Sample records for light-chain kinase indication

  1. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chainmore » kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially

  2. Involvement of myosin light-chain kinase in endothelial cell retraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysolmerski, R.B.; Lagunoff, D.

    Permeabilized bovine pulmonary artery endothelial cell monolayers were used to investigate the mechanism of endothelial cell retraction. Postconfluent endothelial cells permeabilized with saponin retracted upon exposure to ATP and Ca{sup 2+}. Retraction was accompanied by thiophosphorylation of 19,000-Da myosin light chains when adenosine 5'-(gamma-({sup 35}S)thio)triphosphate was included in the medium. Both retraction and thiophosphorylation of myosin light chains exhibited a graded quantitative dependence on Ca{sup 2+}. When permeabilized monolayers were extracted in buffer D containing 100 mM KCl and 30 mM MgCl2 for 30 min, the cells failed to retract upon exposure to ATP and Ca{sup 2+}, and no thiophosphorylationmore » of myosin light chains occurred. The ability both to retract and to thiophosphorylate myosin light chains was restored by the addition to the permeabilized, extracted cells of myosin light-chain kinase and calmodulin together but not by either alone. These studies indicate that endothelial cell retraction, as does smooth muscle contraction, depends on myosin light-chain kinase phosphorylation of myosin light chains.« less

  3. Myosin Light Chain Kinase Is Necessary for Tonic Airway Smooth Muscle Contraction*

    PubMed Central

    Zhang, Wen-Cheng; Peng, Ya-Jing; Zhang, Gen-Sheng; He, Wei-Qi; Qiao, Yan-Ning; Dong, Ying-Ying; Gao, Yun-Qian; Chen, Chen; Zhang, Cheng-Hai; Li, Wen; Shen, Hua-Hao; Ning, Wen; Kamm, Kristine E.; Stull, James T.; Gao, Xiang; Zhu, Min-Sheng

    2010-01-01

    Different interacting signaling modules involving Ca2+/calmodulin-dependent myosin light chain kinase, Ca2+-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K+-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance. PMID:20018858

  4. Minimum requirements for inhibition of smooth-muscle myosin light-chain kinase by synthetic peptides.

    PubMed Central

    Hunt, J T; Floyd, D M; Lee, V G; Little, D K; Moreland, S

    1989-01-01

    Although the amino acid residues that are important for peptide substrates of myosin light-chain kinase have been reported, those that are important for peptide inhibitors of this enzyme have not previously been investigated. Synthetic peptides based on the sequence Lys11-Lys12-Arg13-Ala-Ala-Arg16-Ala-Thr-Ser19 -Asn-Val21-Phe22-Ala of the chicken gizzard myosin light chain were tested as inhibitors of pig carotid-artery myosin light-chain kinase. The basic amino acid residues of the known myosin light-chain kinase inhibitor Lys-Lys-Arg-Ala-Ala-Arg-Ala-Thr-Ser-NH2 (IC50 = 14 microM) [Pearson, Misconi & Kemp (1986) J. Biol. Chem. 261, 25-27] were shown to be the important residues that contribute to inhibitor potency, as evidence by the finding that the hexapeptide Lys-Lys-Arg-Ala-Ala-Arg-NH2 had an IC50 value of 22 microM. This indicates that binding of the phosphorylatable serine residue to myosin light-chain kinase, which is of obvious importance for a substrate, does not enhance the potency of an inhibitor. With the aim of preparing more potent inhibitors, peptides Lys-Lys-Arg-Ala-Ala-Arg-Ala-Ala-Xaa-NH2 were prepared with a variety of amino acids substituted for the phosphorylatable serine residue. None of these peptides was a more potent inhibitor than the serine peptide. PMID:2920029

  5. Myosin Light Chain Kinase and the Role of Myosin Light Chain Phosphorylation in Skeletal Muscle

    PubMed Central

    Stull, James T.; Kamm, Kristine E.; Vandenboom, Rene

    2011-01-01

    Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine-threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometic binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue. PMID:21284933

  6. Increasing evidence of mechanical force as a functional regulator in smooth muscle myosin light chain kinase

    PubMed Central

    Baumann, Fabian; Bauer, Magnus Sebastian; Rees, Martin; Alexandrovich, Alexander; Gautel, Mathias; Pippig, Diana Angela; Gaub, Hermann Eduard

    2017-01-01

    Mechanosensitive proteins are key players in cytoskeletal remodeling, muscle contraction, cell migration and differentiation processes. Smooth muscle myosin light chain kinase (smMLCK) is a member of a diverse group of serine/threonine kinases that feature cytoskeletal association. Its catalytic activity is triggered by a conformational change upon Ca2+/calmodulin (Ca2+/CaM) binding. Due to its significant homology with the force-activated titin kinase, smMLCK is suspected to be also regulatable by mechanical stress. In this study, a CaM-independent activation mechanism for smMLCK by mechanical release of the inhibitory elements is investigated via high throughput AFM single-molecule force spectroscopy. The characteristic pattern of transitions between different smMLCK states and their variations in the presence of different substrates and ligands are presented. Interaction between kinase domain and regulatory light chain (RLC) substrate is identified in the absence of CaM, indicating restored substrate-binding capability due to mechanically induced removal of the auto-inhibitory regulatory region. DOI: http://dx.doi.org/10.7554/eLife.26473.001 PMID:28696205

  7. Abl Tyrosine Kinase Phosphorylates Nonmuscle Myosin Light Chain Kinase to Regulate Endothelial Barrier Function

    PubMed Central

    Dudek, Steven M.; Chiang, Eddie T.; Camp, Sara M.; Guo, Yurong; Zhao, Jing; Brown, Mary E.; Singleton, Patrick A.; Wang, Lichun; Desai, Anjali; Arce, Fernando T.; Lal, Ratnesh; Van Eyk, Jennifer E.; Imam, Syed Z.

    2010-01-01

    Nonmuscle myosin light chain kinase (nmMLCK), a multi-functional cytoskeletal protein critical to vascular homeostasis, is highly regulated by tyrosine phosphorylation. We identified multiple novel c-Abl–mediated nmMLCK phosphorylation sites by mass spectroscopy analysis (including Y231, Y464, Y556, Y846) and examined their influence on nmMLCK function and human lung endothelial cell (EC) barrier regulation. Tyrosine phosphorylation of nmMLCK increased kinase activity, reversed nmMLCK-mediated inhibition of Arp2/3-mediated actin polymerization, and enhanced binding to the critical actin-binding phosphotyrosine protein, cortactin. EC challenge with sphingosine 1-phosphate (S1P), a potent barrier-enhancing agonist, resulted in c-Abl and phosphorylated nmMLCK recruitment into caveolin-enriched microdomains, rapid increases in Abl kinase activity, and spatial targeting of c-Abl to barrier-promoting cortical actin structures. Conversely, reduced c-Abl expression in EC (siRNA) markedly attenuated S1P-mediated cortical actin formation, reduced the EC modulus of elasticity (assessed by atomic force microscopy), reduced nmMLCK and cortactin tyrosine phosphorylation, and attenuated S1P-mediated barrier enhancement. These studies indicate an essential role for Abl kinase in vascular barrier regulation via posttranslational modification of nmMLCK and strongly support c-Abl-cortactin-nmMLCK interaction as a novel determinant of cortical actin-based cytoskeletal rearrangement critical to S1P-mediated EC barrier enhancement. PMID:20861316

  8. Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons.

    PubMed

    Li, Lin; Wu, Xiaomei; Yue, Hai-Yuan; Zhu, Yong-Chuan; Xu, Jianhua

    2016-07-01

    At nerve terminals, endocytosis efficiently recycles vesicle membrane to maintain synaptic transmission under different levels of neuronal activity. Ca(2+) and its downstream signal pathways are critical for the activity-dependent regulation of endocytosis. An activity- and Ca(2+) -dependent kinase, myosin light chain kinase (MLCK) has been reported to regulate vesicle mobilization, vesicle cycling, and motility in different synapses, but whether it has a general contribution to regulation of endocytosis at nerve terminals remains unknown. We investigated this issue at rat hippocampal boutons by imaging vesicle endocytosis as the real-time retrieval of vesicular synaptophysin tagged with a pH-sensitive green fluorescence protein. We found that endocytosis induced by 200 action potentials (5-40 Hz) was slowed by acute inhibition of MLCK and down-regulation of MLCK with RNA interference, while the total amount of vesicle exocytosis and somatic Ca(2+) channel current did not change with MLCK down-regulation. Acute inhibition of myosin II similarly impaired endocytosis. Furthermore, down-regulation of MLCK prevented depolarization-induced phosphorylation of myosin light chain, an effect shared by blockers of Ca(2+) channels and calmodulin. These results suggest that MLCK facilitates vesicle endocytosis through activity-dependent phosphorylation of myosin downstream of Ca(2+) /calmodulin, probably as a widely existing mechanism among synapses. Our study suggests that MLCK is an important activity-dependent regulator of vesicle recycling in hippocampal neurons, which are critical for learning and memory. The kinetics of vesicle membrane endocytosis at nerve terminals has long been known to depend on activity and Ca(2+) . This study provides evidence suggesting that myosin light chain kinase increases endocytosis efficiency at hippocampal neurons by mediating Ca(2+) /calmodulin-dependent phosphorylation of myosin. The authors propose that this signal cascade may serve as

  9. Inhibiting Myosin Light Chain Kinase Induces Apoptosis In Vitro and In Vivo

    PubMed Central

    Fazal, Fabeha; Gu, Lianzhi; Ihnatovych, Ivanna; Han, YooJeong; Hu, WenYang; Antic, Nenad; Carreira, Fernando; Blomquist, James F.; Hope, Thomas J.; Ucker, David S.; de Lanerolle, Primal

    2005-01-01

    Previous short-term studies have correlated an increase in the phosphorylation of the 20-kDa light chain of myosin II (MLC20) with blebbing in apoptotic cells. We have found that this increase in MLC20 phosphorylation is rapidly followed by MLC20 dephosphorylation when cells are stimulated with various apoptotic agents. MLC20 dephosphorylation is not a consequence of apoptosis because MLC20 dephosphorylation precedes caspase activation when cells are stimulated with a proapoptotic agent or when myosin light chain kinase (MLCK) is inhibited pharmacologically or by microinjecting an inhibitory antibody to MLCK. Moreover, blocking caspase activation increased cell survival when MLCK is inhibited or when cells are treated with tumor necrosis factor alpha. Depolymerizing actin filaments or detaching cells, processes that destabilize the cytoskeleton, or inhibiting myosin ATPase activity also resulted in MLC20 dephosphorylation and cell death. In vivo experiments showed that inhibiting MLCK increased the number of apoptotic cells and retarded the growth of mammary cancer cells in mice. Thus, MLC20 dephosphorylation occurs during physiological cell death and prolonged MLC20 dephosphorylation can trigger apoptosis. PMID:15988034

  10. A role for long chain myosin light chain kinase (MLCK-210) in microvascular hyperpermeability during severe burns.

    PubMed

    Reynoso, Rashell; Perrin, Rachel M; Breslin, Jerome W; Daines, Dayle A; Watson, Katherine D; Watterson, D Martin; Wu, Mack H; Yuan, Sarah

    2007-11-01

    Microvascular leakage has been implicated in the pathogenesis of multiple organ dysfunction during trauma. Previous studies suggest the involvement of myosin light chain (MLC) phosphorylation-triggered endothelial contraction in the development of microvascular hyperpermeability. Myosin light chain kinase (MLCK) plays a key role in the control of MLC-phosphorylation status; thus, it is thought to modulate barrier function through its regulation of intracellular contractile machinery. The aim of this study was to further investigate the endothelial mechanism of MLC-dependent barrier injury in burns, focusing on the long isoform of MLCK (MLCK-210) that has recently been identified as the predominant isoform expressed in vascular endothelial cells. An MLCK-210 knockout mouse model was subjected to third-degree scald burn covering 25% total body surface area. The mesenteric microcirculation was observed using intravital microscopy, and the microvascular permeability was assessed by measuring the transvenular flux of fluorescein isothiocyanate-albumin. In a separate experiment, in vivo mesenteric hydraulic conductivity (Lp) was measured using the modified Landis technique. The injury caused a profound microvascular leakage, as indicated by a 2-fold increase in albumin flux and 4-fold increase in Lp at the early stages, which was associated with a high mortality within the 24-h period. Compared with wild-type control, the MLCK-210-deficient mice displayed a significantly improved survival with a greatly attenuated microvascular hyperpermeability response to albumin and fluid. These results provide direct evidence for a role of MLCK-210 in mediating burn-induced microvascular barrier injury and validate MLCK-210 as a potential therapeutic target in the treatment of burn edema.

  11. Distinct Temporal-Spatial Roles for Rho Kinase and Myosin Light Chain Kinase in Epithelial Purse-String Wound Closure

    PubMed Central

    RUSSO, JOHN M.; FLORIAN, PETER; SHEN, LE; GRAHAM, W. VALLEN; TRETIAKOVA, MARIA S.; GITTER, ALFRED H.; MRSNY, RANDALL J.; TURNER, JERROLD R.

    2005-01-01

    Background & Aims Small epithelial wounds heal by purse-string contraction of an actomyosin ring that is regulated by myosin light chain (MLC) kinase (MLCK) and rho kinase (ROCK). These studies aimed to define the roles of these kinases in purse-string wound closure. Methods Oligocellular and single-cell wounds were created in intestinal epithelial monolayers. Fluorescence imaging and electrophysiologic data were collected during wound closure. Human biopsies were studied immunohistochemically. Results Live-cell imaging of enhanced green fluorescent protein-β-actin defined rapid actin ring assembly within 2 minutes after wounding. This progressed to a circumferential ring within 8 minutes that subsequently contracted and closed the wound. We therefore divided this process into 2 phases: ring assembly and wound contraction. Activated rho and ROCK localized to the wound edge during ring assembly. Consistent with a primary role in the assembly phase, ROCK inhibition prevented actin ring assembly and wound closure. ROCK inhibition after ring assembly was complete had no effect. Recruitment and activation of MLCK occurred after ring assembly was complete and coincided with ring contraction. MLCK inhibition slowed and then stopped contraction but did not prevent ring assembly. MLCK inhibition also delayed barrier function recovery. Studies of human colonic biopsy specimens suggest that purse-string wound closure also occurs in vivo, because MLC phosphorylation was enhanced surrounding oligocellular wounds. Conclusions These results suggest complementary roles for these kinases in purse-string closure of experimental and in vivo oligocellular epithelial wounds; rho and ROCK are critical for actin ring assembly, while the activity of MLCK drives contraction. PMID:15825080

  12. Myosin light chain kinase controls voltage-dependent calcium channels in vascular smooth muscle.

    PubMed

    Martinsen, A; Schakman, O; Yerna, X; Dessy, C; Morel, N

    2014-07-01

    The Ca(2+)-dependent kinase myosin light chain kinase (MLCK) is the activator of smooth muscle contraction. In addition, it has been reported to be involved in Ca(2+) channel regulation in cultured cells, and we previously showed that the MLCK inhibitor ML-7 decreases arginine vasopressin (AVP)-induced Ca(2+) influx in rat aorta. This study was designed to investigate whether MLCK is involved in Ca(2+) regulation in resistance artery smooth muscle cell, which plays a major role in the control of blood pressure. As ML compounds were shown to have off-target effects, MLCK was downregulated by transfection with a small interfering RNA targeting MLCK (MLCK-siRNA) in rat small resistance mesenteric artery (RMA) and in the rat embryonic aortic cell line A7r5. Noradrenaline-induced contraction and Ca(2+) signal were significantly depressed in MLCK-siRNA compared to scramble-siRNA-transfected RMA. Contraction and Ca(2+) signal induced by high KCl and voltage-activated Ca(2+) current were also significantly decreased in MLCK-siRNA-transfected RMA, suggesting that MLCK depletion modifies voltage-operated Ca(2+) channels. KCl- and AVP-induced Ca(2+) signals and voltage-activated Ca(2+) current were decreased in MLCK-depleted A7r5 cells. Eventually, real-time quantitative PCR analysis indicated that in A7r5, MLCK controlled mRNA expression of CaV1.2 (L-type) and CaV3.1 (T-type) voltage-dependent Ca(2+) channels. Our results suggest that MLCK controls the transcription of voltage-dependent Ca(2+) channels in vascular smooth muscle cells.

  13. A global, myosin light chain kinase-dependent increase in myosin II contractility accompanies the metaphase-anaphase transition in sea urchin eggs.

    PubMed

    Lucero, Amy; Stack, Christianna; Bresnick, Anne R; Shuster, Charles B

    2006-09-01

    Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase-anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase-anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus.

  14. A Global, Myosin Light Chain Kinase-dependent Increase in Myosin II Contractility Accompanies the Metaphase–Anaphase Transition in Sea Urchin Eggs

    PubMed Central

    Lucero, Amy; Stack, Christianna; Bresnick, Anne R.

    2006-01-01

    Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase–anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase–anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus. PMID:16837551

  15. Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling

    PubMed Central

    Barfod, Elisabeth T.; Moore, Ann L.; Van de Graaf, Benjamin G.; Lidofsky, Steven D.

    2011-01-01

     The expansion of the plasma membrane, which occurs during osmotic swelling of epithelia, must be retrieved for volume recovery, but the mechanisms are unknown. Here we have identified myosin light chain kinase (MLCK) as a regulator of membrane internalization in response to osmotic swelling in a model liver cell line. On hypotonic exposure, we found that there was time-dependent phosphorylation of the MLCK substrate myosin II regulatory light chain. At the sides of the cell, MLCK and myosin II localized to swelling-induced membrane blebs with actin just before retraction, and MLCK inhibition led to persistent blebbing and attenuated cell volume recovery. At the base of the cell, MLCK also localized to dynamic actin-coated rings and patches upon swelling, which were associated with uptake of the membrane marker FM4-64X, consistent with sites of membrane internalization. Hypotonic exposure evoked increased biochemical association of the cell volume regulator Src with MLCK and with the endocytosis regulators cortactin and dynamin, which colocalized within these structures. Inhibition of either Src or MLCK led to altered patch and ring lifetimes, consistent with the concept that Src and MLCK form a swelling-induced protein complex that regulates volume recovery through membrane turnover and compensatory endocytosis under osmotic stress. PMID:21209319

  16. A novel mechanism for the Ca(2+)-sensitizing effect of protein kinase C on vascular smooth muscle: inhibition of myosin light chain phosphatase

    PubMed Central

    1994-01-01

    Mechanisms of Ca2+ sensitization of both myosin light chain (MLC) phosphorylation and force development by protein kinase C (PKC) were studied in permeabilized tonic smooth muscle obtained from the rabbit femoral artery. For comparison, the Ca2+ sensitizing effect of guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S) was examined, which had been previously shown to inhibit MLC phosphatase in phasic vascular smooth muscle. We now report that PKC activators (phorbol esters, short chain synthetic diacylglycerols and a diacylglycerol kinase inhibitor) and GTP gamma S significantly increase both MLC phosphorylation and force development at constant [Ca2+]. Major phosphorylation site occurring in the presence of phorbol-12,13- dibutyrate (PDBu) or GTP gamma S at constant [Ca2+] is the same serine residue (Ser-19) as that phosphorylated by MLC kinase in response to increased Ca2+ concentrations. In an ATP- and Ca(2+)-free solution containing 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4- diazepine (ML-9), to avoid the kinase activity, both PDBu and GTP gamma S significantly decreased the rate of MLC dephosphorylation to half its control value. However, PDBu inhibited the relaxation rate more than did GTP gamma S. In the presence of microcystin-LR to inhibit the phosphatase activity, neither PDBu nor GTP gamma S affected MLC phosphorylation and force development. These results indicate that PKC, like activation of GTP binding protein, increases Ca2+ sensitivity of both MLC phosphorylation and force production through inhibition of MLC phosphatase. PMID:7807049

  17. Properties of Acetate Kinase Isozymes and a Branched-Chain Fatty Acid Kinase from a Spirochete

    PubMed Central

    Harwood, Caroline S.; Canale-Parola, Ercole

    1982-01-01

    Spirochete MA-2, which is anaerobic, ferments glucose, forming acetate as a major product. The spirochete also ferments (but does not utilize as growth substrates) small amounts of l-leucine, l-isoleucine, and l-valine, forming the branched-chain fatty acids isovalerate, 2-methylbutyrate, and isobutyrate, respectively, as end products. Energy generated through the fermentation of these amino acids is utilized to prolong cell survival under conditions of growth substrate starvation. A branched-chain fatty acid kinase and two acetate kinase isozymes were resolved from spirochete MA-2 cell extracts. Kinase activity was followed by measuring the formation of acyl phosphate from fatty acid and ATP. The branched-chain fatty acid kinase was active with isobutyrate, 2-methylbutyrate, isovalerate, butyrate, valerate, or propionate as a substrate but not with acetate as a substrate. The acetate kinase isozymes were active with acetate and propionate as substrates but not with longer-chain fatty acids as substrates. The acetate kinase isozymes and the branched-chain fatty acid kinase differed in nucleoside triphosphate and cation specificities. Each acetate kinase isozyme had an apparent molecular weight of approximately 125,000, whereas the branched-chain fatty acid kinase had a molecular weight of approximately 76,000. These results show that spirochete MA-2 synthesizes a branched-chain fatty acid kinase specific for leucine, isoleucine, and valine fermentation. It is likely that a phosphate branched-chain amino acids is also synthesized by spirochete MA-2. Thus, in spirochete MA-2, physiological mechanisms have evolved which serve specifically to generate maintenance energy from branched-chain amino acids. PMID:6288660

  18. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility

    NASA Technical Reports Server (NTRS)

    Morfini, Gerardo; Szebenyi, Gyorgyi; Elluru, Ravindhra; Ratner, Nancy; Brady, Scott T.

    2002-01-01

    Membrane-bounded organelles (MBOs) are delivered to different domains in neurons by fast axonal transport. The importance of kinesin for fast antero grade transport is well established, but mechanisms for regulating kinesin-based motility are largely unknown. In this report, we provide biochemical and in vivo evidence that kinesin light chains (KLCs) interact with and are in vivo substrates for glycogen synthase kinase 3 (GSK3). Active GSK3 inhibited anterograde, but not retrograde, transport in squid axoplasm and reduced the amount of kinesin bound to MBOs. Kinesin microtubule binding and microtubule-stimulated ATPase activities were unaffected by GSK3 phosphorylation of KLCs. Active GSK3 was also localized preferentially to regions known to be sites of membrane delivery. These data suggest that GSK3 can regulate fast anterograde axonal transport and targeting of cargos to specific subcellular domains in neurons.

  19. Triple-resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: Indication of a conformational change in the central helix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikura, Mitsuhiko; Kay, L.E.; Bax, A.

    Heteronuclear 3D and 4D NMR experiments have been used to obtain {sup 1}H, {sup 13}C, and {sup 15}N backbone chemical shift assignments in Ca{sup 2+}-loaded clamodulin complexed with a 26-residue synthetic peptide (M13) corresponding to the calmodulin-bionding domain (residues 577-602) of rabbit skeletal muscle muosin light-chain kinase. Comparison of the chemical shift values with those observed in peptide-free calmodulin shows that binding of M13 peptide induces substantial chemical shift changes that are not localized in one particular region of the protein. The largest changes are found in the first helix of the Ca{sup 2+}-binding site 1 (E11-E14), the N-terminal portionmore » of the central helix (M72-D78), and the second helix of the Ca{sup 2+}-binding site 4 (F141-M145). Analysis of backbone NOE connectivities indicates a change from {alpha}-helical to an extended conformation for residues 75-77 upon complexation with M13. Upon complexation with M13, a significant decrease in the amide exchange rate is observed for residues T110, L112, G113, and E114 at the end of the second helix of site 3.« less

  20. Myosin light chain kinase knockout improves gut barrier function and confers a survival advantage in polymicrobial sepsis.

    PubMed

    Lorentz, C Adam; Liang, Zhe; Meng, Mei; Chen, Ching-Wen; Yoseph, Benyam P; Breed, Elise R; Mittal, Rohit; Klingensmith, Nathan J; Farris, Alton B; Burd, Eileen M; Koval, Michael; Ford, Mandy L; Coopersmith, Craig M

    2017-06-07

    Sepsis-induced intestinal hyperpermeability is mediated by disruption of the epithelial tight junction, which is closely associated with the peri-junctional actin-myosin ring. Myosin light chain kinase (MLCK) phosphorylates the myosin regulatory light chain, resulting in increased permeability. The purpose of this study was to determine whether genetic deletion of MLCK would alter gut barrier function and survival from sepsis. MLCK -/- and wild type (WT) mice were subjected to cecal ligation and puncture and assayed for both survival and mechanistic studies. Survival was significantly increased in MLCK -/- mice (95% vs. 24%, p<0.0001). Intestinal permeability increased in septic WT mice compared to unmanipulated mice. In contrast, permeability in septic MLCK -/- mice was similar to that seen in unmanipulated animals. Improved gut barrier function in MLCK -/- mice was associated with increases in the tight junction mediators ZO-1 and claudin 15 without alterations in claudin 1, 2, 3, 4, 5, 7, 8, 13, occludin or JAM-A. Other components of intestinal integrity (apoptosis, proliferation and villus length) were unaffected by MLCK deletion as were local peritoneal inflammation and distant lung injury. Systemic IL-10 was decreased greater than 10-fold in MLCK -/- mice; however, survival was similar between septic MLCK -/- mice given exogenous IL-10 or vehicle. These data demonstrate that deletion of MLCK improves survival following sepsis, associated with normalization of intestinal permeability and selected tight junction proteins.

  1. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion.

    PubMed

    Scott, Kevin G-E; Meddings, Jonathon B; Kirk, David R; Lees-Miller, Susan P; Buret, André G

    2002-10-01

    Giardiasis causes malabsorptive diarrhea, and symptoms can be present in the absence of any significant morphologic injury to the intestinal mucosa. The effects of giardiasis on epithelial permeability in vivo remain unknown, and the role of T cells and myosin light chain kinase (MLCK) in altered intestinal barrier function is unclear. This study was conducted to determine whether Giardia spp. alters intestinal permeability in vivo, to assess whether these abnormalities are dependent on T cells, and to assess the role of MLCK in altered epithelial barrier function. Immunocompetent and isogenic athymic mice were inoculated with axenic Giardia muris trophozoites or sterile vehicle (control), then assessed for trophozoite colonization and gastrointestinal permeability. Mechanistic studies using nontransformed human duodenal epithelial monolayers (SCBN) determined the effects of Giardia on myosin light chain (MLC) phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, cytoskeletal F-actin, tight junctional zonula occludens-1 (ZO-1), and MLCK. Giardia infection caused a significant increase in small intestinal, but not gastric or colonic, permeability that correlated with trophozoite colonization in both immunocompetent and athymic mice. In vitro, Giardia increased permeability and phosphorylation of MLC and reorganized F-actin and ZO-1. These alterations were abolished with an MLCK inhibitor. Disruption of small intestinal barrier function is T cell independent, disappears on parasite clearance, and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1 in an MLCK-dependent fashion.

  2. Rho-associated kinase plays a role in rabbit urethral smooth muscle contraction, but not via enhanced myosin light chain phosphorylation.

    PubMed

    Walsh, Michael P; Thornbury, Keith; Cole, William C; Sergeant, Gerard; Hollywood, Mark; McHale, Noel

    2011-01-01

    The involvement of Rho-associated kinase (ROK) in activation of rabbit urethral smooth muscle contraction was investigated by examining the effects of two structurally distinct inhibitors of ROK, Y27632 and H1152, on the contractile response to electric field stimulation, membrane depolarization with KCl, and α1-adrenoceptor stimulation with phenylephrine. Both compounds inhibited contractions elicited by all three stimuli. The protein kinase C inhibitor GF109203X, on the other hand, had no effect. Urethral smooth muscle strips were analyzed for phosphorylation of three potential direct or indirect substrates of ROK: 1) myosin regulatory light chains (LC20) at S19, 2) the myosin-targeting subunit of myosin light chain phosphatase (MYPT1) at T697 and T855, and 3) cofilin at S3. The following results were obtained: 1) under resting tension, LC20 was phosphorylated to 0.65±0.02 mol Pi/mol LC20 (n=21) at S19; 2) LC20 phosphorylation did not change in response to KCl or phenylephrine; 3) ROK inhibition had no effect on LC20 phosphorylation in the absence or presence of contractile stimuli; 4) under resting conditions, MYPT1 was partially phosphorylated at T697 and T855 and cofilin at S3; 5) phosphorylation of MYPT1 and cofilin was unaffected by KCl or phenylephrine; and 6) KCl- and phenylephrine-induced contraction-relaxation cycles did not correlate with actin polymerization-depolymerization. We conclude that ROK plays an important role in urethral smooth muscle contraction, but not via inhibition of MLCP or polymerization of actin.

  3. Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury

    PubMed Central

    Chen, Chuanli; Wang, Pei; Su, Qin; Wang, Shiliang; Wang, Fengjun

    2012-01-01

    Background Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. Conclusions/Significance The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. PMID:22529961

  4. Interaction between glycosaminoglycans and immunoglobulin light chains.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, X.; Myatt, E.; Lykos, P.

    1997-01-01

    Amyloidosis is a pathological process in which normally soluble proteins polymerize to form insoluble fibrils (amyloid). Amyloid formation is found in a number of diseases, including Alzheimer's disease, adult-onset diabetes, and light-chain-associated amyloidosis. No pharmaceutical methods currently exist to prevent this process or to remove the fibrils from tissue. The search for treatment and prevention methods is hampered by a limited understanding of the biophysical basis of amyloid formation. Glycosaminoglycans (GAGs) are long, unbranched heteropolysaccharides composed of repeating disaccharide subunits and are known to associate with amyloid fibrils. The interaction of amyloid-associated free light chains with GAGs was tested bymore » both size-exclusion high-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis experiments. The results indicated that heparin 16 000 and chondroitin sulfate B and C precipitated both human intact light chains and recombinant light chain variable domains. Although all light chains interacted with heparin, the strongest interactions were obtained with proteins that had formed amyloid. Molecular modeling indicated the possibility of interaction between heparin and the conserved saddle like surface of the light chain dimer opposite the complementarity-determining segments that form part of the antigen-binding site of a functional antibody. This suggestion might offer a new path to block the aggregation of amyloid-associated light chain proteins, by design of antagonists based on properties of GAG binding. A hexasaccharide was modeled as the basis for a possible antagonist.« less

  5. Mitogen-activated protein kinase inhibitors suppress prostaglandin F(2alpha)-induced myosin-light chain phosphorylation and contraction in iris sphincter smooth muscle.

    PubMed

    Yousufzai, S Y; Gao, G; Abdel-Latif, A A

    2000-10-27

    The purpose of this study was to investigate the potential role of mitogen-activated protein (MAP) kinase in contraction by monitoring MAP kinase phosphorylation (activation) and contraction during agonist stimulation of cat iris sphincter smooth muscle. Changes in tension in response to prostaglandin F(2alpha), latanoprost, a prostaglandin F(2alpha) analog used as an anti-glaucoma drug, and carbachol were recorded isometrically, and MAP kinase activation was monitored by Western blot using a phosphospecific p42/p44 MAP kinase antibody. We found that treatment of the muscle with 2'-Amino-3'-methoxyflavone (PD98059) (10 microM), a specific inhibitor of MAP kinase kinase (MEK), inhibited significantly prostaglandin F(2alpha)- and latanoprost-induced phosphorylation and contraction, but had little effect on those evoked by carbachol. Prostaglandin F(2alpha) increased MAP kinase phosphorylation in a concentration-dependent manner with EC(50) value of 1.1 x 10(-8) M and increased contraction with EC(50) of 0.92 x 10(-9) M. The MAP kinase inhibitors PD98059, Apigenin and 1,4-Diamino-2,3-dicyano-1, 4bis(2-aminophenylthio)butadiene (UO126) inhibited prostaglandin F(2alpha)-induced contraction in a concentration-dependent manner with IC(50) values of 2.4, 3.0 and 4.8 microM, respectively. PD98059 had no effect on prostaglandin F(2alpha)- or on carbachol-stimulated inositol-1,4,5-trisphosphate (IP(3)) production. In contrast, the MAP kinase inhibitor inhibited prostaglandin F(2alpha)-induced myosin-light chain (MLC) phosphorylation, but had no effect on that of carbachol. N-[2-(N-(4-Chloro-cinnamyl)-N-methylaminomethyl)phenyl]-N-[2- hydroxyethyl]-4-methoxybenzenesulfonamide (KN-93) (10 microM), a Ca(2+)-calmodulin-dependent protein kinase inhibitor, and Wortmannin (10 microM), an MLC kinase inhibitor, inhibited significantly (by 80%) prostaglandin F(2alpha)- and carbachol-induced contraction. It can be concluded that in this smooth muscle p42/p44 MAP kinases are involved in

  6. Mediation of acetylcholine and substance P induced contractions by myosin light chain phosphorylation in feline colonic smooth muscle.

    PubMed

    Washabau, Robert J; Holt, David E; Brockman, Daniel J

    2002-05-01

    To determine the role of myosin light chain phosphorylation in feline colonic smooth muscle contraction. Colonic tissue was obtained from eight 12- to 24-month-old cats. Colonic longitudinal smooth muscle strips were attached to isometric force transducers for measurements of isometric stress. Myosin light chain phosphorylation was determined by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Stress and phosphorylation were determined following stimulation with ACh or SP, in the absence or presence of a calmodulin antagonist (W-7; 0.1 to 1.0 mM), myosin light chain kinase inhibitor (ML-9; 1 to 10 microM), or extracellular calcium free solutions. Unstimulated longitudinal colonic smooth muscle contained low amounts (6.9+/-3.2%) of phosphorylated myosin light chain. Phosphorylation of the myosin light chains was dose and time dependent with maximal values of 58.5% at 30 seconds of stimulation with 100 microM Ach and 60.2% at 45 seconds of stimulation with 100 nM SP Active isometric stress development closely paralleled phosphorylation of the myosin light chains in ACh- or SP-stimulated muscle. W-7 and ML-9 dose dependently inhibited myosin light chain phosphorylation and isometric stress development associated with ACh or SP stimulation. Removal of extracellular calcium inhibited myosin light chain phosphorylation and isometric stress development in ACh-stimulated smooth muscle. Feline longitudinal colonic smooth muscle contraction is calcium-, calmodulin-, and myosin light chain kinase-dependent. Myosin light chain phosphorylation is necessary for the initiation of contraction in feline longitudinal colonic smooth muscle. These findings may prove useful in determining the biochemical and molecular defects that accompany feline colonic motility disorders.

  7. Clinicopathologic characteristics of light chain proximal tubulopathy with light chain inclusions involving multiple renal cell types
.

    PubMed

    Li, Xiaomei; Xu, Feng; Liang, Dandan; Liang, Shaoshan; Zhu, Xiaodong; Zhang, Mingchao; Huang, Xianghua; Liu, Zhihong; Zeng, Caihong

    2018-02-01

    Light chain proximal tubulopathy (LCPT) associated with plasma cell dyscrasias is a rare abnormality, especially cases involving multiple cell types. The aim of this study is to explore the characteristics and outcomes of these diseases. We comprehensively evaluated the clinical-pathological data, treatment, and outcomes of 6 LCPT patients with involvement of multiple cell types. In 3 cases, we found that the inclusions largely existed in tubular cells, while in 2 cases they coexisted in podocytes and tubular cells, and in 1 case they coexisted in histiocytes and tubular cells. The stain features and appearances of inclusions were specific and varied. Five patients displayed κ-light chains with crystal formation, while 1 patient displayed a λ subtype with increased lysosomes instead of crystals. Six patients presented with proteinuria, 4 with renal insufficiency, and 4 with complete or partial Fanconi syndrome. Our findings indicate that tubular cells are the most common location of cytoplasmic inclusions. Cases with κ-light chain storage are more common than λ, and the formation of crystals may be associated with the subtype of light chains. Immunoelectron microscopy could be used to increase sensitivity for the detection and location of monoclonal light chains. Therefore, these patients have some common clinical features with varied pathologic characteristics and prognoses but the same subtype of light chains.
.

  8. Src Family Kinases (SFK) Mediate Angiotensin II-Induced Myosin Light Chain Phosphorylation and Hypertension.

    PubMed

    Qin, Bo; Zhou, Junlan

    2015-01-01

    Angiotensin (Ang) II is the major bioactive peptide of the renin-angiotensin system (RAS); it contributes to the pathogenesis of hypertension by inducing vascular contraction and adverse remodeling, thus elevated peripheral resistance. Ang II also activates Src family kinases (SFK) in the vascular system, which has been implicated in cell proliferation and migration. However, the role of SFK in Ang II-induced hypertension is largely unknown. In this study, we found that administration of a SFK inhibitor SU6656 markedly lowered the level of systemic BP in Ang II-treated mice, which was associated with an attenuated phosphorylation of the smooth-muscle myosin-light-chain (MLC) in the mesenteric resistant arteries. In the cultured human coronary artery smooth muscle cells (SMCs), pretreatment with SU6656 blocked Ang II-induced MLC phosphorylation and contraction. These results for the first time demonstrate that SFK directly regulate vascular contractile machinery to influence BP. Thus our study provides an additional mechanistic link between Ang II and vasoconstriction via SFK-enhanced MLC phosphorylation in SMCs, and suggests that targeted inhibition of Src may provide a new therapeutic opportunity in the treatment of hypertension.

  9. Regulation of calcium channels in smooth muscle: New insights into the role of myosin light chain kinase

    PubMed Central

    Martinsen, A; Dessy, C; Morel, N

    2014-01-01

    Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca2+ flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca2+ channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca2+ channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca2+ entry in VSM is described in the present review. PMID:25483583

  10. Naphthalenesulphonamides block neutrophil superoxide production by intact cells and in a cell-free system: is myosin light chain kinase responsible for these effects?

    PubMed Central

    Heyworth, P G; Erickson, R W; Ding, J; Curnutte, J T; Badwey, J A

    1995-01-01

    Selective antagonists of myosin light chain kinase (MLCK) [e.g. ML-7; 1-(5-iodonaphthalene-1-sulphonyl)-1H-hexahydro-1,4-diazepine hydrochloride] were found to inhibit superoxide (O2-) release from stimulated neutrophils. The concentrations of ML-7 that were inhibitory were substantially lower than those reported for a selective antagonist of protein kinase C [i.e. H-7; 1-(5-isoquinolinesulphonyl)-2-methylpiperazine dihydrochloride]. ML-7 also reduced the phosphorylation of the 47 kDa subunit of the NADPH-oxidase system (p47-phox) and blocked translocation of this protein to the Triton X-100-insoluble fraction in stimulated cells. Interestingly, ML-7 also inhibited O2- production in a cell-free system derived from neutrophils at concentrations similar to those that were effective in vivo. This cell-free system does not require ATP and is insensitive to all other inhibitors of protein kinases tested, including some highly effective against MLCK (i.e. staurosporine). Thus, the data suggest that ML-7 does not block O2- release by inhibiting a protein kinase but instead may interact directly with a subunit of the oxidase. The binding site for ML-7 may provide a valuable target for inhibiting the inflammatory properties of phagocytic leucocytes by naphthalenesulphonamides designed to lack activity against protein kinases. Images Figure 3 Figure 4 PMID:7575484

  11. Bruton's tyrosine kinase and SLP-65 regulate pre-B cell differentiation and the induction of Ig light chain gene rearrangement.

    PubMed

    Kersseboom, Rogier; Ta, Van B T; Zijlstra, A J Esther; Middendorp, Sabine; Jumaa, Hassan; van Loo, Pieter Fokko; Hendriks, Rudolf W

    2006-04-15

    Bruton's tyrosine kinase (Btk) and the adapter protein SLP-65 (Src homology 2 domain-containing leukocyte-specific phosphoprotein of 65 kDa) transmit precursor BCR (pre-BCR) signals that are essential for efficient developmental progression of large cycling into small resting pre-B cells. We show that Btk- and SLP-65-deficient pre-B cells have a specific defect in Ig lambda L chain germline transcription. In Btk/SLP-65 double-deficient pre-B cells, both kappa and lambda germline transcripts are severely reduced. Although these observations point to an important role for Btk and SLP-65 in the initiation of L chain gene rearrangement, the possibility remained that these signaling molecules are only required for termination of pre-B cell proliferation or for pre-B cell survival, whereby differentiation and L chain rearrangement is subsequently initiated in a Btk/SLP-65-independent fashion. Because transgenic expression of the antiapoptotic protein Bcl-2 did not rescue the developmental arrest of Btk/SLP-65 double-deficient pre-B cells, we conclude that defective L chain opening in Btk/SLP-65-deficient small resting pre-B cells is not due to their reduced survival. Next, we analyzed transgenic mice expressing the constitutively active Btk mutant E41K. The expression of E41K-Btk in Ig H chain-negative pro-B cells induced 1) surface marker changes that signify cellular differentiation, including down-regulation of surrogate L chain and up-regulation of CD2, CD25, and MHC class II; and 2) premature rearrangement and expression of kappa and lambda light chains. These findings demonstrate that Btk and SLP-65 transmit signals that induce cellular maturation and Ig L chain rearrangement independently of their role in termination of pre-B cell expansion.

  12. Turning behaviors of T cells climbing up ramp-like structures are regulated by myosin light chain kinase activity and lamellipodia formation.

    PubMed

    Song, Kwang Hoon; Lee, Jaehyun; Jung, Hong-Ryul; Park, HyoungJun; Doh, Junsang

    2017-09-14

    T cells navigate diverse microenvironments to perform immune responses. Micro-scale topographical structures within the tissues, which may inherently exist in normal tissues or may be formed by inflammation or injury, can influence T cell migration, but how T cell migration is affected by such topographical structures have not been investigated. In this study, we fabricated ramp-like structures with a 5 μm height and various slopes, and observed T cells climbing up the ramp-like structures. T cells encountering the ramp-like structures exhibited MLC accumulation near head-tail junctions contacting the ramp-like structures, and made turns to the direction perpendicular to the ramp-like structures. Pharmacological study revealed that lamellipodia formation mediated by arp2/3 and contractility regulated by myosin light chain kinase (MLCK) were responsible for the intriguing turning behavior of T cells climbing the ramp-like structures. Arp2/3 or MLCK inhibition substantially reduced probability of T cells climbing sharp-edged ramp-like structures, indicating intriguing turning behavior of T cells mediated by lamellipodia formation and MLCK activity may be important for T cells to access inflamed or injured tissues with abrupt topographical changes.

  13. Characterization of myosin light chain in shrimp hemocytic phagocytosis.

    PubMed

    Han, Fang; Wang, Zhiyong; Wang, Xiaoqing

    2010-11-01

    Myosin light chain, a well-known cytoskeleton gene, regulates multiple processes that are involved in material transport, muscle shrink and cell division. However, its function in phagocytosis against invading pathogens in crustacean remains unknown. In this investigation, a myosin light chain gene was obtained from Marsupenaeus japonicus shrimp. The full-length cDNA of this gene was of 766 bp and an open reading frame (ORF) of 462 bp encoding a polypeptide of 153 amino acids. The myosin light chain protein was expressed in Escherichia coli and purified. Subsequently the specific antibody was raised using the purified GST fusion protein. As revealed by immuno-electron microscopy, the myosin light chain protein was only expressed in the dark bands of muscle. In the present study, the myosin light chain gene was up-regulated in the WSSV-resistant shrimp as revealed by real-time PCR and western blot. And the phagocytic percentage and phagocytic index using FITC-labeled Vibrio parahemolyticus were remarkably increased in the WSSV-resistant shrimp, suggesting that the myosin light chain protein was essential in hemocytic phagocytosis. On the other hand, RNAi assays indicated that the phagocytic percentage and phagocytic index were significantly decreased when the myosin light chain gene was silenced by sequence-specific siRNA. These findings suggested that myosin light chain protein was involved in the regulation of hemocytic phagocytosis of shrimp. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Crystallization and Preliminary X-ray Analysis of the Human Long Myosin Light-Chain Kinase 1-Specific Domain IgCAM3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W Vallen Graham; A Magis; K Bailey

    2011-12-31

    Myosin light-chain kinase-dependent tight junction regulation is a critical event in inflammatory cytokine-induced increases in epithelial paracellular permeability. MLCK is expressed in human intestinal epithelium as two isoforms, long MLCK1 and long MLCK2, and MLCK1 is specifically localized to the tight junction, where it regulates paracellular permeability. The sole difference between these long MLCK splice variants is the presence of an immunoglobulin-like cell-adhesion molecule domain, IgCAM3, in MLCK1. To gain insight into the structure of the IgCAM3 domain, the IgCAM3 domain of MLCK1 has been expressed, purified and crystallized. Preliminary X-ray diffraction data were collected to 2.0 {angstrom} resolution andmore » were consistent with the primitive trigonal space group P2{sub 1}2{sub 1}2{sub 1}.« less

  15. Myosin light chains: Teaching old dogs new tricks

    PubMed Central

    Heissler, Sarah M; Sellers, James R

    2014-01-01

    The myosin holoenzyme is a multimeric protein complex consisting of heavy chains and light chains. Myosin light chains are calmodulin family members which are crucially involved in the mechanoenzymatic function of the myosin holoenzyme. This review examines the diversity of light chains within the myosin superfamily, discusses interactions between the light chain and the myosin heavy chain as well as regulatory and structural functions of the light chain as a subunit of the myosin holoenzyme. It covers aspects of the myosin light chain in the localization of the myosin holoenzyme, protein-protein interactions and light chain binding to non-myosin binding partners. Finally, this review challenges the dogma that myosin regulatory and essential light chain exclusively associate with conventional myosin heavy chains while unconventional myosin heavy chains usually associate with calmodulin. PMID:26155737

  16. Structure and energetic basis of overrepresented λ light chain in systemic light chain amyloidosis patients.

    PubMed

    Zhao, Jun; Zhang, Baohong; Zhu, Jianwei; Nussinov, Ruth; Ma, Buyong

    2018-06-01

    Amyloid formation and deposition of immunoglobulin light-chain proteins in systemic amyloidosis (AL) cause major organ failures. While the κ light-chain is dominant (λ/κ=1:2) in healthy individuals, λ is highly overrepresented (λ/κ=3:1) in AL patients. The structural basis of the amyloid formation and the sequence preference are unknown. We examined the correlation between sequence and structural stability of dimeric variable domains of immunoglobulin light chains using molecular dynamics simulations of 24 representative dimer interfaces, followed by energy evaluation of conformational ensembles for 20 AL patients' light chain sequences. We identified a stable interface with displaced N-terminal residues, provides the structural basis for AL protein fibrils formation. Proline isomerization may cause the N-terminus to adopt amyloid-prone conformations. We found that λ light-chains prefer misfolded dimer conformation, while κ chain structures are stabilized by a natively folded dimer. Our study may facilitate structure-based small molecule and antibody design to inhibit AL. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Anterior Aortic Plane Systolic Excursion: A Novel Indicator of Transplant-Free Survival in Systemic Light-Chain Amyloidosis.

    PubMed

    Ochs, Marco M; Riffel, Johannes; Kristen, Arnt V; Hegenbart, Ute; Schönland, Stefan; Hardt, Stefan E; Katus, Hugo A; Mereles, Derliz; Buss, Sebastian J

    2016-12-01

    Anterior aortic plane systolic excursion (AAPSE) was evaluated in the present pilot study as a novel echocardiographic indicator of transplant-free survival in patients with systemic light-chain amyloidosis. Eighty-nine patients with light-chain amyloidosis were included in the post-hoc analysis. A subgroup of 54 patients with biopsy-proven cardiac amyloid infiltration were compared with 41 healthy individuals to evaluate the discriminative ability of echocardiographic findings. AAPSE is defined as the systolic excursion of the anterior aortic margin. To quantify AAPSE, the M-mode cursor was placed on the aortic valve plane in parasternal long-axis view at end-diastole. Index echocardiography had been performed before chemotherapy. Median follow-up duration was 2.4 years. The primary combined end point was heart transplantation or overall death. Mean AAPSE was 14 ± 2 mm in healthy individuals (mean age=57 ± 10 years; 56% men; BMI=25 ± 4 kg/m 2 ). AAPSE < 11 mm separated patients from age-, gender-, and BMI-matched control subjects with 93% sensitivity and 97% specificity. Median transplant-free survival of patients with AAPSE < 5 mm was 0.7 versus 4.8 years (P = .0001). AAPSE was an independent indicator of transplant-free survival in multivariate Cox regression (echocardiographic model: hazard ratio=0.72 [P = .03]; biomarker model: hazard ratio=0.62 [P = .0001]). Sequential regression analysis suggested incremental power of AAPSE as a marker of transplant-free survival. An ejection fraction-based model with an overall χ 2 value of 22.8 was improved by the addition of log NT-proBNP (χ 2  = 32.6, P < .005), troponin-T (χ 2  = 39.6, P < .01), and AAPSE (χ 2  = 54.0, P < .0001). AAPSE is suggested as an indicator of transplant-free survival in patients with systemic light-chain amyloidosis. AAPSE provided significant incremental value to established staging models. Copyright © 2016 American Society of Echocardiography

  18. Endocytosis of G protein-coupled receptors is regulated by clathrin light chain phosphorylation.

    PubMed

    Ferreira, Filipe; Foley, Matthew; Cooke, Alex; Cunningham, Margaret; Smith, Gemma; Woolley, Robert; Henderson, Graeme; Kelly, Eamonn; Mundell, Stuart; Smythe, Elizabeth

    2012-08-07

    Signaling by transmembrane receptors such as G protein-coupled receptors (GPCRs) occurs at the cell surface and throughout the endocytic pathway, and signaling from the cell surface may differ in magnitude and downstream output from intracellular signaling. As a result, the rate at which signaling molecules traverse the endocytic pathway makes a significant contribution to downstream output. Modulation of the core endocytic machinery facilitates differential uptake of individual cargoes. Clathrin-coated pits are a major entry portal where assembled clathrin forms a lattice around invaginating buds that have captured endocytic cargo. Clathrin assembles into triskelia composed of three clathrin heavy chains and associated clathrin light chains (CLCs). Despite the identification of clathrin-coated pits at the cell surface over 30 years ago, the functions of CLCs in endocytosis have been elusive. In this work, we identify a novel role for CLCs in the regulated endocytosis of specific cargoes. Small interfering RNA-mediated knockdown of either CLCa or CLCb inhibits the uptake of GPCRs. Moreover, we demonstrate that phosphorylation of Ser204 in CLCb is required for efficient endocytosis of a subset of GPCRs and identify G protein-coupled receptor kinase 2 (GRK2) as a kinase that can phosphorylate CLCb on Ser204. Overexpression of CLCb(S204A) specifically inhibits the endocytosis of those GPCRs whose endocytosis is GRK2-dependent. Together, these results indicate that CLCb phosphorylation acts as a discriminator for the endocytosis of specific GPCRs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Vasotropic light-chain amyloidosis and ischaemic cholangiopathy.

    PubMed

    Johnston, Emma L; Wilkinson, Mark; Knisely, A S

    2015-06-25

    A 75-year-old woman was incidentally found to have deranged liver function tests (LFTs). She was well, apart from 2 years of dyspnoea. Investigations had revealed atrial fibrillation and a right pleural effusion, without identified aetiology. On examination, the only finding was a palpable liver edge. Initial blood and ultrasound screening suggested no cause. The patient underwent liver biopsy. Microscopy showed κ-immunoglobulin light chains deposited exclusively in portal tracts, within blood vessel and bile duct walls. This pattern, although unusual, raised the possibility of κ-light chain disease. Serum electrophoresis was normal, as were serum immunoglobulin values. Serum concentrations of κ-light chains were elevated and microscopy of aspirated bone marrow found light-chain deposits with 10% plasmacytosis. Serum amyloid P (SAP) scintigraphy demonstrated splenic uptake. Myeloma, κ-light chain, with light-chain amyloidosis was diagnosed. The patient has responded well to cyclophosphamide, bortazomib and dexamethasone chemotherapy, and her LFTs are now nearly normal. 2015 BMJ Publishing Group Ltd.

  20. Immunoglobulin light chains, glycosaminoglycans and amyloid.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, F. J.; Kisilevsky, R.; Biosciences Division

    2000-03-01

    Immunoglobulin light chains are the precursor proteins for fibrils that are formed during primary amyloidosis and in amyloidosis associated with multiple myeloma. As found for the approximately 20 currently described forms of focal, localized, or systemic amyloidoses, light chain-related fibrils extracted from physiological deposits are invariably associated with glycosaminoglycans, predominantly heparan sulfate. Other amyloid-related proteins are either structurally normal, such as g2-microglobulin and islet amyloid polypeptide, fragments of normal proteins such as serum amyloid A protein or the precursor protein of the g peptide involved in Alzheimer's disease, or are inherited forms of single amino acid variants of a normalmore » protein such as found in the familial forms of amyloid associated with transthyretin. In contrast, the primary structures of light chains involved in fibril formation exhibit extensive mutational diversity rendering some proteins highly amyloidogenic and others non-pathological. The interactions between light chains and glycosaminoglycans are also affected by amino acid variation and may influence the clinical course of disease by enhancing fibril stability and contributing to resistance to protease degradation. Relatively little is currently known about the mechanisms by which glycosaminoglycans interact with light chains and light-chain fibrils. It is probable that future studies of this uniquely diverse family of proteins will continue o shed light on the processes of amyloidosis, and contribute as well to a greater understanding of the normal physiological roles of glycosaminoglycans.« less

  1. Inhibitory effects of KN-93, an inhibitor of Ca2+ calmodulin-dependent protein kinase II, on light-regulated root gravitropism in maize

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Hidaka, H.

    1993-01-01

    Light is essential for root gravitropism in Zea mays L., cultivar Merit. It is hypothesized that calcium mediates this light-regulated response. KN-93, an inhibitor of calcium/calmodulin kinase II (CaMK II), inhibits light-regulated root gravitropism but does not affect light perception. We hypothesize that CaMK II, or a homologue, operates late in the light/gravity signal transduction chain. Here we provide evidence suggesting a possible physiological involvement of CaMK II in root gravitropism in plants.

  2. Structure–Function Analysis of the Non-Muscle Myosin Light Chain Kinase (nmMLCK) Isoform by NMR Spectroscopy and Molecular Modeling: Influence of MYLK Variants

    PubMed Central

    Shen, Kui; Ramirez, Benjamin; Mapes, Brandon; Shen, Grace R.; Gokhale, Vijay; Brown, Mary E.; Santarsiero, Bernard; Ishii, Yoshitaka; Dudek, Steven M.; Wang, Ting; Garcia, Joe G. N.

    2015-01-01

    The MYLK gene encodes the multifunctional enzyme, myosin light chain kinase (MLCK), involved in isoform-specific non-muscle and smooth muscle contraction and regulation of vascular permeability during inflammation. Three MYLK SNPs (P21H, S147P, V261A) alter the N-terminal amino acid sequence of the non-muscle isoform of MLCK (nmMLCK) and are highly associated with susceptibility to acute lung injury (ALI) and asthma, especially in individuals of African descent. To understand the functional effects of SNP associations, we examined the N-terminal segments of nmMLCK by 1H-15N heteronuclear single quantum correlation (HSQC) spectroscopy, a 2-D NMR technique, and by in silico molecular modeling. Both NMR analysis and molecular modeling indicated SNP localization to loops that connect the immunoglobulin-like domains of nmMLCK, consistent with minimal structural changes evoked by these SNPs. Molecular modeling analysis identified protein-protein interaction motifs adversely affected by these MYLK SNPs including binding by the scaffold protein 14-3-3, results confirmed by immunoprecipitation and western blot studies. These structure-function studies suggest novel mechanisms for nmMLCK regulation, which may confirm MYLK as a candidate gene in inflammatory lung disease and advance knowledge of the genetic underpinning of lung-related health disparities. PMID:26111161

  3. Serum Free Light Chains in Neoplastic Monoclonal Gammopathies: Relative Under-Detection of Lambda Dominant Kappa/Lambda Ratio, and Underproduction of Free Lambda Light Chains, as Compared to Kappa Light Chains, in Patients With Neoplastic Monoclonal Gammopathies.

    PubMed

    Lee, Won Sok; Singh, Gurmukh

    2018-07-01

    Quantitative evaluation of serum free light chains is recommended for the work up of monoclonal gammopathies. Immunoglobulin light chains are generally produced in excess of heavy chains. In patients with monoclonal gammopathy, κ/λ ratio is abnormal less frequently with lambda chain lesions. This study was undertaken to ascertain if the levels of overproduction of the two light chain types and their detection rates are different in patients with neoplastic monoclonal gammopathies. Results of serum protein electrophoresis (SPEP), serum protein immunofixation electrophoresis (SIFE), urine protein electrophoresis (UPEP), urine protein immunofixation electrophoresis (UIFE), and serum free light chain assay (SFLCA) in patients with monoclonal gammopathies were examined retrospectively. The κ/λ ratios were appropriately abnormal more often in kappa chain lesions. Ratios of κ/λ were normal in about 25% of patients with lambda chain lesions in whom free homogenous lambda light chains were detectable in urine. An illustrative case suggests underproduction of free lambda light chains, in some instances. The lower prevalence of lambda dominant κ/λ ratio in lesions with lambda light chains is estimated to be due to relative under-detection of lambda dominant κ/λ ratio in about 25% of the patients and because lambda chains are not produced in as much excess of heavy chains as are kappa chains, in about 5% of the patients. The results question the medical necessity and clinical usefulness of the serum free light chain assay. UPEP/UIFE is under-utilized.

  4. Serum Free Light Chains in Neoplastic Monoclonal Gammopathies: Relative Under-Detection of Lambda Dominant Kappa/Lambda Ratio, and Underproduction of Free Lambda Light Chains, as Compared to Kappa Light Chains, in Patients With Neoplastic Monoclonal Gammopathies

    PubMed Central

    Lee, Won Sok; Singh, Gurmukh

    2018-01-01

    Background Quantitative evaluation of serum free light chains is recommended for the work up of monoclonal gammopathies. Immunoglobulin light chains are generally produced in excess of heavy chains. In patients with monoclonal gammopathy, κ/λ ratio is abnormal less frequently with lambda chain lesions. This study was undertaken to ascertain if the levels of overproduction of the two light chain types and their detection rates are different in patients with neoplastic monoclonal gammopathies. Methods Results of serum protein electrophoresis (SPEP), serum protein immunofixation electrophoresis (SIFE), urine protein electrophoresis (UPEP), urine protein immunofixation electrophoresis (UIFE), and serum free light chain assay (SFLCA) in patients with monoclonal gammopathies were examined retrospectively. Results The κ/λ ratios were appropriately abnormal more often in kappa chain lesions. Ratios of κ/λ were normal in about 25% of patients with lambda chain lesions in whom free homogenous lambda light chains were detectable in urine. An illustrative case suggests underproduction of free lambda light chains, in some instances. Conclusions The lower prevalence of lambda dominant κ/λ ratio in lesions with lambda light chains is estimated to be due to relative under-detection of lambda dominant κ/λ ratio in about 25% of the patients and because lambda chains are not produced in as much excess of heavy chains as are kappa chains, in about 5% of the patients. The results question the medical necessity and clinical usefulness of the serum free light chain assay. UPEP/UIFE is under-utilized. PMID:29904440

  5. Vasoactivity of rucaparib, a PARP-1 inhibitor, is a complex process that involves myosin light chain kinase, P2 receptors, and PARP itself.

    PubMed

    McCrudden, Cian M; O'Rourke, Martin G; Cherry, Kim E; Yuen, Hiu-Fung; O'Rourke, Declan; Babur, Muhammad; Telfer, Brian A; Thomas, Huw D; Keane, Patrick; Nambirajan, Thiagarajan; Hagan, Chris; O'Sullivan, Joe M; Shaw, Chris; Williams, Kaye J; Curtin, Nicola J; Hirst, David G; Robson, Tracy

    2015-01-01

    Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK) 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.

  6. Thrombin-induced phosphorylation of the regulatory light chain of myosin II in cultured bovine corneal endothelial cells.

    PubMed

    Satpathy, M; Gallagher, P; Lizotte-Waniewski, M; Srinivas, S P

    2004-10-01

    Phosphorylation of the regulatory light chain of myosin II (referred to as myosin light chain or MLC) leads to a loss of barrier integrity in cellular monolayers by an increase in the contractility of the cortical actin cytoskeleton. This effect has been examined in corneal endothelial (CE) cells. Experiments were performed using cultured bovine CE cells (BCEC). MLC phosphorylation was induced by a thrombin-mediated activation of the proteinase-activated receptor-1 (PAR-1). Expression of MLC kinase (MLCK), a Ca2+/calmodulin-dependent protein kinase that phosphorylates MLC at its Ser-19 and Thr-18 residues, was determined by RT-PCR and Western blotting. Expression of PAR-1, RhoA, and Rho kinase-1 (effector of RhoA) was ascertained by RT-PCR. MLC phosphorylation was assessed by urea-glycerol gel electrophoresis followed by immunoblotting. The effects of Rho kinase-1 and PKC were characterized by using their selective inhibitors, Y-27632 and chelerythrine, respectively. Reorganization of the cytoskeleton was evaluated by the phalloidin staining of actin. [Ca2+]i was measured using Fura-2. The barrier integrity was assayed as permeability of BCEC monolayers to horseradish peroxidase (HRP; 44 kDa). RT-PCR showed expression of MLCK, PAR-1, Rho kinase-1, and RhoA. Western blotting indicated expression of the non-muscle and smooth muscle isoforms of MLCK. Exposure to thrombin induced an increase in [Ca2+]i with the peak unaffected by an absence of extracellular Ca2+. Pre-exposure to thrombin (2 U ml(-1); 2 min) led to mono- and di-phosphorylation of MLC. Under both basal conditions and in the presence of thrombin, MLC phosphorylation was prevented by chelerythrine (10 microm) and Y-27632 (<25 microm). Thrombin led to inter-endothelial gaps secondary to the disruption of the cortical actin cytoskeleton, which under resting conditions was organized as a perijunctional actomyosin ring (PAMR). These responses were blocked by pre-treatment with Y-27632. Thrombin also increased

  7. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-κβ and myosin light-chain kinase pathways.

    PubMed

    Zhang, Ying; Li, Jianguo

    2012-11-16

    Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-κβ) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the α7 nicotinic acetylcholine receptor (α7nAchR) antagonist α-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-κβ and MLCK pathways in an α7nAchR-dependent manner. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Potentiation in mouse lumbrical muscle without myosin light chain phosphorylation: Is resting calcium responsible?

    PubMed Central

    Smith, Ian C.; Gittings, William; Huang, Jian; McMillan, Elliott M.; Quadrilatero, Joe; Tupling, A. Russell

    2013-01-01

    The increase in isometric twitch force observed in fast-twitch rodent muscles during or after activity, known universally as potentiation, is normally associated with myosin regulatory light chain (RLC) phosphorylation. Interestingly, fast muscles from mice devoid of detectable skeletal myosin light chain kinase (skMLCK) retain a reduced ability to potentiate twitch force, indicating the presence of a secondary origin for this characteristic feature of the fast muscle phenotype. The purpose of this study was to assess changes in intracellular cytosolic free Ca2+ concentration ([Ca2+]i) after a potentiating stimulus in mouse lumbrical muscle (37°C). Lumbricals were loaded with the Ca2+-sensitive fluorescent indicators fura-2 or furaptra to detect changes in resting and peak, respectively, intracellular Ca2+ levels caused by 2.5 s of 20-Hz stimulation. Although this protocol produced an immediate increase in twitch force of 17 ± 3% (all data are n = 10) (P < 0.01), this potentiation dissipated quickly and was absent 30 s afterward. Fura-2 fluorescence signals at rest were increased by 11.1 ± 1.3% (P < 0.01) during potentiation, indicating a significant increase in resting [Ca2+]i. Interestingly, furaptra signals showed no change to either the amplitude or the duration of the intracellular Ca2+ transients (ICTs) that triggered potentiated twitches during this time (P < 0.50). Immunofluorescence work showed that 77% of lumbrical fibers expressed myosin heavy chain isoform IIx and/or IIb, but with low expression of skMLCK and high expression of myosin phosphatase targeting subunit 2. As a result, lumbrical muscles displayed no detectable RLC phosphorylation either at rest or after stimulation. We conclude that stimulation-induced elevations in resting [Ca2+]i, in the absence of change in the ICT, are responsible for a small-magnitude, short-lived potentiation of isometric twitch force. If operative in other fast-twitch muscles, this mechanism may complement the

  9. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    DOE PAGES

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; ...

    2015-09-22

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presencemore » of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.« less

  10. The pool of fast releasing vesicles is augmented by myosin light chain kinase inhibition at the calyx of Held synapse.

    PubMed

    Srinivasan, Geetha; Kim, Jun Hee; von Gersdorff, Henrique

    2008-04-01

    Synaptic strength is determined by release probability and the size of the readily releasable pool of docked vesicles. Here we describe the effects of blocking myosin light chain kinase (MLCK), a cytoskeletal regulatory protein thought to be involved in myosin-mediated vesicle transport, on synaptic transmission at the mouse calyx of Held synapse. Application of three different MLCK inhibitors increased the amplitude of the early excitatory postsynaptic currents (EPSCs) in a stimulus train, without affecting the late steady-state EPSCs. A presynaptic locus of action for MLCK inhibitors was confirmed by an increase in the frequency of miniature EPSCs that left their average amplitude unchanged. MLCK inhibition did not affect presynaptic Ca(2+) currents or action potential waveform. Moreover, Ca(2+) imaging experiments showed that [Ca(2+)](i) transients elicited by 100-Hz stimulus trains were not altered by MLCK inhibition. Studies using high-frequency stimulus trains indicated that MLCK inhibitors increase vesicle pool size, but do not significantly alter release probability. Accordingly, when AMPA-receptor desensitization was minimized, EPSC paired-pulse ratios were unaltered by MLCK inhibition, suggesting that release probability remains unaltered. MLCK inhibition potentiated EPSCs even when presynaptic Ca(2+) buffering was greatly enhanced by treating slices with EGTA-AM. In addition, MLCK inhibition did not affect the rate of recovery from short-term depression. Finally, developmental studies revealed that EPSC potentiation by MLCK inhibition starts at postnatal day 5 (P5) and remains strong during synaptic maturation up to P18. Overall, our data suggest that MLCK plays a crucial role in determining the size of the pool of synaptic vesicles that undergo fast release at a CNS synapse.

  11. Critical role of non-muscle myosin light chain kinase in thrombin-induced endothelial cell inflammation and lung PMN infiltration.

    PubMed

    Fazal, Fabeha; Bijli, Kaiser M; Murrill, Matthew; Leonard, Antony; Minhajuddin, Mohammad; Anwar, Khandaker N; Finkelstein, Jacob N; Watterson, D Martin; Rahman, Arshad

    2013-01-01

    The pathogenesis of acute lung injury (ALI) involves bidirectional cooperation and close interaction between inflammatory and coagulation pathways. A key molecule linking coagulation and inflammation is the procoagulant thrombin, a serine protease whose concentration is elevated in plasma and lavage fluids of patients with ALI and acute respiratory distress syndrome (ARDS). However, little is known about the mechanism by which thrombin contributes to lung inflammatory response. In this study, we developed a new mouse model that permits investigation of lung inflammation associated with intravascular coagulation. Using this mouse model and in vitro approaches, we addressed the role of non-muscle myosin light chain kinase (nmMLCK) in thrombin-induced endothelial cell (EC) inflammation and lung neutrophil (PMN) infiltration. Our in vitro experiments revealed a key role of nmMLCK in ICAM-1 expression by its ability to control nuclear translocation and transcriptional capacity of RelA/p65 in EC. When subjected to intraperitoneal thrombin challenge, wild type mice showed a marked increase in lung PMN infiltration via expression of ICAM-1. However, these responses were markedly attenuated in mice deficient in nmMLCK. These results provide mechanistic insight into lung inflammatory response associated with intravascular coagulation and identify nmMLCK as a critical target for modulation of lung inflammation.

  12. Critical Role of Non-Muscle Myosin Light Chain Kinase in Thrombin-Induced Endothelial Cell Inflammation and Lung PMN Infiltration

    PubMed Central

    Fazal, Fabeha; Bijli, Kaiser M.; Murrill, Matthew; Leonard, Antony; Minhajuddin, Mohammad; Anwar, Khandaker N.; Finkelstein, Jacob N.; Watterson, D. Martin; Rahman, Arshad

    2013-01-01

    The pathogenesis of acute lung injury (ALI) involves bidirectional cooperation and close interaction between inflammatory and coagulation pathways. A key molecule linking coagulation and inflammation is the procoagulant thrombin, a serine protease whose concentration is elevated in plasma and lavage fluids of patients with ALI and acute respiratory distress syndrome (ARDS). However, little is known about the mechanism by which thrombin contributes to lung inflammatory response. In this study, we developed a new mouse model that permits investigation of lung inflammation associated with intravascular coagulation. Using this mouse model and in vitro approaches, we addressed the role of non-muscle myosin light chain kinase (nmMLCK) in thrombin-induced endothelial cell (EC) inflammation and lung neutrophil (PMN) infiltration. Our in vitro experiments revealed a key role of nmMLCK in ICAM-1 expression by its ability to control nuclear translocation and transcriptional capacity of RelA/p65 in EC. When subjected to intraperitoneal thrombin challenge, wild type mice showed a marked increase in lung PMN infiltration via expression of ICAM-1. However, these responses were markedly attenuated in mice deficient in nmMLCK. These results provide mechanistic insight into lung inflammatory response associated with intravascular coagulation and identify nmMLCK as a critical target for modulation of lung inflammation. PMID:23555849

  13. The regulation of smooth muscle contractility by zipper-interacting protein kinase.

    PubMed

    Ihara, Eikichi; MacDonald, Justin A

    2007-01-01

    Smooth muscle contractility is mainly regulated by phosphorylation of the 20 kDa myosin light chains (LC20), a process that is controlled by the opposing activities of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). Recently, intensive research has revealed that various protein kinase networks including Rho-kinase, integrin-linked kinase, zipper-interacting protein kinase (ZIPK), and protein kinase C (PKC) are involved in the regulation of LC20 phosphorylation and have important roles in modulating smooth muscle contractile responses to Ca2+ (i.e., Ca2+ sensitization and Ca2+ desensitization). Here, we review the general background and structure of ZIPK and summarize our current understanding of its involvement in a number of cell processes including cell death (apoptosis), cell motility, and smooth muscle contraction. ZIPK has been found to induce the diphosphorylation of LC20 at Ser-19 and Thr-18 in a Ca2+-independent manner and to regulate MLCP activity directly through its phosphorylation of the myosin-targeting subunit of MLCP or indirectly through its phosphorylation of the PKC-potentiated inhibitory protein of MLCP. Future investigations of ZIPK function in smooth muscle will undoubtably focus on determining the mechanisms that regulate its cellular activity, including the identification of upstream signaling pathways, the characterization of autoinhibitory domains and regulatory phosphorylation sites, and the development of specific inhibitor compounds.

  14. Species differences in the effects of prostanoids on MAP kinase phosphorylation, myosin light chain phosphorylation and contraction in bovine and cat iris sphincter smooth muscle.

    PubMed

    Kaddour-Djebbar, I; Ansari, H R; Akhtar, R A; Abdel-Latif, A A

    2005-01-01

    There is evidence from our own laboratory and that of others that EP-receptor ligands are strong contractile agonists in bovine iris sphincter and that FP-receptor agonists are strong contractile agonists in cat iris sphincter. Here, we have investigated the effects of prostaglandin (PG) receptor agonists of the FP-, EP-, TP- and DP-class on myosin light chain (MLC) phosphorylation, p42/p44 MAP kinase phosphorylation and contraction in the iris sphincter of bovine and cat. Using three signal transduction mechanism assays, namely MLC phosphorylation, MAP kinase phosphorylation and contraction, we demonstrated that in bovine iris sphincter the rank order of potency of the PG agonists in the contractile and MLC phosphorylation assays is as follows: E2>U46619>F2alpha>D2, and in cat F2alpha>D2>E2>U46619. In the MAP kinase assay, in bovine iris sphincter the rank order of potency is E2>F2alpha and in cat F2alpha>E2. These conclusions are supported by the following findings: (1) In the contractile assay, in the bovine sphincter the EC50s for PGF2alpha, PGE2, U46619 and PGD2 were found to be 1.4x10(-7), 5.0x10(-9), 9.0x10(-9) and 1.3x10(-6)M, respectively, and the corresponding values in the cat were 1.9x10(-8), 2.3x10(-7), 1.5x10(-6) and 6.9x10(-8)M, respectively. (2) In the MLC phophorylation assay, in the bovine sphincter PGF2alpha, PGE2, U46619 and PGD2 increased MLC phophorylation by 118%, 165%, 153% and 72%, respectively, and the corresponding values in cat were 175%, 99%, 90% and 95%, respectively. (3) In the MAP kinase assay, in the bovine iris sphincter PGF2alpha and PGE2, increased MAP kinase phosphorylation by 276% and 328%, respectively, and the corresponding values in cat were 308% and 245%, respectively. The data presented demonstrate pronounced species differences in the effects of the prostanoids on the MLC kinase signaling pathway in bovine and cat irides and furthermore confirm the existence of FP-receptors in that of the bovine.

  15. Comparison of Free Light Chain Assays:  Freelite and N Latex in Diagnosis, Monitoring, and Predicting Survival in Light Chain Amyloidosis.

    PubMed

    Mahmood, Shameem; Wassef, Nancy L; Salter, Simon J; Sachchithanantham, Sajitha; Lane, T; Foard, D; Whelan, Carol J; Lachmann, Helen J; Gillmore, Julian D; Hawkins, Philip N; Wechalekar, Ashutosh D

    2016-07-01

    Measurement of serum free light chains (FLCs) is critical in diagnosis, prognosis, and monitoring treatment responses in light chain (AL) amyloidosis. We compare the Freelite assay (polyclonal antibodies to hidden light chain epitopes), which is the current gold standard, with a new assay: a mixture of monoclonal antibodies to light chain epitopes (N Latex). We collected 240 serum samples from 94 consecutive patients with newly diagnosed AL amyloidosis (at least three serial serum samples during the first 6 months) analyzed at the National Amyloidosis Centre, London, from January 2011 to April 2012. Concordance in detecting abnormal light chain components and hematologic response was assessed at 2, 4, and 6 months. The κ and λ clonal light chain involvement was 21% and 79%, respectively, with an abnormal κ/λ ratio or detectable protein in 78.7%. Median κ, λ, and difference in involved and uninvolved FLCs by Freelite and N Latex assays were 17.3 vs 16 mg/L (R(2 ) = 0.91), 48.8 vs 52.6 mg/L (R(2) = 0.52), and 43.2 vs 39.1 mg/L, respectively. Discordant κ/λ ratios at presentation were as follows: 10 of 90 abnormal by Freelite/normal by N Latex and 11 of 90 abnormal by N Latex/normal by Freelite. Both FLC assays show good correlation in detecting the abnormal light chain subtype with discordance in absolute values and thus are not interchangeable. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Interaction in endothelium of non-muscular myosin light-chain kinase and the NF-κB pathway is critical to lipopolysaccharide-induced vascular hyporeactivity.

    PubMed

    Recoquillon, Sylvain; Carusio, Nunzia; Lagrue-Lakhal, Anne-Hélène; Tual-Chalot, Simon; Filippelli, Amelia; Andriantsitohaina, Ramaroson; Martinez, M Carmen

    2015-10-01

    During sepsis, endothelial barrier dysfunction contributes to cardiovascular failure, mainly through the release of oxidative metabolites by penetrant leukocytes. We reported the non-muscular isoform of myosin light chain kinase (nmMLCK) playing a pivotal role in endotoxin shock injury associated with oxidative and nitrative stresses, and vascular hyporeactivity. The present study was aimed at understanding the molecular mechanism of lipopolysaccharide (LPS)-induced vascular alterations as well as studying a probable functional association of nmMLCK with nuclear factor κ-light-chain enhancer of activated B cells (NF-κB). Aortic rings from mice were exposed in vitro to LPS and, then, vascular reactivity was measured. Human aortic endothelial cells (HAoECs) were incubated with LPS, and interaction of nmMLCK with NF-κB was analysed. We provide evidence that nmMLCK deletion prevents vascular hyporeactivity induced by in vitro LPS treatment but not endothelial dysfunction in the aorta. Deletion of nmMLCK inhibits LPS-induced NF-κB activation and increases nitric oxide (NO) release via induction of inducible NO synthase (iNOS) within the vascular wall. Also, removal of endothelium prevented both NF-κB and iNOS expression in aortic rings. Among the proinflammatory factors released by LPS-treated endothelial cells, interleukin-6 accounts for the induction of iNOS on smooth muscle cells in response to LPS. Of particular interest is the demonstration that, in HAoECs, LPS-induced NF-κB activation occurs via increased MLCK activity sensitive to the MLCK inhibitor, ML-7, and physical interactions between nmMLCK and NF-κB. We report for the first time on NF-κB as a novel partner of nmMLCK within endothelial cells. The present study demonstrates a pivotal role of nmMLCK in vascular inflammatory pathologies. © 2015 Authors; published by Portland Press Limited.

  17. The force dependence of isometric and concentric potentiation in mouse muscle with and without skeletal myosin light chain kinase.

    PubMed

    Gittings, William; Aggarwal, Harish; Stull, James T; Vandenboom, Rene

    2015-01-01

    The isometric potentiation associated with myosin phosphorylation is force dependent. The purpose of this study was to assess the influence of a pre-existing period of isometric force on the concentric force potentiation displayed by mouse muscles with and without the ability to phosphorylate myosin. We tested isometric (ISO) and concentric (CON) potentiation, as well as concentric potentiation after isometric force (ISO-CON), in muscles from wild-type (WT) and skeletal myosin light chain kinase-deficient (skMLCK(-/-)) mice. A conditioning stimulus increased (i.e., potentiated) mean concentric force in the ISO-CON and CON conditions to 1.31 ± 0.02 and 1.35 ± 0.02 (WT) and to 1.19 ± 0.02 and 1.21 ± 0.01 (skMLCK(-/-)) of prestimulus levels, respectively (data n = 6-8, p < 0.05). No potentiation of mean isometric force was observed in either genotype. The potentiation of mean concentric force was inversely related to relative tetanic force level (P/Po) in both genotypes. Moreover, concentric potentiation varied greatly within each contraction type and was negatively correlated with unpotentiated force in both genotypes. Thus, although no effect of pre-existing force was observed, strong and inverse relationships between concentric force potentiation and unpotentiated concentric force may suggest an influence of attached and force-generating crossbridges on potentiation magnitude in both WT and skMLCK(-/-) muscles.

  18. Prognostic value of depressed midwall systolic function in cardiac light-chain amyloidosis.

    PubMed

    Perlini, Stefano; Salinaro, Francesco; Musca, Francesco; Mussinelli, Roberta; Boldrini, Michele; Raimondi, Ambra; Milani, Paolo; Foli, Andrea; Cappelli, Francesco; Perfetto, Federico; Palladini, Giovanni; Rapezzi, Claudio; Merlini, Giampaolo

    2014-05-01

    Cardiac amyloidosis represents an archetypal form of restrictive heart disease, characterized by profound diastolic dysfunction. As ejection fraction is preserved until the late stage of the disease, the majority of patients do fulfill the definition of diastolic heart failure, that is, heart failure with preserved ejection fraction (HFpEF). In another clinical model of HFpEF, that is, pressure-overload hypertrophy, depressed midwall fractional shortening (mFS) has been shown to be a powerful prognostic factor. To assess the potential prognostic role of mFS in cardiac light-chain amyloidosis with preserved ejection fraction, we enrolled 221 consecutive untreated patients, in whom a first diagnosis of cardiac light-chain amyloidosis was concluded between 2008 and 2010. HFpEF was present in 181 patients. Patients in whom cardiac involvement was excluded served as controls (n = 121). Prognosis was assessed after a median follow-up of 561 days. When compared with light-chain amyloidosis patients without myocardial involvement, cardiac light-chain amyloidosis was characterized by increased wall thickness (P <0.001), reduced end-diastolic left ventricular volumes (P <0.001), and diastolic dysfunction (P <0.001). In patients with preserved ejection fraction, mFS was markedly depressed [10.6% (8.7-13.5) vs. 17.8% (15.9-19.5) P <0.001]. At multivariable analysis, mFS, troponin I, and NT-pro-brain natriuretic peptide were the only significant prognostic determinants (P <0.001), whereas other indices of diastolic (E/E' ratio, transmitral and pulmonary vein flow velocities) and systolic function (tissue Doppler systolic indices, ejection fraction), or the presence/absence of congestive heart failure did not enter the model. In cardiac light-chain amyloidosis with normal ejection fraction, depressed circumferential mFS, a marker of myocardial contractile dysfunction, is a powerful predictor of survival.

  19. Characterization of the Catalytic and Nucleotide Binding Properties of the α-Kinase Domain of Dictyostelium Myosin-II Heavy Chain Kinase A*

    PubMed Central

    Yang, Yidai; Ye, Qilu; Jia, Zongchao; Côté, Graham P.

    2015-01-01

    The α-kinases are a widely expressed family of serine/threonine protein kinases that exhibit no sequence identity with conventional eukaryotic protein kinases. In this report, we provide new information on the catalytic properties of the α-kinase domain of Dictyostelium myosin-II heavy chain kinase-A (termed A-CAT). Crystallization of A-CAT in the presence of MgATP yielded structures with AMP or adenosine in the catalytic cleft together with a phosphorylated Asp-766 residue. The results show that the β- and α-phosphoryl groups are transferred either directly or indirectly to the catalytically essential Asp-766. Biochemical assays confirmed that A-CAT hydrolyzed ATP, ADP, and AMP with kcat values of 1.9, 0.6, and 0.32 min−1, respectively, and showed that A-CAT can use ADP to phosphorylate peptides and proteins. Binding assays using fluorescent 2′/3′-O-(N-methylanthraniloyl) analogs of ATP and ADP yielded Kd values for ATP, ADP, AMP, and adenosine of 20 ± 3, 60 ± 20, 160 ± 60, and 45 ± 15 μm, respectively. Site-directed mutagenesis showed that Glu-713, Leu-716, and Lys-645, all of which interact with the adenine base, were critical for nucleotide binding. Mutation of the highly conserved Gln-758, which chelates a nucleotide-associated Mg2+ ion, eliminated catalytic activity, whereas loss of the highly conserved Lys-722 and Arg-592 decreased kcat values for kinase and ATPase activities by 3–6-fold. Mutation of Asp-663 impaired kinase activity to a much greater extent than ATPase, indicating a specific role in peptide substrate binding, whereas mutation of Gln-768 doubled ATPase activity, suggesting that it may act to exclude water from the active site. PMID:26260792

  20. Inhibition of long myosin light-chain kinase activation alleviates intestinal damage after binge ethanol exposure and burn injury

    PubMed Central

    Zahs, Anita; Bird, Melanie D.; Ramirez, Luis; Turner, Jerrold R.; Choudhry, Mashkoor A.

    2012-01-01

    Laboratory evidence suggests that intestinal permeability is elevated following either binge ethanol exposure or burn injury alone, and this barrier dysfunction is further perturbed when these insults are combined. We and others have previously reported a rise in both systemic and local proinflammatory cytokine production in mice after the combined insult. Knowing that long myosin light-chain kinase (MLCK) is important for epithelial barrier maintenance and can be activated by proinflammatory cytokines, we examined whether inhibition of MLCK alleviated detrimental intestinal responses seen after ethanol exposure and burn injury. To accomplish this, mice were given vehicle or a single binge ethanol exposure followed by a sham or dorsal scald burn injury. Following injury, one group of mice received membrane permeant inhibitor of MLCK (PIK). At 6 and 24 h postinjury, bacterial translocation and intestinal levels of proinflammatory cytokines were measured, and changes in tight junction protein localization and total intestinal morphology were analyzed. Elevated morphological damage, ileal IL-1β and IL-6 levels, and bacterial translocation were seen in mice exposed to ethanol and burn injury relative to either insult alone. This increase was not seen in mice receiving PIK after injury. Ethanol-exposed and burn-injured mice had reduced zonula occludens protein-1 and occludin localization to the tight junction relative to sham-injured mice. However, the observed changes in junctional complexes were not seen in our PIK-treated mice following the combined insult. These data suggest that MLCK activity may promote morphological and inflammatory responses in the ileum following ethanol exposure and burn injury. PMID:22790598

  1. A prospective study of nutritional status in immunoglobulin light chain amyloidosis

    PubMed Central

    Sattianayagam, Prayman T.; Lane, Thirusha; Fox, Zoe; Petrie, Aviva; Gibbs, Simon D.J.; Pinney, Jennifer H.; Risom, Signe S.; Rowczenio, Dorota M.; Wechalekar, Ashutosh D.; Lachmann, Helen J.; Gilbertson, Janet A.; Hawkins, Philip N.; Gillmore, Julian D.

    2013-01-01

    Weight loss is common in systemic immunoglobulin light chain amyloidosis but there are limited data on the impact of nutritional status on outcome. Using the Patient-Generated Subjective Global Assessment (PG-SGA) score, we prospectively examined nutritional status in 110 consecutive newly-diagnosed, treatment-naïve patients with immunoglobulin light chain amyloidosis attending the UK National Amyloidosis Centre. At study entry, 72 of 110 (66%) patients had a PG-SGA score of 4 or over, indicating malnutrition requiring specialist nutritional intervention. Number of amyloidotic organs, elevated alkaline phosphatase, presence of autonomic neuropathy and advanced Mayo disease stage were independently associated with poor nutritional status (P<0.05). Quality of life was substantially poorer among those with higher PG-SGA scores (P<0.001). Furthermore, PG-SGA score was a powerful independent predictor of patient survival (P=0.02). Malnutrition is prevalent and is associated with poor quality of life and reduced survival among patients with systemic immunoglobulin light chain amyloidosis. The PG-SGA score would be an appropriate tool to evaluate whether nutritional intervention could improve patient outcomes. PMID:22983575

  2. Pituitary adenylate cyclase-activating polypeptide is a potent inhibitor of the growth of light chain-secreting human multiple myeloma cells.

    PubMed

    Li, Min; Cortez, Shirley; Nakamachi, Tomoya; Batuman, Vecihi; Arimura, Akira

    2006-09-01

    Multiple myeloma represents a malignant proliferation of plasma cells in the bone marrow, which often overproduces immunoglobulin light chains. We have shown previously that pituitary adenylate cyclase-activating polypeptide (PACAP) markedly suppresses the release of proinflammatory cytokines from light chain-stimulated human renal proximal tubule epithelial cells and prevents the resulting tubule cell injury. In this study, we have shown that PACAP suppresses the proliferation of human kappa and lambda light chain-secreting multiple myeloma-derived cells. The addition of PACAP suppressed light chain-producing myeloma cell-stimulated interleukin 6 (IL-6) secretion by the bone marrow stromal cells (BMSCs). A specific antagonist to either the human PACAP-specific receptor or the vasoactive intestinal peptide receptor attenuated the suppressive effect of PACAP on IL-6 production in the adhesion of human multiple myeloma cells to BMSCs. The secretion of IL-6 by BMSCs was completely inhibited by 10(-9) mol/L PACAP, which also attenuated the phosphorylation of both p42/44 and p38 mitogen-activated protein kinases (MAPK) as well as nuclear factor-kappaB (NF-kappaB) activation in response to the adhesion of multiple myeloma cells to BMSCs, whereas the inhibition of p42/44 MAPK signaling attenuated PACAP action. The signaling cascades involved in the inhibitory effect of PACAP on IL-6-mediated paracrine stimulation of light chain-secreting myeloma cell growth was mediated through the suppression of p38 MAPK as well as modulation of activation of transcription factor NF-kappaB. These findings suggest that PACAP may be a new antitumor agent that directly suppresses light chain-secreting myeloma cell growth and indirectly affects tumor cell growth by modifying the bone marrow milieu of the multiple myeloma.

  3. Epigenetic Contribution of the Myosin Light Chain Kinase Gene to the Risk for Acute Respiratory Distress Syndrome

    PubMed Central

    Szilágyi, Keely L.; Liu, Cong; Zhang, Xu; Wang, Ting; Fortman, Jeffrey D.; Zhang, Wei; Garcia, Joe G.N.

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome with a considerable case fatality rate (~30-40%). Health disparities exist with African descent subjects (ADs) exhibiting greater mortality than European descent individuals (EDs). Myosin light chain kinase (MLCK) is encoded by MYLK whose genetic variants are implicated in ARDS pathogenesis and may influence ARDS mortality. As baseline population-specific epigenetic changes, i.e. cytosine modifications, have been observed between AD and ED individuals, epigenetic variations in MYLK may provide insights into ARDS disparities. We compared methylation levels of MYLK CpGs between ARDS patients and ICU controls overall and by ethnicity in a nested case control study of 39 ARDS cases and 75 non-ARDS intensive care unit controls. Two MYLK CpG sites (cg03892735, cg23344121) were differentially modified between ARDS subjects and controls (p<0.05; q<0.25) in a logistic regression model, where no effect modification from ethnicity or age was found. One CpG site was associated with ARDS in patients less than 58 years old, cg19611163 (intron 19,20). Two CpG sites were associated with ARDS in EDs only, gene body CpG (cg01894985, intron 2,3) and CpG (cg16212219, intron 31,32), with higher modification levels exhibited in ARDS subjects than controls. Cis-acting mQTL (modified cytosine quantitative trait loci) were identified using linear regression between local genetic variants and modification levels for two ARDS-associated CpGs (cg23344121, cg16212219). In summary, these ARDS-associated MYLK CpGs with effect modification by ethnicity and local mQTL, suggest that MYLK epigenetic variation and local genetic background may contribute to health disparities observed in ARDS. PMID:27543902

  4. Epigenetic contribution of the myosin light chain kinase gene to the risk for acute respiratory distress syndrome.

    PubMed

    Szilágyi, Keely L; Liu, Cong; Zhang, Xu; Wang, Ting; Fortman, Jeffrey D; Zhang, Wei; Garcia, Joe G N

    2017-02-01

    Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome with a considerable case fatality rate (∼30%-40%). Health disparities exist with African descent (AD) subjects exhibiting greater mortality than European descent (ED) individuals. Myosin light chain kinase is encoded by MYLK, whose genetic variants are implicated in ARDS pathogenesis and may influence ARDS mortality. As baseline population-specific epigenetic changes, that is, cytosine modifications, have been observed between AD and ED individuals, epigenetic variations in MYLK may provide insights into ARDS disparities. We compared methylation levels of MYLK cytosine-guanine dinucleotides (CpGs) between ARDS patients and intensive care unit (ICU) controls overall and by ethnicity in a nested case-control study of 39 ARDS cases and 75 non-ARDS ICU controls. Two MYLK CpG sites (cg03892735 and cg23344121) were differentially modified between ARDS subjects and controls (P < 0.05; q < 0.25) in a logistic regression model, where no effect modification by ethnicity or age was found. One CpG site was associated with ARDS in patients aged <58 years, cg19611163 (intron 19, 20). Two CpG sites were associated with ARDS in EDs only, gene body CpG (cg01894985, intron 2, 3) and CpG (cg16212219, intron 31, 32), with higher modification levels exhibited in ARDS subjects than controls. Cis-acting modified cytosine quantitative trait loci (mQTL) were identified using linear regression between local genetic variants and modification levels for 2 ARDS-associated CpGs (cg23344121 and cg16212219). In summary, these ARDS-associated MYLK CpGs with effect modification by ethnicity and local mQTL suggest that MYLK epigenetic variation and local genetic background may contribute to health disparities observed in ARDS. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Amino terminal sequence of heavy and light chains from ratfish immunoglobulin.

    PubMed

    De Ioannes, A E; Aguila, H L

    1989-01-01

    The ratfish, Callorhinchus callorhinchus, a representative of the Holocephali, has a natural serum hemagglutinin (Mr 960,000), composed of heavy (Mr 71,000), light (Mr 22,500), and J (Mr 16,000) chains. To approach the mechanisms that generate diversity at this level of evolution, the amino terminal sequence of the heavy and light chains was determined by automated microsequencing. The chains are unblocked and have modest internal sequence heterogeneity. The heavy chains show sequence similarity with the terminal region of the heavy chain from the horned shark, Heterodontus francisci, and other species. In contrast to the heavy chain, the ratfish light chains display low sequence similarity with their shark kappa counterparts. However, their similarity with the variable region of the chicken lambda light chains is about 75%.

  6. Serum-free light-chain assay: clinical utility and limitations.

    PubMed

    Bhole, Malini V; Sadler, Ross; Ramasamy, Karthik

    2014-09-01

    In the last decade, the introduction of the serum-free light-chain (sFLC) assay has been an important advance in the diagnosis and management of plasma cell dyscrasias, particularly monoclonal light-chain diseases. The immunoassay was developed to detect free light chains in serum by using anti-FLC antibodies which specifically recognised epitopes on light chains that were 'hidden' in intact immunoglobulins. Since its introduction in 2001, there have been several publications in the English language literature discussing the clinical utility as well as analytical limitations of the sFLC assay. These studies have highlighted both positive and negative aspects of the assay particularly with regard to its sensitivity and specificity and the technical challenges that can affect its performance. The contribution and significance of the sFLC assay in the management of light-chain myeloma, primary amyloid light-chain (AL) amyloidosis and non-secretory myeloma are well recognised and will be addressed in this review. The aim of this article is to also review the published literature with a view to providing a clear understanding of its utility and limitations in the diagnosis, prognosis and monitoring of plasma dyscrasias including intact immunoglobulin multiple myeloma (MM) and monoclonal gammopathy of unknown significance (MGUS). The increasing interest in using this assay in other haematological conditions will also be briefly discussed. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Characterizing Chain Processes in Visible Light Photoredox Catalysis

    PubMed Central

    Cismesia, Megan A.

    2015-01-01

    The recognition that Ru(bpy)32+ andsimilar visible light absorbing transition metal complexes can be photocatalysts for a variety of synthetically useful organic reactions has resulted in a recent resurgence of interest in photoredox catalysis. However, many of the critical mechanistic aspects of this class of reactions remain poorly understood. In particular, the degree to which visible light photoredox reactions involve radical chain processes has been a point of some disagreement that has not been subjected to systematic analysis. We have now performed quantum yield measurements to demonstrate that threerepresentative, mechanistically distinct photoredox processes involve product-forming chain reactions. Moreover, we show that the combination of quantum yield and luminescence quenching experiments provides a rapid method to estimate the length of these chains. Together, these measurements constitute a robust, operationally facile strategy for characterizing chain processes in a wide range of visible light photoredox reactions. PMID:26668708

  8. Effects of a myosin light chain kinase inhibitor on the optics and accommodation of the avian crystalline lens.

    PubMed

    Luck, Sara; Choh, Vivian

    2011-01-01

    While many studies investigate the cytoskeletal properties of the lens with respect to cataract development, examinations of how these molecular structures interact are few. Myosin light chain kinase (MLCK), actin, and myosin are present on the crystalline lenses of chickens. The purpose of this experiment was to determine whether contractile proteins found on the lens play a role in the optical functions of the lens at rest, and during accommodation. Eyes of 6-day old white Leghorn chicks (Gallus gallus domesticus) were enucleated, with the ciliary nerve intact. One eye was treated with the MLCK inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-7) and the other eye with vehicle only. Three concentrations of ML-7 were used: 1 µM, 10 µM, and 100 µM. The back vertex focal lengths (BVFLs) were measured before, during, and after accommodation using an optical laser scanning monitor (Scantox™). To further confirm ML-7 activity, western blotting was performed to detect whether MLCK was inhibited. Western blots confirmed that MLCK was inhibited at all three ML-7 concentrations. Ten µM ML-7 treatments led to longer BVFLs at rest (p=0.0338), while 100 µM treatments led to opposite changes, resulting in shorter BVFLs (p=0.0220). While 1 µM treatments did not lead to significant optical changes (p=0.4416), BVFLs were similar in pattern to those of the 10 µM group. ML-7 had no effects on accommodative amplitudes (p=0.7848). Inhibition of MLCK by ML-7 led to differential changes in BVFLs that presumably affected lenticular integrity. No apparent effect on accommodative amplitudes was observed.

  9. Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle.

    PubMed

    Hong, Feng; Brizendine, Richard K; Carter, Michael S; Alcala, Diego B; Brown, Avery E; Chattin, Amy M; Haldeman, Brian D; Walsh, Michael P; Facemyer, Kevin C; Baker, Josh E; Cremo, Christine R

    2015-10-01

    Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot-labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto-myosin and MLCK-myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting "stuck" on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle. © 2015 Hong et al.

  10. Mechanism Underlying IκB Kinase Activation Mediated by the Linear Ubiquitin Chain Assembly Complex

    PubMed Central

    Fujita, Hiroaki; Akita, Mariko; Kato, Ryuichi; Sasaki, Yoshiteru; Wakatsuki, Soichi

    2014-01-01

    The linear ubiquitin chain assembly complex (LUBAC) ligase, consisting of HOIL-1L, HOIP, and SHARPIN, specifically generates linear polyubiquitin chains. LUBAC-mediated linear polyubiquitination has been implicated in NF-κB activation. NEMO, a component of the IκB kinase (IKK) complex, is a substrate of LUBAC, but the precise molecular mechanism underlying linear chain-mediated NF-κB activation has not been fully elucidated. Here, we demonstrate that linearly polyubiquitinated NEMO activates IKK more potently than unanchored linear chains. In mutational analyses based on the crystal structure of the complex between the HOIP NZF1 and NEMO CC2-LZ domains, which are involved in the HOIP-NEMO interaction, NEMO mutations that impaired linear ubiquitin recognition activity and prevented recognition by LUBAC synergistically suppressed signal-induced NF-κB activation. HOIP NZF1 bound to NEMO and ubiquitin simultaneously, and HOIP NZF1 mutants defective in interaction with either NEMO or ubiquitin could not restore signal-induced NF-κB activation. Furthermore, linear chain-mediated activation of IKK2 involved homotypic interaction of the IKK2 kinase domain. Collectively, these results demonstrate that linear polyubiquitination of NEMO plays crucial roles in IKK activation and that this modification involves the HOIP NZF1 domain and recognition of NEMO-conjugated linear ubiquitin chains by NEMO on another IKK complex. PMID:24469399

  11. Biomarkers in Immunoglobulin Light Chain Amyloidosis.

    PubMed

    Kufová, Z; Sevcikova, T; Growkova, K; Vojta, P; Filipová, J; Adam, Z; Pour, L; Penka, M; Rysava, R; Němec, P; Brozova, L; Vychytilova, P; Jurczyszyn, A; Grosicki, S; Barchnicka, A; Hajdúch, M; Simicek, M; Hájek, R

    2017-01-01

    Immunoglobulin light chain amyloidosis (AL amyloidosis - ALA) is a monoclonal gammopathy characterized by presence of aberrant plasma cells producing amyloidogenic immunoglobulin light chains. This leads to formation of amyloid fibrils in various organs and tissues, mainly in heart and kidney, and causes their dysfunction. As amyloid depositing in target organs is irreversible, there is a big effort to identify biomarker that could help to distinguish ALA from other monoclonal gammopathies in the early stages of disease, when amyloid deposits are not fatal yet. High throughput technologies bring new opportunities to modern cancer research as they enable to study disease within its complexity. Sophisticated methods such as next generation sequencing, gene expression profiling and circulating microRNA profiling are new approaches to study aberrant plasma cells from patients with light chain amyloidosis and related diseases. While generally known mutation in multiple myeloma patients (KRAS, NRAS, MYC, TP53) were not found in ALA, number of mutated genes is comparable. Transcriptome of ALA patients proves to be more similar to monoclonal gammopathy of undetermined significance patients, moreover level of circulating microRNA, that are known to correlate with heart damage, is increased in ALA patients, where heart damage in ALA typical symptom.Key words: amyloidosis - plasma cell - genome - transcriptome - microRNA.

  12. Effects of a myosin light chain kinase inhibitor on the optics and accommodation of the avian crystalline lens

    PubMed Central

    Luck, Sara

    2011-01-01

    Purpose While many studies investigate the cytoskeletal properties of the lens with respect to cataract development, examinations of how these molecular structures interact are few. Myosin light chain kinase (MLCK), actin, and myosin are present on the crystalline lenses of chickens. The purpose of this experiment was to determine whether contractile proteins found on the lens play a role in the optical functions of the lens at rest, and during accommodation. Methods Eyes of 6-day old white Leghorn chicks (Gallus gallus domesticus) were enucleated, with the ciliary nerve intact. One eye was treated with the MLCK inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-7) and the other eye with vehicle only. Three concentrations of ML-7 were used: 1 µM, 10 µM, and 100 µM. The back vertex focal lengths (BVFLs) were measured before, during, and after accommodation using an optical laser scanning monitor (Scantox™). To further confirm ML-7 activity, western blotting was performed to detect whether MLCK was inhibited. Results Western blots confirmed that MLCK was inhibited at all three ML-7 concentrations. Ten µM ML-7 treatments led to longer BVFLs at rest (p=0.0338), while 100 µM treatments led to opposite changes, resulting in shorter BVFLs (p=0.0220). While 1 µM treatments did not lead to significant optical changes (p=0.4416), BVFLs were similar in pattern to those of the 10 µM group. ML-7 had no effects on accommodative amplitudes (p=0.7848). Conclusions Inhibition of MLCK by ML-7 led to differential changes in BVFLs that presumably affected lenticular integrity. No apparent effect on accommodative amplitudes was observed. PMID:22065929

  13. The Kinetics of Myosin Light Chain Kinase Activation of Smooth Muscle Myosin in an In Vitro Model System

    PubMed Central

    Hong, Feng; Facemyer, Kevin C.; Carter, Michael S.; Jackson, Del R.; Haldeman, Brian D.; Ruana, Nick; Sutherland, Cindy; Walsh, Michael P.; Cremo, Christine R.; Baker, Josh E.

    2013-01-01

    During activation of smooth muscle contraction, one myosin light chain kinase (MLCK) molecule rapidly phosphorylates many smooth muscle myosin (SMM) molecules, suggesting that muscle activation rates are influenced by the kinetics of MLCK-SMM interactions. To determine the rate-limiting step underlying activation of SMM by MLCK, we measured the kinetics of calcium-calmodulin (Ca2+-CaM)-MLCK-mediated SMM phosphorylation and the corresponding initiation of SMM-based F-actin motility in an in vitro system with SMM attached to a coverslip surface. Fitting the time course of SMM phosphorylation to a kinetic model gave an initial phosphorylation rate, kpo, of ~1.17 heads s−1·MLCK−1. Also we measured the dwell time of single QD-labeled MLCK molecules interacting with surface-attached SMM and phosphorylated SMM using total internal reflection fluorescence microscopy. From these data, the dissociation rate constant from phosphorylated SMM was 0.80 s−1, which was similar to kpo mentioned above and with rates measured in solution. This dissociation rate was essentially independent of the phosphorylation state of SMM. From calculations using our measured dissociation rates and Kds, and estimates of [SMM] and [MLCK] in muscle, we predict that the dissociation of MLCK from phosphorylated SMM is rate-limiting and that the rate of the phosphorylation step is faster than this dissociation rate. Also, association to SMM (11-46 s−1) would be much faster than to pSMM (<0.1-0.2 s−1). This suggests that the probability of MLCK interacting with unphosphorylated versus pSMM is 55-460 times greater. This would avoid sequestering MLCK to unproductive interactions with previously phosphorylated SMM, potentially leading to faster rates of phosphorylation in muscle. PMID:24144337

  14. Probing light chain mutation effects on thrombin via molecular dynamics simulations and machine learning.

    PubMed

    Xiao, Jiajie; Melvin, Ryan L; Salsbury, Freddie R

    2018-03-02

    Thrombin is a key component for chemotherapeutic and antithrombotic therapy development. As the physiologic and pathologic roles of the light chain still remain vague, here, we continue previous efforts to understand the impacts of the disease-associated single deletion of LYS9 in the light chain. By combining supervised and unsupervised machine learning methodologies and more traditional structural analyses on data from 10 μs molecular dynamics simulations, we show that the conformational ensemble of the ΔK9 mutant is significantly perturbed. Our analyses consistently indicate that LYS9 deletion destabilizes both the catalytic cleft and regulatory functional regions and result in some conformational changes that occur in tens to hundreds of nanosecond scaled motions. We also reveal that the two forms of thrombin each prefer a distinct binding mode of a Na + ion. We expand our understanding of previous experimental observations and shed light on the mechanisms of the LYS9 deletion associated bleeding disorder by providing consistent but more quantitative and detailed structural analyses than early studies in literature. With a novel application of supervised learning, i.e. the decision tree learning on the hydrogen bonding features in the wild-type and ΔK9 mutant forms of thrombin, we predict that seven pairs of critical hydrogen bonding interactions are significant for establishing distinct behaviors of wild-type thrombin and its ΔK9 mutant form. Our calculations indicate the LYS9 in the light chain has both localized and long-range allosteric effects on thrombin, supporting the opinion that light chain has an important role as an allosteric effector.

  15. Use of a special Brazilian red-light emitting railroad worm Luciferase in bioassays of NEK7 protein Kinase and Creatine Kinase.

    PubMed

    Marina Perez, Arina; Aquino, Bruno; Viviani, Vadim; Kobarg, Jörg

    2017-07-19

    Luciferases, enzymes that catalyze bioluminescent reactions in different organisms, have been extensively used for bioanalytical purposes. The most well studied bioluminescent system is that of firefly and other beetles, which depends on a luciferase, a benzothiazolic luciferin and ATP, and it is being widely used as a bioanalytical reagent to quantify ATP. Protein kinases are proteins that modify other proteins by transferring phosphate groups from a nucleoside triphosphate, usually ATP. Here, we used a red-light emitting luciferase from Phrixotrix hirtus railroad worm to determine the activity of kinases in a coupled assay, based on luminescence that is generated when luciferase is in the presence of its substrate, the luciferin, and ATP. In this work we used, after several optimization reactions, creatine kinase isoforms as well as NEK7 protein kinase in the absence or presence of ATP analogous inhibitors  to validate this new luminescence method. With this new approach we validated a luminescence method to quantify kinase activity, with different substrates and inhibition screening tests, using a novel red-light emitting luciferase as a reporter enzyme.

  16. Modulation of smooth muscle tonus in the lower urinary tract: interplay of myosin light-chain kinase (MLCK) and MLC phosphatase (MLCP).

    PubMed

    Lin, Guiting; Fandel, Thomas M; Shindel, Alan W; Wang, Guifang; Banie, Lia; Ning, Hongxiu; Lue, Tom F; Lin, Ching-Shwun

    2011-07-01

    To assess and compare the expression and activity of myosin light-chain kinase (MLCK) and MLC phosphatase (MLCP) in rat bladder and urethra. Bladder and urethral smooth muscles were obtained from 2-month-old female Sprague-Dawley rats. They were analysed by real-time polymerase chain reaction for the mRNA expression of MLCK and myosin phosphatase-targeting subunit of protein phosphatase type 1 (MYPT1, a subunit of MLCP). Levels of MLCK and MYPT1 mRNA expression were determined as a ratio to the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The tissues were also analysed by Western blotting for MLCK and MYPT1 protein expression as a ratio to the expression of β-actin. A two-step enzymatic activity assay using phosphorylated and dephosphorylated smooth muscle myosin was used to assess MLCK and MLCP activity. MLCK mRNA expression was higher in the bladder than in the urethra [mean (sd) ratio to GAPDH: 0.26 (0.17) vs 0.14 (0.12); P = 0.09]. MYPT1 mRNA expression was significantly higher in the bladder than in the urethra [mean (sd) ratio to GAPDH: 2.31 (1.04) vs 0.56 (0.36); P = 0.001]. Expression of both MLCK and MYPT1 protein was significantly higher in the bladder compared with the urethra [mean (sd) ratio to β-actin: 1.63 (0.25) vs 0.91 (0.29) and 0.97 (0.10) vs 0.37 (0.29), respectively; both P < 0.001]. Enzymatic assay identified significantly greater MLCK activity in the bladder than in the urethra. While, MLCP activity was lower in the bladder than in the urethra. In healthy young female rats, MLCK activity is higher and MLCP activity is lower in the bladder relative to the urethra. These differences probably play a role in modulating the functional differences between bladder and urethral smooth muscle tone. © 2010 THE AUTHORS. BJU INTERNATIONAL © 2010 BJU INTERNATIONAL.

  17. Identification and partial characterization of a low affinity metal-binding site in the light chain of tetanus toxin.

    PubMed

    Wright, J F; Pernollet, M; Reboul, A; Aude, C; Colomb, M G

    1992-05-05

    Tetanus toxin was shown to contain a metal-binding site for zinc and copper. Equilibrium dialysis binding experiments using 65Zn indicated an association constant of 9-15 microM, with one zinc-binding site/toxin molecule. The zinc-binding site was localized to the toxin light chain as determined by binding of 65Zn to the light chain but not to the heavy chain after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transfer to Immobilon membranes. Copper was an efficient inhibitor of 65Zn binding to tetanus toxin and caused two peptide bond cleavages in the toxin light chain in the presence of ascorbate. These metal-catalyzed oxidative cleavages were inhibited by the presence of zinc. Partial characterization of metal-catalyzed oxidative modifications of a peptide based on a putative metal-binding site (HELIH) in the toxin light chain was used to map the metal-binding site in the protein.

  18. Immunoglobulin light chain allelic inclusion in systemic lupus erythematosus

    PubMed Central

    Fraser, Louise D.; Zhao, Yuan; Lutalo, Pamela M. K.; D'Cruz, David P.; Cason, John; Silva, Joselli S.; Dunn‐Walters, Deborah K.; Nayar, Saba; Cope, Andrew P.

    2015-01-01

    The principles of allelic exclusion state that each B cell expresses a single light and heavy chain pair. Here, we show that B cells with both kappa and lambda light chains (Igκ and Igλ) are enriched in some patients with the systemic autoimmune disease systemic lupus erythematosus (SLE), but not in the systemic autoimmune disease control granulomatosis with polyangiitis. Detection of dual Igκ and Igλ expression by flow cytometry could not be abolished by acid washing or by DNAse treatment to remove any bound polyclonal antibody or complexes, and was retained after two days in culture. Both surface and intracytoplasmic dual light chain expression was evident by flow cytometry and confocal microscopy. We observed reduced frequency of rearrangements of the kappa‐deleting element (KDE) in SLE and an inverse correlation between the frequency of KDE rearrangement and the frequency of dual light chain expressing B cells. We propose that dual expression of Igκ and Igλ by a single B cell may occur in some patients with SLE when this may be a consequence of reduced activity of the KDE. PMID:26036683

  19. The atypical structure and function of newborn arterial endothelium is mediated by Rho/Rho kinase signaling.

    PubMed

    Flavahan, Sheila; Flavahan, Nicholas A

    2014-08-15

    Endothelium of fetal or newborn arteries is atypical, displaying actin stress fibers and reduced nitric oxide (NO)-mediated dilatation. This study tested the hypothesis that Rho/Rho kinase signaling, which promotes endothelial stress fibers and inhibits endothelial dilatation, contributed to this phenotype. Carotid arteries were isolated from newborn [postnatal day 1 (P1)], P7, and P21 mice. Endothelial dilatation to acetylcholine (pressure myograph) was minimal at P1, increased at P7, and further increased at P21. Inhibition of Rho (C3 transferase) or Rho kinase (Y27632, fasudil) significantly increased dilatation to acetylcholine in P1 arteries but had no effect in P7 or P21 arteries. After inhibition of NO synthase (N(G)-nitro-l-arginine methyl ester), Rho kinase inhibition no longer increased acetylcholine responses in P1 arteries. Rho kinase inhibition did not affect dilatation to the NO donor DEA-NONOate. The endothelial actin cytoskeleton was labeled with phalloidin and visualized by laser-scanning microscopy. In P1 arteries, the endothelium had prominent transcytoplasmic stress fibers, whereas in P7 and P21 arteries, the actin fibers had a significantly reduced intensity and were restricted to cell borders. Phosphorylation of myosin light chains, a Rho kinase substrate, was highest in P1 endothelium and significantly reduced in P7 and P21 endothelium (laser-scanning microscopy). In P1 arteries, inhibition of Rho (C3 transferase) or Rho kinase (Y27632) significantly reduced the intensity of actin fibers, which were restricted to cell borders. Similarly, in P1 arteries, Rho inhibition significantly reduced endothelial levels of phosphorylated myosin light chains. These results indicate that the atypical function and morphology of newborn endothelium is mediated by Rho/Rho kinase signaling. Copyright © 2014 the American Physiological Society.

  20. Postjunctional synergism of norepinephrine with ATP and diadenosine tetraphosphate in Guinea pig vas deferens. Role of protein kinase C and Myosin light chain phosphatase.

    PubMed

    Khattab, Mahmoud M; Al-Rawi, Mahmood B; Aleisa, Abdulaziz M

    2007-01-01

    In isolated guinea pig vas deferens, prior addition of norepinephrine (NE) significantly potentiated the contractile responses to adenosine-5'-triphosphate (ATP) and diadenosine tetraphosphate (AP4A) in a dose-dependent manner up to 240% of the control purine dose. The myosin light chain phosphatase (MLCP) inhibitor cantharidin at a dose of 10 micromol/l caused significant enhancement of ATP at concentrations of 1 and 3 mmol/l by 91 and 95% respectively. Similarly, cantharidin enhanced the contraction to AP4A, 30 and 100 micromol/l by 92 and 100% respectively. Inhibition of protein kinase C (PKC) by the use of chelerythrine (10 micromol/l), incubated at the vas deferens for 60 min, inhibited the NE-induced enhancement of purine-induced contraction. Chelerythrine reversed the NE-ATP and NE-AP4A synergism back close to control ATP and AP4A contraction values respectively. It can be concluded that postjunctional synergism becomes evident not only for adenine mononucleotides and NE but also for diadenosine polyphosphates presented here by AP4A in the guinea pig vas deferens. This synergism involves receptor-mediated activation of PKC and possibly PKC-induced inhibition of MLCP. Copyright (c) 2007 S. Karger AG, Basel.

  1. Reversible differentiation of human monoblastic leukemia U937 cells by ML-9, an inhibitor of myosin light chain kinase.

    PubMed

    Yamamoto-Yamaguchi, Y; Makishima, M; Kanatani, Y; Kasukabe, T; Honma, Y

    1996-05-01

    Human monoblastic leukemia U937 cells are induced to differentiate into monocytes and macrophages by various agents. We have shown that 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-9), an inhibitor of myosin light chain kinase, induces differentiation of monocytoid leukemia cell lines U937 and THP-1 but not of myeloblastic leukemic ML-1 cell or erythroleukemia K562 cells. In the present study, we further analyzed the effect of ML-9 in comparison with that of 1 alpha, 25-dihydroxyvitamin D3 (VD3) a typical inducer of monocytic differentiation. ML-9 induced nitroblue tetrazolium (NBT)-reducing activity of U937 cell more rapidly than VD3: This differentiation marker was induced significantly after incubation with ML-9 and VD3 for 4 hours and 1 day, respectively. ML-9 also induced alpha-naphthyl acetate esterase (ANAE) activity, another monocytic differentiation marker, more rapidly than VD3. The maximum levels of these markers induced by ML-9 were comparable to those induced by VD3, but after removal of ML-9 from the medium by washing the cells, the expressions of theses markers decreased within 4 hours and reached basal levels in 1 day, indicating that ML-9's induction of expression of differentiation-associated phenotypes was reversible. The growth inhibition of U937 cells by ML-9 was also reversible. Similar effects were observed in another line of human monoblastic cells, THP-1. ML-9 had little or no effect on the morphology of U937 cells but increased the expression of monocyte-macrophage lineage-associated surface antigen, CD14, to some extent. Irreversible terminal differentiation induced by VD3 is associated with down regulation of the expression of c-myc and upregulation of the expression of c-fos and c-jun, but ML-9 did not affect the expression of these oncogenes appreciably. ML-9-induced differentiation was also reversible when the cells were cultured with cultured with ML-9 plus an anti-cancer drug such as 1-beta

  2. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels

    PubMed Central

    Dickman, Elizabeth M.; Newell, Jennifer M.; González, María J.; Vanni, Michael J.

    2008-01-01

    The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types. PMID:19011082

  3. Myosin light chain phosphorylation is critical for adaptation to cardiac stress.

    PubMed

    Warren, Sonisha A; Briggs, Laura E; Zeng, Huadong; Chuang, Joyce; Chang, Eileen I; Terada, Ryota; Li, Moyi; Swanson, Maurice S; Lecker, Stewart H; Willis, Monte S; Spinale, Francis G; Maupin-Furlowe, Julie; McMullen, Julie R; Moss, Richard L; Kasahara, Hideko

    2012-11-27

    Cardiac hypertrophy is a common response to circulatory or neurohumoral stressors as a mechanism to augment contractility. When the heart is under sustained stress, the hypertrophic response can evolve into decompensated heart failure, although the mechanism(s) underlying this transition remain largely unknown. Because phosphorylation of cardiac myosin light chain 2 (MLC2v), bound to myosin at the head-rod junction, facilitates actin-myosin interactions and enhances contractility, we hypothesized that phosphorylation of MLC2v plays a role in the adaptation of the heart to stress. We previously identified an enzyme that predominantly phosphorylates MLC2v in cardiomyocytes, cardiac myosin light-chain kinase (cMLCK), yet the role(s) played by cMLCK in regulating cardiac function in health and disease remain to be determined. We found that pressure overload induced by transaortic constriction in wild-type mice reduced phosphorylated MLC2v levels by ≈40% and cMLCK levels by ≈85%. To examine how a reduction in cMLCK and the corresponding reduction in phosphorylated MLC2v affect function, we generated Mylk3 gene-targeted mice and transgenic mice overexpressing cMLCK specifically in cardiomyocytes. Pressure overload led to severe heart failure in cMLCK knockout mice but not in mice with cMLCK overexpression in which cMLCK protein synthesis exceeded degradation. The reduction in cMLCK protein during pressure overload was attenuated by inhibition of ubiquitin-proteasome protein degradation systems. Our results suggest the novel idea that accelerated cMLCK protein turnover by the ubiquitin-proteasome system underlies the transition from compensated hypertrophy to decompensated heart failure as a result of reduced phosphorylation of MLC2v.

  4. Immunoglobulin light chain allelic inclusion in systemic lupus erythematosus.

    PubMed

    Fraser, Louise D; Zhao, Yuan; Lutalo, Pamela M K; D'Cruz, David P; Cason, John; Silva, Joselli S; Dunn-Walters, Deborah K; Nayar, Saba; Cope, Andrew P; Spencer, Jo

    2015-08-01

    The principles of allelic exclusion state that each B cell expresses a single light and heavy chain pair. Here, we show that B cells with both kappa and lambda light chains (Igκ and Igλ) are enriched in some patients with the systemic autoimmune disease systemic lupus erythematosus (SLE), but not in the systemic autoimmune disease control granulomatosis with polyangiitis. Detection of dual Igκ and Igλ expression by flow cytometry could not be abolished by acid washing or by DNAse treatment to remove any bound polyclonal antibody or complexes, and was retained after two days in culture. Both surface and intracytoplasmic dual light chain expression was evident by flow cytometry and confocal microscopy. We observed reduced frequency of rearrangements of the kappa-deleting element (KDE) in SLE and an inverse correlation between the frequency of KDE rearrangement and the frequency of dual light chain expressing B cells. We propose that dual expression of Igκ and Igλ by a single B cell may occur in some patients with SLE when this may be a consequence of reduced activity of the KDE. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Light Chain Amyloidosis

    PubMed Central

    Milani, Paolo; Merlini, Giampaolo

    2018-01-01

    Light chain (AL) amyloidosis is caused by a usually small plasma-cell clone that is able to produce the amyloidogenic light chains. They are able to misfold and aggregate, deposit in tissues in the form of amyloid fibrils and lead to irreversible organ dysfunction and eventually death if treatment is late or ineffective. Cardiac damage is the most important prognostic determinant. The risk of dialysis is predicted by the severity of renal involvement, defined by the baseline proteinuria and glomerular filtration rate, and by the response to therapy. The specific treatment is chemotherapy targeting the underlying plasma-cell clone. It needs to be risk-adapted, according to the severity of cardiac and/or multi-organ involvement. Autologous stem cell transplant (preceded by induction and/or followed by consolidation with bortezomib-based regimens) can be considered for low-risk patients (~20%). Bortezomib combined with alkylators is used in the majority of intermediate-risk patients, and with possible dose escalation in high-risk subjects. Novel, powerful anti-plasma cell agents were investigated in the relapsed/refractory setting, and are being moved to upfront therapy in clinical trials. In addition, the use of novel approaches based on antibodies targeting the amyloid deposits or small molecules interfering with the amyloidogenic process gave promising results in preliminary studies. Some of them are under evaluation in controlled trials. These molecules will probably add powerful complements to standard chemotherapy. The understanding of the specific molecular mechanisms of cardiac damage and the characteristics of the amyloidogenic clone are unveiling novel potential treatment approaches, moving towards a cure for this dreadful disease. PMID:29531659

  6. Gluten-induced symptoms in diarrhea-predominant irritable bowel syndrome are associated with increased myosin light chain kinase activity and claudin-15 expression

    PubMed Central

    Wu, Richard Licheng; Vazquez-Roque, Maria; Carlson, Paula; Burton, Duane; Grover, Madhusudan; Camilleri, Michael; Turner, Jerrold R.

    2016-01-01

    The mechanisms underlying diarrhea-predominant irritable bowel syndrome (IBS-D) are poorly understood, but increased intestinal permeability is thought to contribute to symptoms. A recent clinical trial of gluten-free diet (GFD) demonstrated symptomatic improvement, relative to gluten-containing diet (GCD), that was associated with reduced intestinal permeability in non-celiac disease IBS-D patients. The aim of this study was to characterize intestinal epithelial tight junction composition in IBS-D before and after dietary gluten challenge. Biopsies from 27 IBS-D patients (13 GFD; 14 GCD) were examined by H&E staining and semi-quantitative immunohistochemistry for phosphorylated myosin II regulatory light chain (MLC), MLC kinase, claudin-2, claudin-8, and claudin-15. Diet-induced changes were assessed and correlated with urinary mannitol excretion (after oral administration). In the small intestine, epithelial MLC phosphorylation was increased or decreased by GCD or GFD, respectively, and this correlated with increased intestinal permeability (P < 0.03). Colonocyte expression of the paracellular Na+ channel claudin-15 was also markedly augmented following GCD challenge (P < 0.05). Conversely, colonic claudin-2 expression correlated with reduced intestinal permeability (P < 0.03). Claudin-8 expression was not affected by dietary challenge. These data show that alterations in MLC phosphorylation and claudin-15 and claudin-2 expression are associated with gluten-induced symptomatology and intestinal permeability changes in IBS-D. The results provide new insight into IBS-D mechanisms and can explain permeability responses to gluten challenge in these patients. PMID:27869798

  7. Oxidative Post-Translational Modifications of an Amyloidogenic Immunoglobulin Light Chain Protein.

    PubMed

    Lu, Yanyan; Jiang, Yan; Prokaeva, Tatiana; Connors, Lawreen H; Costello, Catherine E

    2017-05-01

    Immunoglobulin light chain amyloidosis (AL) is a plasma cell disorder characterized by overproduction and deposition of monoclonal immunoglobulin (Ig) light chains (LC) or variable region fragments as amyloid fibrils in various organs and tissues. Much clinical evidence indicates that patients with AL amyloidosis sustain cardiomyocyte impairment and suffer from oxidative stress. We seek to understand the underlying biochemical pathways whose disruption or amplification during sporadic or sustained disease states leads to harmful physiological consequences and to determine the detailed structures of intermediates and products that serve as signposts for the biochemical changes and represent potential biomarkers. In this study, matrix-assisted laser desorption/ionization mass spectrometry provided extensive evidence for oxidative post-translational modifications (PTMs) of an amyloidogenic Ig LC protein from a patient with AL amyloidosis. Some of the tyrosine residues were heavily mono- or di-chlorinated. In addition, a novel oxidative conversion to a nitrile moiety was observed for many of the terminal aminomethyl groups on lysine side chains. In vitro experiments using model peptides, in-solution oxidation, and click chemistry demonstrated that hypochlorous acid produced by the myeloperoxidase - hydrogen peroxide - chloride system could be responsible for these and other, more commonly observed modifications.

  8. Assessment of Intrathecal Free Light Chain Synthesis: Comparison of Different Quantitative Methods with the Detection of Oligoclonal Free Light Chains by Isoelectric Focusing and Affinity-Mediated Immunoblotting.

    PubMed

    Zeman, David; Kušnierová, Pavlína; Švagera, Zdeněk; Všianský, František; Byrtusová, Monika; Hradílek, Pavel; Kurková, Barbora; Zapletalová, Olga; Bartoš, Vladimír

    2016-01-01

    We aimed to compare various methods for free light chain (fLC) quantitation in cerebrospinal fluid (CSF) and serum and to determine whether quantitative CSF measurements could reliably predict intrathecal fLC synthesis. In addition, we wished to determine the relationship between free kappa and free lambda light chain concentrations in CSF and serum in various disease groups. We analysed 166 paired CSF and serum samples by at least one of the following methods: turbidimetry (Freelite™, SPAPLUS), nephelometry (N Latex FLC™, BN ProSpec), and two different (commercially available and in-house developed) sandwich ELISAs. The results were compared with oligoclonal fLC detected by affinity-mediated immunoblotting after isoelectric focusing. Although the correlations between quantitative methods were good, both proportional and systematic differences were discerned. However, no major differences were observed in the prediction of positive oligoclonal fLC test. Surprisingly, CSF free kappa/free lambda light chain ratios were lower than those in serum in about 75% of samples with negative oligoclonal fLC test. In about a half of patients with multiple sclerosis and clinically isolated syndrome, profoundly increased free kappa/free lambda light chain ratios were found in the CSF. Our results show that using appropriate method-specific cut-offs, different methods of CSF fLC quantitation can be used for the prediction of intrathecal fLC synthesis. The reason for unexpectedly low free kappa/free lambda light chain ratios in normal CSFs remains to be elucidated. Whereas CSF free kappa light chain concentration is increased in most patients with multiple sclerosis and clinically isolated syndrome, CSF free lambda light chain values show large interindividual variability in these patients and should be investigated further for possible immunopathological and prognostic significance.

  9. Assessment of Intrathecal Free Light Chain Synthesis: Comparison of Different Quantitative Methods with the Detection of Oligoclonal Free Light Chains by Isoelectric Focusing and Affinity-Mediated Immunoblotting

    PubMed Central

    Kušnierová, Pavlína; Švagera, Zdeněk; Všianský, František; Byrtusová, Monika; Hradílek, Pavel; Kurková, Barbora; Zapletalová, Olga; Bartoš, Vladimír

    2016-01-01

    Objectives We aimed to compare various methods for free light chain (fLC) quantitation in cerebrospinal fluid (CSF) and serum and to determine whether quantitative CSF measurements could reliably predict intrathecal fLC synthesis. In addition, we wished to determine the relationship between free kappa and free lambda light chain concentrations in CSF and serum in various disease groups. Methods We analysed 166 paired CSF and serum samples by at least one of the following methods: turbidimetry (Freelite™, SPAPLUS), nephelometry (N Latex FLC™, BN ProSpec), and two different (commercially available and in-house developed) sandwich ELISAs. The results were compared with oligoclonal fLC detected by affinity-mediated immunoblotting after isoelectric focusing. Results Although the correlations between quantitative methods were good, both proportional and systematic differences were discerned. However, no major differences were observed in the prediction of positive oligoclonal fLC test. Surprisingly, CSF free kappa/free lambda light chain ratios were lower than those in serum in about 75% of samples with negative oligoclonal fLC test. In about a half of patients with multiple sclerosis and clinically isolated syndrome, profoundly increased free kappa/free lambda light chain ratios were found in the CSF. Conclusions Our results show that using appropriate method-specific cut-offs, different methods of CSF fLC quantitation can be used for the prediction of intrathecal fLC synthesis. The reason for unexpectedly low free kappa/free lambda light chain ratios in normal CSFs remains to be elucidated. Whereas CSF free kappa light chain concentration is increased in most patients with multiple sclerosis and clinically isolated syndrome, CSF free lambda light chain values show large interindividual variability in these patients and should be investigated further for possible immunopathological and prognostic significance. PMID:27846293

  10. Conventional light chains inhibit the autonomous signaling capacity of the B cell receptor.

    PubMed

    Meixlsperger, Sonja; Köhler, Fabian; Wossning, Thomas; Reppel, Michael; Müschen, Markus; Jumaa, Hassan

    2007-03-01

    Signals from the B cell antigen receptor (BCR), consisting of mu heavy chain (muHC) and conventional light chain (LC), and its precursor the pre-BCR, consisting of muHC and surrogate light chain (SLC), via the adaptor protein SLP-65 regulate the development and function of B cells. Here, we compare the effect of SLC and conventional LC expression on receptor-induced Ca(2+) flux in B cells expressing an inducible form of SLP-65. We found that SLC expression strongly enhanced an autonomous ability of muHC to induce Ca(2+) flux irrespective of additional receptor crosslinking. In contrast, LC expression reduced this autonomous muHC ability and resulted in antigen-dependent Ca(2+) flux. These data indicate that autonomous ligand-independent signaling can be induced by receptor forms other than the pre-BCR. In addition, our data suggest that conventional LCs play an important role in the inhibition of autonomous receptor signaling, thereby allowing further B cell differentiation.

  11. Differential control of the tyrosine kinases Lyn and Syk by the two signaling chains of the high affinity immunoglobulin E receptor.

    PubMed

    Jouvin, M H; Adamczewski, M; Numerof, R; Letourneur, O; Vallé, A; Kinet, J P

    1994-02-25

    Nonreceptor tyrosine kinases such as the newly described 70-kDa (ZAP-70/Syk) and Src-related tyrosine kinases are coupled to a variety of receptors, including the antigen receptors on B- and T-cells and the Fc receptors for IgE (Fc epsilon RI) and IgG (Fc gamma RI, Fc gamma RIII/CD16). Various subunits of these receptors contain homologous activation motifs which appear capable of autonomously triggering cell activation. Two forms of this motif are present in the Fc epsilon RI multimeric complex: one in the beta chain and one in the gamma chain. Here we show that each of the two tyrosine kinases known to be involved in Fc epsilon RI signaling is controlled by a distinct motif-containing chain. Lyn associates with the nonactivated beta chain, whereas gamma promotes the activation of Syk. We also show that neither the beta nor the gamma motif alone can account for the full signaling capacity of the entire receptor. We propose that, upon triggering of the tetrameric receptor, Lyn already bound to beta becomes activated and phosphorylates beta and gamma; the phosphorylation of gamma induces the association of Syk with gamma and also the activation of Syk, resulting in the phosphorylation and activation of phospholipase C gamma 1. Cooperative recruitment of specific kinases by the various signaling chains found in this family of antigen receptors could represent a way to achieve the full signaling capacity of the multimeric complexes.

  12. Acquired Fanconi syndrome with proximal tubular cytoplasmic fibrillary inclusions of λ light chain restriction.

    PubMed

    Yao, Ying; Wang, Su-Xia; Zhang, You-Kang; Wang, Yan; Liu, Li; Liu, Gang

    2014-01-01

    Light chain proximal tubulopathy is a rarely reported entity associated with plasma cell dyscrasia that classically manifests as acquired Fanconi syndrome and is characterized by the presence of κ-restricted crystals in the proximal tubular cytoplasm. We herein present a case of multiple myeloma with Fanconi syndrome and acute kidney injury due to light chain proximal tubulopathy with light chain cast nephropathy. Prominent phagolysosomes and numerous irregularly shaped inclusions with a fibrillary matrix in the cytoplasm of the proximal tubules were identified on electron microscopy. A monotypic light chain of the λ type was detected in the distal tubular casts, proximal tubular cytoplasmic lysosomes and fibrillary inclusions on immunofluorescence and immune electron microscopy. This case underscores the importance of conducting careful ultrastructural investigations and immunocytologic examinations of light chains for detecting and diagnosing light chain proximal tubulopathy.

  13. Polyphosphate kinase: demonstration that short chain polyphosphate serves as a primer for the enzymatic synthesis of polyphosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, N.A.; Wood, H.G.

    1986-05-01

    Polyphosphate (poly(P)) kinase, isolated from Propionibacterium shermanii, catalyzes the following reaction: poly(P/sub n/) + ATPin equilibriumpoly(P/sub n+1/) + ADP. The authors have purified this enzyme to 90% homogeneity and have shown it to be composed of 2-3 identical subunits of M/sub r/ 80,000. Investigation of the reaction mechanism by product analysis has revealed that the elongation phase is processive whereby successive elongation occurs without release of intermediate sizes until very long chains are formed. The initiation phase of synthesis has been investigated using (/sup 32/P) poly(P) primer of chain length 11-60. It is incorporated into long chain poly(P) and themore » /sup 32/P has been shown, by use of poly(P) glucokinase, to be localized at the end of the molecule. Calculation of average chain length based upon the incorporation of /sup 32/P, however, yields a value approx.3 fold higher than the value calculated by another method using poly(P) glucokinase. This result indicates that initiation of poly(P) synthesis occurs by at least one other route which does not involve short chain poly(P) primers. The effect of temperature and concentration of poly(P) primer upon the average chain length of poly(P) synthesized was also investigated. A general trend was observed in which the chain length of the synthesized poly(P) decreased as either temperature or concentration or primer was increased.« less

  14. Cysteine Racemization on IgG Heavy and Light Chains

    PubMed Central

    Zhang, Qingchun; Flynn, Gregory C.

    2013-01-01

    Under basic pH conditions, the heavy chain 220-light chain 214 (H220-L214) disulfide bond, found in the flexible hinge region of an IgG1, can convert to a thioether. Similar conditions also result in racemization of the H220 cysteine. Here, we report that racemization occurs on both H220 and L214 on an IgG1 with a λ light chain (IgG1λ) but almost entirely on H220 of an IgGl with a κ light chain (IgG1κ) under similar conditions. Likewise, racemization was detected at significant levels on H220 and L214 on endogenous human IgG1λ but only at the H220 position on IgG1κ. Low but measurable levels of d-cysteines were found on IgG2 cysteines in the hinge region, both with monoclonal antibodies incubated under basic pH conditions and on antibodies isolated from human serum. A simplified reaction mechanism involving reversible β-elimination on the cysteine is presented that accounts for both base-catalyzed racemization and thioether formation at the hinge disulfide. PMID:24142697

  15. Biofuel Supply Chains: Impacts, Indicators and Sustainability Metrics

    EPA Science Inventory

    The U.S. EPA’s Office of Research and Development has introduced a program to study the environmental impacts and sustainability of biofuel supply chains. Analyses will provide indicators and metrics for valuating sustainability. In this context, indicators are supply chain rat...

  16. Roles of Protein Kinase A and Adenylate Cyclase in Light-Modulated Cellulase Regulation in Trichoderma reesei

    PubMed Central

    Schuster, André; Tisch, Doris; Seidl-Seiboth, Verena; Kubicek, Christian P.

    2012-01-01

    The cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies of Trichoderma reesei (anamorph of Hypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within the cel6a/cbh2 promoter in light and darkness and in the absence of pkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression in T. reesei and have a dampening effect on the light responsiveness of this process. PMID:22286997

  17. Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones.

    PubMed

    Tachibanaki, Shuji; Arinobu, Daisuke; Shimauchi-Matsukawa, Yoshie; Tsushima, Sawae; Kawamura, Satoru

    2005-06-28

    Cone photoreceptors show briefer photoresponses than rod photoreceptors. Our previous study showed that visual pigment phosphorylation, a quenching mechanism of light-activated visual pigment, is much more rapid in cones than in rods. Here, we measured the early time course of this rapid phosphorylation with good time resolution and directly compared it with the photoresponse time course in cones. At the time of photoresponse recovery, almost two phosphates were incorporated into a bleached cone pigment molecule, which indicated that the visual pigment phosphorylation coincides with the photoresponse recovery. The rapid phosphorylation in cones is attributed to very high activity of visual pigment kinase [G protein-coupled receptor kinase (GRK) 7] in cones. Because of this high activity, cone pigment is readily phosphorylated at very high bleach levels, which probably explains why cone photoresponses recover quickly even after a very bright light and do not saturate under intense background light. The high GRK7 activity is brought about by high content of a highly potent enzyme. The expression level of GRK7 was 10 times higher than that of rod kinase (GRK1), and the specific activity of a single GRK7 molecule was approximately 10 times higher than that of GRK1. The specific activity of GRK7 is the highest among the GRKs so far known. Our result seems to explain the response characteristics of cone photoreceptors in many aspects, including the nonsaturation of the cone responses during daylight vision.

  18. [A wrong move in an amateur football player reveals a light chain myeloma].

    PubMed

    Peyneau, Marine; Nassiri, Shiva; Myara, Anne; Ohana, Salomon; Laplanche, Sophie

    2016-01-01

    Light chain multiple myeloma is a hematologic malignancy characterized by an excess of tumor plasma cells in the bone marrow and a monoclonal light chain in blood. It is generally diagnosed in patients aged 60-75 years old. Hypercalcemia, anemia, kidney failure, and bone pains are the main clinical and biological signs. Here is an atypical case report about a 30 year-old man who was diagnosed a light chain multiple myeloma. This patient had been suffering from back pain for 5 months. Osteolytic lesions were discovered on X-rays prescribed by the family practitioner. Admitted to the Emergency department, all blood tests showed results within the normal range. The serum protein electrophoresis was also normal. Only the urine analysis showed proteinuria. The urine immunofixation electrophoresis showed a massive κ light chain. The bone marrow aspiration cell count confirmed the myeloma diagnosis with an infiltration of dystrophic plasma cells. The patient was transferred to the hematology ward of Necker Hospital for treatment of light chain myeloma.

  19. Structural Insights into the HWE Histidine Kinase Family: The Brucella Blue Light-Activated Histidine Kinase Domain.

    PubMed

    Rinaldi, Jimena; Arrar, Mehrnoosh; Sycz, Gabriela; Cerutti, María Laura; Berguer, Paula M; Paris, Gastón; Estrín, Darío Ariel; Martí, Marcelo Adrián; Klinke, Sebastián; Goldbaum, Fernando Alberto

    2016-03-27

    In response to light, as part of a two-component system, the Brucella blue light-activated histidine kinase (LOV-HK) increases its autophosphorylation, modulating the virulence of this microorganism. The Brucella histidine kinase (HK) domain belongs to the HWE family, for which there is no structural information. The HWE family is exclusively present in proteobacteria and usually coupled to a wide diversity of light sensor domains. This work reports the crystal structure of the Brucella HK domain, which presents two different dimeric assemblies in the asymmetric unit: one similar to the already described canonical parallel homodimers (C) and the other, an antiparallel non-canonical (NC) dimer, each with distinct relative subdomain orientations and dimerization interfaces. Contrary to these crystallographic structures and unlike other HKs, in solution, the Brucella HK domain is monomeric and still active, showing an astonishing instability of the dimeric interface. Despite this instability, using cross-linking experiments, we show that the C dimer is the functionally relevant species. Mutational analysis demonstrates that the autophosphorylation activity occurs in cis. The different relative subdomain orientations observed for the NC and C states highlight the large conformational flexibility of the HK domain. Through the analysis of these alternative conformations by means of molecular dynamics simulations, we also propose a catalytic mechanism for Brucella LOV-HK. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Polo-like Kinase 1 Regulates Vimentin Phosphorylation at Ser-56 and Contraction in Smooth Muscle*

    PubMed Central

    Li, Jia; Wang, Ruping; Gannon, Olivia J.; Rezey, Alyssa C.; Jiang, Sixin; Gerlach, Brennan D.; Liao, Guoning

    2016-01-01

    Polo-like kinase 1 (Plk1) is a serine/threonine-protein kinase that has been implicated in mitosis, cytokinesis, and smooth muscle cell proliferation. The role of Plk1 in smooth muscle contraction has not been investigated. Here, stimulation with acetylcholine induced Plk1 phosphorylation at Thr-210 (an indication of Plk1 activation) in smooth muscle. Contractile stimulation also activated Plk1 in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer signal of a Plk1 sensor. Moreover, knockdown of Plk1 in smooth muscle attenuated force development. Smooth muscle conditional knock-out of Plk1 also diminished contraction of mouse tracheal rings. Plk1 knockdown inhibited acetylcholine-induced vimentin phosphorylation at Ser-56 without affecting myosin light chain phosphorylation. Expression of T210A Plk1 inhibited the agonist-induced vimentin phosphorylation at Ser-56 and contraction in smooth muscle. However, myosin light chain phosphorylation was not affected by T210A Plk1. Ste20-like kinase (SLK) is a serine/threonine-protein kinase that has been implicated in spindle orientation and microtubule organization during mitosis. In this study knockdown of SLK inhibited Plk1 phosphorylation at Thr-210 and activation. Finally, asthma is characterized by airway hyperresponsiveness, which largely stems from airway smooth muscle hyperreactivity. Here, smooth muscle conditional knock-out of Plk1 attenuated airway resistance and airway smooth muscle hyperreactivity in a murine model of asthma. Taken together, these findings suggest that Plk1 regulates smooth muscle contraction by modulating vimentin phosphorylation at Ser-56. Plk1 activation is regulated by SLK during contractile activation. Plk1 contributes to the pathogenesis of asthma. PMID:27662907

  1. Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colson, Brett A.; Locher, Matthew R.; Bekyarova, Tanya

    2010-05-25

    Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca{sup 2+} sensitivity of force (pCa{sub 50}), PKA treatment has been shown to decrease pCa{sub 50}, presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca{sup 2+}-independent force and maximum Ca{sup 2+}-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force,more » we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I{sub 1,1}/I{sub 1,0}) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d{sub 1,0}) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I{sub 1,1}/I{sub 1,0} and, as hypothesized, treatment with MLCK also increased I{sub 1,1}/I{sub 1,0}, which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by {approx}2 nm ({Delta} 3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca{sup 2+} sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.« less

  2. Light chain typing of immunoglobulins in small samples of biological material

    PubMed Central

    Rádl, J.

    1970-01-01

    A method is described for the typing of the light chains of immunoglobulins in small samples of sera or external secretions and without their previous isolation. It consists of immunoelectrophoresis in agar plates which contain specific antisera against one of the light chain types. All immunoglobulins of this type are thus selected by precipitation in the central area during the electrophoretic phase. Immunoglobulins of the opposite light chain type diffuse through the agar and react with the class specific antisera from the troughs. This results in the precipitin lines as in conventional immunoelectrophoresis. This technique has proved most useful for typing heterogenous or homogeneous immunoglobulins in normal and low concentration. The antisera used for incorporation in the agar should fulfil special requirements. They should contain a high level of antibodies against common surface determinants of the immunoglobulin light chains. The further possibilities of this immunoselection technique for typing different protein mixtures is discussed. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6 PMID:4098592

  3. Proximal tubulopathies associated with monoclonal light chains: the spectrum of clinicopathologic manifestations and molecular pathogenesis.

    PubMed

    Herrera, Guillermo A

    2014-10-01

    Lesions associated with monoclonal light and heavy chains display a variety of glomerular, tubular interstitial, and vascular manifestations. While some of the entities are well recognized, including light and heavy chain deposition diseases, AL (light chain) and AH (heavy chain) amyloidosis, and light chain ("myeloma") cast nephropathy, other lesions centered on proximal tubules are much less accurately identified, properly diagnosed, and adequately understood in terms of pathogenesis and molecular mechanisms involved. These proximal tubule-centered lesions are typically associated with monoclonal light chains and have not been reported in patients with circulating monoclonal heavy chains. To determine the incidence of proximal tubulopathies in a series of patients with monoclonal light chain-related renal lesions and characterize them with an emphasis on clinical correlations and elucidation of molecular mechanisms involved in their pathogenesis. A study of 5410 renal biopsies with careful evaluation of light microscopic, immunofluorescence, and electron microscopic findings was conducted to identify these monoclonal light/heavy chain-related lesions. In selected cases, ultrastructural immunolabeling was performed to better illustrate and understand molecular mechanisms involved or to resolve specific diagnostic difficulties. In all, 2.5% of the biopsies were diagnosed as demonstrating renal pathology associated with monoclonal light or heavy chains. Of these, approximately 46% were classified as proximal tubule-centered lesions, also referred to as monoclonal light chain-associated proximal tubulopathies. These proximal tubulopathies were divided into 4 groups defined by characteristic immunomorphologic manifestations associated with specific clinical settings. These are important lesions whose recognition in the different clinical settings is extremely important for patients' clinical management, therapeutic purposes, and prognosis. These entities have been

  4. λ Light Chain Bias Associated With Enhanced Binding and Function of Anti-HIV Env Glycoprotein Antibodies

    PubMed Central

    Sajadi, Mohammad M.; Farshidpour, Maham; Brown, Eric P.; Ouyang, Xin; Seaman, Michael S.; Pazgier, Marzena; Ackerman, Margaret E.; Robinson, Harriet; Tomaras, Georgia; Parsons, Matthew S.; Charurat, Manhattan; DeVico, Anthony L.; Redfield, Robert R.; Lewis, George K.

    2016-01-01

    The humoral response to human immunodeficiency virus (HIV) remains incompletely understood. In this report, we describe biased λ light chain use during the HIV Env glycoprotein (Env) response in HIV infection and vaccination. We examined HIV Env binding (and neutralization) in the context of light chain use in subjects with acute HIV infection, chronic HIV infection, and among HIV vaccinees. In all populations tested, there was a λ chain bias for HIV Env binding antibodies, compared with other HIV antigens (such as p24) or tetanus toxoid. In subjects with chronic HIV infection, a λ bias was noted for neutralization, with λ antibodies accounting for up to 90% of all neutralization activity observed. This is the first report of antibody function in a human infection being tied to light chain use. In HIV infection, antibodies expressing λ light chains tended to have longer CDRL3s, increased light chain contact with HIV Env, and less hypermutation in the heavy chain, compared with antibodies using the κ light chain. These data also support an evolutionary model for the understanding the various κ to λ light chain ratios observed across species and suggest that the λ light chain bias against HIV provides the host an advantage in developing a more efficient humoral response. PMID:26347575

  5. Plant dual-specificity tyrosine phosphorylation-regulated kinase optimizes light-regulated growth and development in Arabidopsis.

    PubMed

    Huang, Wen-Yu; Wu, Yi-Chen; Pu, Hsin-Yi; Wang, Ying; Jang, Geng-Jen; Wu, Shu-Hsing

    2017-09-01

    Light controls vegetative and reproductive development of plants. For a plant, sensing the light input properly ensures coordination with the ever-changing environment. Previously, we found that LIGHT-REGULATED WD1 (LWD1) and LWD2 regulate the circadian clock and photoperiodic flowering. Here, we identified Arabidopsis YET ANOTHER KINASE1 (AtYAK1), an evolutionarily conserved protein and a member of dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs), as an interacting protein of LWDs. Our study revealed that AtYAK1 is an important regulator for various light responses, including the circadian clock, photomorphogenesis and reproductive development. AtYAK1 could antagonize the function of LWDs in regulating the circadian clock and photoperiodic flowering. By examining phenotypes of atyak1, we found that AtYAK1 regulated light-induced period-length shortening and photomorphogenic development. Moreover, AtYAK1 mediated plant fertility especially under inferior light conditions including low light and short-day length. This study discloses a new regulator connecting environmental light to plant growth. © 2017 John Wiley & Sons Ltd.

  6. Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice

    DOE PAGES

    Yuan, Chen-Ching; Muthu, Priya; Kazmierczak, Katarzyna; ...

    2015-06-29

    Myosin light chain kinase (MLCK)-dependent phosphorylation of the regulatory light chain (RLC) of cardiac myosin is known to play a beneficial role in heart disease, but the idea of a phosphorylation-mediated reversal of a hypertrophic cardiomyopathy (HCM) phenotype is novel. Our previous studies on transgenic (Tg) HCM-RLC mice revealed that the D166V (Aspartate166 →Valine) mutation-induced changes in heart morphology and function coincided with largely reduced RLC phosphorylation in situ. In this paper, we hypothesized that the introduction of a constitutively phosphorylated Serine15 (S15D) into the hearts of D166V mice would prevent the development of a deleterious HCM phenotype. In supportmore » of this notion, MLCK-induced phosphorylation of D166V-mutated hearts was found to rescue some of their abnormal contractile properties. Tg-S15D-D166V mice were generated with the human cardiac RLC-S15D-D166V construct substituted for mouse cardiac RLC and were subjected to functional, structural, and morphological assessments. The results were compared with Tg-WT and Tg-D166V mice expressing the human ventricular RLC-WT or its D166V mutant, respectively. Echocardiography and invasive hemodynamic studies demonstrated significant improvements of intact heart function in S15D-D166V mice compared with D166V, with the systolic and diastolic indices reaching those monitored in WT mice. A largely reduced maximal tension and abnormally high myofilament Ca 2+ sensitivity observed in D166V-mutated hearts were reversed in S15D-D166V mice. Low-angle X-ray diffraction study revealed that altered myofilament structures present in HCM-D166V mice were mitigated in S15D-D166V rescue mice. Finally, our collective results suggest that expression of pseudophosphorylated RLC in the hearts of HCM mice is sufficient to prevent the development of the pathological HCM phenotype.« less

  7. Light-assisted, templated self-assembly of gold nanoparticle chains.

    PubMed

    Jaquay, Eric; Martínez, Luis Javier; Huang, Ningfeng; Mejia, Camilo A; Sarkar, Debarghya; Povinelli, Michelle L

    2014-09-10

    We experimentally demonstrate the technique of light-assisted, templated self-assembly (LATS) to trap and assemble 200 nm diameter gold nanoparticles. We excite a guided-resonance mode of a photonic-crystal slab with 1.55 μm laser light to create an array of optical traps. Unlike our previous demonstration of LATS with polystyrene particles, we find that the interparticle interactions play a significant role in the resulting particle patterns. Despite a two-dimensionally periodic intensity profile in the slab, the particles form one-dimensional chains whose orientations can be controlled by the incident polarization of the light. The formation of chains can be understood in terms of a competition between the gradient force due to the excitation of the mode in the slab and optical binding between particles.

  8. Association of immunoglobulin G4 and free light chain with idiopathic pleural effusion.

    PubMed

    Murata, Y; Aoe, K; Mimura-Kimura, Y; Murakami, T; Oishi, K; Matsumoto, T; Ueoka, H; Matsunaga, K; Yano, M; Mimura, Y

    2017-10-01

    The cause of pleural effusion remains uncertain in approximately 15% of patients despite exhaustive evaluation. As recently described immunoglobulin (Ig)G4-related disease is a fibroinflammatory disorder that can affect various organs, including the lungs, we investigate whether idiopathic pleural effusion includes IgG4-associated etiology. Between 2000 and 2012, we collected 830 pleural fluid samples and reviewed 35 patients with pleural effusions undiagnosed after pleural biopsy at Yamaguchi-Ube Medical Center. Importantly, IgG4 immunostaining revealed infiltration of IgG4-positive plasma cells in the pleura of 12 patients (34%, IgG4 + group). The median effusion IgG4 level was 41 mg/dl in the IgG4 + group and 27 mg/dl in the IgG4 - group (P < 0·01). The light and heavy chains of effusion IgG4 antibodies of patients in the IgG4 + group were heterogeneous by two-dimensional electrophoresis, indicating the absence of clonality of the IgG4 antibodies. Interestingly, the κ light chains were more heterogeneous than the λ light chains. The measurement of the κ and λ free light chain (FLC) levels in the pleural fluids showed significantly different κ FLC levels (median: 28·0 versus 9·1 mg/dl, P < 0·01) and κ/λ ratios (median: 2·0 versus 1·2, P < 0·001) between the IgG4 + and IgG4 - groups. Furthermore, the κ/λ ratios were correlated with the IgG4 + /IgG + plasma cell ratios in the pleura of the IgG4 + group. Taken together, these results demonstrate the involvement of IgG4 in certain idiopathic pleural effusions and provide insights into the diagnosis, pathogenesis and therapeutic opportunities of IgG4-associated pleural effusion. © 2017 British Society for Immunology.

  9. Ethylene Rapidly Up-Regulates the Activities of Both Monomeric GTP-Binding Proteins and Protein Kinase(s) in Epicotyls of Pea1

    PubMed Central

    Moshkov, Igor E.; Novikova, Galina V.; Mur, Luis A.J.; Smith, Aileen R.; Hall, Michael A.

    2003-01-01

    It is demonstrated that, in etiolated pea (Pisum sativum) epicotyls, ethylene affects the activation of both monomeric GTP-binding proteins (monomeric G-proteins) and protein kinases. For monomeric G-proteins, the effect may be a rapid (2 min) and bimodal up-regulation, a transiently unimodal activation, or a transient down-regulation. Pretreatment with 1-methylcyclopropene abolishes the response to ethylene overall. Immunoprecipitation studies indicate that some of the monomeric G-proteins affected may be of the Rab class. Protein kinase activity is rapidly up-regulated by ethylene, the effect is inhibited by 1-methylcyclopropene, and the activation is bimodal. Immunoprecipitation indicates that the kinase(s) are of the MAP kinase ERK1 group. It is proposed that the data support the hypothesis that a transduction chain exists that is separate and antagonistic to that currently revealed by studies on Arabidopsis mutants. PMID:12692330

  10. Primary CNS Nonamyloidogenic Light Chain Deposition Disease: Case Report and Brief Review.

    PubMed

    Mercado, Juan Jose; Markert, James M; Meador, William; Chapman, Philip; Perry, Arie; Hackney, James R

    2017-12-01

    The true incidence of light chain deposition disease (LCDD) restricted to the central nervous system (CNS) is unknown. To our knowledge only 7 cases of LCDD restricted to the brain have been previously reported. We herein describe an unusual example. A 44-year-old man presented with a history of ischemic retinopathy in 2004 and left lower extremity hypoesthesia in 2007 that progressed gradually to left-sided weakness and numbness in the 2 years prior to his hospitalization in 2015. A stereotactic brain biopsy was performed, displaying nonspecific hyaline deposits of amorphous "amyloid-like" material involving deep brain white matter and vessels. These were Congo red negative and were accompanied by a sparse lymphoplasmacytic infiltrate. Plasma cells demonstrated kappa light chain class restriction by chromogenic in situ hybridization (CISH). There was patchy reactivity with kappa immunohistochemistry in the amorphous deposits. A diagnosis of light chain deposition disease was made. Subsequent systemic myeloma and lymphoma workups were negative. Previously reported cases have included men and women, spanning the ages of 19 and 72 years, often presenting with hemiparesis, hypoesthesia, or seizures. Deposits have been reported in the cerebrum and cerebellum. T2/FLAIR (fluid attenuation inversion recovery) changes are usual, but lesions may or may not produce contrast enhancement. The light chain deposition may be of kappa or lambda class. Most lesions have been accompanied by local lymphoid and/or plasma cell infiltrates exhibiting light chain restriction of the same class as the deposits. In summary, LCDD limited to the CNS is a rare lesion consisting of deposition of amyloid-like, but Congo red-negative monotypic light chain usually produced by local lymphoplasmacytic infiltrates.

  11. Validation of serum free light chain reference ranges in primary care.

    PubMed

    Galvani, Luca; Flanagan, Jane; Sargazi, Mansour; Neithercut, William D

    2016-05-01

    The demand for measurement of serum immunoglobulin free kappa (κ) and lambda (λ) light chains has increased. The κ:λ ratio is used to assist in diagnosis/monitoring of plasma cell disorders. The binding site reference range for serum-free light chain κ:λ ratios of 0.26-1.65 was derived from healthy volunteers. Subsequently, a reference range of 0.37-3.1 for patients with chronic kidney disease has been proposed. Elevated free light chain concentrations and borderline raised free light chain ratios also may be found in polyclonal gammopathies and with other non-renal illnesses. This assessment was conducted to validate the established free light chain reference ranges in individuals from primary care. A total of 130 samples were identified from routine blood samples collected in primary care for routine biochemistry testing and estimated glomerular filtration rate calculation. The median and range of κ:λ ratios found in each estimated glomerular filtration rate group used for chronic kidney disease classification were higher than previously described. This was the case for individuals with normal or essentially normal renal function with estimated glomerular filtration rates>90, (0.58-1.76) and estimated glomerular filtration rate of 60-90 mL/min/1.73 m(2), (0.71-1.93). Individuals with estimated glomerular filtration rate 15-30, (0.72-4.50) and estimated glomerular filtration rate <15 ml/min/1.73 m(2) (0.71-4.95) also had higher values when compared to the current renal reference range of 0.37-3.10. Elevation of free light chain-κ:λ ratios may occur in the absence of a reduced renal function shown by a normal estimated glomerular filtration rate and in the presence of reduced renal function by estimated glomerular filtration rate when comparing results with the established reference ranges. Explanations include choice of analytical systems or the presence of other concurrent non-plasma cell illness. © The Author(s) 2016.

  12. Membrane depolarization-induced RhoA/Rho-associated kinase activation and sustained contraction of rat caudal arterial smooth muscle involves genistein-sensitive tyrosine phosphorylation

    PubMed Central

    Mita, Mitsuo; Tanaka, Hitoshi; Yanagihara, Hayato; Nakagawa, Jun-ichi; Hishinuma, Shigeru; Sutherland, Cindy; Walsh, Michael P.; Shoji, Masaru

    2013-01-01

    Rho-associated kinase (ROK) activation plays an important role in K+-induced contraction of rat caudal arterial smooth muscle (Mita et al., Biochem J. 2002; 364: 431–40). The present study investigated a potential role for tyrosine kinase activity in K+-induced RhoA activation and contraction. The non-selective tyrosine kinase inhibitor genistein, but not the src family tyrosine kinase inhibitor PP2, inhibited K+-induced sustained contraction (IC50 = 11.3 ± 2.4 µM). Genistein (10 µM) inhibited the K+-induced increase in myosin light chain (LC20) phosphorylation without affecting the Ca2+ transient. The tyrosine phosphatase inhibitor vanadate induced contraction that was reversed by genistein (IC50 = 6.5 ± 2.3 µM) and the ROK inhibitor Y-27632 (IC50 = 0.27 ± 0.04 µM). Vanadate also increased LC20 phosphorylation in a genistein- and Y-27632-dependent manner. K+ stimulation induced translocation of RhoA to the membrane, which was inhibited by genistein. Phosphorylation of MYPT1 (myosin-targeting subunit of myosin light chain phosphatase) was significantly increased at Thr855 and Thr697 by K+ stimulation in a genistein- and Y-27632-sensitive manner. Finally, K+ stimulation induced genistein-sensitive tyrosine phosphorylation of proteins of ∼55, 70 and 113 kDa. We conclude that a genistein-sensitive tyrosine kinase, activated by the membrane depolarization-induced increase in [Ca2+]i, is involved in the RhoA/ROK activation and sustained contraction induced by K+. Ca2+ sensitization, myosin light chain phosphatase, RhoA, Rho-associated kinase, tyrosine kinase PMID:24133693

  13. Tertiary structure of human {Lambda}6 light chains.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokkuluri, P. R.; Solomon, A.; Weiss, D. T.

    1999-01-01

    AL amyloidosis is a disease process characterized by the pathologic deposition of monoclonal light chains in tissue. To date, only limited information has been obtained on the molecular features that render such light chains amyloidogenic. Although protein products of the major human V kappa and V lambda gene families have been identified in AL deposits, one particular subgroup--lambda 6--has been found to be preferentially associated with this disease. Notably, the variable region of lambda 6 proteins (V lambda 6) has distinctive primary structural features including the presence in the third framework region (FR3) of two additional amino acid residues thatmore » distinguish members of this subgroup from other types of light chains. However, the structural consequences of these alterations have not been elucidated. To determine if lambda 6 proteins possess unique tertiary structural features, as compared to light chains of other V lambda subgroups, we have obtained x-ray diffraction data on crystals prepared from two recombinant V lambda 6 molecules. These components, isolated from a bacterial expression system, were generated from lambda 6-related cDNAs cloned from bone marrow-derived plasma cells from a patient (Wil) who had documented AL amyloidosis and another (Jto) with multiple myeloma and tubular cast nephropathy, but no evident fibrillar deposits. The x-ray crystallographic analyses revealed that the two-residue insertion located between positions 68 and 69 (not between 66 and 67 as previously surmised) extended an existing loop region that effectively increased the surface area adjacent to the first complementarity determining region (CDR1). Further, an unusual interaction between the Arg 25 and Phe 2 residues commonly found in lambda 6 molecules was noted. However, the structures of V lambda 6 Wil and Jto also differed from each other, as evidenced by the presence in the latter of certain ionic and hydrophobic interactions that we posit increased

  14. Alternative splicing produces transcripts coding for alpha and beta chains of a hetero-dimeric phosphagen kinase.

    PubMed

    Ellington, W Ross; Yamashita, Daisuke; Suzuki, Tomohiko

    2004-06-09

    Glycocyamine kinase (GK) catalyzes the reversible phosphorylation of glycocyamine (guanidinoacetate), a reaction central to cellular energy homeostasis in certain animals. GK is a member of the phosphagen kinase enzyme family and appears to have evolved from creatine kinase (CK) early in the evolution of multi-cellular animals. Prior work has shown that GK from the polychaete Neanthes (Nereis) diversicolor exits as a hetero-dimer in vivo and that the two polypeptide chains (termed alpha and beta) are coded for by unique transcripts. In the present study, we demonstrate that the GK from a congener Nereis virens is also hetero-dimeric and is coded for by alpha and beta transcripts, which are virtually identical to the corresponding forms in N. diversicolor. The GK gene from N. diversicolor was amplified by PCR. Sequencing of the PCR products showed that the alpha and beta chains are the result of alternative splicing of the GK primary mRNA transcript. These results also strongly suggest that this gene underwent an early tandem exon duplication event. Full-length cDNAs for N. virens GKalpha and GKbeta were individually ligated into expression vectors and the resulting constructs used to transform Escherichia coli expression hosts. Regardless of expression conditions, minimal GK activity was observed in both GKalpha and GKbeta constructs. Inclusion bodies for both were harvested, unfolded in urea and alpha chains, beta chains and mixtures of alpha and beta chains were refolded by sequential dialysis. Only modest amounts of GK activity were observed when alpha and beta were refolded individually. In contrast, when refolded the alpha and beta mixture yielded highly active hetero-dimers, as validated by size exclusion chromatography, electrophoresis and mass spectrometry, with a specific activity comparable to that of natural GK. The above evidence suggests that there is a preference for hetero-dimer formation in the GKs from these two polychaetes. The evolution of the

  15. Therapeutic Approaches for Botulinum Intoxication Targeting Degradation of the Light Chain

    DTIC Science & Technology

    2013-04-01

    SUBJECT TERMS Botulinum toxin , ubiquitin, chimeric toxin light chains, LcA, LcE, Yeast 2 hybrid, intracellular therapy. 16. SECURITY...Synaptic Research will develop dichain hybrids consisting of Clostridium botulinum toxin light chains (LCs) from serotypes A (long-lived) and E...stability to LCs of botulinum toxin can be assessed by mutation of dileucine residues and systematic deletion of residues from LcA-LcE chimeras to provide a

  16. Light-regulated root gravitropism: a role for, and characterization of, a calcium/calmodulin-dependent protein kinase homolog

    NASA Technical Reports Server (NTRS)

    Lu, Y. T.; Feldman, L. J.

    1997-01-01

    Roots of many species grow downward (orthogravitropism) only when illuminated. Previous work suggests that this is a calcium-regulated response and that both calmodulin and calcium/calmodulin-dependent kinases participate in transducing gravity and light stimuli. A genomic sequence has been obtained for a calcium/calmodulin-dependent kinase homolog (MCK1) expressed in root caps, the site of perception for both light and gravity. This homolog consists of 7265 base pairs and contains 11 exons and 10 introns. Since MCK1 is expressed constitutively in both light and dark, it is unlikely that the light directly affects MCK1 expression, though the activity of the protein may be affected by light. In cultivars showing light-regulated gravitropism, we hypothesize that MCK1, or a homolog, functions in establishing the auxin asymmetry necessary for orthogravitropism.

  17. Neurofilament light chain and oligoclonal bands are prognostic biomarkers in radiologically isolated syndrome.

    PubMed

    Matute-Blanch, Clara; Villar, Luisa M; Álvarez-Cermeño, José C; Rejdak, Konrad; Evdoshenko, Evgeniy; Makshakov, Gleb; Nazarov, Vladimir; Lapin, Sergey; Midaglia, Luciana; Vidal-Jordana, Angela; Drulovic, Jelena; García-Merino, Antonio; Sánchez-López, Antonio J; Havrdova, Eva; Saiz, Albert; Llufriu, Sara; Alvarez-Lafuente, Roberto; Schroeder, Ina; Zettl, Uwe K; Galimberti, Daniela; Ramió-Torrentà, Lluís; Robles, René; Quintana, Ester; Hegen, Harald; Deisenhammer, Florian; Río, Jordi; Tintoré, Mar; Sánchez, Alex; Montalban, Xavier; Comabella, Manuel

    2018-04-01

    The prognostic role of cerebrospinal fluid molecular biomarkers determined in early pathogenic stages of multiple sclerosis has yet to be defined. In the present study, we aimed to investigate the prognostic value of chitinase 3 like 1 (CHI3L1), neurofilament light chain, and oligoclonal bands for conversion to clinically isolated syndrome and to multiple sclerosis in 75 patients with radiologically isolated syndrome. Cerebrospinal fluid levels of CHI3L1 and neurofilament light chain were measured by enzyme-linked immunosorbent assay. Uni- and multivariable Cox regression models including as covariates age at diagnosis of radiologically isolated syndrome, number of brain lesions, sex and treatment were used to investigate associations between cerebrospinal fluid CHI3L1 and neurofilament light chain levels and time to conversion to clinically isolated syndrome and multiple sclerosis. Neurofilament light chain levels and oligoclonal bands were independent risk factors for the development of clinically isolated syndrome (hazard ratio = 1.02, P = 0.019, and hazard ratio = 14.7, P = 0.012, respectively) and multiple sclerosis (hazard ratio = 1.03, P = 0.003, and hazard ratio = 8.9, P = 0.046, respectively). The best cut-off to classify cerebrospinal fluid neurofilament light chain levels into high and low was 619 ng/l, and high neurofilament light chain levels were associated with a trend to shorter time to clinically isolated syndrome (P = 0.079) and significant shorter time to multiple sclerosis (P = 0.017). Similarly, patients with radiologically isolated syndrome presenting positive oligoclonal bands converted faster to clinically isolated syndrome and multiple sclerosis (P = 0.005 and P = 0.008, respectively). The effects of high neurofilament light chain levels shortening time to clinically isolated syndrome and multiple sclerosis were more pronounced in radiologically isolated syndrome patients with ≥37 years compared to younger patients. Cerebrospinal fluid

  18. Interpretation Difficulties of Serum Immunofixation Test in Immunoglobulin D Multiple Myeloma with Hidden Lambda Light Chains.

    PubMed

    Biaz, A; Uwingabiye, J; Rachid, A; Dami, A; Bouhsain, S; Ouzzif, Z; Idrissi, S El Machtani

    2018-06-01

    We report a case of immunoglobulin (Ig) D myeloma with hidden lambda light chains in a patient whose immunofixation test was very difficult to interpret: the IgD reacts with the anti-δ heavy chain antiserum but does not react with anti-lambda antiserum. The band in the D heavy chain lane is unmatched in light chain lanes and the band in lambda light chain lane migrates higher. To distinguish between heavy chain disease and immunoglobulin with "hidden" light chains, the sample was exposed to a very high concentration of anti-lambda and anti-kappa antisera for 48 hours. The serum immunofixation test of the sample treated with anti-lambda showed a decrease in the intensity of the band corresponding to D heavy chain lane as well as the modification of its mobility confirming the presence of IgD with the hidden lambda light chains. The IgD myeloma with hidden light chains remains a rare entity, hence the interest of sensitizing health professionals to be vigilant and ensure a good diagnosis. The proposed technique is useful, simple, reliable, and less laborious than those previous reported in the literature. Medical laboratories using Sebia-Hydrasys® system should be aware of the described phenomenon in order to avoid identifying an IgD myeloma as a delta heavy chain disease.

  19. Cross-talk between Rho-associated kinase and cyclic nucleotide-dependent kinase signaling pathways in the regulation of smooth muscle myosin light chain phosphatase.

    PubMed

    Grassie, Michael E; Sutherland, Cindy; Ulke-Lemée, Annegret; Chappellaz, Mona; Kiss, Enikö; Walsh, Michael P; MacDonald, Justin A

    2012-10-19

    Ca(2+) sensitization of smooth muscle contraction depends upon the activities of protein kinases, including Rho-associated kinase, that phosphorylate the myosin phosphatase targeting subunit (MYPT1) at Thr(697) and/or Thr(855) (rat sequence numbering) to inhibit phosphatase activity and increase contractile force. Both Thr residues are preceded by the sequence RRS, and it has been suggested that phosphorylation at Ser(696) prevents phosphorylation at Thr(697). However, the effects of Ser(854) and dual Ser(696)-Thr(697) and Ser(854)-Thr(855) phosphorylations on myosin phosphatase activity and contraction are unknown. We characterized a suite of MYPT1 proteins and phosphospecific antibodies for specificity toward monophosphorylation events (Ser(696), Thr(697), Ser(854), and Thr(855)), Ser phosphorylation events (Ser(696)/Ser(854)) and dual Ser/Thr phosphorylation events (Ser(696)-Thr(697) and Ser(854)-Thr(855)). Dual phosphorylation at Ser(696)-Thr(697) and Ser(854)-Thr(855) by cyclic nucleotide-dependent protein kinases had no effect on myosin phosphatase activity, whereas phosphorylation at Thr(697) and Thr(855) by Rho-associated kinase inhibited phosphatase activity and prevented phosphorylation by cAMP-dependent protein kinase at the neighboring Ser residues. Forskolin induced phosphorylation at Ser(696), Thr(697), Ser(854), and Thr(855) in rat caudal artery, whereas U46619 induced Thr(697) and Thr(855) phosphorylation and prevented the Ser phosphorylation induced by forskolin. Furthermore, pretreatment with forskolin prevented U46619-induced Thr phosphorylations. We conclude that cross-talk between cyclic nucleotide and RhoA signaling pathways dictates the phosphorylation status of the Ser(696)-Thr(697) and Ser(854)-Thr(855) inhibitory regions of MYPT1 in situ, thereby regulating the activity of myosin phosphatase and contraction.

  20. Characterization of the interaction between the heavy and light chains of bovine factor Va.

    PubMed

    Walker, F J

    1992-10-05

    Bovine factor Va has been previously been shown to consist of heavy (M(r) = 94,000) and light chains (M(r) = 81,000), that interact in a manner dependent upon the presence of either calcium or manganese ions. In an attempt to understand the mechanism of subunit interaction we have studied the effects of temperature and ions on factor Va stability. The rates of formation of factor Va from isolated chains and dissociation were temperature-dependent with an energy of activation of 6.2 and 1.3 kcal mol-1, respectively. The yield of factor Va from isolated chains was inversely related to the amount of time the chains were incubated at 4 degrees C. Incubation of individual chains revealed that the heavy chain is cold-labile, an effect that is reversible. Manganese ion was observed to prevent the conversion to the inactive form. High salt tends to stabilize the two-chain structure of factor Va, but is inhibitory to its formation from isolated chains. High concentrations of either manganese or calcium ions also inhibited reconstitution of activity. The light chain, in particular, was sensitive to the presence of manganese or calcium ion. Heavy chain that had been cleaved by activated protein C had a weakened interaction with the light chain, and the resulting complex had no procoagulant activity. Cooling of the heavy chain to 4 degrees C enhanced its intrinsic fluorescence. Manganese ion prevented some of this enhancement. The heavy chain fluorescence returned to the room temperature value with a half-life of approximately 10 min. In the presence of manganese ion relaxation was accelerated. The intrinsic fluorescence of activated protein C-cleaved heavy chain was not increased when the temperature was decreased. These data suggest that the heavy chain can exist in two forms. Elevated temperature converts it to a form that can bind ions and have a productive interaction with the light chain. However, conditions that prevent the heavy chain from combining with the light

  1. Activation of AMP-kinase by Policosanol Requires Peroxisomal Metabolism

    PubMed Central

    Banerjee, Subhashis; Ghoshal, Sarbani

    2011-01-01

    Policosanol, a well-defined mixture of very long chain primary alcohols that is available as a nutraceutical product, has been reported to lower blood cholesterol levels. The present studies demonstrate that policosanol promotes the phosphorylation of AMP-kinase and HMG-CoA reductase in hepatoma cells and in mouse liver after intragastric administration, providing a possible means by which policosanol might lower blood cholesterol levels. Treatment of hepatoma cells with policosanol produced a 2.5-fold or greater increase in the phosphorylation of AMP-kinase and HMG-CoA reductase, and increased the phosphorylation of Ca++/calmodulin-dependent kinase kinase (CaMKK), an upstream AMP-kinase kinase. Intra-gastric administration of policosanol to mice similarly increased the phosphorylation of hepatic HMG-CoA reductase and AMP-kinase by greater than 2-fold. siRNA-mediated suppression of fatty aldehyde dehydrogenase, fatty acyl-CoA synthetase 4, and acyl-CoA acetyltransferase expression in hepatoma cells prevented the phosphorylation of AMP-kinase and HMG-CoA reductase by policosanol, indicating that metabolism of these very long chain alcohols to activated fatty acids is necessary for the suppression of cholesterol synthesis, presumably by increasing cellular AMP levels. Subsequent peroxisomal β-oxidation probably augments this effect. PMID:21359855

  2. Convergent mechanisms favor fast amyloid formation in two lambda 6a Ig light chain mutants.

    PubMed

    Valdés-García, Gilberto; Millán-Pacheco, César; Pastor, Nina

    2017-08-01

    Extracellular deposition as amyloids of immunoglobulin light chains causes light chain amyloidosis. Among the light chain families, lambda 6a is one of the most frequent in light chain amyloidosis patients. Its germline protein, 6aJL2, and point mutants, R24G and P7S, are good models to study fibrillogenesis, because their stability and fibril formation characteristics have been described. Both mutations make the germline protein unstable and speed up its ability to aggregate. To date, there is no molecular mechanism that explains how these differences in amyloidogenesis can arise from a single mutation. To look into the structural and dynamical differences in the native state of these proteins, we carried out molecular dynamics simulations at room temperature. Despite the structural similarity of the germline protein and the mutants, we found differences in their dynamical signatures that explain the mutants' increased tendency to form amyloids. The contact network alterations caused by the mutations, though different, converge in affecting two anti-aggregation motifs present in light chain variable domains, suggesting a different starting point for aggregation in lambda chains compared to kappa chains. © 2017 Wiley Periodicals, Inc.

  3. A molecular model for self-assembly of amyloid fibrils: Immunoglobulin light chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, F.J.; Myatt, E.A.; Westholm, F.A.

    1995-08-29

    The formation and pathological deposition of amyloid fibrils are defining features of many acquired and inherited disorders, including primary or light-chain-associated amyloidosis, Alzheimer`s disease, and adult-onset diabetes. No pharmacological methods exist to block this process or to effect the removal of fibrils from tissue, and thus, little can be done to prevent organ failure and ultimate death that result from deposition of amyloid. Knowledge of the pathogenesis, treatment, or prevention of these presently incurable diseases is limited due to the relative paucity of information regarding the biophysical basis of amyloid formation. Antibody light chains of different amino acid sequence showmore » differential amyloid-forming tendencies and, as such, can provide insight into the structural organization of amyloid fibrils as well as into basic mechanisms of protein self-assembly. We have compared primary structures of 180 human monoclonal light chains and have identified particular residues and positions within the variable domain that differentiate amyloid-from nonamyloid-associated proteins. We propose a molecular model that accounts for amyloid formation by antibody light chains and might also have implications for other forms of amyloidosis. 24 refs., 2 figs., 1 tab.« less

  4. Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers.

    PubMed

    Toshchevikov, V; Saphiannikova, M; Heinrich, G

    2009-04-16

    We propose a microscopic theory of light-induced deformation of side-chain azobenzene polymers taking into account the internal structure of polymer chains. Our theory is based on the fact that interaction of chromophores with the polarized light leads to the orientation anisotropy of azobenzene macromolecules which is accompanied by the appearance of mechanical stress. It is the first microscopic theory which provides the value of the light-induced stress larger than the yield stress. This result explains a possibility for the inscription of surface relief gratings in glassy side-chain azobenzene polymers. For some chemical architectures, elongation of a sample demonstrates a nonmonotonic behavior with the light intensity and can change its sign (a stretched sample starts to be uniaxially compressed), in agreement with experiments. Using a viscoplastic approach, we show that the irreversible strain of a sample, which remains after the light is switched off, decreases with increasing temperature and can disappear at certain temperature below the glass transition temperature. This theoretical prediction is also confirmed by recent experiments.

  5. Blue light-excited LOV1 and LOV2 domains cooperatively regulate the kinase activity of full-length phototropin2 from Arabidopsis.

    PubMed

    Oide, Mao; Okajima, Koji; Nakagami, Hirofumi; Kato, Takayuki; Sekiguchi, Yuki; Oroguchi, Tomotaka; Hikima, Takaaki; Yamamoto, Masaki; Nakasako, Masayoshi

    2018-01-19

    Phototropin2 (phot2) is a blue-light (BL) receptor that regulates BL-dependent activities for efficient photosynthesis in plants. phot2 comprises two BL-receiving light-oxygen-voltage-sensing domains (LOV1 and LOV2) and a kinase domain. BL-excited LOV2 is thought to be primarily responsible for the BL-dependent activation of the kinase. However, the molecular mechanisms by which small BL-induced conformational changes in the LOV2 domain are transmitted to the kinase remain unclear. Here, we used full-length wild-type and mutant phot2 proteins from Arabidopsis to study their molecular properties in the dark and under BL irradiation. Phosphorylation assays and absorption measurements indicated that the LOV1 domain assists the thermal relaxation of BL-excited LOV2 and vice versa. Using small-angle X-ray scattering and electron microscopy, we observed that phot2 forms a dimer and has a rod shape with a maximum length of 188 Å and a radius of gyration of 44 Å. Under BL, phot2 displayed large conformational changes that bent the rod shape. By superimposing the crystal structures of the LOV1 dimer, LOV2, and a homology model of the kinase to the observed changes, we inferred that the BL-dependent change consisted of positional shifts of both LOV2 and the kinase relative to LOV1. Furthermore, phot2 mutants lacking the photocycle in LOV1 or LOV2 still exhibited conformational changes under BL, suggesting that LOV1 and LOV2 cooperatively contribute to the conformational changes that activate the kinase. These results suggest that BL-activated LOV1 contributes to the kinase activity of phot2. We discuss the possible intramolecular interactions and signaling mechanisms in phot2. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Light-induced conformational changes of LOV1 (light oxygen voltage-sensing domain 1) and LOV2 relative to the kinase domain and regulation of kinase activity in Chlamydomonas phototropin.

    PubMed

    Okajima, Koji; Aihara, Yusuke; Takayama, Yuki; Nakajima, Mihoko; Kashojiya, Sachiko; Hikima, Takaaki; Oroguchi, Tomotaka; Kobayashi, Amane; Sekiguchi, Yuki; Yamamoto, Masaki; Suzuki, Tomomi; Nagatani, Akira; Nakasako, Masayoshi; Tokutomi, Satoru

    2014-01-03

    Phototropin (phot), a blue light (BL) receptor in plants, has two photoreceptive domains named LOV1 and LOV2 as well as a Ser/Thr kinase domain (KD) and acts as a BL-regulated protein kinase. A LOV domain harbors a flavin mononucleotide that undergoes a cyclic photoreaction upon BL excitation via a signaling state in which the inhibition of the kinase activity by LOV2 is negated. To understand the molecular mechanism underlying the BL-dependent activation of the kinase, the photochemistry, kinase activity, and molecular structure were studied with the phot of Chlamydomonas reinhardtii. Full-length and LOV2-KD samples of C. reinhardtii phot showed cyclic photoreaction characteristics with the activation of LOV- and BL-dependent kinase. Truncation of LOV1 decreased the photosensitivity of the kinase activation, which was well explained by the fact that the signaling state lasted for a shorter period of time compared with that of the phot. Small angle x-ray scattering revealed monomeric forms of the proteins in solution and detected BL-dependent conformational changes, suggesting an extension of the global molecular shapes of both samples. Constructed molecular model of full-length phot based on the small angle x-ray scattering data proved the arrangement of LOV1, LOV2, and KD for the first time that showed a tandem arrangement both in the dark and under BL irradiation. The models suggest that LOV1 alters its position relative to LOV2-KD under BL irradiation. This finding demonstrates that LOV1 may interact with LOV2 and modify the photosensitivity of the kinase activation through alteration of the duration of the signaling state in LOV2.

  7. The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake.

    PubMed

    Isakoff, S J; Taha, C; Rose, E; Marcusohn, J; Klip, A; Skolnik, E Y

    1995-10-24

    Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.

  8. Update on treatment of light chain amyloidosis

    PubMed Central

    Mahmood, Shameem; Palladini, Giovanni; Sanchorawala, Vaishali; Wechalekar, Ashutosh

    2014-01-01

    Light chain amyloidosis is the most common type of amyloidosis as a consequence of protein misfolding of aggregates composed of amyloid fibrils. The clinical features are dependent on the organs involved, typically cardiac, renal, hepatic, peripheral and autonomic neuropathy and soft tissue. A tissue biopsy or fat aspirate is needed to confirm the presence/type of amyloid and prognostic tools are important in a risk stratified approach to treatment. Autologous stem cell transplant eligibility should be assessed at baseline, weighing the reversible or non-reversible contraindications, toxicity of treatment and chemotherapy alternatives available. Chemotherapy options include melphalan, thalidomide, bortezomib, lenalidomide, bendamustine in combination with dexamethasone. Many studies have explored these treatment modalities, with ongoing debate about the optimal first line and sequential treatment thereafter. Attaining a very good partial response or better is the treatment goal coupled with early assessment central to optimizing treatment. One major challenge remains increasing the awareness of this disease, frequently diagnosed late as the presenting symptoms mimic many other medical conditions. This review focuses on the treatments for light chain amyloidosis, how these treatments have evolved over the years, improved patient risk stratification, toxicities encountered and future directions. PMID:24497558

  9. Association of plasma cell subsets in the bone marrow and free light chain concentrations in the serum of monoclonal gammopathy patients.

    PubMed

    Ayliffe, Michael John; Behrens, Judith; Stern, Simon; Sumar, Nazira

    2012-08-01

    This study investigated bone marrow plasma cell subsets and monoclonal free light chain concentrations in blood of monoclonal gammopathy patients. 54 bone marrow samples were stained by double immunofluorescence to enumerate cellular subsets making either intact monoclonal immunoglobulin or free light chains only. Blood taken at the same time was assayed for free light chains by an automated immunoassay. Patients were assigned to three cellular population categories: single intact monoclonal immunoglobulin (59%), dual monoclonal immunoglobulin and free light chain only (31%), or single free light chain only (9%). The median affected free light chain concentration of each group was 75 mg/l, 903 mg/l and 3320 mg/l, respectively, but with substantial overlap. In myeloma patients the difference in serum free light chain concentrations between patients with free light chain only marrow cells and those without was statistically significant. Serum free light chain levels >600 mg/l result mostly from marrow cells restricted to free light chain production.

  10. Method for altering antibody light chain interactions

    DOEpatents

    Stevens, Fred J.; Stevens, Priscilla Wilkins; Raffen, Rosemarie; Schiffer, Marianne

    2002-01-01

    A method for recombinant antibody subunit dimerization including modifying at least one codon of a nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in the interface segment of the light polypeptide variable region, the charged amino acid having a first polarity; and modifying at least one codon of the nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in an interface segment of the heavy polypeptide variable region corresponding to a position in the light polypeptide variable region, the charged amino acid having a second polarity opposite the first polarity. Nucleic acid sequences which code for novel light chain proteins, the latter of which are used in conjunction with the inventive method, are also provided.

  11. Preferential use of lambda light chains is associated with defective mouse antibody responses to the capsular polysaccharide of Neisseria meningitidis group B.

    PubMed

    Colino, Jesus; Outschoorn, Ingrid

    2004-01-01

    The capsular polysaccharide of Neisseria meningitidis group B (CpsB) is a very poor immunogen in mammals; this has been considered to be due to the induction of tolerance to cross-reactive host glycoconjugates. It has hampered the development of an effective vaccine against this meningococcal group for many years. Syngeneic populations have a similar tolerogenic background. Thus, we used the variability in ability to mount CpsB-specific immunoglobulin (Ig) responses of individuals from these populations to reveal underlying mechanisms to tolerance contributing to the poor immunogenicity of CpsB. Here we analyze by ELISA, the individual CpsB-specific Ig response of BALB/c and other syngeneic mice to immunization with intact bacteria, using the distribution of light chains as a direct indicator of the repertoire dynamics of the response. Although approximately 96% of anti-CpsB Ig bear kappa-light chains, BALB/c mouse populations were heterogeneous in the light chain composition of their individual anti-CpsB Ig responses. The proportion of kappa and lambda-light chains used for anti-CpsB Ig was a private characteristic that remained relatively constant, for each individual, through repetitive immunizations regardless of the bacterial stimuli size. Despite the prevalence of individual use of kappa-light chains, 5% of BALB/c mice showed restricted usage of lambda-light chains in their CpsB-specific Ig responses, and an additional 11% use them significantly. The preferential use of lambda-light chains in these mice was strongly associated with defective IgM, and absent or barely detectable IgG anti-CpsB responses even after repetitive bacterial immunization. We conclude that differences in the private repertoire of specific Ig also contribute to mouse unresponsiveness to CpsB.

  12. Heavy and Light chain amyloidosois presenting as complete heart block: A rare presentation of a rare disease.

    PubMed

    Priyamvada, P S; Morkhandikar, S; Srinivas, B H; Parameswaran, S

    2015-01-01

    Amyloidosis is an uncommon disease characterized by deposition of proteinaceous material in the extracellular matrix, which results from abnormal protein folding. Even though more than 25 precursor proteins are identified, majority of systemic amyloidosis results from deposition of abnormal immunoglobulin (Ig) light chains. In heavy chain amyloidosis (AH), deposits are derived from both heavy chain alone, whereas in heavy and light chain amyloidosis (AHL), the deposits are derived from Ig heavy chains and light chains. Both AH and AHL are extremely rare diseases. Here, we report an unusual presentation of IgG (lambda) AHL amyloidosis in the background of multiple myeloma, where the initial clinical presentation was complete heart block, which preceded the definitive diagnosis by 18 months.

  13. Engineering botulinum neurotoxin domains for activation by toxin light chain.

    PubMed

    Stancombe, Patrick R; Masuyer, Geoffrey; Birch-Machin, Ian; Beard, Matthew; Foster, Keith A; Chaddock, John A; Acharya, K Ravi

    2012-02-01

    Targeted secretion inhibitors (TSI) are a new class of biopharmaceuticals designed from a botulinum neurotoxin protein scaffold. The backbone consists of the 50-kDa endopeptidase light chain and translocation domain (N-terminal portion of the heavy chain), lacks neuronal toxicity, but retains the ability to target cytoplasmic soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. TSI are produced as single-chain proteins and then cleaved post-translationally to generate functional heterodimers. Precise proteolytic cleavage is essential to activate the protein to a dichain form. TSI are themselves highly specific proteases. We have exploited this activity to create self-activating enzymes by replacing the native proteolytic site with a substrate SNARE peptide for the TSI protease. We have also created cross-activating backbones. By replacing the proteolytic activation site in one backbone with the substrate SNARE peptide for another serotype, controlled activation is achieved. SNARE peptides encompassing the whole of the coiled-coil region enabled complete activation and assembly of the dichain backbone. These engineered TSI backbones are capable of translocating their enzymatic domains to target intracellular SNARE proteins. They are also investigative tools with which to further the understanding of endopeptidase activity of light chain in SNARE interactions. © 2011 Syntaxin Ltd. Journal compilation © 2011 FEBS.

  14. Localized conformational changes trigger the pH-induced fibrillogenesis of an amyloidogenic λ light chain protein.

    PubMed

    Velázquez-López, Isabel; Valdés-García, Gilberto; Romero Romero, Sergio; Maya Martínez, Roberto; Leal-Cervantes, Ana I; Costas, Miguel; Sánchez-López, Rosana; Amero, Carlos; Pastor, Nina; Fernández Velasco, D Alejandro

    2018-07-01

    Solvent conditions modulate the expression of the amyloidogenic potential of proteins. In this work the effect of pH on the fibrillogenic behavior and the conformational properties of 6aJL2, a model protein of the highly amyloidogenic variable light chain λ6a gene segment, was examined. Ordered aggregates showing the ultrastructural and spectroscopic properties observed in amyloid fibrils were formed in the 2.0-8.0 pH range. At pH <3.0 a drastic decrease in lag time and an increase in fibril formation rate were found. In the 4.0-8.0 pH range there was no spectroscopic evidence for significant conformational changes in the native state. Likewise, heat capacity measurements showed no evidence for residual structure in the unfolded state. However, at pH <3.0 stability is severely decreased and the protein suffers conformational changes as detected by circular dichroism, tryptophan and ANS fluorescence, as well as by NMR spectroscopy. Molecular dynamics simulations indicate that acid-induced conformational changes involve the exposure of the loop connecting strands E and F. These results are compatible with pH-induced changes in the NMR spectra. Overall, the results indicate that the mechanism involved in the acid-induced increase in the fibrillogenic potential of 6aJL2 is profoundly different to that observed in κ light chains, and is promoted by localized conformational changes in a region of the protein that was previously not known to be involved in acid-induced light chain fibril formation. The identification of this region opens the potential for the design of specific inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Immunoturbidimetric assay for estimating free light chains of immunoglobulins in urine and serum.

    PubMed Central

    Tillyer, C R; Iqbal, J; Raymond, J; Gore, M; McIlwain, T J

    1991-01-01

    An immunoturbidimetric assay for the assessment of free kappa and lambda light chains of immunoglobulins was developed using a commercial polyclonal antiserum with reactivity towards epitopes on the light chains, which are not expressed when they are bound to heavy chains. The assay, on a centrifugal analyser, is simple and rapid. The limit of detection is 5 mg/l of free light chain, with an assay range of 5-120 mg/l, intrabatch precisions from 1.5-6.4%, and interbatch precisions from 6.5-8.9%. The assay was only slightly less sensitive than colloidal gold staining of cellulose acetate electrophoreses for the detection of Bence-Jones protein in urine. For the serial monitoring of response to chemotherapy in patients with myeloma, the assay correlated well with serum paraprotein estimates obtained by densitometric scanning of Ponceau stained cellulose acetate electrophoreses, but not with serum beta-2 microglobulin measurements, even after correction for the effects of creatinine. These assays may prove to be of use for the monitoring of tumour response in the treatment of Bence-Jones myeloma. PMID:1906071

  16. A single amino acid substitution in the variable region of the light chain specifically blocks immunoglobulin secretion.

    PubMed Central

    Dul, J L; Argon, Y

    1990-01-01

    Although immunoglobulin light chains are usually secreted in association with heavy chains, free light chains can be secreted by lymphocytes. To identify the structural features of light chains that are essential for their secretion, we mutated a conserved sequence in the variable domain of a lambda I light chain. The effects of the mutations on secretion were assayed by transient expression in COS-1 cells. One mutant (AV60), which replaced Ala-60 with Val, was secreted as efficiently as wild-type lambda I by transfected COS-1 cells. This result was not surprising because secreted lambda II chains contain valine in this position. However, a second lambda I mutant (AV60FS62), which replaced Phe-62 with Ser as well as Ala-60 with Val, was not secreted. This mutant was arrested in the endoplasmic reticulum, as judged by immunofluorescence and by its association with a lumenal endoplasmic reticulum protein, immunoglobulin heavy chain binding protein (BiP). The defect in secretion was not due to gross misfolding of the lambda I chain, since cells cotransfected with AV60FS62 and an immunoglobulin heavy chain gene produced functional antigen-binding antibodies. These assembled IgM molecules were still not secreted. Hence, the replacement of Phe-62 with Ser specifically affects a determinant on the lambda I light chain that is necessary for the intracellular transport of this molecule. Images PMID:2122454

  17. Serum-free light-chain analysis in diagnosis and management of multiple myeloma and related conditions.

    PubMed

    Milani, Paolo; Palladini, Giovanni; Merlini, Giampaolo

    2016-01-01

    The introduction of the serum-free light-chain (S-FLC) assay has been a breakthrough in the diagnosis and management of plasma cell dyscrasias, particularly monoclonal light-chain diseases. The first method, proposed in 2001, quantifies serum-free light-chains using polyclonal antibodies. More recently, assays based on monoclonal antibodies have entered into clinical practice. S-FLC measurement plays a central role in the screening for multiple myeloma and related conditions, in association with electrophoretic techniques. Analysis of S-FLC is essential in assessing the risk of progression of precursor diseases to overt plasma cell dyscrasias. It is also useful for risk stratification in solitary plasmacytoma and AL amyloidosis. The S-FLC measurement is part of the new diagnostic criteria for multiple myeloma, and provides a marker to follow changes in clonal substructure over time. Finally, the evaluation of S-FLC is fundamental for assessing the response to treatment in monoclonal light chain diseases.

  18. Ferritin light-chain subunits: key elements for the electron transfer across the protein cage.

    PubMed

    Carmona, Unai; Li, Le; Zhang, Lianbing; Knez, Mato

    2014-12-18

    The first specific functionality of the light-chain (L-chain) subunit of the universal iron storage protein ferritin was identified. The electrons released during iron-oxidation were transported across the ferritin cage specifically through the L-chains and the inverted electron transport through the L-chains also accelerated the demineralization of ferritin.

  19. Light-Flash Wind-Direction Indicator

    NASA Technical Reports Server (NTRS)

    Zysko, Jan A.

    1993-01-01

    Proposed wind-direction indicator read easily by distant observers. Indicator emits bright flashes of light separated by interval of time proportional to angle between true north and direction from which wind blowing. Timing of flashes indicates direction of wind. Flashes, from high-intensity stroboscopic lights seen by viewers at distances up to 5 miles or more. Also seen more easily through rain and fog. Indicator self-contained, requiring no connections to other equipment. Power demand satisfied by battery or solar power or both. Set up quickly to provide local surface-wind data for aircraft pilots during landing or hovering, for safety officers establishing hazard zones and safety corridors during handling of toxic materials, for foresters and firefighters conducting controlled burns, and for real-time wind observations during any of variety of wind-sensitive operations.

  20. Virulence Effects and Signaling Partners Modulated by Brucella melitensis Light-sensing Histidine Kinase

    NASA Astrophysics Data System (ADS)

    Gourley, Christopher R.

    The facultative intracellular pathogen Brucella melitensis utilizes diverse virulence factors. A Brucella light sensing histidine kinase can influence in vitro virulence of the bacteria during intracellular infection. First, we demonstrated that the B. melitensis light sensing kinase (BM-LOV-HK) affects virulence in an IRF-1-/- mouse model of infection. Infection with a Δ BM-LOV-HK strain resulted in less bacterial colonization of IRF-1-/- spleens and extended survivorship compared to mice infected with wild type B. melitensis 16M. Second, using PCR arrays, we observed less expression of innate and adaptive immune system activation markers in ΔBM-LOV-HK infected mouse spleens than wild type B. melitensis 16M infected mouse spleens 6 days after infection. Third, we demonstrated by microarray analysis of B. melitensis that deletion of BM-LOV-HK alters bacterial gene expression. Downregulation of genes involved in control of the general stress response system included the alternative sigma factor RpoE1 and its anti-anti sigma factor PhyR. Conversely, genes involved in flagella production, quorum sensing, and the type IV secretion system (VirB operon) were upregulated in the Δ BM-LOV-HK strain compared to the wild type B. melitensis 16M. Analysis of genes differentially regulated in Δ BM-LOV-HK versus the wild type strain indicated an overlap of 110 genes with data from previous quorum sensing regulator studies of Δ vjbR and/ΔblxR(babR) strains. Also, several predicted RpoE1 binding sites located upstream of genes were differentially regulated in the ΔBM-LOV-HK strain. Our results suggest BM-LOV-HK is important for in vivo Brucella virulence, and reveals that BM-LOV-HK directly or indirect regulates members of the Brucella quorum sensing, type IV secretion, and general stress systems.

  1. Characterization of renal amyloid derived from the variable region of the lambda light chain subgroup II.

    PubMed Central

    Picken, M. M.; Gallo, G.; Buxbaum, J.; Frangione, B.

    1986-01-01

    Amyloid fibrils were extracted from the kidney of a patient (CHE) shown to have tetramers and dimers of a monoclonal lambda light chain in his serum, and whose bone marrow cells in short-term culture synthesized these forms and a smaller lambda fragment of approximately 10,000 to 12,000 daltons. Biochemical and serologic analysis of a fraction of a size (obtained from amyloid fibrils extracted from the kidney) similar to that synthesized by the bone marrow cells revealed a light chain fragment corresponding to the amino terminal end of the variable region of the lambda light chain subgroup II. The presence of similarly sized short fragments of lambda light chain in both the synthesized and deposited protein suggests that aberrant synthesis and/or proteolytic degradation may play a pathogenetic role in the process of amyloidogenesis. Images Figure 1 PMID:3089021

  2. Blue Light-excited Light-Oxygen-Voltage-sensing Domain 2 (LOV2) Triggers a Rearrangement of the Kinase Domain to Induce Phosphorylation Activity in Arabidopsis Phototropin1.

    PubMed

    Oide, Mao; Okajima, Koji; Kashojiya, Sachiko; Takayama, Yuki; Oroguchi, Tomotaka; Hikima, Takaaki; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-09-16

    Phototropin1 is a blue light (BL) receptor in plants and shows BL-dependent kinase activation. The BL-excited light-oxygen-voltage-sensing domain 2 (LOV2) is primarily responsible for the activation of the kinase domain; however, the molecular mechanism by which conformational changes in LOV2 are transmitted to the kinase domain remains unclear. Here, we investigated BL-induced structural changes of a minimum functional fragment of Arabidopsis phototropin1 composed of LOV2, the kinase domain, and a linker connecting the two domains using small-angle x-ray scattering (SAXS). The fragment existed as a dimer and displayed photoreversible SAXS changes reflected in the radii of gyration of 42.9 Å in the dark and 48.8 Å under BL irradiation. In the dark, the molecular shape reconstructed from the SAXS profiles appeared as two bean-shaped lobes in a twisted arrangement that was 170 Å long, 80 Å wide, and 50 Å thick. The molecular shape under BL became slightly elongated from that in the dark. By fitting the crystal structure of the LOV2 dimer and a homology model of the kinase domain to their inferred shapes, the BL-dependent change could be interpreted as the positional shift in the kinase domain relative to that of the LOV2 dimer. In addition, we found that lysine 475, a functionally important residue, in the N-terminal region of LOV2 plays a critical role in transmitting the structural changes in LOV2 to the kinase domain. The interface between the domains is critical for signaling, suitably changing the structure to activate the kinase in response to conformational changes in the adjoining LOV2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Diagnostic reference range of κ/λ free light chain ratio to screen for Bence Jones proteinuria is not significantly influenced by GFR.

    PubMed

    Schmidt-Hieltjes, Yvonne; Elshof, Clemens; Roovers, Lian; Ruinemans-Koerts, Janneke

    2016-05-01

    The aim of our study was to analyse whether the κ/λ free light chain ratio reference range for screening for Bence Jones proteinuria should be dependent on the estimated glomerular filtration rate (eGFR). The serum κ/λ free light chain ratio, eGFR, serum M-protein and Bence Jones protein were measured in 544 patients for whom Bence Jones protein analysis was ordered. In the population of patients without Bence Jones proteinuria or a M-protein (n = 402), there is no gradual increase in κ/λ free light chain ratio with diminishing eGFR. The κ/λ free light chain ratio in this group was 0.56-1.86 (95% interval). With this diagnostic reference range of the κ/λ ratio, 105 of the 110 patients with Bence Jones protein could be identified correctly. Only five patients with Bence Jones proteinuria (<0.17 g/L) were missed, without diagnostic or therapeutic consequences. In 36 patients (6.6%), an abnormal κ/λ free light chain ratio was measured without the presence of Bence Jones proteinuria. A κ/λ free light chain ratio in serum can be used safely and efficiently to select urine samples which should be analysed for Bence Jones proteinuria with an electrophoresis/immunofixation technique. Using this diagnostic reference range, the number of urine samples which should be analysed by electrophoresis/immunofixation could be reduced by 74%. The diagnostic reference interval can be determined best in a group of patients for whom Bence Jones analysis is indicated. For calculation of this reference range, the eGFR value does not need to be taken into account. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Site-directed mutagenesis of the regulatory light-chain Ca2+/Mg2+ binding site and its role in hybrid myosins

    NASA Astrophysics Data System (ADS)

    Reinach, Fernando C.; Nagai, Kiyoshi; Kendrick-Jones, John

    1986-07-01

    The regulatory light chains, small polypeptides located on the myosin head, regulate the interaction of myosin with actin in response to either Ca2+ or phosphorylation. The demonstration that the regulatory light chains on scallop myosin can be replaced by light chains from other myosins has allowed us to compare the functional capabilities of different light chains1, but has not enabled us to probe the role of features, such as the Ca2+/Mg2+ binding site, that are common to all of them. Here, we describe the use of site-directed mutagenesis to study the function of that site. We synthesized the chicken skeletal myosin light chain in Escherichia coli and constructed mutants with substitutions within the Ca2+/Mg2+ binding site. When the aspartate residues at the first and sixth Ca2+ coordination positions are replaced by uncharged alanines, the light chains have a reduced Ca2+ binding capacity but still bind to scallop myosin with high affinity. Unlike the wild-type skeletal light chain which inhibits myosin interaction with actin, the mutants activate it. Thus, an intact Ca2+/Mg2+ binding site in the N-terminal region of the light chain is essential for regulating the interaction of myosin with actin.

  5. The Clinical Presentation and Management of Systemic Light-Chain Amyloidosis in China.

    PubMed

    Huang, Xiang-Hua; Liu, Zhi-Hong

    2016-04-01

    Amyloidosis includes a group of diseases characterized by the extracellular deposition of various fibrillary proteins that can autoaggregate in a highly abnormal fibrillary conformation. The amyloid precursor protein of systemic light-chain (AL) amyloidosis is comprised of monoclonal light chains that are due to plasma cell dyscrasia. The clinical presentation of patients with AL amyloidosis varies from patient to patient. Current treatment strategies target the clone in order to decrease the production of the pathologic light chains. Recent advances in therapy have helped many patients with AL amyloidosis achieve hematologic and organ responses. AL amyloidosis is the most common type of systemic amyloidosis in China with increasing morbidity and a high mortality rate. The clinical presentation of AL amyloidosis is variable, and the median overall survival was found to be 36.3 months. The disease prognosis and risk stratification are linked to serialized measurement of cardiac biomarkers and free light chains. The treatment of AL amyloidosis is mainly based on chemotherapy and autologous hematopoietic stem cell transplantation (ASCT). The use of novel agents (thalidomide, lenalidomide, and bortezomib) alone and in combination with steroids and alkylating agents has shown efficacy and continues to be explored. AL amyloidosis is the most common type of systemic amyloidosis in China with increasing morbidity and a high mortality rate. The lack of prospective clinical trials using the current therapies is a challenge for evidence-based decision making concerning the treatment of AL amyloidosis. (1) AL amyloidosis is the most prevalent type of amyloidosis accounting for 65% of the amyloidosis-diagnosed patients in the UK and for 93% of the amyloidosis-diagnosed patients in China. The predisposition of men over women to develop AL amyloidosis might be higher in China than in Western countries (2:1 vs. 1.3:1). Both in the East and West, incidence increases with age. At

  6. Cytokinesis defect in BY-2 cells caused by ATP-competitive kinase inhibitors.

    PubMed

    Kozgunova, Elena; Higashiyama, Tetsuya; Kurihara, Daisuke

    2016-10-02

    Cytokinesis is last but not least in cell division as it completes the formation of the two cells. The main role in cell plate orientation and expansion have been assigned to microtubules and kinesin proteins. However, recently we reported severe cytokinesis defect in BY-2 cells not accompanied by changes in microtubules dynamics. Here we also confirmed that distribution of kinesin NACK1 is not the cause of cytokinesis defect. We further explored inhibition of the cell plate expansion by ATP-competitive inhibitors. Two different inhibitors, 5-Iodotubercidin and ML-7 resulted in a very similar phenotype, which indicates that they target same protein cascade. Interestingly, in our previous study we showed that 5-Iodotubercidin treatment affects concentration of actin filaments on the cell plate, while ML-7 is inhibitor of myosin light chain kinase. Although not directly, it indicates importance of actomyosin complex in plant cytokinesis.

  7. Early Prognostic Value of Monitoring Serum Free Light Chain in Patients with Multiple Myeloma Undergoing Autologous Stem Cell Transplantation.

    PubMed

    Özkurt, Zübeyde Nur; Sucak, Gülsan Türköz; Akı, Şahika Zeynep; Yağcı, Münci; Haznedar, Rauf

    2017-03-16

    We hypothesized the levels of free light chains obtained before and after autologous stem cell transplantation can be useful in predicting transplantation outcome. We analyzed 70 multiple myeloma patients. Abnormal free light chain ratios before stem cell transplantation were found to be associated early progression, although without any impact on overall survival. At day +30, the normalization of levels of involved free light chain related with early progression. According to these results almost one-third reduction of free light chain levels can predict favorable prognosis after autologous stem cell transplantation.

  8. Mechanism of polyphosphate kinase from Propionibacterium shermanii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, N.A.

    1986-01-01

    Polyphosphate kinase, which catalyzes the reaction shown below, is one of two enzymes which have been reported to catalyze the synthesis of polyphosphate. Purification performed by ammonium sulfate precipitation (0-40% fraction) was followed by chromatography. The enzyme represents 70% of the protein in the hydroxylapatite pool and is stable at this level of purity. The subunit molecular weight was determined by SDS polyacrylamide gel analysis, (83,000 +/- 3000), nondenaturing polyacrylamide gel electrophoresis, (80,000 and 86,000 daltons), gel filtration (Biogel A 0.5m column was 85,000 +/- 4000.) Polyphosphate kinase appears to be a monomeric enzyme of approx.83,000 daltons. Four assays weremore » developed for polyphosphate kinase. Basic proteins such as polylysine stimulate the synthesis of polyphosphate, these proteins cause precipitation of polyphosphate kinase from relatively impure enzyme extracts: Synthesized polyphosphate interacts noncovalently with the basic protein-enzyme precipitate. Efficient synthesis of polyphosphate requires the addition of either phosphate or short chain polyphosphate. Synthesis did occur at 1/10 the rate when neither of these two compounds were included. Initiation, elongation, and termination events of polyphosphate synthesis were examined. Short chain polyphosphate acts as a primer, with (/sup 32/P) short-chain polyphosphate incorporation into long chain polyphosphate by the kinase.« less

  9. Apelin Increases Cardiac Contractility via Protein Kinase Cε- and Extracellular Signal-Regulated Kinase-Dependent Mechanisms

    PubMed Central

    Perjés, Ábel; Skoumal, Réka; Tenhunen, Olli; Kónyi, Attila; Simon, Mihály; Horváth, Iván G.; Kerkelä, Risto; Ruskoaho, Heikki; Szokodi, István

    2014-01-01

    Background Apelin, the endogenous ligand for the G protein-coupled apelin receptor, is an important regulator of the cardiovascular homoeostasis. We previously demonstrated that apelin is one of the most potent endogenous stimulators of cardiac contractility; however, its underlying signaling mechanisms remain largely elusive. In this study we characterized the contribution of protein kinase C (PKC), extracellular signal-regulated kinase 1/2 (ERK1/2) and myosin light chain kinase (MLCK) to the positive inotropic effect of apelin. Methods and Results In isolated perfused rat hearts, apelin increased contractility in association with activation of prosurvival kinases PKC and ERK1/2. Apelin induced a transient increase in the translocation of PKCε, but not PKCα, from the cytosol to the particulate fraction, and a sustained increase in the phosphorylation of ERK1/2 in the left ventricle. Suppression of ERK1/2 activation diminished the apelin-induced increase in contractility. Although pharmacological inhibition of PKC attenuated the inotropic response to apelin, it had no effect on ERK1/2 phosphorylation. Moreover, the apelin-induced positive inotropic effect was significantly decreased by inhibition of MLCK, a kinase that increases myofilament Ca2+ sensitivity. Conclusions Apelin increases cardiac contractility through parallel and independent activation of PKCε and ERK1/2 signaling in the adult rat heart. Additionally MLCK activation represents a downstream mechanism in apelin signaling. Our data suggest that, in addition to their role in cytoprotection, modest activation of PKCε and ERK1/2 signaling improve contractile function, therefore these pathways represent attractive possible targets in the treatment of heart failure. PMID:24695532

  10. Low-Power Light Guiding and Localization in Optoplasmonic Chains Obtained by Directed Self-Assembly

    PubMed Central

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; Reinhard, Björn M.

    2016-01-01

    Optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and, at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth. PMID:26931149

  11. Low-power light guiding and localization in optoplasmonic chains obtained by directed self-assembly

    DOE PAGES

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; ...

    2016-03-02

    Here, optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and,more » at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth.« less

  12. Differential recruitment efficacy of patient-derived amyloidogenic and myeloma light chain proteins by synthetic fibrils-A metric for predicting amyloid propensity.

    PubMed

    Martin, Emily B; Williams, Angela; Wooliver, Craig; Heidel, R Eric; Adams, Sarah; Dunlap, John; Ramirez-Alvarado, Marina; Blancas-Mejia, Luis M; Lands, Ronald H; Kennel, Stephen J; Wall, Jonathan S

    2017-01-01

    Monoclonal free light chain (LC) proteins are present in the circulation of patients with immunoproliferative disorders such as light chain (AL) amyloidosis and multiple myeloma (MM). Light chain-associated amyloid is a complex pathology composed of proteinaceous fibrils and extracellular matrix proteins found in all patients with AL and in ~10-30% of patients who presented with MM. Amyloid deposits systemically in multiple organs and tissues leading to dysfunction and ultimately death. The overall survival of patients with amyloidosis is worse than for those with early stage MM. We have developed a sensitive binding assay quantifying the recruitment of full length, patient-derived LC proteins by synthetic amyloid fibrils, as a method for studying their amyloidogenic potential. In a survey of eight urinary LC, both AL and MM-associated proteins were recruited by synthetic amyloid fibrils; however, AL-associated LC bound significantly more efficiently (p < 0.05) than did MM LCs. The LC proteins used in this study were isolated from urine and presumed to represent a surrogate of serum free light chains. The binding of LC to synthetic fibrils in this assay accurately differentiated LC with amyloidogenic propensity from MM LC that were not associated with clinical amyloid disease. Notably, the LC from a MM patient who subsequently developed amyloid behaved as an AL-associated protein in the assay, indicating the possibility for identifying MM patients at risk for developing amyloidosis based on the light chain recruitment efficacy. With this information, at risk patients can be monitored more closely for the development of amyloidosis, allowing timely administration of novel, amyloid-directed immunotherapies-this approach may improve the prognosis for these patients.

  13. Plasmonic nanoparticle chain in a light field: a resonant optical sail.

    PubMed

    Albaladejo, Silvia; Sáenz, Juan José; Marqués, Manuel I

    2011-11-09

    Optical trapping and driving of small objects has become a topic of increasing interest in multidisciplinary sciences. We propose to use a chain made of metallic nanoparticles as a resonant light sail, attached by one end point to a transparent object and propelling it by the use of electromagnetic radiation. Driving forces exerted on the chain are theoretically studied as a function of radiation's wavelength and chain's alignments with respect to the direction of radiation. Interestingly, there is a window in the frequency spectrum in which null-torque equilibrium configuration, with minimum geometric cross section, corresponds to a maximum in the driving force.

  14. aPKCζ affects directed cell migration through the regulation of myosin light chain phosphorylation

    PubMed Central

    Petrov, Daria; Dahan, Inbal; Cohen-Kfir, Einav; Ravid, Shoshana

    2017-01-01

    ABSTRACT Cell motility is an essential cellular process for a variety of biological events. It requires cross-talk between the signaling and the cytoskeletal systems. Despite the recognized importance of aPKCζ for cell motility, there is little understanding of the mechanism by which aPKCζ mediates extracellular signals to the cytoskeleton. In the present study, we report that aPKCζ is required for the cellular organization of acto-non-muscle myosin II (NMII) cytoskeleton, for proper cell adhesion and directed cell migration. We show that aPKCζ mediates EGF-dependent RhoA activation and recruitment to the cell membrane. We also show that aPKCζ mediates EGF-dependent myosin light chain (MRLC) phosphorylation that is carried out by Rho-associated protein kinase (ROCK), and that aPKCζ is required for EGF-dependent phosphorylation and inhibition of the myosin phosphatase targeting subunit (MYPT). Finally, we show that aPKCζ mediates the spatial organization of the acto-NMII cytoskeleton in response to EGF stimulation. Our data suggest that aPKCζ is an essential component regulator of acto-NMII cytoskeleton organization leading to directed cell migration, and is a mediator of the EGF signal to the cytoskeleton. PMID:27541056

  15. Analysis of the gravitaxis signal transduction chain in Euglena gracilis

    NASA Astrophysics Data System (ADS)

    Nasir, Adeel

    Abstract Euglena gracilis is a photosynthetic, eukaryotic flagellate. It can adapt autotrophic and heterotrophic mode of growth and respond to different stimuli, this makes it an organism of choice for different research disciplines. It swims to reach a suitable niche by employing different stimuli such as oxygen, light, gravity and different chemicals. Among these stimuli light and gravity are the most important. Phototaxis (locomotion under light stimulus) and gravitaxis (locomotion under gravity stimulus) synergistically help cells to attain an optimal niche in the environment. However, in the complete absence of light or under scarcity of detectable light, cells can totally depend on gravity to find its swimming path. Therefore gravity has certain advantages over other stimuli.Unlike phototatic signal transduction chain of Euglena gracilis no clear primary gravity receptor has been identified in Euglena cells so far. However, there are some convincing evidence that TRP like channels act as a primary gravity receptor in Euglena gracilis.Use of different inhibitors gave rise to the involvement of protein kinase and calmodulin proteins in signal transduction chain of Euglena gracilis. Recently, specific calmodulin (Calmodulin 2) and protein kinase (PKA) have been identified as potential candidates of gravitactic signal transduction chain. Further characterization and investigation of these candidates was required. Therefore a combination of biochemical and genetic techniques was employed to localize proteins in cells and also to find interacting partners. For localization studies, specific antibodies were raised and characterized. Specificity of antibodies was validated by knockdown mutants, Invitro-translated proteins and heterologously expressed proteins. Cell fractionation studies, involving separation of the cell body and flagella for western blot analysis and confocal immunofluorescence studies were performed for subcellular localization. In order to find

  16. Benzothiophene Carboxylate Derivatives as Novel Allosteric Inhibitors of Branched-chain α-Ketoacid Dehydrogenase Kinase*

    PubMed Central

    Tso, Shih-Chia; Gui, Wen-Jun; Wu, Cheng-Yang; Chuang, Jacinta L.; Qi, Xiangbing; Skvorak, Kristen J.; Dorko, Kenneth; Wallace, Amy L.; Morlock, Lorraine K.; Lee, Brendan H.; Hutson, Susan M.; Strom, Stephen C.; Williams, Noelle S.; Tambar, Uttam K.; Wynn, R. Max; Chuang, David T.

    2014-01-01

    The mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC) is negatively regulated by reversible phosphorylation. BCKDC kinase (BDK) inhibitors that augment BCKDC flux have been shown to reduce branched-chain amino acid (BCAA) concentrations in vivo. In the present study, we employed high-throughput screens to identify compound 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid (BT2) as a novel BDK inhibitor (IC50 = 3.19 μm). BT2 binds to the same site in BDK as other known allosteric BDK inhibitors, including (S)-α-cholorophenylproprionate ((S)-CPP). BT2 binding to BDK triggers helix movements in the N-terminal domain, resulting in the dissociation of BDK from the BCKDC accompanied by accelerated degradation of the released kinase in vivo. BT2 shows excellent pharmacokinetics (terminal T½ = 730 min) and metabolic stability (no degradation in 240 min), which are significantly better than those of (S)-CPP. BT2, its analog 3-chloro-6-fluorobenzo[b]thiophene-2-carboxylic acid (BT2F), and a prodrug of BT2 (i.e. N-(4-acetamido-1,2,5-oxadiazol-3-yl)-3,6-dichlorobenzo[b]thiophene-2-carboxamide (BT3)) significantly increase residual BCKDC activity in cultured cells and primary hepatocytes from patients and a mouse model of maple syrup urine disease. Administration of BT2 at 20 mg/kg/day to wild-type mice for 1 week leads to nearly complete dephosphorylation and maximal activation of BCKDC in heart, muscle, kidneys, and liver with reduction in plasma BCAA concentrations. The availability of benzothiophene carboxylate derivatives as stable BDK inhibitors may prove useful for the treatment of metabolic disease caused by elevated BCAA concentrations. PMID:24895126

  17. Demonstration of elevation and localization of Rho-kinase activity in the brain of a rat model of cerebral infarction.

    PubMed

    Yano, Kazuo; Kawasaki, Koh; Hattori, Tsuyoshi; Tawara, Shunsuke; Toshima, Yoshinori; Ikegaki, Ichiro; Sasaki, Yasuo; Satoh, Shin-ichi; Asano, Toshio; Seto, Minoru

    2008-10-10

    Evidence that Rho-kinase is involved in cerebral infarction has accumulated. However, it is uncertain whether Rho-kinase is activated in the brain parenchyma in cerebral infarction. To answer this question, we measured Rho-kinase activity in the brain in a rat cerebral infarction model. Sodium laurate was injected into the left internal carotid artery, inducing cerebral infarction in the ipsilateral hemisphere. At 6 h after injection, increase of activating transcription factor 3 (ATF3) and c-Fos was found in the ipsilateral hemisphere, suggesting that neuronal damage occurs. At 0.5, 3, and 6 h after injection of laurate, Rho-kinase activity in extracts of the cerebral hemispheres was measured by an ELISA method. Rho-kinase activity in extracts of the ipsilateral hemisphere was significantly increased compared with that in extracts of the contralateral hemisphere at 3 and 6 h but not 0.5 h after injection of laurate. Next, localization of Rho-kinase activity was evaluated by immunohistochemical analysis in sections of cortex and hippocampus including infarct area 6 h after injection of laurate. Staining for phosphorylation of myosin-binding subunit (phospho-MBS) and myosin light chain (phospho-MLC), substrates of Rho-kinase, was elevated in neuron and blood vessel, respectively, in ipsilateral cerebral sections, compared with those in contralateral cerebral sections. These findings indicate that Rho-kinase is activated in neuronal and vascular cells in a rat cerebral infarction model, and suggest that Rho-kinase could be an important target in the treatment of cerebral infarction.

  18. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain

    PubMed Central

    Liu, Rui; Liang, Xiao; Xiang, Dandan; Guo, Yirong; Liu, Yihua; Zhu, Guonian

    2016-01-01

    Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10−10 M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples. PMID:27338340

  19. Sequence-Based Discovery Demonstrates That Fixed Light Chain Human Transgenic Rats Produce a Diverse Repertoire of Antigen-Specific Antibodies.

    PubMed

    Harris, Katherine E; Aldred, Shelley Force; Davison, Laura M; Ogana, Heather Anne N; Boudreau, Andrew; Brüggemann, Marianne; Osborn, Michael; Ma, Biao; Buelow, Benjamin; Clarke, Starlynn C; Dang, Kevin H; Iyer, Suhasini; Jorgensen, Brett; Pham, Duy T; Pratap, Payal P; Rangaswamy, Udaya S; Schellenberger, Ute; van Schooten, Wim C; Ugamraj, Harshad S; Vafa, Omid; Buelow, Roland; Trinklein, Nathan D

    2018-01-01

    We created a novel transgenic rat that expresses human antibodies comprising a diverse repertoire of heavy chains with a single common rearranged kappa light chain (IgKV3-15-JK1). This fixed light chain animal, called OmniFlic, presents a unique system for human therapeutic antibody discovery and a model to study heavy chain repertoire diversity in the context of a constant light chain. The purpose of this study was to analyze heavy chain variable gene usage, clonotype diversity, and to describe the sequence characteristics of antigen-specific monoclonal antibodies (mAbs) isolated from immunized OmniFlic animals. Using next-generation sequencing antibody repertoire analysis, we measured heavy chain variable gene usage and the diversity of clonotypes present in the lymph node germinal centers of 75 OmniFlic rats immunized with 9 different protein antigens. Furthermore, we expressed 2,560 unique heavy chain sequences sampled from a diverse set of clonotypes as fixed light chain antibody proteins and measured their binding to antigen by ELISA. Finally, we measured patterns and overall levels of somatic hypermutation in the full B-cell repertoire and in the 2,560 mAbs tested for binding. The results demonstrate that OmniFlic animals produce an abundance of antigen-specific antibodies with heavy chain clonotype diversity that is similar to what has been described with unrestricted light chain use in mammals. In addition, we show that sequence-based discovery is a highly effective and efficient way to identify a large number of diverse monoclonal antibodies to a protein target of interest.

  20. Dissociation of branched-chain alpha-keto acid dehydrogenase kinase (BDK) from branched-chain alpha-keto acid dehydrogenase complex (BCKDC) by BDK inhibitors.

    PubMed

    Murakami, Taro; Matsuo, Masayuki; Shimizu, Ayako; Shimomura, Yoshiharu

    2005-02-01

    Branched-chain alpha-keto acid dehydrogenase kinase (BDK) phosphorylates and inactivates the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), which is the rate-limiting enzyme in the branched-chain amino acid catabolism. BDK has been believed to be bound to the BCKDC. However, recent our studies demonstrated that protein-protein interaction between BDK and BCKDC is one of the factors to regulate BDK activity. Furthermore, only the bound form of BDK appears to have its activity. In the present study, we examined effects of BDK inhibitors on the amount of BDK bound to the BCKDC using rat liver extracts. The bound form of BDK in the extracts of liver from low protein diet-fed rats was measured by an immunoprecipitation pull down assay with or without BDK inhibitors. Among the BDK inhibitors. alpha-ketoisocaproate, alpha-chloroisocaproate, and a-ketoisovalerate released the BDK from the complex. Furthermore, the releasing effect of these inhibitors on the BDK appeared to depend on their inhibition constants. On the other hand, clofibric acid and thiamine pyrophosphate had no effect on the protein-protein interaction between two enzymes. These results suggest that the dissociation of the BDK from the BCKDC is one of the mechanisms responsible for the action of some inhibitors to BDK.

  1. Undiagnosed light chain systemic amyloidosis: does it matter to anesthesiologists? -a case report-

    PubMed Central

    Kim, Gwan Ho; Lee, Woo Kyung; Na, Se Hee

    2013-01-01

    Light chain systemic amyloidosis is rare but may accompany laryngeal or pulmonary involvement, which may increase the risk in airway management. We present a case of a patient planned for resection of cervical epidural mass. The patient had face and neck ecchymoses and purpuras with an unknown cause. Mask ventilation and intubation were successful, but the operation was cancelled to evaluate bleeding from facial skin lesions. A diagnosis of light chain systemic amyloidosis prompted evaluation of involvement of other organs and treatment. This case shows the importance of preoperative evaluation and careful airway management in patients with systemic amyloidosis. PMID:24363850

  2. Surface IgM λ light chain is involved in the binding and infection of infectious bursal disease virus (IBDV) to DT40 cells.

    PubMed

    Chi, Jiaqi; You, Leiming; Li, Peipei; Teng, Man; Zhang, Gaiping; Luo, Jun; Wang, Aiping

    2018-04-01

    Infectious bursal disease virus (IBDV) is an important immunosuppressive virus in chickens. Surface immunoglobulin M (sIgM)-bearing B lymphocytes act as the major targets of IBDV in the bursa of Fabricius, and sIgM may function as one of the membrane binding sites responsible for IBDV infection. Recently, using the virus overlay protein binding assay, the chicken λ light chain of sIgM was identified to specifically interact with IBDV in a virulence-independent manner in vitro. To further investigate sIgM λ light chain-mediated IBDV binding and infection in pre-B cells, the cell line DT40, which is susceptible to both pathogenic and attenuated IBDV, was used. Based on the RNA interference strategy, the DT40 cell line whose λ light chain of sIgM was stably knocked down, herein termed DT40LKD, was generated by the genomic integration of a specific small hairpin RNA and a green fluorescence protein co-expression construct. Flow cytometry analysis indicated that the binding of IBDV to DT40LKD cells was significantly reduced due to the loss of sIgM λ light chain. In particular, reduced viral replication was observed in IBDV-incubated DT40LKD cells, and no viral release into cell culture medium was detected by the IBDV rapid diagnostic strips. In addition, the rescue of sIgM λ light chain expression restored viral binding and replication in DT40LKD cells. These results show that sIgM λ light chain appears to be beneficial for IBDV attachment and infection, suggesting that sIgM acts as a binding site involved in IBDV infection.

  3. Increased myosin heavy chain-beta with atrial expression of ventricular light chain-2 in canine cardiomyopathy.

    PubMed

    Fuller, Geraldine A; Bicer, Sabahattin; Hamlin, Robert L; Yamaguchi, Mamoru; Reiser, Peter J

    2007-10-01

    Dilated cardiomyopathy is a naturally occurring disease in humans and dogs. Human studies have shown increased levels of myosin heavy chain (MHC)-beta in failing ventricles and the left atria (LA) and of ventricular light chain (VLC)-2 in the right atria in dilated cardiomyopathy. This study evaluates the levels of MHC-beta in all heart chambers in prolonged canine right ventricular pacing. In addition, we determined whether levels of VLC2 were altered in these hearts. Failing hearts demonstrated significantly increased levels of MHC-beta in the right atria, right atrial appendage, LA, left atrial appendage (LAA), and right ventricle compared with controls. Significant levels of VLC2 were detected in the right atria of paced hearts. Differences in MHC-beta expression were observed between the LA and the LAA of paced and control dogs. MHC-beta expression was significantly greater in the LA of paced and control dogs compared with their respective LAA. The cardiac myosin isoform shifts in this study were similar to those observed in end-stage human heart failure and more severe than those reported in less prolonged pacing models, supporting the use of this model for further study of end-stage human heart failure. The observation of consistent differences between sampling sites, especially LA versus LAA, indicates the need for rigorous sampling consistency in future studies.

  4. Kinases Involved in Both Autophagy and Mitosis.

    PubMed

    Li, Zhiyuan; Zhang, Xin

    2017-08-31

    Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.

  5. Kinases Involved in Both Autophagy and Mitosis

    PubMed Central

    2017-01-01

    Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations. PMID:28858266

  6. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

    PubMed

    Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L

    2014-11-07

    We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.

  7. Blue-light-activated phototropin2 trafficking from the cytoplasm to Golgi/post-Golgi vesicles.

    PubMed

    Aggarwal, Chhavi; Banaś, Agnieszka Katarzyna; Kasprowicz-Maluśki, Anna; Borghetti, Carolina; Labuz, Justyna; Dobrucki, Jerzy; Gabryś, Halina

    2014-07-01

    Phototropins are plasma membrane-localized UVA/blue light photoreceptors which mediate phototropism, inhibition of primary hypocotyl elongation, leaf positioning, chloroplast movements, and stomatal opening. Blue light irradiation activates the C-terminal serine/threonine kinase domain of phototropin which autophosphorylates the receptor. Arabidopsis thaliana encodes two phototropins, phot1 and phot2. In response to blue light, phot1 moves from the plasma membrane into the cytosol and phot2 translocates to the Golgi complex. In this study the molecular mechanism and route of blue-light-induced phot2 trafficking are demonstrated. It is shown that Atphot2 behaves in a similar manner when expressed transiently under 35S or its native promoter. The phot2 kinase domain but not blue-light-mediated autophosphorylation is required for the receptor translocation. Using co-localization and western blotting, the receptor was shown to move from the cytoplasm to the Golgi complex, and then to the post-Golgi structures. The results were confirmed by brefeldin A (an inhibitor of the secretory pathway) which disrupted phot2 trafficking. An association was observed between phot2 and the light chain2 of clathrin via bimolecular fluorescence complementation. The fluorescence was observed at the plasma membrane. The results were confirmed using co-immunoprecipitation. However, tyrphostin23 (an inhibitor of clathrin-mediated endocytosis) and wortmannin (a suppressor of receptor endocytosis) were not able to block phot2 trafficking, indicating no involvement of receptor endocytosis in the formation of phot2 punctuate structures. Protein turnover studies indicated that the receptor was continuously degraded in both darkness and blue light. The degradation of phot2 proceeded via a transport route different from translocation to the Golgi complex. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. An investigation into UV light exposure as an experimental model for artificial aging on tensile strength and force delivery of elastomeric chain.

    PubMed

    Wahab, Siti Waznah; Bister, Dirk; Sherriff, Martyn

    2014-02-01

    This study investigated the effect of ultraviolet type A light (UVA) exposure on the tensile properties of elastomeric chain. UVA light exposure was used as model for artificial aging, simulating prolonged storage of elastomeric chain. Tensile strength (n = 60) was measured after exposing Ormco, Forestadent and 3M chains to UVA light for 0, 2, 3, and 4 weeks. Force decay was measured (n = 60) using chain exposed for 5, 10, and 14 days. The chains were subsequently stretched at a constant distance and the resulting forces measured at 0, 1, 24 hours and 7, 14, 21, and 28 days. This test simulated a clinical scenario of pre-stretching and subsequent shortening of elastomeric chain. Tensile strength had statistically significant difference and was directly related to the duration of ultraviolet (UV) light exposure. Forestadent chain, which had the second highest value for the 'as received' product, showed the most consistent values over time with the lowest degradation. Ormco showed the lowest values for 'as received' as well as after UV exposure; 3M chain had the highest loss of tensile strength. Force decay was also significantly different. UV light exposure of 10 days or more appears to mark a 'watershed' between products: 3M had most survivors, Forestadent chain had some survivors, depending on the time the chain was stretched for. None of the Ormco product survived UV light exposure for more than 5 days. UVA light exposure may be used as a model for artificial aging as it reduces force delivery and tensile strength of exposed chains.

  9. An X-ray structural study of pyruvate dehydrogenase kinase: A eukaryotic serine kinase with a prokaryotic histidine-kinase fold

    NASA Astrophysics Data System (ADS)

    Steussy, Calvin Nicklaus, Jr.

    2001-07-01

    Pyruvate Dehydrogenase Kinase is an enzyme that controls the flow of glucose through the eukaryotic cell and contributes to the pathology of diabetes mellitus. Early work on this kinase demonstrated that it has an amino acid sequence much like bacterial histidine kinases, but an activity similar to that of modern serine/threonine kinases. This project utilized the techniques of X-ray crystallography to determine molecular structure of pyruvate dehydrogenase kinase, isozyme 2. The structure was phased using selenium substituted for sulfur in methionine residues, and data at multiple wavelengths was collected at the National Synchrotron Light Source, Brookhaven National Laboratories. PDK 2 was found to fold into a two-domain monomer that forms a dimer through two beta sheets in the C-terminal domain. The N-terminal domain is an alpha-helical bundle while the C-terminal domain is an alpha/beta sandwich. The fold of the C-terminal domain is very similar to that of the prokaryotic histidine kinases, indicating that they share a common ancestor. The catalytic mechanism, however, has evolved to use general base catalysis to activate the serine substrate, rather than the direct nucleophilic attack by the imidazole sidechain used in the prokaryotic kinases. Thus, the structure of the protein echoes its prokaryotic ancestor, while the chemical mechanism has adapted to a serine substrate. The electrostatic surface of PDK2 leads to the suggestion that the lipoyl domain of the pyruvate dehydrogenase kinase, an important associated structure, may bind in the cleft formed between the N- and C-terminal domains. In addition, a network of hydrogen bonds directly connects the nucleotide binding pocket to the dimer interface, suggesting that there may be some interaction between dimer formation and ATP binding or ADP release.

  10. Role of protein kinase C in light adaptation of molluscan microvillar photoreceptors

    PubMed Central

    Piccoli, Giuseppe; del Pilar Gomez, Maria; Nasi, Enrico

    2002-01-01

    The mechanisms by which Ca2+ regulates light adaptation in microvillar photoreceptors remain poorly understood. Protein kinase C (PKC) is a likely candidate, both because some sub-types are activated by Ca2+ and because of its association with the macromolecular ‘light-transduction complex’ in Drosophila. We investigated the possible role of PKC in the modulation of the light response in molluscan photoreceptors. Western blot analysis with isoform-specific antibodies revealed the presence of PKCα in retinal homogenates. Immunocytochemistry in isolated cell preparations confirmed PKCα localization in microvillar photoreceptors, preferentially confined to the light-sensing lobe. Light stimulation induced translocation of PKCα immunofluorescence to the photosensitive membrane, an effect that provides independent evidence for PKC activation by illumination; a similar outcome was observed after incubation with the phorbol ester PMA. Several chemically distinct activators of PKC, such as phorbol-12-myristate-13-acetate (PMA), (-)indolactam V and 1,2,-dioctanoyl-sn-glycerol (DOG) inhibited the light response of voltage-clamped microvillar photoreceptors, but were ineffective in ciliary photoreceptors, in which light does not activate the Gq/PLC cascade, nor elevates intracellular Ca2+. Pharmacological inhibition of PKC antagonized the desensitization produced by adapting lights and also caused a small, but consistent enhancement of basal sensitivity. These results strongly support the involvement of PKC activation in the light-dependent regulation of response sensitivity. However, unlike adapting background light or elevation of [Ca2+]i, PKC activators did not speed up the photoresponse, nor did PKC inhibitors antagonize the accelerating effects of background adaptation, suggesting that modulation of photoresponse time course may involve a separate Ca2+-dependent signal. PMID:12205183

  11. Clofibric acid stimulates branched-chain amino acid catabolism by three mechanisms.

    PubMed

    Kobayashi, Rumi; Murakami, Taro; Obayashi, Mariko; Nakai, Naoya; Jaskiewicz, Jerzy; Fujiwara, Yoko; Shimomura, Yoshiharu; Harris, Robert A

    2002-11-15

    Clofibrate promotes catabolism of branched-chain amino acids by increasing the activity of the branched-chain alpha-keto acid dehydrogenase [BCKDH] complex. Depending upon the sex of the rats, nutritional state, and tissue being studied, clofibrate can affect BCKDH complex activity by three different mechanisms. First, by directly inhibiting BCKDH kinase activity, clofibrate can increase the proportion of the BCKDH complex in the active, dephosphorylated state. This occurs in situations in which the BCKDH complex is largely inactive due to phosphorylation, e.g., in the skeletal muscle of chow-fed rats or in the liver of female rats late in the light cycle. Second, by increasing the levels at which the enzyme components of the BCKDH complex are expressed, clofibrate can increase the total enzymatic activity of the BCKDH complex. This is readily demonstrated in livers of rats fed a low-protein diet, a nutritional condition that induces a decrease in the level of expression of the BCKDH complex. Third, by decreasing the amount of BCKDH kinase expressed and therefore its activity, clofibrate induces an increase in the percentage of the BCKDH complex in the active, dephosphorylated state. This occurs in the livers of rats fed a low-protein diet, a nutritional condition that causes inactivation of the BCKDH complex due to upregulation of the amount of BCKDH kinase. WY-14,643, which, like clofibric acid, is a ligand for the peroxisome-proliferator-activated receptor alpha [PPARalpha], does not directly inhibit BCKDH kinase but produces the same long-term effects as clofibrate on expression of the BCKDH complex and its kinase. Thus, clofibrate is unique in its capacity to stimulate BCAA oxidation through inhibition of BCKDH kinase activity, whereas PPARalpha activators in general promote BCAA oxidation by increasing expression of components of the BCKDH complex and decreasing expression of the BCKDH kinase.

  12. Epigallocatechin-3-gallate preferentially induces aggregation of amyloidogenic immunoglobulin light chains

    PubMed Central

    Hora, Manuel; Carballo-Pacheco, Martin; Weber, Benedikt; Morris, Vanessa K.; Wittkopf, Antje; Buchner, Johannes; Strodel, Birgit; Reif, Bernd

    2017-01-01

    Antibody light chain amyloidosis is a rare disease caused by fibril formation of secreted immunoglobulin light chains (LCs). The huge variety of antibody sequences puts a serious challenge to drug discovery. The green tea polyphenol epigallocatechin-3-gallate (EGCG) is known to interfere with fibril formation in general. Here we present solution- and solid-state NMR studies as well as MD simulations to characterise the interaction of EGCG with LC variable domains. We identified two distinct EGCG binding sites, both of which include a proline as an important recognition element. The binding sites were confirmed by site-directed mutagenesis and solid-state NMR analysis. The EGCG-induced protein complexes are unstructured. We propose a general mechanistic model for EGCG binding to a conserved site in LCs. We find that EGCG reacts selectively with amyloidogenic mutants. This makes this compound a promising lead structure, that can handle the immense sequence variability of antibody LCs. PMID:28128355

  13. Analysis of immunoglobulin heavy and light chain variable genes in post-transplant lymphoproliferative disorders.

    PubMed

    Capello, Daniela; Cerri, Michaela; Muti, Giuliana; Lucioni, Marco; Oreste, Pierluigi; Gloghini, Annunziata; Berra, Eva; Deambrogi, Clara; Franceschetti, Silvia; Rossi, Davide; Alabiso, Oscar; Morra, Enrica; Rambaldi, Alessandro; Carbone, Antonino; Paulli, Marco; Gaidano, Gianluca

    2006-12-01

    Post-transplant lymphoproliferative disorders (PTLD) derive from antigen-experienced B-cells and represent a major complication of solid organ transplantation. We characterized usage, mutation frequency and mutation pattern of immunoglobulin variable (IGV) gene rearrangements in 50 PTLD (polymorphic PTLD, n=10; diffuse large B-cell lymphoma, n=35; and Burkitt/Burkitt-like lymphoma, n=5). Among PTLD yielding clonal IGV amplimers, a functional IGV heavy chain (IGHV) rearrangement was found in 40/50 (80.0%) cases, whereas a potentially functional IGV light chain rearrangement was identified in 36/46 (78.3%) PTLD. By combining IGHV and IGV light chain rearrangements, 10/50 (20.0%) PTLD carried crippling mutations, precluding expression of a functional B-cell receptor (BCR). Immunohistochemistry showed detectable expression of IG light chains in only 18/43 (41.9%) PTLD. Failure to detect a functional IGV rearrangement associated with lack of IGV expression. Our data suggest that a large fraction of PTLD arise from germinal centre (GC)-experienced B-cells that display impaired BCR. Since a functional BCR is required for normal B-cell survival during GC transit, PTLD development may implicate rescue from apoptosis and expansion of B-cells that have failed the GC reaction. The high frequency of IGV loci inactivation appears to be a peculiar feature of PTLD among immunodeficiency-associated lymphoproliferations.

  14. Structure-based design and mechanisms of allosteric inhibitors for mitochondrial branched-chain α-ketoacid dehydrogenase kinase

    PubMed Central

    Qi, Xiangbing; Gui, Wen-Jun; Morlock, Lorraine K.; Wallace, Amy L.; Ahmed, Kamran; Laxman, Sunil; Campeau, Philippe M.; Lee, Brendan H.; Hutson, Susan M.; Tu, Benjamin P.; Williams, Noelle S.; Tambar, Uttam K.; Wynn, R. Max; Chuang, David T.

    2013-01-01

    The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are elevated in maple syrup urine disease, heart failure, obesity, and type 2 diabetes. BCAA homeostasis is controlled by the mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC), which is negatively regulated by the specific BCKD kinase (BDK). Here, we used structure-based design to develop a BDK inhibitor, (S)-α-chloro-phenylpropionic acid [(S)-CPP]. Crystal structures of the BDK-(S)-CPP complex show that (S)-CPP binds to a unique allosteric site in the N-terminal domain, triggering helix movements in BDK. These conformational changes are communicated to the lipoyl-binding pocket, which nullifies BDK activity by blocking its binding to the BCKDC core. Administration of (S)-CPP to mice leads to the full activation and dephosphorylation of BCKDC with significant reduction in plasma BCAA concentrations. The results buttress the concept of targeting mitochondrial BDK as a pharmacological approach to mitigate BCAA accumulation in metabolic diseases and heart failure. PMID:23716694

  15. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system.

    PubMed

    Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M

    2017-02-01

    Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central

  16. Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity.

    PubMed

    Harper, Shannon M; Christie, John M; Gardner, Kevin H

    2004-12-28

    Light plays a crucial role in activating phototropins, a class of plant photoreceptors that are sensitive to blue and UV-A wavelengths. Previous studies indicated that phototropin uses a bound flavin mononucleotide (FMN) within its light-oxygen-voltage (LOV) domain to generate a protein-flavin covalent bond under illumination. In the C-terminal LOV2 domain of Avena sativa phototropin 1, formation of this bond triggers a conformational change that results in unfolding of a helix external to this domain called Jalpha [Harper, S. M., et al. (2003) Science 301, 1541-1545]. Though the structural effects of illumination were characterized, it was unknown how these changes are coupled to kinase activation. To examine this, we made a series of point mutations along the Jalpha helix to disrupt its interaction with the LOV domain in a manner analogous to light activation. Using NMR spectroscopy and limited proteolysis, we demonstrate that several of these mutations displace the Jalpha helix from the LOV domain independently of illumination. When placed into the full-length phototropin protein, these point mutations display constitutive kinase activation, without illumination of the sample. These results indicate that unfolding of the Jalpha helix is the critical event in regulation of kinase signaling for the phototropin proteins.

  17. The Rho-GTPase effector ROCK regulates meiotic maturation of the bovine oocyte via myosin light chain phosphorylation and cofilin phosphorylation.

    PubMed

    Lee, So-Rim; Xu, Yong-Nan; Jo, Yu-Jin; Namgoong, Suk; Kim, Nam-Hyung

    2015-11-01

    Oocyte meiosis involves a unique asymmetric division involving spindle movement from the central cytoplasm to the cortex, followed by polar body extrusion. ROCK is a Rho-GTPase effector involved in various cellular functions in somatic cells as well as oocyte meiosis. ROCK was previously shown to promote actin organization by phosphorylating several downstream targets, including LIM domain kinase (LIMK), phosphorylated cofilin (p-cofilin), and myosin light chain (MLC). In this study, we investigated the roles of ROCK and MLC during bovine oocyte meiosis. We found that ROCK was localized around the nucleus at the oocyte's germinal-vesicle (GV) stage, but spreads to the rest of the cytoplasm in later developmental stages. On the other hand, phosphorylated MLC (p-MLC) localized at the cortex, and its abundance decreased by the metaphase-II stage. Disrupting ROCK activity, via RNAi or the chemical inhibitor Y-27632, blocked both cell cycle progression and polar body extrusion. ROCK inhibition also resulted in decreased cortical actin, p-cofilin, and p-MLC levels. Similar to the phenotype associated with inhibition of ROCK activity, inhibition of MLC kinase by the chemical inhibitor ML-7 caused defects in polar body extrusion. Collectively, our results suggest that the ROCK/MLC/actomyosin as well as ROCK/LIMK/cofilin pathways regulate meiotic spindle migration and cytokinesis during bovine oocyte maturation. © 2015 Wiley Periodicals, Inc.

  18. Light Scattering Study of Mixed Micelles Made from Elastin-Like Polypeptide Linear Chains and Trimers

    NASA Astrophysics Data System (ADS)

    Terrano, Daniel; Tsuper, Ilona; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    Temperature sensitive nanoparticles were generated from a construct (H20F) of three chains of elastin-like polypeptides (ELP) linked to a negatively charged foldon domain. This ELP system was mixed at different ratios with linear chains of ELP (H40L) which lacks the foldon domain. The mixed system is soluble at room temperature and at a transition temperature (Tt) will form swollen micelles with the hydrophobic linear chains hidden inside. This system was studied using depolarized dynamic light scattering (DDLS) and static light scattering (SLS) to determine the size, shape, and internal structure of the mixed micelles. The mixed micelle in equal parts of H20F and H40L show a constant apparent hydrodynamic radius of 40-45 nm at the concentration window from 25:25 to 60:60 uM (1:1 ratio). At a fixed 50 uM concentration of the H20F, varying H40L concentration from 5 to 80 uM resulted in a linear growth in the hydrodynamic radius from about 11 to about 62 nm, along with a 1000-fold increase in VH signal. A possible simple model explaining the growth of the swollen micelles is considered. Lastly, the VH signal can indicate elongation in the geometry of the particle or could possibly be a result from anisotropic properties from the core of the micelle. SLS was used to study the molecular weight, and the radius of gyration of the micelle to help identify the structure and morphology of mixed micelles and the tangible cause of the VH signal.

  19. Sequences of heavy and light chain variable regions from four bovine immunoglobulins.

    PubMed

    Armour, K L; Tempest, P R; Fawcett, P H; Fernie, M L; King, S I; White, P; Taylor, G; Harris, W J

    1994-12-01

    Oligodeoxyribonucleotide primers based on the 5' ends of bovine IgG1/2 and lambda constant (C) region genes, together with primers encoding conserved amino acids at the N-terminus of mature variable (V) regions from other species, have been used in cDNA and polymerase chain reactions (PCRs) to amplify heavy and light chain V region cDNA from bovine heterohybridomas. The amino acid sequences of VH and V lambda from four bovine immunoglobulins of different specificities are presented.

  20. Serum Free Light Chain Assay and κ/λ Ratio Performance in Patients Without Monoclonal Gammopathies:  High False-Positive Rate.

    PubMed

    Singh, Gurmukh

    2016-08-01

    Serum free light chain assay is a recommended screening test for monoclonal gammopathies. Anecdotal observations indicated a high rate of false-positive abnormal κ/λ ratios. This study was undertaken to ascertain the magnitude of the false-positive rate and factors contributing to the error rate. Results of serum protein electrophoresis, serum free light chains, and related tests, usually done for investigation of suspected monoclonal gammopathy, were reviewed retrospectively for 270 patients and 297 observations. Using the conventional κ/λ ratio, 36.4% of the ratios were abnormal, in the absence of monoclonal gammopathy. When the renal κ/λ ratio was used, the rate of abnormal κ/λ ratios was 30.1%. In patients with a γ-globulin concentration of 1.6 g/dL or more, the usual κ/λ ratio was abnormal in 54.8% of the patients. Urine protein electrophoresis was used in 53 (19.6%) instances, whereas bone marrow examination was done in 65 (24.1%) cases. Usual κ/λ ratio was abnormal in 36.4% of the observations in patients without evidence of monoclonal gammopathy, and an abnormal κ/λ ratio should not be used as the sole indicator for diagnosis of neoplastic proliferation of the lympho-plasmacytic system. Hypergammaglobulinemia is associated with a higher rate of false-positive abnormal κ/λ ratios. Examination of urine for monoclonal immunoglobulins may be underused, and recommendations by some to use serum free light chain assay in place of, rather than as an adjunct to, urine electrophoresis are not warranted. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Risk factors for venous thromboembolism in immunoglobulin light chain amyloidosis

    PubMed Central

    Bever, Katherine M.; Masha, Luke I.; Sun, Fangui; Stern, Lauren; Havasi, Andrea; Berk, John L.; Sanchorawala, Vaishali; Seldin, David C.; Sloan, J. Mark

    2016-01-01

    Patients with immunoglobulin light chain amyloidosis are at risk for both thrombotic and bleeding complications. While the hemostatic defects have been extensively studied, less is known about thrombotic complications in this disease. This retrospective study examined the frequency of venous thromboembolism in 929 patients with immunoglobulin light chain amyloidosis presenting to a single referral center, correlated risk of venous thromboembolism with clinical and laboratory factors, and examined complications of anticoagulation in this population. Sixty-five patients (7%) were documented as having at least one venous thromboembolic event. Eighty percent of these patients had events within one year prior to or following diagnosis. Lower serum albumin was associated with increased risk of VTE, with a hazard ratio of 4.30 (CI 1.60–11.55; P=0.0038) for serum albumin less than 3 g/dL compared to serum albumin greater than 4 g/dL. Severe bleeding complications were observed in 5 out of 57 patients with venous thromboembolism undergoing treatment with anticoagulation. Prospective investigation should be undertaken to better risk stratify these patients and to determine the optimal strategies for prophylaxis against and management of venous thromboembolism. PMID:26452981

  2. Risk factors for venous thromboembolism in immunoglobulin light chain amyloidosis.

    PubMed

    Bever, Katherine M; Masha, Luke I; Sun, Fangui; Stern, Lauren; Havasi, Andrea; Berk, John L; Sanchorawala, Vaishali; Seldin, David C; Sloan, J Mark

    2016-01-01

    Patients with immunoglobulin light chain amyloidosis are at risk for both thrombotic and bleeding complications. While the hemostatic defects have been extensively studied, less is known about thrombotic complications in this disease. This retrospective study examined the frequency of venous thromboembolism in 929 patients with immunoglobulin light chain amyloidosis presenting to a single referral center, correlated risk of venous thromboembolism with clinical and laboratory factors, and examined complications of anticoagulation in this population. Sixty-five patients (7%) were documented as having at least one venous thromboembolic event. Eighty percent of these patients had events within one year prior to or following diagnosis. Lower serum albumin was associated with increased risk of VTE, with a hazard ratio of 4.30 (CI 1.60-11.55; P=0.0038) for serum albumin less than 3 g/dL compared to serum albumin greater than 4 g/dL. Severe bleeding complications were observed in 5 out of 57 patients with venous thromboembolism undergoing treatment with anticoagulation. Prospective investigation should be undertaken to better risk stratify these patients and to determine the optimal strategies for prophylaxis against and management of venous thromboembolism. Copyright© Ferrata Storti Foundation.

  3. syk kinase activation by a src kinase-initiated activation loop phosphorylation chain reaction

    PubMed Central

    El-Hillal, O.; Kurosaki, T.; Yamamura, H.; Kinet, J.-P.; Scharenberg, A. M.

    1997-01-01

    Activation of the syk tyrosine kinase occurs almost immediately following engagement of many types of antigen receptors, including Fc receptors, but the mechanism through which syk is activated is currently unclear. Here we demonstrate that Fc receptor-induced syk activation occurs as the result of phosphorylation of the syk activation loop by both src family kinases and other molecules of activated syk, suggesting that syk activation occurs as the result of a src kinase-initiated activation loop phosphorylation chain reaction. This type of activation mechanism predicts that syk activation would exhibit exponential kinetics, providing a potential explanation for its rapid and robust activation by even weak antigen receptor stimuli. We propose that a similar mechanism may be responsible for generating rapid activation of other cytoplasmic tyrosine kinases, such as those of the Bruton tyrosine kinase/tec family, as well. PMID:9050880

  4. 46 CFR 112.43-13 - Navigation light indicator panel supply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Navigation light indicator panel supply. 112.43-13 Section 112.43-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-13 Navigation light indicator panel...

  5. 46 CFR 112.43-13 - Navigation light indicator panel supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Navigation light indicator panel supply. 112.43-13 Section 112.43-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-13 Navigation light indicator panel...

  6. 46 CFR 112.43-13 - Navigation light indicator panel supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Navigation light indicator panel supply. 112.43-13 Section 112.43-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-13 Navigation light indicator panel...

  7. 46 CFR 112.43-13 - Navigation light indicator panel supply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Navigation light indicator panel supply. 112.43-13 Section 112.43-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-13 Navigation light indicator panel...

  8. 46 CFR 112.43-13 - Navigation light indicator panel supply.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Navigation light indicator panel supply. 112.43-13 Section 112.43-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-13 Navigation light indicator panel...

  9. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis.

    PubMed

    del Pozo-Yauner, Luis; Wall, Jonathan S; González Andrade, Martín; Sánchez-López, Rosana; Rodríguez-Ambriz, Sandra L; Pérez Carreón, Julio I; Ochoa-Leyva, Adrián; Fernández-Velasco, D Alejandro

    2014-01-10

    It has been suggested that the N-terminal strand of the light chain variable domain (V(L)) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stability and kinetic of fibrillogenesis of the V(L) protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Effect of light chain V region duplication on IgG oligomerization and in vivo efficacy.

    PubMed

    Shuford, W; Raff, H V; Finley, J W; Esselstyn, J; Harris, L J

    1991-05-03

    A human immunoglobulin G1 (IgG1) antibody oligomer was isolated from a transfected myeloma cell line that produced a monoclonal antibody to group B streptococci. Compared to the IgG1 monomer, the oligomer was significantly more effective at protecting neonatal rats from infection in vivo. The oligomer was also shown to cross the placenta and to be stable in neonatal rats. Immunochemical analysis and complementary DNA sequencing showed that the transfected cell line produced two distinct kappa light chains: a normal light chain (Ln) with a molecular mass of 25 kilodaltons and a 37-kilodalton species (L37), the domain composition of which was variable-variable-constant (V-V-C). Cotransfection of vectors encoding the heavy chain and L37 resulted in production of oligomeric IgG.

  11. Coordinated activation of AMP-activated protein kinase, extracellular signal-regulated kinase, and autophagy regulates phorbol myristate acetate-induced differentiation of SH-SY5Y neuroblastoma cells.

    PubMed

    Zogovic, Nevena; Tovilovic-Kovacevic, Gordana; Misirkic-Marjanovic, Maja; Vucicevic, Ljubica; Janjetovic, Kristina; Harhaji-Trajkovic, Ljubica; Trajkovic, Vladimir

    2015-04-01

    We explored the interplay between the intracellular energy sensor AMP-activated protein kinase (AMPK), extracellular signal-regulated kinase (ERK), and autophagy in phorbol myristate acetate (PMA)-induced neuronal differentiation of SH-SY5Y human neuroblastoma cells. PMA-triggered expression of neuronal markers (dopamine transporter, microtubule-associated protein 2, β-tubulin) was associated with an autophagic response, measured by the conversion of microtubule-associated protein light chain 3 (LC3)-I to autophagosome-bound LC3-II, increase in autophagic flux, and expression of autophagy-related (Atg) proteins Atg7 and beclin-1. This coincided with the transient activation of AMPK and sustained activation of ERK. Pharmacological inhibition or RNA interference-mediated silencing of AMPK suppressed PMA-induced expression of neuronal markers, as well as ERK activation and autophagy. A selective pharmacological blockade of ERK prevented PMA-induced neuronal differentiation and autophagy induction without affecting AMPK phosphorylation. Conversely, the inhibition of autophagy downstream of AMPK/ERK, either by pharmacological agents or LC3 knockdown, promoted the expression of neuronal markers, thus indicating a role of autophagy in the suppression of PMA-induced differentiation of SH-SY5Y cells. Therefore, PMA-induced neuronal differentiation of SH-SY5Y cells depends on a complex interplay between AMPK, ERK, and autophagy, in which the stimulatory effects of AMPK/ERK signaling are counteracted by the coinciding autophagic response. Phorbol myristate acetate (PMA) induces the expression of dopamine transporter, microtubule-associated protein 2, and β-tubulin, and subsequent neuronal differentiation of SH-SY5Y neuroblastoma cells through AMP-activated protein kinase (AMPK)-dependent activation of extracellular signal-regulated kinase (ERK). The activation of AMPK/ERK axis also induces the expression of beclin-1 and Atg7, and increases LC3 conversion, thereby triggering

  12. Chimeric Anti-Human Podoplanin Antibody NZ-12 of Lambda Light Chain Exerts Higher Antibody-Dependent Cellular Cytotoxicity and Complement-Dependent Cytotoxicity Compared with NZ-8 of Kappa Light Chain.

    PubMed

    Kaneko, Mika K; Abe, Shinji; Ogasawara, Satoshi; Fujii, Yuki; Yamada, Shinji; Murata, Takeshi; Uchida, Hiroaki; Tahara, Hideaki; Nishioka, Yasuhiko; Kato, Yukinari

    2017-02-01

    Podoplanin (PDPN), a type I transmembrane 36-kDa glycoprotein, is expressed not only in normal cells, such as renal epithelial cells (podocytes), lymphatic endothelial cells, and pulmonary type I alveolar cells, but also in cancer cells, including brain tumors and lung squamous cell carcinomas. Podoplanin activates platelet aggregation by binding to C-type lectin-like receptor-2 (CLEC-2) on platelets, and the podoplanin/CLEC-2 interaction facilitates blood/lymphatic vessel separation. We previously produced neutralizing anti-human podoplanin monoclonal antibody (mAb), clone NZ-1 (rat IgG 2a , lambda), which neutralizes the podoplanin/CLEC-2 interaction and inhibits platelet aggregation and cancer metastasis. Human-rat chimeric antibody, NZ-8, was previously developed using variable regions of NZ-1 and human constant regions of heavy chain (IgG 1 ) and light chain (kappa chain). Although NZ-8 showed high antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against human podoplanin-expressing cancer cells, the binding affinity of NZ-8 was lower than that of NZ-1. Herein, we produced a novel human-rat chimeric antibody, NZ-12, the constant regions of which consist of IgG 1 heavy chain and lambda light chain. Using flow cytometry, we demonstrated that the binding affinity of NZ-12 was much higher than that of NZ-8. Furthermore, ADCC and CDC activities of NZ-12 were significantly increased against glioblastoma cell lines (LN319 and D397) and lung cancer cell line (PC-10). These results suggested that NZ-12 could become a promising therapeutic antibody against podoplanin-expressing brain tumors and lung cancers.

  13. Subset of Kappa and Lambda Germline Sequences Result in Light Chains with a Higher Molecular Mass Phenotype.

    PubMed

    Barnidge, David R; Lundström, Susanna L; Zhang, Bo; Dasari, Surendra; Murray, David L; Zubarev, Roman A

    2015-12-04

    In our previous work, we showed that electrospray ionization of intact polyclonal kappa and lambda light chains isolated from normal serum generates two distinct, Gaussian-shaped, molecular mass distributions representing the light-chain repertoire. During the analysis of a large (>100) patient sample set, we noticed a low-intensity molecular mass distribution with a mean of approximately 24 250 Da, roughly 800 Da higher than the mean of the typical kappa molecular-mass distribution mean of 23 450 Da. We also observed distinct clones in this region that did not appear to contain any typical post-translational modifications that would account for such a large mass shift. To determine the origin of the high molecular mass clones, we performed de novo bottom-up mass spectrometry on a purified IgM monoclonal light chain that had a calculated molecular mass of 24 275.03 Da. The entire sequence of the monoclonal light chain was determined using multienzyme digestion and de novo sequence-alignment software and was found to belong to the germline allele IGKV2-30. The alignment of kappa germline sequences revealed ten IGKV2 and one IGKV4 sequences that contained additional amino acids in their CDR1 region, creating the high-molecular-mass phenotype. We also performed an alignment of lambda germline sequences, which showed additional amino acids in the CDR2 region, and the FR3 region of functional germline sequences that result in a high-molecular-mass phenotype. The work presented here illustrates the ability of mass spectrometry to provide information on the diversity of light-chain molecular mass phenotypes in circulation, which reflects the germline sequences selected by the immunoglobulin-secreting B-cell population.

  14. Modular Construction of Large Non-Immune Human Antibody Phage-Display Libraries from Variable Heavy and Light Chain Gene Cassettes.

    PubMed

    Lee, Nam-Kyung; Bidlingmaier, Scott; Su, Yang; Liu, Bin

    2018-01-01

    Monoclonal antibodies and antibody-derived therapeutics have emerged as a rapidly growing class of biological drugs for the treatment of cancer, autoimmunity, infection, and neurological diseases. To support the development of human antibodies, various display techniques based on antibody gene repertoires have been constructed over the last two decades. In particular, scFv-antibody phage display has been extensively utilized to select lead antibodies against a variety of target antigens. To construct a scFv phage display that enables efficient antibody discovery, and optimization, it is desirable to develop a system that allows modular assembly of highly diverse variable heavy chain and light chain (Vκ and Vλ) repertoires. Here, we describe modular construction of large non-immune human antibody phage-display libraries built on variable gene cassettes from heavy chain and light chain repertoires (Vκ- and Vλ-light can be made into independent cassettes). We describe utility of such libraries in antibody discovery and optimization through chain shuffling.

  15. Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.

    2011-11-02

    We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This resultmore » provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.« less

  16. Diversity of immunoglobulin lambda light chain gene usage over developmental stages in the horse.

    PubMed

    Tallmadge, Rebecca L; Tseng, Chia T; Felippe, M Julia B

    2014-10-01

    To further studies of neonatal immune responses to pathogens and vaccination, we investigated the dynamics of B lymphocyte development and immunoglobulin (Ig) gene diversity. Previously we demonstrated that equine fetal Ig VDJ sequences exhibit combinatorial and junctional diversity levels comparable to those of adult Ig VDJ sequences. Herein, RACE clones from fetal, neonatal, foal, and adult lymphoid tissue were assessed for Ig lambda light chain combinatorial, junctional, and sequence diversity. Remarkably, more lambda variable genes (IGLV) were used during fetal life than later stages and IGLV gene usage differed significantly with time, in contrast to the Ig heavy chain. Junctional diversity measured by CDR3L length was constant over time. Comparison of Ig lambda transcripts to germline revealed significant increases in nucleotide diversity over time, even during fetal life. These results suggest that the Ig lambda light chain provides an additional dimension of diversity to the equine Ig repertoire. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Variation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors.

    PubMed

    Sakurai, Keisuke; Young, Joyce E; Kefalov, Vladimir J; Khani, Shahrokh C

    2011-08-29

    Rod photoreceptors are exquisitely sensitive light detectors that function in dim light. The timely inactivation of their light responses is critical for the ability of rods to reliably detect and count photons. A key step in the inactivation of the rod transduction is the phosphorylation of the rod visual pigment, rhodopsin, catalyzed by G-protein-dependent receptor kinase 1 (GRK1). Absence of GRK1 greatly prolongs the photoreceptors' light response and enhances their susceptibility to degeneration. This study examined the light responses from mouse rods expressing various levels of GRK1 to evaluate how their function is modulated by rhodopsin inactivation. Transretinal and single-cell rod electrophysiological recordings were obtained from several strains of mice expressing GRK1 at 0.3- to 3-fold the wild-type levels. The effect of GRK1 expression level on the function of mouse rods was examined in darkness and during background adaptation. Altering the expression of GRK1 from 0.3- to 3-fold that in wild-type rods had little effect on the single photon response amplitude. Notably, increasing the expression level of GRK1 accelerated the dim flash response shut off but had no effect on the saturated response shut off. Additionally, GRK1 excess abolished the acceleration of saturated responses shut off during light adaptation. These results demonstrate that rhodopsin inactivation can modulate the kinetics of recovery from dim light stimulation. More importantly, the ratio of rhodopsin kinase to its modulator recoverin appears critical for the proper adaptation of rods and the acceleration of their response shut off in background light.

  18. Forskolin induces myosin light chain dephosphorylation in bovine trabecular meshwork cells.

    PubMed

    Ramachandran, Charanya; Satpathy, Minati; Mehta, Dolly; Srinivas, Sangly P

    2008-02-01

    Enhanced contractility of the actin cytoskeleton in trabecular meshwork (TM) cells is implicated in increased resistance to aqueous humor outflow. In this study, we have investigated effects of forskolin, which is known to elevate cAMP and also enhance aqueous humor outflow, on myosin light chain (MLC) phosphorylation, a biochemical marker of actin contractility. Experiments were performed using cultured bovine TM cells. Phosphorylated MLC (pMLC), expressed as the % of untreated cells, was assessed by urea-glycerol gel electrophoresis and Western blotting. RhoA activity was determined by affinity precipitation of RhoA-GTP to RhoA binding domain of an effector of RhoA. Intracellular cAMP levels were measured by ELISA. Exposure to LPA (lysophosphatidic acid) led to increased MLC phosphorylation (LPA: pMLC=133%) and activation of RhoA. These responses of LPA were suppressed by co-treatment with forskolin (LPA+forskolin: pMLC=88%). Similarly, ET-1 and nocodazole-induced MLC phosphorylation (ET-1: pMLC=145%; nocodazole: pMLC=145%) as well as RhoA activation were suppressed by co-treatment with forskolin (ET-1+forskolin: pMLC=99%; nocodazole+forskolin: pMLC=107%). Exposure to forskolin alone led to MLC dephosphorylation (pMLC=68%). Forskolin alone led to a 4-fold increase in cAMP levels. This increase was not affected when co-treated with LPA or ET-1. Forskolin prevents MLC phosphorylation induced by LPA, ET-1, and nocodazole through inhibition of RhoA-Rho kinase axis. MLC dephosphorylation and consequent relaxation of actin cytoskeleton in TM cells presumably underlies the increased outflow facility reported in response to forskolin.

  19. Anti-inflammatory properties of Gö 6850: a selective inhibitor of protein kinase C.

    PubMed

    Jacobson, P B; Kuchera, S L; Metz, A; Schächtele, C; Imre, K; Schrier, D J

    1995-11-01

    Protein kinase C (PKC) regulates a variety of signal transduction events implicated in the pathogenesis of inflammation, including the biosynthesis of inflammatory cytokines and superoxide and the activation of phospholipase A2. Because of the significant role of PKC in these inflammatory processes, we evaluated a specific and potent inhibitor of C kinase for efficacy in several in vitro and in vivo murine models of inflammation. Unlike the relatively nonspecific kinase inhibitor staurosporine, the bisindolylmaleimide 3-[1-[-3-(dimethylaminopropyl]-1H-indol-3-yl]- 4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione monohydrochloride (Gö 6850) demonstrated increased selectivity for C kinase in purified enzyme assays (respective IC50 values (microM) for Gö 6850 and staurosporine: protein kinase C (0.032, 0.009); myosin light-chain kinase (0.6, 0.01); protein kinase G (4.6, 0.018); protein kinase A (33, 0.04); tyrosine kinase1 (94, 0.4); tyrosine kinase2 (> 100, > 1)). Topically applied Gö 6850 inhibited phorbol myristate acetate-induced edema, neutrophil influx and vascular permeability in murine epidermis in a dose- and time-dependent manner at levels comparable to indomethacin. In a murine model of delayed type hypersensitivity, Gö 6850 inhibited dinitrofluorobenzene-induced contact dermatitis with and ID50 value of 150 micrograms/ear. Cellular studies in mouse peritoneal macrophages demonstrated that Gö 6850 was a potent inhibitor of phorbol myristate acetate-induced prostaglandin E2 production. Superoxide production in phorbol myristate acetate-stimulated murine neutrophils was also inhibited by Gö 6850 (IC50 = 88 nM).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Case for diagnosis. Systemic light chain amyloidosis with cutaneous involvement*

    PubMed Central

    Gontijo, João Renato Vianna; Pinto, Jackson Machado; de Paula, Maysa Carla

    2017-01-01

    Systemic light chain amiloydosis is a rare disease. Due to its typical cutaneous lesions, dermatologists play an essential role in its diagnosis. Clinical manifestations vary according to the affected organ and are often unspecific. Definitive diagnosis is achieved through biopsy. We report a patient with palpebral amyloidosis, typical bilateral ecchymoses and cardiac involvement, without plasma cell dyscrasia or lymphomas. The patient died shortly after the diagnosis. PMID:29166521

  1. PEGylated-nanoliposomal clusterin for amyloidogenic light chain-induced endothelial dysfunction.

    PubMed

    Guzman-Villanueva, Diana; Migrino, Raymond Q; Truran, Seth; Karamanova, Nina; Franco, Daniel A; Burciu, Camelia; Senapati, Subhadip; Nedelkov, Dobrin; Hari, Parameswaran; Weissig, Volkmar

    2018-06-01

    Light chain (AL) amyloidosis is a disease associated with significant morbidity and mortality arising from multi-organ injury induced by amyloidogenic light chain proteins (LC). There is no available treatment to reverse the toxicity of LC. We previously showed that chaperone glycoprotein clusterin (CLU) and nanoliposomes (NL), separately, restore human microvascular endothelial function impaired by LC. In this work, we aim to prepare PEGylated-nanoliposomal clusterin (NL-CLU) formulations that could allow combined benefit against LC while potentially enabling efficient delivery to microvascular tissue, and test efficacy on human arteriole endothelial function. NL-CLU was prepared by a conjugation reaction between the carboxylated surface of NL and the primary amines of the CLU protein. NL were made of phosphatidylcholine (PC), cholesterol (Chol) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (DSPE-PEG 2000 carboxylic acid) at 70:25:5 mol%. The protective effect of NL-CLU was tested by measuring the dilation response to acetylcholine and papaverine in human adipose arterioles exposed to LC. LC treatment significantly reduced the dilation response to acetylcholine and papaverine; co-treatment of LC with PEGylated-nanoliposomal CLU or free CLU restored the dilator response. NL-CLU is a feasible and promising approach to reverse LC-induced endothelial damage.

  2. The Novel Zinc Finger Protein dASCIZ Regulates Mitosis in Drosophila via an Essential Role in Dynein Light-Chain Expression

    PubMed Central

    Zaytseva, Olga; Tenis, Nora; Mitchell, Naomi; Kanno, Shin-ichiro; Yasui, Akira; Heierhorst, Jörg; Quinn, Leonie M

    2014-01-01

    The essential zinc finger protein ASCIZ (also known as ATMIN, ZNF822) plays critical roles during lung organogenesis and B cell development in mice, where it regulates the expression of dynein light chain (DYNLL1/LC8), but its functions in other species including invertebrates are largely unknown. Here we report the identification of the Drosophila ortholog of ASCIZ (dASCIZ) and show that loss of dASCIZ function leads to pronounced mitotic delays with centrosome and spindle positioning defects during development, reminiscent of impaired dynein motor functions. Interestingly, similar mitotic and developmental defects were observed upon knockdown of the DYNLL/LC8-type dynein light chain Cutup (Ctp), and dASCIZ loss-of-function phenotypes could be suppressed by ectopic Ctp expression. Consistent with a genetic function of dASCIZ upstream of Ctp, we show that loss of dASCIZ led to reduced endogenous Ctp mRNA and protein levels and dramatically reduced Ctp–LacZ reporter gene activity in vivo, indicating that dASCIZ regulates development and mitosis as a Ctp transcription factor. We speculate that the more severe mitotic defects in the absence of ASCIZ in flies compared to mice may be due to redundancy with a second, ASCIZ-independent, Dynll2 gene in mammals in contrast to a single Ctp gene in Drosophila. Altogether, our data demonstrate that ASCIZ is an evolutionary highly conserved transcriptional regulator of dynein light-chain levels and a novel regulator of mitosis in flies. PMID:24336747

  3. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodkin-Gal, I; Elsholz, AKW; Muth, C

    2013-04-29

    Bacillus subtilis forms organized multicellular communities known as biofilms wherein the individual cells are held together by a self-produced extracellular matrix. The environmental signals that promote matrix synthesis remain largely unknown. We discovered that one such signal is impaired respiration. Specifically, high oxygen levels suppressed synthesis of the extracellular matrix. In contrast, low oxygen levels, in the absence of an alternative electron acceptor, led to increased matrix production. The response to impaired respiration was blocked in a mutant lacking cytochromes caa(3) and bc and markedly reduced in a mutant lacking kinase KinB. Mass spectrometry of proteins associated with KinB showedmore » that the kinase was in a complex with multiple components of the aerobic respiratory chain. We propose that KinB is activated via a redox switch involving interaction of its second transmembrane segment with one or more cytochromes under conditions of reduced electron transport. In addition, a second kinase (KinA) contributes to the response to impaired respiration. Evidence suggests that KinA is activated by a decrease in the nicotinamide adenine dinucleotide (NAD(+))/NADH ratio via binding of NAD(+) to the kinase in a PAS domain A-dependent manner. Thus, B. subtilis switches from a unicellular to a multicellular state by two pathways that independently respond to conditions of impaired respiration.« less

  4. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase

    PubMed Central

    Kolodkin-Gal, Ilana; Elsholz, Alexander K.W.; Muth, Christine; Girguis, Peter R.; Kolter, Roberto; Losick, Richard

    2013-01-01

    Bacillus subtilis forms organized multicellular communities known as biofilms wherein the individual cells are held together by a self-produced extracellular matrix. The environmental signals that promote matrix synthesis remain largely unknown. We discovered that one such signal is impaired respiration. Specifically, high oxygen levels suppressed synthesis of the extracellular matrix. In contrast, low oxygen levels, in the absence of an alternative electron acceptor, led to increased matrix production. The response to impaired respiration was blocked in a mutant lacking cytochromes caa3 and bc and markedly reduced in a mutant lacking kinase KinB. Mass spectrometry of proteins associated with KinB showed that the kinase was in a complex with multiple components of the aerobic respiratory chain. We propose that KinB is activated via a redox switch involving interaction of its second transmembrane segment with one or more cytochromes under conditions of reduced electron transport. In addition, a second kinase (KinA) contributes to the response to impaired respiration. Evidence suggests that KinA is activated by a decrease in the nicotinamide adenine dinucleotide (NAD+)/NADH ratio via binding of NAD+ to the kinase in a PAS domain A-dependent manner. Thus, B. subtilis switches from a unicellular to a multicellular state by two pathways that independently respond to conditions of impaired respiration. PMID:23599347

  5. Short-Chain Fatty Acid Acetate Stimulates Adipogenesis and Mitochondrial Biogenesis via GPR43 in Brown Adipocytes.

    PubMed

    Hu, Jiamiao; Kyrou, Ioannis; Tan, Bee K; Dimitriadis, Georgios K; Ramanjaneya, Manjunath; Tripathi, Gyanendra; Patel, Vanlata; James, Sean; Kawan, Mohamed; Chen, Jing; Randeva, Harpal S

    2016-05-01

    Short-chain fatty acids play crucial roles in a range of physiological functions. However, the effects of short-chain fatty acids on brown adipose tissue have not been fully investigated. We examined the role of acetate, a short-chain fatty acid formed by fermentation in the gut, in the regulation of brown adipocyte metabolism. Our results show that acetate up-regulates adipocyte protein 2, peroxisomal proliferator-activated receptor-γ coactivator-1α, and uncoupling protein-1 expression and affects the morphological changes of brown adipocytes during adipogenesis. Moreover, an increase in mitochondrial biogenesis was observed after acetate treatment. Acetate also elicited the activation of ERK and cAMP response element-binding protein, and these responses were sensitive to G(i/o)-type G protein inactivator, Gβγ-subunit inhibitor, phospholipase C inhibitor, and MAPK kinase inhibitor, indicating a role for the G(i/o)βγ/phospholipase C/protein kinase C/MAPK kinase signaling pathway in these responses. These effects of acetate were mimicked by treatment with 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide, a synthetic G protein-coupled receptor 43 (GPR43) agonist and were impaired in GPR43 knockdown cells. Taken together, our results indicate that acetate may have important physiological roles in brown adipocytes through the activation of GPR43.

  6. Inhibition of the protease activity of the light chain of type A botulinum neurotoxin by aqueous extract from stinging nettle (Urtica dioica) leaf.

    PubMed

    Gul, Nizamettin; Ahmed, S Ashraf; Smith, Leonard A

    2004-11-01

    We investigated the inhibitory effect of stinging nettle leaf extract on the protease activity of botulinum neurotoxin type A and B light chains. The nettle leaf infusion was fractionated and HPLC-based enzymatic assays were performed to determine the capacity of each fraction to inhibit the protease activity of botulinum neurotoxin type A and B light chains. Assay results demonstrated that a water-soluble fraction obtained from the nettle leaf infusion inhibited type A, but did not inhibit type B light chain protease activity. The inhibition mode of water soluble fraction against protease activity of type A light chain was analyzed and found to be a non-competitive.

  7. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase kinase in a rat model for type 2 diabetes mellitus at different stages of the disease.

    PubMed

    Doisaki, Masao; Katano, Yoshiaki; Nakano, Isao; Hirooka, Yoshiki; Itoh, Akihiro; Ishigami, Masatoshi; Hayashi, Kazuhiko; Goto, Hidemi; Fujita, Yuko; Kadota, Yoshihiro; Kitaura, Yasuyuki; Bajotto, Gustavo; Kazama, Shunsuke; Tamura, Tomohiro; Tamura, Noriko; Feng, Guo-Gang; Ishikawa, Naohisa; Shimomura, Yoshiharu

    2010-03-05

    Branched-chain alpha-keto acid dehydrogenase (BCKDH) kinase (BDK) is responsible for the regulation of BCKDH complex, which is the rate-limiting enzyme in the catabolism of branched-chain amino acids (BCAAs). In the present study, we investigated the expression and activity of hepatic BDK in spontaneous type 2 diabetes using hyperinsulinemic Zucker diabetic fatty rats aged 9weeks and hyperglycemic, but not hyperinsulinemic rats aged 18weeks. The abundance of hepatic BDK mRNA and total BDK protein did not correlate with changes in serum insulin concentrations. On the other hand, the amount of BDK bound to the complex and its kinase activity were correlated with alterations in serum insulin levels, suggesting that hyperinsulinemia upregulates hepatic BDK. The activity of BDK inversely corresponded with the BCKDH complex activity, which was suppressed in hyperinsulinemic rats. These results suggest that insulin regulates BCAA catabolism in type 2 diabetic rats by modulating the hepatic BDK activity. 2010 Elsevier Inc. All rights reserved.

  8. Variation in Rhodopsin Kinase Expression Alters the Dim Flash Response Shut Off and the Light Adaptation in Rod Photoreceptors

    PubMed Central

    Sakurai, Keisuke; Young, Joyce E.; Kefalov, Vladimir J.; Khani, Shahrokh C.

    2011-01-01

    Purpose. Rod photoreceptors are exquisitely sensitive light detectors that function in dim light. The timely inactivation of their light responses is critical for the ability of rods to reliably detect and count photons. A key step in the inactivation of the rod transduction is the phosphorylation of the rod visual pigment, rhodopsin, catalyzed by G-protein-dependent receptor kinase 1 (GRK1). Absence of GRK1 greatly prolongs the photoreceptors' light response and enhances their susceptibility to degeneration. This study examined the light responses from mouse rods expressing various levels of GRK1 to evaluate how their function is modulated by rhodopsin inactivation. Methods. Transretinal and single-cell rod electrophysiological recordings were obtained from several strains of mice expressing GRK1 at 0.3- to 3-fold the wild-type levels. The effect of GRK1 expression level on the function of mouse rods was examined in darkness and during background adaptation. Results. Altering the expression of GRK1 from 0.3- to 3-fold that in wild-type rods had little effect on the single photon response amplitude. Notably, increasing the expression level of GRK1 accelerated the dim flash response shut off but had no effect on the saturated response shut off. Additionally, GRK1 excess abolished the acceleration of saturated responses shut off during light adaptation. Conclusions. These results demonstrate that rhodopsin inactivation can modulate the kinetics of recovery from dim light stimulation. More importantly, the ratio of rhodopsin kinase to its modulator recoverin appears critical for the proper adaptation of rods and the acceleration of their response shut off in background light. PMID:21474765

  9. A protein kinase from Colletotrichum trifolii is induced by plant cutin and is required for appressorium formation.

    PubMed

    Dickman, M B; Ha, Y S; Yang, Z; Adams, B; Huang, C

    2003-05-01

    When certain phytopathogenic fungi contact plant surfaces, specialized infection structures (appressoria) are produced that facilitate penetration of the plant external barrier; the cuticle. Recognition of this hydrophobic host surface must be sensed by the fungus, initiating the appropriate signaling pathway or pathways for pathogenic development. Using polymerase chain reaction and primers designed from mammalian protein kinase C sequences (PKC), we have isolated, cloned, and characterized a protein kinase from Colletotrichum trifolii, causal agent of alfalfa anthracnose. Though sequence analysis indicated conserved sequences in mammalian PKC genes, we were unable to induce activity of the fungal protein using known activators of PKC. Instead, we show that the C. trifolii gene, designated LIPK (lipid-induced protein kinase) is induced specifically by purified plant cutin or long-chain fatty acids which are monomeric constituents of cutin. PKC inhibitors prevented appressorium formation and, to a lesser extent, spore germination. Overexpression of LIPK resulted in multiple, abnormally shaped appressoria. Gene replacement of lipk yielded strains which were unable to develop appressoria and were unable to infect intact host plant tissue. However, these mutants were able to colonize host tissue following artificial wounding, resulting in typical anthracnose lesions. Taken together, these data indicate a central role in triggering infection structure formation for this protein kinase, which is induced specifically by components of the plant cuticle. Thus, the fungus is able to sense and use host surface chemistry to induce a protein kinase-mediated pathway that is required for pathogenic development.

  10. Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism

    NASA Technical Reports Server (NTRS)

    Lu, Y. T.; Hidaka, H.; Feldman, L. J.

    1996-01-01

    Roots of many species respond to gravity (gravitropism) and grow downward only if illuminated. This light-regulated root gravitropism is phytochrome-dependent, mediated by calcium, and inhibited by KN-93, a specific inhibitor of calcium/calmodulin-dependent protein kinase II (CaMK II). A cDNA encoding MCK1, a maize homolog of mammalian CaMK, has been isolated from roots of maize (Zea mays L.). The MCK1 gene is expressed in root tips, the site of perception for both light and gravity. Using the [35S]CaM gel-overlay assay we showed that calmodulin-binding activity of the MCK1 is abolished by 50 microM KN-93, but binding is not affected by 5 microM KN-93, paralleling physiological findings that light-regulated root gravitropism is inhibited by 50 microM KN-93, but not by 5 microM KN-93. KN-93 inhibits light-regulated gravitropism by interrupting transduction of the light signal, not light perception, suggesting that MCK1 may play a role in transducing light. This is the first report suggesting a physiological function for a CaMK homolog in light signal transduction.

  11. Pr-specific phytochrome phosphorylation in vitro by a protein kinase present in anti-phytochrome maize immunoprecipitates

    NASA Technical Reports Server (NTRS)

    Biermann, B. J.; Pao, L. I.; Feldman, L. J.

    1994-01-01

    Protein kinase activity has repeatedly been found to co-purify with the plant photoreceptor phytochrome, suggesting that light signals received by phytochrome may be transduced or modulated through protein phosphorylation. In this study immunoprecipitation techniques were used to characterize protein kinase activity associated with phytochrome from maize (Zea mays L.). A protein kinase that specifically phosphorylated phytochrome was present in washed anti-phytochrome immunoprecipitates of etiolated coleoptile proteins. No other substrate tested was phosphorylated by this kinase. Adding salts or detergents to disrupt low-affinity protein interactions reduced background phosphorylation in immunoprecipitates without affecting phytochrome phosphorylation, indicating that the protein kinase catalytic activity is either intrinsic to the phytochrome molecule or associated with it by high-affinity interactions. Red irradiation (of coleoptiles or extracts) sufficient to approach photoconversion saturation reduced phosphorylation of immunoprecipitated phytochrome. Subsequent far-red irradiation reversed the red-light effect. Phytochrome phosphorylation was stimulated about 10-fold by a co-immunoprecipitated factor. The stimulatory factor was highest in immunoprecipitates when Mg2+ was present in immunoprecipitation reactions but remained in the supernatant in the absence of Mg2+. These observations provide strong support for the hypothesis that phytochrome-associated protein kinase modulates light responses in vivo. Since only phytochrome was found to be phosphorylated, the co-immunoprecipitated protein kinase may function to regulate receptor activity.

  12. p38 mitogen-activated protein kinase-induced nuclear factor kappa-light-chain-enhancer of activated B cell activity is required for neuroprotection in retinal ischemia/reperfusion injury.

    PubMed

    Jiang, Shao-Yun; Zou, Yuan-Yuan; Wang, Jian-Tao

    2012-01-01

    In our previous study, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) played a neuroprotective role in retinal ischemia/reperfusion (I/R) injury in rats. However, the mechanism of NF-κB neuroprotection is still unclear. We hypothesize that p38 mitogen-activated protein kinase (MAPK) is expressed and NF-κB activity induced by p38 MAPK plays a neuroprotective role through antiapoptotic genes (B-cell lymphoma [Bcl]-2 and Bcl-XL) in retinal cells in retinal I/R injury. Retinal ischemia was induced by elevating intraocular pressure in rats. After retinal I/R, the p38 MAPK, NF-κB p65, Bcl-2, and Bcl-XL mRNA levels were measured with real-time polymerase chain reaction. NF-κB p65 activity was assessed with NF-κB enzyme-linked immunosorbent assay in retinal I/R injury and after application of the p38 MAPK inhibitor (SB203580). Furthermore, SB203580 and NF-κB p65 short interfering RNA (siRNA) were used in retinal I/R injury to examine the effects on Bcl-2 and Bcl-XL levels and nucleosome release in the retina and cell survival in the ganglion cell layer. The mRNA levels of NF-κB p65 and p38 MAPK reached a peak at 6 h after retinal I/R and then decreased gradually. The mRNA levels of Bcl-2 and Bcl-XL significantly increased at 2, 4, and 6 h, peaked at 8 h, and decreased gradually, but remained at a higher level compared with the normal control, which was accompanied by an increase in NF-κB p65 in nuclear extracts. After application of SB203580, the increase in the NF-κB p65 levels in the nucleus induced with I/R was completely abolished, and the mRNA expression of Bcl-2 and Bcl-XL decreased significantly compared with the I/R controls. In addition, NF-κB p65 siRNA inhibited Bcl-2 and Bcl-XL expression. Inhibition of the p38 MAPK-NF-κB pathway (using SB203580 or NF-κB p65 siRNA) increased retinal nucleosome release and decreased the number of ganglion cells. These findings provide evidence of crosstalk between p38 MAPK and NF-κB p65 and

  13. Somatic diversification of chicken immunoglobulin light chains by point mutations.

    PubMed

    Parvari, R; Ziv, E; Lantner, F; Heller, D; Schechter, I

    1990-04-01

    The light-chain locus of chicken has 1 functional V lambda 1 gene, 1 J gene, and 25 pseudo-V lambda-genes (where V = variable and J = joining). A major problem is which somatic mechanisms expand this extremely limited germ-line information to generate many different antibodies. Weill's group [Reynaud, C. A., Anquez, V., Grimal, H. & Weill, J. C. (1987) Cell 48, 379-388] has shown that the pseudo-V lambda-genes diversify the rearranged V lambda 1 by gene conversion. Here we demonstrate that chicken light chains are further diversified by somatic point mutations and by V lambda 1-J flexible joining. Somatic point mutations were identified in the J and 3' noncoding DNA of rearranged light-chain genes of chicken. These regions were analyzed because point mutations in V lambda 1 are obscured by gene conversion; the J and 3' noncoding DNA are presented in one copy per haploid genome and are not subject to gene conversion. In rodents point mutations occur as frequently in the V-J coding regions as in the adjacent flanking DNA. Therefore, we conclude that somatic point mutations diversify the V lambda 1 of chicken. The frequency (0-1%) and distribution of the mutations (decreasing in number with increased distance from the V lambda 1 segment) in chicken were as observed in rodents. Sequence variability at the V lambda 1-J junctions could be attributed to imprecise joining of the V lambda 1 and J genes. The modification by gene conversion of rearranged V lambda 1 genes in the bursa was similar in chicken aged 3 months (9.5%) or 3 weeks (9.1%)--i.e., gene conversion that generates the preimmune repertoire in the bursa seems to level off around 3 weeks of age. This preimmune repertoire can be further diversified by somatic point mutations that presumably lead to the formation of antibodies with increased affinity. A segment with structural features of a matrix association region [(A + T)-rich and four topoisomerase II binding sites] was identified in the middle of the J

  14. Computational Modeling to Limit the Impact Displays and Indicator Lights Have on Habitable Volume Operational Lighting Constraints

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Salazar, G. A.; Brainard, G. C.; Litaker, H. L.; Hanifin, J.; Schwing, B. M.

    2016-01-01

    Even with no ambient lighting system "on", the International Space Station glows at night. The glow is caused by indicator lamps and displays that are not included with the specification of the ambient lighting system. How does this impact efforts to improve the astronaut's lighting environment to promote more effective sleep patterns? Do the extra indicators and displays add enough light to change the spectrum of light the crew sees during the day as well? If spacecraft environments are specifically engineered to have an ambient lighting system that emits a spectrum promoting a healthy circadian response, is there a way control the impact? The goal of this project is to investigate how additional light sources, such as displays and indicators change the effective light spectrum of the architectural lighting system and how impacts can be mitigated.

  15. Impaired growth and neurological abnormalities in branched-chain α-keto acid dehydrogenase kinase-deficient mice

    PubMed Central

    Joshi, Mandar A.; Jeoung, Nam Ho; Obayashi, Mariko; Hattab, Eyas M.; Brocken, Eric G.; Liechty, Edward A.; Kubek, Michael J.; Vattem, Krishna M.; Wek, Ronald C.; Harris, Robert A.

    2006-01-01

    The BCKDH (branched-chain α-keto acid dehydrogenase complex) catalyses the rate-limiting step in the oxidation of BCAAs (branched-chain amino acids). Activity of the complex is regulated by a specific kinase, BDK (BCKDH kinase), which causes inactivation, and a phosphatase, BDP (BCKDH phosphatase), which causes activation. In the present study, the effect of the disruption of the BDK gene on growth and development of mice was investigated. BCKDH activity was much greater in most tissues of BDK−/− mice. This occurred in part because the E1 component of the complex cannot be phosphorylated due to the absence of BDK and also because greater than normal amounts of the E1 component were present in tissues of BDK−/− mice. Lack of control of BCKDH activity resulted in markedly lower blood and tissue levels of the BCAAs in BDK−/− mice. At 12 weeks of age, BDK−/− mice were 15% smaller than wild-type mice and their fur lacked normal lustre. Brain, muscle and adipose tissue weights were reduced, whereas weights of the liver and kidney were greater. Neurological abnormalities were apparent by hind limb flexion throughout life and epileptic seizures after 6–7 months of age. Inhibition of protein synthesis in the brain due to hyperphosphorylation of eIF2α (eukaryotic translation initiation factor 2α) might contribute to the neurological abnormalities seen in BDK−/− mice. BDK−/− mice show significant improvement in growth and appearance when fed a high protein diet, suggesting that higher amounts of dietary BCAA can partially compensate for increased oxidation in BDK−/− mice. Disruption of the BDK gene establishes that regulation of BCKDH by phosphorylation is critically important for the regulation of oxidative disposal of BCAAs. The phenotype of the BDK−/− mice demonstrates the importance of tight regulation of oxidative disposal of BCAAs for normal growth and neurological function. PMID:16875466

  16. Light Chain Cast Nephropathy: Practical Considerations in the Management of Myeloma Kidney-What We Know and What the Future May Hold.

    PubMed

    Manohar, Sandhya; Nasr, Samih H; Leung, Nelson

    2018-05-03

    To update and evaluate the current knowledge on pathogenesis and management of light chain cast nephropathy. Light chain cast nephropathy (LCCN) is the leading cause of acute renal failure in patients with multiple myeloma and is currently recognized as a myeloma defining event. The immunoglobulin free light chain plays an integral role in the pathogenesis of LCCN. The level of free light chain (FLC) in the blood and urine is directly associated with the risk of developing LCCN. Recovery of renal function is related to the speed and degree of the serum FLC reduction. Recently, two randomized trials using high cutoff dialyzer for the removal of serum FLC produced different results in terms of renal recovery. FLC plays a key role in the development and resolution of LCCN. Future therapies will aim to rapidly reduce its concentration or interrupt its interaction with Tamm-Horsfall protein.

  17. Superoxide constricts rat pulmonary arteries via Rho-kinase-mediated Ca2+ sensitization

    PubMed Central

    Shaifta, Yasin; Connolly, Michelle; Drndarski, Svetlana; Noah, Anthony; Pourmahram, Ghazaleh E.; Becker, Silke; Aaronson, Philip I.; Ward, Jeremy P.T.

    2018-01-01

    Reactive oxygen species play a key role in vascular disease, pulmonary hypertension, and hypoxic pulmonary vasoconstriction. We investigated contractile responses, intracellular Ca2+ ([Ca2+]i), Rho-kinase translocation, and phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light chain (MLC20) in response to LY83583, a generator of superoxide anion, in small intrapulmonary arteries (IPA) of rat. LY83583 caused concentration-dependent constrictions in IPA and greatly enhanced submaximal PGF2α-mediated preconstriction. In small femoral or mesenteric arteries of rat, LY83583 alone was without effect, but it relaxed a PGF2α-mediated preconstriction. Constrictions in IPA were inhibited by superoxide dismutase and tempol, but not catalase, and were endothelium and guanylate cyclase independent. Constrictions were also inhibited by the Rho-kinase inhibitor Y27632 and the Src-family kinase inhibitor SU6656. LY83583 did not raise [Ca2+]i, but caused a Y27632-sensitive constriction in α-toxin-permeabilized IPA. LY83583 triggered translocation of Rho-kinase from the nucleus to the cytosol in pulmonary artery smooth muscle cells and enhanced phosphorylation of MYPT-1 at Thr-855 and of MLC20 at Ser-19 in IPA. This enhancement was inhibited by superoxide dismutase and abolished by Y27632. Hydrogen peroxide did not activate Rho-kinase. We conclude that in rat small pulmonary artery, superoxide triggers Rho-kinase-mediated Ca2+ sensitization and vasoconstriction independent of hydrogen peroxide. PMID:19103285

  18. Actin binding by Hip1 (huntingtin-interacting protein 1) and Hip1R (Hip1-related protein) is regulated by clathrin light chain.

    PubMed

    Wilbur, Jeremy D; Chen, Chih-Ying; Manalo, Venus; Hwang, Peter K; Fletterick, Robert J; Brodsky, Frances M

    2008-11-21

    The huntingtin-interacting protein family members (Hip1 and Hip1R in mammals and Sla2p in yeast) link clathrin-mediated membrane traffic to actin cytoskeleton dynamics. Genetic data in yeast have implicated the light chain subunit of clathrin in regulating this link. To test this hypothesis, the biophysical properties of mammalian Hip1 and Hip1R and their interaction with clathrin light chain and actin were analyzed. The coiled-coil domains (clathrin light chain-binding) of Hip1 and Hip1R were found to be stable homodimers with no propensity to heterodimerize in vitro. Homodimers were also predominant in vivo, accounting for cellular segregation of Hip1 and Hip1R functions. Coiled-coil domains of Hip1 and Hip1R differed in their stability and flexibility, correlating with slightly different affinities for clathrin light chain and more markedly with effects of clathrin light chain binding on Hip protein-actin interactions. Clathrin light chain binding induced a compact conformation of both Hip1 and Hip1R and significantly reduced actin binding by their THATCH domains. Thus, clathrin is a negative regulator of Hip-actin interactions. These observations necessarily change models proposed for Hip protein function.

  19. Rho Associated Coiled-Coil Kinase-1 Regulates Collagen-Induced Phosphatidylserine Exposure in Platelets

    PubMed Central

    Dasgupta, Swapan K.; Le, Anhquyen; Haudek, Sandra B.; Entman, Mark L.; Rumbaut, Rolando E.; Thiagarajan, Perumal

    2013-01-01

    Background The transbilayer movement of phosphatidylserine mediates the platelet procoagulant activity during collagen stimulation. The Rho-associated coiled-coil kinase (ROCK) inhibitor Y-27632 inhibits senescence induced but not activation induced phosphatidylserine exposure. To investigate further the specific mechanisms, we now utilized mice with genetic deletion of the ROCK1 isoform. Methods and Results ROCK1-deficient mouse platelets expose significantly more phosphatidylserine and generate more thrombin upon activation with collagen compared to wild-type platelets. There were no significant defects in platelet shape change, aggregation, or calcium response compared to wild-type platelets. Collagen-stimulated ROCK1-deficient platelets also displayed decreased phosphorylation levels of Lim Kinase-1 and cofilin-1. However, there was no reduction in phosphorylation levels of myosin phosphatase subunit-1 (MYPT1) or myosin light chain (MLC). In an in vivo light/dye-induced endothelial injury/thrombosis model, ROCK1-deficient mice presented a shorter occlusion time in cremasteric venules when compared to wild-type littermates (3.16 ± 1.33 min versus 6.6 ± 2.6 min; p = 0.01). Conclusions These studies define ROCK1 as a new regulator for collagen-induced phosphatidylserine exposure in platelets with functional consequences on thrombosis. This effect was downstream of calcium signaling and was mediated by Lim Kinase-1 / cofilin-1-induced cytoskeletal changes. PMID:24358370

  20. Interaction between src family kinases and rho-kinase in agonist-induced Ca2+-sensitization of rat pulmonary artery.

    PubMed

    Knock, Greg A; Shaifta, Yasin; Snetkov, Vladimir A; Vowles, Benjamin; Drndarski, Svetlana; Ward, Jeremy P T; Aaronson, Philip I

    2008-02-01

    We investigated the role of src family kinases (srcFK) in agonist-mediated Ca2+-sensitization in pulmonary artery and whether this involves interaction with the rho/rho-kinase pathway. Intra-pulmonary arteries (IPAs) and cultured pulmonary artery smooth muscle cells (PASMC) were obtained from rat. Expression of srcFK was determined at the mRNA and protein levels. Ca2+-sensitization was induced by prostaglandin F(2 alpha) (PGF(2 alpha)) in alpha-toxin-permeabilized IPAs. Phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light-chain-20 (MLC20) and translocation of rho-kinase in response to PGF(2 alpha) were also determined. Nine srcFK were expressed at the mRNA level, including src, fyn, and yes, and PGF(2 alpha) enhanced phosphorylation of three srcFK proteins at tyr-416. In alpha-toxin-permeabilized IPAs, PGF(2 alpha) enhanced the Ca2+-induced contraction (pCa 6.9) approximately three-fold. This enhancement was inhibited by the srcFK blockers SU6656 and PP2 and by the rho-kinase inhibitor Y27632. Y27632, but not SU6656 or PP2, also inhibited the underlying pCa 6.9 contraction. PGF(2 alpha) enhanced phosphorylation of MYPT-1 at thr-697 and thr-855 and of MLC20 at ser-19. This enhancement, but not the underlying basal phosphorylation, was inhibited by SU6656. Y27632 suppressed both basal and PGF(2 alpha)-mediated phosphorylation. The effects of SU6656 and Y27632, on both contraction and MYPT-1 and MLC20 phosphorylation, were not additive. PGF(2 alpha) triggered translocation of rho-kinase in PASMC, and this was inhibited by SU6656. srcFK are activated by PGF(2 alpha) in the rat pulmonary artery and may contribute to Ca2+-sensitization and contraction via rho-kinase translocation and phosphorylation of MYPT-1.

  1. Interaction between src family kinases and rho-kinase in agonist-induced Ca2+-sensitization of rat pulmonary artery

    PubMed Central

    Knock, Greg A.; Shaifta, Yasin; Snetkov, Vladimir A.; Vowles, Benjamin; Drndarski, Svetlana; Ward, Jeremy P.T.; Aaronson, Philip I.

    2008-01-01

    Abstract Aims We investigated the role of src family kinases (srcFK) in agonist-mediated Ca2+-sensitization in pulmonary artery and whether this involves interaction with the rho/rho-kinase pathway. Methods and results Intra-pulmonary arteries (IPAs) and cultured pulmonary artery smooth muscle cells (PASMC) were obtained from rat. Expression of srcFK was determined at the mRNA and protein levels. Ca2+-sensitization was induced by prostaglandin F2α (PGF2α) in α-toxin-permeabilized IPAs. Phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light-chain-20 (MLC20) and translocation of rho-kinase in response to PGF2α were also determined. Nine srcFK were expressed at the mRNA level, including src, fyn, and yes, and PGF2α enhanced phosphorylation of three srcFK proteins at tyr-416. In α-toxin-permeabilized IPAs, PGF2α enhanced the Ca2+-induced contraction (pCa 6.9) approximately three-fold. This enhancement was inhibited by the srcFK blockers SU6656 and PP2 and by the rho-kinase inhibitor Y27632. Y27632, but not SU6656 or PP2, also inhibited the underlying pCa 6.9 contraction. PGF2α enhanced phosphorylation of MYPT-1 at thr-697 and thr-855 and of MLC20 at ser-19. This enhancement, but not the underlying basal phosphorylation, was inhibited by SU6656. Y27632 suppressed both basal and PGF2α-mediated phosphorylation. The effects of SU6656 and Y27632, on both contraction and MYPT-1 and MLC20 phosphorylation, were not additive. PGF2α triggered translocation of rho-kinase in PASMC, and this was inhibited by SU6656. Conclusions srcFK are activated by PGF2α in the rat pulmonary artery and may contribute to Ca2+-sensitization and contraction via rho-kinase translocation and phosphorylation of MYPT-1. PMID:18032393

  2. Double phosphorylation of the myosin regulatory light chain during rigor mortis of bovine Longissimus muscle.

    PubMed

    Muroya, Susumu; Ohnishi-Kameyama, Mayumi; Oe, Mika; Nakajima, Ikuyo; Shibata, Masahiro; Chikuni, Koichi

    2007-05-16

    To investigate changes in myosin light chains (MyLCs) during postmortem aging of the bovine longissimus muscle, we performed two-dimensional gel electrophoresis followed by identification with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The results of fluorescent differential gel electrophoresis showed that two spots of the myosin regulatory light chain (MyLC2) at pI values of 4.6 and 4.7 shifted toward those at pI values of 4.5 and 4.6, respectively, by 24 h postmortem when rigor mortis was completed. Meanwhile, the MyLC1 and MyLC3 spots did not change during the 14 days postmortem. Phosphoprotein-specific staining of the gels demonstrated that the MyLC2 proteins at pI values of 4.5 and 4.6 were phosphorylated. Furthermore, possible N-terminal region peptides containing one and two phosphoserine residues were detected in each mass spectrum of the MyLC2 spots at pI values of 4.5 and 4.6, respectively. These results demonstrated that MyLC2 became doubly phosphorylated during rigor formation of the bovine longissimus, suggesting involvement of the MyLC2 phosphorylation in the progress of beef rigor mortis. Bovine; myosin regulatory light chain (RLC, MyLC2); phosphorylation; rigor mortis; skeletal muscle.

  3. Productive Recognition of Factor IX by Factor XIa Exosites Requires Disulfide Linkage between Heavy and Light Chains of Factor XIa*

    PubMed Central

    Marcinkiewicz, Mariola M.; Sinha, Dipali; Walsh, Peter N.

    2012-01-01

    In the intrinsic pathway of blood coagulation factor XIa (FXIa) activates factor IX (FIX) by cleaving the zymogen at Arg145-Ala146 and Arg180-Val181 bonds releasing an 11-kDa activation peptide. FXIa and its isolated light chain (FXIa-LC) cleave S-2366 at comparable rates, but FXIa-LC is a very poor activator of FIX, possibly because FIX undergoes allosteric modification on binding to an exosite on the heavy chain of FXIa (FXIa-HC) required for optimal cleavage rates of the two scissile bonds of FIX. However preincubation of FIX with a saturating concentration of isolated FXIa-HC did not result in any potentiation in the rate of FIX cleavage by FXIa-LC. Furthermore, if FIX binding via the heavy chain exosite of FXIa determines the affinity of the enzyme-substrate interaction, then the isolated FXIa-HC should inhibit the rate of FIX activation by depleting the substrate. However, whereas FXIa/S557A inhibited FIX activation of by FXIa, FXIa-HC did not. Therefore, we examined FIX binding to FXIa/S557A, FXIa-HC, FXIa-LC, FXIa/C362S/C482S, and FXIa/S557A/C362S/C482S. The heavy and light chains are disulfide-linked in FXIa/S557A but not in FXIa/C362S/C482S and FXIa/S557A/C362S/C482S. In an ELISA assay only FXI/S557A ligated FIX with high affinity. Partial reduction of FXIa/S557A to produce heavy and light chains resulted in decreased FIX binding, and this function was regained upon reformation of the disulfide linkage between the heavy and the light chains. We therefore conclude that substrate recognition by the FXIa exosite(s) requires disulfide-linked heavy and light chains. PMID:22207756

  4. Identification and characterization of plant Haspin kinase as a histone H3 threonine kinase

    PubMed Central

    2011-01-01

    Background Haspin kinases are mitotic kinases that are well-conserved from yeast to human. Human Haspin is a histone H3 Thr3 kinase that has important roles in chromosome cohesion during mitosis. Moreover, phosphorylation of histone H3 at Thr3 by Haspin in fission yeast, Xenopus, and human is required for accumulation of Aurora B on the centromere, and the subsequent activation of Aurora B kinase activity for accurate chromosome alignment and segregation. Although extensive analyses of Haspin have been carried out in yeast and animals, the function of Haspin in organogenesis remains unclear. Results Here, we identified a Haspin kinase, designated AtHaspin, in Arabidopsis thaliana. The purified AtHaspin phosphorylated histone H3 at both Thr3 and Thr11 in vitro. Live imaging of AtHaspin-tdTomato and GFP-α-tubulin in BY-2 cells showed that AtHaspin-tdTomato localized on chromosomes during prometaphase and metaphase, and around the cell plate during cytokinesis. This localization of AtHaspin overlapped with that of phosphorylated Thr3 and Thr11 of histone H3 in BY-2 cells. AtHaspin-GFP driven by the native promoter was expressed in root meristems, shoot meristems, floral meristems, and throughout the whole embryo at stages of high cell division. Overexpression of a kinase domain mutant of AtHaspin decreased the size of the root meristem, which delayed root growth. Conclusions Our results indicated that the Haspin kinase is a histone H3 threonine kinase in A. thaliana. AtHaspin phosphorylated histone H3 at both Thr3 and Thr11 in vitro. The expression and dominant-negative analysis showed that AtHaspin may have a role in mitotic cell division during plant growth. Further analysis of coordinated mechanisms involving Haspin and Aurora kinases will shed new light on the regulation of chromosome segregation in cell division during plant growth and development. PMID:21527018

  5. Coordinate changes of myosin light and heavy chain isoforms during forced fiber type transitions in rabbit muscle.

    PubMed

    Leeuw, T; Pette, D

    1996-01-01

    Skeletal muscle fibers are versatile entities, capable of changing their phenotype in response to altered functional demands. In the present study, fast-to-slow fiber type transitions were induced in rabbit tibialis anterior (fA) muscles by chronic low-frequency stimulation (CLFS). The time course of changes in relative protein concentrations of fast and slow myosin light chain (MLC) isoforms and changes in their relative synthesis rates by in vivo labeling with [35S]methionine were followed during stimulation periods of up to 60 days. Generally, relative synthesis rates and protein concentrations changed in parallel; i.e., fast isoforms decreased and slow isoforms increased. MLC3f, however, which turns over at a higher rate than the other light chains, exhibited a conspicuous discrepancy between a markedly reduced relative synthesis but only a moderate decrease in protein amount during the initial 2 weeks of CLFS. Apparently, MLC3f is regulated independent of MLC1f, with protein degradation playing an important role in its regulation. The exchange of fast MLC isoforms with their slow counterparts seemed to correspond to the ultimate fast-to-slow (MHCIIa-->MHCI) transition at the MHC level. However, due to an earlier onset of the fast-to-slow transition of the regulatory light chain and the delayed fast-to-slow exchange of the alkali light chains, a spectrum of hybrid isomyosins composed of fast and slow light and heavy chains must have existed transiently in transforming fibers. Such hybrid isomyosins appeared to be restricted to MHCIIa- and MHCI-based combinations. In conclusion, fiber type specific programs that normally coordinate the expression of myofibrillar protein isoforms seem to be maintained during fiber type transitions. Possible differences in post-transcriptional regulation may result in the transient accumulation of atypical combinations of fast and slow MLC and MHC isoforms, giving rise to the appearance of hybrid fibers under the conditions of

  6. Biased immunoglobulin light chain gene usage in the shark1

    PubMed Central

    Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen

    2015-01-01

    This study of a large family of kappa light (L) chain clusters in nurse shark completes the characterization of its classical immunoglobulin (Ig) gene content (two heavy chain classes, mu and omega, and four L chain isotopes, kappa, lambda, sigma, and sigma-2). The shark kappa clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over a ~500 bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ca. 39 kappa clusters are pre-rearranged in the germline (GL-joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, non-productive, and sterile transcripts of the kappa clusters compared to the other three L chain isotypes. Kappa cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and non-productive rearrangements. These results show that the individual activation of the spatially distant kappa clusters is non-random. Although both split and GL-joined kappa genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing. PMID:26342033

  7. Actin Binding by Hip1 (Huntingtin-interacting Protein 1) and Hip1R (Hip1-related Protein) Is Regulated by Clathrin Light Chain*S⃞

    PubMed Central

    Wilbur, Jeremy D.; Chen, Chih-Ying; Manalo, Venus; Hwang, Peter K.; Fletterick, Robert J.; Brodsky, Frances M.

    2008-01-01

    The huntingtin-interacting protein family members (Hip1 and Hip1R in mammals and Sla2p in yeast) link clathrin-mediated membrane traffic to actin cytoskeleton dynamics. Genetic data in yeast have implicated the light chain subunit of clathrin in regulating this link. To test this hypothesis, the biophysical properties of mammalian Hip1 and Hip1R and their interaction with clathrin light chain and actin were analyzed. The coiled-coil domains (clathrin light chain-binding) of Hip1 and Hip1R were found to be stable homodimers with no propensity to heterodimerize in vitro. Homodimers were also predominant in vivo, accounting for cellular segregation of Hip1 and Hip1R functions. Coiled-coil domains of Hip1 and Hip1R differed in their stability and flexibility, correlating with slightly different affinities for clathrin light chain and more markedly with effects of clathrin light chain binding on Hip protein-actin interactions. Clathrin light chain binding induced a compact conformation of both Hip1 and Hip1R and significantly reduced actin binding by their THATCH domains. Thus, clathrin is a negative regulator of Hip-actin interactions. These observations necessarily change models proposed for Hip protein function. PMID:18790740

  8. Four structural risk factors identify most fibril-forming kappa light chains.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, F. J.; Biosciences Division

    2000-09-01

    Antibody light chains (LCs) comprise the most structurally diverse family of proteins involved in amyloidosis. Many antibody LCs incorporate structural features that impair their stability and solubility, leading to their assembly into fibrils and to their subsequent pathological deposition when produced in excess during multiple myeloma and primary amyloidosis. The particular amino acid variations in antibody LCs that account for fibril formation and amyloidogenesis have not been identified. This study focuses on amyloidogenesis within the Kl family of human LCs. Reanalysis of the current database of primary structures of proteins from more than 100 patients who produced Kl LCS, 37more » of which were amyloidogenic, reveals apparent structural features that may contribute to amyloidosis. These features include loss of conserved residues or the gain of particular residues through mutation at sites involving a repertoire of approximately 20% of the amino acid positions in the light chain variable domain (V{sub L}). Moreover, 80% of all K1 amyloidogenic V{sub L}s are identifiable by the presence of at least one of three single-site substitutions or the acquisition of an N-linked glycosylation site through mutations. These findings suggest that it is feasible to predict fibril propensity by analysis of primary structure.« less

  9. Primary Ciliary Dyskinesia Caused by Homozygous Mutation in DNAL1, Encoding Dynein Light Chain 1

    PubMed Central

    Mazor, Masha; Alkrinawi, Soliman; Chalifa-Caspi, Vered; Manor, Esther; Sheffield, Val C.; Aviram, Micha; Parvari, Ruti

    2011-01-01

    In primary ciliary dyskinesia (PCD), genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility. The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Although it has long been suspected that mutations in DNAL1 encoding the ODA light chain1 might cause PCD such mutations were not found. We demonstrate here that a homozygous point mutation in this gene is associated with PCD with absent or markedly shortened ODA. The mutation (NM_031427.3: c.449A>G; p.Asn150Ser) changes the Asn at position150, which is critical for the proper tight turn between the β strand and the α helix of the leucine-rich repeat in the hydrophobic face that connects to the dynein heavy chain. The mutation reduces the stability of the axonemal dynein light chain 1 and damages its interactions with dynein heavy chain and with tubulin. This study adds another important component to understanding the types of mutations that cause PCD and provides clinical information regarding a specific mutation in a gene not yet known to be associated with PCD. PMID:21496787

  10. Long Persistent Light Emitting Diode Indicators

    ERIC Educational Resources Information Center

    Jia, Dongdong; Ma, Yiwei; Hunter, D. N.

    2007-01-01

    An undergraduate laboratory was designed for undergraduate students to make long persistent light emitting diode (LED) indicators using phosphors. Blue LEDs, which emit at 465 nm, were characterized and used as an excitation source. Long persistent phosphors, SrAl[subscript 2]O[subscript 4]:Eu[superscript 2+],Dy[superscript 3+] (green) and…

  11. Quality indicators to compare accredited independent pharmacies and accredited chain pharmacies in Thailand.

    PubMed

    Arkaravichien, Wiwat; Wongpratat, Apichaya; Lertsinudom, Sunee

    2016-08-01

    Background Quality indicators determine the quality of actual practice in reference to standard criteria. The Community Pharmacy Association (Thailand), with technical support from the International Pharmaceutical Federation, developed a tool for quality assessment and quality improvement at community pharmacies. This tool has passed validity and reliability tests, but has not yet had feasibility testing. Objective (1) To test whether this quality tool could be used in routine settings. (2) To compare quality scores between accredited independent and accredited chain pharmacies. Setting Accredited independent pharmacies and accredited chain pharmacies in the north eastern region of Thailand. Methods A cross sectional study was conducted in 34 accredited independent pharmacies and accredited chain pharmacies. Quality scores were assessed by observation and by interviewing the responsible pharmacists. Data were collected and analyzed by independent t-test and Mann-Whitney U test as appropriate. Results were plotted by histogram and spider chart. Main outcome measure Domain's assessable scores, possible maximum scores, mean and median of measured scores. Results Domain's assessable scores were close to domain's possible maximum scores. This meant that most indicators could be assessed in most pharmacies. The spider chart revealed that measured scores in the personnel, drug inventory and stocking, and patient satisfaction and health promotion domains of chain pharmacies were significantly higher than those of independent pharmacies (p < 0.05). There was no statistical difference between independent pharmacies and chain pharmacies in the premise and facility or dispensing and patient care domains. Conclusion Quality indicators developed by the Community Pharmacy Association (Thailand) could be used to assess quality of practice in pharmacies in routine settings. It is revealed that the quality scores of chain pharmacies were higher than those of independent pharmacies.

  12. Roles of protein kinase R in cancer: Potential as a therapeutic target.

    PubMed

    Watanabe, Takao; Imamura, Takeshi; Hiasa, Yoichi

    2018-04-01

    Double-stranded (ds) RNA-dependent protein kinase (PKR) is a ubiquitously expressed serine/threonine protein kinase. It was initially identified as an innate immune antiviral protein induced by interferon (IFN) and activated by dsRNA. PKR is recognized as a key executor of antiviral host defense. Moreover, it contributes to inflammation and immune regulation through several signaling pathways. In addition to IFN and dsRNA, PKR is activated by multiple stimuli and regulates various signaling pathways including the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells pathways. PKR was initially thought to be a tumor suppressor as a result of its ability to suppress cell growth and interact with major tumor suppressor genes. However, in several types of malignant disease, such as colon and breast cancers, its role remains controversial. In hepatocellular carcinoma, hepatitis C virus (HCV) is the main cause of liver cancer, and PKR inhibits HCV replication, indicating its role as a tumor suppressor. However, PKR is overexpressed in cirrhotic patients, and acts as a tumor promoter through enhancement of cancer cell growth by mediating MAPK or signal transducer and activator of transcription pathways. Moreover, PKR is reportedly required for the activation of inflammasomes and influences metabolic disorders. In the present review, we introduce the multifaceted roles of PKR such as antiviral function, tumor cell growth, regulation of inflammatory immune responses, and maintaining metabolic homeostasis; and discuss future perspectives on PKR biology including its potential as a therapeutic target for liver cancer. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  13. Anti-nociceptive effect of a conjugate of substance P and light chain of botulinum neurotoxin type A.

    PubMed

    Mustafa, Golam; Anderson, Ethan M; Bokrand-Donatelli, Yvonne; Neubert, John K; Caudle, Robert M

    2013-11-01

    Neuropathic pain is a debilitating condition resulting from damage to sensory transmission pathways in the peripheral and central nervous system. A potential new way of treating chronic neuropathic pain is to target specific pain-processing neurons based on their expression of particular receptor molecules. We hypothesized that a toxin-neuropeptide conjugate would alter pain by first being taken up by specific receptors for the neuropeptide expressed on the neuronal cells. Then, once inside the cell the toxin would inhibit the neurons' activity without killing the neurons, thereby providing pain relief without lesioning the nervous system. In an effort to inactivate the nociceptive neurons in the trigeminal nucleus caudalis in mice, we targeted the NK1 receptor (NK1R) using substance P (SP). The catalytically active light chain of botulinum neurotoxin type A (LC/A) was conjugated with SP. Our results indicate that the conjugate BoNT/A-LC:SP is internalized in cultured NK1R-expressing neurons and also cleaves the target of botulinum toxin, a component-docking motif necessary for release of neurotransmitters called SNAP-25. The conjugate was next tested in a murine model of Taxol-induced neuropathic pain. An intracisternal injection of BoNT/A-LC:SP decreased thermal hyperalgesia as measured by the operant orofacial nociception assay. These findings indicate that conjugates of the light chain of botulinum toxin are extremely promising agents for use in suppressing neuronal activity for extended time periods, and that BoNT/A-LC:SP may be a useful agent for treating chronic pain. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  14. Light-chain residue 95 is critical for antigen binding and multispecificity of monoclonal antibody G2.

    PubMed

    Usui, Daiki; Inaba, Satomi; Kamatari, Yuji O; Ishiguro, Naotaka; Oda, Masayuki

    2017-09-02

    The monoclonal antibody, G2, specifically binds to the immunogen peptide derived from the chicken prion protein, Pep18mer, and two chicken proteins derived peptides, Pep8 and Pep395; G2 binds with equal affinity to Pep18mer. The amino acid sequences of the three peptides are completely different, and so the recognition mechanism of G2 is unique and interesting. We generated a single-chain Fv (scFv) antibody of G2, and demonstrated its correct folding with an antigen binding function similar to intact G2 antibody. We also generated a Pro containing mutant of G2 scFv at residue 95 of the light chain, and analyzed its antigen binding using a surface plasmon biosensor. The mutant lost its binding ability to Pep18mer, but remained those to Pep8 and Pep395. The results clearly indicate residue 95 as being critical for multispecific antigen binding of G2 at the site generated from the junctional diversity introduced at the joints between the V and J gene segments. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility

    PubMed Central

    Green, Judith L.; Wall, Richard J.; Vahokoski, Juha; Yusuf, Noor A.; Ridzuan, Mohd A. Mohd; Stanway, Rebecca R.; Stock, Jessica; Knuepfer, Ellen; Brady, Declan; Martin, Stephen R.; Howell, Steven A.; Pires, Isa P.; Moon, Robert W.; Molloy, Justin E.; Kursula, Inari; Tewari, Rita

    2017-01-01

    Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain–interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion. PMID:28893907

  16. Therapeutic Approaches for Botulinum Intoxication Targeting Degradation of the Light Chain

    DTIC Science & Technology

    2014-06-01

    protein and producing adequate amounts for in vitro testing. 15. SUBJECT TERMS- Botulinum toxin , ubiquitin, chimeric toxin light chains, LcA, LcE...that confer stability to LCs of botulinum toxin can be assessed by mutation of dileucine residues and systematic deletion of residues from LcA-LcE...cells. So What? Currently, there is no cure for botulinum poisoning once the toxin has entered a neuron. Moreover, the half-life of BoNT/A is very

  17. Phosphorylation-dependent autoinhibition of myosin light chain phosphatase accounts for Ca2+ sensitization force of smooth muscle contraction.

    PubMed

    Khromov, Alexander; Choudhury, Nandini; Stevenson, Andra S; Somlyo, Avril V; Eto, Masumi

    2009-08-07

    The reversible regulation of myosin light chain phosphatase (MLCP) in response to agonist stimulation and cAMP/cGMP signals plays an important role in the regulation of smooth muscle (SM) tone. Here, we investigated the mechanism underlying the inhibition of MLCP induced by the phosphorylation of myosin phosphatase targeting subunit (MYPT1), a regulatory subunit of MLCP, at Thr-696 and Thr-853 using glutathione S-transferase (GST)-MYPT1 fragments having the inhibitory phosphorylation sites. GST-MYPT1 fragments, including only Thr-696 and only Thr-853, inhibited purified MLCP (IC(50) = 1.6 and 60 nm, respectively) when they were phosphorylated with RhoA-dependent kinase (ROCK). The activities of isolated catalytic subunits of type 1 and type 2A phosphatases (PP1 and PP2A) were insensitive to either fragment. Phospho-GST-MYPT1 fragments docked directly at the active site of MLCP, and this was blocked by a PP1/PP2A inhibitor microcystin (MC)-LR or by mutation of the active sites in PP1. GST-MYPT1 fragments induced a contraction of beta-escin-permeabilized ileum SM at constant pCa 6.3 (EC(50) = 2 microm), which was eliminated by Ala substitution of the fragment at Thr-696 or by ROCK inhibitors or 8Br-cGMP. GST-MYPT1-(697-880) was 5-times less potent than fragments including Thr-696. Relaxation induced by 8Br-cGMP was not affected by Ala substitution at Ser-695, a known phosphorylation site for protein kinase A/G. Thus, GST-MYPT1 fragments are phosphorylated by ROCK in permeabilized SM and mimic agonist-induced inhibition and cGMP-induced activation of MLCP. We propose a model in which MYPT1 phosphorylation at Thr-696 and Thr-853 causes an autoinhibition of MLCP that accounts for Ca(2+) sensitization of smooth muscle force.

  18. Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor

    PubMed Central

    Bonomi, Hernán R.; Posadas, Diana M.; Paris, Gastón; Carrica, Mariela del Carmen; Frederickson, Marcus; Pietrasanta, Lía Isabel; Bogomolni, Roberto A.; Zorreguieta, Angeles; Goldbaum, Fernando A.

    2012-01-01

    Rhizobium leguminosarum is a soil bacterium that infects root hairs and induces the formation of nitrogen-fixing nodules on leguminous plants. Light, oxygen, and voltage (LOV)-domain proteins are blue-light receptors found in higher plants and many algae, fungi, and bacteria. The genome of R. leguminosarum bv. viciae 3841, a pea-nodulating endosymbiont, encodes a sensor histidine kinase containing a LOV domain at the N-terminal end (R-LOV-HK). R-LOV-HK has a typical LOV domain absorption spectrum with broad bands in the blue and UV-A regions and shows a truncated photocycle. Here we show that the R-LOV-HK protein regulates attachment to an abiotic surface and production of flagellar proteins and exopolysaccharide in response to light. Also, illumination of bacterial cultures before inoculation of pea roots increases the number of nodules per plant and the number of intranodular bacteroids. The effects of light on nodulation are dependent on a functional lov gene. The results presented in this work suggest that light, sensed by R-LOV-HK, is an important environmental factor that controls adaptive responses and the symbiotic efficiency of R. leguminosarum. PMID:22773814

  19. Computational Modeling to Limit the Impact Displays and Indicator Lights Have on Habitable Volume Operational Lighting Constraints

    NASA Technical Reports Server (NTRS)

    Clark, T. E.; Salazr, G. A; Brainard, G. C.

    2016-01-01

    The goal of this investigation is to determine design limitations and architectural solutions that limit the impact light from displays and indicator lamps have on the operational environment task lighting and lighting countermeasure spectrum constraints. It is concerning that this innovative architectural lighting system, could be compromised by spectrums from display systems, architectural materials, and structures that are not considered as part a full system design implementation. The introduction of many Commercial Off the Shelf (COTS) products to the spacecraft volume that contain LEDs, without consideration to the human factors and biological constraints, is another problem. Displays and indicators are a necessary part of the spacecraft and it is the goal of this research project to determine constraints and solutions that allow these systems to be integrated while minimizing how the lighting environment is modified by them. Due to the potentially broad scope of this endeavor, the project team developed constraints for the evaluation. The evaluation will be on a set of tasks that required significant exposure in the same environment while having a large chance of impacting the light spectrum the crew is expected to receive from the architectural lighting system. The team plans to use recent HRP research on "Net Habitable Volume" [1] to provide the boundary conditions for volume size. A Zemax ® lighting model was developed of a small enclosure that had high intensity overhead lighting and a standard intensity display with LED indicator arrays. The computer model demonstrated a work surface illuminated at a high level by the overhead light source compared to displays and indicators whose light is parallel to the work plane. The overhead lighting oversaturated spectral contributions from the display and indicator at the task work surface. Interestingly, when the observer looked at the displays and LEDs within the small enclosure, their spectral contribution

  20. Cargo selection by specific kinesin light chain 1 isoforms.

    PubMed

    Woźniak, Marcin J; Allan, Victoria J

    2006-11-29

    Kinesin-1 drives the movement of diverse cargoes, and it has been proposed that specific kinesin light chain (KLC) isoforms target kinesin-1 to these different structures. Here, we test this hypothesis using two in vitro motility assays, which reconstitute the movement of rough endoplasmic reticulum (RER) and vesicles present in a Golgi membrane fraction. We generated GST-tagged fusion proteins of KLC1B and KLC1D that included the tetratricopeptide repeat domain and the variable C-terminus. We find that preincubation of RER with KLC1B inhibits RER motility, whereas KLC1D does not. In contrast, Golgi fraction vesicle movement is inhibited by KLC1D but not KLC1B reagents. Both RER and vesicle movement is inhibited by preincubation with the GST-tagged C-terminal domain of ubiquitous kinesin heavy chain (uKHC), which binds to the N-terminal domain of uKHC and alters its interaction with microtubules. We propose that although the TRR domains are required for cargo binding, it is the variable C-terminal region of KLCs that are vital for targeting kinesin-1 to different cellular structures.

  1. Cargo selection by specific kinesin light chain 1 isoforms

    PubMed Central

    Woźniak, Marcin J; Allan, Victoria J

    2006-01-01

    Kinesin-1 drives the movement of diverse cargoes, and it has been proposed that specific kinesin light chain (KLC) isoforms target kinesin-1 to these different structures. Here, we test this hypothesis using two in vitro motility assays, which reconstitute the movement of rough endoplasmic reticulum (RER) and vesicles present in a Golgi membrane fraction. We generated GST-tagged fusion proteins of KLC1B and KLC1D that included the tetratricopeptide repeat domain and the variable C-terminus. We find that preincubation of RER with KLC1B inhibits RER motility, whereas KLC1D does not. In contrast, Golgi fraction vesicle movement is inhibited by KLC1D but not KLC1B reagents. Both RER and vesicle movement is inhibited by preincubation with the GST-tagged C-terminal domain of ubiquitous kinesin heavy chain (uKHC), which binds to the N-terminal domain of uKHC and alters its interaction with microtubules. We propose that although the TRR domains are required for cargo binding, it is the variable C-terminal region of KLCs that are vital for targeting kinesin-1 to different cellular structures. PMID:17093494

  2. Monosialoganglioside-Containing Nanoliposomes Restore Endothelial Function Impaired by AL Amyloidosis Light Chain Proteins.

    PubMed

    Franco, Daniel A; Truran, Seth; Weissig, Volkmar; Guzman-Villanueva, Diana; Karamanova, Nina; Senapati, Subhadip; Burciu, Camelia; Ramirez-Alvarado, Marina; Blancas-Mejia, Luis M; Lindsay, Stuart; Hari, Parameswaran; Migrino, Raymond Q

    2016-06-13

    Light chain amyloidosis (AL) is associated with high mortality, especially in patients with advanced cardiovascular involvement. It is caused by toxicity of misfolded light chain proteins (LC) in vascular, cardiac, and other tissues. There is no treatment to reverse LC tissue toxicity. We tested the hypothesis that nanoliposomes composed of monosialoganglioside, phosphatidylcholine, and cholesterol (GM1 ganglioside-containing nanoliposomes [NLGM1]) can protect against LC-induced human microvascular dysfunction and assess mechanisms behind the protective effect. The dilator responses of ex vivo abdominal adipose arterioles from human participants without AL to acetylcholine and papaverine were measured before and after exposure to LC (20 μg/mL) with or without NLGM1 (1:10 ratio for LC:NLGM1 mass). Human umbilical vein endothelial cells were exposed for 18 to 20 hours to vehicle, LC with or without NLGM1, or NLGM1 and compared for oxidative and nitrative stress response and cellular viability. LC impaired arteriole dilator response to acetylcholine, which was restored by co-treatment with NLGM1. LC decreased endothelial cell nitric oxide production and cell viability while increasing superoxide and peroxynitrite; these adverse effects were reversed by NLGM1. NLGM1 increased endothelial cell protein expression of antioxidant enzymes heme oxygenase 1 and NAD(P)H quinone dehydrogenase 1 and increased nuclear factor, erythroid 2 like 2 (Nrf-2) protein. Nrf-2 gene knockdown reduced antioxidant stress response and reversed the protective effects of NLGM1. NLGM1 protects against LC-induced human microvascular endothelial dysfunction through increased nitric oxide bioavailability and reduced oxidative and nitrative stress mediated by Nrf-2-dependent antioxidant stress response. These findings point to a potential novel therapeutic approach for light chain amyloidosis. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  3. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1.

    PubMed

    Mazor, Masha; Alkrinawi, Soliman; Chalifa-Caspi, Vered; Manor, Esther; Sheffield, Val C; Aviram, Micha; Parvari, Ruti

    2011-05-13

    In primary ciliary dyskinesia (PCD), genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility. The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Although it has long been suspected that mutations in DNAL1 encoding the ODA light chain1 might cause PCD such mutations were not found. We demonstrate here that a homozygous point mutation in this gene is associated with PCD with absent or markedly shortened ODA. The mutation (NM_031427.3: c.449A>G; p.Asn150Ser) changes the Asn at position150, which is critical for the proper tight turn between the β strand and the α helix of the leucine-rich repeat in the hydrophobic face that connects to the dynein heavy chain. The mutation reduces the stability of the axonemal dynein light chain 1 and damages its interactions with dynein heavy chain and with tubulin. This study adds another important component to understanding the types of mutations that cause PCD and provides clinical information regarding a specific mutation in a gene not yet known to be associated with PCD. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Serum free light chain reference values: a critical approach.

    PubMed

    Altinier, Sara; Seguso, Mara; Zaninotto, Martina; Varagnolo, Mariacristina; Adami, Fausto; Angeli, Paolo; Plebani, Mario

    2013-05-01

    The clinical usefulness of serum free light chain (FLC) measurement in the management of patients with plasma cell proliferative disorders has been reported in several papers, and most clinical studies use the reference ranges declared by the manufacturer. The aim of the present study was to evaluate the reproducibility of FLCs immunoassay and to validate the reference range, before introducing it in routine setting. Internal quality control materials and a pool of fresh serum samples were used to evaluate imprecision; 162 fresh sera from healthy blood donors were analyzed to evaluate the reference range for FLCs. In order to verify the κ/λ FLC ratio, 43 sera from patients with polyclonal hypergammaglobulinemia were tested. The FLC immunoassay was performed using a nephelometer with the Freelite reagents. The imprecision studies performed using a serum pool tested with two different lots of reagents showed a mean CV of 16.09% for κFLC and of 16.72% for λFLC. Lower CV%s and different mean values were found by calculating the results from each specific lot separately, while different results were obtained using the control materials provided by the manufacturer. In reference subjects, the 2.5-97.5th percentiles were found to be 4.52-22.33 and 4.84-21.88mg/L for κFLC and λFLC, respectively. The range for κ/λ ratio (0.65-2.36) was validated with the values obtained from subjects with polyclonal hypergammaglobulinemia. In retesting 15 samples from blood donor subjects with a different lot of reagents, mean bias percentages of 17.60 for κFLC and 15.26 for λFLC were obtained. These findings confirm the lot-to-lot variability of the FLC assays also in the measurement of polyclonal light chains, as well as the need to carefully validate the reference values. Published by Elsevier Inc.

  5. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozo-Yauner, Luis del, E-mail: ldelpozo@inmegen.gob.mx; Wall, Jonathan S.; González Andrade, Martín

    2014-01-10

    Highlights: •We evaluated the impact of mutations in the N-terminal strand of 6aJL2 protein. •Mutations destabilized the protein in a position-dependent manner. •Destabilizing mutations accelerated the fibrillogenesis by shortening the lag time. •The effect on the kinetic of fibril elongation by seeding was of different nature. •The N-terminal strand is buried in the fibrillar state of 6aJL2 protein. -- Abstract: It has been suggested that the N-terminal strand of the light chain variable domain (V{sub L}) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stabilitymore » and kinetic of fibrillogenesis of the V{sub L} protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein.« less

  6. Computational Modeling to Limit the Impact Displays and Indicator Lights Have on Habitable Volume Operational Lighting Constraints

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Salazar, G. A.; Brainard, G. C.; Kolomenski, A.; Hanifin, J.; Schwin, B. M.

    2017-01-01

    NASA has demonstrated an interest in improving astronaut health and performance through the installment of a new lighting countermeasure on the International Space Station. The Solid State Lighting Assembly (SSLA) system is designed to positively influence astronaut health by providing a daily change to light spectrum to improve circadian entrainment. Unfortunately, existing NASA standards and requirements define ambient light level requirements for crew sleep and other tasks, yet the number of light-emitting diode (LED) indicators and displays within a habitable volume is currently uncontrolled. Because each of these light sources has its own unique spectral properties, the additive lighting environment ends up becoming something different from what was planned or researched. Restricting the use of displays and indicators is not a solution because these systems provide beneficial crew feedback.

  7. Evaluation of strategies to control Fab light chain dimer during mammalian expression and purification: A universal one-step process for purification of correctly assembled Fab.

    PubMed

    Spooner, Jennifer; Keen, Jenny; Nayyar, Kalpana; Birkett, Neil; Bond, Nicholas; Bannister, David; Tigue, Natalie; Higazi, Daniel; Kemp, Benjamin; Vaughan, Tristan; Kippen, Alistair; Buchanan, Andrew

    2015-07-01

    Fabs are an important class of antibody fragment as both research reagents and therapeutic agents. There are a plethora of methods described for their recombinant expression and purification. However, these do not address the issue of excessive light chain production that forms light chain dimers nor do they describe a universal purification strategy. Light chain dimer impurities and the absence of a universal Fab purification strategy present persistent challenges for biotechnology applications using Fabs, particularly around the need for bespoke purification strategies. This study describes methods to address light chain dimer formation during Fab expression and identifies a novel CH 1 affinity resin as a simple and efficient one-step purification for correctly assembled Fab. © 2015 Wiley Periodicals, Inc.

  8. Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility.

    PubMed

    Green, Judith L; Wall, Richard J; Vahokoski, Juha; Yusuf, Noor A; Ridzuan, Mohd A Mohd; Stanway, Rebecca R; Stock, Jessica; Knuepfer, Ellen; Brady, Declan; Martin, Stephen R; Howell, Steven A; Pires, Isa P; Moon, Robert W; Molloy, Justin E; Kursula, Inari; Tewari, Rita; Holder, Anthony A

    2017-10-27

    Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain-interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Detection of the value of consecutive serum total light chain (sTLC) in patients diagnosed with diffuse large B cell lymphoma.

    PubMed

    Zhai, Linzhu; Zhao, Yuanyuan; Peng, Songguo; Zhu, Ke; Yu, Rongjian; Chen, Hailong; Lin, Tongyu; Lin, Lizhu

    2016-12-01

    There are limited data on serum total light chain (sTLC) in lymphoma and its relative role on the outcome of diffuse large B cell lymphoma (DLBCL) patients. Blood samples from 46 cases newly diagnosed with DLBCL were collected consecutively during chemotherapy to detect sTLC, IgG, IgA, and IgM levels. Clinical data and survival outcomes were analyzed according to the results of sTLC measurements. In summary, 22 patients (47.8 %) had abnormal k or λ light chain, respectively, and 6 patients (13.0 %) had both abnormal k and λ light chains before chemotherapy. Patients with elevated k light chain more frequently displayed multiple extra-nodal organ involvement (P = 0.01) and had an inferior overall survival (OS) (P = 0.041) and progression-free survival (PFS) (P = 0.044) compared to patients with normal level of k light chain. Furthermore, patients with elevated level of both k and λ also exhibited significant association with shorter OS (P = 0.002) and PFS (P = 0.009). Both elevated k alone and concurrent elevated k and λ had independent adverse effects on PFS (P = 0.031 and P = 0.019, respectively). sTLC level was reduced gradually by treatment in this study and reached the lowest point after the fourth cycle of chemotherapy, which was consistent with the disease behavior during chemotherapy. Considering the small sample size of this study, these results should be confirmed in a larger prospective study.

  10. Repigmentation in vitiligo using the Janus kinase inhibitor tofacitinib may require concomitant light exposure.

    PubMed

    Liu, Lucy Y; Strassner, James P; Refat, Maggi A; Harris, John E; King, Brett A

    2017-10-01

    Vitiligo is an autoimmune disease in which cutaneous depigmentation occurs. Existing therapies are often inadequate. Prior reports have shown benefit of the Janus kinase (JAK) inhibitors. To evaluate the efficacy of the JAK 1/3 inhibitor tofacitinib in the treatment of vitiligo. This is a retrospective case series of 10 consecutive patients with vitiligo treated with tofacitinib. Severity of disease was assessed by body surface area of depigmentation. Ten consecutive patients were treated with tofacitinib. Five patients achieved some repigmentation at sites of either sunlight exposure or low-dose narrowband ultraviolet B phototherapy. Suction blister sampling revealed that the autoimmune response was inhibited during treatment in both responding and nonresponding lesions, suggesting that light rather than immunosuppression was primarily required for melanocyte regeneration. Limitations include the small size of the study population, retrospective nature of the study, and lack of a control group. Treatment of vitiligo with JAK inhibitors appears to require light exposure. In contrast to treatment with phototherapy alone, repigmentation during treatment with JAK inhibitors may require only low-level light. Maintenance of repigmentation may be achieved with JAK inhibitor monotherapy. These results support a model wherein JAK inhibitors suppress T cell mediators of vitiligo and light exposure is necessary for stimulation of melanocyte regeneration. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  11. 21 CFR 892.5780 - Light beam patient position indicator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Light beam patient position indicator. 892.5780 Section 892.5780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5780 Light beam patient position...

  12. Genome-wide association study of immunoglobulin light chain amyloidosis in three patient cohorts: comparison with myeloma.

    PubMed

    da Silva Filho, M I; Försti, A; Weinhold, N; Meziane, I; Campo, C; Huhn, S; Nickel, J; Hoffmann, P; Nöthen, M M; Jöckel, K-H; Landi, S; Mitchell, J S; Johnson, D; Morgan, G J; Houlston, R; Goldschmidt, H; Jauch, A; Milani, P; Merlini, G; Rowcieno, D; Hawkins, P; Hegenbart, U; Palladini, G; Wechalekar, A; Schönland, S O; Hemminki, K

    2017-08-01

    Immunoglobulin light chain (AL) amyloidosis is characterized by tissue deposition of amyloid fibers derived from immunoglobulin light chain. AL amyloidosis and multiple myeloma (MM) originate from monoclonal gammopathy of undetermined significance. We wanted to characterize germline susceptibility to AL amyloidosis using a genome-wide association study (GWAS) on 1229 AL amyloidosis patients from Germany, UK and Italy, and 7526 healthy local controls. For comparison with MM, recent GWAS data on 3790 cases were used. For AL amyloidosis, single nucleotide polymorphisms (SNPs) at 10 loci showed evidence of an association at P<10 -5 with homogeneity of results from the 3 sample sets; some of these were previously documented to influence MM risk, including the SNP at the IRF4 binding site. In AL amyloidosis, rs9344 at the splice site of cyclin D1, promoting translocation (11;14), reached the highest significance, P=7.80 × 10 -11 ; the SNP was only marginally significant in MM. SNP rs79419269 close to gene SMARCD3 involved in chromatin remodeling was also significant (P=5.2 × 10 -8 ). These data provide evidence for common genetic susceptibility to AL amyloidosis and MM. Cyclin D1 is a more prominent driver in AL amyloidosis than in MM, but the links to aggregation of light chains need to be demonstrated.

  13. Antibody Light-Chain-Restricted Recognition of the Site of Immune Pressure in the RV144 HIV-1 Vaccine Trial Is Phylogenetically Conserved

    DOE PAGES

    Wiehe, Kevin; Easterhoff, David; Luo, Kan; ...

    2014-11-29

    In HIV-1, the ability to mount antibody responses to conserved, neutralizing epitopes is critical for protection. Here we have studied the light chain usage of human and rhesus macaque antibodies targeted to a dominant region of the HIV-1 envelope second variable (V2) region involving lysine (K) 169, the site of immune pressure in the RV144 vaccine efficacy trial. We found that humans and rhesus macaques used orthologous lambda variable gene segments encoding a glutamic acid-aspartic acid (ED) motif for K169 recognition. Structure determination of an unmutated ancestor antibody demonstrated that the V2 binding site was preconfigured for ED motif-mediated recognitionmore » prior to maturation. Thus, light chain usage for recognition of the site of immune pressure in the RV144 trial is highly conserved across species. In conclusion, these data indicate that the HIV-1 K169-recognizing ED motif has persisted over the diversification between rhesus macaques and humans, suggesting an evolutionary advantage of this antibody recognition mode.« less

  14. Antibody Light-Chain-Restricted Recognition of the Site of Immune Pressure in the RV144 HIV-1 Vaccine Trial Is Phylogenetically Conserved

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiehe, Kevin; Easterhoff, David; Luo, Kan

    In HIV-1, the ability to mount antibody responses to conserved, neutralizing epitopes is critical for protection. Here we have studied the light chain usage of human and rhesus macaque antibodies targeted to a dominant region of the HIV-1 envelope second variable (V2) region involving lysine (K) 169, the site of immune pressure in the RV144 vaccine efficacy trial. We found that humans and rhesus macaques used orthologous lambda variable gene segments encoding a glutamic acid-aspartic acid (ED) motif for K169 recognition. Structure determination of an unmutated ancestor antibody demonstrated that the V2 binding site was preconfigured for ED motif-mediated recognitionmore » prior to maturation. Thus, light chain usage for recognition of the site of immune pressure in the RV144 trial is highly conserved across species. In conclusion, these data indicate that the HIV-1 K169-recognizing ED motif has persisted over the diversification between rhesus macaques and humans, suggesting an evolutionary advantage of this antibody recognition mode.« less

  15. Fluorescent indicators for Akt/protein kinase B and dynamics of Akt activity visualized in living cells.

    PubMed

    Sasaki, Kazuki; Sato, Moritoshi; Umezawa, Yoshio

    2003-08-15

    Akt/protein kinase B (PKB) is a serine/threonine kinase that regulates a variety of cellular responses. To provide information on the spatial and temporal dynamics of Akt/PKB activity, we have developed genetically encoded fluorescent indicators for Akt/PKB. The indicators contain two green fluorescent protein mutants, an Akt/PKB substrate domain, flexible linker sequence, and phosphorylation recognition domain. A phosphorylation of the substrate domain in the indicators caused change in the emission ratio based on fluorescent resonance energy transfer between the two green fluorescent protein mutants. To let the fluorescent indicators behave as endothelial nitric-oxide synthase and Bad, which are endogenous Akt/PKB substrates, they were fused with the Golgi target domain and mitochondria target domain, respectively. The indicators thus colocalized with the endogenous substrates conferred their susceptibilities to phosphorylation by Akt/PKB. We showed that the Golgi-localized indicator responded to the stimulation with 17beta-estradiol (E2) and insulin in endothelial cells. In addition, E2 elicited the phosphorylation of the mitochondria-localized indicator in the endothelial cells, but no phosphorylation was observed by E2 or by insulin of the diffusible indicator that has no targeting domain. The difference in the results with the three indicators suggests that the activated Akt/PKB is localized to subcellular compartments, including the Golgi apparatus and/or mitochondria, rather than diffusing in the cytosol, thereby efficiently phosphorylating its substrate proteins. E2 triggered the phosphorylation of the mitochondria-localized indicator, whereas insulin did not induce this phosphorylation, which suggests that the localization of the activated Akt/PKB to the mitochondria is directed differently between insulin and E2 via distinct mechanisms.

  16. Analyses of chicken immunoglobulin light chain cDNA clones indicate a few germline V lambda genes and allotypes of the C lambda locus.

    PubMed

    Parvari, R; Ziv, E; Lentner, F; Tel-Or, S; Burstein, Y; Schechter, I

    1987-01-01

    cDNA libraries of chicken spleen and Harder gland (a gland enriched with immunocytes) constructed in pBR322 were screened by differential hybridization and by mRNA hybrid-selected translation. Eleven L-chain cDNA clones were identified from which VL probes were prepared and each was annealed with kidney DNA restriction digests. All VL probes revealed the same set of bands, corresponding to about 15 germline VL genes of one subgroup. The nucleotide sequences of six VL clones showed greater than or equal to 85% homology, and the predicted amino acid sequences were identical or nearly identical to the major N-terminal sequence of L-chains in chicken serum. These findings, and the fact that the VL clones were randomly selected from normal lymphoid tissues, strongly indicate that the bulk of chicken L-chains is encoded by a few germline VL genes, probably much less than 15 since many of the VL genes are known to be pseudogenes. Therefore, it is likely that somatic mechanisms operating prior to specific triggering by antigen play a major role in the generation of antibody diversity in chicken. Analysis of the constant region locus (sequencing of CL gene and cDNAs) demonstrate a single CL isotype and suggest the presence of CL allotypes.

  17. Sequential cyclophosphamide-bortezomib-dexamethasone unmasks the harmful cardiac effect of dexamethasone in primary light-chain cardiac amyloidosis.

    PubMed

    Le Bras, Fabien; Molinier-Frenkel, Valerie; Guellich, Aziz; Dupuis, Jehan; Belhadj, Karim; Guendouz, Soulef; Ayad, Karima; Colombat, Magali; Benhaiem, Nicole; Tissot, Claire Marie; Hulin, Anne; Jaccard, Arnaud; Damy, Thibaud

    2017-05-01

    Chemotherapy combining cyclophosphamide, bortezomib and dexamethasone is widely used in light-chain amyloidosis. The benefit is limited in patients with cardiac amyloidosis mainly because of adverse cardiac events. Retrospective analysis of our cohort showed that 39 patients died with 42% during the first month. A new escalation-sequential regimen was set to improve the outcomes. Nine newly-diagnosed patients were prospectively treated with close monitoring of serum N-terminal pro-brain natriuretic peptide, troponin-T and free light chains. The results show that corticoids may destabilise the heart through fluid retention. Thus, a sequential protocol may be a promising approach to treat these patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A simple method to determine IgG light chain to heavy chain polypeptide ratios expressed by CHO cells.

    PubMed

    Gerster, Anja; Wodarczyk, Claas; Reichenbächer, Britta; Köhler, Janet; Schulze, Andreas; Krause, Felix; Müller, Dethardt

    2016-12-01

    To establish a high-throughput method for determination of antibodies intra- and extracellular light chain (LC) to heavy chain (HC) polypeptide ratio as screening parameter during cell line development. Chinese Hamster Ovary (CHO) TurboCell pools containing different designed vectors supposed to result in different LC:HC polypeptide ratios were generated by targeted integration. Cell culture supernatants and cell lysates of a fed batch experiment were purified by combined Protein A and anti-kappa affinity batch purification in 96-well format. Capture of all antibodies and their fragments allowed the determination of the intra- and extracellular LC:HC peptide ratios by reduced SDS capillary electrophoresis. Results demonstrate that the method is suitable to show the significant impact of the vector design on the intra- and extracellular LC:HC polypeptide ratios. Determination of LC:HC polypeptide ratios can give important information in vector design optimization leading to CHO cell lines with optimized antibody assembly and preferred product quality.

  19. Myeloma-Derived Light Chain Paired with a Diagnostic Monoclonal Antibody Hinders Immunoassay Performance.

    PubMed

    Tu, Bailin; Tieman, Bryan; Moore, Jeffrey; Pan, You; Muerhoff, A Scott

    2017-06-01

    Monoclonal antibodies are widely used as the capture and detection reagents in diagnostic immunoassays. In the past, myeloma fusion partners expressing endogenous heavy and/or light chains were often used to generate hybridoma cell lines. As a result, mixed populations of antibodies were produced that can cause inaccurate test results, poor antibody stability, and significant lot-to-lot variability. We describe one such scenario where the P3U1 (P3X63Ag8U.1) myeloma fusion partner was used in the generation of a hybridoma producing protein induced vitamin K absence/antagonist-II (PIVKA II) antibody. The hybridoma produces three subpopulations of immunoglobulin as determined by ion exchange (IEx) chromatography that exhibit varying degrees of immunoreactivity (0%, 50%, or 100%) to the target antigen as determined by Surface Plasmon Resonance. To produce an antibody with the highest possible sensitivity and specificity, the antigen-specific heavy and light chain variable domains (VH and VL) were cloned from the hybridoma and tethered to murine IgG1 and kappa scaffolds. The resulting recombinant antibody was expressed in Chinese hamster ovary cells and is compatible for use in a diagnostic immunoassay.

  20. Hsc70-induced Changes in Clathrin-Auxilin Cage Structure Suggest a Role for Clathrin Light Chains in Cage Disassembly

    PubMed Central

    Young, Anna; Stoilova-McPhie, Svetla; Rothnie, Alice; Vallis, Yvonne; Harvey-Smith, Phillip; Ranson, Neil; Kent, Helen; Brodsky, Frances M; Pearse, Barbara M F; Roseman, Alan; Smith, Corinne J

    2013-01-01

    The molecular chaperone, Hsc70, together with its co-factor, auxilin, facilitates the ATP-dependent removal of clathrin during clathrin-mediated endocytosis in cells. We have used cryo-electron microscopy to determine the 3D structure of a complex of clathrin, auxilin401-910 and Hsc70 at pH 6 in the presence of ATP, frozen within 20 seconds of adding Hsc70 in order to visualize events that follow the binding of Hsc70 to clathrin and auxilin before clathrin disassembly. In this map, we observe density beneath the vertex of the cage that we attribute to bound Hsc70. This density emerges asymmetrically from the clathrin vertex, suggesting preferential binding by Hsc70 for one of the three possible sites at the vertex. Statistical comparison with a map of whole auxilin and clathrin previously published by us reveals the location of statistically significant differences which implicate involvement of clathrin light chains in structural rearrangements which occur after Hsc70 is recruited. Clathrin disassembly assays using light scattering suggest that loss of clathrin light chains reduces the efficiency with which auxilin facilitates this reaction. These data support a regulatory role for clathrin light chains in clathrin disassembly in addition to their established role in regulating clathrin assembly. PMID:23710728

  1. Diffuse Peritoneal and Bowel Wall Infiltration by Light Chain-AL Amyloidosis with Omental Calcification Mimicking Abdominal Carcinomatosis - An Elderly Female with Incidental Finding of Light Chain Monoclonal Gammopathy of Undetermined Significance (LC-MGUS).

    PubMed

    Junejo, Shoaib; Ali, Yasir; Singh Lubana, Sandeep; Tuli, Sandeep S

    2017-11-25

    BACKGROUND Amyloidosis is the extracellular tissue deposition of plasma proteins, which after conformational changes, forms antiparallel beta pleated sheets of fibrils. Amyloid light-chain (AL) is a type of amyloidosis that is due to deposition of proteins derived from immunoglobulin (Ig) light chains. Gastrointestinal tract (GIT) involvement most often found in amyloid A (AA) amyloidosis type. There have been no reports of obstructive GIT AL amyloid patients having monoclonal gammopathy of undetermined significance (MGUS). Our case is the first case to show two coinciding conditions; one is the association of GIT AL amyloidosis with the incidental finding of a rare type of MGUS (LC-MGUS) and the other is the radiologic presentation of GIT amyloidosis with omental calcification mimicking the GIT malignancy. CASE REPORT A 68-year-old female presented with symptoms of partial bowel obstruction, including intermittent diffuse abdominal pain and constipation. After computed tomography (CT) abdomen and pelvis, an exploratory laparotomy was needed because of suspicion of abdominal carcinomatosis due to diffuse omental calcification. The tissue sent for biopsy surprisingly showed AL amyloidosis. The patient did not report any systemic symptoms. Further workup was advised to inquire about the plasma cell dyscrasia which eventually turned into a very rare version of MGUS knows as light chain MGUS (LC-MGUS). Following adequate resection of the involved structures, the patient was then placed on chemotherapy and successfully went into remission. CONCLUSIONS This case report illustrates that in an era of evidence based medicine, it is important to show through case reports the association of GIT AL amyloidosis with LC-MGUS, as the literature on this topic is lacking. It also points to the importance of timely intervention that can greatly enhance, not only the only the chances of remission but also prevention of further complications such as malignant transformation.

  2. Purification, Characterization and Analysis of the Allergenic Properties of Myosin Light Chain in Procambarus clarkia.

    USDA-ARS?s Scientific Manuscript database

    Myosin light chain (MLC) plays a vital role in cell and muscle functions and has been identified as an allergen in close species. In this study, MLC with the molecular mass of 18kDa was purified from crayfish (Procambarus clarkii) muscle fibrils. Its physicochemical characterization showed that the...

  3. Plants Actively Avoid State Transitions upon Changes in Light Intensity: Role of Light-Harvesting Complex II Protein Dephosphorylation in High Light1[OPEN

    PubMed Central

    Suorsa, Marjaana; Rantala, Marjaana; Aro, Eva-Mari

    2015-01-01

    Photosystem II (PSII) core and light-harvesting complex II (LHCII) proteins in plant chloroplasts undergo reversible phosphorylation upon changes in light intensity (being under control of redox-regulated STN7 and STN8 kinases and TAP38/PPH1 and PSII core phosphatases). Shift of plants from growth light to high light results in an increase of PSII core phosphorylation, whereas LHCII phosphorylation concomitantly decreases. Exactly the opposite takes place when plants are shifted to lower light intensity. Despite distinct changes occurring in thylakoid protein phosphorylation upon light intensity changes, the excitation balance between PSII and photosystem I remains unchanged. This differs drastically from the canonical-state transition model induced by artificial states 1 and 2 lights that concomitantly either dephosphorylate or phosphorylate, respectively, both the PSII core and LHCII phosphoproteins. Analysis of the kinase and phosphatase mutants revealed that TAP38/PPH1 phosphatase is crucial in preventing state transition upon increase in light intensity. Indeed, tap38/pph1 mutant revealed strong concomitant phosphorylation of both the PSII core and LHCII proteins upon transfer to high light, thus resembling the wild type under state 2 light. Coordinated function of thylakoid protein kinases and phosphatases is shown to secure balanced excitation energy for both photosystems by preventing state transitions upon changes in light intensity. Moreover, PROTON GRADIENT REGULATION5 (PGR5) is required for proper regulation of thylakoid protein kinases and phosphatases, and the pgr5 mutant mimics phenotypes of tap38/pph1. This shows that there is a close cooperation between the redox- and proton gradient-dependent regulatory mechanisms for proper function of the photosynthetic machinery. PMID:25902812

  4. TCTEX1D4 Interactome in Human Testis: Unraveling the Function of Dynein Light Chain in Spermatozoa

    PubMed Central

    Freitas, Maria João; Korrodi-Gregório, Luís; Morais-Santos, Filipa; da Cruz e Silva, Edgar

    2014-01-01

    Abstract Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function. PMID:24606217

  5. The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.

    PubMed Central

    Wagenmakers, A J; Schepens, J T; Veldhuizen, J A; Veerkamp, J H

    1984-01-01

    An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (necessary for activation). The kinase is blocked by 5 mM-ADP and absence of Mg2+ and the phosphatase by the simultaneous presence of 50 mM-NaF. About 6% of the enzyme is active in skeletal muscle of fed rats, 7% in heart, 20% in diaphragm, 47% in kidney, 60% in brain and 98% in liver. An entirely different assay, which measures activities in crude tissue extracts before and after treatment with a broad-specificity protein phosphatase, gave similar results for heart, liver and kidney. Advantages of our assay with homogenates are the presence of intact mitochondria, the simplicity, the short duration and the high sensitivity. The actual activities measured indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and kidney and is limited in skeletal muscle in the fed state. PMID:6430280

  6. The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.

    PubMed

    Wagenmakers, A J; Schepens, J T; Veldhuizen, J A; Veerkamp, J H

    1984-05-15

    An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (necessary for activation). The kinase is blocked by 5 mM-ADP and absence of Mg2+ and the phosphatase by the simultaneous presence of 50 mM-NaF. About 6% of the enzyme is active in skeletal muscle of fed rats, 7% in heart, 20% in diaphragm, 47% in kidney, 60% in brain and 98% in liver. An entirely different assay, which measures activities in crude tissue extracts before and after treatment with a broad-specificity protein phosphatase, gave similar results for heart, liver and kidney. Advantages of our assay with homogenates are the presence of intact mitochondria, the simplicity, the short duration and the high sensitivity. The actual activities measured indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and kidney and is limited in skeletal muscle in the fed state.

  7. Role of src-family kinases in hypoxic vasoconstriction of rat pulmonary artery

    PubMed Central

    Knock, Greg A.; Snetkov, Vladimir A.; Shaifta, Yasin; Drndarski, Svetlana; Ward, Jeremy P.T.; Aaronson, Philip I.

    2008-01-01

    Aims We investigated the role of src-family kinases (srcFKs) in hypoxic pulmonary vasoconstriction (HPV) and how this relates to Rho-kinase-mediated Ca2+ sensitization and changes in intracellular Ca2+ concentration ([Ca2+]i). Methods and results Intra-pulmonary arteries (IPAs) were obtained from male Wistar rats. HPV was induced in myograph-mounted IPAs. Auto-phosphorylation of srcFKs and phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and myosin light-chain (MLC20) in response to hypoxia were determined by western blotting. Translocation of Rho-kinase and effects of siRNA knockdown of src and fyn were examined in cultured pulmonary artery smooth muscle cells (PASMCs). [Ca2+]i was estimated in Fura-PE3-loaded IPA. HPV was inhibited by two blockers of srcFKs, SU6656 and PP2. Hypoxia enhanced phosphorylation of three srcFK proteins at Tyr-416 (60, 59, and 54 kDa, corresponding to src, fyn, and yes, respectively) and enhanced srcFK-dependent tyrosine phosphorylation of multiple target proteins. Hypoxia caused a complex, time-dependent enhancement of MYPT-1 and MLC20 phosphorylation, both in the absence and presence of pre-constriction. The sustained component of this enhancement was blocked by SU6656 and the Rho-kinase inhibitor Y27632. In PASMCs, hypoxia caused translocation of Rho-kinase from the nucleus to the cytoplasm, and this was prevented by anti-src siRNA and to a lesser extent by anti-fyn siRNA. The biphasic increases in [Ca2+]i that accompany HPV were also inhibited by PP2. Conclusion Hypoxia activates srcFKs and triggers protein tyrosine phosphorylation in IPA. Hypoxia-mediated Rho-kinase activation, Ca2+ sensitization, and [Ca2+]i responses are depressed by srcFK inhibitors and/or siRNA knockdown, suggesting a central role of srcFKs in HPV. PMID:18682436

  8. p21-Activated kinase (Pak) regulates airway smooth muscle contraction by regulating paxillin complexes that mediate actin polymerization.

    PubMed

    Zhang, Wenwu; Huang, Youliang; Gunst, Susan J

    2016-09-01

    In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin. The p21-activated kinases (Paks) can regulate the contractility of smooth muscle and non-muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation. We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization. We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott-Aldrich syndrome protein (N-WASP). These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. The p21-activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus-induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)-induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction. Immunoprecipitation analysis of

  9. Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant kinases

    PubMed Central

    Duong-Ly, Krisna C.; Devarajan, Karthik; Liang, Shuguang; Horiuchi, Kurumi Y.; Wang, Yuren; Ma, Haiching; Peterson, Jeffrey R.

    2016-01-01

    Summary Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant, mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases including ALK, LRRK2, RET, and EGFR as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development. PMID:26776524

  10. Disease burden of systemic light-chain amyloidosis: a systematic literature review.

    PubMed

    Lin, Huamao Mark; Gao, Xin; Cooke, Catherine E; Berg, Deborah; Labotka, Richard; Faller, Douglas V; Seal, Brian; Hari, Parameswaran

    2017-06-01

    A systematic literature review on systemic light chain (AL) amyloidosis was conducted in order to understand the disease burden, and identify unmet medical needs and knowledge gaps. MEDLINE, Embase and Cochrane databases were searched for English language studies published in the last 10 years using search terms that focused on the clinical, economic, and patient-reported outcome (PRO) aspects of AL amyloidosis. There was a low yield of articles in the economic and PRO categories and additional searches were conducted in clinical conference proceedings, and using Google and Google Scholar. After review, there were 65 articles included for data extraction. AL amyloidosis is a rare disorder without any FDA or EMA approved indications for drug therapy. Using off-label therapies, there is a high rate, 42-64%, of non-response or progression, and an associated high mortality. Toxicities during therapy are common with estimates of up to 30-40% of patients experiencing severity of grade 3 or higher. Patients with AL amyloidosis report severe psychological distress, anxiety and clinical depression. There is a deficiency in the literature on the economic costs associated with AL amyloidosis, and information on costs has been derived from studies that examined multiple myeloma or other disease or treatment components common to AL amyloidosis.

  11. Loss of tubular creatinine secretion as the only sign of tubular proximal cell dysfunction in light chain proximal tubulopathy: A case report.

    PubMed

    Stehlé, Thomas; Vignon, Marguerite; Flamant, Martin; Figueres, Marie-Lucile; Rabant, Marion; Rodenas, Anita; Noël, Laure-Hélène; Arnulf, Bertrand; Vidal-Petiot, Emmanuelle

    2016-06-01

    Light chain proximal tubulopathy (LCPT) is a rare disease, characterized by cytoplasmic inclusions of light chain (usually kappa) immunoglobulins. Clinical presentation is usually a Fanconi syndrome. The proximal tubular dysfunction can be incomplete, and exceptional cases of LCPT without any tubular dysfunction have even been described. Here, we report a case of LCPT in which the only sign of proximal tubulopathy is the absence of secretion of creatinine, as assessed by the simultaneous measurement of renal clearance of creatinine and CrEDTA. The loss of tubular creatinine secretion as a sign of tubular proximal cell dysfunction ought to be identified in patients with light chain proximal tubulopathy as it leads to a clinically relevant underestimation of GFR by the creatinine-derived equations. The prevalence and prognostic significance of this particular proximal tubular damage in LCPT remain to be determined.

  12. Determination of allergen specificity by heavy chains in grass pollen allergen-specific IgE antibodies.

    PubMed

    Gadermaier, Elisabeth; Flicker, Sabine; Lupinek, Christian; Steinberger, Peter; Valenta, Rudolf

    2013-04-01

    Affinity and clonality of allergen-specific IgE antibodies are important determinants for the magnitude of IgE-mediated allergic inflammation. We sought to analyze the contribution of heavy and light chains of human allergen-specific IgE antibodies for allergen specificity and to test whether promiscuous pairing of heavy and light chains with different allergen specificity allows binding and might affect affinity. Ten IgE Fabs specific for 3 non-cross-reactive major timothy grass pollen allergens (Phl p 1, Phl p 2, and Phl p 5) obtained by means of combinatorial cloning from patients with grass pollen allergy were used to construct stable recombinant single chain variable fragments (ScFvs) representing the original Fabs and shuffled ScFvs in which heavy chains were recombined with light chains from IgE Fabs with specificity for other allergens by using the pCANTAB 5 E expression system. Possible ancestor genes for the heavy chain and light chain variable region-encoding genes were determined by using sequence comparison with the ImMunoGeneTics database, and their chromosomal locations were determined. Recombinant ScFvs were tested for allergen specificity and epitope recognition by means of direct and sandwich ELISA, and affinity by using surface plasmon resonance experiments. The shuffling experiments demonstrate that promiscuous pairing of heavy and light chains is possible and maintains allergen specificity, which is mainly determined by the heavy chains. ScFvs consisting of different heavy and light chains exhibited different affinities and even epitope specificity for the corresponding allergen. Our results indicate that allergen specificity of allergen-specific IgE is mainly determined by the heavy chains. Different heavy and light chain pairings in allergen-specific IgE antibodies affect affinity and epitope specificity and thus might influence clinical reactivity to allergens. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by

  13. Phototropism: translating light into directional growth.

    PubMed

    Hohm, Tim; Preuten, Tobias; Fankhauser, Christian

    2013-01-01

    Phototropism allows plants to align their photosynthetic tissues with incoming light. The direction of incident light is sensed by the phototropin family of blue light photoreceptors (phot1 and phot2 in Arabidopsis), which are light-activated protein kinases. The kinase activity of phototropins and phosphorylation of residues in the activation loop of their kinase domains are essential for the phototropic response. These initial steps trigger the formation of the auxin gradient across the hypocotyl that leads to asymmetric growth. The molecular events between photoreceptor activation and the growth response are only starting to be elucidated. In this review, we discuss the major steps leading from light perception to directional growth concentrating on Arabidopsis. In addition, we highlight links that connect these different steps enabling the phototropic response.

  14. The role of free kappa and lambda light chains in the pathogenesis and treatment of inflammatory diseases.

    PubMed

    Esparvarinha, Mojgan; Nickho, Hamid; Mohammadi, Hamed; Aghebati-Maleki, Leili; Abdolalizadeh, Jalal; Majidi, Jafar

    2017-07-01

    Kappa (κ) or lambda (λ) free light chains (FLCs) are produced from B cells during immunoglobulin synthesis. FLCs have been shown to participate in several key processes of immune responses. They are necessary to adjust PMN functions and assist PMN pre-stimulation. Moreover, they cause mast cell degranulation which releases pro-inflammatory mediators and stimulates local inflammatory responses in some conditions such as inflammatory bowel disease (IBD). Having low molecular weights which may straightly be toxic to proximal tubule cells (PTCs), FLCs can also have an important role in renal diseases. In this review we have highlighted the involvement of light chains in the pathogenesis of some inflammatory diseases and discussed their potential to be the targets of therapeutic purposes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Huntingtin-interacting protein 1 (Hip1) and Hip1-related protein (Hip1R) bind the conserved sequence of clathrin light chains and thereby influence clathrin assembly in vitro and actin distribution in vivo.

    PubMed

    Chen, Chih-Ying; Brodsky, Frances M

    2005-02-18

    Clathrin heavy and light chains form triskelia, which assemble into polyhedral coats of membrane vesicles that mediate transport for endocytosis and organelle biogenesis. Light chain subunits regulate clathrin assembly in vitro by suppressing spontaneous self-assembly of the heavy chains. The residues that play this regulatory role are at the N terminus of a conserved 22-amino acid sequence that is shared by all vertebrate light chains. Here we show that these regulatory residues and others in the conserved sequence mediate light chain interaction with Hip1 and Hip1R. These related proteins were previously found to be enriched in clathrin-coated vesicles and to promote clathrin assembly in vitro. We demonstrate Hip1R binding preference for light chains associated with clathrin heavy chain and show that Hip1R stimulation of clathrin assembly in vitro is blocked by mutations in the conserved sequence of light chains that abolish interaction with Hip1 and Hip1R. In vivo overexpression of a fragment of clathrin light chain comprising the Hip1R-binding region affected cellular actin distribution. Together these results suggest that the roles of Hip1 and Hip1R in affecting clathrin assembly and actin distribution are mediated by their interaction with the conserved sequence of clathrin light chains.

  16. Allosteric activation of apicomplexan calcium-dependent protein kinases

    DOE PAGES

    Ingram, Jessica R.; Knockenhauer, Kevin E.; Markus, Benedikt M.; ...

    2015-08-24

    Calcium-dependent protein kinases (CDPKs) comprise the major group of Ca 2+-regulated kinases in plants and protists. It has long been assumed that CDPKs are activated, like other Ca 2+-regulated kinases, by derepression of the kinase domain (KD). However, we found that removal of the autoinhibitory domain from Toxoplasma gondii CDPK1 is not sufficient for kinase activation. From a library of heavy chain-only antibody fragments (VHHs), we isolated an antibody (1B7) that binds TgCDPK1 in a conformation-dependent manner and potently inhibits it. We uncovered the molecular basis for this inhibition by solving the crystal structure of the complex and simulating, throughmore » molecular dynamics, the effects of 1B7–kinase interactions. In contrast to other Ca 2+-regulated kinases, the regulatory domain of TgCDPK1 plays a dual role, inhibiting or activating the kinase in response to changes in Ca 2+ concentrations. We propose that the regulatory domain of TgCDPK1 acts as a molecular splint to stabilize the otherwise inactive KD. This dependence on allosteric stabilization reveals a novel susceptibility in this important class of parasite enzymes.« less

  17. Partial amino-acid sequence of the precursor of an immunoglobulin light chain containing NH2-terminal pyroglutamic acid.

    PubMed Central

    Burstein, Y; Kantour, F; Schechter, I

    1976-01-01

    Analyses of amino-acid sequences of the total cell-free products programmed by the mRNA of MOPC-104E gamma light (L)-chain show that over 95% of the products have sequences of a distinct protein that correspond to the L-chain precursor. In this precursor an extra piece is coupled to the NH2-terminus of the mature L-chain. Analyses of products labeled with [3H]alanine, [3H]leucine, and [3H]proline demonstrate that the extra piece is composed of at least 18 residues. Analyses of [35S]methione-labeled product indicate that the extra piece may contain an additional NH2-terminal methionine, which is detected in about 10% of the molecules. Partial recovery of the NJ2-terminal methionine (alanine, leucine, and proline are recovered in yields close to theoretical, greater than 95%) suggests that it is the initiator methionine, which is known to be short lived in eukaryotes due to rapid hydrolysis. Thus, the extra piece seems to be 19 residues in length, and it contains one methionine at the NH2-terminus, three alanines at positions 2, 12, and 17, and five leucines at positions 6, 8, 10, 11, and 13. The close gathering of leucine residues, as well as their abundance (26%), suggest that the extra piece would be quite hydrophobic. Hydrophobicity seems to be a general property of the extra piece, since similar clusters of leucine were found in the precursors of 3 KL-chains (Burstein, Y. & Schechter, I. (1976) Biochem. J. 157, 145-151). The NH2-terminus of the mature MOPC-104E gamma L-chain is blocked by pyroglutamic acid. The fact that in the precursor a peptide segment precedes this NH2-terminus establishes that pyroglutamic acid is not the initiator residue for synthesis of the L-chain. Apparently, the pyroglutamic acid is formed by cyclization of glutamic acid or glutamine during cleavage of the extra piece to yield the mature L-chain. Images PMID:822420

  18. Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK–dependent integrin outside-in retractile signaling pathway

    PubMed Central

    Flevaris, Panagiotis; Li, Zhenyu; Zhang, Guoying; Zheng, Yi; Liu, Junling

    2009-01-01

    Mitogen-activated protein kinases (MAPK), p38, and extracellular stimuli-responsive kinase (ERK), are acutely but transiently activated in platelets by platelet agonists, and the agonist-induced platelet MAPK activation is inhibited by ligand binding to the integrin αIIbβ3. Here we show that, although the activation of MAPK, as indicated by MAPK phosphorylation, is initially inhibited after ligand binding to integrin αIIbβ3, integrin outside-insignaling results in a late but sustained activation of MAPKs in platelets. Furthermore, we show that the early agonist-induced MAPK activation and the late integrin-mediated MAPK activation play distinct roles in different stages of platelet activation. Agonist-induced MAPK activation primarily plays an important role in stimulating secretion of platelet granules, while integrin-mediated MAPK activation is important in facilitating clot retraction. The stimulatory role of MAPK in clot retraction is mediated by stimulating myosin light chain (MLC) phosphorylation. Importantly, integrin-dependent MAPK activation, MAPK-dependent MLC phosphorylation, and clot retraction are inhibited by a Rac1 inhibitor and in Rac1 knockout platelets, indicating that integrin-induced activation of MAPK and MLC and subsequent clot retraction is Rac1-dependent. Thus, our results reveal 2 different activation mechanisms of MAPKs that are involved in distinct aspects of platelet function and a novel Rac1-MAPK–dependent cell retractile signaling pathway. PMID:18957688

  19. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age.

    PubMed

    Gannon, Joan; Doran, Philip; Kirwan, Anne; Ohlendieck, Kay

    2009-11-01

    The age-dependent decline in skeletal muscle mass and function is believed to be due to a multi-factorial pathology and represents a major factor that blocks healthy aging by increasing physical disability, frailty and loss of independence in the elderly. This study has focused on the comparative proteomic analysis of contractile elements and revealed that the most striking age-related changes seem to occur in the protein family representing myosin light chains (MLCs). Comparative screening of total muscle extracts suggests a fast-to-slow transition in the aged MLC population. The mass spectrometric analysis of the myofibril-enriched fraction identified the MLC2 isoform of the slow-type MLC as the contractile protein with the most drastically changed expression during aging. Immunoblotting confirmed an increased abundance of slow MLC2, concomitant with a switch in fast versus slow myosin heavy chains. Staining of two-dimensional gels of crude extracts with the phospho-specific fluorescent dye ProQ-Diamond identified the increased MLC2 spot as a muscle protein with a drastically enhanced phosphorylation level in aged fibres. Comparative immunofluorescence microscopy, using antibodies to fast and slow myosin isoforms, confirmed a fast-to-slow transformation process during muscle aging. Interestingly, the dramatic increase in slow MLC2 expression was restricted to individual senescent fibres. These findings agree with the idea that aged skeletal muscles undergo a shift to more aerobic-oxidative metabolism in a slower-twitching fibre population and suggest the slow MLC2 isoform as a potential biomarker for fibre type shifting in sarcopenia of old age.

  20. Tacrolimus has immunosuppressive effects on heavy/light chain pairs and free light chains in patients after heart transplantation: A relationship with infection.

    PubMed

    Lavríková, Petra; Sečník, Peter; Kubíček, Zdenek; Jabor, Antonín; Hošková, Lenka; Franeková, Janka

    2018-06-15

    The aim of the study was to investigate the relationship between tacrolimus (TAC) immunosuppressive treatment and serum concentrations of immunoglobulin heavy/light chain pairs (sHLC) and free light chains (sFLC) in patients after heart transplantation (HTX) and to use these biomarkers to predict the risk of infection in these patients. A total of 88 patients with an immunosuppressive regimen involving tacrolimus who underwent HTX were analyzed over 24 months of follow-up. sFLC and sHLC levels were determined before and at three time points after HTX. TAC concentrations were determined at several time points after HTX, and mean TAC concentrations and areas under the curve (AUCs) of TAC concentration were calculated. Relevant clinical data were obtained from patients' medical records. A larger AUC of TAC was associated with decreases in the concentrations of IgG total (p < 0.05); similarly, cumulative AUC of TAC during 18 post-transplant months correlated inversely with sHLC IgG kappa (r = -0.228, p < 0.05) and IgG total (r = -0.352, p < 0.05). Concentrations of sFLC kappa, sFLC lambda, sHLC IgG kappa, and sHLC IgG total were significantly lower in infected patients (in the 9th month after HTX, all p < 0.05). Combined criteria for increased AUC (greater than the median of 12.9 mg·d/l) and decreased sFLC kappa (less than the median of 12.5 mg/l) correlated with the presence of infection (p < 0.03) in the 9th month after HTX. Ratio of concentration of TAC to sFLC kappa or lambda was significantly higher in infected patients (both p < 0.05). Intensive treatment with tacrolimus after HTX is possibly reflected by decreases in sFLC and sHLC (mainly sHLC IgG). Patients with decreased concentrations of these biomarkers are at increased risk for infection, primarily in the 9th month after HTX, when the concentrations of tacrolimus were the highest. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Brain penetrant kinase inhibitors: Learning from kinase neuroscience discovery.

    PubMed

    Shi, Yuan; Mader, Mary

    2018-06-15

    A recent review of kinase inhibitors in clinical trials for brain cancer noted differences in the properties of these compounds relative to the mean property parameters associated with drugs marketed for CNS-associated conditions. However, many of these kinase drugs arose from opportunistic observations of brain activity, rather than design or flow schemes focused on optimizing CNS penetration. Thus, this digest examines kinase inhibitors that have been developed specifically for neurodegenerative indications such as Alzheimer's or Parkinson's disease, and considers design, flow scheme, and the physicochemical properties associated with compounds that have demonstrated brain penetrance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Molecular cloning, overexpression, purification, and sequence analysis of the giant panda (Ailuropoda melanoleuca) ferritin light polypeptide.

    PubMed

    Fu, L; Hou, Y L; Ding, X; Du, Y J; Zhu, H Q; Zhang, N; Hou, W R

    2016-08-30

    The complementary DNA (cDNA) of the giant panda (Ailuropoda melanoleuca) ferritin light polypeptide (FTL) gene was successfully cloned using reverse transcription-polymerase chain reaction technology. We constructed a recombinant expression vector containing FTL cDNA and overexpressed it in Escherichia coli using pET28a plasmids. The expressed protein was then purified by nickel chelate affinity chromatography. The cloned cDNA fragment was 580 bp long and contained an open reading frame of 525 bp. The deduced protein sequence was composed of 175 amino acids and had an estimated molecular weight of 19.90 kDa, with an isoelectric point of 5.53. Topology prediction revealed one N-glycosylation site, two casein kinase II phosphorylation sites, one N-myristoylation site, two protein kinase C phosphorylation sites, and one cell attachment sequence. Alignment indicated that the nucleotide and deduced amino acid sequences are highly conserved across several mammals, including Homo sapiens, Cavia porcellus, Equus caballus, and Felis catus, among others. The FTL gene was readily expressed in E. coli, which gave rise to the accumulation of a polypeptide of the expected size (25.50 kDa, including an N-terminal polyhistidine tag).

  3. Dynamics of a linear system coupled to a chain of light nonlinear oscillators analyzed through a continuous approximation

    NASA Astrophysics Data System (ADS)

    Charlemagne, S.; Ture Savadkoohi, A.; Lamarque, C.-H.

    2018-07-01

    The continuous approximation is used in this work to describe the dynamics of a nonlinear chain of light oscillators coupled to a linear main system. A general methodology is applied to an example where the chain has local nonlinear restoring forces. The slow invariant manifold is detected at fast time scale. At slow time scale, equilibrium and singular points are sought around this manifold in order to predict periodic regimes and strongly modulated responses of the system. Analytical predictions are in good accordance with numerical results and represent a potent tool for designing nonlinear chains for passive control purposes.

  4. Inhibition of the AMP-activated protein kinase-α2 accentuates agonist-induced vascular smooth muscle contraction and high blood pressure in mice.

    PubMed

    Wang, Shuangxi; Liang, Bin; Viollet, Benoit; Zou, Ming-Hui

    2011-05-01

    The aim of the present study was to determine the effects and molecular mechanisms by which AMP-activated protein kinase (AMPK) regulates smooth muscle contraction and blood pressure in mice. In cultured human vascular smooth muscle cells, we observed that activation of AMPK by 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside inhibited agonist-induced phosphorylation of myosin light chain (MLC) and myosin phosphatase targeting subunit 1 (MYPT1). Conversely, AMPK inhibition with pharmacological or genetic means potentiated agonist-induced the phosphorylation of MLC and MYPT1, whereas it inhibited both Ras homolog gene family member A and Rho-associated kinase activity. In addition, AMPK activation or Rho-associated kinase inhibition with Y27632 abolished agonist-induced phosphorylation of MLC and MYPT1. Gene silencing of p190-guanosine triphosphatase-activating protein abolished the effects of AMPK activation on MLC, MYPT1, and Ras homolog gene family member A in human smooth muscle cells. Ex vivo analyses revealed that agonist-induced contractions of the mesenteric artery and aortas were stronger in both AMPKα1(-/-) and AMPKα2(-/-) knockout mice than in wild-type mice. Inhibition of Rho-associated kinase with Y27632 normalized agonist-induced contractions of AMPKα1(-/-) and AMPKα2(-/-) vessels. AMPKα2(-/-) mice had higher blood pressure along with decreased serine phosphorylation of p190-guanosine triphosphatase-activating protein. Finally, inhibition of the Ras homolog gene family member A/Rho-associated kinase pathway with Y27632, which suppressed MYPT1 and MLC phosphorylation, lowered blood pressure in AMPKα2(-/-) mice. In conclusion, AMPK decreases vascular smooth muscle cell contractility by inhibiting p190-GTP-activating protein-dependent Ras homolog gene family member A activation, indicating that AMPK may be a new therapeutic target in lowering high blood pressure.

  5. Analysis of correlated domain motions in IgG light chain reveals possible mechanisms of immunological signal transduction.

    PubMed

    Król, Marcin; Roterman, Irena; Piekarska, Barbara; Konieczny, Leszek; Rybarska, Janina; Stopa, Barbara; Spólnik, Paweł

    2005-05-15

    It was shown experimentally that binding of a micelle composed of Congo red molecules to immunological complexes leads to the enhanced stability of the latter, and simultaneously prevents binding of a complement molecule (C1q). The dye binds in a cavity created by the removal of N-terminal polypeptide chain, as observed experimentally in a model system-immunoglobulin G (IgG) light chain dimer. Molecular Dynamics (MD) simulations of three forms of IgG light chain dimer, with and without the dye, were performed to investigate the role of N-terminal fragment and self-assembled ligand in coupling between V and C domains. Root-mean-square distance (RMSD) time profiles show that removal of N-terminal fragment leads to destabilization of V domain. A micelle composed of four self-assembled dye molecules stabilizes and fixes the domain. Analysis of root-mean-square fluctuation (RMSF) values and dynamic cross-correlation matrices (DCCM) reveals that removal of N-terminal fragment results in complete decoupling between V and C domains. Binding of self-assembled Congo red molecules improves the coupling, albeit slightly. The disruption of a small beta-sheet composed of N- and C-terminal fragments of the domain (NC sheet) is the most likely reason for the decoupling. Self-assembled ligand, bound in the place originally occupied by N-terminal fragment, is not able to take over the function of the beta-sheet. Lack of correlation of motions between residues in V and C domains denotes that light chain-Congo red complexes have hampered ability to transmit conformational changes between domains. This is a likely explanation of the lack of complement binding by immunological complexes, which bind Congo red, and supports the idea that the NC sheet is the key structural fragment taking part in immunological signal transduction. Copyright 2005 Wiley-Liss, Inc.

  6. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    PubMed

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription.

    PubMed

    Zhou, Xin X; Zou, Xinzhi; Chung, Hokyung K; Gao, Yuchen; Liu, Yanxia; Qi, Lei S; Lin, Michael Z

    2018-02-16

    Optical control of CRISPR-Cas9-derived proteins would be useful for restricting gene editing or transcriptional regulation to desired times and places. Optical control of Cas9 functions has been achieved with photouncageable unnatural amino acids or by using light-induced protein interactions to reconstitute Cas9-mediated functions from two polypeptides. However, these methods have only been applied to one Cas9 species and have not been used for optical control of different perturbations at two genes. Here, we use photodissociable dimeric fluorescent protein domains to engineer single-chain photoswitchable Cas9 (ps-Cas9) proteins in which the DNA-binding cleft is occluded at baseline and opened upon illumination. This design successfully controlled different species and functional variants of Cas9, mediated transcriptional activation more robustly than previous optogenetic methods, and enabled light-induced transcription of one gene and editing of another in the same cells. Thus, a single-chain photoswitchable architecture provides a general method to control a variety of Cas9-mediated functions.

  8. Planarian myosin essential light chain is involved in the formation of brain lateral branches during regeneration.

    PubMed

    Yu, Shuying; Chen, Xuhui; Yuan, Zuoqing; Zhou, Luming; Pang, Qiuxiang; Mao, Bingyu; Zhao, Bosheng

    2015-08-01

    The myosin essential light chain (ELC) is a structure component of the actomyosin cross-bridge, however, the functions in the central nervous system (CNS) development and regeneration remain poorly understood. Planarian Dugesia japonica has revealed fundamental mechanisms and unique aspects of neuroscience and neuroregeneration. In this study, the cDNA DjElc, encoding a planarian essential light chain of myosin, was identified from the planarian Dugesia japonica cDNA library. It encodes a deduced protein with highly conserved functionally domains EF-Hand and Ca(2+) binding sites that shares significant similarity with other members of ELC. Whole mount in situ hybridization studies show that DjElc expressed in CNS during embryonic development and regeneration of adult planarians. Loss of function of DjElc by RNA interference during planarian regeneration inhibits brain lateral branches regeneration completely. In conclusion, these results demonstrated that DjElc is required for maintenance of neurons and neurite outgrowth, particularly for involving the brain later branch regeneration.

  9. Embryonic essential myosin light chain regulates fetal lung development in rats.

    PubMed

    Santos, Marta; Moura, Rute S; Gonzaga, Sílvia; Nogueira-Silva, Cristina; Ohlmeier, Steffen; Correia-Pinto, Jorge

    2007-09-01

    Congenital diaphragmatic hernia (CDH) is currently the most life-threatening congenital anomaly the major finding of which is lung hypoplasia. Lung hypoplasia pathophysiology involves early developmental molecular insult in branching morphogenesis and a late mechanical insult by abdominal herniation in maturation and differentiation processes. Since early determinants of lung hypoplasia might appear as promising targets for prenatal therapy, proteomics analysis of normal and nitrofen-induced hypoplastic lungs was performed at 17.5 days after conception. The major differentially expressed protein was identified by mass spectrometry as myosin light chain 1a (MLC1a). Embryonic essential MLC1a and regulatory myosin light chain 2 (MLC2) were characterized throughout normal and abnormal lung development by immunohistochemistry and Western blot. Disruption of MLC1a expression was assessed in normal lung explant cultures by antisense oligodeoxynucleotides. Since early stages of normal lung development, MLC1a was expressed in vascular smooth muscle (VSM) cells of pulmonary artery, and MLC2 was present in parabronchial smooth muscle and VSM cells of pulmonary vessels. In addition, early smooth muscle differentiation delay was observed by immunohistochemistry of alpha-smooth muscle actin and transforming growth factor-beta1. Disruption of MLC1a expression during normal pulmonary development led to significant growth and branching impairment, suggesting a role in branching morphogenesis. Both MLC1a and MLC2 were absent from hypoplastic fetal lungs during pseudoglandular stage of lung development, whereas their expression partially recovered by prenatal treatment with vitamin A. Thus, a deficiency in contractile proteins MLC1a and MLC2 might have a role among the early molecular determinants of lung hypoplasia in the rat model of nitrofen-induced CDH.

  10. Site-directed Mutagenesis Reveals Regions Implicated in the Stability and Fiber Formation of Human λ3r Light Chains

    DOE PAGES

    Villalba, Miryam I.; Canul-Tec, Juan C.; Luna-Martínez, Oscar D.; ...

    2014-12-11

    Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this paper, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, themore » second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40–60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. Finally, this mutagenic approach helped to identify key regions implicated in λ3 AL.« less

  11. Chemotactic Signaling by Single-Chain Chemoreceptors

    PubMed Central

    Mowery, Patricia; Ames, Peter; Reiser, Rebecca H.; Parkinson, John S.

    2015-01-01

    Bacterial chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family operate in commingled clusters that enable cells to detect and track environmental chemical gradients with high sensitivity and precision. MCP homodimers of different detection specificities form mixed trimers of dimers that facilitate inter-receptor communication in core signaling complexes, which in turn assemble into a large signaling network. The two subunits of each homodimeric receptor molecule occupy different locations in the core complexes. One subunit participates in trimer-stabilizing interactions at the trimer axis, the other lies on the periphery of the trimer, where it can interact with two cytoplasmic proteins: CheA, a signaling autokinase, and CheW, which couples CheA activity to receptor control. As a possible tool for independently manipulating receptor subunits in these two structural environments, we constructed and characterized fused genes for the E. coli serine chemoreceptor Tsr that encoded single-chain receptor molecules in which the C-terminus of the first Tsr subunit was covalently connected to the N-terminus of the second with a polypeptide linker. We showed with soft agar assays and with a FRET-based in vivo CheA kinase assay that single-chain Tsr~Tsr molecules could promote serine sensing and chemotaxis responses. The length of the connection between the joined subunits was critical. Linkers nine residues or shorter locked the receptor in a kinase-on state, most likely by distorting the native structure of the receptor HAMP domain. Linkers 22 or more residues in length permitted near-normal Tsr function. Few single-chain molecules were found as monomer-sized proteolytic fragments in cells, indicating that covalently joined receptor subunits were responsible for mediating the signaling responses we observed. However, cysteine-directed crosslinking, spoiling by dominant-negative Tsr subunits, and rearrangement of ligand-binding site lesions revealed subunit

  12. Intensified training increases salivary free light chains in trained cyclists: Indication that training volume increases oral inflammation.

    PubMed

    Heaney, Jennifer L J; Killer, Sophie C; Svendsen, Ida S; Gleeson, Michael; Campbell, John P

    2018-05-01

    Periods of short-term intensified training (IT) are often used by athletes during training cycles over the season and undergoing phases of increased physical stress may impact upon the immune system. This study investigated the effects of a period of IT on free light chains (FLCs) in saliva - an emerging immune biomarker of oral inflammation - and matched serum samples in well-trained athletes. It also examined if IT influences basal FLC levels and FLC flux during acute exercise. Highly trained male cyclists (n = 10) underwent a 9-day period of IT; before and after IT participants performed a 1 h time trial (TT) on a cycle ergometer, with blood and saliva samples collected pre- and post-exercise. FLCs were assessed in serum and saliva, and IgG, IgA, IgM and creatinine were also measured in serum. Weekly training volume increased by 143% (95% CI 114-172%), p < 0.001, during IT compared with pre-trial baseline training. Following IT, the cyclists demonstrated higher salivary FLC levels. Both salivary lambda FLC concentrations (p < 0.05, η 2  = 0.384) and secretion rates, and kappa FLC concentrations and secretion rates increased after IT. Salivary FLCs concentration and secretion rates decreased in response to the TT following IT (p < 0.05, η 2  = 0.387-0.428), but not in response to the TT prior to IT. No significant effects of IT on serum FLCs were observed. There were no significant changes in serum FLCs in response to the TT, before or after the IT period, nor did IT impact upon other serological responses to the TT. In conclusion, IT increased basal salivary FLC parameters and amplified decreases in salivary FLCs in response to acute exercise. Increases in salivary FLC concentration likely reflects alterations to oral inflammation during times of heavy training, and we show for the first time that FLCs may have utility as a marker of exercise stress and oral health status. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Age- and Activity-Related Differences in the Abundance of Myosin Essential and Regulatory Light Chains in Human Muscle

    PubMed Central

    Cobley, James N.; Ab. Malik, Zulezwan; Morton, James P.; Close, Graeme L.; Edwards, Ben J.; Burniston, Jatin G.

    2016-01-01

    Traditional methods for phenotyping skeletal muscle (e.g., immunohistochemistry) are labor-intensive and ill-suited to multixplex analysis, i.e., assays must be performed in a series. Addressing these concerns represents a largely unmet research need but more comprehensive parallel analysis of myofibrillar proteins could advance knowledge regarding age- and activity-dependent changes in human muscle. We report a label-free, semi-automated and time efficient LC-MS proteomic workflow for phenotyping the myofibrillar proteome. Application of this workflow in old and young as well as trained and untrained human skeletal muscle yielded several novel observations that were subsequently verified by multiple reaction monitoring (MRM). We report novel data demonstrating that human ageing is associated with lesser myosin light chain 1 content and greater myosin light chain 3 content, consistent with an age-related reduction in type II muscle fibers. We also disambiguate conflicting data regarding myosin regulatory light chain, revealing that age-related changes in this protein more closely reflect physical activity status than ageing per se. This finding reinforces the need to control for physical activity levels when investigating the natural process of ageing. Taken together, our data confirm and extend knowledge regarding age- and activity-related phenotypes. In addition, the MRM transitions described here provide a methodological platform that can be fine-tuned to suite multiple research needs and thus advance myofibrillar phenotyping. PMID:28248225

  14. Novel Indicators for the Quantification of Resilience in Critical Material Supply Chains, with a 2010 Rare Earth Crisis Case Study

    PubMed Central

    2017-01-01

    We introduce several new resilience metrics for quantifying the resilience of critical material supply chains to disruptions and validate these metrics using the 2010 rare earth element (REE) crisis as a case study. Our method is a novel application of Event Sequence Analysis, supplemented with interviews of actors across the entire supply chain. We discuss resilience mechanisms in quantitative terms–time lags, response speeds, and maximum magnitudes–and in light of cultural differences between Japanese and European corporate practice. This quantification is crucial if resilience is ever to be taken into account in criticality assessments and a step toward determining supply and demand elasticities in the REE supply chain. We find that the REE system showed resilience mainly through substitution and increased non-Chinese primary production, with a distinct role for stockpiling. Overall, annual substitution rates reached 10% of total demand. Non-Chinese primary production ramped up at a speed of 4% of total market volume per year. The compound effect of these mechanisms was that recovery from the 2010 disruption took two years. The supply disruption did not nudge a system toward an appreciable degree of recycling. This finding has important implications for the circular economy concept, indicating that quite a long period of sustained material constraints will be necessary for a production-consumption system to naturally evolve toward a circular configuration. PMID:28257181

  15. Computational Modeling to Limit the Impact Displays and Indicator Lights Have on Habitable Volume Operational Lighting Constraints

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Brainard, G.; Salazar, G.; Johnston, S.; Schwing, B.; Litaker, H.; Kolomenski, A.; Venus, D.; Tran, K.; Hanifin, J.; hide

    2017-01-01

    NASA has demonstrated an interest in improving astronaut health and performance through the installment of a new lighting countermeasure on the International Space Station. The Solid State Lighting Assembly (SSLA) system is designed to positively influence astronaut health by providing a daily change to light spectrum to improve circadian entrainment. Unfortunately, existing NASA standards and requirements define ambient light level requirements for crew sleep and other tasks, yet the number of light-emitting diode (LED) indicators and displays within a habitable volume is currently uncontrolled. Because each of these light sources has its own unique spectral properties, the additive lighting environment ends up becoming something different from what was planned or researched. Restricting the use of displays and indicators is not a solution because these systems provide beneficial feedback to the crew. The research team for this grant used computer-based computational modeling and real-world lighting mockups to document the impact that light sources other than the ambient lighting system contribute to the ambient spectral lighting environment. In particular, the team was focused on understanding the impacts of long-term tasks located in front of avionics or computer displays. The team also wanted to understand options for mitigating the changes to the ambient light spectrum in the interest of maintaining the performance of a lighting countermeasure. The project utilized a variety of physical and computer-based simulations to determine direct relationships between system implementation and light spectrum. Using real-world data, computer models were built in the commercially available optics analysis software Zemax Optics Studio(c). The team also built a mockup test facility that had the same volume and configuration as one of the Zemax models. The team collected over 1200 spectral irradiance measurements, each representing a different configuration of the mockup

  16. Effects of prostaglandin F2alpha and latanoprost on phosphoinositide turnover, myosin light chain phosphorylation and contraction in cat iris sphincter.

    PubMed

    Ansari, Habib R; Davis, Angela M; Kaddour-Djebbar, Ismail; Abdel-Latif, Ata A

    2003-06-01

    The effects of the ocular hypotensive agents prostaglandin F(2alpha) (PGF(2alpha)) and its analog latanoprost on intraocular pressure (IOP) in both animals and human have been investigated extensively in the last two decades. While there is general agreement that application of these PGs to the eye alters IOP by altering the aqueous humor outflow of the eye via the uveoscleral and trabecular meshwork pathways, the mechanism of action of these agents on IOP lowering remains unclear. There is evidence which suggests that myosin light kinase (MLC kinase) may be involved in the IOP-lowering effects of these agents. Thus, the purpose of the present work was to investigate in cat iris sphincter the effects of these PGs on the MLC kinase signaling pathway, inositol phosphates production, MLC phosphorylation and contraction, in order to gain more information about the mechanism through which these agents modulate smooth muscle function and lower IOP. [(3)H]myo-inositol phosphates production was measured by ion-exchange chromatography, MLC kinase activity was measured by incorporation of (32)Pi into MLC, and changes in muscle tension were recorded isometrically. PGF(2alpha) and latanoprost induced contraction in a concentration-dependent manner with EC(50) values of 18.6 and 29.9 nM, respectively, and increased inositol phosphates production in a concentration-dependent manner. At 1 microM, PGF(2alpha) and latanoprost increased inositol phosphates formation by 125 and 102% over basal, respectively. PGF(2alpha) and latanoprost increased MLC phosphorylation in a concentration- and time-dependent manner, at 1 microM and 5 min incubation, the PGs increased the MLC response by 181 and 176% over basal, respectively. In general, PGF(2alpha) was slightly more potent in inducing the biochemical and pharmacological responses. Wortmannin, ML-7 and ML-9, selective inhibitors of MLC kinase, inhibited significantly PGF(2alpha)- and latanoprost-induced MLC phosphorylation and contraction

  17. Carbachol-induced rabbit bladder smooth muscle contraction: roles of protein kinase C and Rho kinase.

    PubMed

    Wang, Tanchun; Kendig, Derek M; Smolock, Elaine M; Moreland, Robert S

    2009-12-01

    Smooth muscle contraction is regulated by phosphorylation of the myosin light chain (MLC) catalyzed by MLC kinase and dephosphorylation catalyzed by MLC phosphatase. Agonist stimulation of smooth muscle results in the inhibition of MLC phosphatase activity and a net increase in MLC phosphorylation and therefore force. The two pathways believed to be primarily important for inhibition of MLC phosphatase activity are protein kinase C (PKC)-catalyzed CPI-17 phosphorylation and Rho kinase (ROCK)-catalyzed myosin phosphatase-targeting subunit (MYPT1) phosphorylation. The goal of this study was to determine the roles of PKC and ROCK and their downstream effectors in regulating MLC phosphorylation levels and force during the phasic and sustained phases of carbachol-stimulated contraction in intact bladder smooth muscle. These studies were performed in the presence and absence of the PKC inhibitor bisindolylmaleimide-1 (Bis) or the ROCK inhibitor H-1152. Phosphorylation levels of Thr(38)-CPI-17 and Thr(696)/Thr(850)-MYPT1 were measured at different times during carbachol stimulation using site-specific antibodies. Thr(38)-CPI-17 phosphorylation increased concurrently with carbachol-stimulated force generation. This increase was reduced by inhibition of PKC during the entire contraction but was only reduced by ROCK inhibition during the sustained phase of contraction. MYPT1 showed high basal phosphorylation levels at both sites; however, only Thr(850) phosphorylation increased with carbachol stimulation; the increase was abolished by the inhibition of either ROCK or PKC. Our results suggest that during agonist stimulation, PKC regulates MLC phosphatase activity through phosphorylation of CPI-17. In contrast, ROCK phosphorylates both Thr(850)-MYPT1 and CPI-17, possibly through cross talk with a PKC pathway, but is only significant during the sustained phase of contraction. Last, our results demonstrate that there is a constitutively activate pool of ROCK that phosphorylates

  18. Shark Ig light chain junctions are as diverse as in heavy chains.

    PubMed

    Fleurant, Marshall; Changchien, Lily; Chen, Chin-Tung; Flajnik, Martin F; Hsu, Ellen

    2004-11-01

    We have characterized a small family of four genes encoding one of the three nurse shark Ig L chain isotypes, called NS5. All NS5 cDNA sequences are encoded by three loci, of which two are organized as conventional clusters, each consisting of a V and J gene segment that can recombine and one C region exon; the third contains a germline-joined VJ in-frame and the fourth locus is a pseudogene. This is the second nurse shark L chain type where both germline-joined and split V-J organizations have been found. Since there are only two rearranging Ig loci, it was possible for the first time to examine junctional diversity in defined fish Ig genes, comparing productive vs nonproductive rearrangements. N region addition was found to be considerably more extensive in length and in frequency than any other vertebrate L chain so far reported and rivals that in H chain. We put forth the speculation that the unprecedented efficiency of N region addition (87-93% of NS5 sequences) may be a result not only of simultaneous H and L chain rearrangement in the shark but also of processing events that afford greater accessibility of the V or J gene coding ends to terminal deoxynucleotidyltransferase.

  19. Reliable low-cost battery voltage indicator for light aircraft and automobiles

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1973-01-01

    Voltage indicator fits into cigarette lighter socket and utilizes light emitting and Zener diodes to display three levels of battery voltage. Indicator is superior to typical conventional electrical system indicators in that it gives a positive discrete indication of battery voltage. It is simple, inexpensive, and rugged.

  20. Sampling the genomic pool of protein tyrosine kinase genes using the polymerase chain reaction with genomic DNA.

    PubMed

    Oates, A C; Wollberg, P; Achen, M G; Wilks, A F

    1998-08-28

    The polymerase chain reaction (PCR), with cDNA as template, has been widely used to identify members of protein families from many species. A major limitation of using cDNA in PCR is that detection of a family member is dependent on temporal and spatial patterns of gene expression. To circumvent this restriction, and in order to develop a technique that is broadly applicable we have tested the use of genomic DNA as PCR template to identify members of protein families in an expression-independent manner. This test involved amplification of DNA encoding protein tyrosine kinase (PTK) genes from the genomes of three animal species that are well known development models; namely, the mouse Mus musculus, the fruit fly Drosophila melanogaster, and the nematode worm Caenorhabditis elegans. Ten PTK genes were identified from the mouse, 13 from the fruit fly, and 13 from the nematode worm. Among these kinases were 13 members of the PTK family that had not been reported previously. Selected PTKs from this screen were shown to be expressed during development, demonstrating that the amplified fragments did not arise from pseudogenes. This approach will be useful for the identification of many novel members of gene families in organisms of agricultural, medical, developmental and evolutionary significance and for analysis of gene families from any species, or biological sample whose habitat precludes the isolation of mRNA. Furthermore, as a tool to hasten the discovery of members of gene families that are of particular interest, this method offers an opportunity to sample the genome for new members irrespective of their expression pattern.

  1. Generation of human scFv antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences.

    PubMed

    Andris-Widhopf, Jennifer; Steinberger, Peter; Fuller, Roberta; Rader, Christoph; Barbas, Carlos F

    2011-09-01

    The development of therapeutic antibodies for use in the treatment of human diseases has long been a goal for many researchers in the antibody field. One way to obtain these antibodies is through phage-display libraries constructed from human lymphocytes. This protocol describes the construction of human scFv (single chain antibody fragment) libraries using a short linker (GGSSRSS) or a long linker (GGSSRSSSSGGGGSGGGG). In this method, the individual rearranged heavy- and light-chain variable regions are amplified separately and are linked through a series of overlap polymerase chain reaction (PCR) steps to give the final scFv products that are used for cloning.

  2. Successful treatment of nephrotic syndrome induced by lambda light chain deposition disease using lenalidomide: A case report and review of the literature
.

    PubMed

    Mima, Akira; Nagahara, Dai; Tansho, Kosuke

    2018-06-01

    Light chain deposition disease (LCDD) is a monoclonal immunoglobulin deposition disease (MIDD) that is characterized by the deposition of monoclonal light chains in multiple organs, including the kidney. It is a rare disorder caused by an underlying monoclonal plasma cell dyscrasia. LCDD with renal involvement causes proteinuria, which sometimes can lead to nephrotic syndrome. The monoclonal light chains are mostly in the κ form. Treatment of LCDD is the same as that for multiple myeloma (MM); however, some conventional anticancer drugs show substantial toxicity and therefore cannot be administered to older patients or those with renal impairment. An 80-year-old woman was referred to our department with severe nephrotic syndrome (13.6 g/gCr) and anemia. A renal biopsy showed mesangial proliferation and mesangial matrix expansion, and immunohistochemistry showed positive staining for λ chains along the glomerular basement membrane, but was negative for κ chains or amyloid deposition. A bone marrow biopsy revealed 64% plasma cells. Immunoglobulin G (IgG)-λ type M protein was detected, and the levels of free λ chain was significantly increased. We concluded that her nephrotic syndrome was caused by LCDD, which resulted from IgG-λ MM. The induction of a BCD (bortezomib, cyclophosphamide, and dexamethasone) treatment regimen did not lead to a hematological response or decrease in proteinuria. The administration of combination therapy of lenalidomide and prednisolone led to the successful reduction of proteinuria and hematuria. We presented a very rare case report describing the successful treatment of LCDD (λ chain)-induced nephrotic syndrome with lenalidomide.
.

  3. Light-chain cardiac amyloidosis: strategies to promote early diagnosis and cardiac response

    PubMed Central

    Grogan, Martha; Dispenzieri, Angela; Gertz, Morie A

    2017-01-01

    Amyloid light chain (AL) amyloidosis is a systemic disease characterised by the aggregation of misfolded immunoglobulin light chain (LC), predominantly in the heart and kidneys, causing organ failure. If untreated, the median survival of patients with cardiac AL amyloidosis is 6 months from the onset of heart failure. Protracted time to establish a diagnosis, often lasting >1 year, is a frequent factor in poor treatment outcomes. Cardiologists, to whom patients are often referred, frequently miss the opportunity to diagnose cardiac AL amyloidosis. Nearly all typical cardiac support measures, with the exception of diuretics, are ineffective and may even worsen clinical symptoms, emphasising the need for accurate diagnosis. Patients with severe cardiac involvement face poor outcomes; heart transplantation is rarely an option because of multiorgan involvement, rapid clinical decline and challenges in predicting which patients will respond to treatment of the underlying plasma cell disorder. Early diagnosis and prompt treatment with ‘source therapies’ that limit the production of amyloidogenic LC are associated with better survival and improvement in organ function after a median of 2.4 months following haematological complete response. However, organ recovery is often incomplete because these source therapies do not directly target deposited amyloid. Emerging amyloid-directed therapies may attenuate, and potentially reverse, organ dysfunction by clearing existing amyloid and inhibiting fibril formation of circulating aggregates. Improved recognition of AL amyloidosis by cardiologists allows for earlier treatment and improved outcomes. PMID:28456755

  4. Generation of human Fab antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences.

    PubMed

    Andris-Widhopf, Jennifer; Steinberger, Peter; Fuller, Roberta; Rader, Christoph; Barbas, Carlos F

    2011-09-01

    The development of therapeutic antibodies for use in the treatment of human diseases has long been a goal for many researchers in the antibody field. One way to obtain these antibodies is through phage-display libraries constructed from human lymphocytes. This protocol describes the construction of human Fab (fragment antigen binding) antibody libraries. In this method, the individual rearranged heavy- and light-chain variable regions are amplified separately and are linked through a series of overlap polymerase chain reaction (PCR) steps to give the final Fab products that are used for cloning.

  5. Immunoglobulin Light-Chain Amyloidosis: From Basics to New Developments in Diagnosis, Prognosis and Therapy.

    PubMed

    Muchtar, Eli; Buadi, Francis K; Dispenzieri, Angela; Gertz, Morie A

    2016-01-01

    Immunoglobulin amyloid light-chain (AL) amyloidosis is the most common form of systemic amyloidosis, where the culprit amyloidogenic protein is immunoglobulin light chains produced by marrow clonal plasma cells. AL amyloidosis is an infrequent disease, and since presentation is variable and often nonspecific, diagnosis is often delayed. This results in cumulative organ damage and has a negative prognostic effect. AL amyloidosis can also be challenging on the diagnostic level, especially when demonstration of Congo red-positive tissue is not readily obtained. Since as many as 31 known amyloidogenic proteins have been identified to date, determination of the amyloid type is required. While several typing methods are available, mass spectrometry has become the gold standard for amyloid typing. Upon confirming the diagnosis of amyloidosis, a pursuit for organ involvement is essential, with a focus on heart involvement, even in the absence of suggestive symptoms for involvement, as this has both prognostic and treatment implications. Details regarding initial treatment options, including stem cell transplantation, are provided in this review. AL amyloidosis management requires a multidisciplinary approach with careful patient monitoring, as organ impairment has a major effect on morbidity and treatment tolerability until a response to treatment is achieved and recovery emerges. © 2016 S. Karger AG, Basel.

  6. A generic HTS assay for kinase screening: Validation for the isolation of an engineered malate kinase

    PubMed Central

    Irague, Romain; Topham, Christopher M.; Martineau, Nelly; Baylac, Audrey; Auriol, Clément; Walther, Thomas; François, Jean-Marie; Remaud-Siméon, Magali

    2018-01-01

    An end-point ADP/NAD+ acid/alkali assay procedure, directly applicable to library screening of any type of ATP-utilising/ADP producing enzyme activity, was implemented. Typically, ADP production is coupled to NAD+ co-enzyme formation by the conventional addition of pyruvate kinase and lactate dehydrogenase. Transformation of enzymatically generated NAD+ into a photometrically active alkali derivative product is then achieved through the successive application of acidic/alkali treatment steps. The assay was successfully miniaturized to search for malate kinase activity in a structurally-guided library of LysC aspartate kinase variants comprising 6,700 clones. The screening procedure enabled the isolation of nine positive variants showing novel kinase activity on (L)-malate, the best mutant, LysC V115A:E119S:E434V exhibited strong substrate selectivity for (L)-malate compared to (L)-aspartate with a (kcat/Km)malate/(kcat/Km)aspartate ratio of 86. Double mutants V115A:E119S, V115A:E119C and E119S:E434V were constructed to further probe the origins of stabilising substrate binding energy gains for (L)-malate due to mutation. The introduction of less sterically hindering side-chains in engineered enzymes carrying E119S and V115A mutations increases the effective volume available for substrate binding in the catalytic pocket. Improved binding of the (L)-malate substrate may be assisted by less hindered movement of the Phe184 aromatic side-chain. Additional favourable long-range electostatic effects on binding arising from the E434V surface mutation are conditionally dependent upon the presence of the V115A mutation close to Phe184 in the active-site. PMID:29462203

  7. MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH.

    PubMed

    Adamczewski, J P; Rossignol, M; Tassan, J P; Nigg, E A; Moncollin, V; Egly, J M

    1996-04-15

    MAT1, cyclin H and cdk7 are part of TFIIH, a class II transcription factor which possesses numerous subunits of which several have been shown to be involved in processes other than transcription. Two of them, XPD (ERCC2) and XPB (ERCC3), are helicases involved in nucleotide excision repair (NER), whereas cdk7, cyclin H and MAT1 are thought to participate in cell cycle regulation. MAT1, cyclin H and cdk7 exist as a ternary complex either free or associated with TFIIH from which the latter can be dissociated at high salt concentration. MAT1 is strongly associated with cdk7 and cyclin H. Although not strictly required for the formation and activity of the complex, it stimulates its kinase activity. The kinase activity of TFIIH, which is constant during the cell cycle, is reduced after UV light irradiation.

  8. Nanoliposomes protect against AL amyloid light chain protein-induced endothelial injury.

    PubMed

    Truran, Seth; Weissig, Volkmar; Ramirez-Alvarado, Marina; Franco, Daniel A; Burciu, Camelia; Georges, Joseph; Murarka, Shishir; Okoth, Winter A; Schwab, Sara; Hari, Parameswaran; Migrino, Raymond Q

    2014-03-01

    A newly-recognized pathogenic mechanism underlying light chain amyloidosis (AL) involves endothelial dysfunction and cell injury caused by misfolded light chain proteins (LC). Nanoliposomes (NL) are artificial phospholipid vesicles that could attach to misfolded proteins and reduce tissue injury. To test whether co-treatment with NL reduces LC-induced endothelial dysfunction and cell death. Abdominal subcutaneous adipose arterioles from 14 non-AL subjects were cannulated; dilator response to acetylcholine and papaverine were measured at baseline and following 1-hour exposure to LC (20 µg/mL, 2 purified from AL subjects' urine, 1 from human recombinant LC [AL-09]) ± NL (phosphatidylcholine/cholesterol/phosphatidic acid 70/25/5 molar ratio) or NL alone. Human aortic artery endothelial cells (HAEC) were exposed to Oregon Green-labeled LC ± NL for 24 hours and intracellular LC and apoptosis (Hoechst stain) were measured. Circular dichroism spectroscopy was performed on AL-09 LC ± NL to follow changes in secondary structure and protein thermal stability. LC caused impaired dilation to acetylcholine that was restored by NL (control - 94.0 ± 1.8%, LC - 65.0 ± 7.1%, LC + NL - 95.3 ± 1.8%, p ≤ 0.001 LC versus control or LC + NL). NL protection was inhibited by L-NG-nitroarginine methyl ester. NL increased the beta sheet structure of LC, reduced endothelial cell internalization of LC and protected against LC-induced endothelial cell death. LC induced human adipose arteriole endothelial dysfunction and endothelial cell death, which were reversed by co-treatment with NL. This protection may partly be due to enhancing LC protein structure and reducing LC internalization. Nanoliposomes represent a promising new class of agents to ameliorate tissue injury from protein misfolding diseases such as AL.

  9. Molecule-assisted ferromagnetic atomic chain formation

    NASA Astrophysics Data System (ADS)

    Kumar, Manohar; Sethu, Kiran Kumar Vidya; van Ruitenbeek, Jan M.

    2015-06-01

    One dimensional systems strongly enhance the quantum character of electron transport. Such systems can be realized in 5 d transition metals Au, Pt, and Ir, in the form of suspended monatomic chains between bulk leads. Atomic chains between ferromagnetic leads would open up many perspectives in the context of spin-dependent transport and spintronics, but the evidence suggests that for pure metals only the mentioned three 5 d metals are susceptible to chain formation. It has been argued that the stability of atomic chains made up from ferromagnetic metals is compromised by the same exchange interaction that produces the local moments. Here we demonstrate that magnetic atomic chains can be induced to form in break junctions under the influence of light molecules. Explicitly, we find deuterium assisted chain formation in the 3 d ferromagnetic transition metals Fe and Ni. Chain lengths up to eight atoms are formed upon stretching the ferromagnetic atomic contact in deuterium atmosphere at cryogenic temperatures. From differential conductance spectra vibronic states of D2 can be identified, confirming the presence of deuterium in the atomic chains. Shot noise spectroscopy indicates the presence of weakly spin polarized transmission channels.

  10. A Toxoplasma gondii Class XIV Myosin, Expressed in Sf9 Cells with a Parasite Co-chaperone, Requires Two Light Chains for Fast Motility*

    PubMed Central

    Bookwalter, Carol S.; Kelsen, Anne; Leung, Jacqueline M.; Ward, Gary E.; Trybus, Kathleen M.

    2014-01-01

    Many diverse myosin classes can be expressed using the baculovirus/Sf9 insect cell expression system, whereas others have been recalcitrant. We hypothesized that most myosins utilize Sf9 cell chaperones, but others require an organism-specific co-chaperone. TgMyoA, a class XIVa myosin from the parasite Toxoplasma gondii, is required for the parasite to efficiently move and invade host cells. The T. gondii genome contains one UCS family myosin co-chaperone (TgUNC). TgMyoA expressed in Sf9 cells was soluble and functional only if the heavy and light chain(s) were co-expressed with TgUNC. The tetratricopeptide repeat domain of TgUNC was not essential to obtain functional myosin, implying that there are other mechanisms to recruit Hsp90. Purified TgMyoA heavy chain complexed with its regulatory light chain (TgMLC1) moved actin in a motility assay at a speed of ∼1.5 μm/s. When a putative essential light chain (TgELC1) was also bound, TgMyoA moved actin at more than twice that speed (∼3.4 μm/s). This result implies that two light chains bind to and stabilize the lever arm, the domain that amplifies small motions at the active site into the larger motions that propel actin at fast speeds. Our results show that the TgMyoA domain structure is more similar to other myosins than previously appreciated and provide a molecular explanation for how it moves actin at fast speeds. The ability to express milligram quantities of a class XIV myosin in a heterologous system paves the way for detailed structure-function analysis of TgMyoA and identification of small molecule inhibitors. PMID:25231988

  11. Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2

    PubMed Central

    Liu, Qing; Wang, Qin; Deng, Weixian; Wang, Xu; Piao, Mingxin; Cai, Dawei; Li, Yaxing; Barshop, William D.; Yu, Xiaolan; Zhou, Tingting; Liu, Bin; Oka, Yoshito; Wohlschlegel, James; Zuo, Zecheng; Lin, Chentao

    2017-01-01

    Plant cryptochromes undergo blue light-dependent phosphorylation to regulate their activity and abundance, but the protein kinases that phosphorylate plant cryptochromes have remained unclear. Here we show that photoexcited Arabidopsis cryptochrome 2 (CRY2) is phosphorylated in vivo on as many as 24 different residues, including 7 major phosphoserines. We demonstrate that four closely related Photoregulatory Protein Kinases (previously referred to as MUT9-like kinases) interact with and phosphorylate photoexcited CRY2. Analyses of the ppk123 and ppk124 triple mutants and amiR4k artificial microRNA-expressing lines demonstrate that PPKs catalyse blue light-dependent CRY2 phosphorylation to both activate and destabilize the photoreceptor. Phenotypic analyses of these mutant lines indicate that PPKs may have additional substrates, including those involved in the phytochrome signal transduction pathway. These results reveal a mechanism underlying the co-action of cryptochromes and phytochromes to coordinate plant growth and development in response to different wavelengths of solar radiation in nature. PMID:28492234

  12. Regions of recognition by blocking antibodies on the light chain of botulinum neurotoxin A: antigenic structure of the entire toxin.

    PubMed

    Dolimbek, Behzod Z; Steward, Lance E; Aoki, K Roger; Atassi, M Zouhair

    2011-06-01

    The continuous regions on botulinum neurotoxin A (BoNT/A) light (L) chain recognized by anti-toxin antibodies (Abs) from mouse, horse and chicken have been mapped. We synthesized a panel of thirty-two 19-residue peptides that overlapped consecutively by 5 residues and encompassed the entire L chain (residues 1-453). Mouse Abs recognized 5 major antigenic regions on the L chain, horse Abs recognized 9 while chicken Abs recognized 8 major antigenic regions. Overall, however, the three host species recognized, to some extent, similar, but not identical, peptides and the levels of Abs directed against a given region varied with the immunized host. Differences in the MHC of the host caused variation in levels of Ab recognition and some epitopes showed right or left frame-shifts among the species. Selected region(s) were also uniquely recognized by one species (e.g., peptide L1 by horse Abs). Mapping of the L chain antigenic regions and the previous localization of the regions on the H chain with the same antisera, has permitted description of the complete antigenic structure of BoNT/A. The locations in the 3-dimensional structure of the antigenic regions of the entire toxin are shown for mouse Abs. In the 3-D structure, the antigenic regions are on the surface of the toxin and when antibodies are bound the enzymatic activity of the light chain is obstructed. Copyright © 2010 Elsevier GmbH. All rights reserved.

  13. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-kinase Inhibitors

    PubMed Central

    Marlowe, Timothy A.; Lenzo, Felicia L.; Figel, Sheila A.; Grapes, Abigail T.; Cance, William G.

    2016-01-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms which drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTKs) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK’s critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. Additionally, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: 1) the rapid phosphorylation and activation of RTK signaling pathways in RTKHigh cells and 2) the long-term acquisition of RTKs novel to the parental cell line in RTKLow cells. Finally, HER2+ cancer cells displayed resistance to FAK-kinase inhibition in 3D–growth assays using a HER2 isogenic system and HER2+ cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. PMID:27638858

  14. Two homolog wheat Glycogen Synthase Kinase 3/SHAGGY--like kinases are involved in brassinosteroid signaling.

    PubMed

    Bittner, Thomas; Nadler, Sabine; Schulze, Eija; Fischer-Iglesias, Christiane

    2015-10-13

    Glycogen Synthase Kinase 3/SHAGGY-like kinases (GSKs) are multifunctional non-receptor ser/thr kinases. Plant GSKs are involved in hormonal signaling networks and are required for growth, development, light as well as stress responses. So far, most studies have been carried out on Arabidopsis or on other eudicotyledon GSKs. Here, we evaluated the role of TaSK1 and TaSK2, two homolog wheat (Triticum aestivum) GSKs, in brassinosteroid signaling. We explored in addition the physiological effects of brassinosteroids on wheat growth and development. A bin2-1 like gain-of-function mutation has been inserted respectively in one of the homoeologous gene copies of TaSK1 (TaSK1-A.2-1) and in one of the homoeologous gene copies of TaSK2 (TaSK2-A.2-1). Arabidopsis plants were transformed with these mutated gene copies. Severe dwarf phenotypes were obtained closely resembling those of Arabidopsis bin2-1 lines and Arabidopsis BR-deficient or BR-signaling mutants. Expression of BR downstream genes, SAUR-AC1, CPD and BAS1 was deregulated in TaSK1.2-1 and TaSK2.2-1 transgenic lines. Severe dwarf lines were partially rescued by Bikinin beforehand shown to inhibit TaSK kinase activity. This rescue was accompanied with changes in BR downstream gene expression levels. Wheat embryos and seedlings were treated with compounds interfering with BR signaling or modifying BR levels to gain insight into the role of brassinosteroids in wheat development. Embryonic axis and scutellum differentiation were impaired, and seedling growth responses were affected when embryos were treated with Epibrassinolides, Propiconazole, and Bikinin. In view of our findings, TaSKs are proposed to be involved in BR signaling and to be orthologous of Arabidopsis Clade II GSK3/SHAGGY-like kinases. Observed effects of Epibrassinolide, Propiconazole and Bikinin treatments on wheat embryos and seedlings indicate a role for BR signaling in embryonic patterning and seedling growth.

  15. Precise Protein Photolithography (P3): High Performance Biopatterning Using Silk Fibroin Light Chain as the Resist

    PubMed Central

    Liu, Wanpeng; Zhou, Zhitao; Zhang, Shaoqing; Shi, Zhifeng; Tabarini, Justin; Lee, Woonsoo; Zhang, Yeshun; Gilbert Corder, S. N.; Li, Xinxin; Dong, Fei; Cheng, Liang; Liu, Mengkun; Kaplan, David L.; Omenetto, Fiorenzo G.

    2017-01-01

    Precise patterning of biomaterials has widespread applications, including drug release, degradable implants, tissue engineering, and regenerative medicine. Patterning of protein‐based microstructures using UV‐photolithography has been demonstrated using protein as the resist material. The Achilles heel of existing protein‐based biophotoresists is the inevitable wide molecular weight distribution during the protein extraction/regeneration process, hindering their practical uses in the semiconductor industry where reliability and repeatability are paramount. A wafer‐scale high resolution patterning of bio‐microstructures using well‐defined silk fibroin light chain as the resist material is presented showing unprecedent performances. The lithographic and etching performance of silk fibroin light chain resists are evaluated systematically and the underlying mechanisms are thoroughly discussed. The micropatterned silk structures are tested as cellular substrates for the successful spatial guidance of fetal neural stems cells seeded on the patterned substrates. The enhanced patterning resolution, the improved etch resistance, and the inherent biocompatibility of such protein‐based photoresist provide new opportunities in fabricating large scale biocompatible functional microstructures. PMID:28932678

  16. Enterococcus faecalis phosphomevalonate kinase

    PubMed Central

    Doun, Stephanie S.; Burgner, John W.; Briggs, Scott D.; Rodwell, Victor W.

    2005-01-01

    The six enzymes of the mevalonate pathway of isopentenyl diphosphate biosynthesis represent potential for addressing a pressing human health concern, the development of antibiotics against resistant strains of the Gram-positive streptococci. We previously characterized the first four of the mevalonate pathway enzymes of Enterococcus faecalis, and here characterize the fifth, phosphomevalonate kinase (E.C. 2.7.4.2). E. faecalis genomic DNA and the polymerase chain reaction were used to clone DNA thought to encode phosphomevalonate kinase into pET28b(+). Double-stranded DNA sequencing verified the sequence of the recombinant gene. The encoded N-terminal hexahistidine-tagged protein was expressed in Escherichia coli with induction by isopropylthiogalactoside and purified by Ni++ affinity chromatography, yield 20 mg protein per liter. Analysis of the purified protein by MALDI-TOF mass spectrometry established it as E. faecalis phosphomevalonate kinase. Analytical ultracentrifugation revealed that the kinase exists in solution primarily as a dimer. Assay for phosphomevalonate kinase activity used pyruvate kinase and lactate dehydrogenase to couple the formation of ADP to the oxidation of NADH. Optimal activity occurred at pH 8.0 and at 37°C. The activation energy was ~5.6 kcal/mol. Activity with Mn++, the preferred cation, was optimal at about 4 mM. Relative rates using different phosphoryl donors were 100 (ATP), 3.6 (GTP), 1.6 (TTP), and 0.4 (CTP). Km values were 0.17 mM for ATP and 0.19 mM for (R,S)-5-phosphomevalonate. The specific activity of the purified enzyme was 3.9 μmol substrate converted per minute per milligram protein. Applications to an immobilized enzyme bioreactor and to drug screening and design are discussed. PMID:15802646

  17. High level expression and immunochemical characterization of botulinum neurotoxin type F light chain.

    PubMed

    Chauhan, Ritika; Chauhan, Vinita; Rao, Mula Kameshwar; Chaudhary, Dilip; Bhagyawant, Sameer; Dhaked, Ram Kumar

    2018-06-01

    Botulinum neurotoxins (BoNTs) are the most toxic biological substances known. Their potential use as biological warfare agent results in their classification as category A biowarfare agent by Centers for Disease Control and Prevention (CDC), USA. Presently, there are no approved detection system and pharmacological treatments for BoNT intoxication. Although a toxoid vaccine is available for immuno-prophylaxis, vaccines cannot reverse the effect of pre-translocated toxin. Direct handling of the live BoNTs for developing detection and therapeutics may pose fatal danger. This concern was addressed by purifying the recombinant catalytically active light chain of BoNT/F. BoNT/F-LC gene was amplified from the genomic DNA using specifically designed primers and expressed in Escherichia coli. Expression and purification profile were optimized under different conditions for biologically active light chain production. Specific polyclonal antibodies generated against type F illustrates in vivo neutralization in mice and rabbit. These antibodies play key role in conceiving the development of high throughput SPR based detection system which is a highly precise label free technique for protein interaction analysis. The presented work is first of its kind, signifying the production of highly stable and active rBoNT/F-LC and its immunochemical characterization. The study aids in paving the path towards developing a persistent detection system as well as in presenting comprehended scheme for in vitro small molecule therapeutics analysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Novel Therapies in Light Chain Amyloidosis.

    PubMed

    Milani, Paolo; Merlini, Giampaolo; Palladini, Giovanni

    2018-05-01

    Light chain (AL) amyloidosis is the most common form of amyloidosis involving the kidney. It is characterized by albuminuria, progressing to overt nephrotic syndrome and eventually end-stage renal failure if diagnosed late or ineffectively treated, and in most cases by concomitant heart involvement. Cardiac amyloidosis is the main determinant of survival, whereas the risk of dialysis is predicted by baseline proteinuria and glomerular filtration rate, and by response to therapy. The backbone of treatment is chemotherapy targeting the underlying plasma cell clone, that needs to be risk-adapted due to the frailty of patients with AL amyloidosis who have cardiac and/or multiorgan involvement. Low-risk patients (∼20%) can be considered for autologous stem cell transplantation that can be preceded by induction and/or followed by consolidation with bortezomib-based regimens. Bortezomib combined with alkylators, such as melphalan, preferred in patients harboring t(11;14), or cyclophosphamide, is used in most intermediate-risk patients, and with cautious dose escalation in high-risk subjects. Novel, powerful anti-plasma cell agents, such as pomalidomide, ixazomib, and daratumumab, prove effective in the relapsed/refractory setting, and are being moved to upfront therapy in clinical trials. Novel approaches based on small molecules interfering with the amyloidogenic process and on antibodies targeting the amyloid deposits gave promising results in preliminary uncontrolled studies, are being tested in controlled trials, and will likely prove powerful complements to chemotherapy. Finally, improvements in the understanding of the molecular mechanisms of organ damage are unveiling novel potential treatment targets, moving toward a cure for this dreadful disease.

  19. Defining the conserved internal architecture of a protein kinase.

    PubMed

    Kornev, Alexandr P; Taylor, Susan S

    2010-03-01

    Protein kinases constitute a large protein family of important regulators in all eukaryotic cells. All of the protein kinases have a similar bilobal fold, and their key structural features have been well studied. However, the recent discovery of non-contiguous hydrophobic ensembles inside the protein kinase core shed new light on the internal organization of these molecules. Two hydrophobic "spines" traverse both lobes of the protein kinase molecule, providing a firm but flexible connection between its key elements. The spine model introduces a useful framework for analysis of intramolecular communications, molecular dynamics, and drug design. Published by Elsevier B.V.

  20. A Novel, In-solution Separation of Endogenous Cardiac Sarcomeric Proteins and Identification of Distinct Charged Variants of Regulatory Light Chain*

    PubMed Central

    Scruggs, Sarah B.; Reisdorph, Rick; Armstrong, Mike L.; Warren, Chad M.; Reisdorph, Nichole; Solaro, R. John; Buttrick, Peter M.

    2010-01-01

    The molecular conformation of the cardiac myosin motor is modulated by intermolecular interactions among the heavy chain, the light chains, myosin binding protein-C, and titin and is governed by post-translational modifications (PTMs). In-gel digestion followed by LC/MS/MS has classically been applied to identify cardiac sarcomeric PTMs; however, this approach is limited by protein size, pI, and difficulties in peptide extraction. We report a solution-based work flow for global separation of endogenous cardiac sarcomeric proteins with a focus on the regulatory light chain (RLC) in which specific sites of phosphorylation have been unclear. Subcellular fractionation followed by OFFGEL electrophoresis resulted in isolation of endogenous charge variants of sarcomeric proteins, including regulatory and essential light chains, myosin heavy chain, and myosin-binding protein-C of the thick filament. Further purification of RLC using reverse-phase HPLC separation and UV detection enriched for RLC PTMs at the intact protein level and provided a stoichiometric and quantitative assessment of endogenous RLC charge variants. Digestion and subsequent LC/MS/MS unequivocally identified that the endogenous charge variants of cardiac RLC focused in unique OFFGEL electrophoresis fractions were unphosphorylated (78.8%), singly phosphorylated (18.1%), and doubly phosphorylated (3.1%) RLC. The novel aspects of this study are that 1) milligram amounts of endogenous cardiac sarcomeric subproteome were focused with resolution comparable with two-dimensional electrophoresis, 2) separation and quantification of post-translationally modified variants were achieved at the intact protein level, 3) separation of intact high molecular weight thick filament proteins was achieved in solution, and 4) endogenous charge variants of RLC were separated; a novel doubly phosphorylated form was identified in mouse, and singly phosphorylated, singly deamidated, and deamidated/phosphorylated forms were

  1. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation.

    PubMed

    Filippakopoulos, Panagis; Kofler, Michael; Hantschel, Oliver; Gish, Gerald D; Grebien, Florian; Salah, Eidarus; Neudecker, Philipp; Kay, Lewis E; Turk, Benjamin E; Superti-Furga, Giulio; Pawson, Tony; Knapp, Stefan

    2008-09-05

    The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase alphaC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.

  2. Deciphering the Arginine-Binding Preferences at the Substrate-Binding Groove of Ser/Thr Kinases by Computational Surface Mapping

    PubMed Central

    Ben-Shimon, Avraham; Niv, Masha Y.

    2011-01-01

    Protein kinases are key signaling enzymes that catalyze the transfer of γ-phosphate from an ATP molecule to a phospho-accepting residue in the substrate. Unraveling the molecular features that govern the preference of kinases for particular residues flanking the phosphoacceptor is important for understanding kinase specificities toward their substrates and for designing substrate-like peptidic inhibitors. We applied ANCHORSmap, a new fragment-based computational approach for mapping amino acid side chains on protein surfaces, to predict and characterize the preference of kinases toward Arginine binding. We focus on positions P−2 and P−5, commonly occupied by Arginine (Arg) in substrates of basophilic Ser/Thr kinases. The method accurately identified all the P−2/P−5 Arg binding sites previously determined by X-ray crystallography and produced Arg preferences that corresponded to those experimentally found by peptide arrays. The predicted Arg-binding positions and their associated pockets were analyzed in terms of shape, physicochemical properties, amino acid composition, and in-silico mutagenesis, providing structural rationalization for previously unexplained trends in kinase preferences toward Arg moieties. This methodology sheds light on several kinases that were described in the literature as having non-trivial preferences for Arg, and provides some surprising departures from the prevailing views regarding residues that determine kinase specificity toward Arg. In particular, we found that the preference for a P−5 Arg is not necessarily governed by the 170/230 acidic pair, as was previously assumed, but by several different pairs of acidic residues, selected from positions 133, 169, and 230 (PKA numbering). The acidic residue at position 230 serves as a pivotal element in recognizing Arg from both the P−2 and P−5 positions. PMID:22125489

  3. MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH.

    PubMed Central

    Adamczewski, J P; Rossignol, M; Tassan, J P; Nigg, E A; Moncollin, V; Egly, J M

    1996-01-01

    MAT1, cyclin H and cdk7 are part of TFIIH, a class II transcription factor which possesses numerous subunits of which several have been shown to be involved in processes other than transcription. Two of them, XPD (ERCC2) and XPB (ERCC3), are helicases involved in nucleotide excision repair (NER), whereas cdk7, cyclin H and MAT1 are thought to participate in cell cycle regulation. MAT1, cyclin H and cdk7 exist as a ternary complex either free or associated with TFIIH from which the latter can be dissociated at high salt concentration. MAT1 is strongly associated with cdk7 and cyclin H. Although not strictly required for the formation and activity of the complex, it stimulates its kinase activity. The kinase activity of TFIIH, which is constant during the cell cycle, is reduced after UV light irradiation. Images PMID:8617234

  4. Crystallization and preliminary X-ray characterization of the genetically encoded fluorescent calcium indicator protein GCaMP2

    PubMed Central

    Rodríguez Guilbe, María M.; Alfaro Malavé, Elisa C.; Akerboom, Jasper; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.

    2008-01-01

    Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, this protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1, b = 47.1, c = 68.8 Å, β = 100.5° and one GCaMP2 molecule in the asymmetric unit. The structure was phased by molecular replacement and refinement is currently under way. PMID:18607093

  5. Two novel mutations in the BCKDK (branched-chain keto-acid dehydrogenase kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients.

    PubMed

    García-Cazorla, Angels; Oyarzabal, Alfonso; Fort, Joana; Robles, Concepción; Castejón, Esperanza; Ruiz-Sala, Pedro; Bodoy, Susanna; Merinero, Begoña; Lopez-Sala, Anna; Dopazo, Joaquín; Nunes, Virginia; Ugarte, Magdalena; Artuch, Rafael; Palacín, Manuel; Rodríguez-Pombo, Pilar; Alcaide, Patricia; Navarrete, Rosa; Sanz, Paloma; Font-Llitjós, Mariona; Vilaseca, Ma Antonia; Ormaizabal, Aida; Pristoupilova, Anna; Agulló, Sergi Beltran

    2014-04-01

    Inactivating mutations in the BCKDK gene, which codes for the kinase responsible for the negative regulation of the branched-chain α-keto acid dehydrogenase complex (BCKD), have recently been associated with a form of autism in three families. In this work, two novel exonic BCKDK mutations, c.520C>G/p.R174G and c.1166T>C/p.L389P, were identified at the homozygous state in two unrelated children with persistently reduced body fluid levels of branched-chain amino acids (BCAAs), developmental delay, microcephaly, and neurobehavioral abnormalities. Functional analysis of the mutations confirmed the missense character of the c.1166T>C change and showed a splicing defect r.[520c>g;521_543del]/p.R174Gfs1*, for c.520C>G due to the presence of a new donor splice site. Mutation p.L389P showed total loss of kinase activity. Moreover, patient-derived fibroblasts showed undetectable (p.R174Gfs1*) or barely detectable (p.L389P) levels of BCKDK protein and its phosphorylated substrate (phospho-E1α), resulting in increased BCKD activity and the very rapid BCAA catabolism manifested by the patients' clinical phenotype. Based on these results, a protein-rich diet plus oral BCAA supplementation was implemented in the patient homozygous for p.R174Gfs1*. This treatment normalized plasma BCAA levels and improved growth, developmental and behavioral variables. Our results demonstrate that BCKDK mutations can result in neurobehavioral deficits in humans and support the rationale for dietary intervention. © 2014 WILEY PERIODICALS, INC.

  6. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-Kinase Inhibitors.

    PubMed

    Marlowe, Timothy A; Lenzo, Felicia L; Figel, Sheila A; Grapes, Abigail T; Cance, William G

    2016-12-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms that drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTK) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK's critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. In addition, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: (i) the rapid phosphorylation and activation of RTK signaling pathways in RTK High cells and (ii) the long-term acquisition of RTKs novel to the parental cell line in RTK Low cells. Finally, HER2 +: cancer cells displayed resistance to FAK-kinase inhibition in 3D growth assays using a HER2 isogenic system and HER2 + cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. Mol Cancer Ther; 15(12); 3028-39. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  8. A Unique Role for Endothelial Cell Kinesin Light Chain 1, Variant 1 in Leukocyte Transendothelial Migration

    PubMed Central

    Cyrus, Bita F.; Muller, William A.

    2017-01-01

    A reservoir of parajunctional membrane in endothelial cells, the lateral border recycling compartment (LBRC), is critical for transendothelial migration (TEM). We have previously shown that targeted recycling of the LBRC to the site of TEM requires microtubules and a kinesin molecular motor. However, the identity of the kinesin and mechanism of cargo binding were not known. We show that microinjection of endothelial cells with a monoclonal antibody specific for kinesin-1 significantly blocked LBRC-targeted recycling and TEM. In complementary experiments, knocking down KIF5B, a ubiquitous kinesin-1 isoform, in endothelial cells significantly decreased targeted recycling of the LBRC and leukocyte TEM. Kinesin heavy chains move cargo along microtubules by one of many kinesin light chains (KLCs), which directly bind the cargo. Knocking down KLC 1 isoform variant 1 (KLC1C) significantly decreased LBRC-targeted recycling and TEM, whereas knocking down other isoforms of KLC1 had no effect. Re-expression of KLC1C resistant to the knockdown shRNA restored targeted recycling and TEM. Thus kinesin-1 and KLC1C are specifically required for targeted recycling and TEM. These data suggest that of the many potential combinations of the 45 kinesin family members and multiple associated light chains, KLC1C links the LBRC to kinesin-1 (KIF5B) during targeted recycling and TEM. Thus, KLC1C can potentially be used as a target for anti-inflammatory therapy. PMID:26994343

  9. Hypermutation in shark immunoglobulin light chain genes results in contiguous substitutions.

    PubMed

    Lee, Susan S; Tranchina, Daniel; Ohta, Yuko; Flajnik, Martin F; Hsu, Ellen

    2002-04-01

    Among 631 substitutions present in 90 nurse shark immunoglobulin light chain somatic mutants, 338 constitute 2-4 bp stretches of adjacent changes. An absence of mutations in perinatal sequences and the bias for one mutating V gene in adults suggest that the diversification is antigen dependent. The substitutions shared no patterns, and the absence of donor sequences, including from family members, supports the idea that most changes arose from nontemplated mutation. The tandem mutations as a group are distinguished by consistently fewer transition changes and an A bias. We suggest this is one of several pathways of hypermutation diversifying shark antigen-receptor genes--point mutations, tandem mutations, and mutations with a G-C preference--that coevolved with or preceded gene rearrangement.

  10. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation.

    PubMed

    Sakai, T; Kagawa, T; Kasahara, M; Swartz, T E; Christie, J M; Briggs, W R; Wada, M; Okada, K

    2001-06-05

    UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1 npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1 npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner.

  11. Cyclic stretch-induced stress fiber dynamics - Dependence on strain rate, Rho-kinase and MLCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chin-Fu; Haase, Candice; Deguchi, Shinji

    2010-10-22

    Research highlights: {yields} Cyclic stretch induces stress fiber disassembly, reassembly and fusion perpendicular to the direction of stretch. {yields} Stress fiber disassembly and reorientation were not induced at low stretch frequency. {yields} Stretch caused actin fiber formation parallel to stretch in distinct locations in cells treated with Rho-kinase and MLCK inhibitors. -- Abstract: Stress fiber realignment is an important adaptive response to cyclic stretch for nonmuscle cells, but the mechanism by which such reorganization occurs is not known. By analyzing stress fiber dynamics using live cell microscopy, we revealed that stress fiber reorientation perpendicular to the direction of cyclic uniaxialmore » stretching at 1 Hz did not involve disassembly of the stress fiber distal ends located at focal adhesion sites. Instead, these distal ends were often used to assemble new stress fibers oriented progressively further away from the direction of stretch. Stress fiber disassembly and reorientation were not induced when the frequency of stretch was decreased to 0.01 Hz, however. Treatment with the Rho-kinase inhibitor (Y27632) reduced stress fibers to thin fibers located in the cell periphery which bundled together to form thick fibers oriented parallel to the direction of stretching at 1 Hz. In contrast, these thin fibers remained diffuse in cells subjected to stretch at 0.01 Hz. Cyclic stretch at 1 Hz also induced actin fiber formation parallel to the direction of stretch in cells treated with the myosin light chain kinase (MLCK) inhibitor ML-7, but these fibers were located centrally rather than peripherally. These results shed new light on the mechanism by which stress fibers reorient in response to cyclic stretch in different regions of the actin cytoskeleton.« less

  12. INTERNAL AMPLIFICATION CONTROL FOR USE IN QUANTITATIVE POLYMERASE CHAIN REACTION FECAL INDICATOR BACTERIA ASSAYS

    EPA Science Inventory

    Quantitative polymerase chain reaction (QPCR) can be used as a rapid method for detecting fecal indicator bacteria. Because false negative results can be caused by PCR inhibitors that co-extract with the DNA samples, an internal amplification control (IAC) should be run with eac...

  13. Role of the constant region domain in the structural diversity of human antibody light chains.

    PubMed

    Hifumi, Emi; Taguchi, Hiroaki; Kato, Ryuichi; Uda, Taizo

    2017-04-01

    Issues regarding the structural diversity (heterogeneity) of an antibody molecule have been the subject of discussion along with the development of antibody drugs. Research on heterogeneity has been extensive in recent years, but no clear solution has been reached. Heterogeneity is also observed in catalytic antibody κ light chains (CLs). In this study, we investigated how the constant region domain of CLs concerns structural diversity because it is a simple and good example for elucidating heterogeneity. By means of cation-exchange chromatography, SDS-PAGE, and 2-dimensional electrophoresis for the CL, multimolecular forms consisting of different electrical charges and molecular sizes coexisted in the solution, resulting in the similar heterogeneity of the full length of CLs. The addition of copper ion could cause the multimolecular forms to change to monomolecular forms. Copper ion contributed greatly to the enrichment of the dimer form of CL and the homogenization of the differently charged CLs. Two molecules of the CL protein bound one copper ion. The binding affinity of the ion was 48.0 μM -1 Several divalent metal ions were examined, but only zinc showed a similar effect.-Hifumi, E., Taguchi, H., Kato, R., Uda, T. Role of the constant region domain in the structural diversity of human antibody light chains. © FASEB.

  14. Retinal pigment epithelial detachments and tears, and progressive retinal degeneration in light chain deposition disease.

    PubMed

    Spielberg, Leigh H; Heckenlively, John R; Leys, Anita M

    2013-05-01

    Light-chain deposition disease (LCDD) is a rare condition characterised by deposition of monoclonal immunoglobulin light chains (LCs) in tissues, resulting in varying degrees of organ dysfunction. This study reports the characteristic clinical ocular findings seen in advanced LCDD upon development of ocular fundus changes. This is the first report to describe this entity in vivo in a series of patients. A case series of ocular fundus changes in three patients with kidney biopsy-proven LCDD. All patients underwent best corrected visual acuity (BCVA) exam, perimetry, colour fundus photography and fluorescein angiography; two patients underwent indocyanine green angiography, optical coherence tomography, ultrasound and electroretinography; and one patient underwent fundus autofluorescence. Three patients, 53-60 years old at initial presentation, were studied. All three presented with night blindness, poor dark adaptation, metamorphopsia and visual loss. Examination revealed serous and serohaemorrhagic detachments, multiple retinal pigment epithelial (RPE) tears, diffuse RPE degeneration and progressive fibrotic changes. Neither choroidal neovascularisation nor other vascular abnormalities were present. Final best corrected visual acuity (BCVA) ranged from 20/40 to 20/300. Progressive LC deposition in the fundus seems to damage RPE pump function with flow disturbance between choroid and retina. This pathogenesis can explain the evolution to RPE detachments and subsequent rips and progressive retinal malfunction.

  15. Calcium Channels, Rho-Kinase, Protein Kinase-C, and Phospholipase-C Pathways Mediate Mercury Chloride-Induced Myometrial Contractions in Rats.

    PubMed

    Koli, Swati; Prakash, Atul; Choudhury, Soumen; Mandil, Rajesh; Garg, Satish K

    2018-05-21

    -induced myometrial contraction in rats. M receptor: Muscarinic receptor; PIP2: phospho-inositol bisphosphate; PLC: phospholipase-C; DAG: diacyl glycerol; IP3: inositol triphosphate; IP3R: inositol triphosphate receptor; PKC; protein kinase-C; MLCP: myosin light chain phosphatise; MYPT: myosin phosphatase; SR: sarco-endoplasmic reticulum.

  16. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments

    PubMed Central

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-01-01

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease. PMID:27162358

  17. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    PubMed

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.

  18. Light exposure before learning improves memory consolidation at night

    PubMed Central

    Shan, Li-Li; Guo, Hao; Song, Ning-Ning; Jia, Zheng-Ping; Hu, Xin-Tian; Huang, Jing-Fei; Ding, Yu-Qiang; Richter-Levine, Gal; Zhou, Qi-Xin; Xu, Lin

    2015-01-01

    Light is recently recognized as a modulator able to activate the hippocampus and modulate memory processing, but little is known about the molecular mechanisms. Here, we report that in mice, a short pulse of white light before learning dramatically improves consolidation of contextual fear memory during the night. The light exposure increases hippocampal active p21-activated kinase 1 (PAK1) and CA1 long-term potentiation (LTP). These light effects are abolished in PAK1 knockout and dominant-negative transgenic mice, but preserved by expression of constitutively active PAK1 in the hippocampus. Our results indicate that light can act as a switch of PAK1 activity that modulate CA1 LTP and thereby memory consolidation without affecting learning and short-term memory. PMID:26493375

  19. A real-time bioluminescent HTS method for measuring protein kinase activity influenced neither by ATP concentration nor by luciferase inhibition.

    PubMed

    Lundin, Arne; Eriksson, Jonas

    2008-08-01

    The firefly luciferin-luciferase reaction has been used to set up an assay for protein kinase based on measuring ATP consumption rate as the first-order rate constant for the kinase reaction. The assay obviates the problems encountered with previous bioluminescent protein kinase assays such as interference with the luciferase reaction from library compounds, nonlinear standard curves, and limited dynamic ranges. In the assay described in the present paper luciferase and luciferin are present during the entire kinase reaction, and the light emission can be measured continuously. In an HTS situation the light emission is measured only twice, i.e., initially and after a predetermined time. After a fivefold reduction of the ATP concentration a Z' value of 0.96 was obtained. Light emission data from samples with kinase are normalized with light emission data from blanks without kinase. First-order rate constants for the kinase reaction calculated from normalized light emission are not affected by a moderate degree of inactivation of luciferase and luciferin during the measuring time. The constants have the same value at all ATP concentrations much lower than the K(m) of the luciferase and the kinase. These factors make the assay very robust and influenced neither by ATP concentration nor by luciferase inhibition. The measuring time depends on the kinase activity and can be varied from minutes to more than 8 h provided the kinase is stable and the evaporation of water from the wells is acceptable. The assay is linear with respect to kinase activity over three orders of magnitude. The new reagents also allowed us to determine K(m) values for ATP and for Kemptide.

  20. 21 CFR 892.5780 - Light beam patient position indicator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Light beam patient position indicator. 892.5780 Section 892.5780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient and to monitor alignment of the radiation beam with the patient's anatomy. (b) Classification...

  1. 21 CFR 892.5780 - Light beam patient position indicator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Light beam patient position indicator. 892.5780 Section 892.5780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient and to monitor alignment of the radiation beam with the patient's anatomy. (b) Classification...

  2. 21 CFR 892.5780 - Light beam patient position indicator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Light beam patient position indicator. 892.5780 Section 892.5780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient and to monitor alignment of the radiation beam with the patient's anatomy. (b) Classification...

  3. 21 CFR 892.5780 - Light beam patient position indicator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Light beam patient position indicator. 892.5780 Section 892.5780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient and to monitor alignment of the radiation beam with the patient's anatomy. (b) Classification...

  4. Phase 2 trial of daily, oral epigallocatechin gallate in patients with light-chain amyloidosis.

    PubMed

    Meshitsuka, Sohsuke; Shingaki, Sumito; Hotta, Masatoshi; Goto, Miku; Kobayashi, Makoto; Ukawa, Yuuichi; Sagesaka, Yuko M; Wada, Yasuyo; Nojima, Masanori; Suzuki, Kenshi

    2017-03-01

    Previous studies have suggested that an increase in mitochondrial reactive oxygen species may cause organ damage in patients with light-chain (AL) amyloidosis; however, this damage can be decreased by antioxidant-agent treatment. Epigallocatechin gallate (EGCG), the major natural catechin in green tea, has potent antioxidant activity. Because EGCG has recently been reported to have a favorable toxicity profile for treating amyloidosis, we sought to examine the clinical efficacy and toxicity of EGCG in patients with AL amyloidosis. Fifty-seven patients were randomly assigned to the EGCG and observation groups and observed for six months. There were no increases in grade 3-5 adverse events and EGCG therapy was well tolerated. Although a decrease in the urinary albumin level was found in the EGCG group in patients with obvious albuminuria after treatment initiation, its antioxidant activity may not be sufficient to clarify the potential effect of EGCG in patients with AL amyloidosis. Because some of the biological markers responsible for organ damage were well correlated to the level of antioxidant potential in patients' plasma, the status of oxidative stress in the blood may indicate the extent of organ damage in clinical situations.

  5. Immunoglobulin kappa light chain gene promoter and enhancer are not responsible for B-cell restricted gene rearrangement.

    PubMed Central

    Goodhardt, M; Babinet, C; Lutfalla, G; Kallenbach, S; Cavelier, P; Rougeon, F

    1989-01-01

    We have produced transgenic mice which synthesize chimeric mouse-rabbit immunoglobulin (Ig) kappa light chains following in vivo recombination of an injected unrearranged kappa gene. The exogenous gene construct contained a mouse germ-line kappa variable (V kappa) gene segment, the mouse germ-line joining (J kappa) locus including the enhancer, and the rabbit b9 constant (C kappa) region. A high level of V-J recombination of the kappa transgene was observed in spleen of the transgenic mice. Surprisingly, a particularly high degree of variability in the exact site of recombination and the presence of non germ-line encoded nucleotides (N-regions) were found at the V-J junction of the rearranged kappa transgene. Furthermore, unlike endogenous kappa genes, rearrangement of the exogenous gene occurred in T-cells of the transgenic mice. These results show that additional sequences, other than the heptamer-nonamer signal sequences and the promoter and enhancer elements, are required to obtain stage- and lineage- specific regulation of Ig kappa light chain gene rearrangement in vivo. Images PMID:2508061

  6. Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis.

    PubMed

    Sullivan, Stuart; Hart, Jaynee E; Rasch, Patrick; Walker, Catriona H; Christie, John M

    2016-01-01

    Hypocotyl phototropism of etiolated Arabidopsis seedlings is primarily mediated by the blue-light receptor kinase phototropin 1 (phot1). Phot1-mediated curvature to continuous unilateral blue light irradiation (0.5 μmol m(-2) s(-1)) is enhanced by overhead pre-treatment with red light (20 μmol m(-2) s(-1) for 15 min) through the action of phytochrome (phyA). Here, we show that pre-treatment with blue light is equally as effective in eliciting phototropic enhancement and is dependent on phyA. Although blue light pre-treatment was sufficient to activate early phot1 signaling events, phot1 autophosphorylation in vivo was not found to be saturated, as assessed by subsequently measuring phot1 kinase activity in vitro. However, enhancement effects by red and blue light pre-treatment were not observed at higher intensities of phototropic stimulation (10 μmol m(-2) s(-1)). Phototropic enhancement by red and blue light pre-treatments to 0.5 μmol m(-2) s(-1) unilateral blue light irradiation was also lacking in transgenic Arabidopsis where PHOT1 expression was restricted to the epidermis. Together, these findings indicate that phyA-mediated effects on phot1 signaling are restricted to low intensities of phototropic stimulation and originate from tissues other than the epidermis.

  7. Rho Kinase (ROCK) collaborates with Pak to Regulate Actin Polymerization and Contraction in Airway Smooth Muscle.

    PubMed

    Zhang, Wenwu; Bhetwal, Bhupal P; Gunst, Susan J

    2018-05-10

    The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and Neuronal-Wiskott-Aldrich Syndrome protein (N-WASp). N-WASP transmits signals from cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor, H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue

  8. Complex of a Protective Antibody with its Ebola Virus GP Peptide Epitope: Unusual Features of a Vlambdalx Light Chain

    DTIC Science & Technology

    2008-01-01

    Bioinformatics, 19, ii246–ii255. 52. Lawrence, M. C. & Colman, P. M. (1993). Shape complementarity at protein / protein interfaces . J. Mol. Biol. 234, 946...envelope spike, which is the sole protein expressed on the surface of the Ebola virus and is involved in receptor binding, tropism, and viral entry.6–9 It...variable light chain/heavy chain (VL/VH) interface of 13F6-1-2, ∼1025 Å2 surface area is buried on VL Fig. 1. Nucleotide and translated amino acid

  9. AL (Light-Chain) Cardiac Amyloidosis: A Review of Diagnosis and Therapy.

    PubMed

    Falk, Rodney H; Alexander, Kevin M; Liao, Ronglih; Dorbala, Sharmila

    2016-09-20

    The amyloidoses are a group of protein-folding disorders in which ≥1 organ is infiltrated by proteinaceous deposits known as amyloid. The deposits are derived from 1 of several amyloidogenic precursor proteins, and the prognosis of the disease is determined both by the organ(s) involved and the type of amyloid. Amyloid involvement of the heart (cardiac amyloidosis) carries the worst prognosis of any involved organ, and light-chain (AL) amyloidosis is the most serious form of the disease. The last decade has seen considerable progress in understanding the amyloidoses. In this review, current and novel approaches to the diagnosis and treatment of cardiac amyloidosis are discussed, with particular reference to AL amyloidosis in the heart. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. [The value of serum free light chain in differential diagnosis of monoclonal gammopathy of renal significance].

    PubMed

    Li, C; Wen, Y B; Li, H; Su, W; Li, J; Cai, J F; Chen, L M; Li, X M; Li, X W

    2017-08-08

    Objective: To investigate the value of serum free light chain (FLC) in differential diagnosis of monoclonal gammopathy of renal significance (MGRS). Methods: Forty-nine hospitalized patients who underwent renal biopsy in Peking Union Medical College Hospital between January 2013 and December 2015 were included. Monoclonal gammopathy was detected by serum protein electrophoresis (SPE), serum immunofixation electrophoresis (IFE), urine IFE and serum FLC. All patients were classified as MGRS ( n =32) and monoclonal gammopathy of undetermined significance (MGUS) ( n =17). Results: Renal lesions in MGRS subgroup included light chain amyloidosis ( n =24, 75.0%), light chain deposition disease ( n =7, 21.9%), and fibrillary glomerulopathy ( n =1, 3.1%). Renal diseases in MGUS subgroup included membranous nephropathy ( n =10), focal segmental glomerulosclerosi (FSGS) ( n =3), diabetic glomerulopathy ( n =1), Henoch-Schonlein purpura nephritis ( n =1), anti-GBM disease concurrent with membranous nephropathy ( n =1) and glomerulomegaly ( n =1). Positive number of SPE, serum IFE, urine IFE and abnormal number of serum FLC ratio in MGRS subgroup were 12, 16, 23 and 30, respectively. Positive number of SPE, serum IFE, urine IFE and abnormal number of serum FLC ratio in MGUS subgroup were 11, 17, 6 and 3, respectively. MGRS and MGUS subgroups differed significantly in positive rate of serum IFE ( P <0.001), as well as positive rate of urine IFE ( P =0.02) and abnormal rate of serum FLC ratio ( P <0.001). The sensitivity, specificity, total consistent rate of serum FLC ratio for diagnosis of MGRS were 93.8%, 82.4%, and 89.8% respectively. The sensitivity for diagnosing MGRS could be increased to 100% by combining serum FLC ratio and urine IFE. Conclusions: The significance of monoclonal gammopathy in patients with renal disease should be evaluated by renal pathology.On the premise of excluding lymphoplasmacytic malignancy, serum FLC ratio had promising diagnostic value for MGRS

  11. Effective intracellular inhibition of the cAMP-dependent protein kinase by microinjection of a modified form of the specific inhibitor peptide PKi in living fibroblasts.

    PubMed

    Fernandez, A; Mery, J; Vandromme, M; Basset, M; Cavadore, J C; Lamb, N J

    1991-08-01

    In order to obtain a peptide retaining its biological activity following microinjection into living cells, we have modified a synthetic peptide [PKi(m)(6-24)], derived from the specific inhibitor protein of the cAMP-dependent protein kinase (A-kinase) in two ways: (1) substitution of the arginine at position 18 for a D-arginine; (2) blockade of the side chain on the C-terminal aspartic acid by a cyclohexyl ester group. In an in vitro assay, PKi(m) has retained a specific inhibitory activity against A-kinase as assessed against six other kinases, with similar efficiency to that of the unmodified PKi(5-24) peptide. Microinjection of PKi(m) into living fibroblasts reveals its capacity to prevent the changes in cell morphology and cytoskeleton induced by drugs which activate endogenous A-kinase, whereas the original PKi peptide failed to do so. This inhibition of A-kinase in vivo by PKi(m) lasts between 4 and 6 h after injection. In light of its effective half-life, this modified peptide opens a route for the use of biologically active peptides in vivo, an approach which has been hampered until now by the exceedingly short half-life of peptides inside living cells. By providing a direct means of inhibiting A-kinase activity for sufficiently long periods to observe effects on cellular functions in living cells, PKi(m) represents a powerful tool in studying the potential role of cAMP-dependent phosphorylation in vivo.

  12. Subcellular distributions of rat CaM kinase phosphatase N and other members of the CaM kinase regulatory system.

    PubMed

    Kitani, Takako; Okuno, Sachiko; Takeuchi, Masayuki; Fujisawa, Hitoshi

    2003-07-01

    Ca2+/Calmodulin-dependent protein kinase (CaM kinase) regulatory system is composed of multifunctional CaM kinases such as CaM kinases IV and I, upstream CaM kinases such as CaM kinase kinases alpha and beta, which activate multifunctional CaM kinases, and CaM kinase phosphatases such as CaM kinase phosphatase and CaM kinase phosphatase N, which deactivate the activated multifunctional CaM kinases. To understand the combinations of CaM kinases I and IV, CaM kinase kinases alpha and beta, and CaM kinase phosphatases, the locations of the enzymes in the cell were examined by immunocytochemical studies of cultured cells. The results indicate that CaM kinase I, CaM kinase kinase beta, and CaM kinase phosphatase occur in the cytoplasm and that CaM kinase IV, CaM kinase kinase alpha (and CaM kinase kinase beta in some cell types and tissues), and CaM kinase phosphatase N occur inside the cellular nucleus, suggesting that there are at least two different sets of CaM kinase regulatory systems, one consisting of CaM kinase I, CaM kinase kinase beta, and CaM kinase phosphatase in the cytoplasm and the other consisting of CaM kinase IV, CaM kinase kinase alpha (and CaM kinase kinase beta in some cell types and tissues), and CaM kinase phosphatase N in the nucleus.

  13. Visual Snapshots of Intracellular Kinase Activity At The Onset of Mitosis

    PubMed Central

    Dai, Zhaohua; Dulyaninova, Natalya G.; Kumar, Sanjai; Bresnick, Anne R.; Lawrence, David S.

    2007-01-01

    Summary Visual snapshots of intracellular kinase activity can be acquired with exquisite temporal control using a light-activatable (caged) sensor, thereby providing a means to interrogate enzymatic activity at any point during the cell division cycle. Robust protein kinase activity transpires just prior to, but not immediately following, nuclear envelope breakdown (NEB). Furthermore, kinase activity is required for progression from prophase into metaphase. Finally, the application of selective protein kinase C (PKC) inhibitors, in combination with the caged sensor, correlates the action of the PKC β isoform with subsequent NEB. PMID:18022564

  14. A Small Molecule Pyrazolo[3,4-d]Pyrimidinone Inhibitor of Zipper-Interacting Protein Kinase Suppresses Calcium Sensitization of Vascular Smooth Muscle.

    PubMed

    MacDonald, Justin A; Sutherland, Cindy; Carlson, David A; Bhaidani, Sabreena; Al-Ghabkari, Abdulhameed; Swärd, Karl; Haystead, Timothy A J; Walsh, Michael P

    2016-01-01

    A novel inhibitor of zipper-interacting protein kinase (ZIPK) was used to examine the involvement of ZIPK in the regulation of smooth muscle contraction. Pretreatment of de-endothelialized rat caudal arterial smooth muscle strips with the pyrazolo[3,4-d]pyrimidinone inhibitor 2-((1-(3-chlorophenyl)-4-oxo-4,5-dihydro-1H-pyrazolo [3,4-d]-pyrimidin-6-yl)thio)propanamide (HS38) decreased the velocity of contraction (time to reach half-maximal force) induced by the phosphatase inhibitor calyculin A in the presence of Ca(2+) without affecting maximal force development. This effect was reversed following washout of HS38 and correlated with a reduction in the rate of phosphorylation of myosin 20-kDa regulatory light chains (LC20) but not of protein kinase C-potentiated inhibitory protein for myosin phosphatase of 17 kDa (CPI-17), prostate apoptosis response-4, or myosin phosphatase-targeting subunit 1 (MYPT1), all of which have been implicated in the regulation of vascular contractility. A structural analog of HS38, with inhibitory activity toward proviral integrations of Moloney (PIM) virus 3 kinase but not ZIPK, had no effect on calyculin A-induced contraction or protein phosphorylations. We conclude that a pool of constitutively active ZIPK is involved in regulation of vascular smooth muscle contraction through direct phosphorylation of LC20 upon inhibition of myosin light chain phosphatase activity. HS38 also significantly attenuated both phasic and tonic contractile responses elicited by phenylephrine, angiotensin II, endothelin-1, U46619, and K(+)-induced membrane depolarization in the presence of Ca(2+), which correlated with inhibition of phosphorylation of LC20, MYPT1, and CPI-17. These effects of HS38 suggest that ZIPK also lies downstream from G protein-coupled receptors that signal through both Gα12/13 and Gαq/11. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3)

    NASA Astrophysics Data System (ADS)

    Poulsen, Anders; William, Anthony; Blanchard, Stéphanie; Lee, Angeline; Nagaraj, Harish; Wang, Haishan; Teo, Eeling; Tan, Evelyn; Goh, Kee Chuan; Dymock, Brian

    2012-04-01

    Macrocycles from our Aurora project were screened in a kinase panel and were found to be active on other kinase targets, mainly JAKs, FLT3 and CDKs. Subsequently these compounds became leads in our JAK2 project. Macrocycles with a basic nitrogen in the linker form a salt bridge with Asp86 in CDK2 and Asp698 in FLT3. This residue is conserved in most CDKs resulting in potent pan CDK inhibition. One of the main project objectives was to achieve JAK2 potency with 100-fold selectivity against CDKs. Macrocycles with an ether linker have potent JAK2 activity with the ether oxygen forming a hydrogen bond to Ser936. A hydrogen bond to the equivalent residues of JAK3 and most CDKs cannot be formed resulting in good selectivity for JAK2 over JAK3 and CDKs. Further optimization of the macrocyclic linker and side chain increased JAK2 and FLT3 activity as well as improving DMPK properties. The selective JAK2/FLT3 inhibitor 11 (Pacritinib, SB1518) has successfully finished phase 2 clinical trials for myelofibrosis and lymphoma. Another selective JAK2/FLT3 inhibitor, 33 (SB1578), has entered phase 1 clinical development for the non-oncology indication rheumatoid arthritis.

  16. Deoxyribonucleoside kinases in mitochondrial DNA depletion.

    PubMed

    Saada-Reisch, Ann

    2004-10-01

    Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non-replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible to TK2 deficiency. The precise pathophysiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.

  17. Crystallization and preliminary X-ray characterization of the genetically encoded fluorescent calcium indicator protein GCaMP2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez Guilbe, María M.; Protein Research and Development Center, University of Puerto Rico; Alfaro Malavé, Elisa C.

    The genetically encoded fluorescent calcium-indicator protein GCaMP2 was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution and the structure was solved by molecular replacement. Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, thismore » protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1, b = 47.1, c = 68.8 Å, β = 100.5° and one GCaMP2 molecule in the asymmetric unit. The structure was phased by molecular replacement and refinement is currently under way.« less

  18. The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways.

    PubMed

    Cohen, Philip; Strickson, Sam

    2017-07-01

    The adaptor protein MyD88 is required for signal transmission by toll-like receptors and receptors of the interleukin-1 family of cytokines. MyD88 signalling triggers the formation of Lys63-linked and Met1-linked ubiquitin (K63-Ub, M1-Ub) chains within minutes. The K63-Ub chains, which are formed by the E3 ubiquitin ligases TRAF6, Pellino1 and Pellino2, activate TAK1, the master kinase that switches on mitogen-activated protein (MAP) kinase cascades and initiates activation of the canonical IκB kinase (IKK) complex. The M1-Ub chains, which are formed by the linear ubiquitin chain assembly complex (LUBAC), bind to the NEMO (NF-κB essential modulator) component of the IKK complex and are required for TAK1 to activate IKKs, but not MAP kinases. An essential E3 ligase-independent role of TRAF6 is to recruit LUBAC into the MyD88 signalling complex, where it recognises preformed K63-Ub chains attached to protein components of these complexes, such as IRAK1 (IL-1 receptor-associated kinase), producing ubiquitin chains containing both types of linkage, termed K63/M1-Ub hybrids. The formation of K63/M1-Ub hybrids, which is a feature of several innate immune signalling pathways, permits the co-recruitment of proteins that interact with either K63-Ub or M1-Ub chains. Two likely roles for K63/M1-Ub hybrids are to facilitate the TAK1-dependent activation of the IKK complex and to prevent the hyperactivation of these kinases by recruiting A20 and A20-binding inhibitor of NF-κB1 (ABIN1). These proteins restrict activation of the TAK1 and IKK complexes, probably by competing with them for binding to K63/M1-Ub hybrids. The formation of K63/M1-Ub hybrids may also regulate the rate at which the ubiquitin linkages in these chains are hydrolysed. The IKK-catalysed phosphorylation of some of its substrates permits their recognition by the E3 ligase SCF βTRCP , leading to their Lys48-linked ubiquitylation and proteasomal degradation. Innate immune signalling is therefore controlled

  19. The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways

    PubMed Central

    Cohen, Philip; Strickson, Sam

    2017-01-01

    The adaptor protein MyD88 is required for signal transmission by toll-like receptors and receptors of the interleukin-1 family of cytokines. MyD88 signalling triggers the formation of Lys63-linked and Met1-linked ubiquitin (K63-Ub, M1-Ub) chains within minutes. The K63-Ub chains, which are formed by the E3 ubiquitin ligases TRAF6, Pellino1 and Pellino2, activate TAK1, the master kinase that switches on mitogen-activated protein (MAP) kinase cascades and initiates activation of the canonical IκB kinase (IKK) complex. The M1-Ub chains, which are formed by the linear ubiquitin chain assembly complex (LUBAC), bind to the NEMO (NF-κB essential modulator) component of the IKK complex and are required for TAK1 to activate IKKs, but not MAP kinases. An essential E3 ligase-independent role of TRAF6 is to recruit LUBAC into the MyD88 signalling complex, where it recognises preformed K63-Ub chains attached to protein components of these complexes, such as IRAK1 (IL-1 receptor-associated kinase), producing ubiquitin chains containing both types of linkage, termed K63/M1-Ub hybrids. The formation of K63/M1-Ub hybrids, which is a feature of several innate immune signalling pathways, permits the co-recruitment of proteins that interact with either K63-Ub or M1-Ub chains. Two likely roles for K63/M1-Ub hybrids are to facilitate the TAK1-dependent activation of the IKK complex and to prevent the hyperactivation of these kinases by recruiting A20 and A20-binding inhibitor of NF-κB1 (ABIN1). These proteins restrict activation of the TAK1 and IKK complexes, probably by competing with them for binding to K63/M1-Ub hybrids. The formation of K63/M1-Ub hybrids may also regulate the rate at which the ubiquitin linkages in these chains are hydrolysed. The IKK-catalysed phosphorylation of some of its substrates permits their recognition by the E3 ligase SCFβTRCP, leading to their Lys48-linked ubiquitylation and proteasomal degradation. Innate immune signalling is therefore controlled by

  20. Arabidopsis nph1 and npl1: Blue light receptors that mediate both phototropism and chloroplast relocation

    PubMed Central

    Sakai, Tatsuya; Kagawa, Takatoshi; Kasahara, Masahiro; Swartz, Trevor E.; Christie, John M.; Briggs, Winslow R.; Wada, Masamitsu; Okada, Kiyotaka

    2001-01-01

    UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner. PMID:11371609

  1. p21‐Activated kinase (Pak) regulates airway smooth muscle contraction by regulating paxillin complexes that mediate actin polymerization

    PubMed Central

    Zhang, Wenwu; Huang, Youliang

    2016-01-01

    Key points In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin.The p21‐activated kinases (Paks) can regulate the contractility of smooth muscle and non‐muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation.We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization.We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott–Aldrich syndrome protein (N‐WASP).These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. Abstract The p21‐activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus‐induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)‐induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction

  2. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis*

    PubMed Central

    Noy, Tahel; Vergnolle, Olivia; Hartman, Travis E.; Rhee, Kyu Y.; Jacobs, William R.; Berney, Michael; Blanchard, John S.

    2016-01-01

    Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests that Mtb relies mainly on fatty acid catabolism in the host. However, Mtb also maintains a functional glycolytic pathway and its role in the cellular metabolism of Mtb has yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and the Mtb genome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show that pykA encodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion of pykA prevents Mtb growth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism in Mtb. PMID:26858255

  3. PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism.

    PubMed

    Boccalandro, Hernán E; De Simone, Silvia N; Bergmann-Honsberger, Ariane; Schepens, Isabelle; Fankhauser, Christian; Casal, Jorge J

    2008-01-01

    Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light.

  4. [Maintenance of cold chain for the delivery of immunobiological drugs by the indicators of heating and freezing controls].

    PubMed

    Smirnov, D V; Buianov, V V; Kolesnikov, N V; Minaev, V A; Demina, A M; Suprun, I P

    2004-01-01

    The paper deals with an objective evaluation of a qualitative storage of immunobiological drugs including all stages of "cold chain". The results of technological research and of designing related with constructing a system of indicators for monitoring the temperature regime to maintain the "cold chain" functioning are presented. The suggested devices are comparatively described.

  5. Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: IMPLICATIONS FOR AMP KINASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahapatra, Gargi; Varughese, Ashwathy; Ji, Qinqin

    Mammalian cytochrome c (Cytc) plays a key role in cellular life and death decisions, functioning as an electron carrier in the electron transport chain and as a trigger of apoptosis when released from the mitochondria. However, its regulation is not well understood. We show that the major fraction of Cytc isolated from kidneys is phosphorylated on Thr28, leading to a partial inhibition of respiration in the reaction with cytochrome c oxidase. To further study the effect of Cytc phosphorylation in vitro, we generated T28E phosphomimetic Cytc, revealing superior behavior regarding protein stability and its ability to degrade reactive oxygen speciesmore » compared with wild-type unphosphorylated Cytc. Introduction of T28E phosphomimetic Cytc into Cytc knock-out cells shows that intact cell respiration, mitochondrial membrane potential (ΔΨm), and ROS levels are reduced compared with wild type. As we show by high resolution crystallography of wild-type and T28E Cytc in combination with molecular dynamics simulations, Thr28 is located at a central position near the heme crevice, the most flexible epitope of the protein apart from the N and C termini. Finally, in silico prediction and our experimental data suggest that AMP kinase, which phosphorylates Cytc on Thr28 in vitro and colocalizes with Cytc to the mitochondrial intermembrane space in the kidney, is the most likely candidate to phosphorylate Thr28 in vivo. We conclude that Cytc phosphorylation is mediated in a tissue-specific manner and leads to regulation of electron transport chain flux via “controlled respiration,” preventing ΔΨm hyperpolarization, a known cause of ROS and trigger of apoptosis.« less

  6. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: Insights from X-ray crystallography.

    PubMed

    Kumaran, Desigan; Adler, Michael; Levit, Matthew; Krebs, Michael; Sweeney, Richard; Swaminathan, Subramanyam

    2015-11-15

    The seven antigenically distinct serotypes (A-G) of botulinum neurotoxin (BoNT) are responsible for the deadly disease botulism. BoNT serotype A (BoNT/A) exerts its lethal action by cleaving the SNARE protein SNAP-25, leading to inhibition of neurotransmitter release, flaccid paralysis and autonomic dysfunction. BoNTs are dichain proteins consisting of a ∼ 100 kDa heavy chain and a ∼ 50 kDa light chain; the former is responsible for neurospecific binding, internalization and translocation, and the latter for cleavage of neuronal SNARE proteins. Because of their extreme toxicity and history of weaponization, the BoNTs are regarded as potential biowarfare/bioterrorism agents. No post-symptomatic therapeutic interventions are available for BoNT intoxication other than intensive care; therefore it is imperative to develop specific antidotes against this neurotoxin. To this end, a cyclic peptide inhibitor (CPI-1) was evaluated in a FRET assay for its ability to inhibit BoNT/A light chain (Balc). CPI was found to be highly potent, exhibiting a Ki of 12.3 nM with full-length Balc448 and 39.2 nM using a truncated crystallizable form of the light chain (Balc424). Cocrystallization studies revealed that in the Balc424-CPI-1 complex, the inhibitor adopts a helical conformation, occupies a high percentage of the active site cavity and interacts in an amphipathic manner with critical active site residues. The data suggest that CPI-1 prevents SNAP-25 from accessing the Balc active site by blocking both the substrate binding path at the surface and the Zn(2+) binding region involved in catalysis. This differs from linear peptide inhibitors described to date which block only the latter. Published by Elsevier Ltd.

  7. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: insights from x-ray crystallography

    DOE PAGES

    Kumaran, D.; Adler, M.; Levit, M.; ...

    2015-10-17

    The seven antigenically distinct serotypes (A to G) of botulinum neurotoxin (BoNT) are responsible for the deadly disease botulism. BoNT serotype A (BoNT/A) exerts its lethal action by cleaving the SNARE protein SNAP-25, leading to inhibition of neurotransmitter release, flaccid paralysis and autonomic dysfunction. BoNTs are dichain proteins: the heavy chain is responsible for neurospecific binding, internalization and translocation, and the light chain is responsible for substrate cleavage. Because of their extreme toxicity and prior history of weaponization, the BoNTs are considered to be potential bioterrorism agents. No post-symptomatic therapeutic interventions are available for BoNT intoxication other than critical care;more » therefore it is imperative to develop specific antidotes against this neurotoxin. To this end, a cyclic peptide inhibitor (CPI-1) was synthesized and found to inhibit BoNT/A light chain (Balc) with high affinity. When tested in a cell-free Förster resonance excitation transfer (FRET) assay, CPI-1 was found to have a K i of 13.9 nM using full-length Balc448 and 42.1 nM using a truncated crystallizable form of light chain (Balc424). Co-crystallization of CPI-1 with Balc424 revealed that in the Balc-CPI-1 complex, the inhibitor adopts a helical conformation, occupies a high percentage of the active site cavity and interacts in an amphipathic manner with critical active site residues. The data suggest that CPI-1 prevents SNAP-25 from accessing the Balc active site by blocking both the substrate binding path at the surface and the Zn 2+ binding region involved in catalysis. This is in contrast to linear peptide inhibitors described to date which block only the latter« less

  8. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes.

    PubMed

    Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B Cicero; Zarzoso, Manuel; Ramirez, Rafael J; Sener, Michelle F; Mundada, Lakshmi V; Klos, Matthew; Devaney, Eric J; Vikstrom, Karen L; Herron, Todd J; Jalife, José

    2013-11-01

    Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. © 2013.

  9. Retinal pigment epithelial detachments and tears, and progressive retinal degeneration in light chain deposition disease

    PubMed Central

    Spielberg, Leigh H; Heckenlively, John R; Leys, Anita M

    2013-01-01

    Background/purpose Light-chain deposition disease (LCDD) is a rare condition characterised by deposition of monoclonal immunoglobulin light chains (LCs) in tissues, resulting in varying degrees of organ dysfunction. This study reports the characteristic clinical ocular findings seen in advanced LCDD upon development of ocular fundus changes. This is the first report to describe this entity in vivo in a series of patients. Methods A case series of ocular fundus changes in three patients with kidney biopsy-proven LCDD. All patients underwent best corrected visual acuity (BCVA) exam, perimetry, colour fundus photography and fluorescein angiography; two patients underwent indocyanine green angiography, optical coherence tomography, ultrasound and electroretinography; and one patient underwent fundus autofluorescence. Results Three patients, 53–60 years old at initial presentation, were studied. All three presented with night blindness, poor dark adaptation, metamorphopsia and visual loss. Examination revealed serous and serohaemorrhagic detachments, multiple retinal pigment epithelial (RPE) tears, diffuse RPE degeneration and progressive fibrotic changes. Neither choroidal neovascularisation nor other vascular abnormalities were present. Final best corrected visual acuity (BCVA) ranged from 20/40 to 20/300. Conclusions Progressive LC deposition in the fundus seems to damage RPE pump function with flow disturbance between choroid and retina. This pathogenesis can explain the evolution to RPE detachments and subsequent rips and progressive retinal malfunction. PMID:23385633

  10. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes

    PubMed Central

    Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B. Cicero; Zarzoso, Manuel; Ramirez, Rafael J.; Sener, Michelle F.; Mundada, Lakshmi V.; Klos, Matthew; Devaney, Eric J.; Vikstrom, Karen L.; Herron, Todd J.; Jalife, José

    2014-01-01

    Applications of human induced pluripotent stemcell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricularmyocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. PMID:24095945

  11. Using DEMATEL approach to develop relationships of performance indicators on sustainable service only supply chain performance measurement

    NASA Astrophysics Data System (ADS)

    Leksono, EB; Suparno; Vanany, I.

    2018-04-01

    Service only supply chain (SOSC) concept is service supply chain (SSC) implementation on pure services. The globalization and stakeholder pressure makes operation of SSC should give the attention to the environment effect, community, economic and intangibility assets. SOSC performance measurement (SOSCPM) may be developed for measuring of performance for sustainability aspects and intangibility assets to meet customer satisfaction. This article discusses sustainable SOSCPM based on balanced scorecard (BSC), include sustainability aspects, intangibility and relations between perspectives and indicators. From literature review, it is found 34 performance indicators that must be confirm to expert and SC actors by survey. From survey validation using weighted average and level of consensus, it is found 29 valid indicators for processed by DEMATEL. From DEMATEL, it is found 26 indicators can be used on sustainable SOSCPM. Furthermore, innovation and growth perspective most influence to other, and customer perspective most important. Intangibility indicators incorporated on innovation and growth perspective very related with human resources. Finally, relations between perspectives and indicator used to design of BSC strategy maps.

  12. Treatment With Bortezomib-based Therapy, Followed by Autologous Stem Cell Transplantation, Improves Outcomes in Light Chain Amyloidosis: A Retrospective Study.

    PubMed

    Jain, Tania; Kosiorek, Heidi E; Kung, Shu T; Shah, Vishal S; Dueck, Amylou C; Gonzalez-Calle, Veronica; Luft, Susan; Reeder, Craig B; Adams, Roberta; Noel, Pierre; Larsen, Jeremy T; Mikhael, Joseph; Bergsagel, Leif; Stewart, A Keith; Fonseca, Rafael

    2018-05-04

    The hematologic response is critical in patients with light chain amyloidosis because a good response is known to improve organ response and overall survival. We present a retrospective analysis to compare the hematologic and organ response in patients who received bortezomib-based therapy before autologous stem cell transplantation (ASCT) versus those who received non-bortezomib-based therapy before ASCT and those who underwent ASCT at diagnosis. Of a total of 63 patients who underwent ASCT for light chain amyloidosis, 34 received bortezomib-based therapy before ASCT (Bor-ASCT) and 29 did not receive bortezomib therapy (non-Bor-ASCT). A greater number of patients had involvement of ≥ 3 organs and cardiac involvement in the Bor-ASCT group, suggesting a greater risk at baseline in the Bor-ASCT group. At 3, 6, and 12 months after ASCT, the hematologic response was better in the Bor-ASCT group, with a statistically significance difference at 6 months (partial response or better in 82% vs. 20%; P = .002) and 12 months (partial response or better in 76% vs. 33%; P = .02). Organ responses (66% vs. 21%; P < .001) and median overall survival (not reached vs. 53 months; P = .001) were also greater in the Bor-ASCT group. Our study has shown that bortezomib-based therapy before ASCT improves the hematologic response, organ response and overall survival, potentially by decreasing the light chain load before ASCT. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Phototropin 1 and dim-blue light modulate the red light de-etiolation response.

    PubMed

    Wang, Yihai; M Folta, Kevin

    2014-01-01

    Light signals regulate seedling morphological changes during de-etiolation through the coordinated actions of multiple light-sensing pathways. Previously we have shown that red-light-induced hypocotyl growth inhibition can be reversed by addition of dim blue light through the action of phototropin 1 (phot1). Here we further examine the fluence-rate relationships of this blue light effect in short-term (hours) and long-term (days) hypocotyl growth assays. The red stem-growth inhibition and blue promotion is a low-fluence rate response, and blue light delays or attenuates both the red light and far-red light responses. These de-etiolation responses include blue light reversal of red or far-red induced apical hook opening. This response also requires phot1. Cryptochromes (cry1 and cry2) are activated by higher blue light fluence-rates and override phot1's influence on hypocotyl growth promotion. Exogenous application of auxin transport inhibitor naphthylphthalamic acid abolished the blue light stem growth promotion in both hypocotyl growth and hook opening. Results from the genetic tests of this blue light effect in auxin transporter mutants, as well as phytochrome kinase substrate mutants indicated that aux1 may play a role in blue light reversal of red light response. Together, the phot1-mediated adjustment of phytochrome-regulated photomorphogenic events is most robust in dim blue light conditions and is likely modulated by auxin transport through its transporters.

  14. Phototropin 1 and dim-blue light modulate the red light de-etiolation response

    PubMed Central

    Wang, Yihai; M Folta, Kevin

    2014-01-01

    Light signals regulate seedling morphological changes during de-etiolation through the coordinated actions of multiple light-sensing pathways. Previously we have shown that red-light-induced hypocotyl growth inhibition can be reversed by addition of dim blue light through the action of phototropin 1 (phot1). Here we further examine the fluence-rate relationships of this blue light effect in short-term (hours) and long-term (days) hypocotyl growth assays. The red stem-growth inhibition and blue promotion is a low-fluence rate response, and blue light delays or attenuates both the red light and far-red light responses. These de-etiolation responses include blue light reversal of red or far-red induced apical hook opening. This response also requires phot1. Cryptochromes (cry1 and cry2) are activated by higher blue light fluence-rates and override phot1's influence on hypocotyl growth promotion. Exogenous application of auxin transport inhibitor naphthylphthalamic acid abolished the blue light stem growth promotion in both hypocotyl growth and hook opening. Results from the genetic tests of this blue light effect in auxin transporter mutants, as well as phytochrome kinase substrate mutants indicated that aux1 may play a role in blue light reversal of red light response. Together, the phot1-mediated adjustment of phytochrome-regulated photomorphogenic events is most robust in dim blue light conditions and is likely modulated by auxin transport through its transporters. PMID:25482790

  15. 4-Amino-7-chloroquinolines: probing ligand efficiency provides botulinum neurotoxin serotype A light chain inhibitors with significant antiprotozoal activity

    PubMed Central

    Opsenica, Igor M.; Tot, Mikloš; Gomba, Laura; Nuss, Jonathan E.; Sciotti, Richard J.; Bavari, Sina; Burnett, James C.; Šolaja, Bogdan A.

    2013-01-01

    Structurally simplified analogs of dual antimalarial and botulinum neurotoxin serotype A light chain (BoNT/A LC) inhibitor bis-aminoquinoline (1) were prepared. New compounds were designed to improve ligand efficiency while maintaining or exceeding the inhibitory potency of 1. Three of the new compounds are more active than 1 against both indications. Metabolically, the new inhibitors are relatively stable and non-toxic. Twelve, 14, and 15 are more potent BoNT/A LC inhibitors than 1. Additionally, 15 has excellent in vitro antimalarial efficacy, with IC90 values ranging from 4.45-12.11 nM against five Plasmodium falciparum (P.f.) strains: W2, D6, C235, C2A, C2B. The results indicate that the same level of inhibitory efficacy provided by 1 can be retained/exceeded with less structural complexity. Twelve, 14, and 15 provide new platforms for the development of more potent dual BoNT/A LC and P.f. inhibitors adhering to generally accepted chemical properties associated with the druggability of synthetic molecules. PMID:23815186

  16. Thromboxane A2-induced bi-directional regulation of cerebral arterial tone.

    PubMed

    Neppl, Ronald L; Lubomirov, Lubomir T; Momotani, Ko; Pfitzer, Gabriele; Eto, Masumi; Somlyo, Avril V

    2009-03-06

    Myosin light chain phosphatase plays a critical role in modulating smooth muscle contraction in response to a variety of physiologic stimuli. A downstream target of the RhoA/Rho-kinase and nitric oxide (NO)/cGMP/cyclic GMP-dependent kinase (cGKI) pathways, myosin light chain phosphatase activity reflects the sum of both calcium sensitization and desensitization pathways through phosphorylation and dephosphorylation of the myosin phosphatase targeting subunit (MYPT1). As cerebral blood flow is highly spatio-temporally modulated under normal physiologic conditions, severe perturbations in normal cerebral blood flow, such as in cerebral vasospasm, can induce neurological deficits. In nonpermeabilized cerebral vessels stimulated with U-46619, a stable mimetic of endogenous thromboxane A2 implicated in the etiology of cerebral vasospasm, we observed significant increases in contractile force, RhoA activation, regulatory light chain phosphorylation, as well as phosphorylation of MYPT1 at Thr-696, Thr-853, and surprisingly Ser-695. Inhibition of nitric oxide signaling completely abrogated basal MYPT1 Ser-695 phosphorylation and significantly increased and potentiated U-46619-induced MYPT1 Thr-853 phosphorylation and contractile force, indicating that NO/cGMP/cGKI signaling maintains basal vascular tone through active inhibition of calcium sensitization. Surprisingly, a fall in Ser-695 phosphorylation did not result in an increase in phosphorylation of the Thr-696 site. Although activation of cGKI with exogenous cyclic nucleotides inhibited thromboxane A2-induced MYPT1 membrane association, RhoA activation, contractile force, and regulatory light chain phosphorylation, the anticipated decreases in MYPT1 phosphorylation at Thr-696/Thr-853 were not observed, indicating that the vasorelaxant effects of cGKI are not through dephosphorylation of MYPT1. Thus, thromboxane A2 signaling within the intact cerebral vasculature induces "buffered" vasoconstrictions, in which both the

  17. SH2-dependent autophosphorylation within the Tec family kinase Itk.

    PubMed

    Joseph, Raji E; Severin, Andrew; Min, Lie; Fulton, D Bruce; Andreotti, Amy H

    2009-08-07

    The Tec family kinase, Itk (interleukin-2 tyrosine kinase), undergoes an in cis autophosphorylation on Y180 within its Src homology 3 (SH3) domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening Src homology 2 (SH2) domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full-length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the betaD strand. These results are extended into Btk (Bruton's tyrosine kinase), a Tec family kinase linked to the B-cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA-causing mutations might impair Btk phosphorylation.

  18. Selection of RNA Aptamers Against Botulinum Neurotoxin Type A Light Chain Through a Non-Radioactive Approach.

    PubMed

    Chang, Tzuu-Wang; Janardhanan, Pavithra; Mello, Charlene M; Singh, Bal Ram; Cai, Shuowei

    2016-09-01

    Botulinum neurotoxin (BoNT), a category A agent, is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT. In the present study, a non-radioactive-based systematic evolution of ligands by exponential enrichment (SELEX) process is developed by utilizing surface plasmon resonance to monitor the binding enrichment. Two RNA aptamers have been identified as strong binders against light chain of botulinum neurotoxin type A. These two aptamers showed strong inhibition activity on LCA, with IC50 in nanomolar range. Inhibition kinetic studies reveal mid nanomolar KI and non-competitive nature of their inhibition, suggesting that they have strong potential as antidotes that can reverse the symptom caused by BoNT/A. More importantly, we observed that the 2'-fluorine-pyrimidine-modified RNA aptamers identified here do not change their binding and biological activities. This observation could lead to a cost-effective way for SELEX, by using regular nucleotide during SELEX, and 2'-fluorine-pyrimidine-modified nucleotide for final application to enhance their RNase-resistance.

  19. Selection of RNA aptamers against botulinum neurotoxin type A light chain through a non-radioactive approach

    PubMed Central

    Chang, Tzuu-Wang; Janardhanan, Pavithra; Mello, Charlene; Singh, Bal Ram; Cai, Shuowei

    2016-01-01

    Botulinum neurotoxin (BoNT), a category A agent, is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT. In the present study, a non-radioactive based SELEX process is developed by utilizing surface plasmon resonance to monitor the binding enrichment. Two RNA aptamers have been identified as strong binders against light chain of botulinum neurotoxin type A. These two aptamers showed strong inhibition activity on LCA, with IC50 in nM range. Inhibition kinetic studies reveal mid nanomolar KI and non-competitive nature of their inhibition, suggesting they have strong potential as antidotes that can reverse the symptom caused by BoNT/A. More importantly, we observed that 2′-fluorine-pyrimidines modified RNA aptamers identified here do not change their binding and biological activities. This observation could lead to a cost-effective way for Systematic Evolution of Ligands by EXponential enrichment (SELEX), by using regular nucleotide during SELEX, and 2′-fluorine-pyrimidines modified nucleotide for final application to enhance their RNase-resistance. PMID:27085355

  20. Matrix Metalloproteinases and their Tissue Inhibitors in Cardiac Amyloidosis: Relationship to Structural, Functional Myocardial Changes and to Light Chain Amyloid Deposition

    PubMed Central

    Biolo, Andreia; Ramamurthy, Sujata; Connors, Lawreen H.; O'Hara, Carl J.; Meier-Ewert, Hans K.; Hoo, Pamela T. Soo; Sawyer, Douglas B.; Seldin, David S.; Sam, Flora

    2009-01-01

    Background Cardiac amyloidosis is characterized by amyloid infiltration resulting in extracellular matrix (ECM) disruption. Amyloid cardiomyopathy due to immunoglobulin light chain protein (AL-CMP) deposition, has an accelerated clinical course and a worse prognosis compared to non-light chain cardiac amyloidoses i.e., forms associated with wild-type or mutated transthyretin (TTR). We therefore tested the hypothesis that determinants of proteolytic activity of the ECM, the matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), would have distinct patterns and contribute to the pathogenesis of AL-CMP vs. TTR. Methods / Results We studied 40 patients with systemic amyloidosis: 10 AL-CMP patients, 20 patients with TTR-associated forms of cardiac amyloidosis, i.e. senile systemic amyloidois (SSA, involving wild-type TTR) or mutant TTR (ATTR), and 10 patients with AL amyloidosis without cardiac involvement. Serum MMP-2 and −9, TIMP-1, −2 and −4, brain natriuretic peptide (BNP) values and echocardiography were determined. AL-CMP and SSA-ATTR groups had similar degrees of increased left ventricular wall thickness (LVWT). However, BNP, MMP-9 and TIMP-1 levels were distinctly elevated accompanied by marked diastolic dysfunction in the AL-CMP group vs. no or minimal increases in the SSA-ATTR group. BNP, MMPs and TIMPs were not correlated with the degree of LVWT but were correlated to each other and to measures of diastolic dysfunction. Immunostaining of human endomyocardial biopsies showed diffuse expression of MMP-9 and TIMP-1 in AL-CMP and limited expression in SSA or ATTR hearts. Conclusions Despite comparable LVWT with TTR-related cardiac amyloidosis, AL-CMP patients have higher BNP, MMPs and TIMPs, which correlated with diastolic dysfunction. These findings suggest a relationship between light chains and ECM proteolytic activation that may play an important role in the functional and clinical manifestations of AL-CMP, distinct from the other non-light

  1. Folding Properties of Cytosine Monophosphate Kinase from E. coli Indicate Stabilization through an Additional Insert in the NMP Binding Domain

    PubMed Central

    Beitlich, Thorsten; Lorenz, Thorsten; Reinstein, Jochen

    2013-01-01

    The globular 25 kDa protein cytosine monophosphate kinase (CMPK, EC ID: 2.7.4.14) from E. coli belongs to the family of nucleoside monophosphate (NMP) kinases (NMPK). Many proteins of this family share medium to high sequence and high structure similarity including the frequently found α/β topology. A unique feature of CMPK in the family of NMPKs is the positioning of a single cis-proline residue in the CORE-domain (cis-Pro124) in conjunction with a large insert in the NMP binding domain. This insert is not found in other well studied NMPKs such as AMPK or UMP/CMPK. We have analyzed the folding pathway of CMPK using time resolved tryptophan and FRET fluorescence as well as CD. Our results indicate that unfolding at high urea concentrations is governed by a single process, whereas refolding in low urea concentrations follows at least a three step process which we interpret as follows: Pro124 in the CORE-domain is in cis in the native state (Nc) and equilibrates with its trans-isomer in the unfolded state (Uc - Ut). Under refolding conditions, at least the Ut species and possibly also the Uc species undergo a fast initial collapse to form intermediates with significant amount of secondary structure, from which the trans-Pro124 fraction folds to the native state with a 100-fold lower rate constant than the cis-Pro124 species. CMPK thus differs from homologous NMP kinases like UMP/CMP kinase or AMP kinase, where folding intermediates show much lower content of secondary structure. Importantly also unfolding is up to 100-fold faster compared to CMPK. We therefore propose that the stabilizing effect of the long NMP-domain insert in conjunction with a subtle twist in the positioning of a single cis-Pro residue allows for substantial stabilization compared to other NMP kinases with α/β topology. PMID:24205218

  2. Light Regulation of Swarming Motility in Pseudomonas syringae Integrates Signaling Pathways Mediated by a Bacteriophytochrome and a LOV Protein

    PubMed Central

    Wu, Liang; McGrane, Regina S.; Beattie, Gwyn A.

    2013-01-01

    ABSTRACT The biological and regulatory roles of photosensory proteins are poorly understood for nonphotosynthetic bacteria. The foliar bacterial pathogen Pseudomonas syringae has three photosensory protein-encoding genes that are predicted to encode the blue-light-sensing LOV (light, oxygen, or voltage) histidine kinase (LOV-HK) and two red/far-red-light-sensing bacteriophytochromes, BphP1 and BphP2. We provide evidence that LOV-HK and BphP1 form an integrated network that regulates swarming motility in response to multiple light wavelengths. The swarming motility of P. syringae B728a deletion mutants indicated that LOV-HK positively regulates swarming motility in response to blue light and BphP1 negatively regulates swarming motility in response to red and far-red light. BphP2 does not detectably regulate swarming motility. The histidine kinase activity of each LOV-HK and BphP1 is required for this regulation based on the loss of complementation upon mutation of residues key to their kinase activity. Surprisingly, mutants lacking both lov and bphP1 were similar in motility to a bphP1 single mutant in blue light, indicating that the loss of bphP1 is epistatic to the loss of lov and also that BphP1 unexpectedly responds to blue light. Moreover, whereas expression of bphP1 did not alter motility under blue light in a bphP1 mutant, it reduced motility in a mutant lacking lov and bphP1, demonstrating that LOV-HK positively regulates motility by suppressing negative regulation by BphP1. These results are the first to show cross talk between the LOV protein and phytochrome signaling pathways in bacteria, and the similarity of this regulatory network to that of photoreceptors in plants suggests a possible common ancestry. PMID:23760465

  3. Follow-up of IgD-κ multiple myeloma by monitoring free light chains and total heavy chain IgD: A case report

    PubMed Central

    De Santis, Elena; Masi, Serena; Cordone, Iole; Pisani, Francesco; Zuppi, Cecilia; Mattei, Fabrizio; Conti, Laura; Cigliana, Giovanni

    2016-01-01

    Immunoglobulin (Ig)D-κ multiple myeloma (MM) is a rare neoplastic disease characterized by an aggressive and rapidly progressing course, which constitutes only a very small proportion of all MM cases. In the present report, the clinical case of a 51-year-old Caucasian woman diagnosed with IgD-κ MM is described. The patient underwent different chemotherapeutic treatments subsequently to a single autologous stem cell transplantation. Despite the inherent difficulty of monitoring IgD levels and performing serum immunofixation electrophoresis, the clinical outcome of the patient was almost uniquely monitored by measuring the levels of κ and λ free light chains (FLCs) and total heavy chain IgD. The data suggest the non-invasive potential and usefulness of FLCs evaluation for early detection of stringent complete remission, follow-up and early detection of disease relapse. In addition, this diagnostic procedure has successfully been employed for the therapeutic monitoring of the present patient, and may represent a very helpful, non-invasive tool for the follow-up of IgD myeloma patients without the requirement of serial bone marrow aspirate. PMID:27588135

  4. Structural basis for the mechanism and substrate specificity of glycocyamine kinase, a phosphagen kinase family member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Kap; Pullalarevu, Sadhana; Surabian, Karen Talin

    2010-03-12

    Glycocyamine kinase (GK), a member of the phosphagen kinase family, catalyzes the Mg{sup 2+}-dependent reversible phosphoryl group transfer of the N-phosphoryl group of phosphoglycocyamine to ADP to yield glycocyamine and ATP. This reaction helps to maintain the energy homeostasis of the cell in some multicelullar organisms that encounter high and variable energy turnover. GK from the marine worm Namalycastis sp. is heterodimeric, with two homologous polypeptide chains, {alpha} and {beta}, derived from a common pre-mRNA by mutually exclusive N-terminal alternative exons. The N-terminal exon of GK{beta} encodes a peptide that is different in sequence and is 16 amino acids longermore » than that encoded by the N-terminal exon of GK{alpha}. The crystal structures of recombinant GK{alpha}{beta} and GK{beta}{beta} from Namalycastis sp. were determined at 2.6 and 2.4 {angstrom} resolution, respectively. In addition, the structure of the GK{beta}{beta} was determined at 2.3 {angstrom} resolution in complex with a transition state analogue, Mg{sup 2+}-ADP-NO{sub 3}{sup -}-glycocyamine. Consistent with the sequence homology, the GK subunits adopt the same overall fold as that of other phosphagen kinases of known structure (the homodimeric creatine kinase (CK) and the monomeric arginine kinase (AK)). As with CK, the GK N-termini mediate the dimer interface. In both heterodimeric and homodimeric GK forms, the conformations of the two N-termini are asymmetric, and the asymmetry is different than that reported previously for the homodimeric CKs from several organisms. The entire polypeptide chains of GK{alpha}{beta} are structurally defined, and the longer N-terminus of the {beta} subunit is anchored at the dimer interface. In GK{beta}{beta} the 24 N-terminal residues of one subunit and 11 N-terminal residues of the second subunit are disordered. This observation is consistent with a proposal that the GK{alpha}{beta} amino acids involved in the interface formation were

  5. Quality indicators for the hospital transfusion chain: a national survey conducted in 100 dutch hospitals.

    PubMed

    Zijlker-Jansen, P Y; Janssen, M P; van Tilborgh-de Jong, A J W; Schipperus, M R; Wiersum-Osselton, J C

    2015-10-01

    The 2011 Dutch Blood Transfusion Guideline for hospitals incorporates seven internal quality indicators for evaluation of the hospital transfusion chain. The indicators aim to measure guideline compliance as shown by the instatement of a hospital transfusion committee and transfusion safety officer (structural indicators), observance of transfusion triggers and mandatory traceability of labile blood components (process indicators). Two voluntary online surveys were sent to all Dutch hospitals for operational years 2011 and 2012 to assess compliance with the guideline recommendations. Most hospitals had a hospital transfusion committee and had appointed a transfusion safety officer (TSO). In 2012, only 23% of hospitals complied with the recommended minimum of four annual transfusion committee meetings and 8 h/week for the TSO. Compliance with the recommended pretransfusion haemoglobin threshold for RBC transfusion was achieved by 90% of hospitals in over 80% of transfusions; 58% of hospitals measured the pretransfusion platelet count in over 80% of platelet transfusions and 87% of hospitals complied with the legally mandatory traceability of blood components in over 95% of transfusions. With the current blood transfusion indicators, it is feasible to monitor aspects of the quality of the hospital transfusion chain and blood transfusion practice and to assess guideline compliance. The results from this study suggest that there are opportunities for significant improvement in blood transfusion practice in the Netherlands. These indicators could potentially be used for national and international benchmarking of blood transfusion practice. © 2015 International Society of Blood Transfusion.

  6. Dissecting a Light Echo

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for audio animation

    This animation illustrates how a light echo works, and how an optical illusion of material moving outward is created.

    A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one.

    The animation starts by showing the explosion of a star, which results in a flash of light that moves outward in all directions. The direction of our line of sight from Earth is indicated by the blue arrow.

    When the light flash reaches surrounding dust, shown here as three dark clouds, the dust is heated up, creating infrared light that begins to travel toward Earth (indicated by the red arrows). Dust closest to the explosion lights up first, while the explosion's shock wave takes longer to reach more distant material. This results in light from different parts of the cloud reaching Earth at different times, creating the illusion of motion over time.

    As the animation shows, the inclination of the cloud toward our line of sight can result in the material seeming to move both away from and toward the central star.

  7. Assessing potential targets of calcium action in light-modulated gravitropism

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1995-01-01

    Light, through the mediation of the pigment phytochrome, modulates the gravitropic response of the shoots and roots of many plants. The transduction of both light and gravity stimuli appears to involve Ca(2+)-regulated steps, one or more of which may represent points of intersection between the two transduction chains. To be confident that Ca2+ plays a critical role in stimulus-response coupling for gravitropism, it will be important to identify specific targets of Ca2+ action whose function can be clearly linked to the regulation of growth. Calcium typically exerts its influence on cell metabolism through binding to and activating key regulatory proteins. The three best characterized of these proteins in plants are the calmodulins, calcium-dependent protein kinases, and annexins. In this review we summarize what is known about the structure and function of these proteins and speculate on how their activation by Ca2+ could influence the differential growth response of gravitropism.

  8. Expression of arginine kinase enzymatic activity and mRNA in gills of the euryhaline crabs Carcinus maenas and Callinectes sapidus.

    PubMed

    Kotlyar, S; Weihrauch, D; Paulsen, R S; Towle, D W

    2000-08-01

    Phosphagen kinases catalyze the reversible dephosphorylation of guanidino phosphagens such as phosphocreatine and phosphoarginine, contributing to the restoration of adenosine triphosphate concentrations in cells experiencing high and variable demands on their reserves of high-energy phosphates. The major invertebrate phosphagen kinase, arginine kinase, is expressed in the gills of two species of euryhaline crabs, the blue crab Callinectes sapidus and the shore crab Carcinus maenas, in which energy-requiring functions include monovalent ion transport, acid-base balance, nitrogen excretion and gas exchange. The enzymatic activity of arginine kinase approximately doubles in the ion-transporting gills of C. sapidus, a strong osmoregulator, when the crabs are transferred from high to low salinity, but does not change in C. maenas, a more modest osmoregulator. Amplification and sequencing of arginine kinase cDNA from both species, accomplished by reverse transcription of gill mRNA and the polymerase chain reaction, revealed an open reading frame coding for a 357-amino-acid protein. The predicted amino acid sequences showed a minimum of 75 % identity with arginine kinase sequences of other arthropods. Ten of the 11 amino acid residues believed to participate in arginine binding are completely conserved among the arthropod sequences analyzed. An estimation of arginine kinase mRNA abundance indicated that acclimation salinity has no effect on arginine kinase gene transcription. Thus, the observed enhancement of enzyme activity in C. sapidus probably results from altered translation rates or direct activation of pre-existing enzyme protein.

  9. Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis

    PubMed Central

    Sullivan, Stuart; Hart, Jaynee E.; Rasch, Patrick; Walker, Catriona H.; Christie, John M.

    2016-01-01

    Hypocotyl phototropism of etiolated Arabidopsis seedlings is primarily mediated by the blue-light receptor kinase phototropin 1 (phot1). Phot1-mediated curvature to continuous unilateral blue light irradiation (0.5 μmol m−2 s−1) is enhanced by overhead pre-treatment with red light (20 μmol m−2 s−1 for 15 min) through the action of phytochrome (phyA). Here, we show that pre-treatment with blue light is equally as effective in eliciting phototropic enhancement and is dependent on phyA. Although blue light pre-treatment was sufficient to activate early phot1 signaling events, phot1 autophosphorylation in vivo was not found to be saturated, as assessed by subsequently measuring phot1 kinase activity in vitro. However, enhancement effects by red and blue light pre-treatment were not observed at higher intensities of phototropic stimulation (10 μmol m−2 s−1). Phototropic enhancement by red and blue light pre-treatments to 0.5 μmol m−2 s−1 unilateral blue light irradiation was also lacking in transgenic Arabidopsis where PHOT1 expression was restricted to the epidermis. Together, these findings indicate that phyA-mediated effects on phot1 signaling are restricted to low intensities of phototropic stimulation and originate from tissues other than the epidermis. PMID:27014313

  10. Metabolic control during exercise with and without medium-chain triglycerides (MCT) in children with long-chain 3-hydroxy acyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiency

    PubMed Central

    Gillingham, Melanie B.; Scott, Bradley; Elliott, Diane; Harding, Cary O.

    2009-01-01

    Exercise induced rhabdomyolysis is a complication of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (TFP) deficiency that frequently leads to exercise avoidance. Dietary therapy for most subjects includes medium-chain triglyceride (MCT) supplementation but analysis of diet records indicates that the majority of patients consume oral MCT only with breakfast and at bedtime. We hypothesized that MCT immediately prior to exercise would provide an alternative fuel source during that bout of exercise and improve exercise tolerance in children with LCHAD deficiency. Nine subjects completed two 45 min moderate intensity (60–70% predicted maximum heart rate (HR)) treadmill exercise tests. Subjects were given 4 oz of orange juice alone or orange juice and 0.5 g MCT per kg lean body mass, 20 min prior to exercise in a randomized cross-over design. ECG and respiratory gas exchange including respiratory quotient (RQ) were monitored. Blood levels of acylcarnitines, creatine kinase, lactate, and β-hydroxybutyrate were measured prior to and immediately after exercise, and again following 20min rest. Creatine kinase and lactate levels did not change with exercise. There was no significant difference in RQ between the two exercise tests but there was a decrease in steady-state HR following MCT supplementation. Cumulative long-chain 3-hydroxyacylcarnitines were 30% lower and β-hydroxybutyrate was three-fold higher after the MCT-pretreated exercise test compared to the test with orange juice alone. Coordinating MCT supplementation with periods of increased activity may improve the metabolic control of children with LCHAD and TFP deficiency following exercise. PMID:16876451

  11. S -Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian-Zhong; Duan, Jicheng; Ni, Min

    It is well known that the reactive oxygen species NO can trigger cell death in plants and other organisms, but the underlying molecular mechanisms are not well understood. Here we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicum) by inhibiting the activity of phosphoinositide-dependent kinase 1 (SlPDK1), a conserved negative regulator of cell death in yeasts, mammals, and plants, via S-nitrosylation. Biotin-switch assays indicated that SlPDK1 is a target of S-nitrosylation. Moreover, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione in a concentration-dependent manner, indicating that SlPDK1 activity is abrogated by S-nitrosylation. The S-nitrosoglutathione–induced inhibitionmore » was reversible in the presence of a reducing agent but additively enhanced by hydrogen peroxide (H 2O 2). Our LC-MS/MS analyses further indicated that SlPDK1 is primarily S-nitrosylated on a cysteine residue at position 128 (Cys 128), and substitution of Cys 128 with serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys 128 is responsible for SlPDK1 inhibition. In summary, our results establish a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1.« less

  12. S -Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1)

    DOE PAGES

    Liu, Jian-Zhong; Duan, Jicheng; Ni, Min; ...

    2017-09-29

    It is well known that the reactive oxygen species NO can trigger cell death in plants and other organisms, but the underlying molecular mechanisms are not well understood. Here we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicum) by inhibiting the activity of phosphoinositide-dependent kinase 1 (SlPDK1), a conserved negative regulator of cell death in yeasts, mammals, and plants, via S-nitrosylation. Biotin-switch assays indicated that SlPDK1 is a target of S-nitrosylation. Moreover, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione in a concentration-dependent manner, indicating that SlPDK1 activity is abrogated by S-nitrosylation. The S-nitrosoglutathione–induced inhibitionmore » was reversible in the presence of a reducing agent but additively enhanced by hydrogen peroxide (H 2O 2). Our LC-MS/MS analyses further indicated that SlPDK1 is primarily S-nitrosylated on a cysteine residue at position 128 (Cys 128), and substitution of Cys 128 with serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys 128 is responsible for SlPDK1 inhibition. In summary, our results establish a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1.« less

  13. Allosteric monofunctional aspartate kinases from Arabidopsis.

    PubMed

    Curien, Gilles; Laurencin, Mathieu; Robert-Genthon, Mylène; Dumas, Renaud

    2007-01-01

    Plant monofunctional aspartate kinase is unique among all aspartate kinases, showing synergistic inhibition by lysine and S-adenosyl-l-methionine (SAM). The Arabidopsis genome contains three genes for monofunctional aspartate kinases. We show that aspartate kinase 2 and aspartate kinase 3 are inhibited only by lysine, and that aspartate kinase 1 is inhibited in a synergistic manner by lysine and SAM. In the absence of SAM, aspartate kinase 1 displayed low apparent affinity for lysine compared to aspartate kinase 2 and aspartate kinase 3. In the presence of SAM, the apparent affinity of aspartate kinase 1 for lysine increased considerably, with K(0.5) values for lysine inhibition similar to those of aspartate kinase 2 and aspartate kinase 3. For all three enzymes, the inhibition resulted from an increase in the apparent K(m) values for the substrates ATP and aspartate. The mechanism of aspartate kinase 1 synergistic inhibition was characterized. Inhibition by lysine alone was fast, whereas synergistic inhibition by lysine plus SAM was very slow. SAM by itself had no effect on the enzyme activity, in accordance with equilibrium binding analyses indicating that SAM binding to aspartate kinase 1 requires prior binding of lysine. The three-dimensional structure of the aspartate kinase 1-Lys-SAM complex has been solved [Mas-Droux C, Curien G, Robert-Genthon M, Laurencin M, Ferrer JL & Dumas R (2006) Plant Cell18, 1681-1692]. Taken together, the data suggest that, upon binding to the inactive aspartate kinase 1-Lys complex, SAM promotes a slow conformational transition leading to formation of a stable aspartate kinase 1-Lys-SAM complex. The increase in aspartate kinase 1 apparent affinity for lysine in the presence of SAM thus results from the displacement of the unfavorable equilibrium between aspartate kinase 1 and aspartate kinase 1-Lys towards the inactive form.

  14. p56Lck and p59Fyn Regulate CD28 Binding to Phosphatidylinositol 3-Kinase, Growth Factor Receptor-Bound Protein GRB-2, and T Cell-Specific Protein-Tyrosine Kinase ITK: Implications for T-Cell Costimulation

    NASA Astrophysics Data System (ADS)

    Raab, Monika; Cai, Yun-Cai; Bunnell, Stephen C.; Heyeck, Stephanie D.; Berg, Leslie J.; Rudd, Christopher E.

    1995-09-01

    T-cell activation requires cooperative signals generated by the T-cell antigen receptor ξ-chain complex (TCRξ-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, ξ-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.

  15. RhoA/Rho-kinase signaling: a therapeutic target in pulmonary hypertension.

    PubMed

    Barman, Scott A; Zhu, Shu; White, Richard E

    2009-01-01

    Pulmonary arterial hypertension (PAH) is a devastating disease characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary vasoconstriction and vessel remodeling as well as inflammation. Rho-kinases (ROCKs) are one of the best-described effectors of the small G-protein RhoA, and ROCKs are involved in a variety of cellular functions including muscle cell contraction, proliferation and vascular inflammation through inhibition of myosin light chain phosphatase and activation of downstream mediators. A plethora of evidence in animal models suggests that heightened RhoA/ROCK signaling is important in the pathogenesis of pulmonary hypertension by causing enhanced constriction and remodeling of the pulmonary vasculature. Both animal and clinical studies suggest that ROCK inhibitors are effective for treatment of severe PAH with minimal risk, which supports the premise that ROCKs are important therapeutic targets in pulmonary hypertension and that ROCK inhibitors are a promising new class of drugs for this devastating disease.

  16. Functional Cardiac Recovery and Hematologic Response to Chemotherapy in Patients With Light-Chain Amyloidosis (from the Stanford University Amyloidosis Registry).

    PubMed

    Tuzovic, Mirela; Kobayashi, Yukari; Wheeler, Matthew; Barrett, Christopher; Liedtke, Michaela; Lafayette, Richard; Schrier, Stanley; Haddad, Francois; Witteles, Ronald

    2017-10-15

    Cardiac involvement is common in patients with light-chain (AL) amyloidosis and portends a poor prognosis, although little is known about the changes in cardiac mechanics after chemotherapy. We sought to explore the relation between amyloidosis staging and baseline cardiac mechanics and to investigate short-term changes in cardiac mechanics after chemotherapy. We identified 41 consecutive patients from the Stanford Amyloid Center who had echocardiograms and free light-chain values before and after chemotherapy, along with 40 age- and gender-matched controls. Echocardiographic assessment included left ventricular global longitudinal strain, E/e' ratio, and left atrial (LA) stiffness. Hematologic response to chemotherapy was defined as ≥50% reduction in the difference between the involved and the uninvolved free light chain (dFLC). The mean age was 66.9 ± 8.4 years and 66% were men. Before chemotherapy, global longitudinal strain, E/e' ratio, and LA stiffness were impaired in patients with amyloidosis compared with controls, and the severity of impairment worsened with advanced staging. After chemotherapy, hematologic response was observed in 30 (73%) patients. There was a significant association between the change in dFLC and cardiac function (E/e' ratio: r = -0.43, p = 0.01; LA stiffness: r = -0.35, p = 0.05). There was no significant improvement in cardiac mechanics in patients without a hematologic response to chemotherapy. In conclusion, amyloidosis stage correlated with noninvasive measurements of cardiac mechanics, and improvement in dFLC correlated with cardiac improvement on short-term follow-up echocardiography. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. An outer arm dynein light chain acts in a conformational switch for flagellar motility

    PubMed Central

    Patel-King, Ramila S.

    2009-01-01

    A system distinct from the central pair–radial spoke complex was proposed to control outer arm dynein function in response to alterations in the mechanical state of the flagellum. In this study, we examine the role of a Chlamydomonas reinhardtii outer arm dynein light chain that associates with the motor domain of the γ heavy chain (HC). We demonstrate that expression of mutant forms of LC1 yield dominant-negative effects on swimming velocity, as the flagella continually beat out of phase and stall near or at the power/recovery stroke switchpoint. Furthermore, we observed that LC1 interacts directly with tubulin in a nucleotide-independent manner and tethers this motor unit to the A-tubule of the outer doublet microtubules within the axoneme. Therefore, this dynein HC is attached to the same microtubule by two sites: via both the N-terminal region and the motor domain. We propose that this γ HC–LC1–microtubule ternary complex functions as a conformational switch to control outer arm activity. PMID:19620633

  18. [The prognostic value of baseline serum free light chain in cardiac amyloidosis].

    PubMed

    Zhao, Lei; Tian, Zhuang; Fang, Quan

    2016-03-01

    To analyze the prognostic value of baseline serum free light chain (sFLC) in light-chain (AL) cardiac amyloidosis. Twenty-seven patients with AL cardiac amyloidosis were retrospectively reviewed from January 2014 to January 2015. sFLC was measured by immuoturbidimetric assay. Baseline characteristics, echocardiographic parameters and electrocardiogram data were analyzed. According to the median baseline dFLC (involved sFLC minus uninvolved sFLC), patients were categorized into either the low dFLC(≤ 307 mg/L) or the high dFLC group (>307 mg/L). More subjects in the high dFLC group with early/late diastolic mitral velocity ratio (E/A ratio) over 2 (71.4% vs 30.8%, P=0.035), and subjects in this group had a shorter median survival time than those in the low dFLC group (3 months vs 17 months, P=0.004). A similar phenomenon for median survival time was observed when the subjects were redivided either by a new cut-off value of 180 mg/L for dFLC (low dFLC group: 17 months; high dFLC group: 4 months, P=0.014) or a κ/λ ratio, in which subjects with κ type sFLC-ratio ≤ 19.6 and λ type sFLC-ratio>0.065 were in the low sFLC-ratio group (17 months) and those with κ type sFLC-ratio > 19.6 and λ type sFLC-ratio ≤ 0.065 were in the high sFLC-ratio group (4 months, P=0.023). In multivariate analysis, dFLC and New York Heart Association (NYHA)classification of cardiac function were two risk factors associated with all-cause mortality in patients, among which the hazard ratio for higher dFLC was 4.28 (95%CI 1.55-11.8, P=0.005). The level of sFLC could be a marker for the prognosis of AL cardiac amyloidosis.

  19. Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: IMPLICATIONS FOR AMP KINASE.

    PubMed

    Mahapatra, Gargi; Varughese, Ashwathy; Ji, Qinqin; Lee, Icksoo; Liu, Jenney; Vaishnav, Asmita; Sinkler, Christopher; Kapralov, Alexandr A; Moraes, Carlos T; Sanderson, Thomas H; Stemmler, Timothy L; Grossman, Lawrence I; Kagan, Valerian E; Brunzelle, Joseph S; Salomon, Arthur R; Edwards, Brian F P; Hüttemann, Maik

    2017-01-06

    Mammalian cytochrome c (Cytc) plays a key role in cellular life and death decisions, functioning as an electron carrier in the electron transport chain and as a trigger of apoptosis when released from the mitochondria. However, its regulation is not well understood. We show that the major fraction of Cytc isolated from kidneys is phosphorylated on Thr 28 , leading to a partial inhibition of respiration in the reaction with cytochrome c oxidase. To further study the effect of Cytc phosphorylation in vitro, we generated T28E phosphomimetic Cytc, revealing superior behavior regarding protein stability and its ability to degrade reactive oxygen species compared with wild-type unphosphorylated Cytc Introduction of T28E phosphomimetic Cytc into Cytc knock-out cells shows that intact cell respiration, mitochondrial membrane potential (ΔΨ m ), and ROS levels are reduced compared with wild type. As we show by high resolution crystallography of wild-type and T28E Cytc in combination with molecular dynamics simulations, Thr 28 is located at a central position near the heme crevice, the most flexible epitope of the protein apart from the N and C termini. Finally, in silico prediction and our experimental data suggest that AMP kinase, which phosphorylates Cytc on Thr 28 in vitro and colocalizes with Cytc to the mitochondrial intermembrane space in the kidney, is the most likely candidate to phosphorylate Thr 28 in vivo We conclude that Cytc phosphorylation is mediated in a tissue-specific manner and leads to regulation of electron transport chain flux via "controlled respiration," preventing ΔΨ m hyperpolarization, a known cause of ROS and trigger of apoptosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Light Chain Amyloidosis: Patient Experience Survey from the Amyloidosis Research Consortium.

    PubMed

    Lousada, Isabelle; Comenzo, Raymond L; Landau, Heather; Guthrie, Spencer; Merlini, Giampaolo

    2015-10-01

    Information detailing the experience of patients with light chain (AL) amyloidosis is lacking. The primary aim of this study was to gather data on the patient experience to understand the challenges in diagnosis and to gain insight into barriers to accessing appropriate care. Patients with amyloidosis, family members, and caregivers were invited to participate in an online 16-question survey (available from January 29 to February 5, 2015). Participants with AL amyloidosis were sent an eight-question follow-up survey. The initial survey was completed by 533 participants (follow-up survey completed by 201 participants). AL amyloidosis was the most common diagnosis. For 37.1% of respondents, the diagnosis of amyloidosis was not established until ≥ 1 year after the onset of initial symptoms. Diagnosis was received after visits to 1, 2, 3, 4, or ≥ 5 physicians by 7.6%, 23.5%, 20.3%, 16.8%, and 31.8% of respondents, respectively. Correct diagnosis was most often made by hematologists/oncologists (34.1%). Treatments included chemotherapy (63.1%) and stem cell transplantation (38.9%) and were difficult to tolerate for 54.1% of respondents. A significant number of respondents felt uninformed about clinical trials. Nevertheless, approximately half (46.1%) believed that enrolling in a trial would enhance their care. Establishing a diagnosis of amyloidosis is difficult. Current treatments are difficult to tolerate and do not substantially improve quality of life for most patients. There is an urgent need for well-tolerated therapies with clear treatment benefit. Patient awareness of clinical trials can be improved, especially given that respondents indicated high willingness to participate.

  1. Novel structural and regulatory features of rhoptry secretory kinases in Toxoplasma gondii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Wei; Wernimont, Amy; Tang, Keliang

    2009-09-29

    Serine/threonine kinases secreted from rhoptry organelles constitute important virulence factors of Toxoplasma gondii. Rhoptry kinases are highly divergent and their structures and regulatory mechanism are hitherto unknown. Here, we report the X-ray crystal structures of two related pseudokinases named ROP2 and ROP8, which differ primarily in their substrate-binding site. ROP kinases contain a typical bilobate kinase fold and a novel N-terminal extension that both stabilizes the N-lobe and provides a unique means of regulation. Although ROP2 and ROP8 were catalytically inactive, they provided a template for homology modelling of the active kinase ROP18, a major virulence determinant of T. gondii.more » Autophosphorylation of key residues in the N-terminal extension resulted in ROP18 activation, which in turn phosphorylated ROP2 and ROP8. Mutagenesis and mass spectrometry experiments revealed that ROP18 was maximally activated when this phosphorylated N-terminus relieved autoinhibition resulting from extension of aliphatic side chains into the ATP-binding pocket. This novel means of regulation governs ROP kinases implicated in parasite virulence.« less

  2. Structural basis of light chain amyloidogenicity: comparison of the thermodynamic properties, fibrillogenic potential and tertiary structural features of four vλ6 proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, J.S.; Gupta, V.; Wilkerson, M.

    2004-04-01

    Primary (AL) amyloidosis results from the pathologic deposition of monoclonal light chains as amyloid fibrils. Studies of recombinant-derived variable region (V{sub L}) fragments of these proteins have shown an inverse relationship between thermodynamic stability and fibrillogenic potential. Further, ionic interactions within the V{sub L} domain were predicted to influence the kinetics of light chain fibrillogenicity, as evidenced from our analyses of a relatively stable V{sub {lambda}}6 protein (Jto) with a long range electrostatic interaction between Asp and Arg side chains at position 29 and 68, respectively, and an unstable, highly fibrillogenic V{sub {lambda}}6 protein (Wil) that had neutral amino acidsmore » at these locations. To test this hypothesis, we have generated two Jto-related mutants designed to disrupt the interaction between Asp 29 and Arg 68 (JtoD29A and JtoR68S). Although the thermodynamic stabilities of unfolding for these two molecules were identical, they exhibited very different kinetics of fibril formation: the rate of JtoD29A fibrillogenesis was slow and comparable to the parent molecule, whereas that of JtoR68S was significantly faster. High-resolution X-ray diffraction analyses of crystals prepared from the two mutants having the same space group and unit cell dimensions revealed no significant main-chain conformational changes. However, several notable side-chain alterations were observed in JtoR68S, as compared with JtoD29A, that resulted in the solvent exposure of a greater hydrophobic surface and modifications in the electrostatic potential surface. We posit that these differences contributed to the enhanced fibrillogenic potential of the Arg 68 mutant, since both Jto mutants lacked the intrachain ionic interaction and were equivalently unstable. The information gleaned from our studies has provided insight into structural parameters that in addition to overall thermodynamic stability, contribute to the fibril forming propensity of

  3. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia*

    PubMed Central

    Dong, Qian; Ernst, Sarah E.; Ostedgaard, Lynda S.; Shah, Viral S.; Ver Heul, Amanda R.; Welsh, Michael J.; Randak, Christoph O.

    2015-01-01

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl− channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. PMID:25887396

  4. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    PubMed

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Immunoglobulin Light Chains Form an Extensive and Highly Ordered Fibril Involving the N- and C-Termini

    PubMed Central

    2017-01-01

    Light-chain (AL)-associated amyloidosis is a systemic disorder involving the formation and deposition of immunoglobulin AL fibrils in various bodily organs. One severe instance of AL disease is exhibited by the patient-derived variable domain (VL) of the light chain AL-09, a 108 amino acid residue protein containing seven mutations relative to the corresponding germline protein, κI O18/O8 VL. Previous work has demonstrated that the thermodynamic stability of native AL-09 VL is greatly lowered by two of these mutations, Y87H and N34I, whereas a third mutation, K42Q, further increases the kinetics of fibril formation. However, detailed knowledge regarding the residues that are responsible for stabilizing the misfolded fibril structure is lacking. In this study, using solid-state NMR spectroscopy, we show that the majority of the AL-09 VL sequence is immobilized in the fibrils and that the N- and C-terminal portions of the sequence are particularly well-structured. Thus, AL-09 VL forms an extensively ordered and β-strand-rich fibril structure. Furthermore, we demonstrate that the predominant β-sheet secondary structure and rigidity observed for in vitro prepared AL-09 VL fibrils are qualitatively similar to those observed for AL fibrils extracted from postmortem human spleen tissue, suggesting that this conformation may be representative of a common feature of AL fibrils. PMID:28261692

  6. A chemical-genetic approach for functional analysis of plant protein kinases

    PubMed Central

    Salomon, Dor; Bonshtien, Arale

    2009-01-01

    Plant genomes encode hundreds of protein kinases, yet only for a small fraction of them precise functions and phosphorylation targets have been identified. Recently, we applied a chemical-genetic approach to sensitize the tomato serine/threonine kinase Pto to analogs of PP1, an ATP-competitive and cell-permeable small-molecule inhibitor. The Pto kinase confers resistance to Pst bacteria by activating immune responses upon specific recognition of bacterial effectors. By using PP1 analogs in combination with the analog-sensitive Pto, we shed new light on the role of Pto kinase activity in effector recognition and signal transduction. Here we broaden the use of this chemical-genetic approach to another defense-related plant protein kinase, the MAP kinase LeMPK3. In addition, we show that analog-sensitive but not wild-type kinases are able to use unnatural N6-modified ATP analogs as phosphodonors that can be exploited for tagging direct phosphorylation targets of the kinase of interest. Thus, sensitization of kinases to analogs of the small-molecule inhibitor PP1 and ATP can be an effective tool for the discovery of cellular functions and phosphorylation substrates of plant protein kinases. PMID:19820342

  7. Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat.

    PubMed

    Andruchov, Oleg; Galler, Stefan

    2008-03-01

    This study contributes to understand the physiological role of slow myosin light chain isoforms in fast-twitch type IIA fibres of skeletal muscle. These isoforms are often attached to the myosin necks of rat type IIA fibres, whereby the slow alkali myosin light chain isoform MLC1s is much more frequent and abundant than the slow regulatory myosin light chain isoform MLC2s. In the present study, single-skinned rat type IIA fibres were maximally Ca(2+) activated and subjected to stepwise stretches for causing a perturbation of myosin head pulling cycles. From the time course of the resulting force transients, myosin head kinetics was deduced. Fibres containing MLC1s exhibited slower kinetics independently of the presence or absence of MLC2s. At the maximal MLC1s concentration of about 75%, the slowing was about 40%. The slowing effect of MLC1s is possibly due to differences in the myosin heavy chain binding sites of the fast and slow alkali MLC isoforms, which changes the rigidity of the myosin neck. Compared with the impact of myosin heavy chain isoforms in various fast-twitch fibre types, the influence of MLC1s on myosin head kinetics of type IIA fibres is much smaller. In conclusion, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the myosin head kinetics.

  8. Biguanides Metformin and Phenformin Generate Therapeutic Effects via AMP-Activated Protein Kinase/Extracellular-Regulated Kinase Pathways in an In Vitro Model of Graves' Orbitopathy.

    PubMed

    Han, Ye Eon; Hwang, Sena; Kim, Jin Hee; Byun, Jung Woo; Yoon, Jin Sook; Lee, Eun Jig

    2018-04-01

    It was hypothesized that the biguanides metformin and phenformin, which are anti-hyperglycemic drugs used for diabetes mellitus, would have therapeutic effects in an in vitro model of Graves' orbitopathy (GO). Because adipogenesis, hyaluronan production, and inflammation are considered important in the pathogenesis of GO, this study aimed to determine the therapeutic effects and underlying mechanisms of biguanides on these parameters. In vitro experiments were performed using primary cultured orbital fibroblasts from patients with GO. Orbital preadipocyte fibroblasts were allowed to differentiate into adipocytes and were treated with various concentrations of metformin or phenformin. Oil Red O staining was performed to evaluate lipid accumulation within the cells. Western blot analysis was used to measure the expression of adipogenic transcription factors and the phosphorylation of AMP-activated protein kinase and mitogen-activated protein kinase signaling proteins. Hyaluronan production was measured using enzyme-linked immunosorbent assay, and mRNA levels of proinflammatory molecules were determined using real-time polymerase chain reaction after interleukin (IL)-1β stimulation with or without biguanide treatment. Lipid accumulation during adipogenesis in GO orbital fibroblasts was dose-dependently suppressed by both metformin and phenformin. Adipocyte differentiation was attenuated, and the adipogenic transcription factors peroxisome proliferator-activated receptor γ and CCAAT-enhancer-binding proteins-α/β were downregulated. Furthermore, metformin and phenformin increased the phosphorylation of AMP-activated protein kinase and suppressed extracellular-regulated kinase activation. The IL-1β-induced hyaluronan production and mRNA expression of IL-6, cyclooxygenase-2, and intercellular adhesion molecule-1 were also significantly suppressed after metformin or phenformin co-treatment. The present study indicates that the biguanides metformin and phenformin exert

  9. Three-dimensional Speckle Tracking Echocardiography in Light Chain Cardiac Amyloidosis: Examination of Left and Right Ventricular Myocardial Mechanics Parameters.

    PubMed

    Urbano-Moral, Jose Angel; Gangadharamurthy, Dakshin; Comenzo, Raymond L; Pandian, Natesa G; Patel, Ayan R

    2015-08-01

    The study of myocardial mechanics has a potential role in the detection of cardiac involvement in patients with amyloidosis. This study aimed to characterize 3-dimensional-speckle tracking echocardiography-derived left and right ventricular myocardial mechanics in light chain amyloidosis and examine their relationship with brain natriuretic peptide. In patients with light chain amyloidosis, left ventricular longitudinal and circumferential strain (n=40), and right ventricular longitudinal strain and radial displacement (n=26) were obtained by 3-dimensional-speckle tracking echocardiography. Brain natriuretic peptide levels were determined. All myocardial mechanics measurements showed differences when compared by brain natriuretic peptide level tertiles. Left and right ventricular longitudinal strain were highly correlated (r=0.95, P<.001). Left ventricular longitudinal and circumferential strain were reduced in patients with cardiac involvement (-9±4 vs -16±2; P<.001, and -24±6 vs -29±4; P=.01, respectively), with the most prominent impairment at the basal segments. Right ventricular longitudinal strain and radial displacement were diminished in patients with cardiac involvement (-9±3 vs -17±3; P<.001, and 2.7±0.8 vs 3.8±0.3; P=.002). On multivariate analysis, left ventricular longitudinal strain was associated with the presence of cardiac involvement (odds ratio = 1.6; 95% confidence interval, 1.04 to 2.37; P=.03) independent of the presence of brain natriuretic peptide and troponin I criteria for cardiac amyloidosis. Three-dimensional-speckle tracking echocardiography-derived left and right ventricular myocardial mechanics are increasingly altered as brain natriuretic peptide increases in light chain amyloidosis. There appears to be a strong association between left ventricular longitudinal strain and cardiac involvement, beyond biomarkers such as brain natriuretic peptide and troponin I. Copyright © 2015 Sociedad Española de Cardiología. Published by

  10. Light Regulation of the Arabidopsis Respiratory Chain. Multiple Discrete Photoreceptor Responses Contribute to Induction of Type II NAD(P)H Dehydrogenase Genes1

    PubMed Central

    Escobar, Matthew A.; Franklin, Keara A.; Svensson, Å. Staffan; Salter, Michael G.; Whitelam, Garry C.; Rasmusson, Allan G.

    2004-01-01

    Controlled oxidation reactions catalyzed by the large, proton-pumping complexes of the respiratory chain generate an electrochemical gradient across the mitochondrial inner membrane that is harnessed for ATP production. However, several alternative respiratory pathways in plants allow the maintenance of substrate oxidation while minimizing the production of ATP. We have investigated the role of light in the regulation of these energy-dissipating pathways by transcriptional profiling of the alternative oxidase, uncoupling protein, and type II NAD(P)H dehydrogenase gene families in etiolated Arabidopsis seedlings. Expression of the nda1 and ndc1 NAD(P)H dehydrogenase genes was rapidly up-regulated by a broad range of light intensities and qualities. For both genes, light induction appears to be a direct transcriptional effect that is independent of carbon status. Mutant analyses demonstrated the involvement of two separate photoreceptor families in nda1 and ndc1 light regulation: the phytochromes (phyA and phyB) and an undetermined blue light photoreceptor. In the case of the nda1 gene, the different photoreceptor systems generate distinct kinetic induction profiles that are integrated in white light response. Primary transcriptional control of light response was localized to a 99-bp region of the nda1 promoter, which contains an I-box flanked by two GT-1 elements, an arrangement prevalent in the promoters of photosynthesis-associated genes. Light induction was specific to nda1 and ndc1. The only other substantial light effect observed was a decrease in aox2 expression. Overall, these results suggest that light directly influences the respiratory electron transport chain via photoreceptor-mediated transcriptional control, likely for supporting photosynthetic metabolism. PMID:15333756

  11. Complex of a Protective Antibody with its Ebola Virus GP Peptide Epitope: Unusual Features of a V lambda x Light Chain

    DTIC Science & Technology

    2007-10-01

    twists. Bioinformatics, 19, ii246–ii255. 52. Lawrence, M. C. & Colman, P. M. (1993). Shape complementarity at protein / protein interfaces . J. Mol. Biol...envelope spike, which is the sole protein expressed on the surface of the Ebola virus and is involved in receptor binding, tropism, and viral entry.6–9 It...26 At the variable light chain/heavy chain (VL/VH) interface of 13F6-1-2, ∼1025 Å2 surface area is buried on VL Fig. 1. Nucleotide and translated amino

  12. Ethanol inhibits thrombin-induced secretion by human platelets at a site distinct from phospholipase C or protein kinase C.

    PubMed Central

    Benistant, C; Rubin, R

    1990-01-01

    Ethanol is known to inhibit the activation of platelets in response to several physiological agonists, but the mechanism of this action is unclear. The addition of physiologically relevant concentrations of ethanol (25-150 mM) to suspensions of washed human platelets resulted in the inhibition of thrombin-induced secretion of 5-hydroxy[14C]tryptamine. Indomethacin was included in the incubation buffer to prevent feedback amplification by arachidonic acid metabolites. Ethanol had no effect on the activation of phospholipase C by thrombin, as determined by the formation of inositol phosphates and the mobilization of intracellular Ca2+. Moreover, ethanol did not interfere with the thrombin-induced formation of diacylglycerol or phosphatidic acid. Stimulation of platelets with phorbol ester (5-50 nM) resulted in 5-hydroxy[14C]tryptamine release comparable with those with threshold doses of thrombin. However, ethanol did not inhibit phorbol-ester-induced secretion. Ethanol also did not interfere with thrombin- or phorbol-ester-induced phosphorylation of myosin light chain (20 kDa) or a 47 kDa protein, a known substrate for protein kinase C. By electron microscopy, ethanol had no effect on thrombin-induced shape change and pseudopod formation, but prevented granule centralization and fusion. The results indicate that ethanol does not inhibit platelet secretion by interfering with the activation of phosphoinositide-specific phospholipase C or protein kinase C by thrombin. Rather, the data demonstrate an inhibition of a Ca2(+)-mediated event such as granule centralization. Images p495-a PMID:2117442

  13. Light influences cytokinin biosynthesis and sensing in Nostoc (cyanobacteria).

    PubMed

    Frébortová, Jitka; Plíhal, Ondřej; Florová, Vendula; Kokáš, Filip; Kubiasová, Karolina; Greplová, Marta; Šimura, Jan; Novák, Ondřej; Frébort, Ivo

    2017-06-01

    Cytokinins are an important group of plant hormones that are also found in other organisms, including cyanobacteria. While various aspects of cytokinin function and metabolism are well understood in plants, the information is limited for cyanobacteria. In this study, we first experimentally confirmed a prenylation of tRNA by recombinant isopentenyl transferase NoIPT2 from Nostoc sp. PCC 7120, whose encoding gene we previously identified in Nostoc genome along with the gene for adenylate isopentenyl transferase NoIPT1. In contrast to NoIPT2, the transcription of NoIPT1 was strongly activated during the dark period and was followed by an increase in the cytokinin content several hours later in the light period. Dominant cytokinin metabolites detected at all time points were free bases and monophosphates of isopentenyladenine and cis-zeatin, while N-glucosides were not detected at all. Whole transcriptome differential expression analysis of cultures of the above Nostoc strain treated by cytokinin compared to untreated controls indicated that cytokinin together with light trigger expression of several genes related to signal transduction, including two-component sensor histidine kinases and two-component hybrid sensors and regulators. One of the affected histidine kinases with a cyclase/histidine kinase-associated sensory extracellular domain similar to the cytokinin-binding domain in plant cytokinin receptors was able to modestly bind isopentenyladenine. The data show that the genetic disposition allows Nostoc not only to produce free cytokinins and prenylate tRNA but also modulate the cytokinin biosynthesis in response to light, triggering complex changes in sensing and regulation. © 2017 Phycological Society of America.

  14. Identifying protein kinase target preferences using mass spectrometry

    PubMed Central

    Douglass, Jacqueline; Gunaratne, Ruwan; Bradford, Davis; Saeed, Fahad; Hoffert, Jason D.; Steinbach, Peter J.; Pisitkun, Trairak

    2012-01-01

    A general question in molecular physiology is how to identify candidate protein kinases corresponding to a known or hypothetical phosphorylation site in a protein of interest. It is generally recognized that the amino acid sequence surrounding the phosphorylation site provides information that is relevant to identification of the cognate protein kinase. Here, we present a mass spectrometry-based method for profiling the target specificity of a given protein kinase as well as a computational tool for the calculation and visualization of the target preferences. The mass spectrometry-based method identifies sites phosphorylated in response to in vitro incubation of protein mixtures with active recombinant protein kinases followed by standard phosphoproteomic methodologies. The computational tool, called “PhosphoLogo,” uses an information-theoretic algorithm to calculate position-specific amino acid preferences and anti-preferences from the mass-spectrometry data (http://helixweb.nih.gov/PhosphoLogo/). The method was tested using protein kinase A (catalytic subunit α), revealing the well-known preference for basic amino acids in positions −2 and −3 relative to the phosphorylated amino acid. It also provides evidence for a preference for amino acids with a branched aliphatic side chain in position +1, a finding compatible with known crystal structures of protein kinase A. The method was also employed to profile target preferences and anti-preferences for 15 additional protein kinases with potential roles in regulation of epithelial transport: CK2, p38, AKT1, SGK1, PKCδ, CaMK2δ, DAPK1, MAPKAPK2, PKD3, PIM1, OSR1, STK39/SPAK, GSK3β, Wnk1, and Wnk4. PMID:22723110

  15. Arabidopsis Casein Kinase1 Proteins CK1.3 and CK1.4 Phosphorylate Cryptochrome2 to Regulate Blue Light Signaling[C][W

    PubMed Central

    Tan, Shu-Tang; Dai, Cheng; Liu, Hong-Tao; Xue, Hong-Wei

    2013-01-01

    Casein kinase1 (CK1) plays crucial roles in regulating growth and development via phosphorylating various substrates throughout the eukaryote kingdom. Blue light is crucial for normal growth of both plants and animals, and blue light receptor cryptochrome2 (CRY2) undergoes blue light–dependent phosphorylation and degradation in planta. To study the function of plant CK1s, systematic genetic analysis showed that deficiency of two paralogous Arabidopsis thaliana CK1s, CK1.3 and CK1.4, caused shortened hypocotyls, especially under blue light, while overexpression of either CK1.3 or CK1.4 resulted in the insensitive response to blue light and delayed flowering under long-day conditions. CK1.3 or CK1.4 act dependently on CRY2, and overexpression of CK1.3 or CK1.4 significantly suppresses the hypersensitive response to blue light by CRY2 overexpression. Biochemical studies showed that CK1.3 and CK1.4 directly phosphorylate CRY2 at Ser-587 and Thr-603 in vitro and negatively regulate CRY2 stability in planta, which are stimulated by blue light, further confirming the crucial roles of CK1.3 and CK1.4 in blue light responses through phosphorylating CRY2. Interestingly, expression of CK1.3 and CK1.4 is stimulated by blue light and feedback regulated by CRY2-mediated signaling. These results provide direct evidence for CRY2 phosphorylation and informative clues on the mechanisms of CRY2-mediated light responses. PMID:23897926

  16. Microbial dynamics of indicator microorganisms on fresh tomatoes in the supply chain from Mexico to the USA.

    PubMed

    Zoellner, Claire; Venegas, Fabiola; Churey, John J; Dávila-Aviña, Jorge; Grohn, Yrjo T; García, Santos; Heredia, Norma; Worobo, Randy W

    2016-12-05

    Quality and safety of fresh produce are important to public health and maintaining commerce between Mexico and USA. While preventive practices can reduce risks of contamination and are generally successful, the variable environment of the supply chain of fresh produce can be suitable for introduction or proliferation of pathogenic microorganisms. As routine surveillance of these pathogens is not practical, indicator microorganisms are used to assess the sanitary conditions of production and handling environments. An opportunity exists to use indicators on fresh produce to measure how handling and transport from field to market may affect microbial populations that contribute to their quality or safety. The objective was to quantify indicator microorganisms on tomatoes sampled along the supply chain during the harvest year, in order to observe the levels and changes of populations at different locations. Roma tomatoes (n=475) were taken from the same lots (n=28) at four locations of the postharvest supply chain over five months: at arrival to and departure from the packinghouse in México, at the distribution center in Texas, and at retail in USA. Samples were analyzed individually for four microbial populations: aerobic plate count (APC), total coliforms (TC), generic Escherichia coli, and yeasts and molds (YM). APC population differed (p<0.05) from 1.9±1.1, 1.7±1.1, 2.3±1.1 and 3.5±1.4logCFU/g at postharvest, packing, distribution center and supermarket, respectively. TC populations were <1logCFU/g at postharvest, increased at packing (0.7±1.0logCFU/g), decreased in distribution (0.4±0.8logCFU/g) and increased in supermarkets (1.4±1.5logCFU/g). Generic E. coli was not identified from coliform populations in this supply chain. YM populations remained <1logCFU/g, with the exception of 1.1±1.3logCFU/g at supermarkets and tomatoes were not visibly spoiled. The levels reported from this pilot study demonstrated the dynamics within populations as influenced by

  17. Role of κ→λ light-chain constant-domain switch in the structure and functionality of A17 reactibody

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponomarenko, Natalia; Chatziefthimiou, Spyros D.; Kurkova, Inna

    2014-03-01

    Catalytic antibody variants with κ and λ light-chain constant domains show differences in their crystal structures which lead to subtle changes in catalytic efficiency and thermodynamic parameters as well as in their affinity for peptide substrates. The engineering of catalytic function in antibodies requires precise information on their structure. Here, results are presented that show how the antibody domain structure affects its functionality. The previously designed organophosphate-metabolizing reactibody A17 has been re-engineered by replacing its constant κ light chain by the λ chain (A17λ), and the X-ray structure of A17λ has been determined at 1.95 Å resolution. It was foundmore » that compared with A17κ the active centre of A17λ is displaced, stabilized and made more rigid owing to interdomain interactions involving the CDR loops from the V{sub L} and V{sub H} domains. These V{sub L}/V{sub H} domains also have lower mobility, as deduced from the atomic displacement parameters of the crystal structure. The antibody elbow angle is decreased to 126° compared with 138° in A17κ. These structural differences account for the subtle changes in catalytic efficiency and thermodynamic parameters determined with two organophosphate ligands, as well as in the affinity for peptide substrates selected from a combinatorial cyclic peptide library, between the A17κ and A17λ variants. The data presented will be of interest and relevance to researchers dealing with the design of antibodies with tailor-made functions.« less

  18. Hybrid and Rogue Kinases Encoded in the Genomes of Model Eukaryotes

    PubMed Central

    Rakshambikai, Ramaswamy; Gnanavel, Mutharasu; Srinivasan, Narayanaswamy

    2014-01-01

    The highly modular nature of protein kinases generates diverse functional roles mediated by evolutionary events such as domain recombination, insertion and deletion of domains. Usually domain architecture of a kinase is related to the subfamily to which the kinase catalytic domain belongs. However outlier kinases with unusual domain architectures serve in the expansion of the functional space of the protein kinase family. For example, Src kinases are made-up of SH2 and SH3 domains in addition to the kinase catalytic domain. A kinase which lacks these two domains but retains sequence characteristics within the kinase catalytic domain is an outlier that is likely to have modes of regulation different from classical src kinases. This study defines two types of outlier kinases: hybrids and rogues depending on the nature of domain recombination. Hybrid kinases are those where the catalytic kinase domain belongs to a kinase subfamily but the domain architecture is typical of another kinase subfamily. Rogue kinases are those with kinase catalytic domain characteristic of a kinase subfamily but the domain architecture is typical of neither that subfamily nor any other kinase subfamily. This report provides a consolidated set of such hybrid and rogue kinases gleaned from six eukaryotic genomes–S.cerevisiae, D. melanogaster, C.elegans, M.musculus, T.rubripes and H.sapiens–and discusses their functions. The presence of such kinases necessitates a revisiting of the classification scheme of the protein kinase family using full length sequences apart from classical classification using solely the sequences of kinase catalytic domains. The study of these kinases provides a good insight in engineering signalling pathways for a desired output. Lastly, identification of hybrids and rogues in pathogenic protozoa such as P.falciparum sheds light on possible strategies in host-pathogen interactions. PMID:25255313

  19. Opinion: the red-light response of stomatal movement is sensed by the redox state of the photosynthetic electron transport chain.

    PubMed

    Busch, Florian A

    2014-02-01

    Guard cells regulate CO2 uptake and water loss of a leaf by controlling stomatal movement in response to environmental factors such as CO2, humidity, and light. The mechanisms by which stomata respond to red light are actively debated in the literature, and even after decades of research it is still controversial whether stomatal movement is related to photosynthesis or not. This review summarizes the current knowledge of the red-light response of stomata. A comparison of published evidence suggests that stomatal movement is controlled by the redox state of photosynthetic electron transport chain components, in particular the redox state of plastoquinone. Potential consequences for the modeling of stomatal conductance are discussed.

  20. Rapid computational identification of the targets of protein kinase inhibitors.

    PubMed

    Rockey, William M; Elcock, Adrian H

    2005-06-16

    We describe a method for rapidly computing the relative affinities of an inhibitor for all individual members of a family of homologous receptors. The approach, implemented in a new program, SCR, models inhibitor-receptor interactions in full atomic detail with an empirical energy function and includes an explicit account of flexibility in homology-modeled receptors through sampling of libraries of side chain rotamers. SCR's general utility was demonstrated by application to seven different protein kinase inhibitors: for each inhibitor, relative binding affinities with panels of approximately 20 protein kinases were computed and compared with experimental data. For five of the inhibitors (SB203580, purvalanol B, imatinib, H89, and hymenialdisine), SCR provided excellent reproduction of the experimental trends and, importantly, was capable of identifying the targets of inhibitors even when they belonged to different kinase families. The method's performance in a predictive setting was demonstrated by performing separate training and testing applications, and its key assumptions were tested by comparison with a number of alternative approaches employing the ligand-docking program AutoDock (Morris et al. J. Comput. Chem. 1998, 19, 1639-1662). These comparison tests included using AutoDock in nondocking and docking modes and performing energy minimizations of inhibitor-kinase complexes with the molecular mechanics code GROMACS (Berendsen et al. Comput. Phys. Commun. 1995, 91, 43-56). It was found that a surprisingly important aspect of SCR's approach is its assumption that the inhibitor be modeled in the same orientation for each kinase: although this assumption is in some respects unrealistic, calculations that used apparently more realistic approaches produced clearly inferior results. Finally, as a large-scale application of the method, SB203580, purvalanol B, and imatinib were screened against an almost full complement of 493 human protein kinases using SCR in

  1. ERK and p38 MAPK-Activated Protein Kinases: a Family of Protein Kinases with Diverse Biological Functions

    PubMed Central

    Roux, Philippe P.; Blenis, John

    2004-01-01

    Conserved signaling pathways that activate the mitogen-activated protein kinases (MAPKs) are involved in relaying extracellular stimulations to intracellular responses. The MAPKs coordinately regulate cell proliferation, differentiation, motility, and survival, which are functions also known to be mediated by members of a growing family of MAPK-activated protein kinases (MKs; formerly known as MAPKAP kinases). The MKs are related serine/threonine kinases that respond to mitogenic and stress stimuli through proline-directed phosphorylation and activation of the kinase domain by extracellular signal-regulated kinases 1 and 2 and p38 MAPKs. There are currently 11 vertebrate MKs in five subfamilies based on primary sequence homology: the ribosomal S6 kinases, the mitogen- and stress-activated kinases, the MAPK-interacting kinases, MAPK-activated protein kinases 2 and 3, and MK5. In the last 5 years, several MK substrates have been identified, which has helped tremendously to identify the biological role of the members of this family. Together with data from the study of MK-knockout mice, the identities of the MK substrates indicate that they play important roles in diverse biological processes, including mRNA translation, cell proliferation and survival, and the nuclear genomic response to mitogens and cellular stresses. In this article, we review the existing data on the MKs and discuss their physiological functions based on recent discoveries. PMID:15187187

  2. Serum Free Light Chain Assay and κ/λ Ratio: Performance in Patients With Monoclonal Gammopathy-High False Negative Rate for κ/λ Ratio

    PubMed Central

    Singh, Gurmukh

    2017-01-01

    Background Serum free light chain assay (SFLCA) and κ/λ ratio, and protein electrophoretic methods are used in the diagnosis and monitoring of monoclonal gammopathies. Methods Results for serum free light chains, serum and urine protein electrophoreses and immunofixation electrophoreses in 468 patients with a diagnosis of monoclonal gammopathy were compared. The results of the two methods were graded as concordant, non-concordant or discordant with the established diagnoses to assess the relative performance of the methods. Results of κ/λ ratio in samples with monoclonal protein detectable by electrophoretic methods were also analyzed. Results Protein electrophoreses results were concordant with the established diagnoses significantly more often than κ/λ ratio. The false negative rate for κ/λ ratio was higher than that for electrophoretic methods. κ/λ ratio was falsely negative in about 27% of the 1,860 samples with detectable monoclonal immunoglobulin. The false negative rate was higher in lesions with lambda chains (32%) than those with kappa chains (24%). The false negative rate for κ/λ ratio was over 55% in samples with monoclonal gammopathy of undetermined significance. Even at first encounter, the false negative rates for κ/λ ratios for monoclonal gammopathy of undetermined significance, smoldering myeloma and multiple myeloma were 66.98%, 23.08%, and 30.15%, respectively, with false negative rate for lambda chain lesions being higher. Conclusions Electrophoretic studies of serum and urine are superior to SFLCA and κ/λ ratio. Abnormal κ/λ ratio, per se, is not diagnostic of monoclonal gammopathy. A normal κ/λ ratio does not exclude monoclonal gammopathy. False negative rates for lesions with lambda chain are higher than those for lesions with kappa chains. Electrophoretic studies of urine are underutilized. Clinical usefulness and medical necessity of SFLCA and κ/λ ratio is of questionable value in routine clinical testing. PMID:27924175

  3. Serum Free Light Chain Assay and κ/λ Ratio: Performance in Patients With Monoclonal Gammopathy-High False Negative Rate for κ/λ Ratio.

    PubMed

    Singh, Gurmukh

    2017-01-01

    Serum free light chain assay (SFLCA) and κ/λ ratio, and protein electrophoretic methods are used in the diagnosis and monitoring of monoclonal gammopathies. Results for serum free light chains, serum and urine protein electrophoreses and immunofixation electrophoreses in 468 patients with a diagnosis of monoclonal gammopathy were compared. The results of the two methods were graded as concordant, non-concordant or discordant with the established diagnoses to assess the relative performance of the methods. Results of κ/λ ratio in samples with monoclonal protein detectable by electrophoretic methods were also analyzed. Protein electrophoreses results were concordant with the established diagnoses significantly more often than κ/λ ratio. The false negative rate for κ/λ ratio was higher than that for electrophoretic methods. κ/λ ratio was falsely negative in about 27% of the 1,860 samples with detectable monoclonal immunoglobulin. The false negative rate was higher in lesions with lambda chains (32%) than those with kappa chains (24%). The false negative rate for κ/λ ratio was over 55% in samples with monoclonal gammopathy of undetermined significance. Even at first encounter, the false negative rates for κ/λ ratios for monoclonal gammopathy of undetermined significance, smoldering myeloma and multiple myeloma were 66.98%, 23.08%, and 30.15%, respectively, with false negative rate for lambda chain lesions being higher. Electrophoretic studies of serum and urine are superior to SFLCA and κ/λ ratio. Abnormal κ/λ ratio, per se , is not diagnostic of monoclonal gammopathy. A normal κ/λ ratio does not exclude monoclonal gammopathy. False negative rates for lesions with lambda chain are higher than those for lesions with kappa chains. Electrophoretic studies of urine are underutilized. Clinical usefulness and medical necessity of SFLCA and κ/λ ratio is of questionable value in routine clinical testing.

  4. Comparison of two optimized readout chains for low light CIS

    NASA Astrophysics Data System (ADS)

    Boukhayma, A.; Peizerat, A.; Dupret, A.; Enz, C.

    2014-03-01

    We compare the noise performance of two optimized readout chains that are based on 4T pixels and featuring the same bandwidth of 265kHz (enough to read 1Megapixel with 50frame/s). Both chains contain a 4T pixel, a column amplifier and a single slope analog-to-digital converter operating a CDS. In one case, the pixel operates in source follower configuration, and in common source configuration in the other case. Based on analytical noise calculation of both readout chains, an optimization methodology is presented. Analytical results are confirmed by transient simulations using 130nm process. A total input referred noise bellow 0.4 electrons RMS is reached for a simulated conversion gain of 160μV/e-. Both optimized readout chains show the same input referred 1/f noise. The common source based readout chain shows better performance for thermal noise and requires smaller silicon area. We discuss the possible drawbacks of the common source configuration and provide the reader with a comparative table between the two readout chains. The table contains several variants (column amplifier gain, in-pixel transistor sizes and type).

  5. Evidence for Ig Light Chain Isotype Exclusion in Shark B Lymphocytes Suggests Ordered Mechanisms.

    PubMed

    Iacoangeli, Anna; Lui, Anita; Haines, Ashley; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen

    2017-09-01

    Unlike most vertebrates, the shark IgL gene organization precludes secondary rearrangements that delete self-reactive VJ rearranged genes. Nurse sharks express four L chain isotypes, κ, λ, σ, and σ-2, encoded by 35 functional minigenes or clusters. The sequence of gene activation/expression and receptor editing of these isotypes have not been studied. We therefore investigated the extent of isotypic exclusion in separated B cell subpopulations. Surface Ig (sIg)κ-expressing cells, isolated with mAb LK14 that recognizes Cκ, carry predominantly nonproductive rearrangements of other L chain isotypes. Conversely, after depletion with LK14, sIgM + cells contained largely nonproductive κ and enrichment for in-frame VJ of the others. Because some isotypic inclusion was observed at the mRNA level, expression in the BCR was examined. Functional λ mRNA was obtained, as expected, from the LK14-depleted population, but was also in sIgκ + splenocytes. Whereas λ somatic mutants from the depleted sample displayed evidence of positive selection, the λ genes in sIgκ + cells accumulated bystander mutations indicating a failure to express their products at the cell surface in association with the BCR H chain. In conclusion, a shark B cell expresses one L chain isotype at the surface and other isotypes as nonproductive VJ, sterile transcripts, or in-frame VJ whose products may not associate with the H chain. Based on the mRNA content found in the B cell subpopulations, an order of L chain gene activation is suggested as: σ-2 followed by κ, then σ and λ. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. Charge-transfer dynamics in one-dimensional C 60 chains

    NASA Astrophysics Data System (ADS)

    Pérez-Dieste, V.; Tamai, A.; Greber, T.; Chiuzbaˇian, S. G.; Patthey, L.

    2008-06-01

    Charge transfer in highly-ordered C 60 chains grown on a Cu(5 5 3) vicinal surface is studied by means of resonant photoemission. Tuning the light polarization, autoionization of the highest occupied molecular orbital (HOMO) was expected to detect anisotropy in this one-dimensional system. For one monolayer C 60 we found no signature of autoionization. This indicates that for an electron which is excited from the C 1s level of C 60 to the lowest unoccupied molecular orbital (LUMO), hybridization leads to delocalization on the femtosecond time-scale and no influence of the light polarization is observed.

  7. Ferritin light chain gene mutations in two Brazilian families with hereditary hyperferritinemia-cataract syndrome

    PubMed Central

    Petroni, Roberta Cardoso; da Rosa, Susana Elaine Alves; de Carvalho, Flavia Pereira; Santana, Rúbia Anita Ferraz; Hyppolito, Joyce Esteves; Nascimento, Claudia Mac Donald Bley; Hamerschlak, Nelson; Campregher, Paulo Vidal

    2017-01-01

    ABSTRACT Hereditary hyperferritinemia-cataract syndrome is an autosomal dominant genetic disorder associated with mutations in the 5’UTR region of the ferritin light chain gene. These mutations cause the ferritin levels to increase even in the absence of iron overload. Patients also develop bilateral cataract early due to accumulation of ferritin in the lens, and many are misdiagnosed as having hemochromatosis and thus not properly treated. The first cases were described in 1995 and several mutations have already been identified. However, this syndrome is still a poorly understood. We report two cases of unrelated Brazilian families with clinical suspicion of the syndrome, which were treated in our department. For the definitive diagnosis, the affected patients, their parents and siblings were submitted to Sanger sequencing of the 5’UTR region for detection of the ferritin light gene mutation. Single nucleotide polymorphism-like mutations were found in the affected patients, previously described. The test assisted in making the accurate diagnosis of the disease, and its description is important so that the test can be incorporated into clinical practice. PMID:28746593

  8. SH2 dependent autophosphorylation within the Tec family kinase Itk

    PubMed Central

    Joseph, Raji E.; Severin, Andrew; Min, Lie; Fulton, D. Bruce; Andreotti, Amy H.

    2009-01-01

    The Tec family kinase, Itk, undergoes an in cis autophosphorylation on Y180 within its SH3 domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening SH2 domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the βD strand. These results are extended into Btk, a Tec family kinase linked to the B cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA causing mutations might impair Btk phosphorylation. PMID:19523959

  9. The Effect of PKCα on the Light Response of Rod Bipolar Cells in the Mouse Retina

    PubMed Central

    Xiong, Wei-Hong; Pang, Ji-Jie; Pennesi, Mark E.; Duvoisin, Robert M.; Wu, Samuel M.; Morgans, Catherine W.

    2015-01-01

    Purpose Protein kinase C α (PKCα) is abundantly expressed in rod bipolar cells (RBCs) in the retina, yet the physiological function of PKCα in these cells is not well understood. To elucidate the role of PKCα in visual processing in the eye, we examined the effect of genetic deletion of PKCα on the ERG and on RBC light responses in the mouse. Methods Immunofluorescent labeling was performed on wild-type (WT), TRPM1 knockout, and PKCα knockout (PKC-KO) retina. Scotopic and photopic ERGs were recorded from WT and PKC-KO mice. Light responses of RBCs were measured using whole-cell recordings in retinal slices from WT and PKC-KO mice. Results Protein kinase C alpha expression in RBCs is correlated with the activity state of the cell. Rod bipolar cells dendrites are a major site of PKCα phosphorylation. Electroretinogram recordings indicated that loss of PKCα affects the scotopic b-wave, including a larger peak amplitude, longer implicit time, and broader width of the b-wave. There were no differences in the ERG a- or c-wave between PKCα KO and WT mice, indicating no measurable effect of PKCα in photoreceptors or the RPE. The photopic ERG was unaffected consistent with the lack of detectable PKCα in cone bipolar cells. Whole-cell recordings from RBCs in PKC-KO retinal slices revealed that, compared with WT, RBC light responses in the PKC-KO retina are delayed and of longer duration. Conclusions Protein kinase C alpha plays an important modulatory role in RBCs, regulating both the peak amplitude and temporal properties of the RBC light response in the rod visual pathway. PMID:26230760

  10. Rho/Rho kinase and phosphoinositide 3-kinase are parallel pathways in the development of spontaneous arterial tone in deoxycorticosterone acetate-salt hypertension.

    PubMed

    Wehrwein, Erica A; Northcott, Carrie A; Loberg, Robert D; Watts, Stephanie W

    2004-06-01

    Hypertension is characterized by abnormal vascular contractility and function. Arteries from deoxycorticosterone acetate (DOCA)-salt hypertensive rats develop spontaneous tone that is not observed in arteries from normotensive rats. Inhibition of phosphoinositide 3-kinase (PI3-kinase) by 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) reduces spontaneous tone development. The Rho/Rho-kinase pathway has been suggested to play a role in hypertension and may be dependent on PI3-kinase activity. We hypothesized that Rhokinase is involved in spontaneous tone development and that Rho/Rho-kinase is a downstream effector of PI3-kinase. Using endothelium-denuded aortic strips in isolated tissue bath, we demonstrated that (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) (Y27632) (1 microM), a Rho-kinase inhibitor, significantly reduced spontaneous tone in the DOCA aorta but that it did not affect sham aorta basal tone (DOCA 63.5 +/- 15.9 versus sham 1.2 +/- 0.4 total change in percentage of phenylephrine contraction). We examined the interaction between the PI3-kinase and Rho pathways by observing the effects of LY294002 on a Rhokinase effector, myosin phosphatase (MYPT), and Y27632 on a PI3-kinase effector, Akt, using Western blot analysis. Inhibition of PI3-kinase reduced spontaneous tone, but it had no effect on the phosphorylation status of MYPT, indicating that PI3-kinase is not a downstream effector of Rho/Rho-kinase. These data indicate that there is little interaction between the Rho/Rhokinase and PI3-kinase pathways in the DOCA-salt aorta, and the two pathways seem to operate in parallel in supporting spontaneous arterial tone. These data reflect spontaneous tone only and do not rule out the possibility of interaction between these pathways in agonist-stimulated tone.

  11. Immunoglobulin Light Chains Form an Extensive and Highly Ordered Fibril Involving the N- and C-Termini.

    PubMed

    Piehl, Dennis W; Blancas-Mejía, Luis M; Wall, Jonathan S; Kennel, Stephen J; Ramirez-Alvarado, Marina; Rienstra, Chad M

    2017-02-28

    Light-chain (AL)-associated amyloidosis is a systemic disorder involving the formation and deposition of immunoglobulin AL fibrils in various bodily organs. One severe instance of AL disease is exhibited by the patient-derived variable domain (V L ) of the light chain AL-09, a 108 amino acid residue protein containing seven mutations relative to the corresponding germline protein, κI O18/O8 V L . Previous work has demonstrated that the thermodynamic stability of native AL-09 V L is greatly lowered by two of these mutations, Y87H and N34I, whereas a third mutation, K42Q, further increases the kinetics of fibril formation. However, detailed knowledge regarding the residues that are responsible for stabilizing the misfolded fibril structure is lacking. In this study, using solid-state NMR spectroscopy, we show that the majority of the AL-09 V L sequence is immobilized in the fibrils and that the N- and C-terminal portions of the sequence are particularly well-structured. Thus, AL-09 V L forms an extensively ordered and β-strand-rich fibril structure. Furthermore, we demonstrate that the predominant β-sheet secondary structure and rigidity observed for in vitro prepared AL-09 V L fibrils are qualitatively similar to those observed for AL fibrils extracted from postmortem human spleen tissue, suggesting that this conformation may be representative of a common feature of AL fibrils.

  12. Stem cell transplantation compared with melphalan plus dexamethasone in the treatment of immunoglobulin light-chain amyloidosis.

    PubMed

    Gertz, Morie A; Lacy, Martha Q; Dispenzieri, Angela; Buadi, Francis K; Dingli, David; Hayman, Suzanne R; Kumar, Shaji K; Leung, Nelson; Lust, John; Rajkumar, S Vincent; Russell, Stephen J; Suman, Vera J; Le-Rademacher, Jennifer G; Hogan, William J

    2016-07-15

    Autologous stem cell transplantation (SCT) is a common management strategy for select patients with immunoglobulin light-chain amyloidosis, but no trials have documented improved overall survival. Eighty-nine patients with biopsy-proven immunoglobulin light-chain amyloidosis were allowed to select treatment with melphalan plus dexamethasone (n = 34) or SCT (n = 55); all patients were transplant eligible. Treatment preference resulted in imbalanced study arms. Patients who selected SCT were younger, more frequently had an Eastern Cooperative Oncology Group performance status score less than 2, had lower-stage amyloidosis, and had a lower incidence of cardiac amyloidosis. Patients receiving melphalan plus dexamethasone had a 3-year progression-free survival rate of 29.1% and an overall survival rate of 58.8%. Patients undergoing SCT had a 3-year progression-free survival rate of 51.7% and an overall survival rate of 83.6%. An attempt to match patients between the 2 arms in terms of risk produced 24 matched triplet sets (2 SCT patients for each melphalan-dexamethasone patient); there was no difference in hematologic response, but there was better survival after autologous SCT. A propensity score-matched analysis of the cohorts (melphalan plus dexamethasone vs SCT) showed an overall mortality hazard ratio of 2.56 (P < .01). Although the study had limitations, similar hematologic responses and improved survival were observed after SCT versus melphalan plus dexamethasone. Cancer 2016;122:2197-205. © 2016 American Cancer Society. © 2016 American Cancer Society.

  13. Fluorescent sensors of protein kinases: from basics to biomedical applications.

    PubMed

    Nhu Ngoc Van, Thi; Morris, May C

    2013-01-01

    Protein kinases constitute a major class of enzymes underlying essentially all biological processes. These enzymes present similar structural folds, yet their mechanism of action and of regulation vary largely, as well as their substrate specificity and their subcellular localization. Classical approaches to study the function/activity of protein kinases rely on radioactive endpoint assays, which do not allow for characterization of their dynamic activity in their native environment. The development of fluorescent biosensors has provided a whole new avenue for studying protein kinase behavior and regulation in living cells in real time with high spatial and temporal resolution. Two major classes of biosensors have been developed: genetically encoded single-chain fluorescence resonance energy transfer biosensors and peptide/protein biosensors coupled to small synthetic fluorophores which are sensitive to changes in their environment. In this review, we discuss the developments in fluorescent biosensor technology related to protein kinase sensing and the different strategies employed to monitor protein kinase activity, conformation, or relative abundance, as well as kinase regulation and subcellular dynamics in living cells. Moreover, we discuss their application in biomedical settings, for diagnostics and therapeutics, to image disease progression and monitor response to therapeutics, in drug discovery programs, for high-throughput screening assays, for postscreen characterization of drug candidates, and for clinical evaluation of novel drugs. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Detachment of Chain-Forming Neuroblasts by Fyn-Mediated Control of cell-cell Adhesion in the Postnatal Brain.

    PubMed

    Fujikake, Kazuma; Sawada, Masato; Hikita, Takao; Seto, Yayoi; Kaneko, Naoko; Herranz-Pérez, Vicente; Dohi, Natsuki; Homma, Natsumi; Osaga, Satoshi; Yanagawa, Yuchio; Akaike, Toshihiro; García-Verdugo, Jose Manuel; Hattori, Mitsuharu; Sobue, Kazuya; Sawamoto, Kazunobu

    2018-05-09

    In the rodent olfactory system, neuroblasts produced in the ventricular-subventricular zone of the postnatal brain migrate tangentially in chain-like cell aggregates toward the olfactory bulb (OB) through the rostral migratory stream (RMS). After reaching the OB, the chains are dissociated and the neuroblasts migrate individually and radially toward their final destination. The cellular and molecular mechanisms controlling cell-cell adhesion during this detachment remain unclear. Here we report that Fyn, a nonreceptor tyrosine kinase, regulates the detachment of neuroblasts from chains in the male and female mouse OB. By performing chemical screening and in vivo loss-of-function and gain-of-function experiments, we found that Fyn promotes somal disengagement from the chains and is involved in neuronal migration from the RMS into the granule cell layer of the OB. Fyn knockdown or Dab1 (disabled-1) deficiency caused p120-catenin to accumulate and adherens junction-like structures to be sustained at the contact sites between neuroblasts. Moreover, a Fyn and N-cadherin double-knockdown experiment indicated that Fyn regulates the N-cadherin-mediated cell adhesion between neuroblasts. These results suggest that the Fyn-mediated control of cell-cell adhesion is critical for the detachment of chain-forming neuroblasts in the postnatal OB. SIGNIFICANCE STATEMENT In the postnatal brain, newly born neurons (neuroblasts) migrate in chain-like cell aggregates toward their destination, where they are dissociated into individual cells and mature. The cellular and molecular mechanisms controlling the detachment of neuroblasts from chains are not understood. Here we show that Fyn, a nonreceptor tyrosine kinase, promotes the somal detachment of neuroblasts from chains, and that this regulation is critical for the efficient migration of neuroblasts to their destination. We further show that Fyn and Dab1 (disabled-1) decrease the cell-cell adhesion between chain-forming neuroblasts

  15. A Single Mutation at the Sheet Switch Region Results in Conformational Changes Favoring 6 Light-Chain Fibrillogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández-Santoyo, A.; Del Pozo Yauner, L; Fuentes-Silva, D

    Systemic amyloid light-chain (LC) amyloidosis is a disease process characterized by the pathological deposition of monoclonal LCs in tissue. All LC subtypes are capable of fibril formation although {lambda} chains, particularly those belonging to the {lambda}6 type, are overrepresented. Here, we report the thermodynamic and in vitro fibrillogenic properties of several mutants of the {lambda}6 protein 6aJL2 in which Pro7 and/or His8 was substituted by Ser or Pro. The H8P and H8S mutants were almost as stable as the wild-type protein and were poorly fibrillogenic. In contrast, the P7S mutation decreased the thermodynamic stability of 6aJL2 and greatly enhanced itsmore » capacity to form amyloid-like fibrils in vitro. The crystal structure of the P7S mutant showed that the substitution induced both local and long-distance effects, such as the rearrangement of the VL (variable region of the light chain)-VL interface. This mutant crystallized in two orthorhombic polymorphs, P2{sub 1}2{sub 1}2{sub 1} and C222{sub 1}. In the latter, a monomer that was not arranged in the typical Bence-Jones dimer was observed for the first time. Crystal-packing analysis of the C222{sub 1} lattice showed the establishment of intermolecular {beta}-{beta} interactions that involved the N-terminus and {beta}-strand B and that these could be relevant in the mechanism of LC fibril formation. Our results strongly suggest that Pro7 is a key residue in the conformation of the N-terminal sheet switch motif and, through long-distance interactions, is also critically involved in the contacts that stabilized the VL interface in {lambda}6 LCs.« less

  16. Photoaffinity labelling of the ATP-binding site of the epidermal growth factor-dependent protein kinase.

    PubMed

    Kudlow, J E; Leung, Y

    1984-06-15

    Epidermal growth factor (EGF), after binding to its receptor, activates a tyrosine-specific protein kinase which phosphorylates several substrates, including the EGF receptor itself. The effects of a photoaffinity analogue of ATP, 3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)adenosine 5'-triphosphate (arylazido-beta-alanyl-ATP) on the EGF-dependent protein kinase in A431 human tumour cell plasma membrane vesicles was investigated. This analogue was capable of inactivating the EGF-receptor kinase in a photodependent manner. Partial inactivation occurred at an analogue concentration of 1 microM and complete inactivation occurred at 10 microM when a 2 min light exposure was used. Arylazido-beta-alanine at 100 microM and ATP at 100 microM were incapable of inactivating the enzyme with 2 min of light exposure. The photodependent inactivation of the enzyme by the analogue could be partially blocked by 20 mM-ATP and more effectively blocked by either 20 mM-adenosine 5'-[beta gamma-imido]triphosphate or 20 mM-guanosine 5'-[beta gamma-imido]triphosphate, indicating nucleotide-binding site specificity. Arylazido-beta-alanyl-[alpha-32P]ATP was capable of labelling membrane proteins in a photodependent manner. Numerous proteins were labelled, the most prominent of which ran with an apparent Mr of 53000 on polyacrylamide-gel electrophoresis. A band of minor intensity was seen of Mr corresponding to the EGF receptor (170000). Immunoprecipitation of affinity-labelled and solubilized membranes with an anti-(EGF receptor) monoclonal antibody demonstrated that the Mr 170000 receptor protein was photoaffinity labelled by the analogue. The Mr 53000 peptide was not specifically bound by the anti-receptor antibody. The affinity labelling of the receptor was not enhanced by EGF, suggesting that EGF stimulation of the kinase activity does not result from changes in the affinity of the kinase for ATP. These studies demonstrate that arylazido-beta-alanyl-ATP interacts with the ATP

  17. Essential role of the A'α/Aβ gap in the N-terminal upstream of LOV2 for the blue light signaling from LOV2 to kinase in Arabidopsis photototropin1, a plant blue light receptor.

    PubMed

    Kashojiya, Sachiko; Okajima, Koji; Shimada, Takashi; Tokutomi, Satoru

    2015-01-01

    Phototropin (phot) is a blue light (BL) receptor in plants and is involved in phototropism, chloroplast movement, stomata opening, etc. A phot molecule has two photo-receptive domains named LOV (Light-Oxygen-Voltage) 1 and 2 in its N-terminal region and a serine/threonine kinase (STK) in its C-terminal region. STK activity is regulated mainly by LOV2, which has a cyclic photoreaction, including the transient formation of a flavin mononucleotide (FMN)-cysteinyl adduct (S390). One of the key events for the propagation of the BL signal from LOV2 to STK is conformational changes in a Jα-helix residing downstream of the LOV2 C-terminus. In contrast, we focused on the role of the A'α-helix, which is located upstream of the LOV2 N-terminus and interacts with the Jα-helix. Using LOV2-STK polypeptides from Arabidopsis thaliana phot1, we found that truncation of the A'α-helix and amino acid substitutions at Glu474 and Lys475 in the gap between the A'α and the Aβ strand of LOV2 (A'α/Aβ gap) to Ala impaired the BL-induced activation of the STK, although they did not affect S390 formation. Trypsin digested the LOV2-STK at Lys603 and Lys475 in a light-dependent manner indicating BL-induced structural changes in both the Jα-helix and the gap. The digestion at Lys603 is faster than at Lys475. These BL-induced structural changes were observed with the Glu474Ala and the Lys475Ala substitutes, indicating that the BL signal reached the Jα-helix as well as the A'α/Aβ gap but could not activate STK. The amino acid residues, Glu474 and Lys475, in the gap are conserved among the phots of higher plants and may act as a joint to connect the structural changes in the Jα-helix with the activation of STK.

  18. AMP-activated protein kinase-mediated feedback phosphorylation controls the Ca2+/calmodulin (CaM) dependence of Ca2+/CaM-dependent protein kinase kinase β.

    PubMed

    Nakanishi, Akihiro; Hatano, Naoya; Fujiwara, Yuya; Sha'ri, Arian; Takabatake, Shota; Akano, Hiroki; Kanayama, Naoki; Magari, Masaki; Nozaki, Naohito; Tokumitsu, Hiroshi

    2017-12-01

    The Ca 2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ)/5'-AMP-activated protein kinase (AMPK) phosphorylation cascade affects various Ca 2+ -dependent metabolic pathways and cancer growth. Unlike recombinant CaMKKβ that exhibits higher basal activity (autonomous activity), activation of the CaMKKβ/AMPK signaling pathway requires increased intracellular Ca 2+ concentrations. Moreover, the Ca 2+ /CaM dependence of CaMKKβ appears to arise from multiple phosphorylation events, including autophosphorylation and activities furnished by other protein kinases. However, the effects of proximal downstream kinases on CaMKKβ activity have not yet been evaluated. Here, we demonstrate feedback phosphorylation of CaMKKβ at multiple residues by CaMKKβ-activated AMPK in addition to autophosphorylation in vitro , leading to reduced autonomous, but not Ca 2+ /CaM-activated, CaMKKβ activity. MS analysis and site-directed mutagenesis of AMPK phosphorylation sites in CaMKKβ indicated that Thr 144 phosphorylation by activated AMPK converts CaMKKβ into a Ca 2+ /CaM-dependent enzyme as shown by completely Ca 2+ /CaM-dependent CaMKK activity of a phosphomimetic T144E CaMKKβ mutant. CaMKKβ mutant analysis indicated that the C-terminal domain (residues 471-587), including the autoinhibitory region, plays an important role in stabilizing an inactive conformation in a Thr 144 phosphorylation-dependent manner. Furthermore, immunoblot analysis with anti-phospho-Thr 144 antibody revealed phosphorylation of Thr 144 in CaMKKβ in transfected COS-7 cells that was further enhanced by exogenous expression of AMPKα. These results indicate that AMPK-mediated feedback phosphorylation of CaMKKβ regulates the CaMKKβ/AMPK signaling cascade and may be physiologically important for intracellular maintenance of Ca 2+ -dependent AMPK activation by CaMKKβ. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Audit of Use and Overuse of Serum Protein Immunofixation Electrophoresis and Serum Free Light Chain Assay in Tertiary Health Care: A Case for Algorithmic Testing to Optimize Laboratory Utilization.

    PubMed

    Heaton, Christopher; Vyas, Shikhar G; Singh, Gurmukh

    2016-04-01

    Overuse of laboratory tests is a persistent issue. We examined the use and overuse of serum immunofixation electrophoresis and serum free light chain assays to develop an algorithm for optimizing utilization. A retrospective review of all tests, for investigation of monoclonal gammopathies, for all patients who had any of these tests done from April 24, 2014, through July 25, 2014, was carried out. The test orders were categorized as warranted or not warranted according to criteria presented in the article. A total of 237 patients were tested, and their historical records included 1,503 episodes of testing for one or more of serum protein electrophoresis, serum immunofixation electrophoresis, and serum free light chain assays. Only 46% of the serum immunofixation and 42% serum free light chain assays were warranted. Proper utilization, at our institution alone, would have obviated $64,182.95/year in health care costs, reduced laboratory cost of reagent alone by $26,436.04/year, and put $21,904.92/year of part B reimbursement at risk. Fewer than half of the serum immunofixation and serum free light chain assays added value. The proposed algorithm for testing should improve utilization. Risk to part B billing may be a disincentive to reducing test utilization. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Crystal structure at 2.8 A of the DLLRKN-containing coiled-coil domain of huntingtin-interacting protein 1 (HIP1) reveals a surface suitable for clathrin light chain binding.

    PubMed

    Ybe, Joel A; Mishra, Sanjay; Helms, Stephen; Nix, Jay

    2007-03-16

    Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids, and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here, we report the X-ray structure of the coiled-coil domain of HIP1 (residues 482-586) that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel with S1 and S2. We present structural evidence supporting a role for the S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast.

  1. Crystal structure at 2.8 Å of the DLLRKN-containing coiled-coil domain of Huntingtin-interacting protein 1 (HIP1) reveals a surface suitable for clathrin light chain binding

    PubMed Central

    Ybe, Joel A.; Mishra, Sanjay; Helms, Stephen; Nix, Jay

    2007-01-01

    Summary Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here we report the X-ray structure of the coiled-coil domain of HIP1 from 482–586 that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel to S1 and S2. We present structural evidence supporting a role for S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast. PMID:17257618

  2. Rapid activation by 3,5,3'-L-triiodothyronine of adenosine 5'-monophosphate-activated protein kinase/acetyl-coenzyme a carboxylase and akt/protein kinase B signaling pathways: relation to changes in fuel metabolism and myosin heavy-chain protein content in rat gastrocnemius muscle in vivo.

    PubMed

    de Lange, Pieter; Senese, Rosalba; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; Silvestri, Elena; Goglia, Fernando; Lanni, Antonia

    2008-12-01

    T3 stimulates metabolic rate in many tissues and induces changes in fuel use. The pathways by which T3 induces metabolic/structural changes related to altered fuel use in skeletal muscle have not been fully clarified. Gastrocnemius muscle (isolated at different time points after a single injection of T3 into hypothyroid rats), displayed rapid inductions of AMP-activated protein kinase (AMPK) phosphorylation (threonine 172; within 6 h) and acetyl-coenzyme A carboxylase phosphorylation (serine 79; within 12 h). As a consequence, increases occurred in mitochondrial fatty acid oxidation and carnitine palmitoyl transferase activity. Concomitantly, T3 stimulated signaling toward increased glycolysis through a rapid increase in Akt/protein kinase B (serine 473) phosphorylation (within 6 h) and a directly related increase in the activity of phosphofructokinase. The kinase specificity of the above effects was verified by treatment with inhibitors of AMPK and Akt activity (compound C and wortmannin, respectively). In contrast, glucose transporter 4 translocation to the membrane (activated by T3 within 6 h) was maintained when either AMPK or Akt activity was inhibited. The metabolic changes were accompanied by a decline in myosin heavy-chain Ib protein [causing a shift toward the fast-twitch (glycolytic) phenotype]. The increases in AMPK and acetyl-coenzyme A carboxylase phosphorylation were transient events, both levels declining from 12 h after the T3 injection, but Akt phosphorylation remained elevated until at least 48h after the injection. These data show that in skeletal muscle, T3 stimulates both fatty acid and glucose metabolism through rapid activations of the associated signaling pathways involving AMPK and Akt/protein kinase B.

  3. Human microvascular dysfunction and apoptotic injury induced by AL amyloidosis light chain proteins.

    PubMed

    Migrino, Raymond Q; Truran, Seth; Gutterman, David D; Franco, Daniel A; Bright, Megan; Schlundt, Brittany; Timmons, Mitchell; Motta, Angelica; Phillips, Shane A; Hari, Parameswaran

    2011-12-01

    Light chain amyloidosis (AL) involves overproduction of amyloidogenic light chain proteins (LC) leading to heart failure, yet the mechanisms underlying tissue toxicity remain unknown. We hypothesized that LC induces endothelial dysfunction in non-AL human microvasculature and apoptotic injury in human coronary artery endothelial cells (HCAECs). Adipose arterioles (n = 34, 50 ± 3 yr) and atrial coronary arterioles (n = 19, 68 ± 2 yr) from non-AL subjects were cannulated. Adipose arteriole dilator responses to acetylcholine/papaverine were measured at baseline and 1 h exposure to LC (20 μg/ml) from biopsy-proven AL subjects (57 ± 11 yr) without and with antioxidant cotreatment. Coronary arteriole dilation to bradykinin/papaverine was measured post-LC exposure. HCAECs were exposed to 1 or 24 h of LC. LC reduced dilation to acetylcholine (10(-4) M: 41.6 ± 7 vs. 85.8 ± 2.2% control, P < 0.001) and papaverine (81.4 ± 4.6 vs. 94.8 ± 1.3% control, P < 0.01) in adipose arterioles and to bradykinin (10(-6) M: 68.6 ± 6.2 vs. 90.9 ± 1.6% control, P < 0.001) but not papaverine in coronary arterioles. There was an increase in superoxide and peroxynitrite in arterioles treated with LC. Adipose arteriole dilation was restored by cotreatment with polyethylene glycol-superoxide dismutase and tetrahydrobiopterin but only partially restored by mitoquinone (mitochondria-targeted antioxidant) and gp91ds-tat (NADPH oxidase inhibitor). HCAECs exposed to LC showed reduced NO and increased superoxide, peroxynitrite, annexin-V, and propidium iodide compared with control. Brief exposure to physiological amounts of LC induced endothelial dysfunction in human adipose and coronary arterioles and increased apoptotic injury in coronary artery endothelial cells likely as a result of oxidative stress, reduced NO bioavailability, and peroxynitrite production. Microvascular dysfunction and injury is a novel mechanism underlying AL pathobiology and is a potential target for therapy.

  4. Dynamics of polymer nanoparticles and chains.

    NASA Astrophysics Data System (ADS)

    Streletzky, Kiril; McKenna, John; Hillier, Gerry

    2006-10-01

    We present a Dynamic Light Scattering study of transport properties of the polymer chains and nanoparticles made out of the same starting solution. The spectra of both systems are highly non-exponential requiring a spectral time moment analysis. Our findings indicate the existence of several modes of relaxation in both systems. The comparison of the mean relaxation rates and diffusion coefficients of the different modes in two systems under good solvent conditions will be reported. Temperature sensitivity of the polymer nanoparticles and its possible applications in pharmaceutical, coatings, and petroleum industries will also be discussed.

  5. Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell-cell recognition and fusion.

    PubMed

    Weichert, Martin; Lichius, Alexander; Priegnitz, Bert-Ewald; Brandt, Ulrike; Gottschalk, Johannes; Nawrath, Thorben; Groenhagen, Ulrike; Read, Nick D; Schulz, Stefan; Fleißner, André

    2016-10-18

    Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell-cell communication and fusion in the fungus Neurospora crassa Genetically identical germinating spores of this fungus undergo cell-cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell-cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion.

  6. Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell–cell recognition and fusion

    PubMed Central

    Weichert, Martin; Lichius, Alexander; Priegnitz, Bert-Ewald; Brandt, Ulrike; Gottschalk, Johannes; Nawrath, Thorben; Groenhagen, Ulrike; Read, Nick D.; Schulz, Stefan; Fleißner, André

    2016-01-01

    Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell–cell communication and fusion in the fungus Neurospora crassa. Genetically identical germinating spores of this fungus undergo cell–cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell–cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion. PMID:27708165

  7. Phototropin and light-signaling in phototropism.

    PubMed

    Kimura, Mitsuhiro; Kagawa, Takatoshi

    2006-10-01

    Blue-light-induced phototropism in higher plants is regulated by phototropin, which is a photoreceptor kinase that contains a flavin mononucleotide (FMN). Recently, it was found that this kinase is inhibited by the binding of the LOV2 (light-oxygen-voltage2) domain in the dark but that its activity is increased in the light by the release of the LOV2 domain. Phototropin-associated proteins have been identified, although the proteins that are phosphorylated by phototropin are still unknown. The asymmetrical auxin distribution caused by unilateral irradiation suggests that differential growth is induced by a difference in auxin-regulated gene expression between the shaded and illuminated sides of plant organs. Transcription-related factors, such as NPH4/ARF7, MSG2/IAA19 and SCF(TIR1), play key roles in this process.

  8. Myosin‑II heavy chain and formin mediate the targeting of myosin essential light chain to the division site before and during cytokinesis

    PubMed Central

    Feng, Zhonghui; Okada, Satoshi; Cai, Guoping; Zhou, Bing; Bi, Erfei

    2015-01-01

    MLC1 is a haploinsufficient gene encoding the essential light chain for Myo1, the sole myosin‑II heavy chain in the budding yeast Saccharomyces cerevisiae. Mlc1 defines an essential hub that coordinates actomyosin ring function, membrane trafficking, and septum formation during cytokinesis by binding to IQGAP, myosin‑II, and myosin‑V. However, the mechanism of how Mlc1 is targeted to the division site during the cell cycle remains unsolved. By constructing a GFP‑tagged MLC1 under its own promoter control and using quantitative live‑cell imaging coupled with yeast mutants, we found that septin ring and actin filaments mediate the targeting of Mlc1 to the division site before and during cytokinesis, respectively. Both mechanisms contribute to and are collectively required for the accumulation of Mlc1 at the division site during cytokinesis. We also found that Myo1 plays a major role in the septin‑dependent Mlc1 localization before cytokinesis, whereas the formin Bni1 plays a major role in the actin filament–dependent Mlc1 localization during cytokinesis. Such a two‑tiered mechanism for Mlc1 localization is presumably required for the ordered assembly and robustness of cytokinesis machinery and is likely conserved across species. PMID:25631819

  9. Developing daisy chain receivers for light-emitting diode illumination adopting the digital multiplex-512 protocol.

    PubMed

    Um, Keehong; Yoo, Sooyeup

    2013-10-01

    Protocol for digital multiplex with 512 pieces of information is increasingly adopted in the design of illumination systems. In conventional light-emitting diode systems, the receivers are connected in parallel and each of the receiving units receives all the data from the master dimmer console, but each receiving unit operates by recognizing as its own data that which corresponds to the assigned number of the receiver. Because the serial numbers of illumination devices are transmitted in binary code, synchronization is too complicated to be used properly. In order to improve the protocol of illumination control systems, we propose an algorithm of protocol reception to install and manage the system in a simpler and more convenient way. We propose the systems for controlling the light-emitting diode illumination of simplified receiver slaves adopting the digital multiplex-512 protocol where master console and multiple receiver slaves are connected in a daisy chain fashion. The digital multiplex-512 data packet is received according to the sequence order of their locations from the console, without assigning the sequence number of each channel at the receiving device. The purpose of this paper is to design a simple and small-sized controller for the control systems of lamps and lighting adopting the digital multiplex-512 network.

  10. Serum levels of immunoglobulin free light chains in patients with chronic hepatitis C presenting cryoglobulinemia.

    PubMed

    Oliveira, Isabela S; Cabral, Milena S; Jesus, Larissa S; Paraná, Raymundo; Atta, Ajax M; Sousa Atta, Maria Luiza B

    2014-01-01

    Hepatitis C virus (HCV) infects B-lymphocytes, provokes cellular dysfunction and causes lymphoproliferative diseases such as cryoglobulinemia and non-Hodgkin's B-cell lymphoma. In the present study, we investigated the serum levels of kappa and lambda free light chains (FLC) of immunoglobulins and the kappa/lambda FLC ratio in Brazilian patients with chronic HCV infection and cryoglobulinemia. We also analyzed the immunochemical composition of the cryoglobulins in these patients. Twenty-eight cryoglobulinemic HCV patients composed the target group, while 37 HCV patients without cryoglobulinemia were included as controls. The median levels of kappa and lambda FLC were higher in patients with cryoglobulinemia compared to controls (p=0.001 and p=0.003, respectively), but the kappa/lambda FLC ratio was similar in patients with and without cryoglobulinemia (p>0.05). The median FLC ratio was higher in HCV patients presenting with advanced fibrosis of the liver compared to HCV patients without fibrosis (p=0.004). Kappa and lambda FLC levels were strongly correlated with the IgA, IgG and IgM levels in the patients with cryoglobulinemia. In patients without cryoglobulinemia, the kappa FLC level was only correlated with the IgG level, whereas the lambda FLC were weakly correlated with the IgA, IgG and IgM levels. An immunochemical pattern of mixed cryoglobulins (MC), predominantly IgM, IgG, IgA and kappa light chain, was verified in these immune complexes. We concluded that HCV-infected patients presenting cryoglobulinemia have vigorous polyclonal B-lymphocyte activation due to chronic HCV infection and persistent immune stimulation. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  11. Plasmonic graded-chains as deep-subwavelength light concentrators

    NASA Astrophysics Data System (ADS)

    Esteves-López, Natalia; Pastawski, Horacio M.; Bustos-Marún, Raúl A.

    2015-04-01

    We have studied the plasmonic properties of aperiodic arrays of identical nanoparticles (NPs) formed by two opposite and equal graded-chains (a chain where interactions change gradually). We found that these arrays concentrate the external electromagnetic fields even in the long wavelength limit. The phenomenon was understood by identifying the system with an effective cavity where plasmonics excitations are trapped between effective band edges, resulting from the change of passband with the NP's position. Dependence of excitation concentration on several system parameters was also assessed. This includes different gradings as well as NP couplings, damping, and resonant frequencies. In the spirit of the scaling laws in condensed matter physics, we developed a theory that allows us to rationalize all these system parameters into universal curves. The theory is quite general and can also be used in many other situations (different arrays for example). Additionally, we also provided an analytical solution, in the tight-binding limit, for the plasmonic response of homogeneous linear chains of NPs illuminated by a plane wave. Our results can find applications in sensing, near field imaging, plasmon-enhanced photodetectors, as well as to increase solar cell efficiency.

  12. Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry--functional relationships between short-term and long-term light quality acclimation in plants.

    PubMed

    Dietzel, Lars; Bräutigam, Katharina; Pfannschmidt, Thomas

    2008-03-01

    In dense plant populations, individuals shade each other resulting in a low-light habitat that is enriched in far-red light. This light quality gradient decreases the efficiency of the photosynthetic light reaction as a result of imbalanced excitation of the two photosystems. Plants counteract such conditions by performing acclimation reactions. Two major mechanisms are known to assure efficient photosynthesis: state transitions, which act on a short-term timescale; and a long-term response, which enables the plant to re-adjust photosystem stoichiometry in favour of the rate-limiting photosystem. Both processes start with the perception of the imbalanced photosystem excitation via reduction/oxidation (redox) signals from the photosynthetic electron transport chain. Recent data in Arabidopsis indicate that initialization of the molecular processes in both cases involve the activity of the thylakoid membrane-associated kinase, STN7. Thus, redox-controlled phosphorylation events may not only adjust photosystem antenna structure but may also affect plastid, as well as nuclear, gene expression. Both state transitions and the long-term response have been described mainly in molecular terms, while the physiological relevance concerning plant survival and reproduction has been poorly investigated. Recent studies have shed more light on this topic. Here, we give an overview on the long-term response, its physiological effects, possible mechanisms and its relationship to state transitions as well as to nonphotochemical quenching, another important short-term mechanism that mediates high-light acclimation. Special emphasis is given to the functional roles and potential interactions between the different light acclimation strategies. A working model displays the various responses as an integrated molecular system that helps plants to acclimate to the changing light environment.

  13. Protein kinase C negatively regulates Akt activity and modifies UVC-induced apoptosis in mouse keratinocytes.

    PubMed

    Li, Luowei; Sampat, Keeran; Hu, Nancy; Zakari, Julia; Yuspa, Stuart H

    2006-02-10

    Skin keratinocytes are subject to frequent chemical and physical injury and have developed elaborate cell survival mechanisms to compensate. Among these, the Akt/protein kinase B (PKB) pathway protects keratinocytes from the toxic effects of ultraviolet light (UV). In contrast, the protein kinase C (PKC) family is involved in several keratinocyte death pathways. During an examination of potential interactions among these two pathways, we found that the insulin-like growth factor (IGF-1) activates both the PKC and the Akt signaling pathways in cultured primary mouse keratinocytes as indicated by increased phospho-PKC and phospho-Ser-473-Akt. IGF-1 also selectively induced translocation of PKCdelta and PKCepsilon from soluble to particulate fractions in mouse keratinocytes. Furthermore, the PKC-specific inhibitor, GF109203X, increased IGF-1-induced phospho-Ser-473-Akt and Akt kinase activity and enhanced IGF-1 protection from UVC-induced apoptosis. Selective activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) reduced phospho-Ser-473-Akt, suggesting that activation of PKC inhibits Akt activity. TPA also attenuated IGF-1 and epidermal growth factor-induced phospho-Ser-473-Akt, reduced Akt kinase activity, and blocked IGF-1 protection from UVC-induced apoptosis. The inhibition of Akt activity by TPA was reduced by inhibitors of protein phosphatase 2A, and TPA stimulated the association of phosphatase 2A with Akt. Individual PKC isoforms were overexpressed in cultured keratinocytes by transduction with adenoviral vectors or inhibited with PKC-selective inhibitors. These studies indicated that PKCdelta and PKCepsilon were selectively potent at causing dephosphorylation of Akt and modifying cell survival, whereas PKCalpha enhanced phosphorylation of Akt on Ser-473. Our results suggested that activation of PKCdelta and PKCepsilon provide a negative regulation for Akt phosphorylation and kinase activity in mouse keratinocytes and serve as modulators of cell

  14. Cyclic AMP and protein kinase A rhythmicity in the mammalian suprachiasmatic nuclei.

    PubMed

    Ferreyra, G A; Golombek, D A

    2000-03-06

    The levels of cyclic AMP and protein kinase A, as well as the activity of this enzyme, were measured in the hamster suprachiasmatic nuclei at different time points throughout the daily or circadian cycle. Significant diurnal variations for levels of AMPc and the catalytic subunit of protein kinase A and the activity of this enzyme were found. All of these parameters tended to increase throughout the nocturnal phase, reaching higher values at the end of the night and the beginning of the day and minimal values around the time of lights off. This rhythmicity appears to be under exogenous control, since constant darkness abolished fluctuations throughout the circadian cycle. In vitro incubation in the presence of melatonin during the day significantly decreased cyclic AMP levels and basal protein kinase A activity in the SCN, while neither neuropeptide Y nor light pulses affected these parameters. These results suggest a significant diurnal regulation of the cyclic AMP-dependent system in the hamster circadian clock.

  15. Specificity and mechanism of protein kinase C activation by sn-1,2-diacylglycerols.

    PubMed Central

    Ganong, B R; Loomis, C R; Hannun, Y A; Bell, R M

    1986-01-01

    The specificity of protein kinase C activation by sn-1,2-diacylglycerols and analogues was investigated by using a Triton X-100 mixed micellar assay [Hannun, Y. A., Loomis, C. R. & Bell, R. M. (1985) J. Biol. Chem. 260, 10039-10043]. Analogues containing acyl or alkyl chains eight carbons in length were synthesized because sn-1,2-dioctanoylglycerol is an effective cell-permeant activator of protein kinase C. These analogues were tested as activators and antagonists of rat brain protein kinase C to determine the exact structural features important for activity. The analogues established that activation of protein kinase C by diacylglycerols is highly specific. Several analogues established that both carbonyl moieties of the oxygen esters are required for maximal activity and that the 3-hydroxyl moiety is also required. None of the analogues were antagonists. These data, combined with previous investigations, permitted formulation of a model of protein kinase C activation. A three-point attachment of sn-1,2-diacylglycerol to the surface-bound protein kinase C-phosphatidylserine-Ca2+ complex is envisioned to cause activation. Direct ligation of diacylglycerol to Ca2+ is proposed to be an essential step in the mechanism of activation of protein kinase C. Images PMID:3456578

  16. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway

    PubMed Central

    2016-01-01

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC=C + NC=O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids. PMID:27285777

  17. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway.

    PubMed

    Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Hunter, C Neil; Bocian, David F; Holten, Dewey; Niedzwiedzki, Dariusz M

    2016-06-23

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC═C + NC═O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids.

  18. Phosphorylation of the Yeast Choline Kinase by Protein Kinase C

    PubMed Central

    Choi, Mal-Gi; Kurnov, Vladlen; Kersting, Michael C.; Sreenivas, Avula; Carman, George M.

    2005-01-01

    The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work, we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent, and dependent on the concentrations of choline kinase (Km = 27 μg/ml) and ATP (Km = 15 μM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSS25QRRHS (Vmax/Km = 17.5 mM-1 μmol min-1 mg-1) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo, the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Whereas the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHS30LTRQ) containing Ser30 was a substrate (Vmax/Km = 3.0 mM−1 μmol min−1 mg−1) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C. PMID:15919656

  19. Bacteroides fragilis Enterotoxin Induces Formation of Autophagosomes in Endothelial Cells but Interferes with Fusion with Lysosomes for Complete Autophagic Flux through a Mitogen-Activated Protein Kinase-, AP-1-, and C/EBP Homologous Protein-Dependent Pathway.

    PubMed

    Ko, Su Hyuk; Jeon, Jong Ik; Myung, Hyun Soo; Kim, Young-Jeon; Kim, Jung Mogg

    2017-10-01

    Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), plays an essential role in mucosal inflammation. Although autophagy contributes to the pathogenesis of diverse infectious diseases, little is known about autophagy in ETBF infection. This study was conducted to investigate the role of BFT in the autophagic process in endothelial cells (ECs). Stimulation of human umbilical vein ECs (HUVECs) with BFT increased light chain 3 protein II (LC3-II) conversion from LC3-I and protein expression of p62, Atg5, and Atg12. In addition, BFT-exposed ECs showed increased indices of autophagosomal fusion with lysosomes such as LC3-lysosome-associated protein 2 (LAMP2) colocalization and the percentage of red vesicles monitored by the expression of dual-tagged LC3B. BFT also upregulated expression of C/EBP homologous protein (CHOP), and inhibition of CHOP significantly increased indices of autophagosomal fusion with lysosomes. BFT activated an AP-1 transcription factor, in which suppression of AP-1 activity significantly downregulated CHOP and augmented autophagosomal fusion with lysosomes. Furthermore, suppression of Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase (MAPK) significantly inhibited the AP-1 and CHOP signals, leading to an increase in autophagosomal fusion with lysosomes in BFT-stimulated ECs. These results suggest that BFT induced accumulation of autophagosomes in ECs, but activation of a signaling pathway involving JNK, AP-1, and CHOP may interfere with complete autophagy. Copyright © 2017 American Society for Microbiology.

  20. Force decay evaluation of thermoplastic and thermoset elastomeric chains: A mechanical design comparison.

    PubMed

    Masoud, Ahmed I; Tsay, T Peter; BeGole, Ellen; Bedran-Russo, Ana K

    2014-11-01

    To compare the following over a period of 8 weeks: (1) force decay between thermoplastic (TP) and thermoset (TS) elastomeric chains; (2) force decay between light (200-g) and heavy (350-g) initial forces; and (3) force decay between direct chains and chain loops (stretched from one pin around the second pin and back to the first pin). TP and TS chains were obtained from American Orthodontics™ (AOTP, AOTS) and ORMCO™ (OrTP, OrTS). Each of the four chain groups was subdivided into four subgroups with 10 specimens per subgroup: (1) direct chains light force, (2) direct chains heavy force, (3) chain loops light force, and (4) chain loops heavy force. The experiment was performed in artificial saliva (pH of 6.75) at 37°C. A significant difference was found between TP and TS chains, with an average mean difference of around 20% more force decay found in the TP chains (P < .001, α  =  .05). There was no significant difference between direct chains and chain loops except in OrTP, in which direct chains showed more force decay. There was also no significant difference in force decay identified when using light vs heavy forces. TS chains decayed less than TP chains, and chain loop retraction was beneficial only when using OrTP chains. Contrary to the interchangeable use of TP and TS chains in the published literature and in clinical practice, this study demonstrates that they perform differently under stress and that a clear distinction should be made between the two.

  1. A Pea Plasma Membrane Protein Exhibiting Blue Light-Induced Phosphorylation Retains Photosensitivity following Triton Solubilization.

    PubMed Central

    Short, T. W.; Reymond, P.; Briggs, W. R.

    1993-01-01

    Phosphorylation of a polypeptide of approximately 120 kD in pea (Pisum sativum L.) plasma membranes in response to blue light has been shown to be involved in phototropic curvature, but the relationship of this protein to the kinase and photoreceptor acting upon it is uncertain. Using two-phase aqueous partitioning to isolate right-side-out plasma membrane vesicles, we have obtained evidence suggesting that the photoreceptor, kinase, and substrate are localized to the plasma membrane fraction. Latent phosphorylation accessible through Triton X-100 or freeze/thaw treatments of purified plasma membrane vesicles indicates that at least the kinase moiety is present on the internal face of the plasma membrane. Effects of solubilization of vesicles on fluence-response characteristics and on phosphorylation levels provide evidence that the receptor, kinase, and protein substrate are present together in individual mixed detergent micelles, either as a stable complex or as domains of a single polypeptide. In vivo blue-light irradiation results in a small but significant decrease in mobility of the 120-kD phosphorylated protein on sodium dodecylsulfate gel electrophoresis. This mobility shift is evident on Coomassie-stained gels and on western blots probed with polyclonal antibodies raised against the 120-kD protein. Among the plasma membrane proteins bound to the reactive nucleotide analog fluorosulfonylbenzoyladenine (FSBA), a distinct protein band at 120 kD can be detected on blots probed with anti-FSBA antibodies. This band exhibits an in vivo light-dependent mobility shift identical to that observed for the protein band and antibodies specific for the 120-kD protein, implying that the 120-kD protein has an integral nucleotide binding site and consistent with the possibility that the substrate protein is also a kinase. PMID:12231721

  2. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish.

    PubMed

    Mishra, Shikha; Guan, Jian; Plovie, Eva; Seldin, David C; Connors, Lawreen H; Merlini, Giampaolo; Falk, Rodney H; MacRae, Calum A; Liao, Ronglih

    2013-07-01

    Systemic amyloid light-chain (AL) amyloidosis is associated with rapidly progressive and fatal cardiomyopathy resulting from the direct cardiotoxic effects of circulating AL light chain (AL-LC) proteins and the indirect effects of AL fibril tissue infiltration. Cardiac amyloidosis is resistant to standard heart failure therapies, and, to date, there are limited treatment options for these patients. The mechanisms underlying the development of cardiac amyloidosis and AL-LC cardiotoxicity are largely unknown, and their study has been limited by the lack of a suitable in vivo model system. Here, we establish an in vivo zebrafish model of human AL-LC-induced cardiotoxicity. AL-LC isolated from AL cardiomyopathy patients or control nonamyloidogenic LC protein isolated from multiple myeloma patients (Con-LC) was directly injected into the circulation of zebrafish at 48 h postfertilization. AL-LC injection resulted in impaired cardiac function, pericardial edema, and increased cell death relative to Con-LC, culminating in compromised survival with 100% mortality within 2 wk, independent of AL fibril deposition. Prior work has implicated noncanonical p38 MAPK activation in the pathogenesis of AL-LC-induced cardiotoxicity, and p38 MAPK inhibition via SB-203580 rescued AL-LC-induced cardiac dysfunction and cell death and attenuated mortality in zebrafish. This in vivo zebrafish model of AL-LC cardiotoxicity demonstrates that antagonism of p38 MAPK within the AL-LC cardiotoxic signaling response may serve to improve cardiac function and mortality in AL cardiomyopathy. Furthermore, this in vivo model system will allow for further study of the molecular underpinnings of AL cardiotoxicity and identification of novel therapeutic strategies.

  3. Roles of AGCVIII Kinases in the Hypocotyl Phototropism of Arabidopsis Seedlings.

    PubMed

    Haga, Ken; Frank, Lena; Kimura, Taro; Schwechheimer, Claus; Sakai, Tatsuya

    2018-05-01

    Regulation of protein function by phosphorylation and dephosphorylation is an important mechanism in many cellular events. The phototropin blue-light photoreceptors, plant-specific AGCVIII kinases, are essential for phototropic responses. Members of the D6 PROTEIN KINASE (D6PK) family, representing a subfamily of the AGCVIII kinases, also contribute to phototropic responses, suggesting that possibly further AGCVIII kinases may potentially control phototropism. The present study investigates the functional roles of Arabidopsis (Arabidopsis thaliana) AGCVIII kinases in hypocotyl phototropism. We demonstrate that D6PK family kinases are not only required for the second but also for the first positive phototropism. In addition, we find that a previously uncharacterized AGCVIII protein, AGC1-12, is involved in the first positive phototropism and gravitropism. AGC1-12 phosphorylates serine residues in the cytoplasmic loop of PIN-FORMED 1 (PIN1) and shares phosphosite preferences with D6PK. Our work strongly suggests that the D6PK family and AGC1-12 are critical components for both hypocotyl phototropism and gravitropism, and that these kinases control tropic responses mainly through regulation of PIN-mediated auxin transport by protein phosphorylation.

  4. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthu, Priya; Wang, Li; Yuan, Chen-Ching

    2012-04-02

    The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-{Delta}43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing ({approx} 1.5 nm) and no alterations in cross-bridgemore » mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I{sub 1,1}/I{sub 1,0}, indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-{Delta}43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-{Delta}43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.« less

  5. The use of serum free light chain dimerization patterns assist in the diagnosis of AL amyloidosis.

    PubMed

    Gatt, Moshe E; Kaplan, Batia; Yogev, Dean; Slyusarevsky, Elana; Pogrebijski, Galina; Golderman, Sizilia; Kukuy, Olga; Livneh, Avi

    2018-05-16

    The discrimination between benign and malignant forms of plasma cell dyscrasia (PCD) is often difficult. Free light chain monomer-dimer pattern analysis (FLC-MDPA) may assist in solving this dilemma and distinguish between AL amyloidosis and benign PCD. Serum samples of patients with AL amyloidosis and benign PCD were analysed in a blinded manner. Quantitative Western blotting was performed to estimate dimerization and clonality indices, and thereby determine the source of the tested samples, as derived either from benign or malignant PCD. The findings obtained by the FLC-MDPA were compared with the actual diagnosis. Of 37 samples from patients with active AL amyloidosis, 34 (91·9%) fulfilled dimerization criteria for diagnosis of AL amyloidosis. Of the 45 samples from patients with benign PCD, 10 (21·2%) tested falsely positive or gave an inconclusive result. Thus, the sensitivity of the analysis was 92·5% with a remarkable negative predictive value of 91·9%. In addition, of 20 patients who were in complete or very good partial remission, only one tested positive. By multivariate analysis, FLC-MDPA was the best independent marker predicting AL amyloidosis (odds ratio of 84). The FLC-MDPA offers a highly effective tool in the diagnostic assessment of patients with PCD. © 2018 John Wiley & Sons Ltd.

  6. Protein Kinases and Parkinson's Disease.

    PubMed

    Mehdi, Syed Jafar; Rosas-Hernandez, Hector; Cuevas, Elvis; Lantz, Susan M; Barger, Steven W; Sarkar, Sumit; Paule, Merle G; Ali, Syed F; Imam, Syed Z

    2016-09-20

    Currently, the lack of new drug candidates for the treatment of major neurological disorders such as Parkinson's disease has intensified the search for drugs that can be repurposed or repositioned for such treatment. Typically, the search focuses on drugs that have been approved and are used clinically for other indications. Kinase inhibitors represent a family of popular molecules for the treatment and prevention of various cancers, and have emerged as strong candidates for such repurposing because numerous serine/threonine and tyrosine kinases have been implicated in the pathobiology of Parkinson's disease. This review focuses on various kinase-dependent pathways associated with the expression of Parkinson's disease pathology, and evaluates how inhibitors of these pathways might play a major role as effective therapeutic molecules.

  7. Rho kinase regulates the survival and transformation of cells bearing oncogenic forms of KIT, FLT3 and BCR-ABL

    PubMed Central

    Mali, Raghuveer Singh; Ramdas, Baskar; Ma, Peilin; Shi, Jianjian; Munugalavadla, Veerendra; Sims, Emily; Wei, Lei; Vemula, Sasidhar; Nabinger, Sarah C.; Goodwin, Charles B.; Chan, Rebecca J.; Traina, Fabiola; Visconte, Valeria; Tiu, Ramon V.; Lewis, Timothy A.; Stern, Andrew M.; Wen, Qiang; Crispino, John D.; Boswell, H. Scott; Kapur, Reuben

    2011-01-01

    Summary We show constitutive activation of Rho kinase (ROCK) in cells bearing oncogenic forms of KIT, FLT3 and BCR-ABL, which is dependent on PI3K and Rho GTPase. Genetic or pharmacologic inhibition of ROCK in oncogene bearing cells impaired their growth as well as the growth of acute myeloid leukemia patient derived blasts and prolonged the life span of mice bearing myeloproliferative disease. Downstream from ROCK, rapid dephosphorylation or loss of expression of myosin light chain resulted in enhanced apoptosis, reduced growth and loss of actin polymerization in oncogene bearing cells leading to significantly prolonged life span of leukemic mice. In summary, we describe a pathway involving PI3K/Rho/ROCK/MLC which may contribute to myeloproliferative disease and/or acute myeloid leukemia in humans. PMID:21907926

  8. The PIM kinases in hematological cancers.

    PubMed

    Alvarado, Yesid; Giles, Francis J; Swords, Ronan T

    2012-02-01

    The PIM genes represent a family of proto-oncogenes that encode three different serine/threonine protein kinases (PIM1, PIM2 and PIM3) with essential roles in the regulation of signal transduction cascades, which promote cell survival, proliferation and drug resistance. PIM kinases are overexpressed in several hematopoietic tumors and support in vitro and in vivo malignant cell growth and survival, through cell cycle regulation and inhibition of apoptosis. PIM kinases do not have an identified regulatory domain, which means that these proteins are constitutively active once transcribed. They appear to be critical downstream effectors of important oncoproteins and, when overexpressed, can mediate drug resistance to available agents, such as rapamycin. Recent crystallography studies reveal that, unlike other kinases, they possess a hinge region, which creates a unique binding pocket for ATP, offering a target for an increasing number of potent small-molecule PIM kinase inhibitors. Preclinical studies in models of various hematologic cancers indicate that these novel agents show promising activity and some of them are currently being evaluated in a clinical setting. In this review, we profile the PIM kinases as targets for therapeutics in hematologic malignancies.

  9. Systemic lupus erythematosus: molecular cloning and analysis of 22 individual recombinant monoclonal kappa light chains specifically hydrolyzing human myelin basic protein.

    PubMed

    Timofeeva, Anna M; Buneva, Valentina N; Nevinsky, Georgy A

    2015-10-01

    Antibodies hydrolyzing myelin basic protein (MBP) can play an important role in the pathogenesis of multiple sclerosis (MS) and systemic lupus erythematosus (SLE). An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of patients with SLE was used. Small pools of phage particles displaying light chains with different affinities for MBP were isolated by affinity chromatography on MBP-Sepharose, and the fraction eluted with 0.5 M NaCl was used for preparation of individual monoclonal light chains (MLChs, 26-27 kDa). Seventy-two of 440 individual colonies were randomly chosen, expressed in Escherichia coli in a soluble form, and MLChs were purified by metal chelating chromatography. Twenty-two of 72 MLChs have high affinity and efficiently hydrolyze only MBP (not other control proteins) demonstrating various pH optima in a 5.7-9.0 range and different substrate specificity in the hydrolysis of four different MBP oligopeptides. Four MLChs demonstrated serine protease-like and three thiol protease-like activities, while 11 MLChs were metalloproteases. The activity of three MLChs was inhibited by both phenylmethylsulfonyl fluoride (PMSF) and Ethylenediaminetetraacetic acid (EDTA), two other by EDTA and iodoacetamide, and one by PMSF, EDTA, and iodoacetamide. The ratio of relative activity in the presence of Ca(2+), Mg(2+), Mn(2+), Ni(2+), Zn(2+), Cu(2+), and Co(2+) was individual for each of 22 MLCh preparations. It is the first examples of human MLChs, which probably can possess two or even three different proteolytic activities. These observations suggest an extreme diversity of anti-MBP abzymes in SLE patients. The immune systems of individual SLE patients can generate a variety of anti-MBP abzymes, which can attack MBP of myelin-proteolipid sheath of axons and play an important role in MS and SLE pathogenesis. Copyright © 2015 John Wiley & Sons, Ltd.

  10. IgD multiple myeloma: Clinical, biological features and prognostic value of the serum free light chain assay.

    PubMed

    Djidjik, R; Lounici, Y; Chergeulaïne, K; Berkouk, Y; Mouhoub, S; Chaib, S; Belhani, M; Ghaffor, M

    2015-09-01

    IgD multiple myeloma (MM) is a rare subtype of myeloma, it affects less than 2% of patients with MM. To evaluate the clinical and prognostic attributes of serum free light chains (sFLCs) analysis, we examined 17 cases of IgD MM. From 1998 to 2012, we obtained 1250 monoclonal gammapathies including 590 multiple myeloma and 17 patients had IgD MM. With preponderance of men patients with a mean age at diagnosis of: 59±12years. Patients with IgD MM have a short survival (Median survival=9months). The presenting features included: bone pain (75%), lymphadenopathy (16%), hepatomegaly (25%), splenomegaly (8%), associated AL amyloidosis (6%), renal impairment function (82%), infections (47%), hypercalcemia (37%) and anemia (93%). Serum electrophoresis showed a subtle M-spike (Mean=13.22±10g/L) in all patients associated to a hypogammaglobulinemia. There was an over-representation of Lambda light chain (65%); high serum β2-microglobulin in 91% and Bence Jones proteinuria was identified in 71%. The median rate of sFLCs κ was 19.05mg/L and 296.75mg/L for sFLCs λ. sFLCR was abnormal in 93% of patients and it showed concordance between baseline sFLCR and the survival (P=0.034). The contribution of FLC assay is crucial for the prognosis of patients with IgD MM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Prognostic Value of Serum Free Light Chain in Multiple Myeloma.

    PubMed

    El Naggar, Amel A; El-Naggar, Mostafa; Mokhamer, El-Hassan; Avad, Mona W

    2015-01-01

    The measurement of serum free light chain (sFLC) has been shown to be valuable in screening for the presence of plasma cell dyscrasia as well as for baseline prognosis in newly diagnosed patients. The aim of the present work was to study the prognostic value of sFLC in multiple myeloma in relation to other serum biomarkers, response to therapy and survival. Forty five newly diagnosed patients with MM were included in the study. Patients were divided into responders and non-responders groups according to response to therapy. sFLC and serum Amyloid A (SAA) were measured by immunonephelometry. The non-responders group showed a statistically significant higher kappa/lambda or lambda/kappa ratio and higher β2 microglobulin level, but lower albumin level at presentation, as compared to the responders group (P < 0.001). However, no statistically significant difference was detected between the two groups regarding SA A or calcium levels. Comparison between sFLC ratio obtained before and after therapy revealed significant decrease after treatment in the responders group (P = 0.05). Survival was significantly inferior in patients with an FLC ratio of ≥ 2.6 or ≤ 0.56 compared with those with an FLC ratio that was between 0.56 and 2.6 (P = 0.002).

  12. Synthesis and PPy loading for enhanced visible-light photocatalytic activity of new POMOFs containing silver chains

    NASA Astrophysics Data System (ADS)

    Sha, Jing-Quan; Yang, Xi-Ya; Sheng, Ning; Liu, Guo-Dong; Li, Ji-Sen; Yang, Jian-Bo

    2018-07-01

    A new polyoxometalate based hybrid compound containing Ag-Ag chain, [Ag29(trz)18][SiWV7WVI5O40] (Ag29SiW12), was synthesized by the simple one-step hydrothermal reaction of silver nitrate, 1, 2, 3- triazole (trz), and [SiW12O40]4- polyanion. Single crystal X-ray diffraction analysis shows that the [SiW12O40]4- polyanions as coordinating guests were successfully encapsulated into the metal-organic framework host matrix. The Keggin [SiW12O40]n- polyanions as templates and trz molecules as the small and delicate ligands play the decisive factors to the formation of silver chain. In addition, to improve the photocatalytic activity of the new compound Ag29SiW12, its polypyrrole (PPy) composite (PPy@Ag29SiW12) has been prepared and exhibits excellent photocatalytic activity (93.1% for MB and 48.8% for RhB) and selectivity adsorption (16.2 mg/g for MB and 1.60 mg/g for RhB) for organic dyes under the visible light radiation.

  13. Decision support for green supply chain operations by integrating dynamic simulation and LCA indicators: diaper case study.

    PubMed

    Adhitya, Arief; Halim, Iskandar; Srinivasan, Rajagopalan

    2011-12-01

    As the issue of environmental sustainability is becoming an important business factor, companies are now looking for decision support tools to assess the fuller picture of the environmental impacts associated with their manufacturing operations and supply chain (SC) activities. Lifecycle assessment (LCA) is widely used to measure the environmental consequences assignable to a product. However, it is usually limited to a high-level snapshot of the environmental implications over the product value chain without consideration of the dynamics arising from the multitiered structure and the interactions along the SC. This paper proposes a framework for green supply chain management by integrating a SC dynamic simulation and LCA indicators to evaluate both the economic and environmental impacts of various SC decisions such as inventories, distribution network configuration, and ordering policy. The advantages of this framework are demonstrated through an industrially motivated case study involving diaper production. Three distinct scenarios are evaluated to highlight how the proposed approach enables integrated decision support for green SC design and operation.

  14. Discovery of cellular substrates for protein kinase A using a peptide array screening protocol.

    PubMed

    Smith, F Donelson; Samelson, Bret K; Scott, John D

    2011-08-15

    Post-translational modification of proteins is a universal form of cellular regulation. Phosphorylation on serine, threonine, tyrosine or histidine residues by protein kinases is the most widespread and versatile form of covalent modification. Resultant changes in activity, localization or stability of phosphoproteins drives cellular events. MS and bioinformatic analyses estimate that ~30% of intracellular proteins are phosphorylated at any given time. Multiple approaches have been developed to systematically define targets of protein kinases; however, it is likely that we have yet to catalogue the full complement of the phosphoproteome. The amino acids that surround a phosphoacceptor site are substrate determinants for protein kinases. For example, basophilic enzymes such as PKA (protein kinase A), protein kinase C and calmodulin-dependent kinases recognize basic side chains preceding the target serine or threonine residues. In the present paper we describe a strategy using peptide arrays and motif-specific antibodies to identify and characterize previously unrecognized substrate sequences for protein kinase A. We found that the protein kinases PKD (protein kinase D) and MARK3 [MAP (microtubule-associated protein)-regulating kinase 3] can both be phosphorylated by PKA. Furthermore, we show that the adapter protein RIL [a product of PDLIM4 (PDZ and LIM domain protein 4)] is a PKA substrate that is phosphorylated on Ser(119) inside cells and that this mode of regulation may control its ability to affect cell growth. © The Authors Journal compilation © 2011 Biochemical Society

  15. PHYTOCHROME KINASE SUBSTRATE1 Regulates Root Phototropism and Gravitropism1[C][W][OA

    PubMed Central

    Boccalandro, Hernán E.; De Simone, Silvia N.; Bergmann-Honsberger, Ariane; Schepens, Isabelle; Fankhauser, Christian; Casal, Jorge J.

    2008-01-01

    Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light. PMID:18024556

  16. Structural basis of reversine selectivity in inhibiting Mps1 more potently than aurora B kinase.

    PubMed

    Hiruma, Yoshitaka; Koch, Andre; Dharadhar, Shreya; Joosten, Robbie P; Perrakis, Anastassis

    2016-12-01

    Monopolar spindle 1 (Mps1, also known as TTK) is a protein kinase crucial for ensuring that cell division progresses to anaphase only after all chromosomes are connected to spindle microtubules. Incomplete chromosomal attachment leads to abnormal chromosome counts in the daughter cells (aneuploidy), a condition common in many solid cancers. Therefore Mps1 is an established target in cancer therapy. Mps1 kinase inhibitors include reversine (2-(4-morpholinoanilino)-6-cyclohexylaminopurine), a promiscuous compound first recognized as an inhibitor of the Aurora B mitotic kinase. Here, we present the 3.0-Å resolution crystal structure of the Mps1 kinase domain bound to reversine. Structural comparison of reversine bound to Mps1 and Aurora B, indicates a similar binding pose for the purine moiety of reversine making three conserved hydrogen bonds to the protein main chain, explaining the observed promiscuity of this inhibitor. The cyclohexyl and morpholinoaniline moieties of reversine however, have more extensive contacts with the protein in Mps1 than in Aurora B. This is reflected both in structure-based docking energy calculations, and in new experimental data we present here, that both confirm that the affinity of reversine towards Mps1 is about two orders of magnitude higher than towards Aurora B. Thus, our data provides detailed structural understanding of the existing literature that argues reversine inhibits Mps1 more efficiently than Aurora B based on biochemical and in-cell assays. Proteins 2016; 84:1761-1766. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Age-dependent contribution of Rho kinase in carbachol-induced contraction of human detrusor smooth muscle in vitro

    PubMed Central

    Kirschstein, Timo; Protzel, Chris; Porath, Katrin; Sellmann, Tina; Köhling, Rüdiger; Hakenberg, Oliver W

    2014-01-01

    Aim: Activation of muscarinic receptors on the detrusor smooth muscle is followed by contraction, which involves both myosin light chain kinase (MLCK) and Rho kinase (ROCK). The aim of this study was to determine the relative contributions of MLCK and ROCK to carbachol-induced contraction of human detrusor smooth muscle in vitro. Methods: Detrusor smooth muscle strips were prepared from the macroscopically unaffected bladder wall of patients underwent cystectomy. The strips were fixed in an organ bath, and carbachol or KCl-induced isometric contractions were measured by force transducers. Results: Addition of carbachol (0.4-4 μmol/L) into the bath induced concentration-dependent contractions of detrusor specimens, which was completely abolished by atropine (1 μmol/L). Pre-incubation of detrusor specimens with either the MLCK inhibitor ML-9 or the ROCK inhibitors HA1100 and Y-27632 (each at 10 μmol/L) significantly blocked carbachol-induced contractions as compared to the time-control experiments. Moreover, MLCK and ROCK inhibition were equally effective in reducing carbachol-induced contractions. The residual carbachol-induced contractions in the presence of both MLCK and ROCK inhibitors were significantly smaller than the contractions obtained when only one enzyme (either MLCK or ROCK) was inhibited, suggesting an additive effect of the two kinases. Interestingly, ROCK-mediated carbachol-induced contractions were positively correlated to the age of patients (r=o.52, P<0.05). Conclusion: Both MLCK and ROCK contribute to carbachol-induced contractions of human detrusor smooth muscle. ROCK inhibitors may be a new pharmacological approach to modulate human bladder hyperactivity. PMID:24122009

  18. Age-dependent contribution of Rho kinase in carbachol-induced contraction of human detrusor smooth muscle in vitro.

    PubMed

    Kirschstein, Timo; Protzel, Chris; Porath, Katrin; Sellmann, Tina; Köhling, Rüdiger; Hakenberg, Oliver W

    2014-01-01

    Activation of muscarinic receptors on the detrusor smooth muscle is followed by contraction, which involves both myosin light chain kinase (MLCK) and Rho kinase (ROCK). The aim of this study was to determine the relative contributions of MLCK and ROCK to carbachol-induced contraction of human detrusor smooth muscle in vitro. Detrusor smooth muscle strips were prepared from the macroscopically unaffected bladder wall of patients underwent cystectomy. The strips were fixed in an organ bath, and carbachol or KCl-induced isometric contractions were measured by force transducers. Addition of carbachol (0.4-4 μmol/L) into the bath induced concentration-dependent contractions of detrusor specimens, which was completely abolished by atropine (1 μmol/L). Pre-incubation of detrusor specimens with either the MLCK inhibitor ML-9 or the ROCK inhibitors HA1100 and Y-27632 (each at 10 μmol/L) significantly blocked carbachol-induced contractions as compared to the time-control experiments. Moreover, MLCK and ROCK inhibition were equally effective in reducing carbachol-induced contractions. The residual carbachol-induced contractions in the presence of both MLCK and ROCK inhibitors were significantly smaller than the contractions obtained when only one enzyme (either MLCK or ROCK) was inhibited, suggesting an additive effect of the two kinases. Interestingly, ROCK-mediated carbachol-induced contractions were positively correlated to the age of patients (r=o.52, P<0.05). Both MLCK and ROCK contribute to carbachol-induced contractions of human detrusor smooth muscle. ROCK inhibitors may be a new pharmacological approach to modulate human bladder hyperactivity.

  19. (Na+ + K+)-ATPase Is a Target for Phosphoinositide 3-Kinase/Protein Kinase B and Protein Kinase C Pathways Triggered by Albumin*

    PubMed Central

    Peruchetti, Diogo B.; Pinheiro, Ana Acacia S.; Landgraf, Sharon S.; Wengert, Mira; Takiya, Christina M.; Guggino, William B.; Caruso-Neves, Celso

    2011-01-01

    In recent decades, evidence has confirmed the crucial role of albumin in the progression of renal disease. However, the possible role of signaling pathways triggered by physiologic concentrations of albumin in the modulation of proximal tubule (PT) sodium reabsorption has not been considered. In the present work, we have shown that a physiologic concentration of albumin increases the expression of the α1 subunit of (Na+ + K+)-ATPase in LLC-PK1 cells leading to an increase in enzyme activity. This process involves the sequential activation of PI3K/protein kinase B and protein kinase C pathways promoting inhibition of protein kinase A. This integrative network is inhibited when albumin concentration is increased, similar to renal disease, leading to a decrease in the α1 subunit of (Na+ + K+)-ATPase expression. Together, the results indicate that variation in albumin concentration in PT cells has an important effect on PT sodium reabsorption and, consequently, on renal sodium excretion. PMID:22057272

  20. CYCLIN H;1 regulates drought stress responses and blue light-induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis.

    PubMed

    Zhou, Xiao Feng; Jin, Yin Hua; Yoo, Chan Yul; Lin, Xiao-Li; Kim, Woe-Yeon; Yun, Dae-Jin; Bressan, Ray A; Hasegawa, Paul M; Jin, Jing Bo

    2013-06-01

    Arabidopsis (Arabidopsis thaliana) CYCLIN-DEPENDENT KINASE Ds (CDKDs) phosphorylate the C-terminal domain of the largest subunit of RNA polymerase II. Arabidopsis CYCLIN H;1 (CYCH;1) interacts with and activates CDKDs; however, the physiological function of CYCH;1 has not been determined. Here, we report that CYCH;1, which is localized to the nucleus, positively regulates blue light-induced stomatal opening. Reduced-function cych;1 RNA interference (cych;1 RNAi) plants exhibited a drought tolerance phenotype. CYCH;1 is predominantly expressed in guard cells, and its expression was substantially down-regulated by dehydration. Transpiration of intact leaves was reduced in cych;1 RNAi plants compared with the wild-type control in light but not in darkness. CYCH;1 down-regulation impaired blue light-induced stomatal opening but did not affect guard cell development or abscisic acid-mediated stomatal closure. Microarray and real-time polymerase chain reaction analyses indicated that CYCH;1 did not regulate the expression of abscisic acid-responsive genes or light-induced stomatal opening signaling determinants, such as MYB60, MYB61, Hypersensitive to red and blue1, and Protein phosphatase7. CYCH;1 down-regulation induced the expression of redox homeostasis genes, such as LIPOXYGENASE3 (LOX3), LOX4, ARABIDOPSIS GLUTATHIONE PEROXIDASE 7 (ATGPX7), EARLY LIGHT-INDUCIBLE PROTEIN1 (ELIP1), and ELIP2, and increased hydrogen peroxide production in guard cells. Furthermore, loss-of-function mutations in CDKD;2 or CDKD;3 did not affect responsiveness to drought stress, suggesting that CYCH;1 regulates the drought stress response in a CDKD-independent manner. We propose that CYCH;1 regulates blue light-mediated stomatal opening by controlling reactive oxygen species homeostasis.

  1. Lambda light chain revision in the human intestinal IgA response.

    PubMed

    Su, Wen; Gordon, John N; Barone, Francesca; Boursier, Laurent; Turnbull, Wayne; Mendis, Surangi; Dunn-Walters, Deborah K; Spencer, Jo

    2008-07-15

    Revision of Ab L chains by secondary rearrangement in mature B cells has the potential to change the specific target of the immune response. In this study, we show for the first time that L chain revision is normal and widespread in the largest Ab producing population in man: intestinal IgA plasma cells (PC). Biases in the productive and non-productive repertoire of lambda L chains, identification of the circular products of rearrangement that have the characteristic biases of revision, and identification of RAG genes and protein all reflect revision during normal intestinal IgA PC development. We saw no evidence of IgH revision, probably due to inappropriately orientated recombination signal sequences, and little evidence of kappa-chain revision, probably due to locus inactivation by the kappa-deleting element. We propose that the lambda L chain locus is available and a principal modifier and diversifier of Ab specificity in intestinal IgA PCs.

  2. Biased Immunoglobulin Light Chain Gene Usage in the Shark.

    PubMed

    Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen

    2015-10-15

    This study of a large family of κ L chain clusters in nurse shark completes the characterization of its classical Ig gene content (two H chain isotypes, μ and ω, and four L chain isotypes, κ, λ, σ, and σ-2). The shark κ clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over an ~500-bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ~39 κ clusters are prerearranged in the germline (germline joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, nonproductive, and sterile transcripts of the κ clusters compared with the other three L chain isotypes. κ cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and nonproductive rearrangements. These results show that the individual activation of the spatially distant κ clusters is nonrandom. Although both split and germline-joined κ genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. Comparing domain interactions within antibody Fabs with kappa and lambda light chains.

    PubMed

    Toughiri, Raheleh; Wu, Xiufeng; Ruiz, Diana; Huang, Flora; Crissman, John W; Dickey, Mark; Froning, Karen; Conner, Elaine M; Cujec, Thomas P; Demarest, Stephen J

    2016-10-01

    IgG antibodies are multi-domain proteins with complex inter-domain interactions. Human IgG heavy chains (HCs) associate with light chains (LCs) of the κ or λ isotype to form mature antibodies capable of binding antigen. The HC/LC interaction involves 4 domains: VH and CH1 from the HC and VL and CL from the LC. Human Fabs with κ LCs have been well characterized for their unfolding behaviors and demonstrate a significant level of cooperativity and stabilization when all 4 domains are intact. Very little is known regarding the thermodynamic properties of human Fabs with λ LCs. Here, we dissect the domain contributions to Fab stability for both κ and λ LC-containing Fabs. We find the cooperativity of unfolding between the constant domains, CH1/Cλ, and variable domains, VH/Vλ, within λ LC-containing Fabs is significantly weaker than that of κ LC-containing Fabs. The data suggests there may not be an evolutionary necessity for strong variable/constant domain cooperativity within λ LC-containing Fabs. After investigating the biophysical properties of Fabs with mismatched variable and constant domain subunits (e.g., VH/Vκ paired with CH1/Cλ or T cell receptor Cα/Cβ), the major role of the constant domains for both κ- and λ-containing Fabs may be to reduce the hydrophobic exposure at the VH/VL interface. Even though Fabs with these non-native pairings were thermodynamically less stable, they secreted well from mammalian cells as well behaved monodisperse proteins, which was in contrast to what was observed with the VH/Vκ and VH/Vλ scFvs that secreted as a mixture of monomer and aggregates.

  4. The molecular basis of targeting protein kinases in cancer therapeutics.

    PubMed

    Tsai, Chung-Jung; Nussinov, Ruth

    2013-08-01

    In this paper, we provide an overview of targeted anticancer therapies with small molecule kinase inhibitors. First, we discuss why a single constitutively active kinase emanating from a variety of aberrant genetic alterations is capable of transforming a normal cell, leading it to acquire the hallmarks of a cancer cell. To draw attention to the fact that kinase inhibition in targeted cancer therapeutics differs from conventional cytotoxic chemotherapy, we exploit a conceptual framework explaining why suppressed kinase activity will selectively kill only the so-called oncogene 'addicted' cancer cell, while sparing the healthy cell. Second, we introduce the protein kinase superfamily in light of its common active conformation with precisely positioned structural elements, and the diversified auto-inhibitory conformations among the kinase families. Understanding the detailed activation mechanism of individual kinases is essential to relate the observed oncogenic alterations to the elevated constitutively active state, to identify the mechanism of consequent drug resistance, and to guide the development of the next-generation inhibitors. To clarify the vital importance of structural guidelines in studies of oncogenesis, we explain how somatic mutations in EGFR result in kinase constitutive activation. Third, in addition to the common theme of secondary (acquired) mutations that prevent drug binding from blocking a signaling pathway which is hijacked by the aberrant activated kinase, we discuss scenarios of drug resistance and relapse by compensating lesions that bypass the inactivated pathway in a vertical or horizontal fashion. Collectively, these suggest that the future challenge of cancer therapy with small molecule kinase inhibitors will rely on the discovery of distinct combinations of optimized drugs to target individual subtypes of different cancers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. In vivo roles for myosin phosphatase targeting subunit-1 phosphorylation sites T694 and T852 in bladder smooth muscle contraction

    PubMed Central

    Chen, Cai-Ping; Chen, Xin; Qiao, Yan-Ning; Wang, Pei; He, Wei-Qi; Zhang, Cheng-Hai; Zhao, Wei; Gao, Yun-Qian; Chen, Chen; Tao, Tao; Sun, Jie; Wang, Ye; Gao, Ning; Kamm, Kristine E; Stull, James T; Zhu, Min-Sheng

    2015-01-01

    Force production and maintenance in smooth muscle is largely controlled by different signalling modules that fine tune myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. To investigate the regulation of MLCP activity in vivo, we analysed the role of two phosphorylation sites on MYPT1 (regulatory subunit of MLCP) that biochemically inhibit MLCP activity in vitro. MYPT1 is constitutively phosphorylated at T694 by unidentified kinases in vivo, whereas the T852 site is phosphorylated by RhoA-associated protein kinase (ROCK). We established two mouse lines with alanine substitution of T694 or T852. Isolated bladder smooth muscle from T852A mice displayed no significant changes in RLC phosphorylation or force responses, but force was inhibited with a ROCK inhibitor. In contrast, smooth muscles containing the T694A mutation showed a significant reduction of force along with reduced RLC phosphorylation. The contractile responses of T694A mutant smooth muscle were also independent of ROCK activation. Thus, phosphorylation of MYPT1 T694, but not T852, is a primary mechanism contributing to inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. The constitutive phosphorylation of MYPT1 T694 may provide a mechanism for regulating force maintenance of smooth muscle. Key points Force production and maintenance in smooth muscle is largely controlled by myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. MYPT1 is the regulatory subunit of MLCP that biochemically inhibits MLCP activity via T694 or T852 phosphorylation in vitro. Here we separately investigated the contribution of these two phosphorylation sites in bladder smooth muscles by establishing two single point

  6. Bifunctional Rhodamine Probes of Myosin Regulatory Light Chain Orientation in Relaxed Skeletal Muscle Fibers

    PubMed Central

    Brack, Andrew S.; Brandmeier, Birgit D.; Ferguson, Roisean E.; Criddle, Susan; Dale, Robert E.; Irving, Malcolm

    2004-01-01

    The orientation of the regulatory light chain (RLC) region of the myosin heads in relaxed skinned fibers from rabbit psoas muscle was investigated by polarized fluorescence from bifunctional rhodamine (BR) probes cross-linking pairs of cysteine residues introduced into the RLC. Pure 1:1 BR-RLC complexes were exchanged into single muscle fibers in EDTA rigor solution for 30 min at 30°C; ∼60% of the native RLC was removed and stoichiometrically replaced by BR-RLC, and >85% of the BR-RLC was located in the sarcomeric A-bands. The second- and fourth-rank order parameters of the orientation distributions of BR dipoles linking RLC cysteine pairs 100-108, 100-113, 108-113, and 104-115 were calculated from polarized fluorescence intensities, and used to determine the smoothest RLC orientation distribution—the maximum entropy distribution—consistent with the polarized fluorescence data. Maximum entropy distributions in relaxed muscle were relatively broad. At the peak of the distribution, the “lever” axis, linking Cys707 and Lys843 of the myosin heavy chain, was at 70–80° to the fiber axis, and the “hook” helix (Pro830–Lys843) was almost coplanar with the fiber and lever axes. The temperature and ionic strength of the relaxing solution had small but reproducible effects on the orientation of the RLC region. PMID:15041671

  7. A new era for homolytic aromatic substitution: replacing Bu3SnH with efficient light-induced chain reactions.

    PubMed

    Gurry, Michael; Aldabbagh, Fawaz

    2016-04-28

    Herein is a pertinent review of recent photochemical homolytic aromatic substitution (HAS) literature. Issues with using the reductant Bu3SnH in an oxidative process where the net loss of a hydrogen atom occurs is discussed. Nowadays more efficient light-induced chain reactions are used resulting in HAS becoming a synthetic mechanism of choice rivaling organometallic, transition-metal and electrophilic aromatic substitution protocols. The review includes aromatic substitution as part of a tandem or cascade reaction, Pschorr reaction, as well as HAS facilitated by ipso-substitution, and Smiles rearrangement. Recently visible-light photoredox catalysis, which is carried out at room temperature has become one of the most important means of aromatic substitution. The main photoredox catalysts used are polypyridine complexes of Ru(ii) and Ir(iii), although eosin Y is an alternative allowing metal-free HAS. Other radical initiator-free aromatic substitutions have used 9-mesityl-10-methylacridinium ion and N,N-bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarboximide) as the photoredox catalyst, UV-light, photoinduced electron-transfer, zwitterionic semiquinone radical anions, and Barton ester intermediates.

  8. Ammonium Assimilation Requires Mitochondrial Respiration in the Light 1

    PubMed Central

    Weger, Harold G.; Birch, Douglas G.; Elrifi, Ivor R.; Turpin, David H.

    1988-01-01

    Mass spectrometric analysis of O2 and CO2 exchange in the green alga Selenastrum minutum (Naeg. Collins) provides evidence for the occurrence of mitochondrial respiration in light. Stimulation of amino acid synthesis by the addition of NH4Cl resulted in nearly a 250% increase in the rate of TCA cycle CO2 efflux in both light and dark. Ammonium addition caused a similar increase in cyanide sensitive O2 consumption in both light and dark. Anaerobiosis inhibited the CO2 release caused by NH4Cl. These results indicated that the cytochrome pathway of the mitochondrial electron transport chain was operative and responsible for the oxidation of a large portion of the NADH generated during the ammonium induced increase in TCA cycle activity. In the presence of DCMU, ammonium addition also stimulated net O2 consumption in the light. This implied that the Mehler reaction did not play a significant role in O2 consumption under our conditions. These results show that both the TCA cycle and the mitochondrial electron transport chain are capable of operation in the light and that an important role of mitochondrial respiration in photosynthesizing cells is the provision of carbon skeletons for biosynthetic reactions. PMID:16665971

  9. Mechanistic studies of a cell-permeant peptide designed to enhance myosin light chain phosphorylation in polarized intestinal epithelia.

    PubMed

    Almansour, Khaled; Taverner, Alistair; Eggleston, Ian M; Mrsny, Randall J

    2018-06-10

    Tight junction (TJ) structures restrict the movement of solutes between adjacent epithelial cells to maintain homeostatic conditions. A peptide, termed PIP 640, with the capacity to regulate the transient opening of intestinal TJ structures through an endogenous mechanism involving the induction of myosin light chain (MLC) phosphorylation at serine 19 (MLC-pS 19 ) has provided a promising new method to enhance the in vivo oral bioavailability of peptide therapeutics. PIP 640 is a decapeptide composed of all D-amino acids (rrdykvevrr-NH 2 ) that contains a central sequence designed to emulates a specific domain of C-kinase potentiated protein phosphatase-1 inhibitor-17 kDa (CPI-17) surrounded by positively-charged amino acids that provide a cell penetrating peptide (CPP)-like character. Here, we examine compositional requirements of PIP 640 with regard to its actions on MLC phosphorylation, its intracellular localization to TJ structures, and its interactions with MLC phosphatase (MLCP) elements that correlate with enhanced solute uptake. These studies showed that a glutamic acid and tyrosine within this peptide are critical for PIP 640 to retain its ability to increase MLC-pS 19 levels and enhance the permeability of macromolecular solutes of the size range of therapeutic peptides without detectable cytotoxicity. On the other hand, exchange of the aspartic acid for alanine and then arginine resulted in an increasingly greater bias toward protein phosphatase-1 (PP1) relative to MLCP inhibition, an outcome that resulted in increased paracellular permeability for solutes in the size range of therapeutic peptides, but with a significant increase in cytotoxicity. Together, these data further our understanding of the composition requirements of PIP 640 with respect to the desired goal of transiently altering the intestinal epithelial cell paracellular barrier properties through an endogenous mechanism, providing a novel approach to enhance the oral bioavailability of

  10. Thalassemic erythrocytes release microparticles loaded with hemichromes by redox activation of p72Syk kinase.

    PubMed

    Ferru, Emanuela; Pantaleo, Antonella; Carta, Franco; Mannu, Franca; Khadjavi, Amina; Gallo, Valentina; Ronzoni, Luisa; Graziadei, Giovanna; Cappellini, Maria Domenica; Turrini, Francesco

    2014-03-01

    High counts of circulating microparticles, originated from the membrane of abnormal erythrocytes, have been associated with increased thrombotic risk in hemolytic disorders. Our studies indicate that in thalassemia intermedia patients the number of circulating microparticles correlates with the capability of the thalassemic erythrocytes to release microparticles. The microparticles are characteristically loaded with hemichromes formed by denatured α-chains. This finding was substantiated by the positive correlation observed in thalassemia intermedia patients between the amount of hemichromes measured in erythrocytes, their capability to release microparticles and the levels of plasma hemichromes. We observed that hemichromes, following their binding to the cytoplasmic domain of band 3, induce the formation of disulfide band 3 dimers that are subsequently phosphorylated by p72Syk kinase. Phosphorylation of oxidized band 3 appears to be relevant for the formation of large hemichromes/band 3 clusters that, in turn, induce local membrane instability and the release of microparticles. Proteomic analysis of microparticles released from thalassemia intermedia erythrocytes indicated that, besides hemichromes and clustered band 3, the microparticles contain a characteristic set of proteins that includes catalase, heat shock protein 70, peroxiredoxin 2 and carbonic anhydrase. High amounts of immunoglobulins and C3 have also been found to be associated with microparticles, accounting for their intense phagocytosis. The effect of p72Syk kinase inhibitors on the release of microparticles from thalassemia intermedia erythrocytes may indicate new perspectives for controlling the release of circulating microparticles in hemolytic anemias.

  11. Catalysts for synthesizing various short chain hydrocarbons

    DOEpatents

    Colmenares, Carlos

    1991-01-01

    Method and apparatus (10), including novel photocatalysts, are disclosed for the synthesis of various short chain hydrocarbons. Light-transparent SiO.sub.2 aerogels doped with photochemically active uranyl ions (18) are fluidized in a fluidized-bed reactor (12) having a transparent window (16), by hydrogen and CO, C.sub.2 H.sub.4 or C.sub.2 H.sub.6 gas mixtures (20), and exposed to radiation (34) from a light source (32) external to the reactor (12), to produce the short chain hydrocarbons (36).

  12. Characterization and chromosomal localization of the gene for human rhodopsin kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khani, S.C.; Yamamoto, S.; Dryja, T.P.

    1996-08-01

    G-protein-dependent receptor kinases (GRKs) play a key role in the adapatation of receptors to persistent stimuli. In rod photoreceptors rhodopsin kinase (RK) mediates rapid densensitization of rod photoreceptors to light by catalyzing phosphorylation of the visual pigment rhodopsin. To study the structure and mechanism of FRKs in human photoreceptors, we have isolated and characterized cDNA and genomic clones derived from the human RK locus using a bovine rhodopsin kinase cDNA fragment as a probe. The RK locus, assigned to chromosome 13 band q34, is composed of seven exons that encode a protein 92% identical in amino acid sequence to bovinemore » rhodopsin kinase. The marked difference between the structure of this gene and that of another recently clone human GRK gene suggests the existence of a wide evolutionary gap between members of the GRK gene family. 39 refs., 3 figs.« less

  13. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling.

    PubMed

    Nyati, Shyam; Schinske-Sebolt, Katrina; Pitchiaya, Sethuramasundaram; Chekhovskiy, Katerina; Chator, Areeb; Chaudhry, Nauman; Dosch, Joseph; Van Dort, Marcian E; Varambally, Sooryanarayana; Kumar-Sinha, Chandan; Nyati, Mukesh Kumar; Ray, Dipankar; Walter, Nils G; Yu, Hongtao; Ross, Brian Dale; Rehemtulla, Alnawaz

    2015-01-06

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation and differentiation, which contributes to development and disease. Upon binding TGF-β, the type I receptor (TGFBRI) binds TGFBRII, leading to the activation of the transcription factors SMAD2 and SMAD3. Using an RNA interference screen of the human kinome and a live-cell reporter for TGFBR activity, we identified the kinase BUB1 (budding uninhibited by benzimidazoles-1) as a key mediator of TGF-β signaling. BUB1 interacted with TGFBRI in the presence of TGF-β and promoted the heterodimerization of TGFBRI and TGFBRII. Additionally, BUB1 interacted with TGFBRII, suggesting the formation of a ternary complex. Knocking down BUB1 prevented the recruitment of SMAD3 to the receptor complex, the phosphorylation of SMAD2 and SMAD3 and their interaction with SMAD4, SMAD-dependent transcription, and TGF-β-mediated changes in cellular phenotype including epithelial-mesenchymal transition (EMT), migration, and invasion. Knockdown of BUB1 also impaired noncanonical TGF-β signaling mediated by the kinases AKT and p38 MAPK (mitogen-activated protein kinase). The ability of BUB1 to promote TGF-β signaling depended on the kinase activity of BUB1. A small-molecule inhibitor of the kinase activity of BUB1 (2OH-BNPP1) and a kinase-deficient mutant of BUB1 suppressed TGF-β signaling and formation of the ternary complex in various normal and cancer cell lines. 2OH-BNPP1 administration to mice bearing lung carcinoma xenografts reduced the amount of phosphorylated SMAD2 in tumor tissue. These findings indicated that BUB1 functions as a kinase in the TGF-β pathway in a role beyond its established function in cell cycle regulation and chromosome cohesion. Copyright © 2015, American Association for the Advancement of Science.

  14. A Target-Lighted dsDNA-Indicator for High-Performance Monitoring of Mercury Pollution and Its Antagonists Screening.

    PubMed

    Qing, Zhihe; Zhu, Lixuan; Li, Xiaoxuan; Yang, Sheng; Zou, Zhen; Guo, Jingru; Cao, Zhong; Yang, Ronghua

    2017-10-17

    As well-known, the excessive discharge of heavy-metal mercury not only destroys the ecological environment, bust also leads to severe damage of human health after ingestion via drinking and bioaccumulation of food chains, and mercury ion (Hg 2+ ) is designated as one of most prevalent toxic metal ions in drinking water. Thus, the high-performance monitoring of mercury pollution is necessary. Functional nucleic acids have been widely used as recognition probes in biochemical sensing. In this work, a carbazole derivative, ethyl-4-[3,6-bis(1-methyl-4-vinylpyridium iodine)-9H-carbazol -9-yl)] butanoate (EBCB), has been synthesized and found as a target-lighted DNA fluorescent indicator. As a proof-of-concept, Hg 2+ detection was carried out based on EBCB and Hg 2+ -mediated conformation transformation of a designed DNA probe. By comparison with conventional nucleic acid indicators, EBCB held excellent advantages, such as minimal background interference and maximal sensitivity. Outstanding detection capabilities were displayed, especially including simple operation (add-and-read manner), ultrarapidity (30 s), and low detection limit (0.82 nM). Furthermore, based on these advantages, the potential for high-performance screening of mercury antagonists was also demonstrated by the fluorescence change of EBCB. Therefore, we believe that this work is meaningful in pollution monitoring, environment restoration and emergency treatment, and may pave a way to apply EBCB as an ideal signal transducer for development of high-performance sensing strategies.

  15. Full-length structure of a monomeric histidine kinase reveals basis for sensory regulation

    DOE PAGES

    Rivera-Cancel, Giomar; Ko, Wen-huang; Tomchick, Diana R.; ...

    2014-12-02

    Although histidine kinases (HKs) are critical sensors of external stimuli in prokaryotes, the mechanisms by which their sensor domains control enzymatic activity remain unclear. In this paper, we report the full-length structure of a blue light-activated HK from Erythrobacter litoralis HTCC2594 (EL346) and the results of biochemical and biophysical studies that explain how it is activated by light. Contrary to the standard view that signaling occurs within HK dimers, EL346 functions as a monomer. Its structure reveals that the light–oxygen–voltage (LOV) sensor domain both controls kinase activity and prevents dimerization by binding one side of a dimerization/histidine phosphotransfer-like (DHpL) domain.more » The DHpL domain also contacts the catalytic/ATP-binding (CA) domain, keeping EL346 in an inhibited conformation in the dark. Upon light stimulation, interdomain interactions weaken to facilitate activation. Our data suggest that the LOV domain controls kinase activity by affecting the stability of the DHpL/CA interface, releasing the CA domain from an inhibited conformation upon photoactivation. Finally, we suggest parallels between EL346 and dimeric HKs, with sensor-induced movements in the DHp similarly remodeling the DHp/CA interface as part of activation.« less

  16. P21-activated kinase 4--not just one of the PAK.

    PubMed

    Dart, Anna E; Wells, Claire M

    2013-01-01

    P21-activated kinase 4 (PAK4) is a member of the p21-activated kinase (PAK) family. Historically much of the attention has been directed towards founding family member PAK1 but the focus is now shifting towards PAK4. It is a pluripotent serine/threonine kinase traditionally recognised as a downstream effector of the Rho-family GTPases. However, emerging research over the last few years has revealed that this kinase is much more than that. New findings have shed light on the molecular mechanism of PAK4 activation and how this kinase is critical for early development. Moreover, the number of PAK4 substrates and binding partners is rapidly expanding highlighting the increasing amount of cellular functions controlled by PAK4. We propose that PAK4 should be considered a signalling integrator regulating numerous fundamental cellular processes, including actin cytoskeletal dynamics, cell morphology and motility, cell survival, embryonic development, immune defence and oncogenic transformation. This review will outline our current understanding of PAK4 biology. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Glucose regulates hypothalamic long-chain fatty acid metabolism via AMP-activated kinase (AMPK) in neurons and astrocytes.

    PubMed

    Taïb, Bouchra; Bouyakdan, Khalil; Hryhorczuk, Cécile; Rodaros, Demetra; Fulton, Stephanie; Alquier, Thierry

    2013-12-27

    Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance.

  18. Glycogen synthase kinase-3β inhibition of 6-(methylsulfinyl)hexyl isothiocyanate derived from wasabi (Wasabia japonica Matsum).

    PubMed

    Yoshida, Jun; Nomura, Satomi; Nishizawa, Naoyuki; Ito, Yoshiaki; Kimura, Ken-ichi

    2011-01-01

    A new biological activity of 6-(methylsulfinyl)hexyl isothiocyanate derived from Wasabia japonica was discovered as an inhibitor of glycogen synthase kinase-3β. The most potent isothiocyanate, 9-(methylsulfinyl)hexyl isothiocyanate, inhibited glycogen synthase kinase-3β at a K(i) value of 10.5 µM and showed ATP competitive inhibition. The structure-activity relationship revealed an inhibitory potency of methylsulfinyl isothiocyanate dependent on the alkyl chain length and the sulfoxide, sulfone, and/or the isothiocyanate moiety.

  19. Light intermediate chain 1 defines a functional subfraction of cytoplasmic dynein which binds to pericentrin.

    PubMed

    Tynan, S H; Purohit, A; Doxsey, S J; Vallee, R B

    2000-10-20

    The light intermediate chains (LICs) of cytoplasmic dynein consist of multiple isoforms, which undergo post-translational modification to produce a large number of species separable by two-dimensional electrophoresis and which we have proposed to represent at least two gene products. Recently, we demonstrated the first known function for the LICs: binding to the centrosomal protein, pericentrin, which represents a novel, non-dynactin-based cargo-binding mechanism. Here we report the cloning of rat LIC1, which is approximately 75% homologous to rat LIC2 and also contains a P-loop consensus sequence. We compared LIC1 and LIC2 for the ability to interact with pericentrin, and found that only LIC1 will bind. A functional P-loop sequence is not required for this interaction. We have mapped the interaction to the central region of both LIC1 and pericentrin. Using recombinant LICs, we found that they form homooligomers, but not heterooligomers, and exhibit mutually exclusive binding to the heavy chain. Additionally, overexpressed pericentrin is seen to interact with endogenous LIC1 exclusively. Together these results demonstrate the existence of two subclasses of cytoplasmic dynein: LIC1-containing dynein, and LIC2-containing dynein, only the former of which is involved in pericentrin association with dynein.

  20. Amyloid in bone marrow smears in systemic light-chain amyloidosis.

    PubMed

    Kimmich, Christoph; Schönland, Stefan; Kräker, Sandra; Andrulis, Mindaugas; Ho, Anthony D; Mayer, Gudrun; Dittrich, Tobias; Hundemer, Michael; Hegenbart, Ute

    2017-03-01

    We performed a prospective sensitivity analysis to detect amyloid in bone marrow (BM) smears stained with Congo red (CR) and according to Pappenheim of patients with systemic light-chain (AL) amyloidosis. Results were directly compared to routine BM histology and fat aspiration. We analysed 198 BM smears from patients with the diagnosis or suspicion of systemic AL amyloidosis. Ultimately, the diagnosis could be established for 168 patients. Amyloid was detected on BM smears with CR in 33% (56/168). All patients suspicious for amyloid on Pappenheim staining (n = 39) showed substantial amyloid infiltration on CR. No patient without systemic AL amyloidosis stained positive. Sensitivity for routine BM histology was 57% (74/129) and for fat aspiration 96% (134/140). Patients with amyloid on BM smears had significantly more hepatic (42 vs. 9%, p < .001), renal (78 vs. 43%, p < .001) and gastrointestinal involvement (40 vs. 22%, p < .01) and less commonly cardiac involvement (58 vs. 76%, p < .03) and consecutively no adverse prognosis. CR staining of BM smears cannot be recommended as a primary screening tool for systemic AL as its overall sensitivity is far inferior to BM histology and fat aspiration. However, we recommend using the technique when suspecting amyloid on Pappenheim staining to establish the diagnosis of systemic AL amyloidosis.