balanced t(11;22) translocation expressing the EWS/FLI-1 chimeric fusion protein. The effect of EWS/FLI-1 appears to be dominant negative since over-expression of EWS does not overcome the sarcoma phenotype. Previous studies have shown that EWS/FLI-1 as well as related sarcoma fusion proteins are necessary and sufficient to induce transformation both in vitro and in vivo. In this study we report that synthetic small interfering RNA (siRNA) specifically suppresses EWS/FLI-1 fusion gene expression in SK-ES Ewing's sarcoma cells. Knockdown of the EWS/FLI-1 fusion protein is correlated with decreased cell proliferation and increased apoptosis. We demonstrate that Ewing's sarcoma tumors as well as Ewing's sarcoma cell lines predominantly express the CXCR4 chemokine receptor. Using an in vitro invasion assay, the SDF-1 ligand of CXCR4 was shown to be a potent stimulus of invasion by SK-ES cells. Knockdown of EWS/FLI-1 by RNA interference abrogates the invasiveness of SK-ES cells. These experiments suggest that targeted silencing of the EWS/FLI-1 fusion gene by siRNA represents a promising strategy to study the loss of EWS/FLI-1 protein in Ewing's sarcoma cells of otherwise identical genetic background.

  1. RNA Interference based Approach to Down Regulate Osmoregulators of Whitefly (Bemisia tabaci): Potential Technology for the Control of Whitefly.

    PubMed

    Raza, Amir; Malik, Hassan Jamil; Shafiq, Muhammad; Amin, Imran; Scheffler, Jodi A; Scheffler, Brian E; Mansoor, Shahid

    2016-01-01

    Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) that could offer great potential for insect pest management. The diet of insects feeding exclusively on phloem sieves contains water and sugars as main components, and the uptake of the liquid food greatly depends on the osmotic pressure within the insect body. Based on this physiological mechanism, transgenic plants of Nicotiana tabacum were generated expressing double stranded RNA (dsRNA) against both aquaporin (AQP) and a sucrase gene, alpha glucosidase (AGLU). These two genes are involved in osmotic pressure maintenance particularly in sap sucking insects, and the aim was to disrupt osmoregulation within the insect ultimately leading to mortality. Real time quantitative PCR (RT-qPCR) was performed to assess the suppression of gene expression in Bemisia tabaci (B. tabaci) and mortality was recorded during transgenic tobacco feeding bioassays. Feeding of insects on plants expressing dsRNA significantly reduced the transcript level of the target genes in B. tabaci after six days of feeding and more than 70% mortality was observed in B. tabaci fed on transgenic plants compared to the control plants. Our data shows that down-regulation of genes related to osmoregulation may find practical applications for the control of this important pest in cotton and other crops.

  2. Synuclein-γ suppression mediated by RNA interference inhibits the clonogenicity and invasiveness of MCF-7 cells

    PubMed Central

    LIANG, BO; WANG, XIN-JUN; SHEN, PEI-HONG; LI, XUE-YUAN; CHENG, HONG-WEI; SHAN, QIAO; GUO, KUI-YUAN; CAO, YU-WEN; FAN, QING-XIA; ZHENG, RUI-FENG; LI, BEI; ZHANG, WEI; LI, YAN-WEI; YANG, KAI

    2013-01-01

    The aim of the present study was to investigate the effects of synuclein-γ (SNCG) downregulation by RNA interference (RNAi) on the clonogenicity and invasiveness of MCF-7 breast cancer cells. This study used four pairs of SNCG-specific siRNAs which were designed and cloned into the pGPU6 plasmid for introduction into an MCF-7 cell line. The SNCG knockdown efficacies of the four siRNAs were compared using the reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. The cells’ clonogenic and invasive phenotypes were examined with clonogenic and Boyden chamber assays. In comparison with the non-specific siRNA and empty vector controls, all four SNCG siRNAs were observed to significantly inhibit SNCG expression at the mRNA and protein levels (F=481.06, P<0.001; F=147.42, P<0.0001). SNCG suppression mediated by RNAi successfully inhibited the clonogenicity (P=0.002) and invasiveness (P<0.001) of transfected MCF-7 cells. According to the results of the present study, we concluded that SNCG suppression mediated by RNAi significantly suppressed SNCG expression at the mRNA and protein levels, suggesting that SNCG suppression mediated by an RNAi strategy may become a novel approach for treating advanced breast cancer. PMID:23599792

  3. RNA interference-mediated NOTCH3 knockdown induces phenotype switching of vascular smooth muscle cells in vitro

    PubMed Central

    Liu, Nan; Li, Ying; Chen, Hui; Wei, Wei; An, Yulin; Zhu, Guangming

    2015-01-01

    Notch3 plays an important role in differentiation, migration and signal transduction of vascular smooth muscle cells (VSMCs). In this study, we used RNA interference (RNAi) technique to investigate the effect of knocking down the expression of the NOTCH3 gene in VSMCs on the phenotype determination under pathologic status. Real-time PCR and Western Blot experiments verified the expression levels of Notch3 mRNA and protein were reduced more than 40% and 50% in the NOTCH3 siRNA group. When the expression of Notch3 was decreased, the proliferation, apoptosis and immigration of VSMCs were enhanced compared to control groups (P < 0.01). NOTCH3 siRNA VSMCs observed using confocal microscopy showed abnormal nuclear configuration, a disorganized actin filament system, polygonal cell shapes, and decreasing cell sizes. Additionally, knocking down the expression of NOTCH3 may evoke the CASR and FAK expression. In Conclusion, interfering with the expression of NOTCH3 causes VSMCs to exhibit an intermediate phenotype. CaSR and FAK may be involved in the Notch3 signaling pathway. PMID:26550181

  4. Combinatorial RNA Interference Therapy Prevents Selection of Pre-existing HBV Variants in Human Liver Chimeric Mice

    PubMed Central

    Shih, Yao-Ming; Sun, Cheng-Pu; Chou, Hui-Hsien; Wu, Tzu-Hui; Chen, Chun-Chi; Wu, Ping-Yi; Enya Chen, Yu-Chen; Bissig, Karl-Dimiter; Tao, Mi-Hua

    2015-01-01

    Selection of escape mutants with mutations within the target sequence could abolish the antiviral RNA interference activity. Here, we investigated the impact of a pre-existing shRNA-resistant HBV variant on the efficacy of shRNA therapy. We previously identified a highly potent shRNA, S1, which, when delivered by an adeno-associated viral vector, effectively inhibits HBV replication in HBV transgenic mice. We applied the “PICKY” software to systemically screen the HBV genome, then used hydrodynamic transfection and HBV transgenic mice to identify additional six highly potent shRNAs. Human liver chimeric mice were infected with a mixture of wild-type and T472C HBV, a S1-resistant HBV variant, and then treated with a single or combined shRNAs. The presence of T472C mutant compromised the therapeutic efficacy of S1 and resulted in replacement of serum wild-type HBV by T472C HBV. In contrast, combinatorial therapy using S1 and P28, one of six potent shRNAs, markedly reduced titers for both wild-type and T472C HBV. Interestingly, treatment with P28 alone led to the emergence of escape mutants with mutations in the P28 target region. Our results demonstrate that combinatorial RNAi therapy can minimize the escape of resistant viral mutants in chronic HBV patients. PMID:26482836

  5. A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway.

    PubMed

    Nybakken, Kent; Vokes, Steven A; Lin, Ting-Yi; McMahon, Andrew P; Perrimon, Norbert

    2005-12-01

    Members of the Hedgehog (Hh) family of signaling proteins are powerful regulators of developmental processes in many organisms and have been implicated in many human disease states. Here we report the results of a genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. The screen identified hundreds of potential new regulators of Hh signaling, including many large protein complexes with pleiotropic effects, such as the coat protein complex I (COPI) complex, the ribosome and the proteasome. We identified the multimeric protein phosphatase 2A (PP2A) and two new kinases, the D. melanogaster orthologs of the vertebrate PITSLRE and cyclin-dependent kinase-9 (CDK9) kinases, as Hh regulators. We also identified a large group of constitutive and alternative splicing factors, two nucleoporins involved in mRNA export and several RNA-regulatory proteins as potent regulators of Hh signal transduction, indicating that splicing regulation and mRNA transport have a previously unrecognized role in Hh signaling. Finally, we showed that several of these genes have conserved roles in mammalian Hh signaling.

  6. Dihydrotanshinone-I interferes with the RNA-binding activity of HuR affecting its post-transcriptional function

    PubMed Central

    D’Agostino, Vito Giuseppe; Lal, Preet; Mantelli, Barbara; Tiedje, Christopher; Zucal, Chiara; Thongon, Natthakan; Gaestel, Matthias; Latorre, Elisa; Marinelli, Luciana; Seneci, Pierfausto; Amadio, Marialaura; Provenzani, Alessandro

    2015-01-01

    Post-transcriptional regulation is an essential determinant of gene expression programs in physiological and pathological conditions. HuR is a RNA-binding protein that orchestrates the stabilization and translation of mRNAs, critical in inflammation and tumor progression, including tumor necrosis factor-alpha (TNF). We identified the low molecular weight compound 15,16-dihydrotanshinone-I (DHTS), well known in traditional Chinese medicine practice, through a validated high throughput screening on a set of anti-inflammatory agents for its ability to prevent HuR:RNA complex formation. We found that DHTS interferes with the association step between HuR and the RNA with an equilibrium dissociation constant in the nanomolar range in vitro (Ki = 3.74 ± 1.63 nM). In breast cancer cell lines, short term exposure to DHTS influences mRNA stability and translational efficiency of TNF in a HuR-dependent manner and also other functional readouts of its post-transcriptional control, such as the stability of selected pre-mRNAs. Importantly, we show that migration and sensitivity of breast cancer cells to DHTS are modulated by HuR expression, indicating that HuR is among the preferential intracellular targets of DHTS. Here, we disclose a previously unrecognized molecular mechanism exerted by DHTS, opening new perspectives to therapeutically target the HuR mediated, post-transcriptional control in inflammation and cancer cells. PMID:26553968

  7. The Phloem-Delivered RNA Pool Contains Small Noncoding RNAs and Interferes with Translation1[W][OA

    PubMed Central

    Zhang, Shoudong; Sun, Li; Kragler, Friedrich

    2009-01-01

    In plants, the vascular tissue contains the enucleated sieve tubes facilitating long-distance transport of nutrients, hormones, and proteins. In addition, several mRNAs and small interfering RNAs/microRNAs were shown to be delivered via sieve tubes whose content is embodied by the phloem sap (PS). A number of these phloem transcripts are transported from source to sink tissues and function at targeted tissues. To gain additional insights into phloem-delivered RNAs and their potential role in signaling, we isolated and characterized PS RNA molecules distinct from microRNAs/small interfering RNAs with a size ranging from 30 to 90 bases. We detected a high number of full-length and phloem-specific fragments of noncoding RNAs such as tRNAs, ribosomal RNAs, and spliceosomal RNAs in the PS of pumpkin (Cucurbita maxima). In vitro assays show that small quantities of PS RNA molecules efficiently inhibit translation in an unspecific manner. Proof of concept that PS-specific tRNA fragments may interfere with ribosomal activity was obtained with artificially produced tRNA fragments. The results are discussed in terms of a functional role for long distance delivered noncoding PS RNAs. PMID:19261735

  8. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    PubMed Central

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jose R.

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Delivered RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1, and OPR) in the hemi-biotrophic fungus F. oxysporum f. sp. conglutinans. Expression of double stranded RNA (dsRNA) molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75, 83, and 72% reduction for FOW2, FRP1, and OPR, respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30–50% survival and OPR between 45 and 70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants. PMID:25654075

  9. Combinatorial RNA Interference Therapy Prevents Selection of Pre-existing HBV Variants in Human Liver Chimeric Mice.

    PubMed

    Shih, Yao-Ming; Sun, Cheng-Pu; Chou, Hui-Hsien; Wu, Tzu-Hui; Chen, Chun-Chi; Wu, Ping-Yi; Enya Chen, Yu-Chen; Bissig, Karl-Dimiter; Tao, Mi-Hua

    2015-10-20

    Selection of escape mutants with mutations within the target sequence could abolish the antiviral RNA interference activity. Here, we investigated the impact of a pre-existing shRNA-resistant HBV variant on the efficacy of shRNA therapy. We previously identified a highly potent shRNA, S1, which, when delivered by an adeno-associated viral vector, effectively inhibits HBV replication in HBV transgenic mice. We applied the "PICKY" software to systemically screen the HBV genome, then used hydrodynamic transfection and HBV transgenic mice to identify additional six highly potent shRNAs. Human liver chimeric mice were infected with a mixture of wild-type and T472C HBV, a S1-resistant HBV variant, and then treated with a single or combined shRNAs. The presence of T472C mutant compromised the therapeutic efficacy of S1 and resulted in replacement of serum wild-type HBV by T472C HBV. In contrast, combinatorial therapy using S1 and P28, one of six potent shRNAs, markedly reduced titers for both wild-type and T472C HBV. Interestingly, treatment with P28 alone led to the emergence of escape mutants with mutations in the P28 target region. Our results demonstrate that combinatorial RNAi therapy can minimize the escape of resistant viral mutants in chronic HBV patients.

  10. RNA Interference based Approach to Down Regulate Osmoregulators of Whitefly (Bemisia tabaci): Potential Technology for the Control of Whitefly

    PubMed Central

    Raza, Amir; Malik, Hassan Jamil; Shafiq, Muhammad; Amin, Imran; Scheffler, Jodi A.; Scheffler, Brian E.; Mansoor, Shahid

    2016-01-01

    Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) that could offer great potential for insect pest management. The diet of insects feeding exclusively on phloem sieves contains water and sugars as main components, and the uptake of the liquid food greatly depends on the osmotic pressure within the insect body. Based on this physiological mechanism, transgenic plants of Nicotiana tabacum were generated expressing double stranded RNA (dsRNA) against both aquaporin (AQP) and a sucrase gene, alpha glucosidase (AGLU). These two genes are involved in osmotic pressure maintenance particularly in sap sucking insects, and the aim was to disrupt osmoregulation within the insect ultimately leading to mortality. Real time quantitative PCR (RT-qPCR) was performed to assess the suppression of gene expression in Bemisia tabaci (B. tabaci) and mortality was recorded during transgenic tobacco feeding bioassays. Feeding of insects on plants expressing dsRNA significantly reduced the transcript level of the target genes in B. tabaci after six days of feeding and more than 70% mortality was observed in B. tabaci fed on transgenic plants compared to the control plants. Our data shows that down-regulation of genes related to osmoregulation may find practical applications for the control of this important pest in cotton and other crops. PMID:27105353

  11. A cytoplasmically anchored nuclear protein interferes specifically with the import of nuclear proteins but not U1 snRNA

    PubMed Central

    1993-01-01

    A cytoplasmically anchored mutant SV40 T antigen, FS T antigen, was shown previously to interfere specifically with the nuclear import of a heterologous nuclear protein, adenovirus 5 fiber protein, in cultured monkey cells (Schneider, J., C. Schindewolf, K. van Zee, and E. Fanning. 1988. Cell. 54:117-125; van Zee, K., F. Appel, and E. Fanning. 1991. Mol. Cell. Biol. 11:5137-5146). In this report, we demonstrate that FS T antigen also interferes with the nuclear import of adenovirus E1A and a peptide-albumin conjugate bearing multiple copies of the T antigen nuclear localization signal, but not with the import of U1 snRNA. A kinetic analysis indicates that nuclear import of the albumin- peptide conjugate is inhibited only when high intracellular concentrations of FS T antigen are reached. After microinjection into the cytoplasm of cultured cells, purified FS T antigen protein does not accumulate at the nuclear periphery, but rather is distributed in a punctate pattern throughout the cytoplasm. These data support a model in which cytoplasmic anchoring of FS T antigen enables the mutant protein to sequester and titrate out a cellular factor which is required for nuclear protein but not U1 snRNA import. PMID:8468344

  12. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants.

    PubMed

    Katoch, Rajan; Thakur, Neelam

    2013-03-01

    This review highlights the advances in the knowledge of RNA interference (RNAi) and discusses recent progress on the functionality of different components RNAi machinery operating in the organisms. The silencing of genes by RNA interference has become the technology of choice for investigation of gene functions in different organisms. The refinement in the knowledge of the endogenous RNAi pathways in plants along with the development of new strategies and applications for the improvement of nutritional value of important agricultural crops through suppression of genes in different plants have opened new vistas for nutritional security. The improvement in the nutritional status of the plants and reduction in the level of toxins or antinutrients was desired for long, but the available technology was not completely successful in achieving the tissue specific regulation of some genes. In the recent years, a number of economically important crop plants have been tested successfully for improving plant nutritional value through metabolic engineering using RNAi. The implications of this technology for crop improvement programs, including nutritional enrichment, reduction of antinutrients, disease, and insect control have been successfully tested in variety of crops with commercial considerations. The enhancement of the nutraceutical traits for the desired health benefits in common crop plants through manipulation of gene expression has been elaborated in this article. The tremendous potential with RNAi technology is expected to revolutionize the modern agriculture for meeting the growing challenges is discussed.

  13. Metabolic engineering of the baculovirus-expression system via inverse "shotgun" genomic analysis and RNA interference (dsRNA) increases product yield and cell longevity.

    PubMed

    Kim, Eun Jeong; Kramer, Shannon F; Hebert, Colin G; Valdes, James J; Bentley, William E

    2007-10-15

    RNA interference (RNAi) is as powerful tool for characterizing gene function in eukaryotic organisms and cultured cell lines. Its use in metabolic engineering has been limited and few reports have targeted protein expression systems to increase yield. In this work, we examine the use of in vitro synthesized double stranded RNA (dsRNA) in the baculovirus expression vector system (BEVS), using commercially relevant cultured cells (Spodoptera frugiperda, Sf-9) and larvae (Trichoplusia ni) as hosts. First, we employed an inverse "shotgun" genomic analysis to "find" an array of 16 putative insect gene targets. We then synthesized dsRNA in vitro targeting these genes and investigated the effects of injected dsRNA on larval growth, development, and product yield. Growth and development was at times stunted and in several cases, the effects were lethal. However, dsRNA targeting an acidic juvenile hormone-suppressible protein (AJHSP1), and translational elongation factor 2 (Ef-2) resulted in significantly increased yield of model product, GFP. Next, we targeted known genes, v-cath and apoptosis inducer, sf-caspase 1, in cultured Sf-9 cells. We confirm RNAi-mediated sf-caspase 1 suppression in Sf-9 cells, but not in baculovirus-infected cells, likely due to the overriding effects of inhibitor of apoptosis protein, p35. We also demonstrate suppression of v-cath in infected cells, which leads to a approximately 3-fold increase in product yield. Overall, our results support the application of RNAi in metabolic engineering, specifically for enhancing protein productivity in the baculovirus expression vector system. Copyright 2007 Wiley Periodicals, Inc.

  14. The roles of individual mammalian argonautes in RNA interference in vivo.

    PubMed

    Ruda, Vera M; Chandwani, Rohit; Sehgal, Alfica; Bogorad, Roman L; Akinc, Akin; Charisse, Klaus; Tarakhovsky, Alexander; Novobrantseva, Tatiana I; Koteliansky, Victor

    2014-01-01

    Argonaute 2 (Ago2) is the only mammalian Ago protein capable of mRNA cleavage. It has been reported that the activity of the short interfering RNA targeting coding sequence (CDS), but not 3' untranslated region (3'UTR) of an mRNA, is solely dependent on Ago2 in vitro. These studies utilized extremely high doses of siRNAs and overexpressed Ago proteins, as well as were directed at various highly expressed reporter transgenes. Here we report the effect of Ago2 in vivo on targeted knockdown of several endogenous genes by siRNAs, targeting both CDS and 3'UTR. We show that siRNAs targeting CDS lose their activity in the absence of Ago2, whereas both Ago1 and Ago3 proteins contribute to residual 3'UTR-targeted siRNA-mediated knockdown observed in the absence of Ago2 in mouse liver. Our results provide mechanistic insight into two components mediating RNAi under physiological conditions: mRNA cleavage dependent and independent. In addition our results contribute a novel consideration for designing most efficacious siRNA molecules with the preference given to 3'UTR targeting as to harness the activity of several Ago proteins.

  15. Macrophage-specific RNA interference targeting via "click", mannosylated polymeric micelles.

    PubMed

    Yu, Shann S; Lau, Cheryl M; Barham, Whitney J; Onishko, Halina M; Nelson, Christopher E; Li, Hongmei; Smith, Chelsey A; Yull, Fiona E; Duvall, Craig L; Giorgio, Todd D

    2013-03-04

    Macrophages represent an important therapeutic target, because their activity has been implicated in the progression of debilitating diseases such as cancer and atherosclerosis. In this work, we designed and characterized pH-responsive polymeric micelles that were mannosylated using "click" chemistry to achieve CD206 (mannose receptor)-targeted siRNA delivery. CD206 is primarily expressed on macrophages and dendritic cells and upregulated in tumor-associated macrophages, a potentially useful target for cancer therapy. The mannosylated nanoparticles improved the delivery of siRNA into primary macrophages by 4-fold relative to the delivery of a nontargeted version of the same carrier (p < 0.01). Further, treatment for 24 h with the mannose-targeted siRNA carriers achieved 87 ± 10% knockdown of a model gene in primary macrophages, a cell type that is typically difficult to transfect. Finally, these nanoparticles were also avidly recognized and internalized by human macrophages and facilitated the delivery of 13-fold more siRNA into these cells than into model breast cancer cell lines. We anticipate that these mannose receptor-targeted, endosomolytic siRNA delivery nanoparticles will become an enabling technology for targeting macrophage activity in various diseases, especially those in which CD206 is upregulated in macrophages present within the pathologic site. This work also establishes a generalizable platform that could be applied for "click" functionalization with other targeting ligands to direct siRNA delivery.

  16. Dye label interference with RNA modification reveals 5-fluorouridine as non-covalent inhibitor

    PubMed Central

    Spenkuch, Felix; Hinze, Gerald; Kellner, Stefanie; Kreutz, Christoph; Micura, Ronald; Basché, Thomas; Helm, Mark

    2014-01-01

    The interest in RNA modification enzymes surges due to their involvement in epigenetic phenomena. Here we present a particularly informative approach to investigate the interaction of dye-labeled RNA with modification enzymes. We investigated pseudouridine (Ψ) synthase TruB interacting with an alleged suicide substrate RNA containing 5-fluorouridine (5FU). A longstanding dogma, stipulating formation of a stable covalent complex was challenged by discrepancies between the time scale of complex formation and enzymatic turnover. Instead of classic mutagenesis, we used differentially positioned fluorescent labels to modulate substrate properties in a range of enzymatic conversion between 6% and 99%. Despite this variegation, formation of SDS-stable complexes occurred instantaneously for all 5FU-substrates. Protein binding was investigated by advanced fluorescence spectroscopy allowing unprecedented simultaneous detection of change in fluorescence lifetime, anisotropy decay, as well as emission and excitation maxima. Determination of Kd values showed that introduction of 5FU into the RNA substrate increased protein affinity by 14× at most. Finally, competition experiments demonstrated reversibility of complex formation for 5FU-RNA. Our results lead us to conclude that the hitherto postulated long-term covalent interaction of TruB with 5FU tRNA is based on the interpretation of artifacts. This is likely true for the entire class of pseudouridine synthases. PMID:25300485

  17. [Influence of RNA interference on MSI-2 gene in THP-1 cell and expression of NUMB].

    PubMed

    Huang, Yunfei; Mu, Qitian; Yu, Mengxia; Wang, Yungui; Jin, Jie

    2015-10-01

    To investigate the effect of small interfering RNA(siRNA)for MSI-2 on the growth, apoptosis and NUMB expression of THP-1 cells. Three siRNA for MSI-2 gene was designed and transfected into THP- 1 cells. The cell inhibition, colony formation and apoptosis were determined. The protein expression of NUMB, caspase- 3 and PARP were detected by Western blotting. After MSI- 2 expression of THP- 1 cells was down- regulated for 24 hours, cell inhibition of siRNA MSI-2 group was(47.89±7.64)%, obviously higher than that of negative control group(P=0.005). After 9 days, cell colony count of siRNA MSI-2 group was 7.50±1.53, also lower than that of negative control group(35.75±7.46, P<0.001). In addition, apoptotic rates of siRNA MSI- 2 group at 24 hours [(15.22±1.52)%]and 48 hours[(33.83±3.96)%]were significantly higher than those of negative control group(P=0.008 and P=0.001, respectively). Accordingly, activations of caspase-3 and PARP and increased NUMB were observed in siRNA MSI- 2 group. siRNA for MSI- 2 gene could increase the expressions of NUMB to inhibit the proliferation and induce apoptosis of THP-1 cells.

  18. Establishing an In Vivo Assay System to Identify Components Involved in Environmental RNA Interference in the Western Corn Rootworm

    PubMed Central

    Miyata, Keita; Ramaseshadri, Parthasarathy; Zhang, Yuanji; Segers, Gerrit; Bolognesi, Renata; Tomoyasu, Yoshinori

    2014-01-01

    The discovery of environmental RNA interference (RNAi), in which gene expression is suppressed via feeding with double-stranded RNA (dsRNA) molecules, opened the door to the practical application of RNAi-based techniques in crop pest management. The western corn rootworm (WCR, Diabrotica virgifera virgifera) is one of the most devastating corn pests in North America. Interestingly, WCR displays a robust environmental RNAi response, raising the possibility of applying an RNAi-based pest management strategy to this pest. Understanding the molecular mechanisms involved in the WCR environmental RNAi process will allow for determining the rate limiting steps involved with dsRNA toxicity and potential dsRNA resistance mechanisms in WCR. In this study, we have established a two-step in vivo assay system, which allows us to evaluate the involvement of genes in environmental RNAi in WCR. We show that laccase 2 and ebony, critical cuticle pigmentation/tanning genes, can be used as marker genes in our assay system, with ebony being a more stable marker to monitor RNAi activity. In addition, we optimized the dsRNA dose and length for the assay, and confirmed that this assay system is sensitive to detect well-known RNAi components such as Dicer-2 and Argonaute-2. We also evaluated two WCR sid1- like (sil) genes with this assay system. This system will be useful to quickly survey candidate systemic RNAi genes in WCR, and also will be adaptable for a genome-wide RNAi screening to give us an unbiased view of the environmental/systemic RNAi pathway in WCR. PMID:25003334

  19. Establishing an in vivo assay system to identify components involved in environmental RNA interference in the western corn rootworm.

    PubMed

    Miyata, Keita; Ramaseshadri, Parthasarathy; Zhang, Yuanji; Segers, Gerrit; Bolognesi, Renata; Tomoyasu, Yoshinori

    2014-01-01

    The discovery of environmental RNA interference (RNAi), in which gene expression is suppressed via feeding with double-stranded RNA (dsRNA) molecules, opened the door to the practical application of RNAi-based techniques in crop pest management. The western corn rootworm (WCR, Diabrotica virgifera virgifera) is one of the most devastating corn pests in North America. Interestingly, WCR displays a robust environmental RNAi response, raising the possibility of applying an RNAi-based pest management strategy to this pest. Understanding the molecular mechanisms involved in the WCR environmental RNAi process will allow for determining the rate limiting steps involved with dsRNA toxicity and potential dsRNA resistance mechanisms in WCR. In this study, we have established a two-step in vivo assay system, which allows us to evaluate the involvement of genes in environmental RNAi in WCR. We show that laccase 2 and ebony, critical cuticle pigmentation/tanning genes, can be used as marker genes in our assay system, with ebony being a more stable marker to monitor RNAi activity. In addition, we optimized the dsRNA dose and length for the assay, and confirmed that this assay system is sensitive to detect well-known RNAi components such as Dicer-2 and Argonaute-2. We also evaluated two WCR sid1- like (sil) genes with this assay system. This system will be useful to quickly survey candidate systemic RNAi genes in WCR, and also will be adaptable for a genome-wide RNAi screening to give us an unbiased view of the environmental/systemic RNAi pathway in WCR.

  20. Adenovirus-mediated shRNA interference against HSV-1 replication in vitro.

    PubMed

    Song, Bo; Liu, Xinjing; Wang, Qingzhi; Zhang, Rui; Yang, Ting; Han, Zhiqiang; Xu, Yuming

    2016-12-01

    The UL29 and UL28 proteins encoded by herpes simplex virus type 1 (HSV-1) are critical for its replication and packaging, respectively. Research has demonstrated that synthesized siRNA molecules targeting the UL29 gene are able to suppress HSV-2 replication and the UL28-null HSV-1 gene cannot form infectious viruses in vitro. Silencing the UL28 and UL29 genes by RNAi might lead to the development of novel antiviral agents for the treatment of HSV-1 infections. Two kinds of short hairpin RNAs (shRNAs) targeting the UL29 and UL28 genes were chemically synthesized and then delivered into cells by a replication-defective human adenovirus type 5 (Adv5) vector. (-) shRNAs targeting none of the genome of HSV-1 were used as the control. Vero cells were inoculated with Ad-UL28shRNA or Ad-UL29shRNA at a multiplicity of infection (MOI) of 100 and challenged 24 h later with HSV-1 at an MOI of 0.01 to inhibit HSV-1 replication, as measured by the level of the corresponding RNA and proteins. In addition, the amount of progeny virus was assessed at daily intervals. The antiviral effects of Ad-shRNAs at ongoing HSV-1 infection were explored at 12 h after inoculation of the HSV-1. The results showed that the shRNAs delivered by Adv5 significantly suppressed HSV-1 replication in vitro, as determined by the levels of viral RNA transcription, viral protein synthesis, and viral production. The Ad-UL28shRNA and Ad-UL29shRNA suppressed the replication of HSV-1, respectively, compared with the control group (P < 0.001). When Ad-UL28shRNA and Ad-UL29shRNA were combined, a synergistic effect was observed. The antiviral effects could sustain for at least 4 days after the HSV-1 infection (P < 0.001). Furthermore, antiviral effects were achieved 12 h prior to inoculation of Adv5-shRNAs (P < 0.001). Our data demonstrated comparable antiviral activities against herpes simplex virus by shRNAs targeting either UL29 or UL28 sites in vitro and the effectiveness of using the Adv5

  1. Targeted disruption of N-RAP gene function by RNA interference: a role for N-RAP in myofibril organization.

    PubMed

    Dhume, Ashwini; Lu, Shajia; Horowits, Robert

    2006-08-01

    N-RAP is a muscle-specific protein concentrated in myofibril precursors during sarcomere assembly and at intercalated disks in adult heart. We used RNA interference to achieve a targeted decrease in N-RAP transcript and protein levels in primary cultures of embryonic mouse cardiomyocytes. N-RAP transcript levels were decreased by approximately 70% within 2 days following transfection with N-RAP specific siRNA. N-RAP protein levels steadily decreased over several days, reaching approximately 50% of control levels within 6 days. N-RAP protein knockdown was associated with decreased myofibril assembly, as assessed by alpha-actinin organization into mature striations. Transcripts encoding N-RAP binding proteins associated with assembling or mature myofibrils, such as alpha-actinin, Krp1, and muscle LIM protein, were expressed at normal levels during N-RAP protein knockdown, and alpha-actinin and Krp-1 protein levels were also unchanged. Transcripts encoding muscle myosin heavy chain and nonmuscle myosin heavy chain IIB were also expressed at relatively normal levels. However, decreased N-RAP protein levels were associated with dramatic changes in the encoded myosin proteins, with muscle myosin heavy chain levels increasing and nonmuscle myosin heavy chain IIB decreasing. N-RAP transcript and protein levels recovered to normal by days 6 and 7, respectively, and the changes in myofibril organization and myosin heavy chain isoform levels were reversed. Our data indicate that we can achieve transient N-RAP protein knockdown using the RNA interference technique and that alpha-actinin organization into myofibrils in cardiomyocytes is closely linked to N-RAP protein levels. Finally, N-RAP protein levels regulate the balance between nonmuscle myosin IIB and muscle myosin by post-trancriptional mechanisms.

  2. Does RNA interference provide new hope for control of chronic hepatitis B infection?

    PubMed

    Wilson, Rachel; Purcell, Damian; Netter, Hans J; Revill, Peter A

    2009-01-01

    Hepatitis B virus (HBV) infection is a global human health problem, with an estimated 350 million people having chronic hepatitis B (CHB) infection worldwide. The majority of infections acquired during adulthood are resolved without intervention; however, infections acquired at birth or during early childhood have a 90% chance of progressing to CHB, leading to a host of adverse effects on the liver, including cirrhosis and cancer. CHB is currently treated with a combination of cytokines and/or nucleoside/nucleotide analogues; however, adverse side effects to cytokine therapy and the selection of resistance mutations to nucleoside analogues often abrogate the efficacy of treatment. The recent discovery that small interfering RNA and microRNA are active in mammalian cells suggests it might be possible to supplement existing HBV therapies with small RNA-based therapeutic(s).

  3. A three-dimensional view of the molecular machinery of RNA interference.

    PubMed

    Jinek, Martin; Doudna, Jennifer A

    2009-01-22

    In eukaryotes, small non-coding RNAs regulate gene expression, helping to control cellular metabolism, growth and differentiation, to maintain genome integrity, and to combat viruses and mobile genetic elements. These pathways involve two specialized ribonucleases that control the production and function of small regulatory RNAs. The enzyme Dicer cleaves double-stranded RNA precursors, generating short interfering RNAs and microRNAs in the cytoplasm. These small RNAs are transferred to Argonaute proteins, which guide the sequence-specific silencing of messenger RNAs that contain complementary sequences by either enzymatically cleaving the mRNA or repressing its translation. The molecular structures of Dicer and the Argonaute proteins, free and bound to small RNAs, have offered exciting insights into the molecular mechanisms that are central to RNA silencing pathways.

  4. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    NASA Astrophysics Data System (ADS)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P.; Vishwanatha, Jamboor K.

    2011-11-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  5. The conserved SNARE SEC-22 localizes to late endosomes and negatively regulates RNA interference in Caenorhabditis elegans

    PubMed Central

    Zhao, Yani; Holmgren, Benjamin T.

    2017-01-01

    Small RNA pathways, including RNA interference (RNAi), play crucial roles in regulation of gene expression. Initially considered to be cytoplasmic, these processes have later been demonstrated to associate with membranes. For example, maturation of late endosomes/multivesicular bodies (MVBs) is required for efficient RNAi, whereas fusion of MVBs to lysosomes appears to reduce silencing efficiency. SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) mediate membrane fusion and are thus at the core of membrane trafficking. In spite of this, no SNARE has previously been reported to affect RNAi. Here, we demonstrate that in Caenorhabditis elegans, loss of the conserved SNARE SEC-22 results in enhanced RNAi upon ingestion of double-stranded RNA. Furthermore, SEC-22 overexpression inhibits RNAi in wild-type animals. We find that overexpression of SEC-22 in the target tissue (body wall muscle) strongly suppresses the sec-22(−) enhanced RNAi phenotype, supporting a primary role for SEC-22 in import of RNAi silencing signals or cell autonomous RNAi. A functional mCherry::SEC-22 protein localizes primarily to late endosomes/MVBs and these compartments are enlarged in animals lacking sec-22. SEC-22 interacts with late endosome-associated RNA transport protein SID-5 in a yeast two-hybrid assay and functions in a sid-5-dependent manner. Taken together, our data indicate that SEC-22 reduces RNAi efficiency by affecting late endosome/MVB function, for example, by promoting fusion between late endosomes/MVBs and lysosomes. To our knowledge, this is the first report of a SNARE with a function in small RNA-mediated gene silencing. PMID:27974622

  6. RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat.

    PubMed

    Travella, Silvia; Klimm, Theres E; Keller, Beat

    2006-09-01

    Insertional mutagenesis and gene silencing are efficient tools for the determination of gene function. In contrast to gain- or loss-of-function approaches, RNA interference (RNAi)-induced gene silencing can possibly silence multigene families and homoeologous genes in polyploids. This is of great importance for functional studies in hexaploid wheat (Triticum aestivum), where most of the genes are present in at least three homoeologous copies and conventional insertional mutagenesis is not effective. We have introduced into bread wheat double-stranded RNA-expressing constructs containing fragments of genes encoding Phytoene Desaturase (PDS) or the signal transducer of ethylene, Ethylene Insensitive 2 (EIN2). Transformed plants showed phenotypic changes that were stably inherited over at least two generations. These changes were very similar to mutant phenotypes of the two genes in diploid model plants. Quantitative real-time polymerase chain reaction revealed a good correlation between decreasing mRNA levels and increasingly severe phenotypes. RNAi silencing had the same quantitative effect on all three homoeologous genes. The most severe phenotypes were observed in homozygous plants that showed the strongest mRNA reduction and, interestingly, produced around 2-fold the amount of small RNAs compared to heterozygous plants. This suggests that the effect of RNAi in hexaploid wheat is gene-dosage dependent. Wheat seedlings with low mRNA levels for EIN2 were ethylene insensitive. Thus, EIN2 is a positive regulator of the ethylene-signaling pathway in wheat, very similar to its homologs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Our data show that RNAi results in stably inherited phenotypes and therefore represents an efficient tool for functional genomic studies in polyploid wheat.

  7. The conserved SNARE SEC-22 localizes to late endosomes and negatively regulates RNA interference in Caenorhabditis elegans.

    PubMed

    Zhao, Yani; Holmgren, Benjamin T; Hinas, Andrea

    2017-03-01

    Small RNA pathways, including RNA interference (RNAi), play crucial roles in regulation of gene expression. Initially considered to be cytoplasmic, these processes have later been demonstrated to associate with membranes. For example, maturation of late endosomes/multivesicular bodies (MVBs) is required for efficient RNAi, whereas fusion of MVBs to lysosomes appears to reduce silencing efficiency. SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) mediate membrane fusion and are thus at the core of membrane trafficking. In spite of this, no SNARE has previously been reported to affect RNAi. Here, we demonstrate that in Caenorhabditis elegans, loss of the conserved SNARE SEC-22 results in enhanced RNAi upon ingestion of double-stranded RNA. Furthermore, SEC-22 overexpression inhibits RNAi in wild-type animals. We find that overexpression of SEC-22 in the target tissue (body wall muscle) strongly suppresses the sec-22(-) enhanced RNAi phenotype, supporting a primary role for SEC-22 in import of RNAi silencing signals or cell autonomous RNAi. A functional mCherry::SEC-22 protein localizes primarily to late endosomes/MVBs and these compartments are enlarged in animals lacking sec-22 SEC-22 interacts with late endosome-associated RNA transport protein SID-5 in a yeast two-hybrid assay and functions in a sid-5-dependent manner. Taken together, our data indicate that SEC-22 reduces RNAi efficiency by affecting late endosome/MVB function, for example, by promoting fusion between late endosomes/MVBs and lysosomes. To our knowledge, this is the first report of a SNARE with a function in small RNA-mediated gene silencing.

  8. Development of patatin knockdown potato tubers using RNA interference (RNAi) technology, for the production of human-therapeutic glycoproteins

    PubMed Central

    Kim, Yoon-Sik; Lee, Yong-Hwa; Kim, Hyun-Soon; Kim, Mi-Sun; Hahn, Kyu-Woong; Ko, Jeong-Heon; Joung, Hyouk; Jeon, Jae-Heung

    2008-01-01

    Background Patatins encoded by a multi-gene family are one of the major storage glycoproteins in potato tubers. Potato tubers have recently emerged as bioreactors for the production of human therapeutic glycoproteins (vaccines). Increasing the yield of recombinant proteins, targeting the produced proteins to specific cellular compartments, and diminishing expensive protein purification steps are important research goals in plant biotechnology. In the present study, potato patatins were eliminated almost completely via RNA interference (RNAi) technology to develop potato tubers as a more efficient protein expression system. The gene silencing effect of patatins in the transgenic potato plants was examined at individual isoform levels. Results Based upon the sequence similarity within the multi-gene family of patatins, a highly conserved target sequence (635 nts) of patatin gene pat3-k1 [GenBank accession no. DQ114421] in potato plants (Solanum tuberosum L.) was amplified for the construction of a patatin-specific hairpin RNAi (hpRNAi) vector. The CaMV 35S promoter-driven patatin hpRNAi vector was transformed into the potato cultivar Desiree by Agrobacterium-mediated transformation. Ten transgenic potato lines bearing patatin hpRNA were generated. The effects of RNA interference were characterized at both the protein and mRNA levels using 1D and 2D SDS/PAGE and quantitative real-time RT-PCR analysis. Dependent upon the patatin hpRNAi line, patatins decreased by approximately 99% at both the protein and mRNA levels. However, the phenotype (e.g. the number and size of potato tuber, average tuber weight, growth pattern, etc.) of hpRNAi lines was not distinguishable from wild-type potato plants under both in vitro and ex vitro growth conditions. During glycoprotein purification, patatin-knockdown potato tubers allowed rapid purification of other potato glycoproteins with less contamination of patatins. Conclusion Patatin-specific hpRNAi effectively suppressed the

  9. Effect of north bicyclo[3.1.0]hexane 2'-deoxy-pseudosugars on RNA interference: a novel class of siRNA modification.

    PubMed

    Terrazas, Montserrat; Ocampo, Sandra M; Perales, José Carlos; Marquez, Victor E; Eritja, Ramon

    2011-05-02

    North bicyclo methanocarba thymidine (T(N)) nucleosides were substituted into siRNAs to investigate the effect of bicyclo[3.1.0]hexane 2'-deoxy-pseudosugars on RNA interference activity. Here we provide evidence that these modified siRNAs are compatible with the intracellular RNAi machinery. We studied the effect of the T(N) modification in a screen involving residue-specific changes in an siRNA targeting Renilla luciferase and we applied the most effective pattern of modification to the knockdown of murine tumor necrosis factor (TNF-α). We also showed that incorporation of T(N) units into siRNA duplexes increased their thermal stabilities, substantially enhanced serum stabilities, and decreased innate immunostimulation. Comparative RNAi studies involving the T(N) substitution and locked nucleic acids (LNAs) showed that the gene-silencing activities of T(N) -modified siRNAs were comparable to those obtained with the LNA modification. An advantage of the North 2'-deoxy-methanocarba modification is that it may be explored further in the future by changing the 2'-position. The results from these studies suggest that this modification might be valuable for the development of siRNAs for therapeutic applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Posttraumatic reduction of edema with aquaporin-4 RNA interference improves acute and chronic functional recovery

    PubMed Central

    Fukuda, Andrew M; Adami, Arash; Pop, Viorela; Bellone, John A; Coats, Jacqueline S; Hartman, Richard E; Ashwal, Stephen; Obenaus, Andre; Badaut, Jerome

    2013-01-01

    Traumatic brain injury (TBI) is common in young children and adolescents and is associated with long-term disability and mortality. The neuropathologic sequelae that result from juvenile TBI are a complex cascade of events that include edema formation and brain swelling. Brain aquaporin-4 (AQP4) has a key role in edema formation. Thus, development of novel treatments targeting AQP4 to reduce edema could lessen the neuropathologic sequelae. We hypothesized that inhibiting AQP4 expression by injection of small-interfering RNA (siRNA) targeting AQP4 (siAQP4) after juvenile TBI would decrease edema formation, neuroinflammation, neuronal cell death, and improve neurologic outcomes. The siAQP4 or a RNA-induced silencing complex (RISC)-free control siRNA (siGLO) was injected lateral to the trauma site after controlled cortical impact in postnatal day 17 rats. Magnetic resonance imaging, neurologic testing, and immunohistochemistry were performed to assess outcomes. Pups treated with siAQP4 showed acute (3 days after injury) improvements in motor function and in spatial memory at long term (60 days after injury) compared with siGLO-treated animals. These improvements were associated with decreased edema formation, increased microglial activation, decreased blood–brain barrier disruption, reduced astrogliosis and neuronal cell death. The effectiveness of our treatment paradigm was associated with a 30% decrease in AQP4 expression at the injection site. PMID:23899928

  11. Using RNA Interference to Reveal Genetic Vulnerabilities in Human Cancer Cells

    DTIC Science & Technology

    2005-07-01

    Luo, B., Heard, A.D. & Lodish , H.F. Small interfering RNA production by enzymatic engineering of DNA (SPEED). Proc Natl Acad Sci U S A 101, 5494-9...suppressors identifies REST. Cell 121, 837-48 (2005). 44. Chen, C.Z., Li, L., Lodish , H.F. & Bartel, D.P. MicroRNAs modulate hematopoietic lineage

  12. The first vitellogenin receptor from a Lepidopteran insect: molecular characterization, expression patterns and RNA interference analysis.

    PubMed

    Shu, Y H; Wang, J W; Lu, K; Zhou, J L; Zhou, Q; Zhang, G R

    2011-02-01

    The vitellogenin receptor (VgR) belongs to the low-density lipoprotein receptor (LDLR) superfamily, and is an important carrier for the uptake of vitellogenin (Vg) into developing oocytes of all oviparous species. The first full-length message for a VgR from a Lepidopteran insect was cloned and sequenced from the ovary of Spodoptera litura Fabricius (GenBank accession no. GU983858). The coding region consisted of 5370 bp flanked by a 49 bp 5'-untranslated region (UTR) and a 177 bp 3'-UTR, which encoded a 1798-residue protein with a predicted molecular weight (MW) of 201.69 kDa. S. litura VgR (SlVgR)comprised two ligand binding sites with four LDLR class A repeats in the first domain and seven in the second domain, an epidermal growth factor-like domain containing an LDLR class B repeat and a YWXD motif, a transmembrane domain and a cytoplasmic domain. A phylogenetic relationship placed SlVgR as a separate group from the other insects. SlVgR messenger RNA (mRNA) was specifically expressed in the ovarian tissues. The developmental expression patterns showed that VgR mRNA was first transcribed in 6(th) day female pupae and the maximum level of VgR mRNA appeared in 36-h-old adults. Immunoblot analysis detected an ovary-specific VgR protein with a MW of ∼200 kDa, whose development profiles were consistent with VgR mRNA expression patterns. RNA inteference (RNAi) specifically disrupted the VgR gene by injection of 3 or 5 µg VgR double-stranded RNA per insect in 4(th) or 6(th) day pupae. RNAi of SlVgR led to a phenotype characterized by high Vg accumulation in the haemolymph, low Vg deposition in the ovary and the failure of insect spawning. These results mean that VgR is critical for binding Vg and transporting it into the oocytes of the insect ovary, thus playing an important role in insect reproduction.

  13. RNA interference of the period gene affects the rhythm of sperm release in moths.

    PubMed

    Kotwica, Joanna; Bebas, Piotr; Gvakharia, Barbara O; Giebultowicz, Jadwiga M

    2009-02-01

    The period (per) gene is 1 of the core elements of the circadian clock mechanism in animals from insects to mammals. In clock cells of Drosophila melanogaster, per mRNA and PER protein oscillate in daily cycles. Consistent with the molecular clock model, PER moves to cell nuclei and acts as a repressor of positive clock elements. Homologs of per are known in many insects; however, specific roles of per in generating output rhythms are not known for most species. The aim of this article was to determine whether per is functionally involved in the circadian rhythm of sperm release in the moth, Spodoptera littoralis. In this species, as in other moths, rhythmic release of sperm bundles from the testis into the upper vas deferens occurs only in the evening, and this rhythm continues in the isolated reproductive system. S. littoralis was used to investigate the expression of per mRNA and protein in the 2 types of cells involved in sperm release: the cyst cells surrounding sperm bundles in the testes, and the barrier cells separating testicular follicles from the vas deferens. In cyst cells, PER showed a nuclear rhythm in light/dark (LD) cycles but was constitutively cytoplasmic in constant darkness (DD). In barrier cells, nuclear cycling of PER was observed in both LD and DD. To determine the role of PER in rhythmic sperm release in moths, testes-sperm duct complexes were treated in vitro with double-stranded fragments of per mRNA (dsRNA). This treatment significantly lowered per mRNA and protein in cyst cells and barrier cells and caused a delay of sperm release. These data demonstrate that a molecular oscillator involving the period gene plays an essential role in the regulation of rhythmic sperm release in this species.

  14. A whole-genome RNA interference screen for human cell factors affecting myxoma virus replication.

    PubMed

    Teferi, Wondimagegnehu M; Dodd, Kristopher; Maranchuk, Rob; Favis, Nicole; Evans, David H

    2013-04-01

    Myxoma virus (MYXV) provides an important model for investigating host-pathogen interactions. Recent studies have also highlighted how mutations in transformed human cells can expand the host range of this rabbit virus. Although virus growth depends upon interactions between virus and host proteins, the nature of these interactions is poorly understood. To address this matter, we performed small interfering RNA (siRNA) screens for genes affecting MYXV growth in human MDA-MB-231 cells. By using siRNAs targeting the whole human genome (21,585 genes), a subset of human phosphatases and kinases (986 genes), and also a custom siRNA library targeting selected statistically significant genes ("hits") and nonsignificant genes ("nonhits") of the whole human genome screens (88 genes), we identified 711 siRNA pools that promoted MYXV growth and 333 that were inhibitory. Another 32 siRNA pools (mostly targeting the proteasome) were toxic. The overall overlap in the results was about 25% for the hits and 75% for the nonhits. These pro- and antiviral genes can be clustered into pathways and related groups, including well-established inflammatory and mitogen-activated protein kinase pathways, as well as clusters relating to β-catenin and the Wnt signaling cascade, the cell cycle, and cellular metabolism. The validity of a subset of these hits was independently confirmed. For example, treating cells with siRNAs that might stabilize cells in G(1), or inhibit passage into S phase, stimulated MYXV growth, and these effects were reproduced by trapping cells at the G(1)/S boundary with an inhibitor of cyclin-dependent kinases 4/6. By using 2-deoxy-D-glucose and plasmids carrying the gene for phosphofructokinase, we also confirmed that infection is favored by aerobic glycolytic metabolism. These studies provide insights into how the growth state and structure of cells affect MYXV growth and how these factors might be manipulated to advantage in oncolytic virus therapy.

  15. Magnetic gold nanoparticle-mediated small interference RNA silencing Bag-1 gene for colon cancer therapy.

    PubMed

    Huang, Wenbai; Liu, Zhan'ao; Zhou, Guanzhou; Tian, Ailing; Sun, Nianfeng

    2016-02-01

    Bcl-2-associated athanogene 1 (Bag-1) is a positive regulator of Bcl-2 which is an anti-apoptotic gene. Bag-1 was very slightly expressed in normal tissues, but often highly expressed in many tumor tissues, particularly in colon cancer, which can promote metastasis, poor prognosis and anti-apoptotic function of colon cancer. We prepared and evaluated magnetic gold nanoparticle/Bag-1 siRNA recombinant plasmid complex, a gene therapy system, which can transfect cells efficiently, for both therapeutic effect and safety in vitro mainly by electrophoretic mobility shift assays, flow cytometric analyses, cell viability assays, western blot analyses and RT-PCR (real-time) assays. Magnetic gold nanoparticle/Bag-1 siRNA recombinant plasmid complex was successfully transfected into LoVo colon cancer cells and the exogenous gene was expressed in the cells. Flow cytometric results showed apoptosis rate was significantly increased. In MTT assays, magnetic gold nanoparticles revealed lower cytotoxicity than Lipofectamine 2000 transfection reagents (P<0.05). Both in western blot analyses and RT-PCR assays, magnetic gold nanoparticle/Bag-1 siRNA recombinant plasmid complex transfected cells demonstrated expression of Bag-1 mRNA (P<0.05) and protein (P<0.05) was decreased. In further study, c-myc and β-catenin which are main molecules of Wnt/β‑catenin pathway were decreased when Bag-1 were silenced in nanoparticle plasmid complex transfected LoVo cells. These results suggest that magnetic gold nanoparticle mediated siRNA silencing Bag-1 is an effective gene therapy method for colon cancer.

  16. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes

    PubMed Central

    Matsa, Elena; Dixon, James E.; Medway, Christopher; Georgiou, Orestis; Patel, Minal J.; Morgan, Kevin; Kemp, Paul J.; Staniforth, Andrew; Mellor, Ian; Denning, Chris

    2014-01-01

    Aims Long-QT syndromes (LQTS) are mostly autosomal-dominant congenital disorders associated with a 1:1000 mutation frequency, cardiac arrest, and sudden death. We sought to use cardiomyocytes derived from human-induced pluripotency stem cells (hiPSCs) as an in vitro model to develop and evaluate gene-based therapeutics for the treatment of LQTS. Methods and results We produced LQTS-type 2 (LQT2) hiPSC cardiomyocytes carrying a KCNH2 c.G1681A mutation in a IKr ion-channel pore, which caused impaired glycosylation and channel transport to cell surface. Allele-specific RNA interference (RNAi) directed towards the mutated KCNH2 mRNA caused knockdown, while leaving the wild-type mRNA unaffected. Electrophysiological analysis of patient-derived LQT2 hiPSC cardiomyocytes treated with mutation-specific siRNAs showed normalized action potential durations (APDs) and K+ currents with the concurrent rescue of spontaneous and drug-induced arrhythmias (presented as early-afterdepolarizations). Conclusions These findings provide in vitro evidence that allele-specific RNAi can rescue diseased phenotype in LQTS cardiomyocytes. This is a potentially novel route for the treatment of many autosomal-dominant-negative disorders, including those of the heart. PMID:23470493

  17. Inhibition of hepatitis B virus expression and replication by RNA interference in HepG2.2.15

    PubMed Central

    Zhao, Zhong-Fu; Yang, Hui; Han, De-Wu; Zhao, Long-Feng; Zhang, Guo-Ying; Zhang, Yun; Liu, Ming-She

    2006-01-01

    AIM: To observe the inhibition of hepatitis B virus replication and expression by transfecting vector-based small interference RNA (siRNA) pGenesil-HBV X targeting HBV X gene region into HepG2.2.15 cells. METHODS: pGenesil-HBV X was constructed and transfected into HepG2.2.15 cells via lipofection. HBV antigen secretion was determined 24, 48, and 72 h after transfection by time-resolved immunofluorometric assays (TRFIA). HBV replication was examined by fluorescence quantitative PCR, and the expression of cytoplasmic viral proteins was determined by immunohistochemistry. RESULTS: The secretion of HBsAg and HBeAg into the supernatant was found to be inhibited by 28.5% and 32.2% (P < 0.01), and by 38.67% (P < 0.05) and 42.86% (P < 0.01) at 48 h and 72 h after pGenesil-HBV X transfection, respectively. Immunohistochemical staining for cytoplasmic HBsAg showed a similar decline in HepG2.2.15 cells 48 h after transfection. The number of HBV genomes within culture supernatants was also significantly decreased 48 h and 72 h post-transfection as quantified by fluorescence PCR (P < 0.05). CONCLUSION: In HepG2.2.15 cells, HBV replication and expression is inhibited by vector-based siRNA pGenesil-HBV X targeting the HBV X coding region. PMID:17009407

  18. Inhibition of hepatic scavenger receptor-class B type I by RNA interference decreases atherosclerosis in rabbits.

    PubMed

    Demetz, Egon; Tancevski, Ivan; Duwensee, Kristina; Stanzl, Ursula; Huber, Eva; Heim, Christiane; Handle, Florian; Theurl, Markus; Schroll, Andrea; Tailleux, Anne; Dietrich, Hermann; Patsch, Josef R; Eller, Philipp; Ritsch, Andreas

    2012-06-01

    Scavenger receptor-class B type I (SR-BI), the receptor for HDL-cholesterol, plays a key role in HDL metabolism, whole body cholesterol homeostasis, and reverse cholesterol transport. We investigated the in vivo impact of hepatic SR-BI inhibition on lipoprotein metabolism and the development of atherosclerosis employing RNA interference. Small hairpin RNA plasmid specific for rabbit SR-BI was complexed with galactosylated poly-l-lysine, allowing an organ-selective, receptor-mediated gene transfer. Rabbits were fed a cholesterol-rich diet, and were injected with plasmid-complexes once a week. After 2 weeks of treatment hepatic SR-BI mRNA levels were reduced by 80% accompanied by reduced SR-BI protein levels and a modulation of the lipoprotein profile. Rabbits treated with SR-BI-specific plasmid-complexes displayed higher cholesteryl ester transfer from HDL to apoB-containing lipoproteins, lower HDL-cholesterol, and higher VLDL-cholesterol levels, when compared to controls. In a long-term study, this gene therapeutic intervention led to a similar modulation of the lipoprotein profile, to lower total cholesterol levels, and most importantly to a 50% reduction of the relative atherosclerotic lesion area. Our results are another indication that the role of SR-BI in lipoprotein metabolism and atherogenesis in rabbits--a CETP-expressing animal model displaying a manlike lipoprotein profile may be different from the one found in rodents. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    NASA Astrophysics Data System (ADS)

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jimmy

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1 and OPR) in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  20. RNA interference targeting tNOX attenuates cell migration via a mechanism that involves membrane association of Rac

    SciTech Connect

    Liu, S.-C.; Yang, J.-J.; Shao, K.-N.; Chueh, P.J.

    2008-01-25

    tNOX, a tumor-associated NADH oxidase, is a growth-related protein present in transformed cells. In this study, we employed RNA interference (RNAi)-mediated down-regulation of tNOX protein expression to explore the role of tNOX in regulating cell growth in human cervical adenocarcinoma (HeLa) cells. In this first reported use of RNAi to decrease tNOX expression, we found that HeLa cell growth was significantly inhibited by shRNA-knockdown of tNOX. Furthermore, cell migration and membrane association of Rac were decreased concomitantly with the reduction in tNOX protein expression. These results indicate that shRNA targeting of tNOX inhibits the growth of cervical cancer cells, and reduces cell migration via a decrease in the membrane association of Rac. We propose that tNOX is a potential upstream mediator of Rho activation that plays a role in regulating cell proliferation, migration, and invasion.

  1. RNA Interference as a Method for Target-Site Screening in the Western Corn Rootworm, Diabrotica Virgifera Virgifera

    PubMed Central

    Alves, Analiza P.; Lorenzen, Marcé D.; Beeman, Richard W.; Foster, John E.; Siegfried, Blair D.

    2010-01-01

    To test the efficacy of RNA interference (RNAi) as a method for target-site screening in Diabrotica virgifera virgifera LeConte (Coleptera: Chrysomelidae) larvae, genes were identified and tested for which clear RNAi phenotypes had been identified in the Coleopteran model, Tribolium castaneum. Here the cloning of the D. v. vergifera orthologs of laccase 2 (DvvLac2) and chitin synthase 2 (DvvCHS2) is reported. Injection of DvvLac2-specific double-stranded RNA resulted in prevention of post-molt cuticular tanning, while injection of DvvCHS2-specific dsRNA reduced chitin levels in midguts. Silencing of both DvvLac2 and DvvCHS2 was confirmed by RT-PCR and quantitative RT-PCR. As in T. castaneum, RNAi-mediated gene silencing is systemic in Diabrotica. The results indicate that RNAi-induced silencing of D. v. vergifera genes provides a powerful tool for identifying potential insecticide targets. PMID:21067417

  2. RNA interference as a method for target-site screening in the Western corn rootworm, Diabrotica virgifera virgifera.

    PubMed

    Alves, Analiza P; Lorenzen, Marcé D; Beeman, Richard W; Foster, John E; Siegfried, Blair D

    2010-01-01

    To test the efficacy of RNA interference (RNAi) as a method for target-site screening in Diabrotica virgifera virgifera LeConte (Coleptera: Chrysomelidae) larvae, genes were identified and tested for which clear RNAi phenotypes had been identified in the Coleopteran model, Tribolium castaneum. Here the cloning of the D. v. vergifera orthologs of laccase 2 (DvvLac2) and chitin synthase 2 (DvvCHS2) is reported. Injection of DvvLac2-specific double-stranded RNA resulted in prevention of post-molt cuticular tanning, while injection of DvvCHS2-specific dsRNA reduced chitin levels in midguts. Silencing of both DvvLac2 and DvvCHS2 was confirmed by RT-PCR and quantitative RT-PCR. As in T. castaneum, RNAi-mediated gene silencing is systemic in Diabrotica. The results indicate that RNAi-induced silencing of D. v. vergifera genes provides a powerful tool for identifying potential insecticide targets.

  3. Depletion of SMN by RNA interference in HeLa cells induces defects in Cajal body formation.

    PubMed

    Girard, Cyrille; Neel, Henry; Bertrand, Edouard; Bordonné, Rémy

    2006-01-01

    Neuronal degeneration in spinal muscular atrophy (SMA) is caused by reduced expression of the survival of motor neuron (SMN) protein. The SMN protein is ubiquitously expressed and is present both in the cytoplasm and in the nucleus where it localizes in Cajal bodies. The SMN complex plays an essential role for the biogenesis of spliceosomal U-snRNPs. In this article, we have used an RNA interference approach in order to analyse the effects of SMN depletion on snRNP assembly in HeLa cells. Although snRNP profiles are not perturbed in SMN-depleted cells, we found that SMN depletion gives rise to cytoplasmic accumulation of a GFP-SmB reporter protein. We also demonstrate that the SMN protein depletion induces defects in Cajal body formation with coilin being localized in multiple nuclear foci and in nucleolus instead of canonical Cajal bodies. Interestingly, the coilin containing foci do not contain snRNPs but appear to co-localize with U85 scaRNA. Because Cajal bodies represent the location in which snRNPs undergo 2'-O-methylation and pseudouridylation, our results raise the possibility that SMN depletion might give rise to a defect in the snRNA modification process.

  4. Transgene-mediated suppression of the RNA interference pathway in Aedes aegypti interferes with gene silencing and enhances Sindbis virus and dengue virus type 2 replication.

    PubMed

    Khoo, C C H; Doty, J B; Heersink, M S; Olson, K E; Franz, A W E

    2013-02-01

    RNA interference (RNAi) is the major innate antiviral pathway in Aedes aegypti that responds to replicating arboviruses such as dengue virus (DENV) and Sindbis virus (SINV). On the one hand, the mosquito's RNAi machinery is capable of completely eliminating DENV2 from Ae. aegypti. On the other, transient silencing of key genes of the RNAi pathway increases replication of SINV and DENV2, allowing the viruses to temporally overcome dose-dependent midgut infection and midgut escape barriers (MEB) more efficiently. Here we expressed Flock house virus B2 (FHV-B2) from the poly-ubiquitin (PUb) promoter in Ae. aegypti using the ΦC31 site-directed recombination system to investigate the impact of transgene-mediated RNAi pathway suppression on infections with SINV-TR339eGFP and DENV2-QR94, the latter of which has been shown to be confronted with a strong MEB in Ae. aegypti. FHV-B2 was constitutively expressed in midguts of sugar- and blood-fed mosquitoes of transgenic line PUbB2 P61. B2 over-expression suppressed RNA silencing of carboxypeptidase A-1 (AeCPA-1) in midgut tissue of PUbB2 P61 mosquitoes. Following oral challenge with SINV-TR339eGFP or DENV2-QR94, mean titres in midguts of PUbB2 P61 females were significantly higher at 7 days post-bloodmeal (pbm) than in those of nontransgenic control mosquitoes. At 14 days pbm, infection rates of carcasses were significantly increased in PubB2 P61 mosquitoes infected with SINV-TR339eGFP. Following infection with DENV2-QR94, midgut infection rates were significantly increased in the B2-expressing mosquitoes at 14 days pbm. However, B2 expression in PUbB2 P61 did not increase the DENV2-QR94 dissemination rate, indicating that the infection phenotype was not primarily controlled by RNAi. © 2013 Royal Entomological Society.

  5. Lentivirus vectors construction of SiRNA targeting interference GPC3 gene and its biological effects on liver cancer cell lines Huh-7.

    PubMed

    Lei, Chang-Jiang; Yao, Chun; Pan, Qing-Yun; Long, Hao-Cheng; Li, Lei; Zheng, Shu-Ping; Zeng, Cheng; Huang, Jian-Bin

    2014-10-01

    To build GPC3 gene short hairpin interference RNA (shRNA) slow virus vector, observe expression of Huh-7 GPC3 gene in human liver cell line proliferation apoptosis and the effect of GPC3 gene influencing on liver cancer cell growth, and provide theoretical basis for gene therapy of liver cancer. Hepatocellular carcinoma cell line Huh-7 was transfected by a RNA interference technique. GPC3 gene expression in a variety of liver cancer cell lines was detected by fluorescence quantitative PCR. Targeted GPC3 gene sequences of small interfering RNA (siRNA) PGC-shRNA-GPC3 were restructured. Stable expression cell lines of siRNA were screened and established with the help of liposomes (lipofectamine(TM2000)) as carrier transfection of human liver cell lines. In order to validate siRNA interference efficiency, GPC3 siRNA mRNA expression was detected after transfection by using RT-PCR and Western blot. The absorbance value of the cells of blank group, untransfection group and transfection group, the cell cycle and cell apoptosis were calculated, and effects of GPC3 gene on Huh-7 cell proliferation and apoptosis were observed. In the liver cancer cell lines Huh-7, GPC3 gene showed high expression. PGC-shRNA-GPC3 recombinant plasmid was constructed successfully via sequencing validation. Stable recombinant plasmid transfected into liver cancer cell lines Huh-7 can obviously inhibit GPC3 mRNA expression level. The targeted GPC3 siRNA can effectively inhibit the expression of GPC3. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  6. Knock down of the myostatin gene by RNA interference increased body weight in chicken.

    PubMed

    Bhattacharya, T K; Shukla, R; Chatterjee, R N; Dushyanth, K

    2017-01-10

    Myostatin is a negative regulator of muscular growth in poultry and other animals. Of several approaches, knocking down the negative regulator is an important aspect to augment muscular growth in chicken. Knock down of myostatin gene has been performed by shRNA acting against the expression of gene in animals. Two methods of knock down of gene in chicken such as embryo manipulation and sperm mediated method have been performed. The hatching percentage in embryo manipulation and sperm mediated method of knock down was 58.0 and 41.5%, respectively. The shRNA in knock down chicken enhanced body weight at 6 weeks by 26.9%. The dressing percentage and serum biochemical parameters such as SGPT and alkaline phosphatase differed significantly (P<0.05) between knock down and control birds. It is concluded that knocking down the myostatin gene successfully augmented growth in chicken.

  7. Targeting CCl4 -induced liver fibrosis by RNA interference-mediated inhibition of cyclin E1 in mice.

    PubMed

    Bangen, Jörg-Martin; Hammerich, Linda; Sonntag, Roland; Baues, Maike; Haas, Ute; Lambertz, Daniela; Longerich, Thomas; Lammers, Twan; Tacke, Frank; Trautwein, Christian; Liedtke, Christian

    2017-10-01

    Initiation and progression of liver fibrosis requires proliferation and activation of resting hepatic stellate cells (HSCs). Cyclin E1 (CcnE1) is the regulatory subunit of the cyclin-dependent kinase 2 (Cdk2) and controls cell cycle re-entry. We have recently shown that genetic inactivation of CcnE1 prevents activation, proliferation, and survival of HSCs and protects from liver fibrogenesis. The aim of the present study was to translate these findings into preclinical applications using an RNA interference (RNAi)-based approach. CcnE1-siRNA (small interfering RNA) efficiently inhibited CcnE1 gene expression in murine and human HSC cell lines and in primary HSCs, resulting in diminished proliferation and increased cell death. In C57BL/6 wild-type (WT) mice, delivery of stabilized siRNA using a liposome-based carrier targeted approximately 95% of HSCs, 70% of hepatocytes, and 40% of CD45(+) cells after single injection. Acute CCl4 -mediated liver injury in WT mice induced endogenous CcnE1 expression and proliferation of surviving hepatocytes and nonparenchymal cells, including CD45(+) leukocytes. Pretreatment with CcnE1-siRNA reverted CcnE1 induction to baseline levels of healthy mice, which was associated with reduced liver injury, diminished proliferation of hepatocytes and leukocytes, and attenuated overall inflammatory response. For induction of liver fibrosis, WT mice were challenged with CCl4 for 4-6 weeks. Co-treatment with CcnE1-siRNA once a week was sufficient to continuously block CcnE1 expression and cell-cycle activity of hepatocytes and nonparenchymal cells, resulting in significantly ameliorated liver fibrosis and inflammation. Importantly, CcnE1-siRNA also prevented progression of liver fibrosis if applied after onset of chronic liver injury. Therapeutic targeting of CcnE1 in vivo using RNAi is feasible and has high antifibrotic activity. (Hepatology 2017;66:1242-1257). © 2017 by the American Association for the Study of Liver Diseases.

  8. Targeting H19 by lentivirus-mediated RNA interference increases A549 cell migration and invasion.

    PubMed

    Wang, Lin; Sun, Yan; Yi, Jiqun; Wang, Xiuwen; Liang, Jizhen; Pan, Zhaojun; Li, Li; Jiang, Gaofeng

    2016-09-01

    Lung cancer is one of the most common and a lethal malignancy in the world and non-small cell lung cancer (NSCLC) is the most usual type. H19 long non-coding RNA (lncRNA) plays essential roles in tumor development. But its role in tumor metastasis is still unclear. MACC1 RNAi and Lentivirus-mediated H19-specific shRNA was used to establish H19 stable knocking-down A549 cells. Transwell assays were performed to examine the effect of H19 knocking-down on A549 cells migration and invasion. The downstream signaling proteins targeted by H19 were also examined by western blot. AG1478 and U0126 were used as the inhibitor of EGFR and ERK1/2, respectively. The knockdown of H19 increased the migration and invasion of A549 cells, and knockdown of metastasis-associated in colon cancer 1 (MACC1) decreased the migration and invasion of A549 cells. Furthermore, MACC1 protein targeted by H19 was upregulated as well as the downstream signaling proteins including epidermal growth factor receptor (EGFR), β-catenin, extracellular-signal-regulated kinase 1/2 (ERK1/2). Inhibited the expression of EGFR or ERK1/2 significantly decreased the migration and invasion of tumor cells. Our findings showed that H19 functions as a suppressor of NSCLC and plays an important role in the migration and invasion of NSCLC. More importantly, H19 may regulate NSCLC metastasis through modulating cellular signaling pathway proteins related to cell proliferation and cell adhesion, including MACC1, EGFR, β-catenin and ERK1/2. These results put forward our understanding of the detailed mechanism of H19 lncRNA regulating the process of NSCLC metastasis.

  9. Quantitative RT-PCR Gene Evaluation and RNA Interference in the Brown Marmorated Stink Bug

    PubMed Central

    Bansal, Raman; Mittapelly, Priyanka; Chen, Yuting; Mamidala, Praveen; Zhao, Chaoyang; Michel, Andy

    2016-01-01

    The brown marmorated stink bug (Halyomorpha halys) has emerged as one of the most important invasive insect pests in the United States. Functional genomics in H. halys remains unexplored as molecular resources in this insect have recently been developed. To facilitate functional genomics research, we evaluated ten common insect housekeeping genes (RPS26, EF1A, FAU, UBE4A, ARL2, ARP8, GUS, TBP, TIF6 and RPL9) for their stability across various treatments in H. halys. Our treatments included two biotic factors (tissues and developmental stages) and two stress treatments (RNAi injection and starvation). Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper) and a web-based tool (RefFinder). The qRT-PCR results indicated ARP8 and UBE4A exhibit the most stable expression across tissues and developmental stages, ARL2 and FAU for dsRNA treatment and TBP and UBE4A for starvation treatment. Following the dsRNA treatment, all genes except GUS showed relatively stable expression. To demonstrate the utility of validated reference genes in accurate gene expression analysis and to explore gene silencing in H. halys, we performed RNAi by administering dsRNA of target gene (catalase) through microinjection. A successful RNAi response with over 90% reduction in expression of target gene was observed. PMID:27144586

  10. RNA interference (RNAI) as a tool to engineer high nutritional value in chicory (Chicorium intybus).

    PubMed

    Asad, M

    2006-01-01

    The major component of chicory (Chicorium intybus) root is inulin, which is a polymer of fructose. Inulin production from chicory is hampered by the enzyme fructan 1-exohydrolase (1-FEH) that degrades inulin and limits its yield. Increased FEH activity results in massive breakdown of fructan and production of Fructose and inulo-n-oses. The latter phenomena are to be avoided for industrial fructan production. RNA silencing, which is termed post-transcriptional gene silencing (PTGS) in plants, is an RNA degradation process through sequence specific nucleotide interactions induced by double-stranded RNA. For genetic improvement of crop plants, RNAi has advantages over antisense-mediated gene silencing and co-suppression, in terms of its efficiency and stability. We are generating a transgenic chicory plants with suppressed FEH (exohydrolas) genes using RNAi resulting in supressed inulin degradation. A small but important part of the construct is a sequence unique for the target gene (exons) or genes,which were cloned. The hairpin constructs were made and chicory was transformed by Agrobacterium tumifaciense, strain (C58C1). The transgenics should be select and check by means of molecular techniques.

  11. Inhibition of UL54 and UL97 genes of human cytomegalovirus by RNA interference.

    PubMed

    Shin, M-C; Hong, S-K; Yoon, J-S; Park, S-S; Lee, S-G; Lee, D-G; Min, W-S; Shin, W-S; Paik, S-Y

    2006-01-01

    Short interfering RNAs (siRNAs), namely siUL54-1 and siU54-2 targeting UL54 (DNA polymerase) gene, and siUL97-1 and siUL97-2 targeting UL97 (phosphotransferase) gene, were used to inhibit respective genes of Human cytomegalovirus (HCMV) and consequently the virus infection process in human foreskin fibroblast (HFF) cultures. The virus infection was monitored by cell morphology (CPE), levels of UL83 and IE86 mRNAs, and virus antigen. The results showed that siUL97-2 remarkably inhibited viral CPE while other siRNAs were less inhibitory. The siRNAs reduced the levels of UL83 mRNA but not that of IE86 mRNA; again, siUL97-2 was most inhibitory. Particularly, siUL97-2 reduced the UL83 mRNA level 14, 19, 203, and 37 times at 24, 48, 72, and 96 hrs post infection (p.i.), respectively. When tested for the effect on viral antigen by immunofluorescent assay (IFA), UL97-2 exerted a marked inhibition. These results demonstrate the effectiveness of siRNAs against experimental HCMV infection and indicate their therapeutic potential.

  12. Inhibition of CDH17 gene expression via RNA interference reduces proliferation and apoptosis of human MKN28 gastric cancer cells

    PubMed Central

    Li, Rui; Yang, Hong-Qiang; Xi, Hai-Lin; Feng, Su; Qin, Rui-Hao

    2017-01-01

    Gastric cancer is the fourth most common type of cancer and the second cause of cancer-related mortalities worldwide despite the use of multimodal therapy. Cadherins are transmembrane glycoproteins that are involved in tumorigenesis. CDH17 has been found to be over-expressed in gastric cancer and its overexpression was associated with lymph node metastasis and tumor-node-metastasis stage of the patients, yet the exact role and molecular mechanism of CDH17 in gastric cancer have not been determined. Using a lentiviral system as a delivery mediator of RNA interference, we found that inhibition of CDH17 can lead to reduce proliferation and increase apoptosis of gastric cancer cell line MKN28 in vitro and significantly diminish their tumorigenicity in vivo. Our results of the present study suggest that CDH17 may be a promising candidate for the therapeutic targeting of gastric cancer. PMID:27909714

  13. Enhancing Cellulase Production in Thermophilic Fungus Myceliophthora thermophila ATCC42464 by RNA Interference of cre1 Gene Expression.

    PubMed

    Yang, Fan; Gong, Yanfen; Liu, Gang; Zhao, Shengming; Wang, Juan

    2015-07-01

    The role of CRE1 in a thermophilic fungus, Myceliophthora thermophila ATCC42464, was studied using RNA interference. In the cre1-silenced strain C88, the filter paper hydrolyzing activity and β-1,4-endoglucanase activity were 3.76-, and 1.31-fold higher, respectively, than those in the parental strain when the strains were cultured in inducing medium for 6 days. The activities of β-1,4-exoglucanase and cellobiase were 2.64-, and 5.59-fold higher, respectively, than those in the parental strain when the strains were cultured for 5 days. Quantitative reverse-transcription polymerase chain reaction showed that the gene expression of egl3, cbh1, and cbh2 was significantly increased in transformant C88 compared with the wild-type strain. Therefore, our findings suggest the feasibility of improving cellulase production by modifying the regulator expression, and an attractive approach to increasing the total cellulase productivity in thermophilic fungi.

  14. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats

    PubMed Central

    Regina, Ahmed; Bird, Anthony; Topping, David; Bowden, Sarah; Freeman, Judy; Barsby, Tina; Kosar-Hashemi, Behjat; Li, Zhongyi; Rahman, Sadequr; Morell, Matthew

    2006-01-01

    Foods high in resistant starch have the potential to improve human health and lower the risk of serious noninfectious diseases. RNA interference was used to down-regulate the two different isoforms of starch-branching enzyme (SBE) II (SBEIIa and SBEIIb) in wheat endosperm to raise its amylose content. Suppression of SBEIIb expression alone had no effect on amylose content; however, suppression of both SBEIIa and SBEIIb expression resulted in starch containing >70% amylose. When the >70% amylose wheat grain was fed to rats in a diet as a wholemeal, several indices of large-bowel function, including short-chain fatty acids, were improved relative to standard wholemeal wheat. These results indicate that this high-amylose wheat has a significant potential to improve human health through its resistant starch content. PMID:16537443

  15. Depletion of hCINAP by RNA interference causes defects in Cajal body formation, histone transcription, and cell viability.

    PubMed

    Zhang, Jinfang; Zhang, Feiyun; Zheng, Xiaofeng

    2010-06-01

    hCINAP is a highly conserved and ubiquitously expressed protein in eukaryotic organisms and its overexpression decreases the average number of Cajal bodies (CBs) with diverse nuclear functions. Here, we report that hCINAP is associated with important components of CBs. Depletion of hCINAP by RNA interference causes defects in CB formation and disrupts subcellular localizations of its components including coilin, survival motor neurons protein, spliceosomal small nuclear ribonucleoproteins, and nuclear protein ataxia-telangiectasia. Moreover, knockdown of hCINAP expression results in marked reduction of histone transcription, lower levels of U small nuclear RNAs (U1, U2, U4, and U5), and a loss of cell viability. Detection of increased caspase-3 activities in hCINAP-depleted cells indicate that apoptosis is one of the reasons for the loss of viability. Altogether, these data suggest that hCINAP is essential for the formation of canonical CBs, histone transcription, and cell viability.

  16. RNA interference of pax2 inhibits growth of transplanted human endometrial cancer cells in nude mice

    PubMed Central

    Zhang, Li-Ping; Shi, Xiao-Yan; Zhao, Chang-Yin; Liu, Yong-Zhen; Cheng, Ping

    2011-01-01

    The development of human endometrial carcinoma (HEC) is a complex pathologic process involves several oncogenes and tumor suppressor genes. The full-length paired-box gene 2 (pax2), a recently discovered Oncogene, promotes cell proliferation and growth and inhibits apoptosis of HEC cells. Here, we examined the effect of pax2 small interfering RNA (siRNA) on the growth of transplanted HEC cells in nude mice. The expression of Pax2 in 21 cases of normal endometrium and 38 cases of HEC was examined by immohistochemistry (IHC). HEC models were developed by subcutaneously transferring HEC cells into nude mice, followed by treatment with empty lentivirus vector, lentivirus vector-based pax2 siRNA, and phosphate buffered saline, respectively. Four weeks later, tumor size was measured, tumor inhibition rate was calculated, and histological analyses were conducted after staining with hematoxylin and eosin. The expression of Pax2 and Bcl-2 was detected by Western blot; proliferating cell nuclear antigen (PCNA) was detected by IHC. Significant differences were observed in the positive rate of Pax2 between normal endometrium and HEC (14.2% vs. 60.5%, P < 0.01). The expression index of Pax2 in well differentiated tumors was 1.88 ± 1.68, much lower than that in tumors of moderate (3.07 ± 1.96, P < 0.05) or poor differentiation (5.45 ± 2.76, P < 0.01). Tumor necrosis increased, nuclear basophilia stain decreased, tumor growth was inhibited, and PCNA, Pax2, and Bcl-2 expression was reduced in HEC models treated with pax2 siRNA. These results indicate that Pax2 expression is related to HEC tumor biology with the increased expression of Pax2 correlated to malignancy. pax2 siRNA down-regulates Pax2 expression and inhibits tumorigenesis of HEC in nude mice, possibly due to cell apoptosis and the inhibition of tumor proliferation induced by down-regulation of Bcl-2. PMID:21627862

  17. A Whole-Genome RNA Interference Screen for Human Cell Factors Affecting Myxoma Virus Replication

    PubMed Central

    Teferi, Wondimagegnehu M.; Dodd, Kristopher; Maranchuk, Rob; Favis, Nicole

    2013-01-01

    Myxoma virus (MYXV) provides an important model for investigating host-pathogen interactions. Recent studies have also highlighted how mutations in transformed human cells can expand the host range of this rabbit virus. Although virus growth depends upon interactions between virus and host proteins, the nature of these interactions is poorly understood. To address this matter, we performed small interfering RNA (siRNA) screens for genes affecting MYXV growth in human MDA-MB-231 cells. By using siRNAs targeting the whole human genome (21,585 genes), a subset of human phosphatases and kinases (986 genes), and also a custom siRNA library targeting selected statistically significant genes (“hits”) and nonsignificant genes (“nonhits”) of the whole human genome screens (88 genes), we identified 711 siRNA pools that promoted MYXV growth and 333 that were inhibitory. Another 32 siRNA pools (mostly targeting the proteasome) were toxic. The overall overlap in the results was about 25% for the hits and 75% for the nonhits. These pro- and antiviral genes can be clustered into pathways and related groups, including well-established inflammatory and mitogen-activated protein kinase pathways, as well as clusters relating to β-catenin and the Wnt signaling cascade, the cell cycle, and cellular metabolism. The validity of a subset of these hits was independently confirmed. For example, treating cells with siRNAs that might stabilize cells in G1, or inhibit passage into S phase, stimulated MYXV growth, and these effects were reproduced by trapping cells at the G1/S boundary with an inhibitor of cyclin-dependent kinases 4/6. By using 2-deoxy-d-glucose and plasmids carrying the gene for phosphofructokinase, we also confirmed that infection is favored by aerobic glycolytic metabolism. These studies provide insights into how the growth state and structure of cells affect MYXV growth and how these factors might be manipulated to advantage in oncolytic virus therapy. PMID

  18. RNA interference to reveal roles of β-N-acetylglucosaminidase gene during molting process in Locusta migratoria.

    PubMed

    Rong, Shuo; Li, Da-Qi; Zhang, Xue-Yao; Li, Sheng; Zhu, Kun Yan; Guo, Ya-Ping; Ma, En-Bo; Zhang, Jian-Zhen

    2013-02-01

    β-N-acetylglucosaminidases are crucial enzymes involved in chitin degradation in insects. We identified a β-N-acetylglucosaminidase gene (LmNAG1) from Locusta migratoria. The full-length complementary DNA (cDNA) of LmNAG1 consists of 2 667 nucleotides, including an open reading frame (ORF) of 1 845 nucleotides encoding 614 amino acid residues, and 233- and 589-nucleotide non-coding regions at the 5'- and 3'-ends, respectively. Phylogenetic analysis grouped the cDNA-deduced LmNAG1 protein with the enzymatically characterized β-N-acetylglucosaminidases in group I. Analyses of stage- and tissue-dependent expression patterns of LmNAG1 were carried out by real-time quantitative polymerase chain reaction. Our results showed that LmNAG1 transcript level in the integument was significantly high in the last 2 days of the fourth and fifth instar nymphs. LmNAG1 was highly expressed in foregut and hindgut. RNA interference of LmNAG1 resulted in an effective silence of the gene and a significantly reduced total LmNAG enzyme activity at 48 and 72 h after the injection of LmNAG1 double-stranded RNA (dsRNA). As compared with the control nymphs injected with GFP dsRNA, 50% of the dsLmNAG1-injected nymphs were not able to molt successfully and eventually died. Our results suggest that LmNAG1 plays an essential role in molting process of L. migratoria.

  19. [Influence of c-kit RNA interference mediated by AdMax adenovirus upon gastrointestinal stromal tumor in nude mice].

    PubMed

    Wang, Tian-bao; Shi, Han-ping; Huang, Wen-sheng; Lin, Wei-hao; Dong, Wen-guang

    2011-03-01

    To investigate a novel therapeutic regiment for gastrointestinal stromal tumor (GIST) based on c-kit RNA interference (RNAi) under the mediation of AdMax adenovirus. c-kit shRNA, whose lateral sides were decorated with restriction endonuclease sequences, was designed. The joining of c-kit shRNA and PDC316-EGFP-U6 was catalyzed by T4 DNA ligase to construct PDC316-EGFP-U6-C-KIT. Homologous recombination of AdEGFP-U6-C-KIT was performed with AdMax system. Heterotopic transplantation of GIST in nude mice was established. AdEGFP-U6-C-KIT was intratumorally injected in experimental group while blank admax adenovirus AdEGFP-U6 in control group. The volume, inhibition ratio of tumor and CD117 expression of graft tumor were compared between test and control groups. The length of c-kit shRNA was around 50 bp in agarose electrophoresis. Gene sequencing revealed the designed c-kit RNAi sequence in PDC316-EGFP-U6-C-KIT. After transfection with AdEGFP-U6-C-KIT, 293 cells presented green fluorescence. The physical and infective titer of AdEGFP-U6-C-KIT was 5 × 10(11)vp/ml and 5.67 × 10(7) pfu/ml respectively. At the end of test, the mean volume of graft tumor was significantly smaller in test group than in control group [(75 ± 23) vs (989 ± 31) mm(3), P = 0.000]. The inhibition ratio of tumor was 59.6% in test group. Two cases (20%) in test group and 10 (100%) in control group had a positive expression of CD117 (P = 0.001). c-kit RNAi mediated by Admax vector system can inhibit effectively the expression of c-kit gene and the growth of GIST in nude mice.

  20. Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNAseq, RNA interference and irradiation approach.

    PubMed

    Solana, Jordi; Kao, Damian; Mihaylova, Yuliana; Jaber-Hijazi, Farah; Malla, Sunir; Wilson, Ray; Aboobaker, Aziz

    2012-01-01

    Planarian stem cells, or neoblasts, drive the almost unlimited regeneration capacities of freshwater planarians. Neoblasts are traditionally described by their morphological features and by the fact that they are the only proliferative cell type in asexual planarians. Therefore, they can be specifically eliminated by irradiation. Irradiation, however, is likely to induce transcriptome-wide changes in gene expression that are not associated with neoblast ablation. This has affected the accurate description of their specific transcriptomic profile. We introduce the use of Smed-histone-2B RNA interference (RNAi) for genetic ablation of neoblast cells in Schmidtea mediterranea as an alternative to irradiation. We characterize the rapid, neoblast-specific phenotype induced by Smed-histone-2B RNAi, resulting in neoblast ablation. We compare and triangulate RNA-seq data after using both irradiation and Smed-histone-2B RNAi over a time course as means of neoblast ablation. Our analyses show that Smed-histone-2B RNAi eliminates neoblast gene expression with high specificity and discrimination from gene expression in other cellular compartments. We compile a high confidence list of genes downregulated by both irradiation and Smed-histone-2B RNAi and validate their expression in neoblast cells. Lastly, we analyze the overall expression profile of neoblast cells. Our list of neoblast genes parallels their morphological features and is highly enriched for nuclear components, chromatin remodeling factors, RNA splicing factors, RNA granule components and the machinery of cell division. Our data reveal that the regulation of planarian stem cells relies on posttranscriptional regulatory mechanisms and suggest that planarians are an ideal model for this understudied aspect of stem cell biology.

  1. Knockdown of nucleophosmin by RNA interference reverses multidrug resistance in resistant leukemic HL-60 cells.

    PubMed

    Lin, Minhui; Hu, Jianda; Liu, Tingbo; Li, Jing; Chen, Buyuan; Chen, Xinji

    2013-09-01

    Nucleophosmin, a multifunctional nucleolar phosphoprotein, is involved in many cellular activities. However, the role of NPM in drug-resistance of leukemia has not yet been explored. We designed and selected one shRNA targeting on NPM gene transduction into HL-60 and HL-60/ADR cell lines (an adriamycin resistant cell line) by lentivirus. Cell proliferation, apoptosis and differentiation were assessed. The expressions of the related genes and proteins were detected by real-time quantitative RT-PCR and Western blotting. The results showed obvious down-regulation of NPM mRNA and protein levels after NPM RNAi. NPM-targeted RNAi also resulted in many cellular changes, such as, suppressing cell proliferation and inducing cell differentiation. Down-regulation of NPM gene could arrest the cell cycle progression, an increase in the proportion of G0/G1 phase in knockdown groups. NPM gene silencing could also induce pro-apoptotic genes and proteins expression, and inhibit anti-apoptotic genes/proteins expression. Furthermore, IC50 of two chemotherapeutic agents (adriamycin and ADR; daunorubicin and DNR) to HL-60 and HL-60/ADR cells decreased, especially more remarkable on HL-60/ADR cells. IC50 of ADR on HL-60/ADR cells was reduced from 12.544 ± 0.851 μmol/L (before NPM RNAi) to 6.331 ± 0.522 μmol/L (after NPM RNAi), IC50 of DNR was reduced from 2.152 ± 0.143 μmol/L (before NPM RNAi) to 1.116 ± 0.093 μmol/L (after NPM RNAi). The relative reversal rate of HL-60/ADR cells on ADR was 50.2%, and on DNR was 48.9%. In conclusion, our results demonstrated that shRNA expression vectors could effectively reduce NPM expression and restore the drug sensitivity of resistant leukemic cells to conventional chemotherapeutic agents.

  2. A Loss of Function Analysis of Host Factors Influencing Vaccinia virus Replication by RNA Interference

    PubMed Central

    Gonzalez, Orland; Haga, Ismar R.; Pechenick Jowers, Tali; Reynolds, Danielle K.; Wildenhain, Jan; Tekotte, Hille; Auer, Manfred; Tyers, Mike; Ghazal, Peter; Zimmer, Ralf; Haas, Jürgen

    2014-01-01

    Vaccinia virus (VACV) is a large, cytoplasmic, double-stranded DNA virus that requires complex interactions with host proteins in order to replicate. To explore these interactions a functional high throughput small interfering RNA (siRNA) screen targeting 6719 druggable cellular genes was undertaken to identify host factors (HF) influencing the replication and spread of an eGFP-tagged VACV. The experimental design incorporated a low multiplicity of infection, thereby enhancing detection of cellular proteins involved in cell-to-cell spread of VACV. The screen revealed 153 pro- and 149 anti-viral HFs that strongly influenced VACV replication. These HFs were investigated further by comparisons with transcriptional profiling data sets and HFs identified in RNAi screens of other viruses. In addition, functional and pathway analysis of the entire screen was carried out to highlight cellular mechanisms involved in VACV replication. This revealed, as anticipated, that many pro-viral HFs are involved in translation of mRNA and, unexpectedly, suggested that a range of proteins involved in cellular transcriptional processes and several DNA repair pathways possess anti-viral activity. Multiple components of the AMPK complex were found to act as pro-viral HFs, while several septins, a group of highly conserved GTP binding proteins with a role in sequestering intracellular bacteria, were identified as strong anti-viral VACV HFs. This screen has identified novel and previously unexplored roles for cellular factors in poxvirus replication. This advancement in our understanding of the VACV life cycle provides a reliable knowledge base for the improvement of poxvirus-based vaccine vectors and development of anti-viral theraputics. PMID:24901222

  3. Sophoraflavenone G Restricts Dengue and Zika Virus Infection via RNA Polymerase Interference.

    PubMed

    Sze, Alexandre; Olagnier, David; Hadj, Samar Bel; Han, Xiaoying; Tian, Xiao Hong; Xu, Hong-Tao; Yang, Long; Shi, Qingwen; Wang, Penghua; Wainberg, Mark A; Wu, Jian Hui; Lin, Rongtuan

    2017-10-03

    Flaviviruses including Zika, Dengue and Hepatitis C virus cause debilitating diseases in humans, and the former are emerging as global health concerns with no antiviral treatments. We investigated Sophora Flavecens, used in Chinese medicine, as a source for antiviral compounds. We isolated Sophoraflavenone G and found that it inhibited Hepatitis C replication, but not Sendai or Vesicular Stomatitis Virus. Pre- and post-infection treatments demonstrated anti-flaviviral activity against Dengue and Zika virus, via viral RNA polymerase inhibition. These data suggest that Sophoraflavenone G represents a promising candidate regarding anti-Flaviviridae research.

  4. RNA interference mediated JAM-A gene silencing promotes human epidermal stem cell proliferation.

    PubMed

    Zhou, Tong; Wu, Minjuan; Guo, Xiaocan; Liu, Houqi

    2015-04-01

    The objective of the study was to explore the influence of junctional adhesion molecule A (JAM-A) gene decoration on proliferation and differentiation of human epidermal stem cells (hEpSCs). JAM-A gene and JAM-A interference gene lentivirus eukaryotic expression vectors were established. The recombinant lentivirus was introduced into hEpSCs to observe and detect viral transfection by fluorescence microscopy and Western blot, respectively. After confirmation of successful introduction of the target gene, cell growth curves were mapped out by cytometry to detect cell proliferation in different groups. The expression of hEpSCs labeled molecules was detected by immunofluorescence, and cell safety was detected by teratoma test in all groups. (1) Fluorescence microscopy showed that in the JAM-A over-expression (JAM-A(ov) EpSCs) group, the green fluorescence was mainly distributed in the cell membrane; in the JAM-A interference (JAM-A(kd) EpSCs) group and blank vector (GFP EpSCs) group, all cell bodies were luminous. Western blot showed that JAM-A protein was up-regulated in JAM-A(ov) EpSCs and down-regulated in JAM-A(kd) EpSCs. (2) Growth curves showed that hEpSCs entered the quick-growing phase 4 days after inoculation and reached the platform phase at day 7. JAM-A(ov) EpSCs proliferated more slowly than GFP EpSCs, while JAM-A(kd) EpSCs proliferated significantly faster than GFP EpSCs. (3) Immunofluorescence showed that the expression of transient amplification epidermal marker keratin 14, hEpSCs marker keratin I9 and β-integrin was down-regulated in JAM-A(kd) EpSCs group as compared to that in the GFP EpSCs group, and the expression of epidermal terminal differentiation marker K10 was negative in the JAM-A(kd) EpSCs group. There was no significant difference in the expression of specific molecules between JAM-A(ov) EpSCs and hEpSCs. (4) The result of teratoma test was negative in all groups. The proliferative ability of hEpSCs was increased markedly after down

  5. A Re-Examination of Global Suppression of RNA Interference by HIV-1

    PubMed Central

    Sanghvi, Viraj R.; Steel, Laura F.

    2011-01-01

    The nature of the interaction between replicating HIV-1 and the cellular RNAi pathway has been controversial, but it is clear that it can be complex and multifaceted. It has been proposed that the interaction is bi-directional, whereby cellular silencing pathways can restrict HIV-1 replication, and in turn, HIV-1 can suppress silencing pathways. Overall suppression of RNAi has been suggested to occur via direct binding and inhibition of Dicer by the HIV-1 Tat protein or through sequestration of TRBP, a Dicer co-factor, by the structured TAR element of HIV-1 transcripts. The role of Tat as an inhibitor of Dicer has been questioned and our results support and extend the conclusion that Tat does not inhibit RNAi that is mediated by either exogenous or endogenous miRNAs. Similarly, we find no suppression of silencing pathways in cells with replicating virus, suggesting that viral products such as the TAR RNA elements also do not reduce the efficacy of cellular RNA silencing. However, knockdown of Dicer does allow increased viral replication and this occurs at a post-transcriptional level. These results support the idea that although individual miRNAs can act to restrict HIV-1 replication, the virus does not counter these effects through a global suppression of RNAi synthesis or processing. PMID:21386885

  6. Transcriptional interference by antisense RNA is required for circadian clock function

    PubMed Central

    Xue, Zhihong; Ye, Qiaohong; Anson, Simon R; Yang, Jichen; Xiao, Guanghua; Kowbel, David; Glass, N. Louise; Crosthwaite, Susan K.; Liu, Yi

    2014-01-01

    Eukaryotic circadian oscillators consist of negative feedback loops that generate endogenous rhythmicities1. Natural antisense RNAs are found in a wide range of eukaryotic organisms2-5. Nevertheless, the physiological importance and mode of action of most antisense RNAs is not clear6-9. frequency (frq) encodes a component of the Neurospora core circadian negative feedback loop which was thought to generate sustained rhythmicity10. Transcription of qrf, the long non-coding frq antisense RNA, is light induced, and its level oscillates in antiphase to frq sense RNA3. Here we show that qrf transcription is regulated by both light-dependent and -independent mechanisms. Light-dependent qrf transcription represses frq expression and regulates clock resetting. qrf expression in the dark, on the other hand, is required for circadian rhythmicity. frq transcription also inhibits qrf expression and surprisingly, drives the antiphasic rhythm of qrf transcripts. The mutual inhibition of frq and qrf transcription thus forms a double negative feedback loop that is interlocked with the core feedback loop. Genetic and mathematical modeling analyses indicate that such an arrangement is required for robust and sustained circadian rhythmicity. Moreover, our results suggest that antisense transcription inhibits sense expression by mediating chromatin modifications and premature transcription termination. Together, our results established antisense transcription as an essential feature in a circadian system and shed light on the importance and mechanism of antisense action. PMID:25132551

  7. RNA interference of three up-regulated transcripts associated with insecticide resistance in an imidacloprid resistant population of Leptinotarsa decemlineata.

    PubMed

    Clements, Justin; Schoville, Sean; Peterson, Nathan; Huseth, Anders S; Lan, Que; Groves, Russell L

    2017-01-01

    The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a major agricultural pest of potatoes in the Central Sands production region of Wisconsin. Previous studies have shown that populations of L. decemlineata have become resistant to many classes of insecticides, including the neonicotinoid insecticide, imidacloprid. Furthermore, L. decemlineata has multiple mechanisms of resistance to deal with a pesticide insult, including enhanced metabolic detoxification by cytochrome p450s and glutathione S-transferases. With recent advances in the transcriptomic analysis of imidacloprid susceptible and resistant L. decemlineata populations, it is possible to investigate the role of candidate genes involved in imidacloprid resistance. A recently annotated transcriptome analysis of L. decemlineata was obtained from select populations of L. decemlineata collected in the Central Sands potato production region, which revealed a subset of mRNA transcripts constitutively up-regulated in resistant populations. We hypothesize that a portion of the up-regulated transcripts encoding for genes within the resistant populations also encode for pesticide resistance and can be suppressed to re-establish a susceptible phenotype. In this study, a discrete set of three up-regulated targets were selected for RNA interference experiments using a resistant L. decemlineata population. Following the successful suppression of transcripts encoding for a cytochrome p450, a cuticular protein, and a glutathione synthetase protein in a select L. decemlineata population, we observed reductions in measured resistance to imidacloprid that strongly suggest these genes control essential steps in imidacloprid metabolism in these field populations.

  8. RNA Interference of Effector Gene Mc16D10L Confers Resistance Against Meloidogyne chitwoodi in Arabidopsis and Potato.

    PubMed

    Dinh, Phuong T Y; Brown, Charles R; Elling, Axel A

    2014-10-01

    Meloidogyne chitwoodi, a quarantine pathogen, is a significant problem in potato-producing areas worldwide. In spite of considerable genetic diversity in wild potato species, no commercial potato cultivars with resistance to M. chitwoodi are available. Nematode effector genes are essential for the molecular interactions between root-knot nematodes and their hosts. Stable transgenic lines of Arabidopsis and potato (Solanum tuberosum) with resistance against M. chitwoodi were developed. RNA interference (RNAi) construct pART27(16D10i-2) was introduced into Arabidopsis thaliana and potato to express double-stranded RNA complementary to the putative M. chitwoodi effector gene Mc16D10L. Plant-mediated RNAi led to a significant level of resistance against M. chitwoodi in Arabidopsis and potato. In transgenic Arabidopsis lines, the number of M. chitwoodi egg masses and eggs was reduced by up to 57 and 67% compared with empty vector controls, respectively. Similarly, in stable transgenic lines of potato, the number of M. chitwoodi egg masses and eggs was reduced by up to 71 and 63% compared with empty vector controls, respectively. The relative transcript level of Mc16D10L was reduced by up to 76% in M. chitwoodi eggs and infective second-stage juveniles that developed on transgenic pART27(16D10i-2) potato, suggesting that the RNAi effect is systemic and heritable in M. chitwoodi.

  9. Use of Recombinant Tobacco Mosaic Virus To Achieve RNA Interference in Plants against the Citrus Mealybug, Planococcus citri (Hemiptera: Pseudococcidae)

    PubMed Central

    Khan, Arif Muhammad; Ashfaq, Muhammad; Kiss, Zsofia; Khan, Azhar Abbas; Mansoor, Shahid; Falk, Bryce W.

    2013-01-01

    The citrus mealybug, Planococcus citri, is an important plant pest with a very broad plant host range. P. citri is a phloem feeder and loss of plant vigor and stunting are characteristic symptoms induced on a range of host plants, but P. citri also reduces fruit quality and causes fruit drop leading to significant yield reductions. Better strategies for managing this pest are greatly needed. RNA interference (RNAi) is an emerging tool for functional genomics studies and is being investigated as a practical tool for highly targeted insect control. Here we investigated whether RNAi effects can be induced in P. citri and whether candidate mRNAs could be identified as possible targets for RNAi-based P. citri control. RNAi effects were induced in P. citri, as demonstrated by specific target reductions of P. citri actin, chitin synthase 1 and V-ATPase mRNAs after injection of the corresponding specific double-stranded RNA inducers. We also used recombinant Tobacco mosaic virus (TMV) to express these RNAi effectors in Nicotiana benthamiana plants. We found that P. citri showed lower fecundity and pronounced death of crawlers after feeding on recombinant TMV-infected plants. Taken together, our data show that actin, chitin synthase 1 and V-ATPase mRNAs are potential targets for RNAi against P. citri, and that recombinant TMV is an effective tool for evaluating candidate RNAi effectors in plants. PMID:24040013

  10. Use of recombinant tobacco mosaic virus to achieve RNA interference in plants against the citrus mealybug, Planococcus citri (Hemiptera: Pseudococcidae).

    PubMed

    Khan, Arif Muhammad; Ashfaq, Muhammad; Kiss, Zsofia; Khan, Azhar Abbas; Mansoor, Shahid; Falk, Bryce W

    2013-01-01

    The citrus mealybug, Planococcus citri, is an important plant pest with a very broad plant host range. P. citri is a phloem feeder and loss of plant vigor and stunting are characteristic symptoms induced on a range of host plants, but P. citri also reduces fruit quality and causes fruit drop leading to significant yield reductions. Better strategies for managing this pest are greatly needed. RNA interference (RNAi) is an emerging tool for functional genomics studies and is being investigated as a practical tool for highly targeted insect control. Here we investigated whether RNAi effects can be induced in P. citri and whether candidate mRNAs could be identified as possible targets for RNAi-based P. citri control. RNAi effects were induced in P. citri, as demonstrated by specific target reductions of P. citri actin, chitin synthase 1 and V-ATPase mRNAs after injection of the corresponding specific double-stranded RNA inducers. We also used recombinant Tobacco mosaic virus (TMV) to express these RNAi effectors in Nicotiana benthamiana plants. We found that P. citri showed lower fecundity and pronounced death of crawlers after feeding on recombinant TMV-infected plants. Taken together, our data show that actin, chitin synthase 1 and V-ATPase mRNAs are potential targets for RNAi against P. citri, and that recombinant TMV is an effective tool for evaluating candidate RNAi effectors in plants.

  11. Evaluation of metaphylactic RNA interference to prevent equine herpesvirus type 1 infection in experimental herpesvirus myeloencephalopathy in horses.

    PubMed

    Perkins, Gillian A; Van de Walle, Gerlinde R; Pusterla, Nicola; Erb, Hollis N; Osterrieder, Nikolaus

    2013-02-01

    To evaluate metaphylactic RNA interference to prevent equine herpesvirus type 1 (EHV-1) infection in experimental herpesvirus myeloencephalopathy in horses and to determine whether horses infected with a neuropathogenic strain of the virus that develop equine herpesvirus myeloencephalopathy (EHM) have differences in viremia. 13 seronegative horses. EHV-1 strain Ab4 was administered intranasally on day 0, and small interfering RNAs (siRNAs [EHV-1 specific siRNAs {n = 7} or an irrelevant siRNA {6}]) were administered intranasally 24 hours before and 12, 24, 36, and 48 hours after infection. Physical and neurologic examinations, nasal swab specimens, and blood samples were collected for virus isolation and quantitative PCR assay. Data from the study were combined with data from a previous study of 14 horses. No significant difference was detected in clinical variables, viremia, or detection of EHV-1 in nasal swab specimens of horses treated with the EHV-1 targeted siRNAs (sigB3-siOri2) versus controls. No significant differences in viremia were detected between horses that developed EHM and those that did not. Administration of siRNAs targeted against EHV-1 around the time of EHV-1 infection was not protective with this experimental design. Horses infected with the neuropathogenic EHV-1 strain Ab4 that developed EHM did not have a more pronounced viremia.

  12. Knockdown of genes in the Toll pathway reveals new lethal RNA interference targets for insect pest control.

    PubMed

    Bingsohn, L; Knorr, E; Billion, A; Narva, K E; Vilcinskas, A

    2017-02-01

    RNA interference (RNAi) is a promising alternative strategy for ecologically friendly pest management. However, the identification of RNAi candidate genes is challenging owing to the absence of laboratory strains and the seasonality of most pest species. Tribolium castaneum is a well-established model, with a strong and robust RNAi response, which can be used as a high-throughput screening platform to identify potential RNAi target genes. Recently, the cactus gene was identified as a sensitive RNAi target for pest control. To explore whether the spectrum of promising RNAi targets can be expanded beyond those found by random large-scale screening, to encompass others identified using targeted knowledge-based approaches, we constructed a Cactus interaction network. We tested nine genes in this network and found that the delivery of double-stranded RNA corresponding to fusilli and cactin showed lethal effects. The silencing of cactin resulted in 100% lethality at every developmental stage from the larva to the adult. The knockdown of pelle, Dorsal-related immunity factor and short gastrulation reduced or even prevented egg hatching in the next generation. The combination of such targets with lethal and parental RNAi effects can now be tested against different pest species in field studies.

  13. Vector-based RNA interference of cathepsin B1 in Schistosoma mansoni.

    PubMed

    Tchoubrieva, Elissaveta B; Ong, Poh C; Pike, Robert N; Brindley, Paul J; Kalinna, Bernd H

    2010-11-01

    In helminth parasites, proteolytic enzymes have been implicated in facilitating host invasion, moulting, feeding, and evasion of the host immune response. These key functions render them potential targets for anti-parasite chemotherapy and immunotherapy. Schistosomes feed on host blood and the digested haemoglobin is their major source of amino acids. Haemoglobin digestion is essential for parasite development, growth, and reproduction. We recently reported the use of pseudotyped Moloney murine leukaemia virus to accomplish transformation of Schistosoma mansoni. Here, we report the design of a viral vector expressing a dsRNA hairpin to silence expression of the schistosome cathepsin B1 (SmCB1) gene. We observed 80% reduction in transcript level 72 h after virus exposure and complete silencing of enzyme activity in transduced worms. This is the first report using this technology in any helminth parasite. It will facilitate the evaluation of potential drug targets and biochemical pathways for novel interventions in schistosomes.

  14. Centromeric heterochromatin assembly in fission yeast--balancing transcription, RNA interference and chromatin modification.

    PubMed

    Alper, Benjamin J; Lowe, Brandon R; Partridge, Janet F

    2012-07-01

    Distinct regions of the eukaryotic genome are packaged into different types of chromatin, with euchromatin representing gene rich, transcriptionally active regions and heterochromatin more condensed and gene poor. The assembly and maintenance of heterochromatin is important for many aspects of genome control, including silencing of gene transcription, suppression of recombination, and to ensure proper chromosome segregation. The precise mechanisms underlying heterochromatin establishment and maintenance are still unclear, but much progress has been made towards understanding this process during the last few years, particularly from studies performed in fission yeast. In this review, we hope to provide a conceptual model of centromeric heterochromatin in fission yeast that integrates our current understanding of the competing forces of transcription, replication, and RNA decay that influence its assembly and propagation.

  15. Effect of {beta}4 integrin knockdown by RNA interference in anaplastic thyroid carcinoma.

    PubMed

    Noh, Tae Woong; Soung, Young Hwa; Kim, Hong Im; Gil, Hyea Jin; Kim, Jeong Mo; Lee, Eun Jig; Chung, Jun

    2010-11-01

    Integrin α6β4 is a known tumor antigen; however, its function in different subtypes of thyroid cancer is not known. This study reports that α6β4 expression is selectively up-regulated in anaplastic thyroid cancer (ATC) cells, the most malignant subtype of human thyroid cancer. To assess the contribution of α6β4 in ATC progression, cell proliferation, motility and soft agar assay were performed in vitro and a xenograft tumor growth assay was performed in vivo. Knockdown of β4 integrin subunit expression by shRNA in ATC cells reduced the proliferation, migration, and anchorage-independent growth of ATC cells in vitro and xenograft tumor growth in vivo. These data suggest that integrin α6β4 contributes to the development of aggressive forms of thyroid cancer with poor prognostic potential, such as ATC, and thus may be a novel therapeutic target for the treatment for this subtype of thyroid cancer.

  16. Loss of wobble uridine modification in tRNA anticodons interferes with TOR pathway signaling.

    PubMed

    Scheidt, Viktor; Jüdes, André; Bär, Christian; Klassen, Roland; Schaffrath, Raffael

    2014-11-29

    Previous work in yeast has suggested that modification of tRNAs, in particular uridine bases in the anticodon wobble position (U34), is linked to TOR (target of rapamycin) signaling. Hence, U34 modification mutants were found to be hypersensitive to TOR inhibition by rapamycin. To study whether this involves inappropriate TOR signaling, we examined interaction between mutations in TOR pathway genes (tip41∆, sap190∆, ppm1∆, rrd1∆) and U34 modification defects (elp3∆, kti12∆, urm1∆, ncs2∆) and found the rapamycin hyp