Science.gov

Sample records for light-emitting diode technology space

  1. Medical applications of space light-emitting diode technology-space station and beyond

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Houle, John M.; Donohoe, Deborah L.; Bajic, Dawn M.; Schmidt, Meic H.; Reichert, Kenneth W.; Weyenberg, George T.; Larson, David L.; Meyer, Glenn A.; Caviness, James A.

    1999-01-01

    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  2. Medical Applications of Space Light-Emitting Diode Technology--Space Station and Beyond

    SciTech Connect

    Whelan, H.T.; Houle, J.M.; Donohoe, D.L.; Bajic, D.M.; Schmidt, M.H.; Reichert, K.W.; Weyenberg, G.T.; Larson, D.L.; Meyer, G.A.; Caviness, J.A.

    1999-06-01

    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  3. Benzoporphyrin derivative and light-emitting diode for use in photodynamic therapy: Applications of space light-emitting diode technology

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Houle, John M.; Bajic, Dawn M.; Schmidt, Meic H.; Reichert, Kenneth W.; Meyer, Glenn A.

    1998-01-01

    Photodynamic therapy (PDT) is a cancer treatment modality that recently has been applied as adjuvant therapy for brain tumors. PDT consists of intravenously injecting a photosensitizer, which preferentially accumulates in tumor cells, into a patient and then activating the photosensitizer with a light source. This results in free radical generation followed by cell death. The development of more effective light sources for PDT of brain tumors has been facilitated by applications of space light-emitting diode array technology; thus permitting deeper tumor penetration of light and use of better photosensitizers. Currently, the most commonly used photosensitizer for brain tumor PDT is Photofrin®. Photofrin® is a heterogeneous mixture of compounds derived from hematoporphyrin. Photofrin® is activated with a 630 nm laser light and does destroy tumor cells in animal models and humans. However, treatment failure does occur using this method. Most investigators attribute this failure to the limited penetration of brain tissue by a 630 nm laser light and to the fact that Photofrin® has only a minor absorption peak at 630 nm, meaning that only a small fraction of the chemical is activated. Benzoporphyrin Derivative Monoacid Ring A (BPD) is a new, second generation photosensitizer that can potentially improve PDT for brain tumors. BPD has a major absorption peak at 690 nm, which gives it two distinct advantages over Photofrin®. First, longer wavelengths of light penetrate brain tissue more easily so that larger tumors could be treated, and second, the major absorption peak means that a larger fraction of the drug is activated upon exposure to light. In the first part of this project we have studied the tumoricidal effects of BPD in vitro using 2A9 canine glioma and U373 human glioblastoma cell cultures. Using light emitting diodes (LED) with a peak emission of 688 nm as a light source, cell kill of up to 86 percent was measured in these cell lines by tumor DNA synthesis

  4. Analysis of Light Emitting Diode Technology for Aerospace Suitability in Human Space Flight Applications

    NASA Astrophysics Data System (ADS)

    Treichel, Todd H.

    Commercial space designers are required to manage space flight designs in accordance with parts selections made from qualified parts listings approved by Department of Defense and NASA agencies for reliability and safety. The research problem was a government and private aerospace industry problem involving how LEDs cannot replace existing fluorescent lighting in manned space flight vehicles until such technology meets DOD and NASA requirements for reliability and safety, and effects on astronaut cognition and health. The purpose of this quantitative experimental study was to determine to what extent commercial LEDs can suitably meet NASA requirements for manufacturer reliability, color reliability, robustness to environmental test requirements, and degradation effects from operational power, while providing comfortable ambient light free of eyestrain to astronauts in lieu of current fluorescent lighting. A fractional factorial experiment tested white and blue LEDs for NASA required space flight environmental stress testing and applied operating current. The second phase of the study used a randomized block design, to test human factor effects of LEDs and a qualified ISS fluorescent for retinal fatigue and eye strain. Eighteen human subjects were recruited from university student members of the American Institute of Aeronautics and Astronautics. Findings for Phase 1 testing showed that commercial LEDs met all DOD and NASA requirements for manufacturer reliability, color reliability, robustness to environmental requirements, and degradation effects from operational power. Findings showed statistical significance for LED color and operational power variables but degraded light output levels did not fall below the industry recognized <70%. Findings from Phase 2 human factors testing showed no statistically significant evidence that the NASA approved ISS fluorescent lights or blue or white LEDs caused fatigue, eye strain and/or headache, when study participants perform

  5. Light Emitting Diode (LED)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  6. Light Emitting Diodes (LEDs)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  7. Light-emitting Diodes

    PubMed Central

    Opel, Daniel R.; Hagstrom, Erika; Pace, Aaron K.; Sisto, Krisanne; Hirano-Ali, Stefanie A.; Desai, Shraddha

    2015-01-01

    Background: In the early 1990s, the biological significance of light-emitting diodes was realized. Since this discovery, various light sources have been investigated for their cutaneous effects. Study design: A Medline search was performed on light-emitting diode lights and their therapeutic effects between 1996 and 2010. Additionally, an open-label, investigator-blinded study was performed using a yellow light-emitting diode device to treat acne, rosacea, photoaging, alopecia areata, and androgenetic alopecia. Results: The authors identified several case-based reports, small case series, and a few randomized controlled trials evaluating the use of four different wavelengths of light-emitting diodes. These devices were classified as red, blue, yellow, or infrared, and covered a wide range of clinical applications. The 21 patients the authors treated had mixed results regarding patient satisfaction and pre- and post-treatment evaluation of improvement in clinical appearance. Conclusion: Review of the literature revealed that differing wavelengths of light-emitting diode devices have many beneficial effects, including wound healing, acne treatment, sunburn prevention, phototherapy for facial rhytides, and skin rejuvenation. The authors’ clinical experience with a specific yellow light-emitting diode device was mixed, depending on the condition being treated, and was likely influenced by the device parameters. PMID:26155326

  8. Evaluation of light emitting diode characteristics for a space-based plant irradiation source

    NASA Astrophysics Data System (ADS)

    Barta, D. J.; Tibbitts, T. W.; Bula, R. J.; Morrow, R. C.

    1992-12-01

    Light emitting diodes (LEDs) are a promising irradiation source for plant growth in space. Improved semiconductor technology has yielded LED devices fabricated with GaAlAs chips which have a high efficiency for converting electrical energy to photosynthetically active radiation. Specific GaAlAs LEDs are available that emit radiation with a peak wavelength near the spectral peak of maximum quantum action for photosynthesis. Advantages of LEDs over other electric light sources for use in space systems include long life, minimal mass and volume and being a solid state device.

  9. White light emitting diodes

    NASA Astrophysics Data System (ADS)

    Baur, J.; Schlotter, P.; Schneider, J.

    Using blue-emitting GaN LEDs on SiC substrate chips as primary light sources, we have fabricated green, yellow, red and white light emitting diodes (LUCOLEDs). The generation of mixed colors, as turquoise and magenta, is also demonstrated. The underlying physical principle is that of luminescence downconversion (Stokes shift), as typical for organic dye molecules and many inorganic phosphors. For white light generation via the LUCOLED principle, the phosphor Y3Al5O12:Ce3+(4f1) is ideally suited. The optical characteristics of Ce3+(4f1) in Y3Al5O12(YAG) are discussed in detail. Possibilities to "tune" the white color by various substitutions in the garnet lattice are shortly outlined.

  10. Evaluation of light emitting diode characteristics for a space-based plant irradiation source.

    PubMed

    Barta, D J; Tibbitts, T W; Bula, R J; Morrow, R C

    1992-01-01

    Light emitting diodes (LEDs) are a promising irradiation source for plant growth in space. Improved semiconductor technology has yielded LED devices fabricated with gallium aluminum arsenide (GaAlAs) chips which have a high efficiency for converting electrical energy to photosynthetically active radiation. Specific GaAlAs LEDs are available that emit radiation with a peak wavelength near the spectral peak of maximum quantum action for photosynthesis. The electrical conversion efficiency of installed systems (micromole s-1 of photosynthetic photons per watt) of high output LEDs can be within 10% of that for high pressure sodium lamps. Output of individual LEDs were found to vary by as much as 55% from the average of the lot. LED ratings, in mcd (luminous intensity per solid angle), were found to be proportional to total photon output only for devices with the same dispersion angle and spectral peak. Increasing current through the LED increased output but also increased temperature with a consequent decrease in electrical conversion efficiency. A photosynthetic photon flux as high as 900 micromoles m-2 s-1 has been produced on surfaces using arrays with LEDs mounted 7.6 mm apart, operating as a current of 50 mA device-1 and at an installed density of approximately 17,200 lamps m-2 of irradiated area. Advantages of LEDs over other electric light sources for use in space systems include long life, minimal mass and volume and being a solid state device.

  11. Interface modification and material synthesis of organic light-emitting diodes using plasma technology

    NASA Astrophysics Data System (ADS)

    Liang, Rongqing; Ou, Qiongrong; Yang, Cheng; He, Kongduo; Yang, Xilu; Zhong, Shaofeng; plasma application Team

    2015-09-01

    Organic light-emitting diodes (OLEDs), due to their unique properties of solution processability, compatibility with flexible substrates and with large-scale printing technology, attract huge interest in the field of lighting. The integration of plasma technology into OLEDs provides a new route to improve their performance. Here we demonstrate the modification of indium-tin-oxide (ITO) work function by plasma treatment, synthesis of thermally activated delayed fluorescence (TADF) materials using plasma grafting (polymerisation), and multi-layer solution processing achieved by plasma cross-linking.

  12. Light-emitting diode technology status and directions: Opportunities for horticultural lighting

    DOE PAGES

    Tsao, Jeffrey Y.; Pattison, P. Morgan; Krames, Michael R.

    2016-01-01

    Here, light-emitting diode (LED) technology has advanced rapidly over the last decade, primarily driven by display and general illumination applications ("solid-state lighting (SSL) for humans"). These advancements have made LED lighting technically and economically advantageous not only for these applications, but also, as an indirect benefit, for adjacent applications such as horticultural lighting ("SSL for plants"). Moreover, LED technology has much room for continued improvement. In the near-term, these improvements will continue to be driven by SSL for humans (with indirect benefit to SSL for plants), the most important of which can be anticipated.

  13. Wheat Under LED's (Light Emitting Diodes)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astroculture is a suite of technologies used to produce and maintain a closed controlled environment for plant growth. The two most recent missions supported growth of potato, dwarf wheat, and mustard plants, and provided scientists with the first opportunity to conduct true plant research in space. Light emitting diodes have particular usefulness for plant growth lighting because they emit a much smaller amount of radiant heat than do conventional lighting sources and because they have potential of directing a higher percentage of the emitted light onto plants surfaces. Furthermore, the high output LED's have emissions in the 600-700 nm waveband, which is of highest efficiency for photosynthesis by plants.

  14. Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes.

    PubMed

    Zhan, Lu; Xia, Fafa; Ye, Qiuyu; Xiang, Xishu; Xie, Bing

    2015-12-15

    This work develops a novel process of recycling rare metals (Ga, In) from waste light-emitting diodes using the combination of pyrolysis, physical disaggregation methods and vacuum metallurgy separation. Firstly, the pure chips containing InGaN/GaN are adopted to study the vacuum separation behavior of rare metals, which aims to provide the theoretical foundation for recycling gallium and indium from waste light-emitting diodes. In order to extract the rare-metal-rich particles from waste light-emitting diodes, pyrolysis and physical disaggregation methods (crushing, screening, grinding and secondly screening) are studied respectively, and the operating parameters are optimized. With low boiling points and high saturation vapor pressures under vacuum, gallium and indium are separated from rare-metal-rich particles by the process of evaporation and condensation. By reference to the separating parameters of pure chips, gallium and indium in waste light-emitting diodes are recycled with the recovery efficiencies of 93.48% and 95.67% under the conditions as follows: heating temperature of 1373 K, vacuum pressure of 0.01-0.1 Pa, and holding time of 60 min. There are no secondary hazardous materials generated in the whole processes. This work provides an efficient and environmentally friendly process for recycling rare metals from waste light-emitting diodes.

  15. Spectral matching technology for light-emitting diode-based jaundice photodynamic therapy device

    NASA Astrophysics Data System (ADS)

    Gan, Ru-ting; Guo, Zhen-ning; Lin, Jie-ben

    2015-02-01

    The objective of this paper is to obtain the spectrum of light-emitting diode (LED)-based jaundice photodynamic therapy device (JPTD), the bilirubin absorption spectrum in vivo was regarded as target spectrum. According to the spectral constructing theory, a simple genetic algorithm as the spectral matching algorithm was first proposed in this study. The optimal combination ratios of LEDs were obtained, and the required LEDs number was then calculated. Meanwhile, the algorithm was compared with the existing spectral matching algorithms. The results show that this algorithm runs faster with higher efficiency, the switching time consumed is 2.06 s, and the fitting spectrum is very similar to the target spectrum with 98.15% matching degree. Thus, blue LED-based JPTD can replace traditional blue fluorescent tube, the spectral matching technology that has been put forward can be applied to the light source spectral matching for jaundice photodynamic therapy and other medical phototherapy.

  16. Broadband light-emitting diode

    DOEpatents

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  17. Broadband light-emitting diode

    DOEpatents

    Fritz, Ian J.; Klem, John F.; Hafich, Michael J.

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  18. Plant experiments with light-emitting diode module in Svet space greenhouse

    NASA Astrophysics Data System (ADS)

    Ilieva, Iliyana; Ivanova, Tania; Naydenov, Yordan; Dandolov, Ivan; Stefanov, Detelin

    Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for SVET Space Greenhouse using Cree R XLamp R 7090 XR light-emitting diodes (LEDs) is developed. Three types of monochromic LEDs emitting in the red, green, and blue region of the spectrum are used. The new LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. DMX programming device controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 µmol.m-2 .s-1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with "salad-type" plants - lettuce and chicory were carried at 400 µmol.m-2 .s-1 PPFD (high light - HL) and 220 µmol.m-2 .s-1 PPFD (low light - LL) and composition 70% red, 20% green and 10% blue light. In vivo modulated chlorophyll fluorescence was measured by a PAM fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II (ΦP SII ) and non-photochemical quenching (NPQ) were calculated. Both lettuce and chicory plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by the actual PSII quantum yield, ΦP SII . The calculated steady state NPQ values did not differ significantly in lettuce and chicory. The rapid phase of the NPQ increase was accelerated in all studied LL leaves. In conclusion low light conditions ensured more effective functioning of PSII than HL when lettuce and chicory plants were grown at 70% red, 20% green and 10% blue light composition.

  19. Plant experiments with light-emitting diode module in Svet space greenhouse

    NASA Astrophysics Data System (ADS)

    Ilieva, Iliana; Ivanova, Tania; Naydenov, Yordan; Dandolov, Ivan; Stefanov, Detelin

    2010-10-01

    Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for Svet space greenhouse using Cree® XLamp® 7090 XR light-emitting diodes (LEDs) was developed. Monochromic LEDs emitting in the red, green, and blue regions of the spectrum were used. The LED-LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. Digital Multiplex Control Unit controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 μmol m -2 s -1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with plants - lettuce and radicchio were carried out at 400 μmol m -2 s -1 PPFD (high light - HL) and 220 μmol m -2 s -1 PPFD (low light - LL) and 70% red, 20% green and 10% blue light composition. To evaluate the efficiency of photosynthesis, in vivo modulated chlorophyll fluorescence was measured by Pulse Amplitude Modulation (PAM) fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II ( ΦPSII) and non-photochemical quenching (NPQ) were calculated. Both lettuce and radicchio plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by ΦPSII. Accelerated rise in NPQ in both LL grown plants was observed, while steady state NPQ values were higher in LL grown lettuce plants and did not differ in LL and HL grown radicchio plants. The extent of photoinhibition process in both plants was evaluated by changes in malonedialdehyde (MDA) concentration, peroxidase (POX) activity and hydrogen peroxide (H 2O 2) content. Accumulation of high levels of MDA and increased POX activity

  20. Light-emitting diodes as an illumination source for plants: a review of research at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Kim, Hyeon-Hye; Wheeler, Raymond M.; Sager, John C.; Yorio, Neil C.; Goins, Gregory D.

    2005-01-01

    The provision of sufficient light is a fundamental requirement to support long-term plant growth in space. Several types of electric lamps have been tested to provide radiant energy for plants in this regard, including fluorescent, high-pressure sodium, and metal halide lamps. These lamps vary in terms of spectral quality, which can result in differences in plant growth and morphology. Current lighting research for space-based plant culture is focused on innovative lighting technologies that demonstrate high electrical efficiency and reduced mass and volume. Among the lighting technologies considered for space are light-emitting diodes (LEDs). The combination of red and blue LEDs has proven to be an effective lighting source for several crops, yet the appearance of plants under red and blue lighting is purplish gray, making visual assessment of plant health difficult. Additional green light would make the plant leaves appear green and normal, similar to a natural setting under white light, and may also offer psychological benefits for the crew. The addition of 24% green light (500-600 nm) to red and blue LEDs enhanced the growth of lettuce plants compared with plants grown under cool white fluorescent lamps. Coincidentally, these plants grown under additional green light would have the additional aesthetic appeal of a green appearance.

  1. Light-emitting diodes as an illumination source for plants: a review of research at Kennedy Space Center.

    PubMed

    Kim, Hyeon-Hye; Wheeler, Raymond M; Sager, John C; Yorio, Neil C; Goins, Gregory D

    2005-01-01

    The provision of sufficient light is a fundamental requirement to support long-term plant growth in space. Several types of electric lamps have been tested to provide radiant energy for plants in this regard, including fluorescent, high-pressure sodium, and metal halide lamps. These lamps vary in terms of spectral quality, which can result in differences in plant growth and morphology. Current lighting research for space-based plant culture is focused on innovative lighting technologies that demonstrate high electrical efficiency and reduced mass and volume. Among the lighting technologies considered for space are light-emitting diodes (LEDs). The combination of red and blue LEDs has proven to be an effective lighting source for several crops, yet the appearance of plants under red and blue lighting is purplish gray, making visual assessment of plant health difficult. Additional green light would make the plant leaves appear green and normal, similar to a natural setting under white light, and may also offer psychological benefits for the crew. The addition of 24% green light (500-600 nm) to red and blue LEDs enhanced the growth of lettuce plants compared with plants grown under cool white fluorescent lamps. Coincidentally, these plants grown under additional green light would have the additional aesthetic appeal of a green appearance.

  2. Vertical thinking in blue light emitting diodes: GaN-on-graphene technology

    NASA Astrophysics Data System (ADS)

    Bayram, C.; Kim, J.; Cheng, C.-W.; Ott, J.; Reuter, K. B.; Bedell, S. W.; Sadana, D. K.; Park, H.; Dimitrakopoulos, C.

    2014-03-01

    In this work, we show that a 2D cleave layer (such as epitaxial graphene on SiC) can be used for precise release of GaNbased light emitting diodes (LEDs) from the LED-substrate interface. We demonstrate the thinnest GaN-based blue LED and report on the initial electrical and optical characteristics. Our LED device employs vertical architecture: promising excellent current spreading, improved heat dissipation, and high light extraction with respect to the lateral one. Compared to conventional LED layer release techniques used for forming vertical LEDs (such as laser-liftoff and chemical lift-off techniques), our process distinguishes itself with being wafer-scalable (large area devices are possible) and substrate reuse opportunity.

  3. Demonstrating the Light-Emitting Diode.

    ERIC Educational Resources Information Center

    Johnson, David A.

    1995-01-01

    Describes a simple inexpensive circuit which can be used to quickly demonstrate the basic function and versatility of the solid state diode. Can be used to demonstrate the light-emitting diode (LED) as a light emitter, temperature sensor, light detector with both a linear and logarithmic response, and charge storage device. (JRH)

  4. High Intensity Organic Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  5. Long Persistent Light Emitting Diode Indicators

    ERIC Educational Resources Information Center

    Jia, Dongdong; Ma, Yiwei; Hunter, D. N.

    2007-01-01

    An undergraduate laboratory was designed for undergraduate students to make long persistent light emitting diode (LED) indicators using phosphors. Blue LEDs, which emit at 465 nm, were characterized and used as an excitation source. Long persistent phosphors, SrAl[subscript 2]O[subscript 4]:Eu[superscript 2+],Dy[superscript 3+] (green) and…

  6. Light-Emitting Diodes: Solving Complex Problems

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the fourth paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide readers with the description of experiments and the pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper provided…

  7. Light-Emitting Diodes: Learning New Physics

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…

  8. Light-Emitting Diodes: A Hidden Treasure

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2014-01-01

    LEDs, or light-emitting diodes, are cheap, easy to purchase, and thus commonly used in physics instruction as indicators of electric current or as sources of light (Fig. 1). In our opinion LEDs represent a unique piece of equipment that can be used to collect experimental evidence, and construct and test new ideas in almost every unit of a general…

  9. A lighting assembly based on red and blue light-emitting diodes as a lighting source for space agriculture

    NASA Astrophysics Data System (ADS)

    Avercheva, Olga; Berkovich, Yuliy A.; Smolyanina, Svetlana; Bassarskaya, Elizaveta; Zhigalova, Tatiana; Ptushenko, Vasiliy; Erokhin, Alexei

    Light-emitting diodes (LEDs) are a promising lighting source for space agriculture due to their high efficiency, longevity, safety, and other factors. Assemblies based on red and blue LEDs have been recommended in literature, although not all plants show sufficient productivity in such lighting conditions. Adding of green LEDs proposed in some works was aimed at psychological support for the crew, and not at the improvement of plant growth. We studied the growth and the state of the photosynthetic apparatus in Chinese cabbage (Brassica chinensis L.) plants grown under red (650 nm) and blue (470 nm) light-emitting diodes (LEDs). Plants grown under a high-pressure sodium lamp (HPS lamp) were used as a control. The plants were illuminated with two photosynthetic photon flux levels: nearly 400 µE and about 100 µE. Plants grown under LEDs with 400 µE level, as compared to control plants, showed lower fresh weight, edible biomass, growth rate, and sugar content. The difference in fresh weight and edible biomass was even more pronounced in plants grown with 100 µE level; the data indicate that the adaptability of the test plants to insufficient lighting decreased. Under LEDs, we observed the decreasing of root growth and the absence of transition to the flowering stage, which points to a change in the hormonal balance in plants grown in such lighting conditions. We also found differences in the functioning of the photosynthetic apparatus and its reaction to a low lighting level. We have concluded that a lighting assembly with red and blue LEDs only is insufficient for the plant growth and productivity, and can bring about alterations in their adaptive and regulatory mechanisms. Further studies are needed to optimize the lighting spectrum for space agriculture, taking into account the photosynthetic, phototropic and regulatory roles of light. Using white LEDs or adding far-red and green LEDs might be a promising approach.

  10. NASA light emitting diode medical applications from deep space to deep sea

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Buchmann, Ellen V.; Whelan, Noel T.; Turner, Scott G.; Cevenini, Vita; Stinson, Helen; Ignatius, Ron; Martin, Todd; Cwiklinski, Joan; Meyer, Glenn A.; Hodgson, Brian; Gould, Lisa; Kane, Mary; Chen, Gina; Caviness, James

    2001-02-01

    This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. We present the results of LED-treatment of cells grown in culture and the effects of LEDs on patients' chronic and acute wounds. LED-technology is also biologically optimal for photodynamic therapy of cancer and we discuss our successes using LEDs in conjunction with light-activated chemotherapeutic drugs. .

  11. Aggregation in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Meyer, Abigail

    Organic light emitting diode (OLED) technology has great potential for becoming a solid state lighting source. However, there are inefficiencies in OLED devices that need to be understood. Since these inefficiencies occur on a nanometer scale there is a need for structural data on this length scale in three dimensions which has been unattainable until now. Local Electron Atom Probe (LEAP), a specific implementation of Atom Probe Tomography (APT), is used in this work to acquire morphology data in three dimensions on a nanometer scale with much better chemical resolution than is previously seen. Before analyzing LEAP data, simulations were used to investigate how detector efficiency, sample size and cluster size affect data analysis which is done using radial distribution functions (RDFs). Data is reconstructed using the LEAP software which provides mass and position data. Two samples were then analyzed, 3% DCM2 in C60 and 2% DCM2 in Alq3. Analysis of both samples indicated little to no clustering was present in this system.

  12. Polymer Light-Emitting Diode (PLED) Process Development

    DTIC Science & Technology

    2003-12-01

    conclusions and recommendations for Phase II of the Flexible Display Program. 15. SUBJECT TERMS LIGHT EMITTING DIODES LIQUID CRYSTAL DISPLAY SYSTEMS...space for Phase I and II confined by backplane complexity and substrate form...12 Figure 6. Semi automated I-V curve measurement setup consisting of Keithley power supply, computer and

  13. Atomically thin quantum light-emitting diodes

    PubMed Central

    Palacios-Berraquero, Carmen; Barbone, Matteo; Kara, Dhiren M.; Chen, Xiaolong; Goykhman, Ilya; Yoon, Duhee; Ott, Anna K.; Beitner, Jan; Watanabe, Kenji; Taniguchi, Takashi; Ferrari, Andrea C.; Atatüre, Mete

    2016-01-01

    Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices. PMID:27667022

  14. Atomically thin quantum light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Palacios-Berraquero, Carmen; Barbone, Matteo; Kara, Dhiren M.; Chen, Xiaolong; Goykhman, Ilya; Yoon, Duhee; Ott, Anna K.; Beitner, Jan; Watanabe, Kenji; Taniguchi, Takashi; Ferrari, Andrea C.; Atatüre, Mete

    2016-09-01

    Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices.

  15. Flexible inorganic nanowire light-emitting diode.

    PubMed

    Nadarajah, Athavan; Word, Robert C; Meiss, Jan; Könenkamp, Rolf

    2008-02-01

    We report a highly flexible light-emitting device in which inorganic nanowires are the optically active components. The single-crystalline ZnO nanowires are grown at 80 degrees C on flexible polymer-based indium-tin-oxide-coated substrates and subsequently encapsulated in a minimal-thickness, void-filling polystyrene film. A reflective top contact serving as the anode in the diode structure is provided by a strongly doped p-type polymer and an evaporated Au film. The emission through the polymer side of this arrangement covers most of the visual region. Electrical and optical properties as well as performance limitations of the device structure are discussed.

  16. Quantum dots for light emitting diodes.

    PubMed

    Qasim, Khan; Lei, Wei; Li, Qing

    2013-05-01

    In this article we discuss the development and key advantages of quantum dot based light emitting diode (QD-LED) and other applications based on their color purity, stability, and solution processibility. Analysis of quantum dot based LEDs and the main challenges faced in this field, such as the QD luminescence quenching, QD charging in thin films, and external quantum efficiency are discussed in detail. The description about how different optical down-conversion and structures enabled researchers to overcome these challenges and to commercialize the products. The recent developments about how to overcome these difficulties have also been discussed in this article.

  17. Glareless light-emitting diode lighting tube

    NASA Astrophysics Data System (ADS)

    Chang, Rong-Seng; Li, Tung-Yen; Jwo, Ko-Wen; Wang, Sha-Wei; Tsai, Jang-Zern

    2012-03-01

    We develop a novel light bar waveguide design to produce a glareless light-emitting diode (LED) lighting tube. We design optimal parameters, such as the gap y between the tube and the reflective surface, the relative distance x between the lens and the LED, and so on. Using these parameters, we fabricate an illumination system consisting of LED light bulb installed at both ends of lighting tube. The lighting tube is shaped the same as a traditional fluorescent lighting tube in order to replace traditional lighting tubes without the modification of the lighting stand. The LED lighting tube is glareless to the observer from the side view.

  18. Dr. Harry Whelan With the Light Emitting Diode Probe

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The red light from the Light Emitting Diode (LED) probe shines through the fingers of Dr. Harry Whelan, a pediatric neurologist at the Children's Hospital of Wisconsin in Milwaukee. Dr. Whelan uses the long waves of light from the LED surgical probe to activate special drugs that kill brain tumors. Laser light previously has been used for this type of surgery, but the LED light illuminates through all nearby tissues, reaching parts of tumors that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. Also, it can be used for hours at a time while still remaining cool to the touch. The probe was developed for photodynamic cancer therapy under a NASA Small Business Innovative Research Program grant. The program is part of NASA's Technology Transfer Department at the Marshall Space Flight Center.

  19. Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report

    NASA Technical Reports Server (NTRS)

    Salazar, George A.

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  20. Illuminating Solar Decathlon Homes: Exploring Next Generation Lighting Technology - Light Emitting Diodes

    SciTech Connect

    Gordon, Kelly L.; Gilbride, Theresa L.

    2008-05-22

    This report was prepared by PNNL for the US Department of Energy Building Technologies Program, Solid-State Lighting Program. The report will be provided to teams of university students who are building houses for the 2009 Solar Decathlon, a home design competition sponsored in part by DOE, to encourage teams to build totally solar powered homes. One aspect of the competition is lighting. This report provides the teams with information about LED lighting that can help them determine how they incorporate LED lighting into their homes. The report provides an overview of LED technology, a status of where LED technology is today, questions and answers about lighting quality, efficiency, lifetime etc.; numerous examples of LED products; and several weblinks for further research.

  1. Light-emitting diodes for analytical chemistry.

    PubMed

    Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K

    2014-01-01

    Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.

  2. The Use of NASA Light-Emitting Diode Near-Infrared Technology for Biostimulation

    NASA Technical Reports Server (NTRS)

    Whelan, Harry T.

    2002-01-01

    Studies on cells exposed to microgravity and hypergravity indicate that human cells need gravity to stimulate growth. As the gravitational force increases or decreases, the cell function responds in a linear fashion. This poses significant health risks for astronauts in long-term spaceflight. The application of light therapy with the use of NASA LEDs will significantly improve the medical care that is available to astronauts on long-term space missions. NASA LEDs stimulate the basic energy processes in the mitochondria (energy compartments) of each cell, particularly when near-infrared light is used to activate the color sensitive chemicals (chromophores, cytochrome systems) inside. Optimal LED wavelengths include 680, 730 and 880 nm and our laboratory has improved the healing of wounds in laboratory animals by using both NASA LED light and hyperbaric oxygen. Furthermore, DNA synthesis in fibroblasts and muscle cells has been quintupled using NASA LED light alone, in a single application combining 680, 730 and 880 nm each at 4 Joules per centimeter squared. Muscle and bone atrophy are well documented in astronauts, and various minor injuries occurring in space have been reported not to heal until landing on Earth. An LED blanket device may be used for the prevention of bone and muscle atrophy in astronauts. The depth of near-infrared light penetration into human tissue has been measured spectroscopically.

  3. Laterally injected light-emitting diode and laser diode

    DOEpatents

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  4. Biologically Inspired Organic Light-Emitting Diodes.

    PubMed

    Kim, Jae-Jun; Lee, Jaeho; Yang, Sung-Pyo; Kim, Ha Gon; Kweon, Hee-Seok; Yoo, Seunghyup; Jeong, Ki-Hun

    2016-05-11

    Many animal species employ highly conspicuous traits as courtship signals for successful mating. Fireflies utilize their bioluminescent light as visual courtship signals. In addition to efficient bioluminescent light emission, the structural components of the firefly lantern also contribute to the enhancement of conspicuous optical signaling. Recently, these firefly lantern ultrastructures have attracted much interest and inspired highly efficient light management approaches. Here we report on the unique optical function of the hierarchical ultrastructures found in a firefly (Pyrocoelia rufa) and their biological inspiration of highly efficient organic light-emitting diode (OLED) applications. The hierarchical structures are comprised of longitudinal nanostructures and asymmetric microstructures, which were successfully replicated using geometry-guided resist reflow, replica molding, and polydimethylsiloxane (PDMS) oxidation. The external quantum efficiency (EQE) of the bioinspired OLEDs was enhanced by up to 61%. The bioinspired OLEDs clearly showed side-enhanced super-Lambertian emission with a wide-viewing angle. The highly efficient light extraction and wide-angle illumination suggest how the hierarchical structures likely improve the recognition of firefly optical courtship signals over a wide-angle range. At the same time, the biologically inspired designs provide a new paradigm for designing functional optical surfaces for lighting or display applications.

  5. Thermally enhanced blue light-emitting diode

    NASA Astrophysics Data System (ADS)

    Xue, Jin; Zhao, Yuji; Oh, Sang-Ho; Herrington, William F.; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji; Ram, Rajeev J.

    2015-09-01

    We investigate thermoelectric pumping in wide-bandgap GaN based light-emitting diodes (LEDs) to take advantage of high junction temperature rather than avoiding the problem of temperature-induced efficiency droop through external cooling. We experimentally demonstrate a thermally enhanced 450 nm GaN LED, in which nearly fourfold light output power is achieved at 615 K (compared to 295 K room temperature operation), with nearly no reduction in the wall-plug efficiency (i.e., electrical-optical energy conversion efficiency) at bias V <ℏω/q . The LED is shown to work in a mode similar to a thermodynamic heat engine operating with charged carriers pumped into the active region by a combination of electrical work and Peltier heat (phonons) drawn from the lattice. In this optimal operating regime at 615 K, the LED injection current (3.26 A/cm2) is of similar magnitude to the operating point of common high power GaN based LEDs (5-35 A/cm2). This result suggests the possibility of removing bulky heat sinks in current high power LED products thus realizing a significant cost reduction for solid-state lighting.

  6. Organic light-emitting diodes: High-throughput virtual screening

    NASA Astrophysics Data System (ADS)

    Hirata, Shuzo; Shizu, Katsuyuki

    2016-10-01

    Computer networks, trained with data from delayed-fluorescence materials that have been successfully used in organic light-emitting diodes, facilitate the high-speed prediction of good emitters for display and lighting applications.

  7. Determining Planck's Constant Using a Light-emitting Diode.

    ERIC Educational Resources Information Center

    Sievers, Dennis; Wilson, Alan

    1989-01-01

    Describes a method for making a simple, inexpensive apparatus which can be used to determine Planck's constant. Provides illustrations of a circuit diagram using one or more light-emitting diodes and a BASIC computer program for simplifying calculations. (RT)

  8. High efficiency III-nitride light-emitting diodes

    DOEpatents

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  9. Plant Growth Under Light Emitting Diode Irradiation.

    NASA Astrophysics Data System (ADS)

    Tennessen, Daniel John

    Plant growth under light emitting diodes (LEDs) was investigated to determine if LEDs would be useful to provide radiant energy for two plant processes, photosynthesis and photomorphogenesis. Photosynthesis of tomato (Lycopersicon esculentum L.) and Kudzu (Pueraria lobata (Willd) Ohwi.) was measured using photons from LEDs to answer the following: (1) Are leaves able to use red LED light for photosynthesis? and (2) Is the efficiency of photosynthesis in pulsed light equal to that of continuous light? In 175 Pa CO _2, or in response to changes in CO _2,<=af photosynthesis and ATP status were the same in LED as in white xenon arc light. In 35 Pa CO_2, photosynthesis was 10% lower in LED than in xenon arc light due to lowered stomatal conductance. The quantum efficiency of photosynthesis in pulsed light was equal to continuous light, even when pulses were twice as bright as sunlight. Xanthophyll pigments were not affected by these bright pulses. Photomorphogenesis of tobacco (Nicotiana tabacum L.), tomato (Lycopersicon esculentum Mill.) and transformed tobacco and tomato (expressing oat phytochrome-A) was assessed by growing plants under red LED lamps in an attempt to answer the following: (1) What is the developmental response of non-transformed and transformed tobacco to red LED light? and (2) Can tomato plants that grow tall and spindly in red LED light be made to grow short by increasing the amount of phytochrome-A? The short phenotype of transformed tobacco was not evident when plants were grown in LED light. Addition of photons of far-red or blue light to red light resulted in short transformed tobacco. Tomato plants grew three times as tall and lacked leaf development in LED versus white light, but transformed tomato remained short and produced fruit under LED light. I have determined that the LED photons are useful for photosynthesis and that the photon efficiency of photosynthesis is the same in pulsed as in continuous light. From responses of tobacco, I

  10. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes.

    PubMed

    Li, Ning; Oida, Satoshi; Tulevski, George S; Han, Shu-Jen; Hannon, James B; Sadana, Devendra K; Chen, Tze-Chiang

    2013-01-01

    Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m(-2) with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W(-1) at 3,000 cd m(-2), comparable to the most efficient lighting technologies.

  11. Si-based blue light emitting diode

    NASA Astrophysics Data System (ADS)

    Namavar, Fereydoon

    1994-05-01

    Phase 1 results demonstrated for the first time a strong, stable blue-green emission from C-implanted red-emitting porous silicon. The objective of Phase 1 was to obtain blue-green emission from porous Si structure either by increasing the bandgap of the substrate by growth of Si-C random alloys prior to forming nanostructures with quantum confined properties, or by increasing the confinement energy of red-emitting Si nanostructures. Porous structures fabricated from group 4 alloys epitaxially grown by chemical vapor deposition (CVD) resulted in an enhancement in light emission of about one order of magnitude after incorporation of a very small amount of carbon in the epitaxial grown films. Strong blue-green light emission was observed by the naked eye from C-implanted and annealed porous Si. Using AlGaAs as a reference, we observed that the intensity of blue-green emission was one order of magnitude higher than that of the original red-emitting porous Si. Catholuminescence measurements of our samples performed at the University of Colorado show blue emission at 1.80 eV and 2.80 eV. Fourier transform infrared (FTIR) spectra of a blue-green emitting porous structure shows an IR absorption line identical to that of SiC and electron diffraction studies clearly show reflections corresponding to beta-SiC. Phase 1 results indicate that blue-green light is from SiC nanostructures with quantum confined properties. This material may be used to fabricate blue light-emitting Si-based devices which can be easily integrated into Si technology.

  12. Reshaping Light-Emitting Diodes To Increase External Efficiency

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert; Egalon, Claudio

    1995-01-01

    Light-emitting diodes (LEDs) reshaped, according to proposal, increasing amount of light emitted by decreasing fraction of light trapped via total internal reflection. Results in greater luminous output power for same electrical input power; greater external efficiency. Furthermore, light emitted by reshaped LEDs more nearly collimated (less diffuse). Concept potentially advantageous for conventional red-emitting LEDs. More advantageous for new "blue" LEDs, because luminous outputs and efficiencies of these devices very low. Another advantage, proposed conical shapes achieved relatively easily by chemical etching of semiconductor surfaces.

  13. Operation of AC Adapters Visualized Using Light-Emitting Diodes

    ERIC Educational Resources Information Center

    Regester, Jeffrey

    2016-01-01

    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…

  14. Semiconductor Nanocrystals-Based White Light Emitting Diodes

    SciTech Connect

    Dai, Quanqin; Hu, Michael Z.; Duty, Chad E

    2010-01-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid state lighting, such as white light emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement could cut the ever-increasing energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, we highlight the recent progress in semiconductor nanocrystals-based WLEDs, compare different approaches for generating white light, and discuss the benefits and challenges of the solid state lighting technology.

  15. Degradation of light emitting diodes: a proposed methodology

    NASA Astrophysics Data System (ADS)

    Koh, Sau; Van Driel, Willem; Zhang, G. Q.

    2011-01-01

    Due to their long lifetime and high efficacy, light emitting diodes have the potential to revolutionize the illumination industry. However, self heat and high environmental temperature which will lead to increased junction temperature and degradation due to electrical overstress can shorten the life of the light emitting diode. In this research, a methodology to investigate the degradation of the LED emitter has been proposed. The epoxy lens of the emitter can be modelled using simplified Eyring methods whereas an equation has been proposed for describing the degradation of the LED emitters.

  16. Optical communications. V - Light emitting diodes /LED/

    NASA Astrophysics Data System (ADS)

    Best, S. W.

    1980-10-01

    The process of assembling diode chips is discussed, along with their application in optical communications. Metal plating is performed with an evaporation technique using primarily AuGe on the back side and Al or AuZn on the front side. The assembling of LED-chips with metal casings is illustrated. The chip is mounted on a flat bottom plate and electrical contact is established by means of an alloying or adhesion procedure. A glass fiber can be attached to the diode and then fitted with a casing, or the diode can be assembled with a metal cap and a lense, or with an open cap that is sealed with a clear synthetic resin plastic. The typical emission spectra of an LED and a semiconductor laser are compared. Limitations in the operation of an LED in a photoconductor are examined, taking into account spectral line width and radiated power criteria.

  17. A multi-source portable light emitting diode spectrofluorometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A portable luminescence spectrofluorometer weighing only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed and evaluated. Excitation using a sequence of seven individual broad-band LED emission sources enabled the generation of excitation-emission spectra usi...

  18. Singlet oxygen and organic light-emitting diodes

    SciTech Connect

    Jacobs, S.J.; Sinclair, M.B.; Valencia, V.S.; Kepler, R.G.; Clough, R.L.; Scurlock, R.D.; Ogilby, P.R.

    1995-07-01

    The preparation of light emitting diodes employing a new class of materials, 5,10-dihetera 5,10-dihydro-indeno[3,2b]indenes, as hole transport agents is described. These materials have been found to be more resistant to degradation by singlet oxygen than a poly(p-phenylene vinylene) (PPV) derivative.

  19. The Light-Emitting Diode as a Light Detector

    ERIC Educational Resources Information Center

    Baird, William H.; Hack, W. Nathan; Tran, Kiet; Vira, Zeeshan; Pickett, Matthew

    2011-01-01

    A light-emitting diode (LED) and operational amplifier can be used as an affordable method to provide a digital output indicating detection of an intense light source such as a laser beam or high-output LED. When coupled with a microcontroller, the combination can be used as a multiple photogate and timer for under $50. A similar circuit is used…

  20. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  1. Light emitting diode absorption spectroscopy for combustible gas monitoring

    NASA Astrophysics Data System (ADS)

    Fanchenko, S. S.; Baranov, A. M.; Savkin, A. V.; Samotaev, N. N.

    2016-10-01

    A new generation of the infrared light-emitting diodes (LEDs) and photodiodes (PDs) was used to construct an open path non-dispersive infrared (NDIR) methane analyzer. It was shown earlier that its characteristics are suitable for usual alarm systems, but new measurements have shown that cross sensitivity to other alkanes is rather high.

  2. Atom probe tomography of a commercial light emitting diode

    NASA Astrophysics Data System (ADS)

    Larson, D. J.; Prosa, T. J.; Olson, D.; Lefebvre, W.; Lawrence, D.; Clifton, P. H.; Kelly, T. F.

    2013-11-01

    The atomic-scale analysis of a commercial light emitting diode device purchased at retail is demonstrated using a local electrode atom probe. Some of the features are correlated with transmission electron microscopy imaging. Subtle details of the structure that are revealed have potential significance for the design and performance of this device.

  3. Empirical Measurements of Filtered Light Emitting Diode (FLED) Replacements

    NASA Astrophysics Data System (ADS)

    Craine, Eric R.

    2016-05-01

    Low pressure sodium (LPS) public lighting, long favored by astronomers and dark sky advocates, is in decline due to a variety of economic issues. Light emitting diode (LED) technology is a rapidly ascendant mode of lighting in everything from residential to commercial applications. The resulting transition from LPS to LED has been accompanied by great angst in the environmental community, but very little has been done in the way of empirical measurement of LEDs in the field and their actual impacts on communities. The community of Waikoloa Village, Hawaii is located on the western slopes of Mauna Kea, within direct line of sight view of the major astronomical observatories on the mountain summit. Waikoloa has been rigorously illuminated almost exclusively by LPS for many years in acknowledgement of the importance of the Mauna Kea Observatories to the Big Island of Hawaii. As LPS ceases to be a viable alternative for local government support, a decision has been made to experimentally retrofit all of the Waikoloa street lighting with filtered light emitting diode (FLED) fixtures. This action has rendered Waikoloa Village a unique laboratory for evaluating the effects of such a change. STEM Laboratory has been awarded a research grant to make a variety of measurements of the light at night environment of Waikoloa Village both before and after the street light retrofit program. Measurements were conducted using a combination of techniques: Satellite Data Surveys (SDS), Ground Static Surveys (GSS photometry), Ground Mobile Surveys (GMS photometry), Airborne Surveys (ABS photography), and Spectroscopic Surveys (SpecS). The impact of the changes in lighting sources was profound, and the preliminary results of this extensive program are discussed in this presentation.

  4. Design of vertically-stacked polychromatic light-emitting diodes.

    PubMed

    Hui, K N; Wang, X H; Li, Z L; Lai, P T; Choi, H W

    2009-06-08

    A new design for a polychromatic light-emitting diode (LED) is proposed and demonstrated. LED chips of the primary colors are physically stacked on top of each other. Light emitted from each layer of the stack passes through each other, and thus is mixed naturally without additional optics. As a color-tunable device, a wide range of colors can be generated, making it suitable for display purposes. As a phosphor-free white light LED, luminous efficacy of 30 lm/watt was achieved.

  5. Micrometer- and Nanometer-Sized Polymeric Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Granstrom, Magnus; Berggren, Magnus; Inganas, Olle

    1995-03-01

    A method for the fabrication of micrometer- and submicrometer-sized polymeric light-emitting diodes is presented. Such diodes have a variety of applications. Light sources of dimensions around 100 nanometers are required for subwavelength, near-field optical microscopy. Another possible application is patterning on the micrometer and nanometer scale. The diodes have been made in the form of a sandwich structure, with the conductive polymer poly(3,4-ethylene-dioxythiophene) polymerized in the pores of commercially available microfiltration membranes defining the hole-injecting contacts, poly[3-(4-octylphenyl)-2,2'-bithiophene] as the light-emitting layer, and a thin film of calcium-aluminum as the electron injector.

  6. A cylindrical salad growth facility with a light-emitting diodes unit as a component for biological life support system for space crews

    NASA Astrophysics Data System (ADS)

    Erokhin, A. N.; Berkovich, Yu. A.; Smolianina, S. O.; Krivobok, N. M.; Agureev, A. N.; Kalandarov, S. K.

    2006-01-01

    Efficiency of salad production under light-emitting diodes was tested with a prototype space plant growth facility "Phytocycle SD" with a 10-step crop conveyer. The system has a plant chamber in the form of a spiral cylinder. The planting unit inside the chamber is built of 10 root modules which provide a co-axial planting cylinder that rotates relative to the leaf chamber. Twelve panels of the lighting unit on the internal surfaces of the spiral cylinder carry 438 red (660 nm) and 88 blue (470 nm) light-emitting diodes producing average PPF equal 360 μmol m -2 s -1 4 cm below the light source, and 3 panels producing PPF equal 190 μmol m -2 s -1 at the initial steps of the plant conveyer. The system requires 0.44 kW and provides a plant chamber volume of 0.19 m 3, with 0.86 m 2 illuminated crop area. Productive efficiency of the facility was studied in a series of laboratory experiments with celery cabbage ( Brassica pekinensis) ( Lour) ( Rupr.) grown in the conveyer with a one-step period of 3 days. The crop grew in a fiber ion-exchange mineral-rich soil BIONA V3 under the 24-h light. Maximal productivity of the ripe (30-day-old) plants reached 700 g of the fresh edible biomass from one root module. There was a 30% greater biomass production and 3-5 times greater specific productivity per unit of expenditure of consumable resources over plants grown in a flat planting. This improved production was due to the extension of illuminated crop area for the final conveyor steps and concentration of photon flux toward center axis of cylindrical growth chamber. Biomass contents of ascorbic acid and carotene gathered from one root module per day ranged from 250 to 300 mg and 30 to 40 mg respectively. With this productivity, celery cabbage raised in "Phytocycle SD" potentially can satisfy the daily demands in vitamin C, vitamin A for a crew of three. Wider nutritional needs can be satisfied by planting mixed salad crops.

  7. Simulated evolution of fluorophores for light emitting diodes

    SciTech Connect

    Shu, Yinan; Levine, Benjamin G.

    2015-03-14

    Organic light emitting diodes based on fluorophores with a propensity for thermally activated delayed fluorescence (TADF) are able to circumvent limitations imposed on device efficiency by spin statistics. Molecules with a propensity for TADF necessarily have two properties: a small gap between the lowest lying singlet and triplet excited states and a large transition dipole moment for fluorescence. In this work, we demonstrate the use of a genetic algorithm to search a region of chemical space for molecules with these properties. This algorithm is based on a flexible and intuitive representation of the molecule as a tree data structure, in which the nodes correspond to molecular fragments. Our implementation takes advantage of hybrid parallel graphics processing unit accelerated computer clusters to allow efficient sampling while retaining a reasonably accurate description of the electronic structure (in this case, CAM-B3LYP/6-31G{sup ∗∗}). In total, we have identified 3792 promising candidate fluorophores from a chemical space containing 1.26 × 10{sup 6} molecules. This required performing electronic structure calculations on only 7518 molecules, a small fraction of the full space. Several novel classes of molecules which show promise as fluorophores are presented.

  8. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  9. Flip-chip light emitting diode with resonant optical microcavity

    DOEpatents

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  10. Organic light-emitting diodes from homoleptic square planar complexes

    DOEpatents

    Omary, Mohammad A

    2013-11-12

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  11. White Light Emitting Diode Development for General Illumination Applications

    SciTech Connect

    James Ibbetson

    2006-05-01

    This report contains a summary of technical achievements during a 3-year project aimed at developing the chip and packaging technology necessary to demonstrate efficient, high flux light-emitting diode (LED) arrays using Cree's gallium nitride/silicon carbide (GaN/SiC) LED technology as the starting point. Novel chip designs and fabrication processes are described that led to high power blue LEDs that achieved 310 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 32.5% and 26.5%, respectively. When combined with phosphor, high power white LEDs with luminous output of 67 lumens and efficacy of 57 lumens per watt were also demonstrated. Advances in packaging technology are described that enabled compact, multi-chip white LED lamp modules with 800-1000 lumens output at efficacies of up to 55 lumens per watt. Lamp modules with junction-to-ambient thermal resistance as low as 1.7 C/watt have also been demonstrated.

  12. Versatile multispectral microscope based on light emitting diodes

    NASA Astrophysics Data System (ADS)

    Brydegaard, Mikkel; Merdasa, Aboma; Jayaweera, Hiran; Ålebring, Jens; Svanberg, Sune

    2011-12-01

    We describe the development of a novel multispectral microscope, based on light-emitting diodes, capable of acquiring megapixel images in thirteen spectral bands from the ultraviolet to the near infrared. The system captures images and spectra in transmittance, reflectance, and scattering modes. We present as examples of applications ground truth measurements for remote sensing and parasitology diagnostics. The system is a general purpose scientific instrument that could be used to develop dedicated simplified instruments with optimal bands and mode selection.

  13. Fabrication of natural DNA-containing organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Gomez, Eliot F.; Spaeth, Hans D.; Steckl, Andrew J.; Grote, James G.

    2011-09-01

    The process of creating natural DNA-containing bio-organic light emitting diodes is a fascinating journey from salmon fish to the highly-efficient BiOLED. DNA from salmon sperm is used as a high-performance electron blocking layer, to enhance the efficiency of the BiOLED over its conventional OLED counterpart. An overview of the BiOLED fabrication process and its key steps are presented in this paper.

  14. The improvement of GaN-based light-emitting diodes using nanopatterned sapphire substrate with small pattern spacing

    SciTech Connect

    Zhang, Yonghui; Wei, Tongbo Wang, Junxi; Chen, Yu; Hu, Qiang; Lu, Hongxi; Li, Jinmin; Lan, Ding

    2014-02-15

    Self-assembly SiO{sub 2} nanosphere monolayer template is utilized to fabricate nanopatterned sapphire substrates (NPSSs) with 0-nm, 50-nm, and 120-nm spacing, receptively. The GaN growth on top of NPSS with 0-nm spacing has the best crystal quality because of laterally epitaxial overgrowth. However, GaN growth from pattern top is more difficult to get smooth surface than from pattern bottom. The rougher surface may result in a higher work voltage. The stimulation results of finite-difference time-domain (FDTD) display that too large or too small spacing lead to the reduced light extracted efficiency (LEE) of LEDs. Under a driving current 350 mA, the external quantum efficiencies (EQE) of GaN-based LEDs grown on NPSSs with 0-nm, 50-nm, and 120-nm spacing increase by 43.3%, 50.6%, and 39.1%, respectively, compared to that on flat sapphire substrate (FSS). The optimized pattern spacing is 50 nm for the NPSS with 600-nm pattern period.

  15. Alternating-current Light Emitting Diodes with a Diode Bridge Circuitry

    NASA Astrophysics Data System (ADS)

    Cho, Jaehee; Jung, Jaewook; Chae, Jung Hye; Kim, Hyungkun; Kim, Hyunsoo; Lee, Jeong Wook; Yoon, Sukho; Sone, Cheolsoo; Jang, Taehoon; Park, Yongjo; Yoon, Euijoon

    2007-12-01

    Most solid-state light emitting devices operate under direct current (DC) condition now. We report the alternating current (AC) light emitting devices fabricated with a diode bridge circuitry which is also made of light emitting diodes (LEDs). The LED bridge circuitry which is flipped on a silicon submount is composed of 4 branches with 7 LED chips and participates as a light emitting component as well. The AC LED can be operated with radiant flux of 0.83 W at an electric power of 8.5 W. This concept could be applied to fabricate compact and economical AC LEDs for a solid-state illumination.

  16. Poly (p-phenyleneneacetylene) light-emitting diodes

    DOEpatents

    Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei; Barton, Thomas J.; Vardeny, Zeev V.

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  17. Poly (p-phenyleneacetylene) light-emitting diodes

    DOEpatents

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.; Barton, T.J.; Vardeny, Z.V.

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  18. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOEpatents

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.

    1994-08-02

    Acetylene-containing poly(p-phenyleneacetylene) (PPA)-based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  19. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOEpatents

    Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei

    1994-08-02

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as A1 or A1/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  20. All-solution processed transparent organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Höfle, Stefan; Czolk, Jens; Mertens, Adrian; Colsmann, Alexander

    2015-11-01

    In this work, we report on indium tin oxide-free, all-solution processed transparent organic light emitting diodes (OLEDs) with inverted device architecture. Conductive polymer layers are employed as both transparent cathodes and transparent anodes, with the top anodes having enhanced conductivities from a supporting stochastic silver nanowire mesh. Both electrodes exhibit transmittances of 80-90% in the visible spectral regime. Upon the incorporation of either yellow- or blue-light emitting fluorescent polymers, the OLEDs show low onset voltages, demonstrating excellent charge carrier injection from the polymer electrodes into the emission layers. Overall luminances and current efficiencies equal the performance of opaque reference OLEDs with indium tin oxide and aluminium electrodes, proving excellent charge carrier-to-light conversion within the device.

  1. Bright light-emitting diodes based on organometal halide perovskite.

    PubMed

    Tan, Zhi-Kuang; Moghaddam, Reza Saberi; Lai, May Ling; Docampo, Pablo; Higler, Ruben; Deschler, Felix; Price, Michael; Sadhanala, Aditya; Pazos, Luis M; Credgington, Dan; Hanusch, Fabian; Bein, Thomas; Snaith, Henry J; Friend, Richard H

    2014-09-01

    Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI(3-x)Cl(x) perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9'-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr(-1) m(-2) at a current density of 363 mA cm(-2), with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m(-2) at a current density of 123 mA cm(-2), giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.

  2. Thermoelectrically pumped light-emitting diodes operating above unity efficiency.

    PubMed

    Santhanam, Parthiban; Gray, Dodd Joseph; Ram, Rajeev J

    2012-03-02

    A heated semiconductor light-emitting diode at low forward bias voltage V

  3. Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application

    NASA Astrophysics Data System (ADS)

    Jeon, Sohee; Kang, Jae-Wook; Park, Hyung-Dol; Kim, Jang-Joo; Youn, Jae R.; Shim, Jongyoup; Jeong, Jun-ho; Choi, Dae-Geun; Kim, Ki-Don; Altun, Ali Ozhan; Kim, Se-Heon; Lee, Yong-Hee

    2008-06-01

    Light extraction efficiency of a conventional organic light emitting diode (OLED) remains limited to approximately 20% as most of the emission is trapped in the waveguide and glass modes. An etchless simple method was developed to fabricate two-dimensional nanostructures on glass substrate directly by using ultraviolet (UV) curable polymer resin and UV nanoimprint lithography in order to improve output coupling efficiency of OLEDs. The enhancement of the light extraction was predicted by the three-dimensional finite difference time domain method. OLEDs integrated on nanoimprinted substrates enhanced electroluminance intensity by up to 50% compared to the conventional device.

  4. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices

    PubMed Central

    O'Toole, Martina; Diamond, Dermot

    2008-01-01

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements. PMID:27879829

  5. Camera vibration measurement using blinking light-emitting diode array.

    PubMed

    Nishi, Kazuki; Matsuda, Yuichi

    2017-01-23

    We present a new method for measuring camera vibrations such as camera shake and shutter shock. This method successfully detects the vibration trajectory and transient waveforms from the camera image itself. We employ a time-varying pattern as the camera test chart over the conventional static pattern. This pattern is implemented using a specially developed blinking light-emitting-diode array. We describe the theoretical framework and pattern analysis of the camera image for measuring camera vibrations. Our verification experiments show that our method has a detection accuracy and sensitivity of 0.1 pixels, and is robust against image distortion. Measurement results of camera vibrations in commercial cameras are also demonstrated.

  6. Design of micro, flexible light-emitting diode arrays and fabrication of flexible electrodes

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Wang, Weibiao; Liang, Zhongzhu; Liang, Jingqiu; Qin, Yuxin; Lv, Jinguang

    2016-10-01

    In this study, we design micro, flexible light-emitting diode (LED) array devices. Using theoretical calculations and finite element simulations, we analyze the deformation of the conventional single electrode bar. Through structure optimization, we obtain a three-dimensional (3D), chain-shaped electrode structure, which has a greater bending degree. The optimized electrodes not only have a bigger bend but can also be made to spin. When the supporting body is made of polydimethylsiloxane (PDMS), the maximum bending degree of the micro, flexible LED arrays (4  ×  1 arrays) was approximately 230 µm this was obtained using the finite element method. The device (4  ×  1 arrays) can stretch to 15%. This paper describes the fabrication of micro, flexible LED arrays using microelectromechancial (MEMS) technology combined with electroplating technology. Specifically, the isolated grooves are made by dry etching which can isolate and protect the light-emitting units. A combination of MEMS technology and wet etching is used to fabricate the large size spacing.

  7. A novel yellow phosphor for white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; Li, Pan-Lai; Yang, Zhi-Ping; Guo, Qing-Lin; Li, Xu

    2010-01-01

    This paper reports that a novel yellow phosphor, LiSrBO3:Eu2+, was synthesized by the solid-state reaction. The excitation and emission spectra indicate that this phosphor can be effectively excited by ultraviolet (360 and 400 nm) and blue (425 and 460 nm) light, and exhibits a satisfactory yellow performance (565 nm). The role of concentration of Eu2+ on the emission intensity in LiSrBO3 is studied, and it is found that the critical concentration is 3 mol%, and the concentration self-quenching mechanism is the dipole-dipole interaction according to the Dexter theory. White light emitting diodes were generated by using an InGaN chip (460 nm or 400 nm) with LiSrBO3:Eu2+ phosphor, the CIE chromaticity is (x = 0.341, y = 0.321) and (x = 0.324, y = 0.318), respectively. Therefore, LiSrBO3:Eu2+ is a promising yellow phosphor for white light emitting diodes.

  8. Deep ultraviolet light-emitting and laser diodes

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Asif, Fatima; Muhtadi, Sakib

    2016-02-01

    Nearly all the air-water purification/polymer curing systems and bio-medical instruments require 250-300 nm wavelength ultraviolet light for which mercury lamps are primarily used. As a potential replacement for these hazardous mercury lamps, several global research teams are developing AlGaN based Deep Ultraviolet (DUV) light emitting diodes (LEDs) and DUV LED Lamps and Laser Diodes over Sapphire and AlN substrates. In this paper, we review the current research focus and the latest device results. In addition to the current results we also discuss a new quasipseudomorphic device design approach. This approach which is much easier to integrate in a commercial production setting was successfully used to demonstrate UVC devices on Sapphire substrates with performance levels equal to or better than the conventional relaxed device designs.

  9. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    DTIC Science & Technology

    2014-11-24

    DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes Eliot F. Gomez1, Vishak Venkatraman1, James G. Grote2 & Andrew J. Steckl1...45433-7707 USA. We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs are small molecules that are the basic...polymer has been a frequent natural material integrated in electronic devices. DNA has been used in organic light - emitting diodes (OLEDs)4,5,7–14

  10. Omnidirectional multiview three-dimensional display based on direction-selective light-emitting diode array

    NASA Astrophysics Data System (ADS)

    Yan, Caijie; Liu, Xu; Liu, Di; Xie, Jing; Xia, Xin Xing; Li, Haifeng

    2011-03-01

    A volumetric display system based on a rotating light-emitting diode (LED) array panel can realize a three-dimensional (3-D) display truthfully in the space, but the drawback is missing the occlusion of a 3-D image. We propose an omnidirectional 3-D display with correct occlusion based on a direction-selective LED array panel, which is realized by setting a direction-convergent diaphragm array in front of the LED array. Every diaphragm restricts a light-emitting characteristic of every LED. By using direction-convergent diaphragm array, the observer around the display system can only see one image displayed by the LED array at the corresponding position. With the high-speed rotation of the LED panel, a series of views of a 3-D scene are displayed every angle patch in one circle. We set up an acquisition system to record 180 views of the 3-D scene with a rotating camera along a circle, and then the 180 images are displayed sequentially on the rotating direction-selective LED array to get a 360 deg 3-D display. This 3-D display technology has two main advantages: easy to get viewer-position-dependent correct occlusion and simplify the 3-D data preprocessing process which is helpful to real-time 3-D display.

  11. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    SciTech Connect

    Guillermo Bazan; Alexander Mikhailovsky

    2008-08-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially

  12. Current path in light emitting diodes based on nanowire ensembles.

    PubMed

    Limbach, F; Hauswald, C; Lähnemann, J; Wölz, M; Brandt, O; Trampert, A; Hanke, M; Jahn, U; Calarco, R; Geelhaar, L; Riechert, H

    2012-11-23

    Light emitting diodes (LEDs) have been fabricated using ensembles of free-standing (In, Ga)N/GaN nanowires (NWs) grown on Si substrates in the self-induced growth mode by molecular beam epitaxy. Electron-beam-induced current analysis, cathodoluminescence as well as biased μ-photoluminescence spectroscopy, transmission electron microscopy, and electrical measurements indicate that the electroluminescence of such LEDs is governed by the differences in the individual current densities of the single-NW LEDs operated in parallel, i.e. by the inhomogeneity of the current path in the ensemble LED. In addition, the optoelectronic characterization leads to the conclusion that these NWs exhibit N-polarity and that the (In, Ga)N quantum well states in the NWs are subject to a non-vanishing quantum confined Stark effect.

  13. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  14. Inorganic Halide Perovskites for Efficient Light-Emitting Diodes.

    PubMed

    Yantara, Natalia; Bhaumik, Saikat; Yan, Fei; Sabba, Dharani; Dewi, Herlina A; Mathews, Nripan; Boix, Pablo P; Demir, Hilmi Volkan; Mhaisalkar, Subodh

    2015-11-05

    Lead-halide perovskites have transcended photovoltaics. Perovskite light-emitting diodes (PeLEDs) emerge as a new field to leverage on these fascinating semiconductors. Here, we report the first use of completely inorganic CsPbBr3 thin films for enhanced light emission through controlled modulation of the trap density by varying the CsBr-PbBr2 precursor concentration. Although pure CsPbBr3 films can be deposited from equimolar CsBr-PbBr2 and CsBr-rich solutions, strikingly narrow emission line (17 nm), accompanied by elongated radiative lifetimes (3.9 ns) and increased photoluminescence quantum yield (16%), was achieved with the latter. This is translated into the enhanced performance of the resulting PeLED devices, with lower turn-on voltage (3 V), narrow electroluminescence spectra (18 nm) and higher electroluminescence intensity (407 Cd/m(2)) achieved from the CsBr-rich solutions.

  15. Lifetime of organic light emitting diodes on polymer anodes

    NASA Astrophysics Data System (ADS)

    Fehse, Karsten; Meerheim, Rico; Walzer, Karsten; Leo, Karl; Lövenich, Wilfried; Elschner, Andreas

    2008-08-01

    We report on the use of a thin layer of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) as anode for bottom emission organic light emitting diodes (OLEDs). The combination of polymer anodes with OLEDs having either electrically doped or undoped hole transport layers in direct contact with the polymer is shown. We discuss the impact of the annealing conditions of the polymer on the OLED lifetime in comparison to indium tin oxide anodes. Supported by a differential thermal analysis of PEDOT:PSS, a strong influence of residual water in the polymer on the device lifetime is found. Additional heating of the polymer anode in a dry ambient prior to OLED deposition is necessary to achieve high device lifetimes. At a luminance of 260 cd/m2, pin-OLEDs on a PEDOT:PSS anode show no measurable device degradation during 5200 h of operation.

  16. Light extraction by Lambertian sources from light emitting diodes

    NASA Astrophysics Data System (ADS)

    Nagel, James R.

    2013-03-01

    Internal back-and-forth propagation of photons within a light emitting diode (LED) will naturally tend towards a Lambertian intensity profile when surface texturing is sufficiently rough. Novel designs in light extraction efficiency (LEE) can therefore benefit by optimizing under this expectation. This paper develops a framework for calculating LEE from a planar LED structure with textured surface features under the assumption of Lambertian intensity within the substrate. The method can estimate the total LEE value when given a substrate width w, an attenuation constant α, and the transmittance function T(θ,Φ) through the top interface. We demonstrate our theory on a pyramidal surface texture over a GaSb substrate at 4.5 μm wavelength by computing the expected LEE as a function of w.

  17. Mid-ultraviolet light-emitting diode detects dipicolinic acid.

    SciTech Connect

    Bogart, Katherine Huderle Andersen; Lee, Stephen Roger; Temkin, Henryk; Crawford, Mary Hagerott; Dasgupta, Purnendu K.; Li, Qingyang; Allerman, Andrew Alan; Fischer, Arthur Joseph

    2005-06-01

    Dipicolinic acid (DPA, 2,6-pyridinedicarboxylic acid) is a substance uniquely present in bacterial spores such as that from anthrax (B. anthracis). It is known that DPA can be detected by the long-lived fluorescence of its terbium chelate; the best limit of detection (LOD) reported thus far using a large benchtop gated fluorescence instrument using a pulsed Xe lamp is 2 nM. We use a novel AlGaN light-emitting diode (LED) fabricated on a sapphire substrate that has peak emission at 291 nm. Although the overlap of the emission band of this LED with the absorption band of Tb-DPA ({lambda}{sub max} doublet: 273, 279 nm) is not ideal, we demonstrate that a compact detector based on this LED and an off-the-shelf gated photodetection module can provide an LOD of 0.4 nM, thus providing a basis for convenient early warning detectors.

  18. Quantum key distribution with an entangled light emitting diode

    SciTech Connect

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Shields, A. J.; Farrer, I.; Ritchie, D. A.

    2015-12-28

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  19. Electroluminescence property of organic light emitting diode (OLED)

    SciTech Connect

    Özdemir, Orhan; Kavak, Pelin; Saatci, A. Evrim; Gökdemir, F. Pınar; Menda, U. Deneb; Can, Nursel; Kutlu, Kubilay; Tekin, Emine; Pravadalı, Selin

    2013-12-16

    Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage), 1.8 V, which was the difference of energy band gap of polymer and two barrier offsets between metals and polymer.

  20. Magnetoresistance in organic light-emitting diode structures under illumination

    NASA Astrophysics Data System (ADS)

    Desai, P.; Shakya, P.; Kreouzis, T.; Gillin, W. P.

    2007-12-01

    We have investigated the effect of illumination on the organic magnetoresistance (OMR) in organic light-emitting diode (OLED) structures. The results show that it is possible to obtain OMR at voltages below “turn-on,” where no OMR was visible for devices operated in the dark. The photoinduced OMR has a field dependence that is identical to that obtained for OLEDs containing very thin layers, where triplet dissociation at the cathode was a major component of the OMR. At voltages around the open circuit voltage, where the current through the device is very small, very large OMRs of ˜300% can be observed. The results support our proposed model for organic magnetoresistance as being caused in part by the interaction of free carriers with triplet excitons within the device. The results suggest that the introduction of a low field magnet could provide a simple means of improving the efficiency of organic photovoltaic cells.

  1. Organic light-emitting diodes having carbon nanotube anodes.

    PubMed

    Li, Jianfeng; Hu, Liangbing; Wang, Lian; Zhou, Yangxin; Grüner, George; Marks, Tobin J

    2006-11-01

    Single-walled carbon nanotube (SWNT) films on flexible PET (polyethyleneterephthalate) substrates are used as transparent, flexible anodes for organic light-emitting diodes (OLEDs). For polymer-based OLEDs having the structure: SWNT/PEDOT-PSS:MeOH/TFB (poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine)) + TPD-Si(2) (4,4'-bis[(p-trichlorosilylpropylphenyl)phenylamino]biphenyl) /BT (poly(9,9-dioctylfluorene-co-benzothiadiazole))/CsF/Al, a maximum light output of 3500 cd/m(2) and a current efficiency of 1.6 cd/A have been achieved. The device operational lifetime is comparable to that of devices with Sn-doped In(2)O(3) (ITO)/PET anodes. The advantages of this novel type of anode over conventional ITO are discussed.

  2. Light manipulation for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Ou, Qing-Dong; Zhou, Lei; Li, Yan-Qing; Tang, Jian-Xin

    2014-10-01

    To realize high-efficiency organic light-emitting diodes (OLEDs), it is essential to boost out-coupling efficiency. Here we review our latest reports upon light manipulation for OLEDs by integrating a dual-side bio-inspired deterministic quasi-periodic moth's eye nanostructure with broadband anti-reflective and quasi-omnidirectional properties. Light out-coupling efficiency of OLEDs with stacked triple emission units is over 2 times that of a conventional device, resulting in drastic increase in external quantum efficiency and current efficiency to 119.7% and 366 cd A-1 without introducing spectral distortion and directionality. Theoretical calculations furthermore clarify that the improved device performance is primarily attributed to the effective extraction of the waveguide and surface plasmonic modes of the confined light over all the emission wavelengths and viewing-angles.

  3. Tunnel junction enhanced nanowire ultraviolet light emitting diodes

    SciTech Connect

    Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.; Grassman, Tyler J.; McComb, David W.; Myers, Roberto C.

    2015-09-07

    Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junction within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.

  4. New TIR lens applications for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Parkyn, William A.; Pelka, David G.

    1997-10-01

    We present two new applications for light emitting diodes of the Total Internal Reflection (TIR) lens, a non-imaging optical device presented at previous SPIE conferences on nonimaging optics. The first is a flat circularly symmetric lens that efficiently forms a highly collimated beam from the light output of Hewlett-Packard's Super Flux LEDs. The second is a linear TIR lens with die-on-board LEDs of several wavelengths positioned along its focal line. HP's Super-Flux LED package has an output half angle of 55 degree(s). Only the TIR lens can accept such a wide range for beamforming, and do it with high efficiency. We have designed and prototyped 1' models with half-power half angles of only 1.5 degree(s), utilizing a hyperbolic central section in place of the usual Fresnel lens. There are numerous applications for arrays of these lenses, since they emit more lumens per electrical watt than filtered incandescent lamps with parabolic mirrors. Moreover, they are more compact than conventional lamps, and LED lifetimes are much longer. The TIR lens in its linear form has been applied successfully to fluorescent downlighting products with much narrower transverse illumination angles than previously available with trough mirrors. More recently, light emitting diodes (LEDs) have been placed on the focal line of a linear lens. In this paper, we describe the optical properties and biomedical applications of the linear TIR lens when the LEDs have several different emission wavelengths. This single device can uniformly illuminate an extended target with several wavelengths either simultaneously, sequentially, or in complex programmed combinations. It can replace the complex systems of dichroic mirrors used with conventional white-light sources.

  5. Electrically detected magnetic resonance in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Boehme, Christoph

    2013-03-01

    Due to the built-in weak spin-orbit coupling of carbon based materials, electronic transitions in organic semiconductors are subjected to strong spin-selection rules that are responsible for a number of interesting electron spin- and even nuclear spin-dependent electrical and optical properties of these materials, including device efficiencies of organic light emitting diodes and solar cells or magnetoresistive and magneto-optic effects. In recent years, we have studied how these effects work and how they can be utilized for organic semiconductor device improvement and new device applications. Our focus has been in particular on the effects of spin on π-conjugated polymer based bipolar injection devices (more commonly known as organic light emitting diodes, OLEDs). In OLEDs, spin-interactions between recombining charge carriers do not only control electroluminescence rates but also the magnetoresistance. We have shown that spin-coherence can be observed through current measurements and that these effects can be utilized for a coherent, pulsed electrically detected magnetic resonance spectroscopy (pEDMR) which enables us to encode the qualitative nature of spin-dependent mechanisms (the polaron pair mechanism and the triplet polaron recombination) and the their dynamical nature (spin-relaxation, electronic relaxation, hopping times). The insights gained from these studies have led to the invention of a robust absolute magnetic field sensor based on organic thin film materials with absolute sensitivities of <50nT/Hz1/2. Acknowledgment is made to the DOE (#DESC0000909) and NSF through a MRSEC Project (#1121252) and a CAREER Project (#0953225).

  6. Ultra-violet light-emitting diode calibration system for timing large area scintillation detectors

    NASA Astrophysics Data System (ADS)

    Naumov, P. Yu; Runtso, M. F.; Naumov, P. P.; Maklyaev, E. F.; Kaplin, V. A.; Fomin, V. S.; Razzhivin, I. S.; Melikyan, Yu A.

    2017-01-01

    Timing large area plastic scintillation detectors are developing for the space gamma-ray telescopes now. For the in-flight calibration of these detectors the use of ultra-violet light-emitting diode, irradiating the 1 m long detector module at the center of its lateral side is suggested. The results of the measurements show the possibility of this calibration system implementation as for amplitude as for timing properties monitoring.

  7. Vertical Stand Transparent Light-Emitting Diode Architecture for High-Efficiency and High-Power Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Pan, Chih-Chien; Koslow, Ingrid; Sonoda, Junichi; Ohta, Hiroaki; Ha, Jun-Seok; Nakamura, Shuji; DenBaars, Steven P.

    2010-08-01

    Using a transparent ZnO vertical stand as a submount, a novel Light-emitting diode architecture, which is similar to conventional lighting bulbs, was proposed. The emission power of a blue LED based on c-plane (0001) bulk GaN was increased by 14.2 and 5.1% compared with those of conventional and suspended die packages, respectively. The output power and external quantum efficiency of LEDs respectively reached 31.7 mW and 57.1% at a forward current of 20 mA under direct current conditions. The high thermal conductivity and refractive index of the transparent submount simultaneously resulted in high current operation and high external efficiency.

  8. Dye concentration study in PVK based light emitting diodes

    NASA Astrophysics Data System (ADS)

    Gautier-Thianche, E.; Sentein, C.; Nunzi, J.-M.; Lorin, A.; Denis, C.; Raimond, P.

    1998-06-01

    Light emitting diodes made of a single spin-coated layer of poly(9-vinylcarbazole) doped with coumarin-515 dye have been prepared. The influence of dye concentration on emission and electrical characteristics is evidenced. Two different regimes are identified. At low concentrations, hole injection barrier raises, holes are trapped and mobility decreases. External quantum efficiency increases with concentration. At concentrations larger than 10 per electron. Coumarin in a single-layer diode improves electron-hole injection and recombination balance more than an additional hole-blocking layer. Nous avons étudié des DEL constituées d'une monocouche de poly(9-vinylcarbazole) (PVK) dopée avec un colorant laser : la coumarine 515. Le taux de dopage en colorant influe sur les caractéristiques courant - tension et sur le rendement quantique d'électroluminescence. Aux faibles taux de dopage, la hauteur de la barrière d'injection des trous augmente, les trous sont piégés dans la matrice et leur mobilité décroît. Le rendement quantique externe augmente avec la concentration de dopant. Aux concentrations supérieures à 10 photoluminescence chute mais le rendement quantique externe augmente jusqu'à 0.1 recombinaison électron-trou bien mieux qu'une couche supplémentaire bloquant l'injection des trous.

  9. The development of monolithic alternating current light-emitting diode

    NASA Astrophysics Data System (ADS)

    Yeh, Wen-Yung; Yen, Hsi-Hsuan; Chan, Yi-Jen

    2011-02-01

    The monolithic alternating current light emitting diode (ACLED) has been revealed for several years and was regarded as a potential device for solid state lighting. In this study, we will discuss the characteristics, development status, future challenges, and ITRI's development strategy about ACLED, especially focusing on the development progress of the monolithic GaN-based Schottky barrier diodes integrated ACLED (SBD-ACLED). The SBD-ACLED design can not only improve the chip area utilization ratio but also provide much higher reverse breakdown voltage by integrating four SBDs with the micro-LEDs array in a single chip, which was regarded as a good on-chip ACLED design. According to the experimental results, higher chip efficiency can be reached through SBD-ACLED design since the chip area utilization ratio was increased. Since the principle and the operation condition of ACLED is quite different from those of the typical DCLED, critical issues for ACLED like the current droops, the flicker phenomenon, the safety regulations, the measurement standards and the power fluctuation have been studied for getting a practical and reliable ACLED design. Besides, the "AC LED application and research alliance" (AARA) lead by ITRI in Taiwan for the commercialization works of ACLED has also been introduced.

  10. 77 FR 55499 - Certain Light-Emitting Diodes and Products Containing Same; Commission Determination Not To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Light-Emitting Diodes and Products Containing Same; Commission Determination Not To Review... States after importation of certain light-emitting diodes and products containing same by reason...

  11. High-luminous efficacy white light-emitting diodes with thin-film flip-chip technology and surface roughening scheme

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Long; Zhang, Jing; Wang, Hong; Zhang, Xi-Chun

    2016-11-01

    High-luminous efficacy white light-emitting diodes (LEDs) were realized by using GaN-based thin-film (TF) flip-chip (FC) LEDs with phosphor-silicone encapsulation. The TFFC-LEDs were fabricated by electrode isolation, FC configuration, copper electroplating, and laser lift-off (LLO) techniques. During the fabrication process, the high-defect undoped GaN layer was eliminated by inductively coupled plasma (ICP) etching to lower the absorption loss. Then, the exposed N-face n-GaN surface formed after the ICP etching was systematically studied through control of the temperature, time and concentration of the KOH solution to acquire hexagonal cones with high extraction efficiency. It is found that the external quantum efficiency was improved by a maximum value of 169% for the TFFC-LEDs with optimized surface hexagonal cones compared to TFFC-LEDs with flat surfaces. To further improve the output power, the chip size and n-contact via holes of the TFFC-LEDs were increased. A maximum luminous efficacy of 139 lm W-1 was realized for white LEDs (5700 K, 350 mA, 2.98 V) using these TFFC-LEDs with phosphor-silicone encapsulation. In addition, these white LEDs also have a lower junction temperature of 87 °C even at 700 mA. These results indicate that the proposed TFFC-LEDs are promising for use in automotive and solid-state lighting applications.

  12. A multi-source portable light emitting diode spectrofluorometer.

    PubMed

    Obeidat, Safwan; Bai, Baolong; Rayson, Gary D; Anderson, Dean M; Puscheck, Adam D; Landau, Serge Y; Glasser, Tzach

    2008-03-01

    A portable luminescence spectrofluorometer weighing only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed and evaluated. Excitation using a sequence of seven individual broad-band LED emission sources enabled the generation of excitation-emission spectra using a light weight (<1.5 kg) spectrometer. Limits of detection for rhodamine 6G, rhodamine B, and fluorescein were 2.9, 3.2, and 11.0 nM, respectively. Generation of excitation-emission matrices (EEMs) enabled the analysis of samples containing mixtures of rhodamine B and fluorescein. Buffered saline plant and animal feed extracts were also analyzed using this instrument. These samples included the woody plants Pistacia lentiscus (Evergreen pistache or Mastic) and Philyria latifolia, and the herbaceous species Medicago sativa (alfalfa), Trifolium spp. (clover), and a feed concentrate. Application of multi-way principal component analysis (MPCA) to the resulting three-dimensional data sets enabled discernment among these various diet constituents.

  13. Temperature-dependent photoluminescence in light-emitting diodes

    PubMed Central

    Lu, Taiping; Ma, Ziguang; Du, Chunhua; Fang, Yutao; Wu, Haiyan; Jiang, Yang; Wang, Lu; Dai, Longgui; Jia, Haiqiang; Liu, Wuming; Chen, Hong

    2014-01-01

    Temperature-dependent photoluminescence (TDPL), one of the most effective and powerful optical characterisation methods, is widely used to investigate carrier transport and localized states in semiconductor materials. Resonant excitation and non-resonant excitation are the two primary methods of researching this issue. In this study, the application ranges of the different excitation modes are confirmed by analysing the TDPL characteristics of GaN-based light-emitting diodes. For resonant excitation, the carriers are generated only in the quantum wells, and the TDPL features effectively reflect the intrinsic photoluminescence characteristics within the wells and offer certain advantages in characterising localized states and the quality of the wells. For non-resonant excitation, both the wells and barriers are excited, and the carriers that drift from the barriers can contribute to the luminescence under the driving force of the built-in field, which causes the existing equations to become inapplicable. Thus, non-resonant excitation is more suitable than resonant excitation for studying carrier transport dynamics and evaluating the internal quantum efficiency. The experimental technique described herein provides fundamental new insights into the selection of the most appropriate excitation mode for the experimental analysis of carrier transport and localized states in p-n junction devices. PMID:25139682

  14. White organic light-emitting diodes based on tandem structures

    NASA Astrophysics Data System (ADS)

    Guo, Fawen; Ma, Dongge

    2005-10-01

    White organic light-emitting diodes made of two electroluminescent (EL) units connected by a charge generation layer were fabricated. Thus, with a tandem structure of indium tin oxide/N ,N'-di(naphthalene-1-yl)-N ,N'-diphenyl-benzidine (NPB)/9,10-bis-(β-naphthyl)-anthrene (ADN)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/tris(8-hydroxyquinoline) aluminum (Alq3)/BCP:Li/V2O5/NPB/Alq3:4-(dicyanomethylene)-2-t-butyle-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)4H-pyran (DCJTB)/Alq3/LiF/Al, a stable white light with Commission Internationale De L'Eclairage chromaticity coordinates from (0.35, 0.32) at 18V to (0.36, 0.36) at 50V was generated. It was clearly seen that the EL spectra consist of red band at 600nm due to DCJTB, green band at 505nm due to Alq3, and blue band at 435nm due to ADN, and the current efficiency and brightness equal basically to the sum of the two EL units. As a result, the tandem devices showed white light emission with a maximum brightness of 10200cd /m2 at a bias of 40V and a maximum current efficiency of 10.7cd/A at a current density of 3.5mA/cm2.

  15. Light-emitting diodes as a radiation source for plants

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.; Barta, D. J.; Ignatius, R. W.; Martin, T. S.

    1991-01-01

    Development of a more effective radiation source for use in plant-growing facilities would be of significant benefit for both research and commercial crop production applications. An array of light-emitting diodes (LEDs) that produce red radiation, supplemented with a photosynthetic photon flux (PPF) of 30 micromoles s-1 m-2 in the 400- to 500-nm spectral range from blue fluorescent lamps, was used effectively as a radiation source for growing plants. Growth of lettuce (Lactuca sativa L. Grand Rapids') plants maintained under the LED irradiation system at a total PPF of 325 micromoles s-1 m-2 for 21 days was equivalent to that reported in the literature for plants grown for the same time under cool-white fluorescent and incandescent radiation sources. Characteristics of the plants, such as leaf shape, color, and texture, were not different from those found with plants grown under cool-white fluorescent lamps. Estimations of the electrical energy conversion efficiency of a LED system for plant irradiation suggest that it may be as much as twice that published for fluorescent systems.

  16. City of Phildelphia: Light emitting diodes for traffic signal displays

    SciTech Connect

    1995-12-01

    This project investigated the feasibility of using light emitting diodes (LEDs) for red traffic signals in a demonstration program at 27 signalized intersections in the City of Philadelphia. LED traffic signals have the potential to achieve significant savings over standard incandescent signals in terms of energy usage and costs, signal relamping costs, signal system maintenance costs, tort liability, and environmental impact. Based on successful experience with the demonstration program, the City of Philadelphia is currently developing funding for the conversion of all existing red incandescent traffic signals at approximately 2,700 intersections to LED signals. This program is expected to cost approximately $4.0 million and save about $850,000 annually in energy costs. During late 1993 and early 1994, 212 red LED traffic signals (134 8-inch signals and 78 12-inch signals) were installed at 27 intersections in Philadelphia. The first group of 93 signals were installed at 13 prototypical intersections throughout the City. The remaining group of signals were installed on a contiguous route in West Philadelphia consisting of standard incandescent signals and LED signals interspersed in a random pattern.

  17. Magnetoresistance detected spin collectivity in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Malissa, Hans; Waters, David P.; Joshi, Gajadhar; Kavand, Marzieh; Limes, Mark E.; Burn, Paul L.; Lupton, John M.; Boehme, Christoph

    Organic magnetoresistance (OMAR) typically refers to the significant change in the conductivity of thin layers of organic semiconductors at low static magnetic fields (< 10 mT). When radio frequency (rf) radiation is applied to an organic semiconductor under bipolar injection, and in the presence of small magnetic fields B, magnetic resonance can occur, which is observed as a change of the OMAR effect [Baker et al., Nat. Commun. 3, 898 (2012)]. When B and the resonant driving field are stronger than local hyperfine fields, an ultrastrong coupling regime emerges, which is marked by collective spin effects analogous to the optical Dicke effect [Roundy and Raikh, Phys. Rev. B 88, 125206 (2013)]. Experimentally, this collective behavior of spins can be probed in the steady state OMAR of organic light-emitting diodes (OLEDs) at room temperature by observation of a sign reversal of the OMAR change under rf irradiation. Furthermore, in the presence of strong driving fields, an ac Zeeman effect can be observed through OMAR [Waters et al., Nat. Phys. 11, 910 (2015)], a unique window to observe room temperature macroscopic spin quantum coherence.

  18. Enhanced Phycocyanin Production from Spirulina platensis using Light Emitting Diode

    NASA Astrophysics Data System (ADS)

    Bachchhav, Manisha Bhanudas; Kulkarni, Mohan Vinayak; Ingale, Arun G.

    2016-12-01

    This work investigates the performance of different cultivation conditions using Light Emitting Diode (LED) as a light source for the production of phycocyanin from Spirulina platensis. With LEDs under autotrophic conditions, red LED produced maximum amount of biomass (8.95 g/l). As compared to autotrophic cultivation with fluorescent lamp (control), cultivations using LEDs under autotrophic and mixotrophic mode significantly enhanced the phycocyanin content. For autotrophic conditions (with LED) phycocyanin content was in the range of 103-242 mg/g of dry biomass, whereas for mixotrophic conditions (0.1% glucose and LED) it was in the range of 254-380 mg/g of dry biomass. Spirulina cultivated with yellow LED under mixotrophic conditions had 5.4-fold more phycocyanin (380 mg/g of dry biomass) than control (70 mg/g of dry biomass). The present study demonstrates that the LEDs under mixotrophic conditions gave sixfold (2497 mg/l) higher yields of phycocyanin as compared to autotrophic condition under white light (415 mg/l).

  19. Perovskite energy funnels for efficient light-emitting diodes.

    PubMed

    Yuan, Mingjian; Quan, Li Na; Comin, Riccardo; Walters, Grant; Sabatini, Randy; Voznyy, Oleksandr; Hoogland, Sjoerd; Zhao, Yongbiao; Beauregard, Eric M; Kanjanaboos, Pongsakorn; Lu, Zhenghong; Kim, Dong Ha; Sargent, Edward H

    2016-10-01

    Organometal halide perovskites exhibit large bulk crystal domain sizes, rare traps, excellent mobilities and carriers that are free at room temperature-properties that support their excellent performance in charge-separating devices. In devices that rely on the forward injection of electrons and holes, such as light-emitting diodes (LEDs), excellent mobilities contribute to the efficient capture of non-equilibrium charge carriers by rare non-radiative centres. Moreover, the lack of bound excitons weakens the competition of desired radiative (over undesired non-radiative) recombination. Here we report a perovskite mixed material comprising a series of differently quantum-size-tuned grains that funnels photoexcitations to the lowest-bandgap light-emitter in the mixture. The materials function as charge carrier concentrators, ensuring that radiative recombination successfully outcompetes trapping and hence non-radiative recombination. We use the new material to build devices that exhibit an external quantum efficiency (EQE) of 8.8% and a radiance of 80 W sr(-1) m(-2). These represent the brightest and most efficient solution-processed near-infrared LEDs to date.

  20. New material options for light-emitting diode packaging

    NASA Astrophysics Data System (ADS)

    Zweben, Carl H.

    2004-06-01

    As light-emitting diode (LED) power levels and chip sizes increase, thermal management and thermal stresses, which affect performance, power conversion efficiency nad lifetime, are becoming increasingly serious problems. Traditional materials have serious deficiencies in meeting requirements for thermal management and minimization of thermal stresses in high-brightness (HB) LED packaging. Copper, the standard material for applications requiring high thermal conductivity, has a coefficient of thermal expansion (CTE) that is much larger than those of ceramics and semiconductor materials, giving rise to thermal stresses when packages are subjected to thermal excursions. Aluminum has a larger CTE than copper. Traditional materials with low CTEs have thermal conductivites that are little or no better than that of aluminum. There are an increasing number of new packaging materials with low, tailorable CTEs and thermal conductivities up to four times those of copper that overcome thise limitations. The ability to tailor material CTE has been used to solve critical warping problems in manufacturing, increasing yield from 5% to over 99%. Advanced materials fall into six categories: monolithic carbonaceous materials, metal matrix compsites, carbon/carbon composites, ceramic matrix composites, polymer matrix composites, and advanced metallic alloys. This paper provides an overview of the state of the art of advanced packaging materials, including their key properties, state of maturity, cost and applications.

  1. High efficiency white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Dong, Weili; Gao, Hongyan; Tian, Xiaocui; Zhao, Lina; Jiang, Wenlong; Zhang, Xiyan

    2015-06-01

    The light emitting diodes with the structure of ITO/ m-MTDATA(20 nm)/NPB(10 nm)/CBP BCzVBi ( x, nm, 10%)/CBP(3 nm)/CBP: Ir(ppy)3: DCJTB(10 nm, 8 and 1%)/Bphen(30 nm)/Cs2CO3: Ag2O (2 nm, 20%)/Al (100 nm) employing phosphorescence sensitization and fluorescence doping, were manufactured. The performance of the devices was studied by adjusting the thickness of fluorescence dopant layer ( x = 15, 20, 25, and 30). The best performance was achieved when its thickness was 25 nm. The device has the maximum luminance of 20260 cd/m2 at applied voltage of 14 V and the maximum current efficiency of 11.70 cd/A at 7 V. The device displays a continuous change of color from yellow to white. The CIE coordinates change from (0.49, 0.48) to (0.32, 0.39) when the driving voltage is varied from 5 to 15 V.

  2. Flexible fluorescent white organic light emitting diodes with ALD encapsulation

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Sheng; Chittawanij, Apisit; Juang, Fuh-Shyang; Lin, Pen-Chu; Hong, Lin-Ann; Tsai, Feng-Yu; Tseng, Ming-Hong; Wang, Ching-Chiun; Chen, Chien-Chih; Lin, Kung-Liang; Chen, Szu-Hao

    2015-08-01

    In this paper, the flexible white organic light-emitting diodes (WOLED) was fabricated on polyethylene naphthalate (PEN) with structure of ITO/EHI608 (75 nm)/HTG-1 (10 nm)/3% EB502:0.8% EY53 (5 nm)/3% EB502 (35 nm)/Alq3 (10 nm)/LiF (0.8 nm)/Al (150 nm) and was compared with glass substrate the same structure. It was seen that the performances of flexible and glass substrate are almost the same. The luminance, current efficiency, and CIE coordinates of flexible device is 6351 cd/m2, 12.7 cd/A, and (0.31, 0.38) at 50 mA/cm2, respectively. Then, an Al2O3/HfO2 film on polyethylene terephthalate (PET) was deposited using atomic layer deposition (ALD) as a thin film encapsulation layer have been described and compared, such as the characteristics of water permeability and lifetime of flexible WOLED. The results show that the PET/ALD film low value of about 0.04 g/m2d, and the PET film shows WVTR of about 3.8 g/m2/d. The lifetimes of PET/ALD and PET encapsulations are 840 min and 140 min, respectively. Simultaneous deposition of ALD film on PET film gave the lifetime of flexible WOLED is six times longer than device without ALD encapsulation.

  3. Selective-area nanoheteroepitaxy for light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Wildeson, Isaac H.

    Over 20% of the electricity in the United States is consumed for lighting, and the majority of this energy is wasted as heat during the lighting process. A solid-state (or light emitting diode (LED)-based) light source has the potential of saving the United States billions of dollars in electricity and reducing megatons of global CO2 emissions annually. While white light LEDs are currently on the market with efficiencies that are superior to incandescent and fluorescent light sources, their high up-front cost is inhibiting mass adoption. One reason for the high cost is the inefficiency of green and amber LEDs that can used to make white light. The inefficiency of green and amber LEDs results in more of these chips being required, and thus a higher cost. Improvements in the performance of green and amber LEDs is also required in order to realize the full potential of solid-state lighting. Nanoheteroepitaxy is an interesting route towards achieving efficient green and amber LEDs as it resolves major challenges that are currently plaguing III-nitride LEDs such as high dislocation densities and limited active region critical thicknesses. A method for fabricating III-nitride nanopyramid LEDs is presented that employs conventional processing used in industry. The present document begins with an overview of the current challenges in III-nitride LEDs and the benefits of nanoheteroepitaxy. A process for controlled selective-area growth of nanopyramid LEDs by organometallic vapor phase epitaxy has been developed throughout the course of this work. Dielectric templates used for the selective-area growth are patterned by two methods, namely porous anodic alumina and electron-beam lithography. The dielectric templates serve as efficient dislocation filters; however, planar defects are initiated during lower temperature growth on the nanopyramids. The quantum wells outline six semipolar planes that form each hexagonal pyramid. Quantum wells grown on these semipolar planes

  4. Development of Mid-infrared GeSn Light Emitting Diodes on a Silicon Substrate

    DTIC Science & Technology

    2015-04-22

    Final 3. DATES COVERED 13-01-2013 to 30-07-2014 4. TITLE AND SUBTITLE Development of Mid-infrared GeSn Light Emitting Diodes on a Silicon...to develop 1) direct-bandgap Sn-based group-IV material with very low defect densities and 2) a new type of Sn-based group-IV light - emitting diode ...infrared GeSn Light Emitting Diodes on a Silicon Substrate” 22/4/2015 PI and Co-PI information: - Name of Principal Investigators: Prof. H

  5. 3D printed quantum dot light-emitting diodes.

    PubMed

    Kong, Yong Lin; Tamargo, Ian A; Kim, Hyoungsoo; Johnson, Blake N; Gupta, Maneesh K; Koh, Tae-Wook; Chin, Huai-An; Steingart, Daniel A; Rand, Barry P; McAlpine, Michael C

    2014-12-10

    Developing the ability to 3D print various classes of materials possessing distinct properties could enable the freeform generation of active electronics in unique functional, interwoven architectures. Achieving seamless integration of diverse materials with 3D printing is a significant challenge that requires overcoming discrepancies in material properties in addition to ensuring that all the materials are compatible with the 3D printing process. To date, 3D printing has been limited to specific plastics, passive conductors, and a few biological materials. Here, we show that diverse classes of materials can be 3D printed and fully integrated into device components with active properties. Specifically, we demonstrate the seamless interweaving of five different materials, including (1) emissive semiconducting inorganic nanoparticles, (2) an elastomeric matrix, (3) organic polymers as charge transport layers, (4) solid and liquid metal leads, and (5) a UV-adhesive transparent substrate layer. As a proof of concept for demonstrating the integrated functionality of these materials, we 3D printed quantum dot-based light-emitting diodes (QD-LEDs) that exhibit pure and tunable color emission properties. By further incorporating the 3D scanning of surface topologies, we demonstrate the ability to conformally print devices onto curvilinear surfaces, such as contact lenses. Finally, we show that novel architectures that are not easily accessed using standard microfabrication techniques can be constructed, by 3D printing a 2 × 2 × 2 cube of encapsulated LEDs, in which every component of the cube and electronics are 3D printed. Overall, these results suggest that 3D printing is more versatile than has been demonstrated to date and is capable of integrating many distinct classes of materials.

  6. Effect of current waveform on the performance of phosphor converted nitride light emitting diodes

    SciTech Connect

    Ludwiczak, Bogna; Jantsch, Wolfgang

    2014-01-21

    We investigate the influence of the current waveform on the efficiency and the emission spectra of white, high power InGaN light emitting diodes. We consider rectangular and trapezoidal current pulses, adjusted to provide the same number of charge carriers in the space charge region. Our measurements confirm the theoretical expectation that flattening of the pulse flank increases the power efficiency. This effect is stronger according to the current amplitude. The emission blue peak at trapezoidal pulses is slightly red-shifted compared to that one at rectangular pulses. This indicates a stronger effect of the quantum confined Stark effect for trapezoidal pulse driving.

  7. Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes

    SciTech Connect

    Tian, Pengfei; McKendry, Jonathan J. D.; Herrnsdorf, Johannes; Ferreira, Ricardo; Watson, Ian M.; Gu, Erdan Dawson, Martin D.; Watson, Scott; Kelly, Anthony E.

    2014-10-27

    Temperature-dependent trends in radiative and Auger recombination coefficients have been determined at different injection carrier concentrations using InGaN micro-light emitting diodes 40 μm in diameter. The differential lifetime was obtained first from the measured modulation bandwidth and was then employed to calculate the carrier concentration in the quantum well active region. When the temperature increases, the carrier concentration increases, but both the radiative and Auger recombination coefficients decrease. In addition, the temperature dependence of radiative and Auger recombination coefficients is weaker at a higher injection carrier concentration, which is strongly related to phase space filling.

  8. A novel way to improve the quantum efficiency of silicon light-emitting diode in a standard silicon complementary metal-oxide-semiconductor technology

    NASA Astrophysics Data System (ADS)

    Xu, Kaikai; Li, G. P.

    2013-03-01

    Silicon diode at avalanche breakdown has visible light emission in the depletion region. It is believed that this optical radiation comes from the kinetic energy loss of carriers generated by impact ionization colliding with immobile charge centers in the avalanche region. A theoretical model is presented to show the correlation of the hot carrier effect with the related photonic emission in high field. Meanwhile, a PMOSFET-like silicon light source device fabricated completely in the standard silicon CMOS process technology is measured to demonstrate that avalanching current is linearly proportional to optical emission power whether this light source acts as a two-terminal device (i.e., diode, the "p+ Source/Drain to n-Substrate junction" with floating the gate) or acts as a three-terminal device (i.e., gate-diode, the "p+ Source/Drain to n-Substrate junction" in the course of varying the gate voltage). Such linearity implies that control of the increasing current is a significant way to enhance the quantum efficiency of this light source device no matter what the physical structure (i.e., two terminals or three terminals) of this device is. For the first time, it has been discovered that, at the same avalanching current, the optical output power in gate-diode structure is higher than the optical output power in diode structure. In other words, for this PMOSFET-like device, the three-terminal operating mode is more efficient than the two-terminal operating mode.

  9. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes.

    PubMed

    Kim, Kukjoo; Kim, Gyeomuk; Lee, Bo Ram; Ji, Sangyoon; Kim, So-Yun; An, Byeong Wan; Song, Myoung Hoon; Park, Jang-Ung

    2015-08-28

    The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers.

  10. Development of ultraviolet nitride-based light emitting diodes

    NASA Astrophysics Data System (ADS)

    Katona, Thomas Matthew

    2003-10-01

    Deep ultraviolet light emitting diodes, with emission wavelengths shorter than 360 nm, have attracted interest due to their potential applications as replacement white light sources, in non-line of sight communication, for chemical and biological weapons detection, medical applications, water purification, and counterfeit detection. Light emitters in this wavelength range require AlGaN based active regions with increasing Al composition as the wavelength is decreased. High Al composition AlGaN based devices have been challenged by difficulty in growth, low electron and hole mobilities, and deep dopant levels resulting in low carrier concentrations. The combination of these factors has resulted in UV optoelectronic devices with quantum efficiency several orders of magnitude lower than their GaN/InGaN based visible counterparts. This work will details studies on alternative selective area growth techniques for dislocation reduction and the development of ultraviolet LEDs ranging from 292--340 nm. Lateral overgrowth of GaN on patterned Si (111) substrates was developed with the hope of developing seed material for bulk GaN growth. The effect of growth conditions on both the crystallographic wing tilt and crack density in the AlN/GaN films was studied. By controlling the lateral to vertical growth rate at the beginning of lateral overgrowth, the wing tilt can be effectively eliminated. We also demonstrate the first lateral overgrowth of AlN to create low threading dislocation density AlN template layers for optoelectronic device development. Deep UV quantum wells grown on this material were studied with cathodoluminescence to study the effect of dislocations on radiative recombination in deep UV devices. In addition to work on lateral overgrowth of GaN and AlN, 292, 340 nm LEDs were grown on AlN on sapphire and GaN on sapphire respectively. AlN strain relief interlayers were developed to prevent cracking of the 340 nm AlGaN based LEDs that were grown in tension on Ga

  11. Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes

    ERIC Educational Resources Information Center

    Wagner, Eugene P., II

    2016-01-01

    A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…

  12. Modelling the spatial colour distribution of phosphor-white high power light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Keppens, A.; Denijs, S.; Wouters, S.; Ryckaert, W. R.; Deconinck, G.; Hanselaer, P.

    2010-05-01

    In contrast to the spatial (luminous) intensity distribution of high power light-emitting diodes (LEDs), little effort has been made to examine the spatial colour distribution of these light sources, i.e. the values of CIE colour coordinates as a function of direction in space. The spatial colour variation is negligible for single colour emitters, but this is not the case for bichromatic white LEDs using phosphor for wavelength conversion. As the latter diode types are most often used for high colour rendering applications, a quantitative description of their colour distribution is necessary. Therefore, photogoniometer measurements have been performed on a variety of white light-emitting diodes incorporating a planar (remote) phosphor. In this paper measurement results are used to discuss and model the spatial colour distribution of phosphor-white LEDs. Such LEDs appear to show an intrinsic and inevitable spatial colour variation. Furthermore, the measurement data and constructed model allow evaluating the visibility of spatial colour differences and the relevance of colour binning measurements at the end of LED package production lines. Using insights on spatial colour distribution gathered throughout this paper, a design proposal is made to vastly decrease the colour variation of phosphor-white LEDs.

  13. Light emitting diodes as a plant lighting source

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Tennessen, D. J.; Morrow, R. C.; Tibbitts, T. W.

    1994-01-01

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. A number of LED characteristics are of considerable importance in selecting a light source for plant lighting in a controlled environment facility. Of particular importance is the characteristic that light is generated by an LED at a rate far greater than the corresponding thermal radiation predicted by the bulk temperature of the device as defined by Plank's radiation law. This is in sharp contrast to other light sources, such as an incandescent or high intensity discharge lamp. A plant lighting system for controlled environments must provide plants with an adequate flux of photosynthetically active radiation, plus providing photons in the spectral regions that are involved in the photomorphogenic and phototropic responses that result in normal plant growth and development. Use of light sources that emit photons over a broad spectral range generally meet these two lighting requirements. Since the LED's emit over specific spectral regions, they must be carefully selected so that the levels of photsynthetically active and photomorphogenic and phototropic radiation meet these plant requirements.

  14. Studies of the productive efficiency of a cylindrical salad growth facility with a light-emitting diodes lighting unit as a component of the biological life support system for space crews

    NASA Astrophysics Data System (ADS)

    Erokhin, A. N.; Berkovich, Y. A.; Smolianina, S. O.; Krivobok, N. M.; Agureev, A. N.; Kalandarov, S. K.

    Efficiency of the green salad production under light-emitting diodes within space life support system was tested with a prototype of a 10-step cylindrical "Phytocycle-SD". The system has a plant chamber in the form of a spiral cylinder; a planting unit inside the plant chamber is built of 10 root modules which make a planting circular cylinder co-axial with and revolving relative to the leaf chamber. Twelve panels of the lighting unit on the internal surfaces of the spiral cylinder carry 438 red (660 nm) and 88 blue (470 nm) light-emitting diodes producing average PPF equal 360 mmol/(m^2\\cdots) 4 cm below the light source, and 3 panels producing PPF equal 190 mmol/(^2\\cdots) at the initial steps of the plant conveyer. The system demands 0.44 kW, the plant chamber is 0.2 m^3 large, and the total illuminated crop area is 0.8 m^2. Productive efficiency of the greenhouse was studied in a series of laboratory experiments with celery cabbage Brassica pekinensis (Lour) Rupr. grown in the conveyer with a one step period of 3 days. The crop grew in a fiber ion-exchange mineral-rich soil (FS) BIONA V-3 under the 24-hr light. Maximal productivity of the ripe (30-d old) plants reached 700 g of the fresh edible biomass from one root module; in this case, FS productivity amounted to 5.6 kg of the fresh biomass per one kg of dry FS. Biomass contents of ascorbic acid, carotinoids and cellulose gathered from one root module made up 70 mg, 13 mg and 50 g, respectively. Hence, celery cabbage crop raised in "Phytocycle-SD" can satisfy up to 8% of the daily dietary vitamin C, 24% of vitamin A and 22% of food fibers of 3 crew members. Vitamin production can be increased by planting multi-species salad crops.

  15. Method and apparatus for improving the performance of light emitting diodes

    DOEpatents

    Lowery, Christopher H.; McElfresh, David K.; Burchet, Steve; Adolf, Douglas B.; Martin, James

    1996-01-01

    A method for increasing the resistance of a light emitting diode and other semiconductor devices to extremes of temperature is disclosed. During the manufacture of the light emitting diode, a liquid coating is applied to the light emitting die after the die has been placed in its lead frame. After the liquid coating has been placed on the die and its lead frames, a thermosetting encapsulant material is placed over the coating. The operation that cures the thermosetting material leaves the coating liquid intact. As the die and the encapsulant expand and contract at different rates with respect to changes in temperature, and as in known light emitting diodes the encapsulating material adheres to the die and lead frames, this liquid coating reduces the stresses that these different rates of expansion and contraction normally cause by eliminating the adherence of the encapsulating material to the die and frame.

  16. A highly efficient white-light-emitting diode based on a two-component polyfluorene/quantum dot composite

    NASA Astrophysics Data System (ADS)

    Dayneko, S. V.; Samokhvalov, P. S.; Lypenko, D.; Nosova, G. I.; Berezin, I. A.; Yakimanskii, A. V.; Chistyakov, A. A.; Nabiev, I.

    2017-01-01

    Organic light-emitting diodes (OLEDs) are attracting great interest of the scientific community and industry because they can be grown on flexible substrates using relatively simple and inexpensive technologies (solution processes). However, a problem in the fabrication of white OLEDs is that it is difficult to achieve a balance between the intensities of individual emission components in the blue, green, and red spectral regions. In this work, we try to solve this problem by creating a two-component light-emitting diode based on modified polyfluorene (PF-BT), which efficiently emits in the blue-green region, and CdSe/ZnS/CdS/ZnS semiconductor quantum dots emitting in the orange-red region with a fluorescence quantum yield exceeding 90%. By changing the mass ratio of components in the active light-emitting composite within 40-50%, it is possible to transform the diode emission spectrum from cold to warm white light without loss of the diode efficiency. It is very likely that optimization of the morphology of multilayer light-emitting diodes will lead to further improvement of their characteristics.

  17. Phosphorescent organic light emitting diodes with high efficiency and brightness

    DOEpatents

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  18. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Kukjoo; Kim, Gyeomuk; Lee, Bo Ram; Ji, Sangyoon; Kim, So-Yun; An, Byeong Wan; Song, Myoung Hoon; Park, Jang-Ung

    2015-08-01

    The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers.The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03034j

  19. Selective scattering polymer dispersed liquid crystal film for light enhancement of organic light emitting diode.

    PubMed

    Jiang, Jinghua; McGraw, Greg; Ma, Ruiqing; Brown, Julie; Yang, Deng-Ke

    2017-02-20

    We developed a novel light enhancing film for an organic light emitting diode (OLED) based on polymer dispersed liquid crystal (PDLC). In the film, the liquid crystal droplets are unidirectionally aligned along the film normal direction and exhibit selective scattering. The film scatters light emitted only in directions with large incident angles but not light emitted in directions with small incident angles. When the light is scattered, it changes propagation direction and exits the OLED. The PDLC film reduces the total internal reflection and thus can significantly increase the light efficiency of the OLED.

  20. The electrodeposition of multilayers on a polymeric substrate in Flexible Organic Light Emitting Diode (OLED)

    NASA Astrophysics Data System (ADS)

    Guedes, Andre F. S.; Guedes, Vilmar P.; Tartari, Simone; Cunha, Idaulo Jose

    2016-09-01

    The development of Organic Light Emitting Diode (OLED), using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The OLED are the base Poly(3,4-ethylenedioxythiophene), PEDOT, Poly(p-phenylenevinylene), PPV, and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by UV-Visible Spectroscopy (UV-Vis), Optical Parameters (OP) and Scanning Electron Microscopy (SEM). In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by UV-Vis has demonstrated that the PET/ITO/PEDOT/PPV/PANI-X1/Al layer does not have displacement of absorption for wavelengths greaters after spin-coating and electrodeposition. Thus, the spectral irradiance of the OLED informed the irradiance of 100 W/m2, and this result, compared with the standard Light Emitting Diode (LED), has indicated that the OLED has higher irradiance. After 1200 hours of electrical OLED tests, the appearance of nanoparticles visible for images by SEM, to the migration process of organic semiconductor materials, was present, then. Still, similar to the phenomenon of electromigration observed in connections and interconnections of microelectronic devices, the results have revealed a new mechanism of migration, which raises the passage of electric current in OLED.

  1. Extracting and directing light out of organic light emitting diodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lemmer, Uli; Egel, Amos; Hecht, Matthias; Preinfalk, Jan B.; Gomard, Guillaume

    2015-10-01

    Light extraction from organic light emitting diodes (OLEDs) is attracting considerable interest as being crucial for enhancing the energy efficiency in lighting applications. Light extraction can be realized by lithographically defined internal diffraction gratings or stochastic scattering centers. The former approach needs in addition an external optical layer for scrambling the angularly dependent emission spectra in order to avoid color shifts [1]. Micro lens arrays cannot only be used for fulfilling this task but they can also be used for enhancing the luminosity into a specific direction. We demonstrate recent advances towards high efficiency OLEDs with high directionality. In addition to the relevant technologies we have also developed a comprehensive simulation software for the quantitative description of the light propagation inside the devices. Here, a particular challenging task is the description of multiple and coherent optical scattering. We have recently developed a software for the exact simulation based on a scattering matrix formalism [2]. [1] T. Bocksrocker, J. B. Preinfalk, J. Asche-Tauscher, A. Pargner, C. Eschenbaum, F. Maier-Flaig and U. Lemmer, White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and Lambertian emission Opt. Expr. 20, A932 (2012). [2] A. Egel, U. Lemmer, Dipole emission in stratified media with multiple spherical scatterers: Enhanced outcoupling from OLEDs, Journal of Quantitative Spectroscopy and Radiative Transfer 148, 165 (2014).

  2. Semiconductor-Nanocrystals-Based White Light-Emitting Diodes

    SciTech Connect

    Dai, Quanqin; Duty, Chad E; Hu, Michael Z.

    2010-01-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white lightemitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed.

  3. High speed GaN micro-light-emitting diode arrays for data communications

    NASA Astrophysics Data System (ADS)

    Watson, Scott; McKendry, Jonathan J. D.; Zhang, Shuailong; Massoubre, David; Rae, Bruce R.; Green, Richard P.; Gu, Erdan; Henderson, Robert K.; Kelly, A. E.; Dawson, Martin D.

    2012-10-01

    Micro light-emitting diode (micro-LED) arrays based on an AlInGaN structure have attracted much interest recently as light sources for data communications. Visible light communication (VLC), over free space or plastic optical fibre (POF), has become a very important technique in the role of data transmission. The micro-LEDs which are reported here contain pixels ranging in diameter from 14 to 84μm and can be driven directly using a high speed probe or via complementary metal-oxide semiconductor (CMOS) technology. The CMOS arrays allow for easy, computer control of individual pixels within arrays containing up to 16×16 elements. The micro-LEDs best suited for data transmission have peak emissions of 450nm or 520nm, however various other wavelengths across the visible spectrum can also be used. Optical modulation bandwidths of over 400MHz have been achieved as well as error-free (defined as an error rate of <1x10-10) data transmission using on-off keying (OOK) non-return-to-zero (NRZ) modulation at data rates of over 500Mbit/s over free space. Also, as a step towards a more practical multi-emitter data transmitter, the frequency response of a micro-LED integrated with CMOS circuitry was measured and found to be up to 185MHz. Despite the reduction in bandwidth compared to the bare measurements using a high speed probe, a good compromise is achieved from the additional control available to select each pixel. It has been shown that modulating more than one pixel simultaneously can increase the data rate. As work continues in this area, the aim will be to further increase the data transmission rate by modulating more pixels on a single device to transmit multiple parallel data channels simultaneously.

  4. NASA sponsored Light Emitting Diode (LED) development helps in cancer treatment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    What started out as an attempt to develop a light which would allow for the growth of plants in space led to a remarkable discovery: The Light Emitting Diode (LED). This device through extensive study and experimentation has developed into a tool used by surgeons in the fight against brain cancer in children. Pictured is a mock-up of brain surgery being performed. By encapsulating the end of the LED with a balloon, light is diffused over a larger area of the brain allowing the surgeon a better view. This is one of many programs that begin as research for the space program, and through extensive study end up benefitting all of mankind.

  5. High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles.

    PubMed

    Xing, Jun; Yan, Fei; Zhao, Yawen; Chen, Shi; Yu, Huakang; Zhang, Qing; Zeng, Rongguang; Demir, Hilmi Volkan; Sun, Xiaowei; Huan, Alfred; Xiong, Qihua

    2016-07-26

    Organometal halide perovskite has recently emerged as a very promising family of materials with augmented performance in electronic and optoelectronic applications including photovoltaic devices, photodetectors, and light-emitting diodes. Herein, we propose and demonstrate facile solution synthesis of a series of colloidal organometal halide perovskite CH3NH3PbX3 (X = halides) nanoparticles with amorphous structure, which exhibit high quantum yield and tunable emission from ultraviolet to near-infrared. The growth mechanism and photoluminescence properties of the perovskite amorphous nanoparticles were studied in detail. A high-efficiency green-light-emitting diode based on amorphous CH3NH3PbBr3 nanoparticles was demonstrated. The perovskite amorphous nanoparticle-based light-emitting diode shows a maximum luminous efficiency of 11.49 cd/A, a power efficiency of 7.84 lm/W, and an external quantum efficiency of 3.8%, which is 3.5 times higher than that of the best colloidal perovskite quantum-dot-based light-emitting diodes previously reported. Our findings indicate the great potential of colloidal perovskite amorphous nanoparticles in light-emitting devices.

  6. Highly efficient exciplex phosphorescence from organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Virgili, D.; Cocchi, M.; Fattori, V.; Sabatini, C.; Kalinowski, J.; Williams, J. A. G.

    2006-12-01

    The efficiency of organic exciplex light-emitting-devices (EXLEDs) can be greatly improved by introduction of a phosphorescent sensitizer with a high electronic affinity. In the electron-hole combination process at the electron donor/acceptor interface, solely singlet exciplexes are generated producing the exciplex fluorescence. A phosphor sensitizer allows the formation in the emitter bulk of triplet exciplexes, which yield highly efficient exciplex phosphorescence. As an example, we use a Pt-based phosphor (PtL 2Cl) doped into a star-burst amine hole transporting donor (m-MTDATA) and bathophenanthroline (BPT) electron-transporting acceptor system which in a bi-layer EXLED reveals an exciplex high electro-phosphorescence external quantum yield of 2.4% photon/carrier.

  7. ZnO PN Junctions for Highly-Efficient, Low-Cost Light Emitting Diodes

    SciTech Connect

    David P. Norton; Stephen Pearton; Fan Ren

    2007-09-30

    By 2015, the US Department of Energy has set as a goal the development of advanced solid state lighting technologies that are more energy efficient, longer lasting, and more cost-effective than current technology. One approach that is most attractive is to utilize light-emitting diode technologies. Although III-V compound semiconductors have been the primary focus in pursuing this objective, ZnO-based materials present some distinct advantages that could yield success in meeting this objective. As with the nitrides, ZnO is a direct bandgap semiconductor whose gap energy (3.2 eV) can be tuned from 3.0 to 4 eV with substitution of Mg for higher bandgap, Cd for lower bandgap. ZnO has an exciton binding energy of 60 meV, which is larger than that for the nitrides, indicating that it should be a superior light emitting semiconductor. Furthermore, ZnO thin films can be deposited at temperatures on the order of 400-600 C, which is significantly lower than that for the nitrides and should lead to lower manufacturing costs. It has also been demonstrated that functional ZnO electronic devices can be fabricated on inexpensive substrates, such as glass. Therefore, for the large-area photonic application of solid state lighting, ZnO holds unique potential. A significant impediment to exploiting ZnO in light-emitting applications has been the absence of effective p-type carrier doping. However, the recent realization of acceptor-doped ZnO material overcomes this impediment, opening the door to ZnO light emitting diode development In this project, the synthesis and properties of ZnO-based pn junctions for light emitting diodes was investigated. The focus was on three issues most pertinent to realizing a ZnO-based solid state lighting technology, namely (1) achieving high p-type carrier concentrations in epitaxial and polycrystalline films, (2) realizing band edge emission from pn homojunctions, and (3) investigating pn heterojunction constructs that should yield efficient light

  8. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in <180 minutes of contact

  9. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    DOEpatents

    Rogers, John A; Nuzzo, Ralph; Kim, Hoon-sik; Brueckner, Eric; Park, Sang Il; Kim, Rak Hwan

    2014-10-21

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  10. New red phosphor for near-ultraviolet light-emitting diodes with high color-purity

    SciTech Connect

    Wang, Zhengliang; He, Pei; Wang, Rui; Zhao, Jishou; Gong, Menglian

    2010-02-15

    New red phosphors, Na{sub 5}Eu(MoO{sub 4}){sub 4} doped with boron oxide were prepared by the solid-state reaction. Their structure and photo-luminescent properties were investigated. With the introduction of boron oxide, the red emission intensity of the phosphors under 395 nm excitation is strengthened, with high color-purity (x = 0.673, y = 0.327). The single red light-emitting diode was obtained by combining InGaN chip with the red phosphor, bright red light can be observed by naked eyes from the red light-emitting diodes under a forward bias of 20 mA.

  11. Improved calibration technique of the infrared imaging bolometer using ultraviolet light-emitting diodes.

    PubMed

    Drapiko, E; Peterson, B; Alekseev, A; Seo, D C

    2010-10-01

    The technique used until recently utilizing the Ne-He laser for imaging bolometer foils calibration [B. J. Peterson et al., J. Plasma Fusion Res. 2, S1018 (2007)] has showed several issues. The method was based on irradiation of 1 cm spaced set of points on a foil by the laser beam moved by set of mirrors. Issues were the nonuniformity of laser power due to the vacuum window transmission nonuniformity and high reflection coefficient for the laser. Also, due to the limited infrared (IR) window size, it was very time consuming. The new methodology uses a compact ultraviolet (uv) light-emitting diodes installed inside the vacuum chamber in a fixed position and the foil itself will be moved in the XY directions by two vacuum feedthroughs. These will help to avoid the above mentioned issues due to lack of a vacuum window, fixed emitters, higher uv power absorption, and a fixed IR camera position.

  12. Highly Convergent Simulations of Transport Dynamics in Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    deMello, J. C.

    2002-09-01

    We present a method-of-lines solution procedure for modelling charge transport and recombination in organic light-emitting diodes operating in the trap-free space-charge-limited regime. The numerical procedure employs a spatial remeshing algorithm based on equidistribution principles as reported by Sanz-Serna and Christie (1986, J. Comput. Phys.67, 348) and incorporates additional refinements proposed by Revilla (1986, Int. J. Numer. Methods Eng.23, 2263) and Saucez et al. (1996, J. Comput. Phys.128, 274). The method, which does not give rise to ill-conditioned series of differential equations, offers rapid convergence to the steady state and is especially well suited to systems of equations displaying steep moving solution fronts. The technique is readily extended to more complex systems.

  13. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    PubMed

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  14. Optical design of a light-emitting diode lamp for a maritime lighthouse.

    PubMed

    Jafrancesco, D; Mercatelli, L; Sansoni, P; Fontani, D; Sani, E; Coraggia, S; Meucci, M; Francini, F

    2015-04-10

    Traffic signaling is an emerging field for light-emitting diode (LED) applications. This sustainable power-saving illumination technology can be used in maritime signaling thanks to the recently updated norms, where the possibility to utilize LED sources is explicitly cited, and to the availability of high-power white LEDs that, combined with suitable lenses, permit us to obtain well-collimated beams. This paper describes the optical design of a LED-based lamp that can replace a traditional lamp in an authentic marine lighthouse. This source recombines multiple separated LEDs realizing a quasi-punctual localized source. Advantages can be lower energy consumption, higher efficiency, longer life, fewer faults, slower aging, and minor maintenance costs. The proposed LED source allows us to keep and to utilize the old Fresnel lenses of the lighthouse, which very often have historical value.

  15. Sensor fabrication method for in situ temperature and humidity monitoring of light emitting diodes.

    PubMed

    Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Chan, Pin-Cheng; Lin, Chia-Hung

    2010-01-01

    In this work micro temperature and humidity sensors are fabricated to measure the junction temperature and humidity of light emitting diodes (LED). The junction temperature is frequently measured using thermal resistance measurement technology. The weakness of this method is that the timing of data capture is not regulated by any standard. This investigation develops a device that can stably and continually measure temperature and humidity. The device is light-weight and can monitor junction temperature and humidity in real time. Using micro-electro-mechanical systems (MEMS), this study minimizes the size of the micro temperature and humidity sensors, which are constructed on a stainless steel foil substrate (40 μm-thick SS-304). The micro temperature and humidity sensors can be fixed between the LED chip and frame. The sensitivities of the micro temperature and humidity sensors are 0.06±0.005 (Ω/°C) and 0.033 pF/%RH, respectively.

  16. Single nanowire green InGaN/GaN light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Guogang; Li, Ziyuan; Yuan, Xiaoming; Wang, Fan; Fu, Lan; Zhuang, Zhe; Ren, Fang-Fang; Liu, Bin; Zhang, Rong; Tan, Hark Hoe; Jagadish, Chennupati

    2016-10-01

    Single nanowire (NW) green InGaN/GaN light-emitting diodes (LEDs) were fabricated by top-down etching technology. The electroluminescence (EL) peak wavelength remains approximately constant with an increasing injection current in contrast to a standard planar LED, which suggests that the quantum-confined Stark effect is significantly reduced in the single NW device. The strain relaxation mechanism is studied in the single NW LED using Raman scattering analysis. As compared to its planar counterpart, the EL peak of the NW LED shows a redshift, due to electric field redistribution as a result of changes in the cavity mode pattern after metallization. Our method has important implication for single NW optoelectronic device applications.

  17. Study of natural organic dyes as active material for fabrication of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sánchez Juárez, A.; Castillo, D.; Guaman, A.; Espinosa, S.; Obregón, D.

    2016-09-01

    The scientific community and some sectors of industry have been working with organic dyes for successful applications in OLED's, OSC's, however, most of the used dyes and pigments are synthetic. In this work is investigated the use of natural dyes for its application in organic light emitting diodes, some of the studied species are chili, blackberry, guayacan flower, cochinilla, tree tomato, capuli, etc. In this study the dyes are deposited by direct deposition and SOL-GEL process doped with the natural organic dye, both methods show good performance and lower fabrication costs for dye extraction, this represents a new alternative for the fabrication of OLED devices with low requirements in technology. Most representative results are presented for Dactylopius Coccus Costa (cochinilla) and raphanus sativus' skin.

  18. Aligning the Band Structures of Polymorphic Molybdenum Oxides and Organic Emitters in Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Yun, Jongmin; Jang, Woosun; Lee, Taehun; Lee, Yonghyuk; Soon, Aloysius

    2017-02-01

    Heavy transition-metal oxides are widely studied for key applications in electronics and energy technologies. In cutting-edge organic-light-emitting-diode (OLED) devices, there remain scientific challenges to achieve an efficient transfer of charges between electrodes and the organic layer. Recently, polymorphic MoO3 has been actively investigated to exploit its unique high work-function values, especially for its use in the electrode buffer layer to effectively transfer the charges in OLED devices. However, no systematic fundamental studies of its electronic structure are available. Thus, in this study, we use first-principles density-functional theory to investigate both the crystal structure and the electronic structure of the MoO3 polymorphs, and we conclude with a simple perspective to screen the best candidate for OLED applications via a hole transport-barrier descriptor.

  19. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  20. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  1. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  2. 77 FR 21038 - Energy Conservation Program: Test Procedures for Light-Emitting Diode Lamps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ...The U.S. Department of Energy (DOE) proposes to establish test procedures for light-emitting diode (LED) lamps to support implementation of labeling provisions by the Federal Trade Commission (FTC) established under the Energy Policy and Conservation Act (EPCA). The proposed test procedures define methods for measuring the lumen output, input power, and relative spectral distribution (to......

  3. Response of adult mosquitoes to light emitting diodes placed in resting boxes and in the field.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resting boxes are passive devices used to attract and capture mosquitoes seeking shelter. Increasing the attractiveness of these devices could improve their effectiveness. Light emitting diodes (LEDs) can be attractive to mosquitoes when used together with other trapping devices. Therefore restin...

  4. Optical Experiments Using Mini-Torches with Red, Green and Blue Light Emitting Diodes

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Matsunaga, Ai

    2007-01-01

    We have developed two kinds of optical experiments: color mixture and fluorescence, using mini-torches with light emitting diodes (LEDs) that emit three primary colors. Since the tools used in the experiments are simple and inexpensive, students can easily retry and develop the experiments by themselves. As well as giving an introduction to basic…

  5. Hand-Drawn Resistors and a Simple Tester Using a Light-Emitting Diode

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Abe, Mayumi

    2012-01-01

    A thick line drawn on a sheet of paper with a 6B pencil is electrically conductive and its resistance can be roughly estimated using a simple tester made of a light-emitting diode (LED) and a lithium coin-type cell. Using this hand-drawn resistor and the LED tester, we developed teaching materials that help students to understand how electrical…

  6. Photodynamic therapy using light-emitting diodes for the treatment of viral warts.

    PubMed

    Ohtsuki, Akiko; Hasegawa, Toshio; Hirasawa, Yusuke; Tsuchihashi, Hitoshi; Ikeda, Shigaku

    2009-10-01

    Photodynamic therapy with topical 5-aminolevulinic acid is an effective and safe treatment for actinic keratosis and superficial non-melanoma skin cancer. Further, some studies have reported good efficacy when using photodynamic therapy to treat viral warts. The light-emitting diode is an incoherent, narrow-spectrum light source. The purpose of this study is to evaluate the efficacy of photodynamic therapy using a light-emitting diode for viral warts. Six patients with a total of 41 foot and hand warts were recruited in this study. They were treated with 20% 5-aminolevulinic acid cream under occlusion for 5 h. Thereafter, the treated area was irradiated with the light from a red light-emitting diode (633 +/- 6 nm) with a dose of 126 J/cm(2). This treatment was repeated at 2- or 3-week intervals. The rate of improvement observed in patients was 68.3%. The adverse effects included mild to moderate pain and erythema, which was well-tolerated by all six patients. No patients withdrew from the study due to the adverse effects. Photodynamic therapy with topical 5-aminolevulinic acid using the light from a red light-emitting diode has the advantage of non-invasiveness, minimal associated adverse reactions, and production of good results in a significant proportion of cases: therefore, it is an alternative treatment for recalcitrant viral warts.

  7. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes.

    PubMed

    Yu, Zhibin; Zhang, Qingwu; Li, Lu; Chen, Qi; Niu, Xiaofan; Liu, Jun; Pei, Qibing

    2011-02-01

    Shape-memory polymer light-emitting diodes (PLEDs) using a new silver nanowire/polymer electrode are reported. The electrode can be stretched by up to 16% with only a small increase in sheet resistance. Large deformation shape change and recovery of the PLEDs to various bistable curvatures result in minimal loss of electroluminescence performance.

  8. 76 FR 67761 - Certain Light-Emitting Diodes and Products Containing Same Determination Not To Review an Initial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... From the Federal Register Online via the Government Publishing Office ] INTERNATIONAL TRADE COMMISSION Certain Light-Emitting Diodes and Products Containing Same Determination Not To Review an Initial... States after importation of certain light emitting diodes and products containing same by reason...

  9. 76 FR 60082 - In the Matter of Certain Light-Emitting Diodes and Products Containing Same; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Light-Emitting Diodes and Products Containing Same; Notice of Commission... within the United States after importation of certain light-emitting diodes and products containing...

  10. 77 FR 75446 - Certain Light-Emitting Diodes and Products Containing the Same; Commission Determination To Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Light-Emitting Diodes and Products Containing the Same; Commission Determination To Grant... importation of certain light-emitting diodes and products containing same by reason of infringement of...

  11. Phosphorescent Neutral Iridium (III) Complexes for Organic Light-Emitting Diodes.

    PubMed

    Bin Mohd Yusoff, Abd Rashid; Huckaba, Aron J; Nazeeruddin, Mohammad Khaja

    2017-04-01

    The development of transition metal complexes for application in light-emitting devices is currently attracting significant research interest. Among phosphorescent emitters, those involving iridium (III) complexes have proven to be exceedingly useful due to their relatively short triplet lifetime and high phosphorescence quantum yields. The emission wavelength of iridium (III) complexes significantly depends on the ligands, and changing the electronic nature and the position of the ligand substituents can control the properties of the ligands. In this chapter, we discuss recent developments of phosphorescent transition metal complexes for organic light-emitting diode applications focusing solely on the development of iridium metal complexes.

  12. Synthesis and optical properties of cadmium selenide quantum dots for white light-emitting diode application

    SciTech Connect

    Xu, Xianmei; Wang, Yilin; Gule, Teri; Luo, Qiang; Zhou, Liya; Gong, Fuzhong

    2013-03-15

    Highlights: ► Stable CdSe QDs were synthesized by the one-step and two-level process respectively. ► The fabricated white LEDs show good white balance. ► CdSe QDs present well green to yellow band luminescence. ► CdSe QDs displayed a broad excitation band. - Abstract: Yellow light-emitting cadmium selenide quantum dots were synthesized using one-step and two-step methods in an aqueous medium. The structural luminescent properties of these quantum dots were investigated. The obtained cadmium selenide quantum dots displayed a broad excitation band suitable for blue or near-ultraviolet light-emitting diode applications. White light-emitting diodes were fabricated by coating the cadmium selenide samples onto a 460 nm-emitting indium gallium nitrite chip. Both samples exhibited good white balance. Under a 20 mA working current, the white light-emitting diode fabricated via the one-step and two-step methods showed Commission Internationale de l’Éclairage coordinates at (0.27, 0.23) and (0.27, 0.33), respectively, and a color rendering index equal to 41 and 37, respectively. The one-step approach was simpler, greener, and more effective than the two-step approach. The one-step approach can be enhanced by combining cadmium selenide quantum dots with proper phosphors.

  13. Role of electron blocking layer in III-nitride laser diodes and light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kuo, Yen-Kuang; Chang, Jih-Yuan; Chen, Mei-Ling

    2010-02-01

    A high energy bandgap electron blocking layer (EBL) just behind the active region is conventionally used in the nitride-based laser diodes (LDs) and light-emitting diodes (LEDs) to improve the confinement capability of electrons within the quantum wells. Nevertheless, the EBL may also act as a potential barrier for the holes and cause non-uniform distribution of holes among quantum wells. A most recent study by Han et al. (Appl. Phys. Lett. 94, 231123, 2009) reported that, because of the blocking effect for holes, the InGaN LED device without an EBL has slighter efficiency droop and higher light output at high level of current injection when compared with the LED device with an EBL. This result seems to contradict with the original intention of using the EBL. Furthermore, findings from our previous studies (IEEE J. Lightwave Technol. 26, 329, 2008; J. Appl. Phys. 103, 103115, 2008; Appl. Phys. Lett. 91, 201118, 2007) indicated that the utilization of EBL is essential for the InGaN laser diodes. Thus, in this work, the optical properties of the InGaN LDs and LEDs are explored numerically with the LASTIP simulation program and APSYS simulation program, respectively. The analyses focus particularly on the light output power, energy band diagrams, recombination rates, distribution of electrons and holes in the active region, and electron overflow. This study will then conclude with a discussion of the effect of EBL on the optical properties of the InGaN LDs and LEDs.

  14. Biological Research in Canisters (BRIC) - Light Emitting Diode (LED)

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Caron, Allison

    2016-01-01

    The Biological Research in Canisters - LED (BRIC-LED) is a biological research system that is being designed to complement the capabilities of the existing BRIC-Petri Dish Fixation Unit (PDFU) for the Space Life and Physical Sciences (SLPS) Program. A diverse range of organisms can be supported, including plant seedlings, callus cultures, Caenorhabditis elegans, microbes, and others. In the event of a launch scrub, the entire assembly can be replaced with an identical back-up unit containing freshly loaded specimens.

  15. CoPt ferromagnetic injector in light-emitting Schottky diodes based on InGaAs/GaAs nanostructures

    SciTech Connect

    Zdoroveyshchev, A. V. Dorokhin, M. V.; Demina, P. B.; Kudrin, A. V.; Vikhrova, O. V.; Ved’, M. V.; Danilov, Yu. A.; Erofeeva, I. V.; Krjukov, R. N.; Nikolichev, D. E.

    2015-12-15

    The possibility of fabricating a ferromagnetic injector based on a near-equiatomic CoPt alloy with pronounced perpendicular magnetization anisotropy in the InGaAs/GaAs spin light-emitting diode is shown. The physical properties of experimental spin light-emitting diode prototypes are comprehensively studied. Circularly polarized electroluminescence of fabricated diodes is obtained in zero magnetic field due to the remanent magnetization of CoPt layers.

  16. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance

    NASA Astrophysics Data System (ADS)

    Tuong Ly, Kiet; Chen-Cheng, Ren-Wu; Lin, Hao-Wu; Shiau, Yu-Jeng; Liu, Shih-Hung; Chou, Pi-Tai; Tsao, Cheng-Si; Huang, Yu-Ching; Chi, Yun

    2017-01-01

    Bright and efficient organic emitters of near-infrared light would be of use in applications ranging from biological imaging and medical therapy to night-vision devices. Here we report how a new class of Pt(II) complex phosphors have enabled the fabrication of organic light-emitting diodes that emit light at 740 nm with very high efficiency and radiance due to a high photoluminescence quantum yield of ∼81% and a highly preferred horizontal dipole orientation. The best devices exhibited an external quantum efficiency of 24 ± 1% in a normal planar organic light-emitting diode structure. The incorporation of a light out-coupling hemisphere structure further boosts the external quantum efficiency up to 55 ± 3%.

  17. Broadband visible light source based on AllnGaN light emitting diodes

    DOEpatents

    Crawford, Mary H.; Nelson, Jeffrey S.

    2003-12-16

    A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

  18. Multifunctional graphene sheets embedded in silicone encapsulant for superior performance of light-emitting diodes.

    PubMed

    Lee, Seungae; Hong, Jin-Yong; Jang, Jyongsik

    2013-07-23

    Graphene nanosheets with uniform shape are successfully incorporated into a silicone encapsulant of a light-emitting diode (LED) using a solvent-exchange approach which is a facile and straightforward method. The graphene nanosheets embedded in the silicone encapsulant have a multifunctional role which improves the performance of light-emitting diodes. The presence of graphene gives rise to effective heat dissipation, improvement of protection ability from external stimuli, such as moisture and hazardous gas, and enhancement of mechanical properties such as elastic modulus and fracture toughness. Consequently, the LEDs composed of a graphene-embedded silicone encapsulant exhibit long-term stability without loss of luminous efficiency by addition of relatively small amounts of graphene. This novel strategy offers a feasible candidate for their practical or industrial applications.

  19. An efficient room-temperature silicon-based light-emitting diode.

    PubMed

    Ng, W L; Lourenço, M A; Gwilliam, R M; Ledain, S; Shao, G; Homewood, K P

    2001-03-08

    There is an urgent requirement for an optical emitter that is compatible with standard, silicon-based ultra-large-scale integration (ULSI) technology. Bulk silicon has an indirect energy bandgap and is therefore highly inefficient as a light source, necessitating the use of other materials for the optical emitters. However, the introduction of these materials is usually incompatible with the strict processing requirements of existing ULSI technologies. Moreover, as the length scale of the devices decreases, electrons will spend increasingly more of their time in the connections between components; this interconnectivity problem could restrict further increases in computer chip processing power and speed in as little as five years. Many efforts have therefore been directed, with varying degrees of success, to engineering silicon-based materials that are efficient light emitters. Here, we describe the fabrication, using standard silicon processing techniques, of a silicon light-emitting diode (LED) that operates efficiently at room temperature. Boron is implanted into silicon both as a dopant to form a p-n junction, as well as a means of introducing dislocation loops. The dislocation loops introduce a local strain field, which modifies the band structure and provides spatial confinement of the charge carriers. It is this spatial confinement which allows room-temperature electroluminescence at the band-edge. This device strategy is highly compatible with ULSI technology, as boron ion implantation is already used as a standard method for the fabrication of silicon devices.

  20. Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices

    SciTech Connect

    Patibandla, Nag; Agrawal, Vivek

    2012-12-01

    Over the course of this program, Applied Materials, Inc., with generous support from the United States Department of Energy, developed a world-class three chamber III-Nitride epi cluster tool for low-cost, high volume GaN growth for the solid state lighting industry. One of the major achievements of the program was to design, build, and demonstrate the world’s largest wafer capacity HVPE chamber suitable for repeatable high volume III-Nitride template and device manufacturing. Applied Materials’ experience in developing deposition chambers for the silicon chip industry over many decades resulted in many orders of magnitude reductions in the price of transistors. That experience and understanding was used in developing this GaN epi deposition tool. The multi-chamber approach, which continues to be unique in the ability of the each chamber to deposit a section of the full device structure, unlike other cluster tools, allows for extreme flexibility in the manufacturing process. This robust architecture is suitable for not just the LED industry, but GaN power devices as well, both horizontal and vertical designs. The new HVPE technology developed allows GaN to be grown at a rate unheard of with MOCVD, up to 20x the typical MOCVD rates of 3{micro}m per hour, with bulk crystal quality better than the highest-quality commercial GaN films grown by MOCVD at a much cheaper overall cost. This is a unique development as the HVPE process has been known for decades, but never successfully commercially developed for high volume manufacturing. This research shows the potential of the first commercial-grade HVPE chamber, an elusive goal for III-V researchers and those wanting to capitalize on the promise of HVPE. Additionally, in the course of this program, Applied Materials built two MOCVD chambers, in addition to the HVPE chamber, and a robot that moves wafers between them. The MOCVD chambers demonstrated industry-leading wavelength yield for GaN based LED wafers and industry

  1. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering.

    PubMed

    Pan, Jun; Quan, Li Na; Zhao, Yongbiao; Peng, Wei; Murali, Banavoth; Sarmah, Smritakshi P; Yuan, Mingjian; Sinatra, Lutfan; Alyami, Noktan M; Liu, Jiakai; Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Comin, Riccardo; Hedhili, Mohamed N; Mohammed, Omar F; Lu, Zheng Hong; Kim, Dong Ha; Sargent, Edward H; Bakr, Osman M

    2016-10-01

    A two-step ligand-exchange strategy is developed, in which the long-carbon- chain ligands on all-inorganic perovskite (CsPbX3 , X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-pair-capped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  2. Photoionization of optically trapped ultracold atoms with a high-power light-emitting diode

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Amthor, Thomas; Weidemueller, Matthias

    2013-04-15

    Photoionization of laser-cooled atoms using short pulses of a high-power light-emitting diode (LED) is demonstrated. Light pulses as short as 30 ns have been realized with the simple LED driver circuit. We measure the ionization cross section of {sup 85}Rb atoms in the first excited state, and show how this technique can be used for calibrating efficiencies of ion detector assemblies.

  3. Blue-green variable light-emitting diode based on organic-molecule-doped polymer

    NASA Astrophysics Data System (ADS)

    Xu, Chunxiang; Cui, Yiping; Shen, Yingzhong; Gu, Hongwei; Pan, Yi; Li, Yinkui

    1999-09-01

    Monolayer organic light-emitting diodes based on the organic molecule [(3,4-dimethoxybenzyldehycle-2'-hydroxy naphthylimine)dimethyl gallium]-doped [poly(2-mehtyoxy-5-ethyloxy)-4-di-(2-methyoxy-5'-octaoxy)phenylene vinylene] have been fabricated by a spin-coating method. Color variation from green to blue has been observed. The results have been attributed to the variation of the recombination zone and the charge transfer between the materials.

  4. Finger-shaped Red Light Emitting Diode to Ascertain the Depth of Periungual Wart

    PubMed Central

    Nirmal, Balakrishnan

    2016-01-01

    Management of periungual wart is a great challenge, especially when there is subungual extension. The major cause of recurrence of wart is improper clinical assessment of its extent and not directing therapy against the entire wart. This difficulty of ascertaining its extent could be overcome with this finger-shaped red light emitting diode device. Red light in the device penetrates the thick palmar skin and dark constitutive skin colour due to its longer wavelength. PMID:27761093

  5. White light-emitting diode with quasisolar spectrum based on organic fluorescent dyes

    NASA Astrophysics Data System (ADS)

    Chung, Shuang-Chao; Li, Ming-Chia; Sun, Ching-Cherng

    2015-07-01

    We present a study of light-emitting diodes (LEDs) using organic fluorescent dyes to replace the general phosphor. The blue die with a specific organic fluorescent dye gives the LED a single color appearance. Through a color-mixing cavity, multiple LEDs are used to produce a quasisolar spectrum at a certain band and white light with a color rendering index as high as 97 at around 2800 K.

  6. Photo thermal efficacy of green light emitting diode and gold nano spheres for malignancy

    NASA Astrophysics Data System (ADS)

    Gananathan, Poorani; Prakasa Rao, Aruna; Ganesan, Singaravelu; Manickan, Elanchezhiyan

    2016-03-01

    The effect of 30nm Gold Nanoparticles (GNP) based on concentration and incubation time with respect to their cellular uptake kinetics was studied with Vero and HeLa cells . Photoirradiation effect of GNPs in combination with light emitting diode(LED) found to be remarkable and this work concentrates on optimizing concentration and light source. The effect of Gold nanoparticles alone and in combination with LED in malignant and normal cells lines were studied.

  7. Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Light-Emitting Diodes.

    PubMed

    Yuan, Fanglong; Wang, Zhibin; Li, Xiaohong; Li, Yunchao; Tan, Zhan'ao; Fan, Louzhen; Yang, Shihe

    2017-01-01

    Multicolor bandgap fluorescent carbon quantum dots (MCBF-CQDs) from blue to red with quantum yield up to 75% are synthesized using a solvothermal method. For the first time, monochrome electroluminescent light-emitting diodes (LEDs) with MCBF-CQDs directly as an active emission layer are fabricated. The maximum luminance of blue LEDs reaches 136 cd m(-2) , which is the best performance for CQD-based monochrome electroluminescent LEDs.

  8. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOEpatents

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  9. Cooling of organic light-emitting diode display panels with heat pipes

    NASA Astrophysics Data System (ADS)

    Sure, Anita; Vankayala, Gowtham Kumar; Baranwal, Vaibhav; Paramanandam, Karthikeyan; Sarma, Kalluri R.; Asokan, S.

    2016-05-01

    Organic light-emitting diode half life is a function of temperature and it decreases with increase in operating temperature. Hence thermal management is important for the efficient operation of OLED based displays. High luminance applications like aerospace cockpits require high power densities which lead to increase in their operating temperatures. Passive cooling is the preferred choice in aerospace applications. In this work passive cooling option with heat pipes is studied and implemented to reduce the display temperature rise.

  10. 10 Mb/s visible light transmission system using a polymer light-emitting diode with orthogonal frequency division multiplexing.

    PubMed

    Le, Son T; Kanesan, T; Bausi, F; Haigh, P A; Rajbhandari, S; Ghassemlooy, Z; Papakonstantinou, I; Popoola, W O; Burton, A; Le Minh, H; Cacialli, F; Ellis, A D

    2014-07-01

    We present a newly designed polymer light-emitting diode with a bandwidth of ~350  kHz for high-speed visible light communications. Using this new polymer light-emitting diode as a transmitter, we have achieved a record transmission speed of 10  Mb/s for a polymer light-emitting diode-based optical communication system with an orthogonal frequency division multiplexing technique, matching the performance of single carrier formats using multitap equalization. For achieving such a high data-rate, a power pre-emphasis technique was adopted.

  11. Selective-area growth of periodic nanopyramid light-emitting diode arrays on GaN/sapphire templates patterned by multiple-exposure colloidal lithography.

    PubMed

    Xiong, Zhuo; Wei, Tongbo; Zhang, Yonghui; Zhang, Xiang; Yang, Chao; Liu, Zhiqiang; Yuan, Guodong; Li, Jinmin; Wang, Junxi

    2017-03-17

    Gallium nitride-based nanopyramid light-emitting diodes are a promising technology to achieve highly efficient solid-state lighting and beyond. Here, periodic nanopyramid light-emitting diode arrays on gallium nitride/sapphire templates were fabricated by selective-area metalorganic chemical vapor deposition and multiple-exposure colloidal lithography. The electric field intensity distribution of incident light going through polystyrene microspheres and photoresist are simulated using finite-different time-domain method. Nitrogen as the carrier gas and a low V/III ratio (ratio of molar flow rate of group-V to group-III sources) are found to be important in order to form gallium nitride nanopyramid. In addition, a broad yellow emission in photoluminescence and cathodoluminescence spectra were observed. This phenomena showed the potential of nanopyramid light-emitting diodes to realize long wavelength visible emissions.

  12. Selective-area growth of periodic nanopyramid light-emitting diode arrays on GaN/sapphire templates patterned by multiple-exposure colloidal lithography

    NASA Astrophysics Data System (ADS)

    Xiong, Zhuo; Wei, Tongbo; Zhang, Yonghui; Zhang, Xiang; Yang, Chao; Liu, Zhiqiang; Yuan, Guodong; Li, Jinmin; Wang, Junxi

    2017-03-01

    Gallium nitride-based nanopyramid light-emitting diodes are a promising technology to achieve highly efficient solid-state lighting and beyond. Here, periodic nanopyramid light-emitting diode arrays on gallium nitride/sapphire templates were fabricated by selective-area metalorganic chemical vapor deposition and multiple-exposure colloidal lithography. The electric field intensity distribution of incident light going through polystyrene microspheres and photoresist are simulated using finite-different time-domain method. Nitrogen as the carrier gas and a low V/III ratio (ratio of molar flow rate of group-V to group-III sources) are found to be important in order to form gallium nitride nanopyramid. In addition, a broad yellow emission in photoluminescence and cathodoluminescence spectra were observed. This phenomena showed the potential of nanopyramid light-emitting diodes to realize long wavelength visible emissions.

  13. Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages.

    PubMed

    Davies, Thomas W; Bennie, Jonathan; Cruse, Dave; Blumgart, Dan; Inger, Richard; Gaston, Kevin J

    2017-01-31

    White light-emitting diodes (LEDs) are rapidly replacing conventional outdoor lighting technologies around the world. Despite rising concerns over their impact on the environment and human health, the flexibility of LEDs has been advocated as a means of mitigating the ecological impacts of globally widespread outdoor night-time lighting through spectral manipulation, dimming and switching lights off during periods of low demand. We conducted a three-year field experiment in which each of these lighting strategies was simulated in a previously artificial light naïve grassland ecosystem. White LEDs both increased the total abundance and changed the assemblage composition of adult spiders and beetles. Dimming LEDs by 50% or manipulating their spectra to reduce ecologically damaging wavelengths partially reduced the number of commoner species affected from seven to four. A combination of dimming by 50% and switching lights off between midnight and 04:00 am showed the most promise for reducing the ecological costs of LEDs, but the abundances of two otherwise common species were still affected. The environmental consequences of using alternative lighting technologies are increasingly well established. These results suggest that while management strategies using LEDs can be an effective means of reducing the number of taxa affected, averting the ecological impacts of night-time lighting may ultimately require avoiding its use altogether.

  14. A perspective perception on the applications of light-emitting diodes.

    PubMed

    Nair, Govind B; Dhoble, S J

    2015-12-01

    Light-emitting diodes (LEDs) continue to penetrate the global market; their pervasiveness clearly being felt in such diverse fields as technological, socio-economic and commercial interests. The multi-billion dollar LED market is shared by various segments, including office and household lighting, street lighting, the automobile industry, traffic signals, backlighting for hand-held devices, indoor and outdoor signs and indicators, medicine, communication systems, crop cultivation using artificial light and many more. The technological development of LEDs has undergone many phases in different parts of the world. From the early discovery of luminescence to the invention of highly efficient organic LEDs, researchers have worked with the prime purpose of improving the performance of luminaires. The need to infuse the market with more efficient and cheaper products has been prevalent from the start. LEDs are a result of this uncontrolled desire of researchers to develop superior products that would displace existing products in the market. To understand what led to the current prominence of LEDs, we give a brief historical overview of the field followed by a thorough discussion of the positive features of LEDs. This work includes the basic requirements, advantages and disadvantages of LEDs in a variety of applications. A brief description of the diverse applications of LED in fields such as lighting, indicators and displays, farming, medicine and communication is given. Considerable importance is placed on discussing the possible difficulties that must be overcome before using LEDs in commercial applications.

  15. Spectral matching research for light-emitting diode-based neonatal jaundice therapeutic device light source

    NASA Astrophysics Data System (ADS)

    Gan, Ruting; Guo, Zhenning; Lin, Jieben

    2015-09-01

    To decrease the risk of bilirubin encephalopathy and minimize the need for exchange transfusions, we report a novel design for light source of light-emitting diode (LED)-based neonatal jaundice therapeutic device (NJTD). The bilirubin absorption spectrum in vivo was regarded as target. Based on spectral constructing theory, we used commercially available LEDs with different peak wavelengths and full width at half maximum as matching light sources. Simple genetic algorithm was first proposed as the spectral matching method. The required LEDs number at each peak wavelength was calculated, and then, the commercial light source sample model of the device was fabricated to confirm the spectral matching technology. In addition, the corresponding spectrum was measured and the effect was analyzed finally. The results showed that fitted spectrum was very similar to the target spectrum with 98.86 % matching degree, and the actual device model has a spectrum close to the target with 96.02 % matching degree. With higher fitting degree and efficiency, this matching algorithm is very suitable for light source matching technology of LED-based spectral distribution, and bilirubin absorption spectrum in vivo will be auspicious candidate for the target spectrum of new LED-based NJTD light source.

  16. Optical characterization of nitride-based light-emitting diodes for solid-state lighting applications

    NASA Astrophysics Data System (ADS)

    Masui, Hisashi

    This dissertation describes research dedicated to the solid-state lighting technology based on III-nitride light-emitting diodes (LEDs). Nitride semiconductors are rather an immature material system compared to conventional III-V semiconductors. As the solid-state lighting technology based on nitride optoelectronic devices becomes widely accepted in the market, solid-state technology is required to compete with the conventional vacuum lighting technology, especially in energy efficiency. In addition to such energy-efficiency requirements, solid-state optoelectronic devices have the potential to explore new applications based on their unique properties. The research was conducted as a way of optical characterization of LEDs with a strong emphasis on electroluminescence. Device-packaging techniques were introduced in the early stage of the research to evaluate performances of discrete LEDs including phosphor-combined white-light emitting devices. Light extraction and white-LED fabrication were of direct interest in terms of solid-state lighting, which occupies a large part of the present dissertation. The suspended-LED technique was introduced to improve light extraction and the sphere package was invented as a result of the technique. A phosphor-combined sphere LED achieved as high as 117 lm/W of luminous efficacy. Low-temperature characterization is important to evaluate light-emission efficiency of LEDs, especially the internal quantum efficiency. It was a generally known problem that electroluminescence efficiency deteriorates drastically at low temperature where photoluminescence efficiency remains high. High-quality LEDs prepared on GaN bulk substrates that became available during the present project contributed to the low-temperature study, largely to address the problem. Electroluminescence is related to carrier generation processes via low-temperature measurements on such high-quality LEDs. This study produced a model to explain electroluminescence

  17. Compact environmental spectroscopy using advanced semiconductor light-emitting diodes and lasers

    SciTech Connect

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1997-04-01

    This report summarizes research completed under a Laboratory Directed Research and Development program funded for part of FY94, FY95 and FY96. The main goals were (1) to develop novel, compound-semiconductor based optical sources to enable field-based detection of environmentally important chemical species using miniaturized, low-power, rugged, moderate cost spectroscopic equipment, and (2) to demonstrate the utility of near-infrared spectroscopy to quantitatively measure contaminants. Potential applications would include monitoring process and effluent streams for volatile organic compound detection and sensing head-space gasses in storage vessels for waste management. Sensing is based on absorption in the 1.3-1.9 {mu}m band from overtones of the C-H, N-H and O-H stretch resonances. We describe work in developing novel broadband light-emitting diodes emitting over the entire 1.4-1.9 {mu}m wavelength range, first using InGaAs quantum wells, and second using a novel technique for growing digital-alloy materials in the InAlGaAs material system. Next we demonstrate the utility of near-infrared spectroscopy for quantitatively determining contamination of soil by motor oil. Finally we discuss the separability of different classes of organic compounds using near-infrared spectroscopic techniques.

  18. Charge injection and Raman scattering studies from polyfluorene-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Arif, M.; Guha, S.

    2007-03-01

    Efficient and well balanced injection of charge carriers and transport capabilities are of particular importance for high luminescence efficiency in organic light-emitting diodes. Polyfluorene (PF) conjugated polymers have received widespread attention due to their strong blue emission, high charge mobility and excellent chemical and thermal stability which creates great prospect for optoelectronic device applications. Although ethyl-hexyl substituted PF (PF2/6) has a high level of molecular disorder, charge injection in single layer polymer devices can be described very well by space-charge-limited conduction for a discrete set of trap levels. This is attributed to the nature of ordering in the polymer. PFs are characterized by a number of Raman-active peaks originating from C-H bending and C-C stretching type motion. We further analyze our working devices using Raman scattering in the presence of photogenerated carriers. The Raman intensities in the 1000-1250 cm-1 corresponding to a C-H bend-type motion quench in the presence of carriers with increasing fields. This effect most probably arises due to the interaction of phonons and free carriers.

  19. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes.

    PubMed

    Kim, Hyeon-Hye; Goins, Gregory D; Wheeler, Raymond M; Sager, John C

    2004-12-01

    Plants will be an important component of future long-term space missions. Lighting systems for growing plants will need to be lightweight, reliable, and durable, and light-emitting diodes (LEDs) have these characteristics. Previous studies demonstrated that the combination of red and blue light was an effective light source for several crops. Yet the appearance of plants under red and blue lighting is purplish gray making visual assessment of any problems difficult. The addition of green light would make the plant leave appear green and normal similar to a natural setting under white light and may also offer a psychological benefit to the crew. Green supplemental lighting could also offer benefits, since green light can better penetrate the plant canopy and potentially increase plant growth by increasing photosynthesis from the leaves in the lower canopy. In this study, four light sources were tested: 1) red and blue LEDs (RB), 2) red and blue LEDs with green fluorescent lamps (RGB), 3) green fluorescent lamps (GF), and 4) cool-white fluorescent lamps (CWF), that provided 0%, 24%, 86%, and 51% of the total PPF in the green region of the spectrum, respectively. The addition of 24% green light (500 to 600 nm) to red and blue LEDs (RGB treatment) enhanced plant growth. The RGB treatment plants produced more biomass than the plants grown under the cool-white fluorescent lamps (CWF treatment), a commonly tested light source used as a broad-spectrum control.

  20. Adjunctive 830 nm light-emitting diode therapy can improve the results following aesthetic procedures

    PubMed Central

    Kim, Won-Serk; Ohshiro, Toshio; Trelles, Mario A; Vasily, David B

    2015-01-01

    Background: Aggressive, or even minimally aggressive, aesthetic interventions are almost inevitably followed by such events as discomfort, erythema, edema and hematoma formation which could lengthen patient downtime and represent a major problem to the surgeon. Recently, low level light therapy with light-emitting diodes (LED-LLLT) at 830 nm has attracted attention in wound healing indications for its anti-inflammatory effects and control of erythema, edema and bruising. Rationale: The wavelength of 830 nm offers deep penetration into living biological tissue, including bone. A new-generation of 830 nm LEDs, based on those developed in the NASA Space Medicine Laboratory, has enabled the construction of planar array-based LED-LLLT systems with clinically useful irradiances. Irradiation with 830 nm energy has been shown in vitro and in vivo to increase the action potential of epidermal and dermal cells significantly. The response of the inflammatory stage cells is enhanced both in terms of function and trophic factor release, and fibroblasts demonstrate superior collagenesis and elastinogenesis. Conclusions: A growing body of clinical evidence is showing that applying 830 nm LED-LLLT as soon as possible post-procedure, both invasive and noninvasive, successfully hastens the resolution of sequelae associated with patient downtime in addition to significantly speeding up frank wound healing. This article reviews that evidence, and attempts to show that 830 nm LED-LLLT delivers swift resolution of postoperative sequelae, minimizes downtime and enhances patient satisfaction. PMID:26877592

  1. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes

    NASA Technical Reports Server (NTRS)

    Kim, Hyeon-Hye; Goins, Gregory D.; Wheeler, Raymond M.; Sager, John C.

    2004-01-01

    Plants will be an important component of future long-term space missions. Lighting systems for growing plants will need to be lightweight, reliable, and durable, and light-emitting diodes (LEDs) have these characteristics. Previous studies demonstrated that the combination of red and blue light was an effective light source for several crops. Yet the appearance of plants under red and blue lighting is purplish gray making visual assessment of any problems difficult. The addition of green light would make the plant leave appear green and normal similar to a natural setting under white light and may also offer a psychological benefit to the crew. Green supplemental lighting could also offer benefits, since green light can better penetrate the plant canopy and potentially increase plant growth by increasing photosynthesis from the leaves in the lower canopy. In this study, four light sources were tested: 1) red and blue LEDs (RB), 2) red and blue LEDs with green fluorescent lamps (RGB), 3) green fluorescent lamps (GF), and 4) cool-white fluorescent lamps (CWF), that provided 0%, 24%, 86%, and 51% of the total PPF in the green region of the spectrum, respectively. The addition of 24% green light (500 to 600 nm) to red and blue LEDs (RGB treatment) enhanced plant growth. The RGB treatment plants produced more biomass than the plants grown under the cool-white fluorescent lamps (CWF treatment), a commonly tested light source used as a broad-spectrum control.

  2. Hybrid metal grid-polymer-carbon nanotube electrodes for high luminance organic light emitting diodes.

    PubMed

    Sam, F Laurent M; Dabera, G Dinesha M R; Lai, Khue T; Mills, Christopher A; Rozanski, Lynn J; Silva, S Ravi P

    2014-08-29

    Organic light emitting diodes (OLEDs) incorporating grid transparent conducting electrodes (TCEs) with wide grid line spacing suffer from an inability to transfer charge carriers across the gaps in the grids to promote light emission in these areas. High luminance OLEDs fabricated using a hybrid TCE composed of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS PH1000) or regioregular poly(3-hexylthiophene)-wrapped semiconducting single-walled carbon nanotubes (rrP3HT-SWCNT) in combination with a nanometre thin gold grid are reported here. OLEDs fabricated using the hybrid gold grid/PH1000 TCE have a luminance of 18 000 cd m(-2) at 9 V; the same as the reference indium tin oxide (ITO) OLED. The gold grid/rrP3HT-SWCNT OLEDs have a lower luminance of 8260 cd m(-2) at 9 V, which is likely due to a rougher rrP3HT-SWCNT surface. These results demonstrate that the hybrid gold grid/PH1000 TCE is a promising replacement for ITO in future plastic electronics applications including OLEDs and organic photovoltaics. For applications where surface roughness is not critical, e.g. electrochromic devices or discharge of static electricity, the gold grid/rrP3HT-SWCNT hybrid TCE can be employed.

  3. Near-infrared roll-off-free electroluminescence from highly stable diketopyrrolopyrrole light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sassi, Mauro; Buccheri, Nunzio; Rooney, Myles; Botta, Chiara; Bruni, Francesco; Giovanella, Umberto; Brovelli, Sergio; Beverina, Luca

    2016-09-01

    Organic light emitting diodes (OLEDs) operating in the near-infrared spectral region are gaining growing relevance for emerging photonic technologies, such as lab-on-chip platforms for medical diagnostics, flexible self-medicated pads for photodynamic therapy, night vision and plastic-based telecommunications. The achievement of efficient near-infrared electroluminescence from solution-processed OLEDs is, however, an open challenge due to the low photoluminescence efficiency of most narrow-energy-gap organic emitters. Diketopyrrolopyrrole-boron complexes are promising candidates to overcome this limitation as they feature extremely high photoluminescence quantum yield in the near-infrared region and high chemical stability. Here, by incorporating suitably functionalized diketopyrrolopyrrole derivatives emitting at ~760 nm in an active matrix of poly(9,9-dioctylfluorene-alt-benzothiadiazole) and without using complex light out-coupling or encapsulation strategies, we obtain all-solution-processed NIR-OLEDs with external quantum efficiency as high as 0.5%. Importantly, our test-bed devices show no efficiency roll-off even for high current densities and high operational stability, retaining over 50% of the initial radiant emittance for over 50 hours of continuous operation at 10 mA/cm2, which emphasizes the great applicative potential of the proposed strategy.

  4. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review.

    PubMed

    Song, Kai; Mohseni, Madjid; Taghipour, Fariborz

    2016-05-01

    Ultraviolet (UV) disinfection is an effective technology for the inactivation of pathogens in water and is of growing interest for industrial application. A new UV source - ultraviolet light-emitting diode (UV-LED) - has emerged in the past decade with a number of advantages compared to traditional UV mercury lamps. This promising alternative raises great interest in the research on application of UV-LEDs for water treatment. Studies on UV-LED water disinfection have increased during the past few years. This article presents a comprehensive review of recent studies on UV-LEDs with various wavelengths for the inactivation of different microorganisms. Many inconsistent and incomparable data were found from published studies, which underscores the importance of establishing a standard protocol for studying UV-LED inactivation of microorganisms. Different UV sensitivities to UV-LEDs and traditional UV lamps were observed in the literature for some microorganisms, which requires further investigation for a better understanding of microorganism response to UV-LEDs. The unique aspects of UV-LEDs improve inactivation effectiveness by applying LED special features, such as multiple wavelengths and pulsed illumination; however, more studies are needed to investigate the influencing factors and mechanisms. The special features of UV-LEDs offer the flexibility of novel reactor designs for a broad application of UV-LED reactors.

  5. [Effects of hole-injection layers on the performance of blue organic light-emitting diodes].

    PubMed

    Gao, Li-Yan; Zhao, Su-Ling; Xu, Zheng; Zhang, Fu-Jun; Sun, Qin-Jun; Zhang, Tian-Hui; Kong, Chao

    2011-04-01

    The present work investigates the effects of different buffer layers on the performance of blue organic light-emitting diodes (OLEDs), and compares them with the device with no buffer layer. Two kinds of blue OLEDs with 4,4'-bis(2,2'-diphenyl vinyl)-1,1'-biphenyl (DPVBi) as the emitting layer, N, N'-bis-(1-naphthyl)-N, N'-1-diphenyl-1,1 '-biphenyl-4, 4'-diamine (NPB) as the hole transporting layer, and copper phthalocyanine (CuPc) and poly(3,4-ethylenedioxythiophene) : poly (styrenesulphonate) PEDOT : PSS as the hole injection layer respectively were fabricated with the structures of ITO/CuPc/NPB/DPVBi/BCP/Alq3 /Al and ITO/PEDOT : PSS/NPB/DPVBi/BCP/Alq3/Al. Moreover, the effects of different preparation technology of CuPc on the performance of OLEDs were also investigated. It was found that the performance of the devices with a hole injection layer is better than that of the device without any hole-injection layer. Although the luminance and efficiency of the water-soluble CuPc based device are worse than that of the device with thermally evaporated CuPc, but better than that of the device with water-soluble PEDOT : PSS. So the water-soluble CuPc is a good hole injection material because it is easier to fabricate the film than traditional CuPc.

  6. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour

    NASA Astrophysics Data System (ADS)

    Morton, Andrew; Murawski, Caroline; Pulver, Stefan R.; Gather, Malte C.

    2016-08-01

    Organic light emitting diodes (OLEDs) are in widespread use in today’s mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm‑2) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments.

  7. Short-circuit prevention strategies in organic light-emitting diodes and solar cells

    NASA Astrophysics Data System (ADS)

    Michels, Jasper J.; Jolt Oostra, A.; Blom, Paul W. M.

    2016-08-01

    Short-circuit prevention and repair strategies are essential to allow for upscaled production of organic electronic devices based on thin-film production technology. Occurrence of short circuits is a consequence of manufacturing imperfections and particle contamination. After giving a concise review of short-circuit prevention methods for organic thin-film devices in the open literature of the past decade, this overview article summarizes our recent work on short-circuit prevention in organic light-emitting diodes and organic solar cells by chemical oxidation methods. Our main strategy is based on self-aligned disruption of the conductivity of exposed areas of the typically applied hole transport material poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) by aqueous sodium hypochlorite, prior to cathode deposition. The ten orders of magnitude decrease in local conductivity obtained proves sufficient to let deliberately flawed devices operate at pristine performance levels. We next show that in the case of organic solar cells based on a lithium fluoride/aluminium cathode the shunting junctions can be made sufficiently resistive to allow for near unflawed operation, without applying wet treatment.

  8. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour

    PubMed Central

    Morton, Andrew; Murawski, Caroline; Pulver, Stefan R.; Gather, Malte C.

    2016-01-01

    Organic light emitting diodes (OLEDs) are in widespread use in today’s mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm−2) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments. PMID:27484401

  9. Cuprous halides semiconductors as a new means for highly efficient light-emitting diodes

    PubMed Central

    Ahn, Doyeol; Park, Seoung-Hwan

    2016-01-01

    In group-III nitrides in use for white light-emitting diodes (LEDs), optical gain, measure of luminous efficiency, is very low owing to the built-in electrostatic fields, low exciton binding energy, and high-density misfit dislocations due to lattice-mismatched substrates. Cuprous halides I-VII semiconductors, on the other hand, have negligible built-in field, large exciton binding energies and close lattice matched to silicon substrates. Recent experimental studies have shown that the luminescence of I-VII CuCl grown on Si is three orders larger than that of GaN at room temperature. Here we report yet unexplored potential of cuprous halides systems by investigating the optical gain of CuCl/CuI quantum wells. It is found that the optical gain and the luminescence are much larger than that of group III-nitrides due to large exciton binding energy and vanishing electrostatic fields. We expect that these findings will open up the way toward highly efficient cuprous halides based LEDs compatible to Si technology. PMID:26880097

  10. Point-of-use water disinfection using UV light-emitting diodes to reduce bacterial contamination.

    PubMed

    Nelson, Kristina Y; McMartin, Dena W; Yost, Christopher K; Runtz, Ken J; Ono, Takaya

    2013-08-01

    The treatment process described in this research explores the impact of exposing water samples containing fecal coliforms to the radiation produced by single ultraviolet (UV) light-emitting diodes (LEDs) operating at 265 nm. UV LEDs are long lasting, compact in size and produce more efficient light output than traditional mercury-vapour bulbs, making them ideal for application in point-of-use disinfection systems, such as in remote areas. In this study, contaminated water samples containing either a pure culture of Escherichia coli or tertiary effluent from the City of Regina Wastewater Treatment Plant were used to study the application and efficiency of using UV LEDs for water disinfection. The results indicate that bacterial inactivation was achieved in a time-dependent manner, with 1- and 2.5-log E. coli reductions in water following 20 and 50 min of UV LED exposure, respectively. Ultraviolet radiation was less effective in reducing coliform bacteria in wastewater samples due to the elevated turbidity levels. Further work remains to be completed to optimize the application of UV LEDs for point-of-use disinfection systems; however, the results from this study support that bacterial inactivation using UV LEDs is possible, meriting further future technological development of the LEDs.

  11. Near-infrared roll-off-free electroluminescence from highly stable diketopyrrolopyrrole light emitting diodes

    PubMed Central

    Sassi, Mauro; Buccheri, Nunzio; Rooney, Myles; Botta, Chiara; Bruni, Francesco; Giovanella, Umberto; Brovelli, Sergio; Beverina, Luca

    2016-01-01

    Organic light emitting diodes (OLEDs) operating in the near-infrared spectral region are gaining growing relevance for emerging photonic technologies, such as lab-on-chip platforms for medical diagnostics, flexible self-medicated pads for photodynamic therapy, night vision and plastic-based telecommunications. The achievement of efficient near-infrared electroluminescence from solution-processed OLEDs is, however, an open challenge due to the low photoluminescence efficiency of most narrow-energy-gap organic emitters. Diketopyrrolopyrrole-boron complexes are promising candidates to overcome this limitation as they feature extremely high photoluminescence quantum yield in the near-infrared region and high chemical stability. Here, by incorporating suitably functionalized diketopyrrolopyrrole derivatives emitting at ~760 nm in an active matrix of poly(9,9-dioctylfluorene-alt-benzothiadiazole) and without using complex light out-coupling or encapsulation strategies, we obtain all-solution-processed NIR-OLEDs with external quantum efficiency as high as 0.5%. Importantly, our test-bed devices show no efficiency roll-off even for high current densities and high operational stability, retaining over 50% of the initial radiant emittance for over 50 hours of continuous operation at 10 mA/cm2, which emphasizes the great applicative potential of the proposed strategy. PMID:27677240

  12. Air-Stable flexible organic light-emitting diodes enabled by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Yu; Chang, Yi-Neng; Tseng, Ming-Hung; Wang, Ching-Chiun; Tsai, Feng-Yu

    2015-01-01

    Organic light-emitting diodes (OLED) are an energy-efficient light source with many desirable attributes, besides being an important display of technology, but its practical application has been limited by its low air-stability. This study demonstrates air-stable flexible OLEDs by utilizing two atomic-layer-deposited (ALD) films: (1) a ZnO film as both a stable electron-injection layer (EIL) and as a gas barrier in plastics-based OLED devices, and (2) an Al2O3/ZnO (AZO) nano-laminated film for encapsulating the devices. Through analyses of the morphology and electrical/gas-permeation properties of the films, we determined that a low ALD temperature of 70 °C resulted in optimal EIL performance from the ZnO film and excellent gas-barrier properties [water vapor transmission rate (WVTR) <5 × 10-4 g m-2 day-1] from both the ZnO EIL and the AZO encapsulating film. The low-temperature ALD processes eliminated thermal damage to the OLED devices, which were severe when a 90 °C encapsulation process was used, while enabling them to achieve an air-storage lifetime of >10 000 h.

  13. High-speed GaN/GaInN nanowire array light-emitting diode on silicon(111).

    PubMed

    Koester, Robert; Sager, Daniel; Quitsch, Wolf-Alexander; Pfingsten, Oliver; Poloczek, Artur; Blumenthal, Sarah; Keller, Gregor; Prost, Werner; Bacher, Gerd; Tegude, Franz-Josef

    2015-04-08

    The high speed on-off performance of GaN-based light-emitting diodes (LEDs) grown in c-plane direction is limited by long carrier lifetimes caused by spontaneous and piezoelectric polarization. This work demonstrates that this limitation can be overcome by m-planar core-shell InGaN/GaN nanowire LEDs grown on Si(111). Time-resolved electroluminescence studies exhibit 90-10% rise- and fall-times of about 220 ps under GHz electrical excitation. The data underline the potential of these devices for optical data communication in polymer fibers and free space.

  14. Soluble Flavanthrone Derivatives: Synthesis, Characterization, and Application to Organic Light-Emitting Diodes.

    PubMed

    Kotwica, Kamil; Bujak, Piotr; Data, Przemyslaw; Krzywiec, Wojciech; Wamil, Damian; Gunka, Piotr A; Skorka, Lukasz; Jaroch, Tomasz; Nowakowski, Robert; Pron, Adam; Monkman, Andrew

    2016-06-01

    Simple modification of benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine-8,16-dione, an old and almost-forgotten vat dye, by reduction of its carbonyl groups and subsequent O-alkylation, yields solution-processable, electroactive, conjugated compounds of the periazaacene type, suitable for the use in organic electronics. Their electrochemically determined ionization potential and electron affinity of about 5.2 and -3.2 eV, respectively, are essentially independent of the length of the alkoxyl substituent and in good agreement with DFT calculations. The crystal structure of 8,16-dioctyloxybenzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine (FC-8), the most promising compound, was solved. It crystallizes in space group P1‾ and forms π-stacked columns held together in the 3D structure by dispersion forces, mainly between interdigitated alkyl chains. Molecules of FC-8 have a strong tendency to self-organize in monolayers deposited on a highly oriented pyrolytic graphite surface, as observed by STM. 8,16-Dialkoxybenzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridines are highly luminescent, and all have photoluminescence quantum yields of about 80 %. They show efficient electroluminescence, and can be used as guest molecules with a 4,4'-bis(N-carbazolyl)-1,1'-biphenyl host in guest/host-type organic light-emitting diodes. The best fabricated diodes showed a luminance of about 1900 cd m(-12) , a luminance efficiency of about 3 cd A(-1) , and external quantum efficiencies exceeding 0.9 %.

  15. Organic light-emitting diodes based on a series of new polythienothiophene complexes and highly luminescent quantum dots

    SciTech Connect

    Vashchenko, A. A.; Goriachiy, D. O.; Vitukhnovsky, A. G.; Tananaev, P. N.; Vasnev, V. A.; Rodlovskaya, E. N.

    2016-01-15

    Experimental samples of organic light-emitting diodes with transport layers based on polythienothiophenes and using CdSe/CdS/ZnS semiconductor quantum dots with an internal quantum efficiency up to 85% in the emitting layer are investigated. It is shown that solubility and film-forming properties are key for using polythienothiophenes in light-emitting diodes. The most promising polythienothiophenes are identified on the basis of the results obtained.

  16. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    SciTech Connect

    Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin; Eun Lee, Song; Kwan Kim, Young; Hwa Yu, Hyeong; Turak, Ayse; Young Kim, Woo

    2015-06-28

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){sub 3} as phosphorescent red dopant in electron transport layer.

  17. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    NASA Astrophysics Data System (ADS)

    Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin; Eun Lee, Song; Kwan Kim, Young; Hwa Yu, Hyeong; Turak, Ayse; Young Kim, Woo

    2015-06-01

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (-0.030, +0.001) shifting only from 1000 to 10 000 cd/m2. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq)3 as phosphorescent red dopant in electron transport layer.

  18. All-solution-processed inverted quantum-dot light-emitting diodes.

    PubMed

    Castan, Alice; Kim, Hyo-Min; Jang, Jin

    2014-02-26

    Quantum dots are a promising new candidate for the emissive material in light-emitting devices for display applications. The fabrication of such devices by solution processing allows considerable cost reduction and is therefore very attractive for industrial manufacturers. We report all solution-processed colloidal quantum-dot light-emitting diodes (QLEDs) with an inverted structure. The red, green, and blue devices showed maximum luminances of 12 510, 32 370, and 249 cd/m(2) and turn-on voltages of 2.8, 3.6, and 3.6 V, respectively. We investigate the effect of a surfactant addition in the hole injection layer (HIL), with the aim of facilitating layer deposition and thereby enhancing device performance. We demonstrate that in the device structure presented in this study, a small amount of surfactant in the HIL can significantly improve the performance of the QLED.

  19. Exciton quenching at PEDOT:PSS anode in polymer blue-light-emitting diodes

    SciTech Connect

    Abbaszadeh, D.; Wetzelaer, G. A. H.; Nicolai, H. T.

    2014-12-14

    The quenching of excitons at the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) anode in blue polyalkoxyspirobifluorene-arylamine polymer light-emitting diodes is investigated. Due to the combination of a higher electron mobility and the presence of electron traps, the recombination zone shifts from the cathode to the anode with increasing voltage. The exciton quenching at the anode at higher voltages leads to an efficiency roll-off. The voltage dependence of the luminous efficiency is reproduced by a drift-diffusion model under the condition that quenching of excitons at the PEDOT:PSS anode and metallic cathode is of equal strength. Experimentally, the efficiency roll-off at high voltages due to anode quenching is eliminated by the use of an electron-blocking layer between the anode and the light-emitting polymer.

  20. U.S. Department of Energy, National Energy Technology Laboratory Solid-State Lighting Core Technologies Light Emitting Diodes on Semipolar Bulk GaN Substrate with IQE > 80% at 150 A/cm2 and 100 0C

    SciTech Connect

    Chakraborty, Arpan; David, Aurelien; Grundmann, Michael; Tyagi, Anurag; Craven, Michael; Hurni, Christophe; Cich, Michael

    2015-03-31

    GaN is a crucial material for light-emitting diodes (LEDs) emitting in the violet-to-green range. Despite its good performance, it still suffers from significant technical limitations. In particular, the efficiency of GaN-based LEDs decreases at high current (“current droop”) and high temperature (“temperature droop”). This is problematic in some lighting applications, where a high-power operation is required. This program studied the use of particular substrates to improve the efficiency of GaN-based LEDs: bulk semipolar (SP) GaN substrates. These substrates possess a very high material quality, and physical properties which are distinctly different from legacy substrates currently used in the LED industry. The program focused on the development of accurate metrology to quantify the performance of GaN-based LEDs, and on improvement to LED quality and design on SP substrates. Through a thorough optimization process, we demonstrated violet LEDs with very high internal quantum efficiency, exceeding 85% at high temperature and high current. We also investigated longer-wavelength blue emitters, but found that the limited strain budget was a key limitation.

  1. Analysis of Environmental Effects on Leaf Temperature under Sunlight, High Pressure Sodium and Light Emitting Diodes

    PubMed Central

    Nelson, Jacob A.; Bugbee, Bruce

    2015-01-01

    The use of LED technology is commonly assumed to result in significantly cooler leaf temperatures than high pressure sodium technology. To evaluate the magnitude of this effect, we measured radiation incident to and absorbed by a leaf under four radiation sources: clear sky sunlight in the field, sunlight in a glass greenhouse, and indoor plants under either high pressure sodium or light emitting diodes. We then applied a common mechanistic energy-balance model to compare leaf to air temperature difference among the radiation sources and environments. At equal photosynthetic photon flux, our results indicate that the effect of plant water status and leaf evaporative cooling is much larger than the effect of radiation source. If plants are not water stressed, leaves in all four radiation sources were typically within 2°C of air temperature. Under clear sky conditions, cool sky temperatures mean that leaves in the field are always cooler than greenhouse or indoor plants-when photosynthetic photon flux, stomatal conductance, wind speed, vapor pressure deficit, and leaf size are equivalent. As water stress increases and cooling via transpiration decreases, leaf temperatures can increase well above air temperature. In a near-worst case scenario of water stress and low wind, our model indicates that leaves would increase 6°, 8°, 10°, and 12°C above air temperature under field, LED, greenhouse, and HPS scenarios, respectively. Because LED fixtures emit much of their heat through convection rather than radiative cooling, they result in slightly cooler leaf temperatures than leaves in greenhouses and under HPS fixtures, but the effect of LED technology on leaf temperature is smaller than is often assumed. Quantifying the thermodynamic outputs of these lamps, and their physiological consequences, will allow both researchers and the horticulture industry to make informed decisions when employing these technologies. PMID:26448613

  2. Analysis of Environmental Effects on Leaf Temperature under Sunlight, High Pressure Sodium and Light Emitting Diodes.

    PubMed

    Nelson, Jacob A; Bugbee, Bruce

    2015-01-01

    The use of LED technology is commonly assumed to result in significantly cooler leaf temperatures than high pressure sodium technology. To evaluate the magnitude of this effect, we measured radiation incident to and absorbed by a leaf under four radiation sources: clear sky sunlight in the field, sunlight in a glass greenhouse, and indoor plants under either high pressure sodium or light emitting diodes. We then applied a common mechanistic energy-balance model to compare leaf to air temperature difference among the radiation sources and environments. At equal photosynthetic photon flux, our results indicate that the effect of plant water status and leaf evaporative cooling is much larger than the effect of radiation source. If plants are not water stressed, leaves in all four radiation sources were typically within 2°C of air temperature. Under clear sky conditions, cool sky temperatures mean that leaves in the field are always cooler than greenhouse or indoor plants-when photosynthetic photon flux, stomatal conductance, wind speed, vapor pressure deficit, and leaf size are equivalent. As water stress increases and cooling via transpiration decreases, leaf temperatures can increase well above air temperature. In a near-worst case scenario of water stress and low wind, our model indicates that leaves would increase 6°, 8°, 10°, and 12°C above air temperature under field, LED, greenhouse, and HPS scenarios, respectively. Because LED fixtures emit much of their heat through convection rather than radiative cooling, they result in slightly cooler leaf temperatures than leaves in greenhouses and under HPS fixtures, but the effect of LED technology on leaf temperature is smaller than is often assumed. Quantifying the thermodynamic outputs of these lamps, and their physiological consequences, will allow both researchers and the horticulture industry to make informed decisions when employing these technologies.

  3. Beacon system based on light-emitting diode sources for runways lighting

    NASA Astrophysics Data System (ADS)

    Montes, Mario González; Vázquez, Daniel; Fernandez-Balbuena, Antonio A.; Bernabeu, Eusebio

    2014-06-01

    New aeronautical ground lighting techniques are becoming increasingly important to ensure the safety and reduce the maintenance costs of the plane's tracks. Until recently, tracks had embedded lighting systems whose sources were based on incandescent lamps. But incandescent lamps have several disadvantages: high energy consumption and frequent breakdowns that result in high maintenance costs (lamp average life-time is ˜1500 operating hours) and the lamp's technology has a lack of new lighting functions, such as signal handling and modification. To solve these problems, the industry has developed systems based on light-emitting diode (LED) technology with improved features: (1) LED lighting consumes one tenth the power, (2) it improves preventive maintenance (an LED's lifetime range is between 25,000 and 100,000 hours), and (3) LED lighting technology can be controlled remotely according to the needs of the track configuration. LEDs have been in use for more than three decades, but only recently, around 2002, have they begun to be used as visual aids, representing the greatest potential change for airport lighting since their inception in the 1920s. Currently, embedded LED systems are not being broadly used due to the specific constraints of the rules and regulations of airports (beacon dimensions, power system technology, etc.). The fundamental requirements applied to embedded lighting systems are to be hosted on a volume where the dimensions are usually critical and also to integrate all the essential components for operation. An embedded architecture that meets the lighting regulations for airport runways is presented. The present work is divided into three main tasks: development of an optical system to optimize lighting according to International Civil Aviation Organization, manufacturing prototype, and model validation.

  4. High color rendering index white organic light-emitting diode using levofloxacin as blue emitter

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Qin; Gao, Zhi-Xiang; Zhang, Ai-Qin; Li, Yuan-Hao; Wang, Hua; Jia, Hu-Sheng; Liu, Xu-Guang; Tsuboi, Taijuf

    2015-05-01

    Levofloxacin (LOFX), which is well-known as an antibiotic medicament, was shown to be useful as a 452-nm blue emitter for white organic light-emitting diodes (OLEDs). In this paper, the fabricated white OLED contains a 452-nm blue emitting layer (thickness of 30 nm) with 1 wt% LOFX doped in CBP (4,4’-bis(carbazol-9-yl)biphenyl) host and a 584-nm orange emitting layer (thickness of 10 nm) with 0.8 wt% DCJTB (4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran) doped in CBP, which are separated by a 20-nm-thick buffer layer of TPBi (2,2’,2”-(benzene-1,3,5-triyl)-tri(1-phenyl-1H-benzimidazole). A high color rendering index (CRI) of 84.5 and CIE chromaticity coordinates of (0.33, 0.32), which is close to ideal white emission CIE (0.333, 0.333), are obtained at a bias voltage of 14 V. Taking into account that LOFX is less expensive and the synthesis and purification technologies of LOFX are mature, these results indicate that blue fluorescence emitting LOFX is useful for applications to white OLEDs although the maximum current efficiency and luminance are not high. The present paper is expected to become a milestone to using medical drug materials for OLEDs. Project supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-13-0927), the International Science & Technology Cooperation Program of China (Grant No. 2012DFR50460), the National Natural Science Foundation of China (Grant Nos. 21101111 and 61274056), and the Shanxi Provincial Key Innovative Research Team in Science and Technology, China (Grant No. 2012041011).

  5. Comparison between blue lasers and light-emitting diodes for future solid-state lighting: Comparison between blue lasers and light-emitting diodes

    SciTech Connect

    Wierer, Jonathan J.; Tsao, Jeffrey Y.; Sizov, Dmitry S.

    2013-08-01

    Solid-state lighting (SSL) is now the most efficient source of high color quality white light ever created. Nevertheless, the blue InGaN light-emitting diodes (LEDs) that are the light engine of SSL still have significant performance limitations. Foremost among these is the decrease in efficiency at high input current densities widely known as “efficiency droop.” Efficiency droop limits input power densities, contrary to the desire to produce more photons per unit LED chip area and to make SSL more affordable. Pending a solution to efficiency droop, an alternative device could be a blue laser diode (LD). LDs, operated in stimulated emission, can have high efficiencies at much higher input power densities than LEDs can. In this article, LEDs and LDs for future SSL are explored by comparing: their current state-of-the-art input-power-density-dependent power-conversion efficiencies; potential improvements both in their peak power-conversion efficiencies and in the input power densities at which those efficiencies peak; and their economics for practical SSL.

  6. Emergence of colloidal quantum-dot light-emitting technologies

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yasuhiro; Supran, Geoffrey J.; Bawendi, Moungi G.; Bulović, Vladimir

    2013-01-01

    Since their inception 18 years ago, electrically driven colloidal quantum-dot light-emitting devices (QD-LEDs) have increased in external quantum efficiency from less than 0.01% to around 18%. The high luminescence efficiency and uniquely size-tunable colour of solution-processable semiconducting colloidal QDs highlight the potential of QD-LEDs for use in energy-efficient, high-colour-quality thin-film display and solid-state lighting applications. Indeed, last year saw the first demonstrations of electrically driven full-colour QD-LED displays, which foreshadow QD technologies that will transcend the optically excited QD-enhanced lighting products already available today. We here discuss the key advantages of using QDs as luminophores in LEDs and outline the operating mechanisms of four types of QD-LED. State-of-the-art visible-wavelength LEDs and the promise of near-infrared and heavy-metal-free devices are also highlighted. As QD-LED efficiencies approach those of molecular organic LEDs, we identify the key scientific and technological challenges facing QD-LED commercialization and offer our outlook for on-going strategies to overcome these challenges.

  7. White light-emitting diodes based on nonpolar and semipolar gallium nitride orientations

    NASA Astrophysics Data System (ADS)

    Demille, Natalie Fellows

    Gallium nitride has become one of the key components when fabricating white light-emitting diodes. Its use as the blue source in conjunction with a wavelength converter such as the yellow emitting phosphor YAG:Ce 3+ is a technology that is commercially available and usable for solid state lighting applications. Currently available white phosphor-based LEDs (pcLEDs) use the basal plane of wurtzite GaN as their source. Although research over the past couple decades has developed this technology into devices with good photometric performance and high reliability, the introduction of nonbasal plane wurtzite GaN orientations have benefits over basal plane GaN that can be incorporated into the white LED. The focus of this research deals with exploring white illumination on nonpolar and semipolar planes of GaN. Light extraction techniques will be described that allowed for high output powers and efficiencies on the c-plane as well as the (1100), (10 11), and (1122) planes of GaN. With higher performing devices, white pcLEDs were fabricated on c-plane, m-plane, and the (1011) semipolar plane. The novelty in the present research is producing white LEDs with nonbasal plane diodes which exhibit optical polarization anisotropy. This feature, absent on the basal plane, allows for tuning photometric quantities both electrically and optically. This is demonstrated on pcLEDs as well as dichromatic LEDs comprised solely of InGaN diodes. As a consequence of these measurements, an apparent optical polarization was seen to be occurring in the luminescence of the YAG:Ce3+ when the system absorbed linearly polarized light. Polarized emission in YAG:Ce3+ was explored by obtaining single crystals of YAG:Ce3+ with different planar orientations. The experiments led to the conclusion that crystal orientation plays no part in the optical polarization. It is suggested that the cause is a result of electric dipole transitions given by various selection rules between the Ce 3+ ion's 4f and 5d

  8. High-efficient and brightness white organic light-emitting diodes operated at low bias voltage

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yu, Junsheng; Yuan, Kai; Jian, Yadong

    2010-10-01

    White organic light-emitting diodes (OLEDs) used for display application and lighting need to possess high efficiency, high brightness, and low driving voltage. In this work, white OLEDs consisted of ambipolar 9,10-bis 2-naphthyl anthracene (ADN) as a host of blue light-emitting layer (EML) doped with tetrabutyleperlene (TBPe) and a thin codoped layer consisted of N, N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB) as a host of yellow light-emitting layer doped with 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) were investigated. With appropriate tuning in the film thickness, position, and dopant concentration of the co-doped layer, a white OLED with a luminance yield of 10.02 cd/A with the CIE coordinates of (0.29, 0.33) has been achieved at a bias voltage of 9 V and a luminance level of over 10,000 cd/m2. By introducing the PIN structure with both HIL and bis(10- hydroxybenzo-quinolinato)-beryllium (BeBq2) ETL, the power efficiency of white OLED was improved.

  9. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix.

    PubMed

    Li, Guangru; Tan, Zhi-Kuang; Di, Dawei; Lai, May Ling; Jiang, Lang; Lim, Jonathan Hua-Wei; Friend, Richard H; Greenham, Neil C

    2015-04-08

    Electroluminescence in light-emitting devices relies on the encounter and radiative recombination of electrons and holes in the emissive layer. In organometal halide perovskite light-emitting diodes, poor film formation creates electrical shunting paths, where injected charge carriers bypass the perovskite emitter, leading to a loss in electroluminescence yield. Here, we report a solution-processing method to block electrical shunts and thereby enhance electroluminescence quantum efficiency in perovskite devices. In this method, a blend of perovskite and a polyimide precursor dielectric (PIP) is solution-deposited to form perovskite nanocrystals in a thin-film matrix of PIP. The PIP forms a pinhole-free charge-blocking layer, while still allowing the embedded perovskite crystals to form electrical contact with the electron- and hole-injection layers. This modified structure reduces nonradiative current losses and improves quantum efficiency by 2 orders of magnitude, giving an external quantum efficiency of 1.2%. This simple technique provides an alternative route to circumvent film formation problems in perovskite optoelectronics and offers the possibility of flexible and high-performance light-emitting displays.

  10. Frequency-Downconversion Stability of PMMA Coatings in Hybrid White Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Caruso, Fulvio; Mosca, Mauro; Rinella, Salvatore; Macaluso, Roberto; Calì, Claudio; Saiano, Filippo; Feltin, Eric

    2016-01-01

    We report on the properties of a poly(methyl methacrylate)-based coating used as a host for an organic dye in hybrid white light-emitting diodes. The device is composed by a pump source, which is a standard inorganic GaN/InGaN blue light-emitting diode (LED) emitting at around 450 nm, and a spin-coated conversion layer making use of Lumogen® F Yellow 083. Under prolonged irradiation, the coating exhibits significant bleaching, thus degrading the color rendering performance of the LED. We present experimental results that confirm that the local temperature rise of the operating diode does not affect the conversion layer. It is also proven that, during the test, the photostability of the organic dye is compromised, resulting in a chromatic shift from Commission Internationale de l'Eclairage (CIE) ( x; y) coordinates (0.30;0.39) towards the color of the pump (0.15;0.04). Besides photodegradation of the dye, we address a phenomenon attributed to modification of the polymer matrix activated by the LED's blue light energy as confirmed by ultraviolet-visible and Fourier-transform infrared spectroscopic analyses. Three methods for improving the overall stability of the organic coating are presented.

  11. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    SciTech Connect

    Li, Baikui; Tang, Xi; Chen, Kevin J.; Wang, Jiannong

    2014-07-21

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4 eV at a small forward bias larger than ∼2 V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward and seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.

  12. Point-of-use water disinfection using ultraviolet and visible light-emitting diodes.

    PubMed

    Lui, Gough Yumu; Roser, David; Corkish, Richard; Ashbolt, Nicholas J; Stuetz, Richard

    2016-05-15

    Improvements in point-of-use (POU) drinking water disinfection technologies for remote and regional communities are urgently needed. Conceptually, UV-C light-emitting diodes (LEDs) overcome many drawbacks of low-pressure mercury tube based UV devices, and UV-A or visible light LEDs also show potential. To realistically evaluate the promise of LED disinfection, our study assessed the performance of a model 1.3 L reactor, similar in size to solar disinfection bottles. In all, 12 different commercial or semi-commercial LED arrays (270-740 nm) were compared for their ability to inactivate Escherichia coli K12 ATCC W3110 and Enterococcus faecalis ATCC 19433 over 6h. Five log10 and greater reductions were consistently achieved using the 270, 365, 385 and 405 nm arrays. The output of the 310 nm array was insufficient for useful disinfection while 430 and 455 nm performance was marginal (≈ 4.2 and 2.3-log10s E. coli and E. faecalis over the 6h). No significant disinfection was observed with the 525, 590, 623, 660 and 740 nm arrays. Delays in log-phase inactivation of E. coli were observed, particularly with UV-A wavelengths. The radiation doses required for >3-log10 reduction of E. coli and E. faecalis differed by 10 fold at 270 nm but only 1.5-2.5 fold at 365-455 nm. Action spectra, consistent with the literature, were observed with both indicators. The design process revealed cost and technical constraints pertaining to LED electrical efficiency, availability and lifetime. We concluded that POU LED disinfection using existing LED technology is already technically possible. UV-C LEDs offer speed and energy demand advantages, while UV-A/violet units are safer. Both approaches still require further costing and engineering development. Our study provides data needed for such work.

  13. High efficiency light emitting diode with anisotropically etched GaN-sapphire interface

    NASA Astrophysics Data System (ADS)

    Lo, M. H.; Tu, P. M.; Wang, C. H.; Hung, C. W.; Hsu, S. C.; Cheng, Y. J.; Kuo, H. C.; Zan, H. W.; Wang, S. C.; Chang, C. Y.; Huang, S. C.

    2009-07-01

    We report the fabrication and study of high efficiency ultraviolet light emitting diodes with inverted micropyramid structures at GaN-sapphire interface. The micropyramid structures were created by anisotropic chemical wet etching. The pyramid structures have significantly enhanced the light output efficiency and at the same time also improved the crystal quality by partially relieving the strain and reducing the dislocation defects in GaN. The electroluminescent output power at normal direction was enhanced by 120% at 20 mA injection current and the output power integrated over all directions was enhanced by 85% compared to a reference sample.

  14. Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display.

    PubMed

    Kim, Bong Choon; Lim, Young Jin; Song, Je Hoon; Lee, Jun Hee; Jeong, Kwang-Un; Lee, Joong Hee; Lee, Gi-Dong; Lee, Seung Hee

    2014-12-15

    We proposed wideband antireflective circular polarizer for realizing a true black state in all viewing directions in organic light-emitting-diode displays (OLEDs). Present commercialized wideband circular polarizer consisted of a half wave and a quarter wave plates having the refractive index parameter (Nz) of 1.5 in both films exhibits light leakage in the oblique viewing directions, deteriorating image quality of a black state. We evaluated Nzs of both films and proposed a new wideband antireflective circular polarizer with a perfect dark state in all viewing directions with Nz = 0.5 in both plates, which will greatly improve image quality of OLEDs.

  15. Evaluation of light-emitting diodes as attractant for sandflies (Diptera: Psychodidae: Phlebotominae) in northeastern Brazil.

    PubMed

    Silva, Francinaldo Soares; Brito, Jefferson Mesquita; Costa Neta, Benedita Maria; Lobo, Shelre Emile Pereira Duarte

    2015-09-01

    Hoover Pugedo light traps were modified for use with green and blue-light-emitting diodes to trap phlebotomine sandflies in northeastern Brazil. A total of 2,267 specimens belonging to eight genera and 15 species were sampled. The predominant species were Nyssomyia whitmani(34.41%) and Micropygomyia echinatopharynx(17.25%).The green LED trap prevailed over the blue and control lights; however, no statistically significant difference could be detected among the three light sources. Even without statistical significance, we suggest using LEDs as an attractant for the capture of sandflies because of several advantages over the conventional method with incandescent lamps.

  16. Tailoring of self-assembled monolayer for polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Choi, Beomrak; Rhee, Jungsoo; Lee, Hong H.

    2001-09-01

    The choice of a self-assembled monolayer (SAM) is tailored to specifically remove water on an indium-tin oxide electrode and to reduce barrier height for long-term stability of polymer light-emitting diodes. Water, which is a major cause of long-term degradation, is shown to have entirely reversible effects on the power efficiency of the device. It is shown that the use of a SAM for the specific purposes results in a more than an order of magnitude increase in the half lifetime of the device based on poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene].

  17. Light-emitting diodes for solid-state lighting: searching room for improvements

    NASA Astrophysics Data System (ADS)

    Karpov, Sergey Y.

    2016-03-01

    State-of-the art light-emitting diodes (LEDs) for solid-state lighting (SSL) are reviewed with the focus on their efficiency and ways for its improvement. Mechanisms of the LED efficiency losses are considered on the heterostructure, chip, and device levels, including high-current efficiency droop, recombination losses, "green gap", current crowding, Stokes losses, etc. Materials factors capable of lowering the LED efficiency, like composition fluctuations in InGaN alloys and plastic stress relaxation in device heterostructures, are also considered. Possible room for the efficiency improvement is discussed along with advanced schemes of color mixing and LED parameters optimal for generation of high-quality white light.

  18. Color temperature tunable white light emitting diodes packaged with an omni-directional reflector.

    PubMed

    Su, Jung-Chieh; Lu, Chun-Lin

    2009-11-23

    This study proposed a correlated color temperature (CCT) tunable phosphor-converted white light emitting diode (LED) with an omni-directional reflector (ODR). Applying current to each individual InGaN based ultraviolet, purple and blue source LED chip of the white LED package, we can achieve the CCT tunability. The optimum color properties of the resulting white light are (0.3347, 0.3384), 5398 K, 81, 3137-8746 K for color coordinates, CCT, color rendering index (CRI) and CCT tuning range, respectively. Roughening the ODR substrate, we solve the non-uniformity color distribution caused by the reflectance of the ODR and positioning of source LED chips.

  19. Phosphor-free white light-emitting diode with laterally distributed multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Park, Il-Kyu; Kim, Ja-Yeon; Kwon, Min-Ki; Cho, Chu-Young; Lim, Jae-Hong; Park, Seong-Ju

    2008-03-01

    A phosphor-free white light-emitting diode (LED) was fabricated with laterally distributed blue and green InGaN /GaN multiple quantum wells (MQWs) grown by a selective area growth method. Photoluminescence and electroluminescence (EL) spectra of the LED showed emission peaks corresponding to the individual blue and green MQWs. The integrated EL intensity ratio of green to blue emission varied from 2.5 to 6.5 with the injection current below 300mA, but remained constant at high injection currents above 300mA. The stability of the emission color at high currents is attributed to parallel carrier injection into both MQWs.

  20. Efficiency enhancement of blue phosphorescent organic light-emitting diodes using mixed electron transport layer

    NASA Astrophysics Data System (ADS)

    Yoo, Seung Il; Yoon, Ju-An; Kim, Nam Ho; Kim, Jin Wook; Lee, Ho Won; Kim, Young Kwan; He, Gufeng; Kim, Woo Young

    2015-01-01

    Blue phosphorescent organic light-emitting diodes (OLED) using mixed electron transport layer (ETL) were fabricated with the device structure of ITO/NPB/mCP:Firpic-8%/TPBi:BCP or TPBi:3TPYMB/Liq/Al to observe mixed ETL's influence on their electrical and optical characteristics. OLED device with mixed ETL of TPBi with BCP or 3TPYMB significantly improved its current efficiency to 30.4 and 34.2 cd/A comparing to 19.8 cd/A of single ETL with BCP only. We examined mixed ETL's capability of electron transport and triplet exciton confinement enhancing phosphorescent OLED's luminance and luminous efficiency.

  1. Realistic model for the output beam profile of stripe and tapered superluminescent light-emitting diodes.

    PubMed

    Causa, Frederica; Sarma, Jayanta

    2003-07-20

    We present a new model to analyse the spatial characteristics of the output beam of conventional (straight-stripe) and tapered superluminescent light-emitting diodes. The device model includes both spontaneous and stimulated emission processes as well as a nonuniform carrier density distribution to correctly represent current spreading and carrier diffusion effects. Near- and far-field intensity profiles computed with this model are accurately verified over a wide range of injection currents by comparisons with experimental results measured from in-house fabricated devices.

  2. Compact light-emitting diode lighting ring for video-assisted thoracic surgery.

    PubMed

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-01-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.

  3. White organic light-emitting diodes with 9, 10-bis (2-naphthyl) anthracene

    NASA Astrophysics Data System (ADS)

    Guan, Yunxia; Niu, Lianbin

    2009-03-01

    White organic light-emitting diodes were fabricated by 9, 10-bis (2-naphthyl) anthracene (ADN) doped with Rubrene with a structure of ITO/copper phthalocyanine (CuPc) / NPB /ADN: Rubrene /Alq3 /CsF/Mg:Ag/Ag. Multilayer organic devices using AND and Rubrene as an emitting layer produced white emissions with good chromaticity and luminous efficiency as high as 5.93 cd/A. This performance can be explained by Förster energy transfer from the blue-emitting host to the orange-emitting dopant.

  4. Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions

    NASA Astrophysics Data System (ADS)

    Tokito, Shizuo; Tsutsui, Tetsuo; Taga, Yasunori

    1999-09-01

    In this article we demonstrate strongly directed pure red, green, and blue emissions in the organic light-emitting diodes (OLEDs) with a planar microcavity defined by a pair of dielectric mirror and a metal mirror. By careful control of the cavity mode and the position of the resonance wavelength, the strong directionality in the forward direction as well as the spectral narrowing and the intensity enhancement are realized in the microcavity OLEDs. The intensity enhancements at the resonance wavelength are 1.5-5 compared to the noncavity OLEDs, and the chromaticity coordinates of the emission colors are the ideal primary colors. The experimental results are compared to theoretically calculated ones.

  5. Monolithic integration of individually addressable light-emitting diode color pixels

    NASA Astrophysics Data System (ADS)

    Chung, Kunook; Sui, Jingyang; Demory, Brandon; Teng, Chu-Hsiang; Ku, Pei-Cheng

    2017-03-01

    Monolithic integration of individually addressable light-emitting diode (LED) color pixels is reported. The integration is enabled by local strain engineering. The use of a nanostructured active region comprising one or more nanopillars allows color tuning across the visible spectrum. In the current work, integration of amber, green, and blue pixels is demonstrated. The nanopillar LEDs exhibit an electrical performance comparable to that of a conventional thin-film LED fabricated on the same wafer. The proposed platform uses only standard epitaxy and a similar process flow as a conventional LED. It is also shown that the emission intensity can be linearly tuned without shifting the color coordinate of individual pixels.

  6. Charge injection and transport properties of an organic light-emitting diode

    PubMed Central

    Juhasz, Peter; Nevrela, Juraj; Micjan, Michal; Novota, Miroslav; Uhrik, Jan; Stuchlikova, Lubica; Jakabovic, Jan; Harmatha, Ladislav

    2016-01-01

    Summary The charge behavior of organic light emitting diode (OLED) is investigated by steady-state current–voltage technique and impedance spectroscopy at various temperatures to obtain activation energies of charge injection and transport processes. Good agreement of activation energies obtained by steady-state and frequency-domain was used to analyze their contributions to the charge injection and transport. We concluded that charge is injected into the OLED device mostly through the interfacial states at low voltage region, whereas the thermionic injection dominates in the high voltage region. This comparison of experimental techniques demonstrates their capabilities of identification of major bottleneck of charge injection and transport. PMID:26925351

  7. Importance of 'blue' photon levels for lettuce seedlings grown under red-light-emitting diodes

    NASA Technical Reports Server (NTRS)

    Hoenecke, M. E.; Bula, R. J.; Tibbitts, T. W.

    1992-01-01

    Light-emitting diodes (LEDs) with high-intensity output are being studied as a photosynthetic light source for plants. High-output LEDs have peak emission at approximately 660 nm concentrated in a waveband of +/- 30 nm. Lettuce (Lactuca sativa Grand Rapids') seedlings developed extended hypocotyls and elongated cotyledons when grown under these LEDs as a sole source of irradiance. This extension and elongation was prevented when the red LED radiation was supplemented with more than 15 micromoles m-2 s-1 of 400- to 500-nm photons from blue fluorescent lamps. Blue radiation effects were independent of the photon level of the red radiation.

  8. White-blue electroluminescence from a Si quantum dot hybrid light-emitting diode

    SciTech Connect

    Xin, Yunzi; Nishio, Kazuyuki; Saitow, Ken-ichi

    2015-05-18

    A silicon (Si) quantum dot (QD)-based hybrid inorganic/organic light-emitting diode (LED) was fabricated via solution processing. This device exhibited white-blue electroluminescence at a low applied voltage of 6 V, with 78% of the effective emission obtained from the Si QDs. This hybrid LED produced current and optical power densities 280 and 350 times greater than those previously reported for such device. The superior performance of this hybrid device was obtained by both the prepared Si QDs and the optimized layer structure and thereby improving carrier migration through the hybrid LED and carrier recombination in the homogeneous Si QD layer.

  9. Bromination of hydrocarbons with CBr4, initiated by light-emitting diode irradiation

    PubMed Central

    Ohtani, Bunsho; Kikushima, Kotaro

    2013-01-01

    Summary The bromination of hydrocarbons with CBr4 as a bromine source, induced by light-emitting diode (LED) irradiation, has been developed. Monobromides were synthesized with high efficiency without the need for any additives, catalysts, heating, or inert conditions. Action and absorption spectra suggest that CBr4 absorbs light to give active species for the bromination. The generation of CHBr3 was confirmed by NMR spectroscopy and GC–MS spectrometry analysis, indicating that the present bromination involves the homolytic cleavage of a C–Br bond in CBr4 followed by radical abstraction of a hydrogen atom from a hydrocarbon. PMID:24062826

  10. Room temperature spin relaxation length in spin light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Soldat, Henning; Li, Mingyuan; Gerhardt, Nils C.; Hofmann, Martin R.; Ludwig, Arne; Ebbing, Astrid; Reuter, Dirk; Wieck, Andreas D.; Stromberg, Frank; Keune, Werner; Wende, Heiko

    2011-08-01

    We investigate the spin relaxation length in GaAs spin light-emitting diode devices under drift transport at room temperature. The spin-polarised electrons are injected through a MgO tunnel barrier from a Fe/Tb multilayer in magnetic remanence. The decrease in circular polarization with increasing injection path length is investigated and found to be exponential, supporting drift-based transport. The spin relaxation length in our samples is 26 nm, and a lower bound for the spin injection efficiency at the spin injector/GaAs interface is estimated to be 25 ± 2%.

  11. A high quality liquid-type quantum dot white light-emitting diode.

    PubMed

    Sher, Chin-Wei; Lin, Chin-Hao; Lin, Huang-Yu; Lin, Chien-Chung; Huang, Che-Hsuan; Chen, Kuo-Ju; Li, Jie-Ru; Wang, Kuan-Yu; Tu, Hsien-Hao; Fu, Chien-Chung; Kuo, Hao-Chung

    2016-01-14

    This study demonstrates a novel package design to store colloidal quantum dots in liquid format and integrate them with a standard LED. The high efficiency and high quality color performance at a neutral white correlated color temperature is demonstrated. The experimental results indicate that the liquid-type quantum dot white light-emitting diode (LQD WLED) is highly efficient and reliable. The luminous efficiency and color rendering index (CRI) of the LQD WLED can reach 271 lm Wop(-1) and 95, respectively. Moreover, a glass box is employed to prevent humidity and oxygen erosion. With this encapsulation design, our quantum dot box can survive over 1000 hours of storage time.

  12. Versatile light-emitting-diode-based spectral response measurement system for photovoltaic device characterization.

    PubMed

    Hamadani, Behrang H; Roller, John; Dougherty, Brian; Yoon, Howard W

    2012-07-01

    An absolute differential spectral response measurement system for solar cells is presented. The system couples an array of light emitting diodes with an optical waveguide to provide large area illumination. Two unique yet complementary measurement methods were developed and tested with the same measurement apparatus. Good agreement was observed between the two methods based on testing of a variety of solar cells. The first method is a lock-in technique that can be performed over a broad pulse frequency range. The second method is based on synchronous multifrequency optical excitation and electrical detection. An innovative scheme for providing light bias during each measurement method is discussed.

  13. Influence of dehydrated nanotubed titanic acid on polymer light-emitting diodes with phosphorescent dye

    NASA Astrophysics Data System (ADS)

    Qian, L.; Zhang, T.; Wang, Y. S.; Xu, X. R.; Jin, Z. S.; Du, Z. L.

    2006-01-01

    In this letter, we demonstrate that hole injection and transport in polymer light-emitting diodes with phosphorescent dye Ir(ppy)3 can be significantly enhanced by doping p-type conductive dehydrated nanotubed titanic acid into poly(vinylcarbazole) (PVK) films at 2wt.%. At the same time, both energy transfer and exciton recombination efficiency are improved because of the open and straight conformation of the PVK molecule in the nanocomposite. The performance of these devices was greatly improved, showing higher luminance, enhanced efficiency, and a lower turn-on voltage.

  14. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    SciTech Connect

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-06-09

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  15. Optical design of tunnel lighting with white light-emitting diodes.

    PubMed

    Tsai, Ming-Shiou; Lee, Xuan-Hao; Lo, Yi-Chien; Sun, Ching-Cherng

    2014-10-10

    This paper presents a tunnel lighting design consisting of a cluster light-emitting diode and a free-form lens. Most of the energy emitted from the proposed luminaire is transmitted onto the surface of the road in front of drivers, and the probability that that energy is emitted directly into drivers' eyes is low. Compared with traditional fluorescent lamps, the proposed luminaire, of which the optical utilization factor, optical efficiency, and uniformity are, respectively, 44%, 92.5%, and 0.72, exhibits favorable performance in energy saving, glare reduction, and traffic safety.

  16. MM/T program for three color light emitting diode display modules

    NASA Astrophysics Data System (ADS)

    David, R. F.; Lewis, G. W.

    1981-10-01

    This report provides a complete description of the LED panel, along with a discussion of the processes and tooling required for its production at reasonable cost. An 'LED Panel Exerciser' (test system) which was delivered to the government is described. Suggested changes to ERADCOM TECHNICAL REQUIREMENTS NO. MMT-799938 are presented based on analysis and present practice. Sample processes, operator's manuals, and drawings are included. Problems involving the quality of procurred light emitting diodes and collimators are discussed, along with actions which are being taken to resolve them.

  17. Indium Tin Oxide Electrode with an Ultrathin Al Buffer Layer for Flexible Organic Light Emitting Diode

    NASA Astrophysics Data System (ADS)

    Sim, Boyeon; Hwang, Hyeonseok; Ryu, Seungyoon; Baik, Hongkoo; Lee, Myeongkyu

    2010-06-01

    This paper reports that the mechanical and electrical stability of indium tin oxide (ITO) film deposited on flexible plastic substrate can be much enhanced with a thin Al buffer layer while maintaining a visible transmittance over 75%. The improved stability is attributed to the effective elastic mismatch between the film and the substrate reduced by a ductile interlayer. A polymer light emitting diode fabricated using an ITO/Al anode exhibited a luminance of 13,000 cd/m2 with a current efficiency of 16 cd/A. Bending-induced degradation of the device performance was also alleviated when a mechanical buffer layer was inserted.

  18. Efficient Triplet Exciton Fusion in Molecularly Doped Polymer Light-Emitting Diodes.

    PubMed

    Di, Dawei; Yang, Le; Richter, Johannes M; Meraldi, Lorenzo; Altamimi, Rashid M; Alyamani, Ahmed Y; Credgington, Dan; Musselman, Kevin P; MacManus-Driscoll, Judith L; Friend, Richard H

    2017-04-01

    Solution-processed polymer organic light-emitting diodes (OLEDs) doped with triplet-triplet annihilation (TTA)-upconversion molecules, including 9,10-diphenylanthracene, perylene, rubrene and TIPS-pentacene, are reported. The fraction of triplet-generated electroluminescence approaches the theoretical limit. Record-high efficiencies in solution-processed OLEDs based on these materials are achieved. Unprecedented solid-state TTA-upconversion quantum yield of 23% (TTA-upconversion reaction efficiency of 70%) at electrical excitation well below one-sun equivalent is observed.

  19. Efficient deep-blue organic light-emitting diodes using double-emitting layer.

    PubMed

    Seo, Ji Hoon; Seo, Bo Min; Lee, Seok Jae; Lee, Kum Hee; Yoon, Seung Soo; Kim, Young Kwan

    2012-04-01

    Efficient deep-blue organic light-emitting diodes were demonstrated using 1,4-tetranaphthalene doped in double-emitting layers (D-EMLs) consisting of 2-methyl-9,10-di(2-naphthyl)anthracene and 4'-(dinaphthalen-2-yl)-1,1'-binaphthyl as blue hosts. The device with D-EML exhibits good confinement of holes and electrons, as well as a broad recombination zone. The optimized device showed a peak current efficiency of 3.67 cd/A, a peak external quantum efficiency of 3.97%, and Commission Internationale de L'Eclairage coordinates of (0.16, 0.10).

  20. High light extraction efficiency in bulk-GaN based volumetric violet light-emitting diodes

    SciTech Connect

    David, Aurelien Hurni, Christophe A.; Aldaz, Rafael I.; Cich, Michael J.; Ellis, Bryan; Huang, Kevin; Steranka, Frank M.; Krames, Michael R.

    2014-12-08

    We report on the light extraction efficiency of III-Nitride violet light-emitting diodes with a volumetric flip-chip architecture. We introduce an accurate optical model to account for light extraction. We fabricate a series of devices with varying optical configurations and fit their measured performance with our model. We show the importance of second-order optical effects like photon recycling and residual surface roughness to account for data. We conclude that our devices reach an extraction efficiency of 89%.

  1. Efficiency and Color Coordinate Improvement Using Codopants in Blue Organic Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Wang, Xiu Ru; Chen, Jiang Shan; You, Han; Ma, Dong Ge; Sun, Run Guang

    2005-12-01

    The codoping method is applied to fabricate efficient blue organic light-emitting diodes (OLEDs). With the same structure of indium-tin oxide (ITO)/N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'diamine (NPB)(80 nm)/light-emitting layer (30 nm)/tris-(8-hydroxy-quinoline)aluminum (Alq3) (20 nm)/LiF (1 nm)/Al (120 nm), a set of three devices was manufactured for comparison. For Devices 1, 2, and 3, the light-emitting layers are 9,10-di(2-naphthyl)anthracene (ADN):4,4'-(1,4-phenylenedi-2,1-ethene diyl)bis[N,N-bis(4-methylphenyl)-benzenamine] (DPAVB) (1 wt %), ADN:2,5,8,11-tetra-(t-butyl)-perylene (TBPE) (1 wt %), and ADN:DPAVB (0.3 wt %):TBPE (0.7 wt %), respectively. It is found that the codoped Device 3 has the highest maximum luminance, Electroluminescence (EL) quantum efficiency and color saturation. Further study on the effect of the codopants was through a relative photoluminescence (PL) quantum efficiency measurement. The result shows that the relative PL efficiencies of Devices 1, 2, and 3 are 15.6, 19.3, and 24%, respectively, as determined using an integrating sphere system excited at 375 nm. The codoping method improves the EL efficiency intrinsically. Codopants of the heterogeneous light-emitting molecules may decrease the possibility of self-quenching from the interaction of the homogenous molecules at the same total doping concentration. Furthermore, the decrease in the interaction of homogenous molecules suppresses the light emission from the aggregations thus narrowing the emission spectrum, and results in saturated blue light emission.

  2. Organic/Organic' heterojunctions: organic light emitting diodes and organic photovoltaic devices.

    PubMed

    Armstrong, Neal R; Wang, Weining; Alloway, Dana M; Placencia, Diogenes; Ratcliff, Erin; Brumbach, Michael

    2009-05-19

    Heterojunctions created from thin films of two dissimilar organic semiconductor materials [organic/organic' (O/O') heterojunctions] are an essential component of organic light emitting diode displays and lighting systems (OLEDs, PLEDs) and small molecule or polymer-based organic photovoltaic (solar cell) technologies (OPVs). O/O' heterojunctions are the site for exciton formation in OLEDs, and the site for exciton dissociation and photocurrent production in OPVs. Frontier orbital energy offsets in O/O' heterojunctions establish the excess free energy controlling rates of charge recombination and formation of emissive states in OLEDs and PLEDs. These energy offsets also establish the excess free energy which controls charge separation and the short-circuit photocurrent (J(SC) ) in OPVs, and set the upper limit for the open-circuit photopotential (V(OC) ). We review here how these frontier orbital energy offsets are determined using photoemission spectroscopies, how these energies change as a function of molecular environment, and the influence of interface dipoles on these frontier orbital energies. Recent examples of heterojunctions based on small molecule materials are shown, emphasizing those heterojunctions which are of interest for photovoltaic applications. These include heterojunctions of perylenebisimide dyes with trivalent metal phthalocyanines, and heterojunctions of titanyl phthalocyanine with C(60) , and with pentacene. Organic solar cells comprised of donor/acceptor pairs of each of these last three materials confirm that the V(OC) scales with the energy offsets between the HOMO of the donor and LUMO of the acceptor ($E_{{\\rm HOMO}^{\\rm D} } - E_{{\\rm LUMO}^{\\rm A} }$).

  3. Light-emitting diode fluorescence microscopy for tuberculosis diagnosis: a meta-analysis.

    PubMed

    Chang, Eva W; Page, Anne-Laure; Bonnet, Maryline

    2016-03-01

    Light-emitting diode fluorescence microscopy (LED-FM) is recommended by the World Health Organization to replace conventional Ziehl-Neelsen microscopy for pulmonary tuberculosis diagnosis. Uptake of LED-FM has been slow. One reason is its reported loss of specificity compared with Ziehl-Neelsen microscopy. We aimed to determine the diagnostic accuracy of LED-FM for tuberculosis detection and explore potential factors that might affect its performance.A comprehensive search strategy based on pre-specified criteria was employed to identify eligible studies between January 1, 2000 and April 1, 2014 in 11 databases. Standardised study selection, data extraction and quality assessment were conducted. Pooled sensitivity and specificity of LED-FM using culture as the reference standard were estimated through meta-analyses using a bivariate random-effects model. Investigation of heterogeneity was performed by subgroup analyses.We identified 12 unique studies, half of which were from peripheral healthcare facilities. LED-FM achieved a pooled sensitivity of 66.9% (95% CI 60.5-72.7%) and pooled specificity of 96.8% (95% CI 93.1-98.6%). A pooled sensitivity of 53.0% (95% CI 42.8-63.0%) and pooled specificity of 96.1% (95% CI 86.0-99.0%) were obtained by LED-FM among HIV-infected patients. Study methodology factors and differences in the LED-FM procedure or device could also affect the performance.LED-FM specificity is high and should not be a barrier to device introduction, particularly among peripheral healthcare settings where this technology is meant to be used. Sensitivity is reduced in HIV-infected patients.

  4. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    SciTech Connect

    Tarsa, Eric

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimally distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.

  5. Current spreading in GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Li, Yufeng; Zhang, Minyan; Ding, Wen; Yun, Feng

    2016-11-01

    We have investigated the factors affecting the current spreading length (CSL) in GaN-based light-emitting diodes (LEDs) by deriving theoretical expressions and performing simulations with APSYS. For mesa-structure LEDs, the effects of both indium tin oxide (ITO) and n-GaN are taken into account for the first time, and a new Q factor is introduced to explain the effects of different current flow paths on the CSL. The calculations and simulations show that the CSL can be enhanced by increasing the thickness of the ITO layer and resistivity of the n-GaN layer, or by reducing the resistivity of the ITO layer and thickness of the n-GaN layer. The results provide theoretical support for calculating the CSL clearly and directly. For vertical-structure LEDs, the effects of resistivity and thickness of the CSL on the internal quantum efficiency (IQE) have been analyzed. The theoretical expression relating current density and the parameters (resistivity and thickness) of the CSL is obtained, and the results are then verified by simulation. The IQE under different current injection conditions is discussed. The effects of CSL resistivity play a key role at high current injection, and there is an optimal thickness for the largest IQE only at a low current injection. Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA032608), the National Natural Science Foundation of China (Grant No. 61404101), and the China Postdoctoral Science Foundation (Grant No. 2014M562415).

  6. Solution-processed, high-performance light-emitting diodes based on quantum dots.

    PubMed

    Dai, Xingliang; Zhang, Zhenxing; Jin, Yizheng; Niu, Yuan; Cao, Hujia; Liang, Xiaoyong; Chen, Liwei; Wang, Jianpu; Peng, Xiaogang

    2014-11-06

    Solution-processed optoelectronic and electronic devices are attractive owing to the potential for low-cost fabrication of large-area devices and the compatibility with lightweight, flexible plastic substrates. Solution-processed light-emitting diodes (LEDs) using conjugated polymers or quantum dots as emitters have attracted great interest over the past two decades. However, the overall performance of solution-processed LEDs--including their efficiency, efficiency roll-off at high current densities, turn-on voltage and lifetime under operational conditions-remains inferior to that of the best vacuum-deposited organic LEDs. Here we report a solution-processed, multilayer quantum-dot-based LED with excellent performance and reproducibility. It exhibits colour-saturated deep-red emission, sub-bandgap turn-on at 1.7 volts, high external quantum efficiencies of up to 20.5 per cent, low efficiency roll-off (up to 15.1 per cent of the external quantum efficiency at 100 mA cm(-2)), and a long operational lifetime of more than 100,000 hours at 100 cd m(-2), making this device the best-performing solution-processed red LED so far, comparable to state-of-the-art vacuum-deposited organic LEDs. This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots. We anticipate that our results will be a starting point for further research, leading to high-performance, all-solution-processed quantum-dot-based LEDs ideal for next-generation display and solid-state lighting technologies.

  7. Surface plasmon enhanced green light emitting diodes with silver nanorod arrays embedded in p-GaN

    NASA Astrophysics Data System (ADS)

    Huang, Yaping; Yun, Feng; Wang, Yue; Ding, Wen; Li, Yufeng; Wang, Hong; Zhang, Ye; Guo, Maofeng; Su, Xilin; Liu, Shuo; Hou, Xun

    2014-08-01

    We demonstrated surface-plasmon (SP) enhanced green light-emitting diodes (LEDs). Three types of Ag nanorod arrays with a minimum distance between the quantum well (QW) and Ag of 20, 40, and 55 nm respectively were fabricated on p-GaN layer. Photoluminescence measurements showed ˜175% emission enhancement for the 20 nm spacing while almost no enhancement for the 55 nm spacing. Simulation result showed that a localized surface plasmon resonance (LSPR) at a wavelength of ˜500 nm generated by Ag nanorod arrays induced InGaN/GaN QW and SP coupling. However, the electrical field of the LSPR generated by Ag nanorods only spread ˜40 nm in the vertical direction in GaN. This simulation result well explains the observation of SP-QW coupling emission enhancement for 20 nm spacing between Ag and QW, and the lack of enhancement for the 55 nm spacing samples.

  8. Measurement of the water content in oil and oil products using IR light-emitting diode-photodiode optrons

    NASA Astrophysics Data System (ADS)

    Bogdanovich, M. V.; Kabanau, D. M.; Lebiadok, Y. V.; Shpak, P. V.; Ryabtsev, A. G.; Ryabtsev, G. I.; Shchemelev, M. A.; Andreev, I. A.; Kunitsyna, E. V.; Ivanov, E. V.; Yakovlev, Yu. P.

    2017-02-01

    The feasibility of using light-emitting devices, the radiation spectrum of which has maxima at wavelengths of 1.7, 1.9, and 2.2 μm for determining the water concentration in oil and oil products (gasoline, kerosene, diesel fuel) has been demonstrated. It has been found that the measurement error can be lowered if (i) the temperature of the light-emitting diode is maintained accurate to 0.5-1.0°C, (ii) by using a cell through which a permanently stirred analyte is pumped, and (iii) by selecting the repetition rate of radiation pulses from the light-emitting diodes according to the averaging time. A meter of water content in oil and oil products has been developed that is built around IR light-emitting device-photodiode optrons. This device provides water content on-line monitoring accurate to 1.5%.

  9. Antibacterial Mechanism of 405-Nanometer Light-Emitting Diode against Salmonella at Refrigeration Temperature.

    PubMed

    Kim, Min-Jeong; Yuk, Hyun-Gyun

    2017-03-01

    The aim of this study was to elucidate the antibacterial mechanism of 405 ± 5-nm light-emitting diode (LED) illumination against Salmonella at 4°C in phosphate-buffered saline (PBS) by determining endogenous coproporphyrin content, DNA oxidation, damage to membrane function, and morphological change. Gene expression levels, including of oxyR, recA, rpoS, sodA, and soxR, were also examined to understand the response of Salmonella to LED illumination. The results showed that Salmonella strains responded differently to LED illumination, revealing that S. enterica serovar Enteritidis (ATCC 13076) and S. enterica subsp. enterica serovar Saintpaul (ATCC 9712) were more susceptible and resistant, respectively, than the 16 other strains tested. There was no difference in the amounts of endogenous coproporphyrin in the two strains. Compared with that in nonilluminated cells, the DNA oxidation levels in illuminated cells increased. In illuminated cells, we observed a loss of efflux pump activity, damage to the glucose uptake system, and changes in membrane potential and integrity. Transmission electron microscopy revealed a disorganization of chromosomes and ribosomes due to LED illumination. The levels of the five genes measured in the nonilluminated and illuminated S Saintpaul cells were upregulated in PBS at a set temperature of 4°C, indicating that increased gene expression levels might be due to a temperature shift and nutrient deficiency rather than to LED illumination. In contrast, only oxyR in S Enteritidis cells was upregulated. Thus, different sensitivities of the two strains to LED illumination were attributed to differences in gene regulation.IMPORTANCE Bacterial inactivation using visible light has recently received attention as a safe and environmentally friendly technology, in contrast with UV light, which has detrimental effects on human health and the environment. This study was designed to understand how 405 ± 5-nm light-emitting diode (LED

  10. Characterization of four-color multi-package white light-emitting diodes combined with various green monochromatic phosphor-converted light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Oh, Ji Hye; Lee, Keyong Nam; Do, Young Rag

    2012-03-01

    In this study, several combinations of multi-package white light-emitting diodes (LEDs), which combine an InGaN blue LED with green, amber, and red phosphor-converted LEDs (pc-LEDs), were characterized by changing the peak wavelength of green pc-LEDs between 515nm and 560nm (515, 521, 530, 540, 550, 560nm) in color temperature of 6,500K and 3,500K. Various green monochromatic pc-LEDs were fabricated by capping a long-wave pass-filter (LWPF) on top of pc-LEDs to improve luminous efficacy and color purity. LWPF-capped green monochromatic pc-LED can address the drawback of green semiconductor-type III-V LED, such as low luminous efficacy in the region of green gap wavelength. Luminous efficacy and color rendering index (CRI) of multi-package white LEDs are compared with changing the driving current of individual LED in various multi-package white LEDs. This study provides a best combination of four-color multi-package white LEDs which has high luminous efficacy and good CRI.

  11. New technical approach using light-emitting diodes (LED) in neonatal vascular transillumination

    NASA Astrophysics Data System (ADS)

    de Riese, Johannes; Perez-Benavides, Fortunato

    2005-04-01

    A challenging and frequent problem in premature neonates is vascular access because of their very small blood vessels. The use of small tourniquets and direct light has been the traditional technique, but its limitations are most apparent in the extremely small child. In the last three years we have been using Light Emitting Diodes (Red light) to transiluminate the vascular structures in arms and legs in these small patients, this has improved significantly the visualization and access of the vascular structures in our smallest patients. Light Emitting Diodes (LED) are small and inexpensive devices that emit powerful "Cold light" capable to transiluminate a portion of an infant's extremity without burning the area of contact. The individual working on the IV access virtually sees through the tissues to place a catheter at the precise location of the extremity. According to an extensive search of the available literature, this LED application for vascular access in small newborns has not been described. In our physician's and neonatal nurse's hands, it is a simple and very efficient procedure for vascular access in the smallest patients. This paper presents an overview of vascular access technique using LED in the premature infant.

  12. Stacking multiple connecting functional materials in tandem organic light-emitting diodes

    PubMed Central

    Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong

    2017-01-01

    Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency. PMID:28225028

  13. Light-Emitting Diode Versus Sham in the Treatment of Plantar Fasciitis: A Randomized Trial

    PubMed Central

    Higgins, Paul E.; Hews, Katherine; Windon, Lowell; Chasse, Patrick

    2015-01-01

    Objective The purpose of this preliminary study was to compare the application of the light emitting diode (LED) to sham LED in the treatment of plantar fasciitis. Methods Eighteen subjects met the inclusion criteria and were randomly assigned into 2 groups: light emitting diode or sham LED. The subjects received either the LED at 12 J/cm2 or sham LED along 2 points of the plantar fascia. Subjects in both groups received a 10 minute transverse friction massage and participated in 4 plantar fascia stretching exercises. All subjects received a total of 6 treatments over 3 weeks. Progress was assessed using the lower extremity functional and analog pain scale. Results No significant difference was found between treatment groups (P = .845). There was a significant difference in pain and outcome scores over time within both groups (P < .35). Conclusion Among patients with plantar fasciitis, the use of LED did not result in greater improvement in function or pain compared with sham treatment. The findings suggest that manual intervention and passive stretching activities may have provided significant pain relief and improvement in functional outcome scores. PMID:26644784

  14. Emissive ZnO-graphene quantum dots for white-light-emitting diodes.

    PubMed

    Son, Dong Ick; Kwon, Byoung Wook; Park, Dong Hee; Seo, Won-Seon; Yi, Yeonjin; Angadi, Basavaraj; Lee, Chang-Lyoul; Choi, Won Kook

    2012-05-27

    Hybrid nanostructures combining inorganic materials and graphene are being developed for applications such as fuel cells, batteries, photovoltaics and sensors. However, the absence of a bandgap in graphene has restricted the electrical and optical characteristics of these hybrids, particularly their emissive properties. Here, we use a simple solution method to prepare emissive hybrid quantum dots consisting of a ZnO core wrapped in a shell of single-layer graphene. We then use these quantum dots to make a white-light-emitting diode with a brightness of 798 cd m(-2). The strain introduced by curvature opens an electronic bandgap of 250 meV in the graphene, and two additional blue emission peaks are observed in the luminescent spectrum of the quantum dot. Density functional theory calculations reveal that these additional peaks result from a splitting of the lowest unoccupied orbitals of the graphene into three orbitals with distinct energy levels. White emission is achieved by combining the quantum dots with other emissive materials in a multilayer light-emitting diode.

  15. Light emitting diode package element with internal meniscus for bubble free lens placement

    SciTech Connect

    Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen

    2010-09-28

    A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.

  16. Identifying Dosage Effect of Light-Emitting Diode Therapy on Muscular Fatigue in Quadriceps.

    PubMed

    Hemmings, Thomas J; Kendall, Kristina L; Dobson, John L

    2017-02-01

    Hemmings, TJ, Kendall, KL, and Dobson, JL. Identifying dosage effect of light-emitting diode therapy on muscular fatigue in quadriceps. J Strength Cond Res 31(2): 395-402, 2017-The purpose of this study was to compare the effects of various dosages of light-emitting diode therapy (LEDT) on muscle fatigue while performing a single-leg extension to exhaustion. A total of 34 recreationally resistance-trained athletes between the ages of 18 and 26 participated in 4 trials. Each trial included pre-exercise/postexercise blood lactate measurements and 2 sets of 3 maximal voluntary isometric contractions (MVICs), followed by LEDT on 6 points across the superficial quadriceps. Each randomized trial consisted of a placebo, 30, 60, or 120 seconds on each point on the quadriceps. Three minutes after LEDT, the participants performed an eccentric leg extension with 120% of MVIC until fatigue. There was significant increase in the number of repetitions performed between the placebo treatment and 60 seconds (p = 0.023), as well as placebo and 120 seconds (p = 0.004) of irradiation on each point. There were no significant differences in blood lactate levels between any of the 4 trials. In conclusion, LEDT had a positive effect on performance when irradiating 6 points on the superficial quadriceps for 60 and 120 seconds before an eccentric leg extension.

  17. Stacking multiple connecting functional materials in tandem organic light-emitting diodes.

    PubMed

    Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong

    2017-02-22

    Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one's ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency.

  18. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern.

    PubMed

    Han, Nam; Cuong, Tran Viet; Han, Min; Ryu, Beo Deul; Chandramohan, S; Park, Jong Bae; Kang, Ji Hye; Park, Young-Jae; Ko, Kang Bok; Kim, Hee Yun; Kim, Hyun Kyu; Ryu, Jae Hyoung; Katharria, Y S; Choi, Chel-Jong; Hong, Chang-Hee

    2013-01-01

    The future of solid-state lighting relies on how the performance parameters will be improved further for developing high-brightness light-emitting diodes. Eventually, heat removal is becoming a crucial issue because the requirement of high brightness necessitates high-operating current densities that would trigger more joule heating. Here we demonstrate that the embedded graphene oxide in a gallium nitride light-emitting diode alleviates the self-heating issues by virtue of its heat-spreading ability and reducing the thermal boundary resistance. The fabrication process involves the generation of scalable graphene oxide microscale patterns on a sapphire substrate, followed by its thermal reduction and epitaxial lateral overgrowth of gallium nitride in a metal-organic chemical vapour deposition system under one-step process. The device with embedded graphene oxide outperforms its conventional counterpart by emitting bright light with relatively low-junction temperature and thermal resistance. This facile strategy may enable integration of large-scale graphene into practical devices for effective heat removal.

  19. Properties of CoPt ferromagnetic layers for application in spin light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zdoroveyshchev, A. V.; Dorokhin, M. V.; Vikhrova, O. V.; Demina, P. B.; Kudrin, A. V.; Temiryazev, A. G.; Temiryazeva, M. P.

    2016-11-01

    The magnetic properties of Co45Pt55 films deposited by electron-beam evaporation in vacuum have been studied. The measurements of the Faraday and Kerr magnetooptical effects confirm the presence of the easy-magnetization axis perpendicular to the Co45Pt55 surface. It is shown that the perpendicular magnetic anisotropy and the residual magnetization are retained at 300 K for a long time. The magnetic characteristics of the Co45Pt55 layer surface have been studied by magnetic force microscopy, and "circular" mobile magnetic structures have been detected. The spin light-emitting diodes based on In(Ga)As/GaAs heteronanostructures with Co45Pt55 contact layers were fabricated. These diodes emit circularly-polarized light in the absence of an external magnetic field.

  20. 76 FR 64108 - In the Matter of Certain Light-Emitting Diodes and Products Containing Same; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Light-Emitting Diodes and Products Containing Same; Notice of Commission...-emitting diodes and products containing same by reason of infringement of certain claims of U.S. Patent...

  1. Clinical comparison between the bleaching efficacy of light-emitting diode and diode laser with sodium perborate.

    PubMed

    Koçak, Sibel; Koçak, Mustafa Murat; Sağlam, Baran Can

    2014-04-01

    The aim of this clinical study was to test the efficacy of a light-emitting diode (LED) light and a diode laser, when bleaching with sodium perborate. Thirty volunteers were selected to participate in the study. The patients were randomly divided into two groups. The initial colour of each tooth to be bleached was quantified with a spectrophotometer. In group A, sodium perborate and distilled water were mixed and placed into the pulp chamber, and the LED light was source applied. In group B, the same mixture was used, and the 810 nm diode laser was applied. The final colour of each tooth was quantified with the same spectrophotometer. Initial and final spectrophotometer values were recorded. Mann-Whitney U-test and Wicoxon tests were used to test differences between both groups. Both devices successfully whitened the teeth. No statistical difference was found between the efficacy of the LED light and the diode laser.

  2. Blue/white organic light-emitting diodes and passive matrix display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Lin; Jiang, Xue-Yin; Zhu, Wen-Qing; Xu, Shao-Hong

    2005-01-01

    The blue organic light emitting diodes (OLED) based on anthracene derivatives (ADN) doped with distryrylarylene derivatives (BCzVB and DSA-ph) were presented. The device of ADN doped with BCzVb shows high color purity (x=0.146, y=0.162) with maximum luminance 11600 cd/m2 (15V), current efficiency 2.8 cd/A, while the device of ADN doped with DSA-ph exhibits a sky blue with as high as efficiency 8.29 cd/A, both have a flat efficiency vs current density responses. A typical blue device of ADN doped with TBPe is used for comparison, which gives greenish blue and a stronger current-induced flyorescence quenching. Three kinds of White organic light emitting devices (WOLED) with different dopants and doping sites were constructed. The cell with a single-doped red dye in the light emitting layer (EML)(single-doped) and the cell with both red and blue dyes doped in a single EML (double-doped as well as the cell with red and blue dyes doped in EML and a green dye in another layer (triple-doped). The triple-doped cell shows much higher performance than other two cells: maximum luminance 21200cd/m2, 1026 cd/m2 at driving current 20mA/cm2, efficiency 6cd/A and a half lifetime over 22245h were reached. A passive display features 102x64 pixels with pixel size of 0.25x0.25mm2 pixel pitch 0.08mm, luminance 100 cd/m2 at driving duty 1/64, and power consumption of 0.6W was constructed.

  3. [Hygienic aspects of the use of light-emitting diode sources in the communal artificial lighting systems].

    PubMed

    Kuchma, V R; Teksheva, L M; Nadezhdin, D S; Zvezdina, I V

    2011-01-01

    To estimate the possibilities of using light-emitting diode energy-saving lighting in the residential and public houses, industrial buildings and structures is one of society's most important tasks. The concept of these researches was to study comparative psychophysiological and functional changes in the volunteers working under general lighting generated by light-emitting diodes and luminescent lamps. The results of the study permit one to recommend the use of light-emitting diodes in general lighting systems in the rooms wherein visual and mental load work is done, i.e. in the industrial, office, and public buildings intended for adult users for different purposes, as well as in rail transport objects.

  4. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes

    SciTech Connect

    Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep

    2013-01-28

    We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

  5. White organic light-emitting diodes based on electroplex from polyvinyl carbazole and carbazole oligomers blends

    NASA Astrophysics Data System (ADS)

    Chen, Fei-Peng; Xu, Bin; Zhao, Zu-Jin; Tian, Wen-Jing; Lü, Ping; Im, Chan

    2010-03-01

    White organic light-emitting diodes with a blue emitting material fluorene-centred ethylene-liked carbazole oligomer (Cz6F) doped into polyvinyl carbazole (PVK) as the single light-emitting layer are reported. The optical properties of Cz6F, PVK, and PVK:Cz6F blends are studied. Single and double layer devices are fabricated by using PVK: Cz6F blends, and the device with the configuration of indium tin oxide (ITO)/PVK:Cz6F/tris(8-hydroxyquinolinate)aluminium (Alq3)/LiF/A1 exhibits white light emission with Commission Internationale de l'Éclairage chromaticity coordinates of (0.30, 0.33) and a brightness of 402 cd/m2. The investigation reveals that the white light is composed of a blue-green emission originating from the excimer of Cz6F molecules and a red emission from an electroplex from the PVK:Cz6F blend films.

  6. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-01

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N'-diphenyl-N,N'-bis(1-naphthyl)-[1,1'-biphthyl]-4,4'-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  7. Low temperature solution process-based defect-induced orange-red light emitting diode

    PubMed Central

    Biswas, Pranab; Baek, Sung-Doo; Hoon Lee, Sang; Park, Ji-Hyeon; Jeong Lee, Su; Il Lee, Tae; Myoung, Jae-Min

    2015-01-01

    We report low-temperature solution-processed p-CuO nanorods (NRs)/n-ZnO NRs heterojunction light emitting diode (LED), exploiting the native point defects of ZnO NRs. ZnO NRs were synthesized at 90 °C by using hydrothermal method while CuO NRs were synthesized at 100 °C by using microwave reaction system. The electrical properties of newly synthesized CuO NRs revealed a promising p-type nature with a hole concentration of 9.64 × 1018 cm−3. The current-voltage characteristic of the heterojunction showed a significantly high rectification ratio of 105 at 4 V with a stable current flow. A broad orange-red emission was obtained from the forward biased LED with a major peak at 610 nm which was attributed to the electron transition from interstitial zinc to interstitial oxygen point defects in ZnO. A minor shoulder peak was also observed at 710 nm, corresponding to red emission which was ascribed to the transition from conduction band of ZnO to oxygen vacancies in ZnO lattice. This study demonstrates a significant progress toward oxide materials based, defect-induced light emitting device with low-cost, low-temperature methods. PMID:26648420

  8. ITO-free large-area organic light-emitting diodes with an integrated metal grid.

    PubMed

    Choi, Seungkeun; Kim, Sung-Jin; Fuentes-Hernandez, Canek; Kippelen, Bernard

    2011-07-04

    We report on ITO-free large-area organic light-emitting diodes (OLEDs) fabricated on glass substrates comprising α-NPD as a hole transport layer (HTL) and coevaporated CBP:Ir(ppy)(3) as the emission layer. Indium-tin-oxide (ITO) was replaced with a conductive polymer electrode and an electroplated thick metal grid was used to improve the homogeneity of the potential distribution over the transparent polymer electrode. An electrical model of a metal grid integrated OLED shows the benefits of the use of metal grids in terms of improving the uniformity of the light emitted as the area of the OLED increases as well as the conductivity of the transparent electrode decreases. By integrating metal grids with polymer electrodes, the luminance increases more than 24% at 6 V and 45% at 7 V compared to the polymer electrode devices without a metal grid. This implies that a lower voltage can be applied to achieve the same luminance, hence lowering the power consumption. Furthermore, metal grid integrated OLEDs exhibited less variation in light emission compared to devices without a metal grid.

  9. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    SciTech Connect

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-07

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N′-diphenyl-N,N′-bis(1-naphthyl)-[1,1′-biphthyl]-4,4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  10. Enhanced Optical and Electrical Properties of Polymer-Assisted All-Inorganic Perovskites for Light-Emitting Diodes.

    PubMed

    Ling, Yichuan; Tian, Yu; Wang, Xi; Wang, Jamie C; Knox, Javon M; Perez-Orive, Fernando; Du, Yijun; Tan, Lei; Hanson, Kenneth; Ma, Biwu; Gao, Hanwei

    2016-10-01

    Highly bright light-emitting diodes based on solution-processed all-inorganic perovskite thin film are demonstrated. The cesium lead bromide (CsPbBr3 ) created using a new poly(ethylene oxide)-additive spin-coating method exhibits photoluminescence quantum yield up to 60% and excellent uniformity of electrical current distribution. Using the smooth CsPbBr3 films as emitting layers, green perovskite-based light-emitting diodes (PeLEDs) exhibit electroluminescent brightness and efficiency above 53 000 cd m(-2) and 4%: a new benchmark of device performance for all-inorganic PeLEDs.

  11. Optical logic inverter and AND elements using laser or light-emitting diodes and photodetectors in a bistable system.

    PubMed

    Okumura, K; Ogawa, Y; Ito, H; Inaba, H

    1984-11-01

    Fundamental optical digital data-processing functions of optical inverter and optical AND elements are proposed and demonstrated experimentally for the first reported time using light-emitting diodes and a photodetector in a hybrid optoelectronic bistable system. The inherent simplicity of these bistable optical devices that use either a laser or a light-emitting diode should make it possible to realize these optical logic functions by monolithic optoelectronic integration. Specific integration schemes are also proposed, and future interesting and useful applications are discussed.

  12. Feasibility of Ultraviolet Light Emitting Diodes as an Alternative Light Source for Photocatalysis

    NASA Technical Reports Server (NTRS)

    Levine, Langanf H.; Richards, Jeffrey T.; Soler, Robert; Maxik, Fred; Coutts, Janelle; Wheeler, Raymond M.

    2011-01-01

    The objective of this study was to determine whether ultraviolet light emitting diodes (UV-LEDs) could serve as an alternative photon source efficiently for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp in a Silica-Titania Composite (STC) packed bed annular reactor. Lighting and thermal properties were characterized to assess the uniformity and total irradiant output. A forward current of (I(sub F)) 100 mA delivered an average irradiance of 4.0 m W cm(exp -2), which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED- and BLB-reactors were tested for the oxidization of 50 ppmv ethanol in a continuous flow-through mode with 0.94 sec space time. At the same irradiance, the UV-A LED reactor resulted in a lower PCO rate constant than the UV-A BLB reactor (19.8 vs. 28.6 nM CO2 sec-I), and consequently lower ethanol removal (80% vs. 91%) and mineralization efficiency (28% vs. 44%). Ethanol mineralization increased in direct proportion to the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED- reactor could be traced to uneven irradiance over the photocatalyst, leaving a portion of the catalyst was under-irradiated. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off' feature for periodic irradiation. Nevertheless, the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB. These results demonstrated that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

  13. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  14. A hole accelerator for InGaN/GaN light-emitting diodes

    SciTech Connect

    Zhang, Zi-Hui; Liu, Wei; Tan, Swee Tiam; Ji, Yun; Wang, Liancheng; Zhu, Binbin; Zhang, Yiping; Lu, Shunpeng; Zhang, Xueliang; Hasanov, Namig; Sun, Xiao Wei E-mail: VOLKAN@stanfordalumni.org; Demir, Hilmi Volkan E-mail: VOLKAN@stanfordalumni.org

    2014-10-13

    The quantum efficiency of InGaN/GaN light-emitting diodes (LEDs) has been significantly limited by the insufficient hole injection, and this is caused by the inefficient p-type doping and the low hole mobility. The low hole mobility makes the holes less energetic, which hinders the hole injection into the multiple quantum wells (MQWs) especially when a p-type AlGaN electron blocking layer (EBL) is adopted. In this work, we report a hole accelerator to accelerate the holes so that the holes can obtain adequate kinetic energy, travel across the p-type EBL, and then enter the MQWs more efficiently and smoothly. In addition to the numerical study, the effectiveness of the hole accelerator is experimentally shown through achieving improved optical output power and reduced efficiency droop for the proposed InGaN/GaN LED.

  15. 3D thermal analysis of rectangular microscale inorganic light-emitting diodes in a pulsed operation

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Bian, Z.; Li, Y.; Xing, Y.; Song, J.

    2016-10-01

    Microscale inorganic light-emitting diodes (µ-ILEDs) have attracted much attention due to their excellent performance in biointegrated applications such as optogenetics. The thermal behaviors of µ-ILEDs are critically important since a certain temperature increase may degrade the LED performance and cause tissue lesion. The µ-ILEDs in a pulsed operation offer an advantage in thermal management. In this paper, a 3D analytic model, as validated by finite element analysis, is developed to study the thermal response of rectangular µ-ILEDs in a pulsed operation. A scaling law for the maximum normalized temperature increase of rectangular µ-ILEDs in terms of non-dimensional parameters is established. The influences of geometric (i.e. shape factor) and loading parameters (e.g. duty cycle and period) on the temperature increase are systematically investigated. These results are very helpful in designing µ-ILEDs by providing guidelines to avoid adverse thermal effects.

  16. Selective Patterning of Organic Light-Emitting Diodes by Physical Vapor Deposition of Photosensitive Materials

    NASA Astrophysics Data System (ADS)

    Muroyama, Masakazu; Saito, Ichiro; Yokokura, Seiji; Tanaka, Kuniaki; Usui, Hiroaki

    2009-04-01

    A novel method of patterning polymeric thin films by the vapor deposition of a photosensitive layer followed by photopolymerization and development was proposed. This method was applied to the patterning of the emissive layer (EML) of an organic light-emitting diode (OLED). For the hole transport layer (HTL), N,N,N'-triphenyl-N'-(4-vinylphenyl)-biphenyl-4,4'-diamine (vTPD) and a zinc acrylate (ZnAc) crosslinker were coevaporated. The film was polymerized by postdeposition annealing to yield a polymeric HTL with a high resistance to organic solvents. On this HTL, the photosensitive EML was prepared by coevaporating a 9H-carbazole-9-ethylmethacrylate (CEMA) host material and 4-(dimethylamino)benzophenone (DABP) photoinitiator. UV irradiation on the EML through a photomask initiated radical polymerization, leaving a negative pattern of the irradiated region after immersion in tetrahydrofuran (THF). The photopatterning process was found to cause no damage to the film morphology or the device characteristics.

  17. Nitride deep-ultraviolet light-emitting diodes with microlens array

    NASA Astrophysics Data System (ADS)

    Khizar, M.; Fan, Z. Y.; Kim, K. H.; Lin, J. Y.; Jiang, H. X.

    2005-04-01

    We report on the fabrication of 280-nm AlGaN-based deep-ultraviolet light-emitting diodes (UV LEDs) on sapphire substrates with an integrated microlens array. Microlenses with a diameter of 12μm were fabricated on the sapphire substrate by resist thermal reflow and plasma dry etching. LED devices were flip-chip bonded on high thermal conductive AlN ceramic submounts to improve the thermal dissipation, and the emitted UV light was extracted through the sapphire substrates. With the integrated microlens array, a 55% enhancement in the output power at 20-mA dc driving was achieved compared with the same LED without microlens. The light extraction enhancement is the result of the reduced internal reflections of the light caused by the microlens surface profile.

  18. Enhanced light extraction in III-nitride ultraviolet photonic crystal light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shakya, J.; Kim, K. H.; Lin, J. Y.; Jiang, H. X.

    2004-07-01

    III-nitride photonic crystal (PC) ultraviolet (UV) light-emitting diodes (LEDs) were fabricated. Triangular arrays of the PCs with different diameters/periodicities were patterned using electron-beam lithography and inductively coupled plasma dry etching. The optical power output of LEDs was enhanced by a factor of 2.5 due to PC formation. It was observed that the optical enhancement factor depends strongly on the lattice constant and hole size of the PCs. The achievement of nitride PCs is expected to benefit many applications of III-nitride optoelectronics, particularly for the improvement of extraction efficiency in III-nitride deep-UV emitters (λ <340nm), which are crucial for many important applications, but presently have a very low quantum efficiency.

  19. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates.

    PubMed

    Kim, Rak-Hwan; Bae, Myung-Ho; Kim, Dae Gon; Cheng, Huanyu; Kim, Bong Hoon; Kim, Dae-Hyeong; Li, Ming; Wu, Jian; Du, Frank; Kim, Hoon-Sik; Kim, Stanley; Estrada, David; Hong, Suck Won; Huang, Yonggang; Pop, Eric; Rogers, John A

    2011-09-14

    This paper describes the fabrication and design principles for using transparent graphene interconnects in stretchable arrays of microscale inorganic light emitting diodes (LEDs) on rubber substrates. We demonstrate several appealing properties of graphene for this purpose, including its ability to spontaneously conform to significant surface topography, in a manner that yields effective contacts even to deep, recessed device regions. Mechanics modeling reveals the fundamental aspects of this process, as well as the use of the same layers of graphene for interconnects designed to accommodate strains of 100% or more, in a completely reversible fashion. These attributes are compatible with conventional thin film processing and can yield high-performance devices in transparent layouts. Graphene interconnects possess attractive features for both existing and emerging applications of LEDs in information display, biomedical systems, and other environments.

  20. Promotion of neural sprouting using low-level green light-emitting diode phototherapy

    NASA Astrophysics Data System (ADS)

    Alon, Noa; Duadi, Hamootal; Cohen, Ortal; Samet, Tamar; Zilony, Neta; Schori, Hadas; Shefi, Orit; Zalevsky, Zeev

    2015-02-01

    We irradiated neuroblastoma SH-SY5Y cell line with low-level light-emitting diode (LED) illumination at a visible wavelength of 520 nm (green) and intensity of 100 mW/cm2. We captured and analyzed the cell morphology before LED treatment, immediately after, and 12 and 24 h after treatment. Our study demonstrated that LED illumination increases the amount of sprouting dendrites in comparison to the control untreated cells. This treatment also resulted in more elongated cells after treatment in comparison to the control cells and higher levels of expression of a differentiation related gene. This result is a good indication that the proposed method could serve in phototherapy treatment for increasing sprouting and enhancing neural network formation.

  1. Color tunable organic light-emitting diodes by using europium organometallic complex

    NASA Astrophysics Data System (ADS)

    Liang, C. J.; Choy, Wallace C. H.

    2006-12-01

    Using the rare-earth special feature of a sharp emission spectrum, voltage-controlled continuous color tuning of organic light-emitting diodes is achieved. Europium(dibenzoylmethanato)3(bathophenanthroline) is used as the strategic starting point close to the red corner of the Commission International de I'Eclairage chromaticity diagram for a wide color tuning. The end point and path of the color tuning can be engineered by doping the hole-transport emitting layer with dyes. The mechanisms of color tuning have been investigated and explained by the efficiency reduction of the europium complex and the extension of carrier recombination zone with driving voltage. The effect of exciplex on the color tuning is also studied.

  2. Luminous efficiency enhancement in blue phosphorescent organic light-emitting diodes with an electron confinement layers

    NASA Astrophysics Data System (ADS)

    Kang, Jin Sung; Yoon, Ju-An; Yoo, Seung Il; Kim, Jin Wook; Yi, Seungjun; Zhu, Furong; Cheah, Kok Wai; Kim, Woo Young

    2015-09-01

    This study reports the results of blue phosphorescent organic light emitting diodes (PHOLEDs) employing an electron confinement layer (ECL), tris-(phenylpyrazole)iridium (Ir(ppz)3) and a hole confinement layer (HCl), 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene (TPBi). The electrical and optical characteristics of PHOLEDs with different emissive layers, including current density, luminance, and luminous efficiency, were analyzed. The thickness of the individual emissive layer was optimized, however, and the total thickness of the emitting region was kept constant at 300 Å. This work reveals that the effective electron confinement, due to a large energy level offset between the electron confinement and emitting layers, helps to improve hole-electron current balance in the emitting region. The maximum external quantum efficiency of 23.40% at 1500 cd/m2 was achieved for PHOLEDs with an ECL, which is 60% higher than the structural identical control device without ECL.

  3. Efficient nondoped white organic light-emitting diodes based on electromers

    NASA Astrophysics Data System (ADS)

    Xu, Xinjun; Yu, Gui; Di, Chong'an; Liu, Yunqi; Shao, Kefeng; Yang, Lianming; Lu, Ping

    2006-09-01

    The authors report excellent white organic light-emitting diodes (WOLEDs) made of 9,9bis[4-(di-p-tolyl)aminophenyl]-2,7-bis(diphenylamino)fluorene (TADPF) or 9,9-bis[4-(di-p-tolyl)aminophenyl]-2,7-bis(9-carbazolyl)fluorene (TAKF). The superposition of a yellow emission coming from the TADPF or TAKF electromer and a blue emission originating from bis(2-(2-hydroxyphenyl)benzothiazolate)zinc gives rise to a pure white-light emission. The multilayer device using TADPF shows a maximum luminance of 5123cd/m2, a current efficiency of 2.8cd/A, and Commission Internationale d'Eclairage chromaticity coordinates of (0.33, 0.33). This result is the optimal for WOLEDs based on electromers so far reported.

  4. Plasmonic Perovskite Light-Emitting Diodes Based on the Ag-CsPbBr3 System.

    PubMed

    Zhang, Xiaoli; Xu, Bing; Wang, Weigao; Liu, Sheng; Zheng, Yuanjin; Chen, Shuming; Wang, Kai; Sun, Xiao Wei

    2017-02-08

    The enhanced luminescence through semiconductor-metal interactions suggests the great potential of device performance improvement via properly tailored plasmonic nanostructures. Surface plasmon enhanced electroluminescence in an all-inorganic CsPbBr3 perovskite light-emitting diode (LED) is fabricated by decorating the hole transport layer with the synthesized Ag nanorods. An increase of 42% and 43.3% in the luminance and efficiency is demonstrated for devices incorporated with Ag nanorods. The device with Ag introduction indicates identical optoelectronic properties to the controlled device without Ag nanostructures. The increased spontaneous emission rate caused by the Ag-induced plasmonic near-field effect is responsible for the performance enhancement. Therefore, the plasmonic Ag-CsPbBr3 nanostructure studied here provides a novel strategy on the road to the future development of perovskite LEDs.

  5. White organic light-emitting diodes with 4 nm metal electrode

    SciTech Connect

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Reineke, Sebastian; Gather, Malte C.

    2015-10-19

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  6. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    SciTech Connect

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng E-mail: lsliao@suda.edu.cn

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  7. Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence

    SciTech Connect

    Pozina, Galia; Ciechonski, Rafal; Bi, Zhaoxia; Samuelson, Lars; Monemar, Bo

    2015-12-21

    Today's energy saving solutions for general illumination rely on efficient white light emitting diodes (LEDs). However, the output efficiency droop experienced in InGaN based LEDs with increasing current injection is a serious limitation factor for future development of bright white LEDs. We show using cathodoluminescence (CL) spatial mapping at different electron beam currents that threading dislocations are active as nonradiative recombination centers only at high injection conditions. At low current, the dislocations are inactive in carrier recombination due to local potentials, but these potentials are screened by carriers at higher injection levels. In CL images, this corresponds to the increase of the dark contrast around dislocations with the injection (excitation) density and can be linked with droop related to the threading dislocations. Our data indicate that reduction of droop in the future efficient white LED can be achieved via a drastic reduction of the dislocation density by using, for example, bulk native substrates.

  8. Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode

    SciTech Connect

    Weis, Martin; Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2015-04-21

    Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the device performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.

  9. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    PubMed Central

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments. PMID:28059148

  10. Very low color-temperature organic light-emitting diodes for lighting at night

    NASA Astrophysics Data System (ADS)

    Jou, Jwo-Huei; Tang, Ming-Chun; Chen, Pin-Chu; Chen, Szu-Hao; Shen, Shih-Ming; Chen, Chien-Chih; Wang, Ching-Chiun; Chen, Chien-Tien

    2011-12-01

    Light sources with low color temperature (CT) are essential for their markedly less suppression effect on the secretion of melatonin, and high power efficiency is crucial for energy-saving. To provide visual comfort, the light source should also have a reasonably high color rendering index (CRI). In this report, we demonstrate the design and fabrication of low CT and high efficiency organic light-emitting diodes. The best resultant device exhibits a CT of 1,880 K, much lower than that of incandescent bulbs (2,000-2,500 K) and even as low as that of candles, (1,800-2,000 K), a beyond theoretical limit external quantum efficiency 22.7 %, and 36.0 lm/W at 100 cd/m 2. The high efficiency of the proposed device may be attributed to its interlayer, which helps effectively distribute the entering carriers into the available recombination zones.

  11. White organic light-emitting diodes for emotion solid-state lighting.

    PubMed

    Seo, Ji Hoon; Lee, Seok Jae; Koo, Ja Ryong; Shin, Hyun Su; Lee, Kum Hee; Yoon, Seung Soo; Kim, Young Kwan

    2012-05-01

    The authors have demonstrated white organic light-emitting diodes for emotion solid-state lighting (ESSL) by using hole modulating layer (HML), N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolyl-amino)-phenyl]-biphenyl-4,4'-diamine and N,N'-bis-(1-naphyl)-N,N'-diphenyl-1,1'-biphenyl-4, 4'-diamine, and mixed spacer (MS), 4,4',4"-tris(N-carbazolyl)-triphenylamine and {9,9-dimethyl-7-[10-(naphthalen-2-yl)anthracen-9-yl]-9H-fluoren-2-yl}triphenylsilane, respectively. The HML and MS were used for unbalance of holes and electrons. The ESSL showed various white light chromaticities of Commission Internationale de l'Eclairage coordinates from (0.46,0.42) as warm white emission to (0.29, 0.36) as cold white emission.

  12. Study on constant-step stress accelerated life tests in white organic light-emitting diodes.

    PubMed

    Zhang, J P; Liu, C; Chen, X; Cheng, G L; Zhou, A X

    2014-11-01

    In order to obtain reliability information for a white organic light-emitting diode (OLED), two constant and one step stress tests were conducted with its working current increased. The Weibull function was applied to describe the OLED life distribution, and the maximum likelihood estimation (MLE) and its iterative flow chart were used to calculate shape and scale parameters. Furthermore, the accelerated life equation was determined using the least squares method, a Kolmogorov-Smirnov test was performed to assess if the white OLED life follows a Weibull distribution, and self-developed software was used to predict the average and the median lifetimes of the OLED. The numerical results indicate that white OLED life conforms to a Weibull distribution, and that the accelerated life equation completely satisfies the inverse power law. The estimated life of a white OLED may provide significant guidelines for its manufacturers and customers.

  13. Is it viable to improve light output efficiency by nano-light-emitting diodes?

    SciTech Connect

    Wang, Chao-Hung; Huang, Yu-Wen; Wu, Shang-En; Liu, Chuan-Pu

    2013-12-02

    Nanopillar arrays with InGaN/GaN multiple-quantum-disks (MQDs) are fabricated by focused-ion-beam milling with surface damage layer removed by KOH wet etching. Nano-light-emitting diodes (Nano-LEDs) made of the InGaN/GaN MQD nanopillars are found to have 19.49% less output power than that of a conventional LED. The reasons are analyzed in detail and considering their current-voltage and electroluminescence characteristics, internal quantum efficiency, external quantum efficiency, light extraction, and wall-plug efficiency. Our results suggest that nanopillar-LED can outperform if the density can be increased to 2.81 × 10{sup 9} cm{sup −2} with the size unchanged or the size can be increased to 854.4 nm with the density unchanged.

  14. Color three-dimensional display with omnidirectional view based on a light-emitting diode projector.

    PubMed

    Yan, Caijie; Liu, Xu; Li, Haifeng; Xia, Xinxing; Lu, Haixia; Zheng, Wenting

    2009-08-01

    A three-dimensional (3D) color display with 360 degrees omnidirectional views is developed by use of a high frame rate digital micromirror device projector and three-color light-emitting diodes as the light source. The high-speed projector can project a series of color images on a rotating anisotropic diffusing mirror that controls the reflective light in a designed angular region. Observers around the display scene can watch autostereoscopic views from the ominidirectional 360 deg view around the 3D display. The vivid 3D scene can be obtained with perfect color effect and correct parallax, projection effect, and occlusion. The principle of the omnidirectional view 3D color display is analyzed in detail and experimental results of a 3D color object are presented.

  15. Long-term stability improvement of light-emitting diode using highly transparent graphene oxide paste.

    PubMed

    Lee, Seungae; Kim, Yun Ki; Jang, Jyongsik

    2016-10-14

    A highly transparent paste adhesive is successfully fabricated by introducing graphene oxide (GO) to silicone paste adhesive by using a solvent-exchange method. The GO incorporated in the paste adhesive has a significant role in improving thermal conductivity, transparency and adhesive strength. The GO-embedded silicone paste is applied as a die-attach paste to light-emitting diodes (LEDs) in order to enhance the optical quality of the LEDs. The presence of GO in the die-attach layer of the LEDs gives rise to the enhancement of luminous intensity, effective heat dissipation, improvement of moisture barrier property as well as high adhesive strength. Consequently, the LEDs with the GO-embedded die-attach paste exhibit enhanced long-term stability. This novel approach provides a feasible and effective strategy for improving LED performance.

  16. Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Pozina, Galia; Ciechonski, Rafal; Bi, Zhaoxia; Samuelson, Lars; Monemar, Bo

    2015-12-01

    Today's energy saving solutions for general illumination rely on efficient white light emitting diodes (LEDs). However, the output efficiency droop experienced in InGaN based LEDs with increasing current injection is a serious limitation factor for future development of bright white LEDs. We show using cathodoluminescence (CL) spatial mapping at different electron beam currents that threading dislocations are active as nonradiative recombination centers only at high injection conditions. At low current, the dislocations are inactive in carrier recombination due to local potentials, but these potentials are screened by carriers at higher injection levels. In CL images, this corresponds to the increase of the dark contrast around dislocations with the injection (excitation) density and can be linked with droop related to the threading dislocations. Our data indicate that reduction of droop in the future efficient white LED can be achieved via a drastic reduction of the dislocation density by using, for example, bulk native substrates.

  17. Dichromatic color tuning with InGaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Fellows, Natalie N.; Sato, Hitoshi; Lin, You-da; Chung, Roy B.; DenBaars, Steven P.; Nakamura, Shuji

    2008-09-01

    Color tuning GaN based light-emitting diodes (LEDs) both electrically and optically was investigated. Color mixing of two LED dies, one nonpolar (λp=467 nm) and one semipolar (λp=574 nm), produced white light. Electrically, the correct current was supplied to each die in order to change its correlated color temperature and Commission Internationale de l'Eclairage (CIE) chromaticity coordinates from 3287 K and (0.425, 0.413) to 7242 K and (0.303, 0.315). The optical polarization anisotropy inherent in nonpolar and semipolar wurtzite GaN allowed color tuning optically with the use of a polarizer. Several regions of the CIE diagram were explored using this method and are discussed.

  18. Phosphor-Free, Color-Tunable Monolithic InGaN Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Li, Hongjian; Li, Panpan; Kang, Junjie; Li, Zhi; Li, Zhicong; Li, Jing; Yi, Xiaoyan; Wang, Guohong

    2013-10-01

    We have demonstrated phosphor-free color-tunable monolithic GaN-based light-emitting diodes (LEDs) by inserting an ultrathin 1-nm-thick InGaN shallow quantum well (QW) between deep InGaN QWs and GaN barriers. Without using any phosphors, this monolithic LED chip can be tuned to realize wide-range multicolor emissions from red to yellow under different injection currents. In partical, when the injection current reaches an upper level above 100 mA, the LEDs will achieve white emission with a very high color rending index (CRI) of 85.6. This color-tunable characteristic is attributed to the carrier redistribution in the shallow/deep QWs and the energy band filling effect as well.

  19. Tunability of InGaN/GaN quantum well light emitting diodes through current

    NASA Astrophysics Data System (ADS)

    Biswas, Dipankar; Panda, Siddhartha

    2013-07-01

    In the recent years, InGaN/GaN quantum well (QW) light emitting diodes (LEDs) have gathered much importance through the introduction of white LEDs and dual wavelength LEDs. However, the continuous tunability of InGaN/GaN QW LEDs has not been well addressed or discussed. In this paper, we introduce the tunability of an InGaN/GaN QW LED having a well width of 4 nm and In mole fraction of 0.3. The results, obtained from self-consistent solutions of the Schrödinger and Poisson equations, show that the transition energy of the LED may be continuously tuned by the device current. A prominent nonlinearity of the transition energy with the device current is generated, which should be of interest to the research workers in the field of optoelectronics.

  20. Phosphorescent white organic light-emitting diodes by electron transporting layer engineering.

    PubMed

    Lee, Seok Jae; Koo, Ja Ryong; Lee, Dong Hyung; Lee, Ho Won; Lee, Kum Hee; Yoon, Seung Soo; Kim, Young Kwan

    2014-10-01

    The authors describe the fabrication of white organic light-emitting diodes (WOLEDs) with dual electron transporting layers (D-ETL) using 2,9-dimethyl-4,7-diphenyl-1,10-phenanhroline/ 4,7-diphenyl-1,10-phenanthroline (BPhen) and bis-(2-methyl-8-quinolinolate)-4-(phenylphenolato) aluminum/BPhen. Stepwise D-ETL easily transports electrons easily to the emitting layer and reduces the leakage of electrons. Therefore, WOLEDs with D-ETL show higher external quantum efficiency (EQE) when compared to a control WOLED with a single ETL device. The optimized WOLEDs showed a peak EQE of 13.0%, luminous efficiency of 27.4 cd/A, and Commission Internationale de L'Eclairage coordinates of (0.40, 0.39) at 1000 cd/m2.

  1. Quantum cascade light emitting diodes based on type-2 quantum wells

    NASA Technical Reports Server (NTRS)

    Lin, C. H.; Yang, R. Q.; Zhang, D.; Murry, S. J.; Pei, S. S.; Allerman, A. A.; Kurtz, S. R.

    1997-01-01

    The authors have demonstrated room-temperature CW operation of type-2 quantum cascade (QC) light emitting diodes at 4.2 (micro)m using InAs/InGaSb/InAlSb type-2 quantum wells. The type-2 QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-2 quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 (micro)W at 80 K, and 140 (micro)W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.

  2. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    SciTech Connect

    Mazzeo, M.; Genco, A.; Gambino, S.; Ballarini, D.; Mangione, F.; Sanvitto, D.; Di Stefano, O.; Patanè, S.; Savasta, S.; Gigli, G.

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  3. Pulsed operation of high-power light emitting diodes for imaging flow velocimetry

    NASA Astrophysics Data System (ADS)

    Willert, C.; Stasicki, B.; Klinner, J.; Moessner, S.

    2010-07-01

    High-powered light emitting diodes (LED) are investigated for possible uses as light sources in flow diagnostics, in particular, as an alternative to laser-based illumination in particle imaging flow velocimetry in side-scatter imaging arrangements. Recent developments in solid state illumination resulted in mass-produced LEDs that provide average radiant power in excess of 10 W. By operating these LEDs with short duration, pulsed currents that are considerably beyond their continuous current damage threshold, light pulses can be generated that are sufficient to illuminate and image micron-sized particles in flow velocimetry. Time-resolved PIV measurements in water at a framing rate of 2kHz are presented. The feasibility of LED-based PIV measurements in air is also demonstrated.

  4. Numerical study of light-emitting diode with injected current modulated by designed electrode

    NASA Astrophysics Data System (ADS)

    Nishidate, Yohei; Khmyrova, Irina; Kholopova, Julia; Polushkin, Evgeny; Shevchenko, Bogdan; Shapoval, Sergei

    2016-10-01

    Numerical model and procedure are developed to study the output optical performance of light-emitting diode (LED) in which injected current is spatially modulated by mesh-like top metal electrode. The mesh strips have rectangular crossection as in realistic LEDs. The finite element method is applied to obtain three-dimensional distributions of electric potential which are incorporated in the equations for total output power. The numerical procedure is applied to evaluate LED's total output optical power at different geometric parameters of the electrode: the mesh pitch, the width, and the height of the top mesh-like electrodes. Modeling results demonstrate the effect of mesh pitch variation on the output optical power. In particular, at a certain value of the mesh pitch maximum total output optical power is revealed. The presented approach can be used in the optimization of the LEDs with designed metal electrodes.

  5. Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Sankaranarayanan, S.; Khachariya, D.; Nadar, M. B.; Ganguly, S.; Saha, D.

    2016-07-01

    We demonstrate a method for nanowire formation by natural selection during wet anisotropic chemical etching in boiling phosphoric acid. Nanowires of sub-10 nm lateral dimensions and lengths of 700 nm or more are naturally formed during the wet etching due to the convergence of the nearby crystallographic hexagonal etch pits. These nanowires are site controlled when formed in augmentation with dry etching. Temperature and power dependent photoluminescence characterizations confirm excitonic transitions up to room temperature. The exciton confinement is enhanced by using two-dimensional confinement whereby enforcing greater overlap of the electron-hole wave-functions. The surviving nanowires have less defects and a small temperature variation of the output electroluminescent light. We have observed superluminescent behaviour of the light emitting diodes formed on these nanowires. There is no observable efficiency roll off for current densities up to 400 A/cm2.

  6. Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes.

    PubMed

    de Sanctis, Daniele; Zubieta, Chloe; Felisaz, Franck; Caserotto, Hugo; Nanao, Max H

    2016-03-01

    Exposure to X-rays, high-intensity visible light or ultraviolet radiation results in alterations to protein structure such as the breakage of disulfide bonds, the loss of electron density at electron-rich centres and the movement of side chains. These specific changes can be exploited in order to obtain phase information. Here, a case study using insulin to illustrate each step of the radiation-damage-induced phasing (RIP) method is presented. Unlike a traditional X-ray-induced damage step, specific damage is introduced via ultraviolet light-emitting diodes (UV-LEDs). In contrast to UV lasers, UV-LEDs have the advantages of small size, low cost and relative ease of use.

  7. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes.

    PubMed

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F

    2017-01-01

      This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty cycle was positively correlated with the first-order rate constants (k) for both chemicals but, interestingly, negatively correlated with the normalized first-order rate constants (k/duty cycle). Synergistic effects of both hydraulic mixing and LED duty cycle were manifested as novel oscillations in the effluent contaminant concentration. Further, LED output and efficiency were dependent upon duty cycle and less efficient over time perhaps due to heating effects on semiconductor performance.

  8. Monolithic integration of nitride light emitting diodes and photodetectors for bi-directional optical communication.

    PubMed

    Jiang, Zhenyu; Atalla, Mahmoud R M; You, Guanjun; Wang, Li; Li, Xiaoyun; Liu, Jie; Elahi, Asim M; Wei, Lai; Xu, Jian

    2014-10-01

    Design and fabrication of monolithically integrated III-nitride visible light-emitting-diodes (LEDs) and ultraviolet Schottky barrier-photodetectors (SB-PDs) have been proposed and demonstrated. Responsivity up to 0.2  AW(-1) at 365 nm for GaN SB-PDs has been achieved. It is shown that those UV SB-PDs were capable of sensitive UV light detection down to 7.16×10(-4)  W/cm2 at 365 nm, whereas simultaneous operation of on-chip blue LEDs has produced negligible crosstalk at practical illumination brightness. Monolithically integrated LEDs and SB-PDs can function as transmitters to emit visible light signals, and as receivers to analyze incoming UV signals, respectively; this offers the potential of using such devices for bi-directional optical wireless communication applications.

  9. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    SciTech Connect

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob

    2015-07-27

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq){sub 2}(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq){sub 2}(acac). The lifetime of device (t{sub 95}: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  10. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates.

    PubMed

    Chen, Shuming; Kwok, Hoi Sing

    2010-01-04

    Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost-effective method to rough the substrates and hence to scatter the light. By simply sand-blasting the edges and back-side surface of the glass substrates, a 20% improvement of forward efficiency has been demonstrated. Moreover, due to scattering effect, a constant color over all viewing angles and uniform light pattern with Lambertian distribution has been obtained. This simple and cost-effective method may be suitable for mass production of large-area OLEDs for lighting applications.

  11. Modeling of organic light emitting diodes: from molecular to device properties (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Andrienko, Denis; Kordt, Pascal; May, Falk; Badinski, Alexander; Lennartz, Christian

    2016-09-01

    We will review the progress in modeling of charge transport in disordered organic semiconductors on various length-scales, from atomistic to macroscopic. This includes evaluation of charge transfer rates from first principles, parametrization of coarse-grained lattice and off-lattice models, and solving the master and drift-diffusion equations. Special attention is paid to linking the length-scales and improving the efficiency of the methods. All techniques will be illustrated on an amorphous organic semiconductor, DPBIC, a hole conductor and electron blocker used in state of the art organic light emitting diodes (OLEDs). The outlined multiscale scheme can be used to predict OLED properties without fitting parameters, starting from chemical structures of compounds.

  12. Characteristics of blue organic light emitting diodes with different thick emitting layers

    NASA Astrophysics Data System (ADS)

    Li, Chong; Tsuboi, Taiju; Huang, Wei

    2014-08-01

    We fabricated blue organic light emitting diodes (called blue OLEDs) with emitting layer (EML) of diphenylanthracene derivative 9,10-di(2-naphthyl)anthracene (ADN) doped with blue-emitting DSA-ph (1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene) to investigate how the thickness of EML and hole injection layer (HIL) influences the electroluminescence characteristics. The driving voltage was observed to increase with increasing EML thickness from 15 nm to 70 nm. The maximum external quantum efficiency of 6.2% and the maximum current efficiency of 14 cd/A were obtained from the OLED with 35 nm thick EML and 75 nm thick HIL. High luminance of 120,000 cd/m2 was obtained at 7.5 V from OLED with 15 nm thick EML.

  13. White organic light-emitting diodes based on incomplete energy transfer from perylene to rubrene

    NASA Astrophysics Data System (ADS)

    Ding, Bangdong; Zhu, Wenqing; Jiang, Xueyin; Zhang, Zhilin

    2008-11-01

    This paper presents organic light-emitting diodes which generate white emission based on both perylene and rubrene doped in 9,10-di(2-naphthyl)anthracene (ADN). In this doping system, the blue dopant perylene not only emitted but also assisted the energy transfer from ADN to rubrene, which contributes to a lower doping concentration of rubrene. The optimal configuration of the device is ITO/TPD(50 nm)/ADN:0.5 wt% perylene:0.006 wt% rubrene(40 nm)/Bphen(25 nm)/LiF(1 nm)/Al. The maximum luminance of 11 665 cd/m 2 at 14 V according to a luminance efficiency of 2.9 cd/A was obtained. A CIE color coordinate of (0.30, 0.37) at 4 mA/cm 2 was also achieved.

  14. Green exciplex emission from a bilayer light-emitting diode containing a rare earth ternary complex

    NASA Astrophysics Data System (ADS)

    Gao, De-Qing; Huang, Yan-Yi; Huang, Chun-Hui; Li, Fu-You; Huang, Ling

    2001-12-01

    A bilayer organic light-emitting diode using a blue-fluorescent yttrium complex, tris(1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone)-(2,2 '-dipyridyl) yttrium [Y(PMIP) 3(Bipy)] (YPB) as an emitting material and poly( N-vinylcarbazole) (PVK) as a hole-transporting material emitted bright green light instead of blue light. It was attributed to the exciplex formation at the solid interface between the PVK and YPB layers, which was demonstrated by the measurement of the absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra of the mixture of PVK and YPB (molar ratio 1:1). The device exhibited a maximum luminance of 177 cd/m 2 and a peak power efficiency of 0.02 lm/W.

  15. Organic light-emitting diodes using novel embedded al gird transparent electrodes

    NASA Astrophysics Data System (ADS)

    Peng, Cuiyun; Chen, Changbo; Guo, Kunping; Tian, Zhenghao; Zhu, Wenqing; Xu, Tao; Wei, Bin

    2017-03-01

    This work demonstrates a novel transparent electrode using embedded Al grids fabricated by a simple and cost-effective approach using photolithography and wet etching. The optical and electrical properties of Al grids versus grid geometry have been systematically investigated, it was found that Al grids exhibited a low sheet resistance of 70 Ω □-1 and a light transmission of 69% at 550 nm with advantages in terms of processing conditions and material cost as well as potential to large scale fabrication. Indium Tin Oxide-free green organic light-emitting diodes (OLED) based on Al grids transparent electrodes was demonstrated, yielding a power efficiency >15 lm W-1 and current efficiency >39 cd A-1 at a brightness of 2396 cd m-2. Furthermore, a reduced efficiency roll-off and higher brightness have been achieved compared with ITO-base device.

  16. Multilayer Graphene with Chemical Modification as Transparent Conducting Electrodes in Organic Light-Emitting Diode.

    PubMed

    Xu, Yilin; Yu, Haojian; Wang, Cong; Cao, Jin; Chen, Yigang; Ma, Zhongquan; You, Ying; Wan, Jixiang; Fang, Xiaohong; Chen, Xiaoyuan

    2017-12-01

    Graphene is a promising candidate for the replacement of the typical transparent electrode indium tin oxide in optoelectronic devices. Currently, the application of polycrystalline graphene films grown by chemical vapor deposition is limited for their low electrical conductivity due to the poor transfer technique. In this work, we developed a new method of preparing tri-layer graphene films with chemical modification and explored the influence of doping and patterning process on the performance of the graphene films as transparent electrodes. In order to demonstrate the application of the tri-layer graphene films in optoelectronics, we fabricated the organic light-emitting diodes (OLEDs) based on them and found that plasma etching is feasible with certain influence on the quality of the graphene films and the performance of the OLEDs.

  17. Room-temperature direct band-gap electroluminescence from germanium (111)-fin light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tani, Kazuki; Saito, Shin-ichi; Oda, Katsuya; Miura, Makoto; Wakayama, Yuki; Okumura, Tadashi; Mine, Toshiyuki; Ido, Tatemi

    2017-03-01

    Germanium (Ge) (111) fins of 320 nm in height were successfully fabricated using a combination of flattening sidewalls of a silicon (Si) fin structure by anisotropic wet etching with tetramethylammonium hydroxide, formation of thin Ge fins by selective Si oxidation in SiGe layers, and enlargement of Ge fins by Ge homogeneous epitaxial growth. The excellent electrical characteristics of Ge(111) fin light-emitting diodes, such as an ideality factor of 1.1 and low dark current density of 7.1 × 10‑5 A cm‑2 at reverse bias of ‑2 V, indicate their good crystalline quality. A tensile strain of 0.2% in the Ge fins, which originated from the mismatch of the thermal expansion coefficients between Ge and the covering SiO2 layers, was expected from the room-temperature photoluminescence spectra, and room-temperature electroluminescence corresponding to the direct band-gap transition was observed from the Ge fins.

  18. Vertical nonpolar growth templates for light emitting diodes formed with GaN nanosheets

    NASA Astrophysics Data System (ADS)

    Yeh, Ting-Wei; Lin, Yen-Ting; Ahn, Byungmin; Stewart, Lawrence S.; Daniel Dapkus, P.; Nutt, Steven R.

    2012-01-01

    We demonstrate that nonpolar m-plane surfaces can be generated on uniform GaN nanosheet arrays grown vertically from the (0001)-GaN bulk material. InGaN/GaN multiple quantum wells (MQWs) grown on the facets of these nanosheets are demonstrated by cross-sectional transmission electron microscopy. Owing to the high aspect ratio of the GaN nanosheet structure, the MQWs predominantly grow on nonpolar GaN planes. The results suggest that GaN nanosheets provide a conduction path for device fabrication and also a growth template to reduce the piezoelectric field inside the active region of InGaN-based light emitting diodes.

  19. Polarized light emitting diode by long-range nanorod self-assembling on a water surface.

    PubMed

    Rizzo, Aurora; Nobile, Concetta; Mazzeo, Marco; De Giorgi, Milena; Fiore, Angela; Carbone, Luigi; Cingolani, Roberto; Manna, Liberato; Gigli, Giuseppe

    2009-06-23

    We demonstrate a straightforward strategy to fabricate a multilayer inorganic/organic polarized light-emitting diode device based on highly ordered arrays of rod-shaped nanocrystals as the active species. We have developed a simple and effective method that allows colloidal CdSe/CdS core/shell nanorods to be laterally aligned in smectic or nematic phases on the surface of water. A floating film of such ordered nanorods has been collected by a poly(dimethylsiloxane) (PDMS) stamp pad and transferred by contact printing onto previously evaporated organic layers. Thanks to the lateral nanorod alignment the as-prepared film exhibited strong polarized photoluminescence and it has been used as emissive layer in the polarized electroluminescent device.

  20. Characteristics of Single-Chip GaN-Based Alternating Current Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Yen, Hsi-Hsuan; Kuo, Hao-Chung; Yeh, Wen-Yung

    2008-12-01

    In this study, a GaN-based alternating current light-emitting diode (AC-LED) with 34 numbers of microchips illuminated in each bias direction was fabricated. After calibrating the integration duration, the light output powers of the AC-LED driven by AC and DC were 388.1 and 312.8 mW when the input power was about 1 W, respectively. The flickering illumination mode of the AC-LED driven by AC decreased the heat accumulation and revealed a higher energy utilization efficiency than that of the AC-LED driven by DC. The larger blue shift and smaller full width at half maximum of the AC-LED driven by AC than those of the AC-LED driven by DC were also observed.

  1. Analysis of thermal degradation of organic light-emitting diodes with infrared imaging and impedance spectroscopy.

    PubMed

    Kwak, Kiyeol; Cho, Kyoungah; Kim, Sangsig

    2013-12-02

    We propose a route to examine the thermal degradation of organic light-emitting diodes (OLEDs) with infrared (IR) imaging and impedance spectroscopy. Four different OLEDs with tris (8-hydroxyquinolinato) aluminum are prepared in this study for the analysis of thermal degradation. Our comparison of the thermal and electrical characteristics of these OLEDs reveals that the real-time temperatures of these OLEDs obtained from the IR images clearly correlate with the electrical properties and lifetimes. The OLED with poor electrical properties shows a fairly high temperature during the operation and a considerably short lifetime. Based on the correlation of the real-time temperature and the performance of the OLEDs, the impedance results suggest different thermal degradation mechanisms for each of the OLEDs. The analysis method suggested in this study will be helpful in developing OLEDs with higher efficiency and longer lifetime.

  2. Light-emitting diodes fabricated on an electrical conducting flexible substrate

    NASA Astrophysics Data System (ADS)

    Choi, Won-Sik; Kim, Wan Jae; Park, Si-Hyun; Cho, Sung Oh; Lee, June Key; Park, Jun Beom; Ha, Jun-Seok; Chung, Tae Hoon; Jeong, Tak

    2017-01-01

    An array of InGaN-based flexible light-emitting diodes (FLEDs) was fabricated on a Ni-embedded electrical conducting flexible fabric with a full-scale 2-in. size. The FLED chip operation under current injection was realized using a single current probe as the negative electrode on the n-GaN surface; the conducting substrate was used as the positive electrode. The stability of the output power in the FLEDs was improved dramatically on the Ni-embedded conducting flexible fabric compared to that on the conventional polyimide flexible substrate. The former showed linear operation up to an input current 950 mA with no wavelength shift, whereas the latter exhibited rolling-over behavior after an input current of 200 mA.

  3. Blue inorganic light emitting diode on flexible polyimide substrate using laser lift-off process.

    PubMed

    Barange, Nilesh; Kim, Young Dong; Ko, Hyungduk; Park, Joon-Suh; Park, Byoungnam; Ko, Doo-Hyun; Han, Ii Ki

    2014-11-01

    The fabrication process for the blue GaN inorganic light emitting diode (ILED) on flexible polyimide (PI) substrate by laser lift off (LLO) method was demonstrated. The GaN epi-structure was grown on patterned sapphire wafer. GaN samples were temporary bonded with polyimide substrate by flexible silver epoxy. Separation of the whole GaN LED film from GaN/sapphire wafer was accomplished using a single KrF excimer (248 nm) laser pulse directed through the transparent sapphire wafer. Device fabrication was carried out on both rigid silicon and flexible polyimide substrate, and I-V performance for both devices was measured. The optimized LLO process for the whole GaN LED film transfer would be applicable in flexible LED applications without compromising electrical properties.

  4. Green cubic GaInN/GaN light-emitting diode on microstructured silicon (100)

    SciTech Connect

    Stark, Christoph J. M.; Detchprohm, Theeradetch; Wetzel, Christian; Lee, S. C.; Brueck, S. R. J.; Jiang, Y.-B.

    2013-12-02

    GaInN/GaN light-emitting diodes free of piezoelectric polarization were prepared on standard electronic-grade Si(100) substrates. Micro-stripes of GaN and GaInN/GaN quantum wells in the cubic crystal structure were grown on intersecting (111) planes of microscale V-grooved Si in metal-organic vapor phase epitaxy, covering over 50% of the wafer surface area. Crystal phases were identified in electron back-scattering diffraction. A cross-sectional analysis reveals a cubic structure virtually free of line defects. Electroluminescence over 20 to 100 μA is found fixed at 487 nm (peak), 516 nm (dominant). Such structures therefore should allow higher efficiency, wavelength-stable light emitters throughout the visible spectrum.

  5. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes.

    PubMed

    Wong, Michael Y; Zysman-Colman, Eli

    2017-03-03

    The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shifting, as these new materials offer the possibility of developing low-cost lighting and displays. Here, a comprehensive review of TADF materials is presented, with a focus on linking their optoelectronic behavior with the performance of the organic light-emitting diode (OLED) and related EL devices. TADF emitters are cross-compared within specific color ranges, with a focus on blue, green-yellow, orange-red, and white OLEDs. Organic small-molecule, dendrimer, polymer, and exciplex emitters are all discussed within this review, as is their use as host materials. Correlations are provided between the structure of the TADF materials and their optoelectronic properties. The success of TADF materials has ushered in the next generation of OLEDs.

  6. Effect of 670-nm Light-Emitting Diode Light On Neuronal Cultures

    NASA Technical Reports Server (NTRS)

    Wong-Riley, Margaret T. T.; Whelan, Harry T.

    2002-01-01

    Light close to and within the near infrared range has documented benefits for promoting wound healing in human and animal studies. Our preliminary results using light-emitting diodes (LEDs) in this range have also demonstrated two-to five-fold increases in growth-phase-specific DNA synthesis in normal fibroblasts, muscle cells, osteoblasts, and mucosal epithelial cells in tissue cultures. However, the mechanisms of action of such light on cells are poorly understood. We hypothesized that the therapeutic effects of such light result from the stimulation of cellular events associated with increases in cytochrome oxidase activity. As a first step in testing our hypothesis, we subjected primary neuronal cultures to impulse blockade by tetrodotoxin (TTX), a voltage-dependent sodium channel blocker, and applied LED light at 670 nm to determine if it could partially or fully reverse the reduction of cytochrome oxidase activity by TTX. The wavelength and parameters were previously tested to be beneficial for wound healing.

  7. Green semipolar III-nitride light-emitting diodes grown by limited area epitaxy

    NASA Astrophysics Data System (ADS)

    Pynn, C. D.; Kowsz, S. J.; Oh, S. H.; Gardner, H.; Farrell, R. M.; Nakamura, S.; Speck, J. S.; DenBaars, S. P.

    2016-07-01

    The performance of multiple quantum well green and yellow semipolar light-emitting diodes (LEDs) is limited by relaxation of highly strained InGaN-based active regions and the subsequent formation of nonradiative defects. Limited area epitaxy was used to block glide of substrate threading dislocations and to reduce the density of misfit dislocations (MDs) directly beneath the active region of (20 2 ¯ 1 ) LEDs. Devices were grown and fabricated on a 1D array of narrow substrate mesas to limit the MD run length. Reducing the mesa width from 20 μm to 5 μm lowered the density of basal plane and non-basal plane MDs on the mesas and limited the number of defect-generating dislocation intersections. This improvement in material quality yielded a 73% enhancement in peak external quantum efficiency for the devices with the narrowest mesas compared to the devices with the widest mesas.

  8. Wavelength-stable rare earth-free green light-emitting diodes for energy efficiency.

    PubMed

    Wetzel, Christian; Detchprohm, Theeradetch

    2011-07-04

    Solid state lighting seeks to replace both, incandescent and fluorescent lighting by energy efficient light-emitting diodes (LEDs). Just like compact fluorescent tubes, current white LEDs employ costly rare earth-based phosphors, a drawback we propose to overcome with direct emitting LEDs of all colors. We show the benefits of homoepitaxial LEDs on bulk GaN substrate for wavelength-stable green spectrum LEDs. By use of non-polar growth orientation we avoid big color shifts with drive current and demonstrate polarized light emitters that prove ideal for pairing with liquid crystal display modulators in back light units of television monitors. We further offer a comparison of the prospects of non-polar a- and m-plane growth over conventional c-plane growth.

  9. Design method of a light emitting diode front fog lamp based on a freeform reflector

    NASA Astrophysics Data System (ADS)

    Wu, Heng; Zhang, Xianmin; Ge, Peng

    2015-09-01

    We propose a method for the design of a light emitting diode front fog lamp based on a freeform reflector. The source-target mapping is used to establish the relationship between the solid angle of the source and the target plane. The reflector is then constructed based on the non-imaging optics theory and Snell's law. A feedback function is deduced from the deviation in the simulated light pattern based on the sampling method. The reflector is then regenerated with feedback modifications and the variance is minimized after several feedbacks. A reflector for the automobile front fog lamp is designed for the OSTAR Headlamp LED source whose emitting surface is 2.8 mm×2.5 mm. Simulation results indicate that the light performance can well meet the standard of the front fog lamps in ECE R19 Revision 7.

  10. Design method of a light-emitting diode front fog lamp based on a freeform reflector

    NASA Astrophysics Data System (ADS)

    Wu, Heng; Zhang, Xianmin; Ge, Peng

    2015-06-01

    We propose a method for the design of a light-emitting diode front fog lamp based on a freeform reflector. The source-target mapping is used to establish the relationship between the solid angle of the source and the target plane. The reflector is then constructed based on the non-imaging optics theory and Snell's Law. A feedback function is deduced from the deviation in the simulated light pattern based on the sampling method. The reflector is then regenerated with feedback modifications and the variance is minimized after several feedbacks. A reflector for the automobile front fog lamp is designed for the OSTAR Headlamp LED source whose emitting surface is 2.8 mm×2.5 mm. Simulation results indicate that the light performance can well meet the standard of the front fog lamps in ECE R19 Revision 7.

  11. GaN-based high-voltage light-emitting diodes with backside reflector

    NASA Astrophysics Data System (ADS)

    Huamao, Huang; Hong, Wang; Xiaosheng, Huang; Jinyong, Hu

    2014-07-01

    High-voltage light-emitting diodes (HV-LED) withbackside reflector, including Ti3O5/SiO2 distributed Bragg reflector (DBR) or hybrid reflector combining DBR and Al or Ag metal layer, are investigated using Monte Carlo ray tracing method. The hybrid reflector leads to more enhancement of light-extraction efficiency (LEE). Moreover, the LEE can also be improved by redesigning the thicknesses of DBR. HV-LED with four redesigned DBR pairs (4-MDBR), and those with a hybrid reflector combining 4-MDBR and Al metal layer (4-MDBR-Al), are fabricated. Compared to 4-MDBR, the enhancement of light-output power induced by 4-MDBR-Al is 4.6%, which is consistent with the simulated value of 4.9%.

  12. Broadband localized surface-plasmon-enhanced green light-emitting diodes by silver nanocone array

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Yufeng; Huang, Yaping; Wang, Shuai; Feng, Lungang; Gong, Zhina; Wang, Jiangteng; Ding, Wen; Zhang, Ye; Yun, Feng

    2015-12-01

    Green light-emitting diodes (LEDs) with silver nanocone-shaped structures embedded in p-GaN have been demonstrated with the surface plasmon (SP) enhancement effect. The resonance frequency has been broadened and the strength of coupling has been considerably enhanced. Compared with the LED without Ag nanocones, the integrated photoluminescence (PL) intensity of the SP-enhanced LED was improved by ∼275%, and the electroluminescence (EL) enhancement ratio at a different wavelength was evaluated at an injection current of 50 mA/mm2. At the same time, a reduction in the recombination lifetime indicated an increased internal quantum efficiency of LEDs. The results of simulation using nanocones as well as nanorods indicate good correlation with the experimental observation of the broadening effect. This structure is promising for converting incident photons into the localized surface plasmon (LSP) mode, to enhance the emission of LEDs within a broad wavelength range.

  13. Plasmonic phototherapy using gold nanospheres and gold nanorods irradiated with light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Poorani, Gananathan; Rao, Aruna Prakasa; Singaravelu, Ganesan; Manickam, Elanchezhiyan

    2016-04-01

    Gold nanoparticles (GNPs) provide different modes of therapeutic responses in cells depending on their size and shape. We have studied two modifications of GNPs exhibiting surface plasmon resonances (SPRs) with phototherapeutic effects in nonmalignant Vero and malignant HeLa cell lines. The cells were treated with 30-nm-size gold nanospheres (GNSs) (having SPR at a wavelength of 530 nm) and with gold nanorods (GNRs) (having SPR at 630 nm). The plasmonic phototherapy effect in cells was provided by irradiating them with green and red light-emitting diodes (LEDs). The cytotoxicities of GNPs were determined by MTT assay. Both the GNSs and GNRs were found to be biocompatible and have efficient phototherapeutic activity with LEDs.

  14. Fabrication of near-infrared polymer light-emitting-diodes using dispersed laser dye

    NASA Astrophysics Data System (ADS)

    Jitsui, Yusuke; Ohtani, Naoki

    2012-05-01

    The purpose of this research is to fabricate polymer light-emitting diodes (PLEDs) operating in the near-infrared (NIR) region. IR-140 is a laser-dye, whose emission wavelength is 870 nm. This NIR dye was dispersed as an emissive dopant within poly(2-methoxy-5-(3'-7'-dimethyloctyloxy)-1,4-phenylenevinylene) (MDMO -PPV) and poly(N-vinylcarbazole) (PVK). In addition, 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) was dispersed in the active layer. We fabricated the following two types of samples: (A) indium tin oxide (ITO)/MDMO-PPV:IR-140/aluminum (Al) and (B) ITO/IR-140:PBD:PVK/Al. Sample A successfully showed NIR emissions. However, sample A also revealed EL signals in the visible light region. In sample B, however, the undesired visible light was successfully eliminated due to the improved carrier-balance in the active region.

  15. High-power light-emitting diode based facility for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, G.; Duchovskis, P.; Bliznikas, Z.; Breive, K.; Ulinskaite, R.; Brazaityte, A.; Novickovas, A.; Zukauskas, A.

    2005-09-01

    Based on perspectives of the development of semiconductor materials systems for high-power light-emitting diodes (LEDs), an illumination facility for greenhouse plant cultivation was designed with the dominating 640 nm photosynthetically active component delivered by AlGaInP LEDs and supplementary components from AlGaN (photothropic action, 455 nm) and AlGaAs (photosynthetic 660 nm and photomorphogenetic 735 nm) LEDs. Photosynthesis intensity, photosynthetic productivity and growth morphology as well as chlorophyll and phytohormone concentrations were investigated in radish and lettuce grown in phytotron chambers under the LED-based illuminators and under high-pressure sodium (HPS) lamps with an equivalent photon flux density. Advantages of the high-power LED-based illuminators over conventional HPS lamps, applicability of AlGaInP LEDs for photosynthesis and control of plant growth by circadian manipulation of a relatively weak far-red component were demonstrated.

  16. Quantum cascade light emitting diodes based on type-II quantum wells

    SciTech Connect

    Lin, C.H.; Yang, R.Q.; Zhang, D.; Murry, S.J.; Pei, S.S.; Allerman, A.A.; Kurtz, S.R.

    1997-01-21

    The authors have demonstrated room-temperature CW operation of type-II quantum cascade (QC) light emitting diodes at 4.2 {micro}m using InAs/InGaSb/InAlSb type-II quantum wells. The type-II QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-II quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 {micro}W at 80 K, and 140 {micro}W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.

  17. Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films.

    PubMed

    Thomschke, Michael; Reineke, Sebastian; Lüssem, Björn; Leo, Karl

    2012-01-11

    White top-emitting organic light-emitting diodes (OLEDs) attract much attention, as they are optically independent from the substrate used. While monochrome top-emitting OLEDs can be designed easily to have high-emission efficiency, white light emission faces obstacles. The commonly used thin metal layers as top electrodes turn the device into a microresonator having detrimental narrow and angular dependent emission characteristics. Here we report on a novel concept to improve the color quality and efficiency of white top-emitting OLEDs. We laminate a refractive index-matched microlens film on the top-emitting device. The microlens film acts both as outcoupling-enhancing film and an integrating element, mixing the optical modes to a broadband spectrum.

  18. III-N light emitting diodes fabricated using RF nitrogen gas source MBE

    NASA Astrophysics Data System (ADS)

    Van Hove, J. M.; Carpenter, G.; Nelson, E.; Wowchak, A.; Chow, P. P.

    1996-07-01

    Homo- and heterojunction III-N light emitting diodes using RF atomic nitrogen plasma molecular beam epitaxy have been grown. GaN films deposited on sapphire using this growth technique exhibited an extremely sharp X-ray diffraction with a full width half maximum of 112 arc sec. p-type doping of the nitride films was done with elemental Mg and resulted in as-grown p-type material with resistivities as low as 2 Ω · cm. Both homo- and heterojunction LEDs showed clear rectification. Emission from the GaN homojunction deposited on n-type SiC was peaked at 410 nm while the AlGaNGaN(Zn)AlGaN double heterojunction LEDs emission was centered about 520 nm.

  19. White light-emitting diodes (LEDs) using (oxy)nitride phosphors

    NASA Astrophysics Data System (ADS)

    Xie, R.-J.; Hirosaki, N.; Sakuma, K.; Kimura, N.

    2008-07-01

    (Oxy)nitride phosphors have attracted great attention recently because they are promising luminescent materials for phosphor-converted white light-emitting diodes (LEDs). This paper reports the luminescent properties of (oxy)nitride phosphors in the system of M-Si-Al-O-N (M = Li, Ca or Sr), and optical properties of white LEDs using a GaN-based blue LED and (oxy)nitride phosphors. The phosphors show high conversion efficiency of blue light, suitable emission colours and small thermal quenching. The bichromatic white LEDs exhibit high luminous efficacy (~55 lm W-1) and the multi-phosphor converted white LEDs show high colour rendering index (Ra = 82-95). The results indicate that (oxy)nitride phosphors demonstrate their superior suitability to use as down-conversion luminescent materials in white LEDs.

  20. Enhanced biomass production and lipid accumulation of Picochlorum atomus using light-emitting diodes (LEDs).

    PubMed

    Ra, Chae Hun; Kang, Chang-Han; Jung, Jang-Hyun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-10-01

    The effects of light-emitting diode (LED) wavelength, light intensity, nitrate concentration, and time of exposure to different LED wavelength stresses in a two-phase culture on lipid production were evaluated in the microalga, Picochlorum atomus. The biomass produced by red LED light was higher than that produced by purple, blue, green, or yellow LED and fluorescent lights from first phase of two-phase culture. The highest lipid production of P. atomus was 50.3% (w/w) with green LED light at 2days of second phase as light stress. Fatty acid analysis of the microalgae showed that palmitic acid (C16:0) and linolenic acid (C18:3) accounted for 84-88% (w/w) of total fatty acids from P. atomus. The two-phase culture of P. atomus is suitable for biofuel production due to higher lipid productivity and favorable fatty acid composition.

  1. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes.

    PubMed

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-06

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  2. Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode.

    PubMed

    Denzer, W; Hamilton, M L; Hancock, G; Islam, M; Langley, C E; Peverall, R; Ritchie, G A D

    2009-11-01

    A fibre coupled near-infrared superluminescent light emitting diode that emits approximately 10 mW of radiation between 1.62 and 1.7 microm is employed in combination with a broad-band cavity enhanced spectrometer consisting of a linear optical cavity with mirrors of reflectivity approximately 99.98% and either a dispersive near-infrared spectrometer or a Fourier transform interferometer. Results are presented on the absorption of 1,3-butadiene, and sensitivities are achieved of 6.1 x 10(-8) cm(-1) using the dispersive spectrometer in combination with phase-sensitive detection, and 1.5 x 10(-8) cm(-1) using the Fourier transform interferometer (expressed as a minimum detectable absorption coefficient) over several minutes of acquisition time.

  3. Multi-spectral imaging with infrared sensitive organic light emitting diode

    PubMed Central

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky

    2014-01-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions. PMID:25091589

  4. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    SciTech Connect

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.

  5. Fabrication of Organic Light-Emitting Diodes Using Photosynthetic Pigments Extracted from Spinach

    NASA Astrophysics Data System (ADS)

    Ohtani, Naoki; Kitagawa, Natsuko; Matsuda, Takashi

    2011-01-01

    We fabricated organic light-emitting diodes (OLEDs) containing chlorophylls in the active region, which were extracted from spinach using a chemical method. Photoluminescence (PL) cannot be observed in the thin film of the extracted chlorophylls owing to concentration quenching. To overcome the concentration quenching, a host material, poly[(m-phenylenevinylene)-alt-(2,5-dihexyloxy-p-phenylenevinylene)] (PPV) was added in the active region. This leads to the observaton of electroluminescence (EL) signals originating from chlorophyll a. We also evaluated the lifetime of the PL and EL. Consequently, the OLEDs containing carotenoids in the active region exhibit the light-emission much longer time than that without carotenoidos. This is assigned to the antioxidant activities of carotenoids. OLEDs containing a large amount of carotenoids are resistant to the oxidation damage.

  6. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    NASA Astrophysics Data System (ADS)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob

    2015-07-01

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq)2(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq)2(acac). The lifetime of device (t95: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  7. Reduced molybdenum oxide as an efficient electron injection layer in polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Vasilopoulou, Maria; Palilis, Leonidas C.; Georgiadou, Dimitra G.; Argitis, Panagiotis; Kennou, Stella; Sygellou, Labrini; Kostis, Ioannis; Papadimitropoulos, Giorgos; Konofaos, Nikos; Iliadis, Agis A.; Davazoglou, Dimitris

    2011-03-01

    We report a significant improvement in the performance of single layer polymer light-emitting diodes (PLEDs), based on the green emitting copolymer poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2, 1',3}-thiadiazole)], upon inserting a very thin layer of partially reduced molybdenum oxide (MoOx, where x=2.7) at the polymer/Al cathode interface. Both fully oxidized (x=3) and partially reduced (x=2.7) thin molybdenum oxide layers were investigated as electron injection layers and their influence on PLED device performance was examined. Improved current density, luminance, and efficiency was achieved only in the case of devices with a thin partially reduced MoO2.7 film as electron injection layer, as a result of improved electron injection and more facile transfer at the modified polymer/Al interface.

  8. Evaluation of an organic light-emitting diode display for precise visual stimulation.

    PubMed

    Ito, Hiroyuki; Ogawa, Masaki; Sunaga, Shoji

    2013-06-11

    A new type of visual display for presentation of a visual stimulus with high quality was assessed. The characteristics of an organic light-emitting diode (OLED) display (Sony PVM-2541, 24.5 in.; Sony Corporation, Tokyo, Japan) were measured in detail from the viewpoint of its applicability to visual psychophysics. We found the new display to be superior to other display types in terms of spatial uniformity, color gamut, and contrast ratio. Changes in the intensity of luminance were sharper on the OLED display than those on a liquid crystal display. Therefore, such OLED displays could replace conventional cathode ray tube displays in vision research for high quality stimulus presentation. Benefits of using OLED displays in vision research were especially apparent in the fields of low-level vision, where precise control and description of the stimulus are needed, e.g., in mesopic or scotopic vision, color vision, and motion perception.

  9. Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode

    PubMed Central

    Chang, Jung-Hung; Lin, Wei-Hsiang; Wang, Po-Chuan; Taur, Jieh-I; Ku, Ting-An; Chen, Wei-Ting; Yan, Shiang-Jiuan; Wu, Chih-I

    2015-01-01

    Graphene thin films have great potential to function as transparent electrodes in organic electronic devices, due to their excellent conductivity and high transparency. Recently, organic light-emitting diodes (OLEDs)have been successfully demonstrated to possess high luminous efficiencies with p-doped graphene anodes. However, reliable methods to fabricate n-doped graphene cathodes have been lacking, which would limit the application of graphene in flexible electronics. In this paper, we demonstrate fully solution-processed OLEDs with n-type doped multilayer graphene as the top electrode. The work function and sheet resistance of graphene are modified by an aqueous process which can also transfer graphene on organic devices as the top electrodes. With n-doped graphene layers used as the top cathode, all-solution processed transparent OLEDs can be fabricated without any vacuum process. PMID:25892370

  10. Light extraction enhancement of organic light-emitting diodes using aluminum zinc oxide embedded anodes.

    PubMed

    Hsu, Ching-Ming; Lin, Bo-Ting; Zeng, Yin-Xing; Lin, Wei-Ming; Wu, Wen-Tuan

    2014-12-15

    Aluminum zinc oxide (AZO) has been embedded onto indium tin oxide (ITO) anode to enhance the light extraction from an organic light-emitting diode (OLED). The embedded AZO provides deflection and scattering interfaces on the newly generated AZO/organics and AZO/ITO interfaces rather than the conventional ITO/organic interface. The current efficiency of AZO embedded OLEDs was enhanced by up to 64%, attributed to the improved light extraction by additionally created reflection and scattering of emitted light on the AZO/ITO interfaces which was roughed in AZO embedding process. The current efficiency was found to increase with the increasing AZO embedded area ratio, but limited by the accompanying increases in haze and electrical resistance of the AZO embedded ITO film.

  11. Fully Printed Halide Perovskite Light-Emitting Diodes with Silver Nanowire Electrodes.

    PubMed

    Bade, Sri Ganesh R; Li, Junqiang; Shan, Xin; Ling, Yichuan; Tian, Yu; Dilbeck, Tristan; Besara, Tiglet; Geske, Thomas; Gao, Hanwei; Ma, Biwu; Hanson, Kenneth; Siegrist, Theo; Xu, Chengying; Yu, Zhibin

    2016-02-23

    Printed organometal halide perovskite light-emitting diodes (LEDs) are reported that have indium tin oxide (ITO) or carbon nanotubes (CNTs) as the transparent anode, a printed composite film consisting of methylammonium lead tribromide (Br-Pero) and poly(ethylene oxide) (PEO) as the emissive layer, and printed silver nanowires as the cathode. The fabrication can be carried out in ambient air without humidity control. The devices on ITO/glass have a low turn-on voltage of 2.6 V, a maximum luminance intensity of 21014 cd m(-2), and a maximum external quantum efficiency (EQE) of 1.1%, surpassing previous reported perovskite LEDs. The devices on CNTs/polymer were able to be strained to 5 mm radius of curvature without affecting device properties.

  12. Optical design of color light-emitting diode ring light for machine vision inspection

    NASA Astrophysics Data System (ADS)

    Dong, Jing-Tao; Lu, Rong-Sheng; Shi, Yan-Qiong; Xia, Rui-Xue; Li, Qi; Xu, Yan

    2011-04-01

    Uniform irradiance and color adjustability are the key features in the design of lighting for machine vision inspection systems. A simple and practical design tool of angled light-emitting-diode (LED) ring arrays for uniform near-field irradiance has been developed by introducing a simple model to simplify the complexity of nonrotational symmetric irradiance distribution of angled LEDs. The color distribution and color uniformity of the ring array assembled with RGB LEDs are analyzed based on the analytical model of color mixing. According to the theoretical analysis, the simulated results, and the design exemplifications, the practical design tool offers an easy way to estimate the performance of an RGB LED ring array and can be considered as a starting point to reduce the computation time for exact designs that must use a realistic LED model.

  13. Light Emitting Diodes and Astronomical Environments: Results from in situ Field Measurements

    NASA Astrophysics Data System (ADS)

    Craine, Brian L.; Craine, Eric R.

    2015-05-01

    Light emitting diode (LED) light fixtures are rapidly becoming industry standards for outdoor lighting. They are promoted on the strength of long lifetimes (hence economic efficiencies), low power requirements, directability, active brightness controls, and energy efficiency. They also tend to produce spectral shifts that are undesirable in astronomical settings, but which can be moderated by filters. LED lighting for continuous roadway and parking lot lighting is particularly popular, and many communities are in the process of retrofitting Low Pressure Sodium (LPS) and other lights by tens of thousands of new LED fixtures at a time. What is the impact of this process on astronomical observatories and on dark skies upon which amateur astronomers rely? We bypass modeling and predictions to make actual measurements of these lights in the field. We report on original ground, airborne, and satellite observations of LED lights and discuss their light budgets, zenith angle functions, and impacts on observatory environs.

  14. Heterogeneous integration of gallium nitride light-emitting diodes on diamond and silica by transfer printing.

    PubMed

    Trindade, A J; Guilhabert, B; Xie, E Y; Ferreira, R; McKendry, J J D; Zhu, D; Laurand, N; Gu, E; Wallis, D J; Watson, I M; Humphreys, C J; Dawson, M D

    2015-04-06

    We report the transfer printing of blue-emitting micron-scale light-emitting diodes (micro-LEDs) onto fused silica and diamond substrates without the use of intermediary adhesion layers. A consistent Van der Waals bond was achieved via liquid capillary action, despite curvature of the LED membranes following release from their native silicon growth substrates. The excellence of diamond as a heat-spreader allowed the printed membrane LEDs to achieve optical power output density of 10 W/cm(2) when operated at a current density of 254 A/cm(2). This high-current-density operation enabled optical data transmission from the LEDs at 400 Mbit/s.

  15. High-efficiency new polymer light-emitting diodes with a stabilized blue emission

    NASA Astrophysics Data System (ADS)

    Park, Sung Heum; Kim, Jin Young; Kim, Sun Hee; Jin, Youngeup; Kim, Jinwoo; Suh, Hongsuk; Lee, Kwanghee

    2005-10-01

    Conjugated polymers with a stabilized blue emission are of importance for the realization of full-color displays using polymer light-emitting diodes. We report a new class of blue-emitting polymers utilizing a new back-bone, poly(2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta [def] phenanthrene)) (PCPP). This material emits a stabilized, efficient blueelectroluminescence(EL) without exhibiting any peak in the long wavelength region (green region) even after prolonged annealing for 18 hours at an elevated temperature of 150°C in air. This attributes to the chemical structure of this new polymer. The backbone of PCPP intrinsically inhibits the formation of the keto-defects mainly responsible for the degradation to green color in typical poly(fluorine) type materials, thereby stabilizing the blue EL emission in the devices.

  16. Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes.

    PubMed

    Kim, Kwon-Hyeon; Lee, Sunghun; Moon, Chang-Ki; Kim, Sei-Yong; Park, Young-Seo; Lee, Jeong-Hwan; Woo Lee, Jin; Huh, June; You, Youngmin; Kim, Jang-Joo

    2014-09-10

    Organic light-emitting diodes (OLEDs) are among the most promising organic semiconductor devices. The recently reported external quantum efficiencies (EQEs) of 29-30% for green and blue phosphorescent OLEDs are considered to be near the limit for isotropically oriented iridium complexes. The preferred orientation of transition dipole moments has not been thoroughly considered for phosphorescent OLEDs because of the lack of an apparent driving force for a molecular arrangement in all but a few cases, even though horizontally oriented transition dipoles can result in efficiencies of over 30%. Here we use quantum chemical calculations to show that the preferred orientation of the transition dipole moments of heteroleptic iridium complexes (HICs) in OLEDs originates from the preferred direction of the HIC triplet transition dipole moments and the strong supramolecular arrangement within the co-host environment. We also demonstrate an unprecedentedly high EQE of 35.6% when using HICs with phosphorescent transition dipole moments oriented in the horizontal direction.

  17. Efficient red, green, blue and white organic light-emitting diodes with same exciplex host

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hao; Wu, Szu-Wei; Huang, Chih-Wei; Hsieh, Chung-Tsung; Lin, Sung-En; Chen, Nien-Po; Chang, Hsin-Hua

    2016-03-01

    Recently, exciplex had drawn attention because of its potential for efficient electroluminescence or for use as a host in organic light-emitting diodes (OLEDs). In this study, four kinds of hole transport material/electron transport material combinations were examined to verify the formation of exciplex and the corresponding energy bandgaps. We successfully demonstrated that the combination of tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 3,5,3‧,5‧-tetra(m-pyrid-3-yl)phenyl[1,1‧]biphenyl (BP4mPy) could form a stable exciplex emission with an adequate energy gap. Using exciplex as a host in red, green, and blue phosphorescent OLEDs with an identical trilayer architecture enabled effective energy transfer from exciplex to emitters, achieving corresponding efficiencies of 8.8, 14.1, and 15.8%. A maximum efficiency of 11.3% and stable emission was obtained in white OLEDs.

  18. Color tunable light-emitting diodes based on copper doped semiconducting nanocrystals

    NASA Astrophysics Data System (ADS)

    Bhaumik, Saikat; Ghosh, Batu; Pal, Amlan J.

    2011-08-01

    We have introduced copper-doped semiconducting nanocrystals in light-emitting diodes (LEDs). Characteristics of the devices show that electroluminescence (EL) emission in these LEDs is color tunable. In copper-doped ZnS nanocrystals in the core and Zn1-xCdxS host as a shell-layer, photoluminescence (PL) arises from a transition from conduction band-edge of the host to 3d-levels of copper-ions. The PL of the nanocrystals and hence the EL of LEDs based on such nanostructures become tunable by varying the Cd-content in Zn-Cd-S alloys, that is, Zn1-xCdxS with different values of x, which changes the conduction band-edge of the host.

  19. Efficient distributed control of light-emitting diode array lighting systems.

    PubMed

    Dong, Jianfei; Pandharipande, Ashish

    2012-07-15

    We consider illumination rendering with distributed control of a lighting system with an array of light-emitting diodes (LEDs). As low-cost microprocessors become standard components in LED drivers, distributing the computation of the control signals to individual LED drivers becomes attractive. Common distributed control algorithms require each individual controller to exchange information with all the others and process it. This incurs too large a communication and processing overhead for a low-cost local controller. In this Letter, we propose a distributed control algorithm for achieving global illumination rendering, wherein a controller only needs to communicate within a selected neighborhood. We present design criteria for defining the communication neighborhood and study its impact on rendering performance.

  20. CdTe quantum dots and YAG hybrid phosphors for white light-emitting diodes.

    PubMed

    Yin, Yanchun; Wang, Rongfang; Zhou, Liya

    2014-09-01

    CdTe quantum dots, 3.28 nm in size, were synthesized using a one-step method in an aqueous medium. The CdTe quantum dots were successfully employed as hybrid phosphors for white light-emitting diode (LED) devices by combining them with yellow-emitting YAG:Ce phosphor. The color-rendering index value and International Commission on illumination coordinates for hybrid phosphor white LEDs were 75 and (x = 0.30, y = 0.29), respectively. Compared with conventional phosphors, semiconductor quantum dots have larger band gap energy and broader absorption features, and can be excited more efficiently by optical pumping sources. The results confirmed that the high color-rendering index value of the white LED was due to the CdTe quantum dots introduced in the hybrid phosphor system.

  1. Effect of hole transport on performance of infrared type-II superlattice light emitting diodes

    SciTech Connect

    Lin, Youxi; Suchalkin, Sergey; Kipshidze, Gela; Hosoda, Takashi; Westerfeld, David; Shterengas, Leon; Belenky, Gregory; Laikhtman, Boris

    2015-04-28

    The effect of hole transport on the performance of infrared light emitting diodes (LED) was investigated. The active area of the LEDs comprised two type-II superlattices with different periods and widths connected in series. Electroluminescence spectra of the devices with different positions of long wave and mid wave superlattice sections were mostly contributed by the superlattice closest to the p-contact. The experimental results indicate that due to suppressed vertical hole transport, the recombination of electrically injected electrons and holes in a type II superlattice LED active region takes place within a few superlattice periods near p-barrier. Possible reason for the effect is reduction of hole diffusion coefficient in an active area of a superlattice LED under bias.

  2. Reliability study of opto-coupled semiconductor devices and Light Emitting Diodes (LED)

    NASA Technical Reports Server (NTRS)

    Maurer, R. C.; Weissflug, V. A.; Sisul, E. V.

    1977-01-01

    Opto-coupler and light emitting diode (LED) failure mechanisms and associated activation energies were determind from the results of environmental and accelerated lift tests of over 2,400 devices. The evaluation program included LED phototransistor opto-couplers from three sources, LED photoamplifier opto-couplers from a single source, and discrete infrared emitting LEDs from two sources. Environmental tests to evaluate device mechanical integrity included power cycling (10,000 cycles), temperature cycling (500 cycles) and a sequence of monitored shock, monitored vibration and constant acceleration. Multiple temperature operating life tests were conducted at ambient temperatures between 25 C and 200 C. Opto-couplers were operated in both the 'on' and 'off' states during life testing.

  3. Optimizing the multiple quantum well thickness of an InGaN blue light emitting diode

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Zhao, Jun Liang; Wang, Shu Guo; Dai, Hai Tao; Yu, Sheng-Fu; Lin, Ray-Ming; Chu, Fu-Chuan; Huang, Chou-Hsiung; Sun, Xiao Wei

    2013-03-01

    InGaN/GaN blue light emitting diodes with varied quantum well thickness from 2.4 nm to 3.6 nm are fabricated and characterized by atmosphere pressure metalorganic chemical vapor deposition (AP-MOCVD). Experimental results show that the exciton localization effect is enhanced from 21.76 to 23.48 by increasing the quantum well thickness from 2.4 nm to 2.7 nm. However, with the further increase of quantum well thickness, the exciton localization effect becomes weaker. Meanwhile, the peak wavelength of electroluminescence redshift with the increase of well thickness due to the larger quantum confined Stark effect (QCSE). In addition, the efficiency droop can be improved by increasing the well thickness.

  4. Horizontal molecular orientation in solution-processed organic light-emitting diodes

    SciTech Connect

    Zhao, L.; Inoue, M.; Komino, T.; Kim, J.-H.; Ribierre, J. C. E-mail: adachi@cstf.kyushu-u.ac.jp [Center for Organic Photonics and Electronics Research , Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395; Japan Science and Technology Agency , ERATO, Adachi Molecular Exciton Engineering Project, c and others

    2015-02-09

    Horizontal orientation of the emission transition dipole moments achieved in glassy vapor-deposited organic thin films leads to an enhancement of the light out-coupling efficiency in organic light-emitting diodes (OLEDs). Here, our combined study of variable angle spectroscopic ellipsometry and angle dependent photoluminescence demonstrates that such a horizontal orientation can be achieved in glassy spin-coated organic films based on a composite blend of a heptafluorene derivative as a dopant and a 4,4′-bis(N-carbazolyl)-1,1′-biphenyl as a host. Solution-processed fluorescent OLEDs with horizontally oriented heptafluorene emitters were then fabricated and emitted deep blue electroluminescence with an external quantum efficiency as high as 5.3%.

  5. Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes

    SciTech Connect

    Tang, Ching; Chen, Shaw

    2013-05-31

    Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materials were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move “holes” (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy “charge transfer” states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling the

  6. Measuring the Photocatalytic Breakdown of Crystal Violet Dye using a Light Emitting Diode Approach

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Underwood, Lauren W.; O'Neal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple method to estimate the photocatalytic reactivity performance of spray-on titanium dioxide coatings for transmissive glass surfaces was developed. This novel technique provides a standardized method to evaluate the efficiency of photocatalytic material systems over a variety of illumination levels. To date, photocatalysis assessments have generally been conducted using mercury black light lamps. Illumination levels for these types of lamps are difficult to vary, consequently limiting their use for assessing material performance under a diverse range of simulated environmental conditions. This new technique uses an ultraviolet (UV) gallium nitride (GaN) light emitting diode (LED) array instead of a traditional black light to initiate and sustain photocatalytic breakdown. This method was tested with a UV-resistant dye (crystal violet) applied to a titanium dioxide coated glass slide. Experimental control is accomplished by applying crystal violet to both titanium dioxide coated slides and uncoated control slides. A slide is illuminated by the UV LED array, at various light levels representative of outdoor and indoor conditions, from the dye side of the slide. To monitor degradation of the dye over time, a temperature-stabilized white light LED, whose emission spectrum overlaps with the dye absorption spectrum, is used to illuminate the opposite side of the slide. Using a spectrometer, the amount of light from the white light LED transmitted through the slide as the dye degrades is monitored as a function of wavelength and time and is subsequently analyzed. In this way, the rate of degradation for photocatalytically coated versus uncoated slide surfaces can be compared. Results demonstrate that the dye absorption decreased much more rapidly on the photocatalytically coated slides than on the control uncoated slides, and that dye degradation is dependent on illumination level. For photocatalytic activity assessment purposes, this experimental configuration and

  7. A randomly nano-structured scattering layer for transparent organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Huh, Jin Woo; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jaehyun; Joo, Chul Woong; Park, Seung Koo; Hwang, Joohyun; Cho, Nam Sung; Lee, Jonghee; Han, Jun-Han; Chu, Hye Yong; Lee, Jeong-Ik

    2014-08-01

    A random scattering layer (RSL) consisting of a random nano-structure (RNS) and a high refractive index planarization layer (HRI PL) is suggested and demonstrated as an efficient internal light-extracting layer for transparent organic light emitting diodes (TOLEDs). By introducing the RSL, a remarkable enhancement of 40% and 46% in external quantum efficiency (EQE) and luminous efficacy (LE) was achieved without causing deterioration in the transmittance. Additionally, with the use of the RSL, the viewing angle dependency of EL spectra was reduced to a marginal degree. The results were interpreted as the stronger influence of the scattering effect over the microcavity. The RSL can be applied widely in TOLEDs as an effective light-extracting layer for extracting the waveguide mode of confined light at the indium tin oxide (ITO)/OLED stack without introducing spectral changes in TOLEDs.A random scattering layer (RSL) consisting of a random nano-structure (RNS) and a high refractive index planarization layer (HRI PL) is suggested and demonstrated as an efficient internal light-extracting layer for transparent organic light emitting diodes (TOLEDs). By introducing the RSL, a remarkable enhancement of 40% and 46% in external quantum efficiency (EQE) and luminous efficacy (LE) was achieved without causing deterioration in the transmittance. Additionally, with the use of the RSL, the viewing angle dependency of EL spectra was reduced to a marginal degree. The results were interpreted as the stronger influence of the scattering effect over the microcavity. The RSL can be applied widely in TOLEDs as an effective light-extracting layer for extracting the waveguide mode of confined light at the indium tin oxide (ITO)/OLED stack without introducing spectral changes in TOLEDs. Electronic supplementary information (ESI) available: Simulation results of total (bottom and top) radiance of TOLEDs with the RSL depending on HTL and ETL thicknesses. See DOI: 10.1039/c4nr01520g

  8. Comparison of the alendronate and irradiation with a light-emitting diode (LED) on murine osteoclastogenesis.

    PubMed

    Sohn, Hong Moon; Ko, Youngjong; Park, Mineon; Kim, Bora; Park, Jung Eun; Kim, Donghwi; Moon, Young Lae; Lim, Wonbong

    2017-01-01

    Photomodulation therapy (PBMT) using light-emitting diode (LED) has been proposed as an alternative to conventional osteoporosis therapies. Our aim was to determine the effect of irradiation with a light-emitting diode on receptor activator of NF-κB ligand (RANKL)-mediated differentiation of mouse bone marrow macrophages into osteoclasts and compare it to alendronate treatment. The cells were irradiated with LED at 635±10 nm, 9-cm spot size, 5 mW/cm(2), and 18 J for 60 min/day in a CO2 incubator. The differentiation of irradiated and untreated RANKL-stimulated bone marrow macrophages into osteoclasts was evaluated by tartrate-resistant acid phosphatase (TRAP) staining and by molecular methods. These included assessing messenger RNA (mRNA) expression of osteoclastic markers such as TRAP, c-Fos, Atp6v0d2, DC-STAMP, NFATc1, cathepsin K, MMP9 and OSCAR; phosphorylation of various MAPKs, including extracellular signal-regulated kinase ERK1/2, P38, and JNK; NF-κB translocation; and resorption pit formation. Results were compared to those obtained with sodium alendronate. Production of reactive oxygen species was measured by a 2',7'-dihydrodichlorofluorescein diacetate assay. LED irradiation and alendronate inhibited mRNA expression of osteoclast-related genes, such as TRAP, c-Fos, and NFATc1, and reduced the osteoclast activity of RANKL-stimulated bone marrow macrophages. LED irradiation, but not alendronate, also inhibited the production of reactive oxygen species (ROS); phosphorylation of ERK, P38, and IκB; and NF-κB translocation. These findings suggest that LED irradiation downregulates osteoclastogenesis by ROS production; this effect could lead to reduced bone loss and may offer a new therapeutic tool for managing osteoporosis.

  9. Flexion bonding transfer of multilayered graphene as a top electrode in transparent organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tae Lim, Jong; Lee, Hyunkoo; Cho, Hyunsu; Kwon, Byoung-Hwa; Sung Cho, Nam; Kuk Lee, Bong; Park, Jonghyurk; Kim, Jaesu; Han, Jun-Han; Yang, Jong-Heon; Yu, Byoung-Gon; Hwang, Chi-Sun; Chu Lim, Seong; Lee, Jeong-Ik

    2015-12-01

    Graphene has attracted considerable attention as a next-generation transparent conducting electrode, because of its high electrical conductivity and optical transparency. Various optoelectronic devices comprising graphene as a bottom electrode, such as organic light-emitting diodes (OLEDs), organic photovoltaics, quantum-dot LEDs, and light-emitting electrochemical cells, have recently been reported. However, performance of optoelectronic devices using graphene as top electrodes is limited, because the lamination process through which graphene is positioned as the top layer of these conventional OLEDs is a lack of control in the surface roughness, the gapless contact, and the flexion bonding between graphene and organic layer of the device. Here, a multilayered graphene (MLG) as a top electrode is successfully implanted, via dry bonding, onto the top organic layer of transparent OLED (TOLED) with flexion patterns. The performance of the TOLED with MLG electrode is comparable to that of a conventional TOLED with a semi-transparent thin-Ag top electrode, because the MLG electrode makes a contact with the TOLED with no residue. In addition, we successfully fabricate a large-size transparent segment panel using the developed MLG electrode. Therefore, we believe that the flexion bonding technology presented in this work is applicable to various optoelectronic devices.

  10. Flexion bonding transfer of multilayered graphene as a top electrode in transparent organic light-emitting diodes

    PubMed Central

    Tae Lim, Jong; Lee, Hyunkoo; Cho, Hyunsu; Kwon, Byoung-Hwa; Sung Cho, Nam; Kuk Lee, Bong; Park, Jonghyurk; Kim, Jaesu; Han, Jun-Han; Yang, Jong-Heon; Yu, Byoung-Gon; Hwang, Chi-Sun; Chu Lim, Seong; Lee, Jeong-Ik

    2015-01-01

    Graphene has attracted considerable attention as a next-generation transparent conducting electrode, because of its high electrical conductivity and optical transparency. Various optoelectronic devices comprising graphene as a bottom electrode, such as organic light-emitting diodes (OLEDs), organic photovoltaics, quantum-dot LEDs, and light-emitting electrochemical cells, have recently been reported. However, performance of optoelectronic devices using graphene as top electrodes is limited, because the lamination process through which graphene is positioned as the top layer of these conventional OLEDs is a lack of control in the surface roughness, the gapless contact, and the flexion bonding between graphene and organic layer of the device. Here, a multilayered graphene (MLG) as a top electrode is successfully implanted, via dry bonding, onto the top organic layer of transparent OLED (TOLED) with flexion patterns. The performance of the TOLED with MLG electrode is comparable to that of a conventional TOLED with a semi-transparent thin-Ag top electrode, because the MLG electrode makes a contact with the TOLED with no residue. In addition, we successfully fabricate a large-size transparent segment panel using the developed MLG electrode. Therefore, we believe that the flexion bonding technology presented in this work is applicable to various optoelectronic devices. PMID:26626439

  11. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach.

    PubMed

    Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D; Duvenaud, David; Maclaurin, Dougal; Blood-Forsythe, Martin A; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P; Aspuru-Guzik, Alán

    2016-10-01

    Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.

  12. Enhancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures

    SciTech Connect

    Djavid, Mehrdad; Mi, Zetian

    2016-02-01

    The performance of conventional AlGaN deep ultraviolet light emitting diodes has been limited by the extremely low light extraction efficiency (<10%), due to the unique transverse magnetic (TM) polarized light emission. Here, we show that, by exploiting the lateral side emission, the extraction efficiency of TM polarized light can be significantly enhanced in AlGaN nanowire structures. Using the three-dimensional finite-difference time domain simulation, we demonstrate that the nanowire structures can be designed to inhibit the emission of guided modes and redirect trapped light into radiated modes. A light extraction efficiency of more than 70% can, in principle, be achieved by carefully optimizing the nanowire size, nanowire spacing, and p-GaN thickness.

  13. Improvement of light extraction efficiency and reduction of driving voltage in organic light emitting diodes using a plasmonic crystal

    SciTech Connect

    Okamoto, Takayuki; Shinotsuka, Kei

    2014-03-03

    Two-dimensional periodic corrugation was introduced into the surface of metallic cathodes of organic light-emitting diodes (OLEDs) to extract surface plasmon energy, which is trapped in that surface, as free-space photons. The dependence of the improvement factor of the emission efficiency on the modulation depth of the corrugation was systematically investigated. The corrugation was fabricated by using a colloidal lithography technique, which can be easily applied to a wide area. The obtained maximum improvement factor in current efficiency was 1.67 for an OLED with a 40 nm modulation depth, whereas the improvement in power efficiency was 2.35 for an OLED with a 60 nm modulation depth. We attributed the former improvement factor purely to optical effects and the latter to both optical and electrical effects, namely, a reduction of the electrical resistance of the organic layers due to the introduced corrugation.

  14. Comparative Study of Lettuce and Radish Grown Under Red and Blue Light-Emitting Diodes (LEDs) and White Fluorescent Lamps

    NASA Technical Reports Server (NTRS)

    Mickens, Matthew A.

    2012-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-term missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop production, there have also been recent interests in analyzing the subtle effects of green light on plant growth, and to determine if it serves as a source of growth enhancement or suppression. A comparative study was performed on two short cycle crops of lettuce (Outredgeous) and radish (Cherry Bomb) grown under two light treatments. The first treatment being red and blue LEDs, and the second treatment consisting of white fluorescent lamps which contain a portion of green light. In addition to comparing biomass production, physiological characterizations were conducted on how the light treatments influence morphology, water use, chlorophyll content, and the production of A TP within plant tissues.

  15. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach

    NASA Astrophysics Data System (ADS)

    Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Duvenaud, David; MacLaurin, Dougal; Blood-Forsythe, Martin A.; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P.; Aspuru-Guzik, Alán

    2016-10-01

    Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.

  16. Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound

    NASA Astrophysics Data System (ADS)

    Yuan, Guangqian; Alqasemi, Umar; Chen, Aaron; Yang, Yi; Zhu, Quing

    2014-12-01

    Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions.

  17. Electronic properties of anthracene derivatives for blue light emitting electroluminescent layers in organic light emitting diodes: a density functional theory study.

    PubMed

    Raghunath, P; Reddy, M Ananth; Gouri, C; Bhanuprakash, K; Rao, V Jayathirtha

    2006-01-26

    Molecular level parameters are investigated computationally to understand the factors that are responsible for the higher efficiency in derivatives of 9,10-bis(1-naphthyl)anthracene (alpha-ADN), 9,10-bis(2-naphthyl)anthracene (beta-ADN), their tetramethyl derivatives (alpha,beta-TMADN) and the t-Bu derivative (beta-TBADN) as blue light emitting electroluminescent (EL) layers in organic light emitting diodes (OLEDs). DFT studies at the B3LYP/6-31G(d,p) level have been carried out on the substituted anthracenes. The absorption spectra are simulated using time dependent DFT methods (TD-DFT) whereas the emission spectra are approximated by optimizing the excited state by HF/CI-Singles and then carrying out the vertical CI calculations by the TD-DFT method. The reorganization energy for estimating the hole and electron transport is calculated. The transfer integrals between parallely stacked molecules in the bulk state are estimated by calculating the electronic splitting. The substituted anthracenes are compared with unsubstituted anthracene and yet untested 9,10-dianthrylanthracene (TANTH). A larger and slower buildup of the electrons and holes in the EL layer, due to the higher reorganization energy and smaller electronic coupling between the adjacent molecules could lead to an increase in hole-electron recombination in the layer and thus increase the efficiency.

  18. A multi-zoned white organic light-emitting diode with high CRI and low color temperature

    PubMed Central

    Zhang, Tao; He, Shou-Jie; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong

    2016-01-01

    White organic light emitting diodes (WOLEDs) is becoming a new platform technology for a range of applications such as flat-panel displays, solid-state lightings etc., and are under intensive research. For general solid-state illumination applications, a WOLED’s color rendering index (CRI) and correlated color temperature (CCT) are two crucial parameters. This paper reports that WOLED device structures can be constructed using four stacked emission layers which independently emit lights at blue, green, yellow and red color respectively. The intensity of each emission layer is then engineered by funneling excitons to the targeted emission layer to achieve an ultrahigh 92 CRI at 5000 cd/m2, and to reduce CCT to below 2500 K. PMID:26842934

  19. Novel samarium/erbium and samarium/terbium codoped glass phosphor for application in warm white light-emitting-diode

    NASA Astrophysics Data System (ADS)

    da Silva, Cosmo M.; Gouveia-Neto, Artur S.; Bueno, Luciano A.

    2014-02-01

    Tunable polychromatic light emission within the low color correlated temperature range was produced using terbiumand/ or erbium-samarium co-doped PbGeO3:PbF2:CdF2 glass phosphor. The phosphors were synthesized, and their luminescence characteristics were examined under UV-blue light-emitting-diode laser excitation. Luminescence emission around 490, 545, 600, and 645 nm in Tb3+/Sm3+ and 525, 545, 600, and 645 nm in Er3+/Sm3+ co-doped phosphor was obtained and analyzed as a function of the active ions concentration, and excitation wavelength. Color tunability in the red-orange-yellow-green region was achieved combining of Tb3+, Er3+, and Sm3+ ions contents. Results suggest that the color-tunable polychromatic light emitter phosphor herein reported is a promising novel candidate for application in cold white-light LED-based illumination technology

  20. Demonstration Assessment of Light-Emitting Diode (LED) Retrofit Lamps at the Lobby of the Bonneville Power Administration, Portland, OR

    SciTech Connect

    Miller, Naomi

    2011-07-01

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in the lobby of the Bonneville Power Administration (BPA) headquarters building in Portland, Oregon. The project involved a simple retrofit of 32 track lights used to illuminate historical black-and-white photos and printed color posters from the 1930s and 1940s. BPA is a federal power marketing agency in the Northwestern United States, and selected this prominent location to demonstrate energy efficient light-emitting diode (LED) retrofit options that not only can reduce the electric bill for their customers but also provide attractive alternatives to conventional products, in this case accent lighting for BPA's historical artwork.

  1. Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors.

    PubMed

    Lee, Ya-Ju; Yang, Zu-Po; Chen, Pin-Guang; Hsieh, Yung-An; Yao, Yung-Chi; Liao, Ming-Han; Lee, Min-Hung; Wang, Mei-Tan; Hwang, Jung-Min

    2014-10-20

    In this study, we report a novel monolithically integrated GaN-based light-emitting diode (LED) with metal-oxide-semiconductor field-effect transistor (MOSFET). Without additionally introducing complicated epitaxial structures for transistors, the MOSFET is directly fabricated on the exposed n-type GaN layer of the LED after dry etching, and serially connected to the LED through standard semiconductor-manufacturing technologies. Such monolithically integrated LED/MOSFET device is able to circumvent undesirable issues that might be faced by other kinds of integration schemes by growing a transistor on an LED or vice versa. For the performances of resulting device, our monolithically integrated LED/MOSFET device exhibits good characteristics in the modulation of gate voltage and good capability of driving injected current, which are essential for the important applications such as smart lighting, interconnection, and optical communication.

  2. Color-conversion efficiency enhancement of quantum dots via selective area nano-rods light-emitting diodes.

    PubMed

    Liu, Che-Yu; Chen, Tzu-Pei; Kao, Tsung Sheng; Huang, Jhih-Kai; Kuo, Hao-Chung; Chen, Yang-Fang; Chang, Chun-Yen

    2016-08-22

    A large enhancement of color-conversion efficiency of colloidal quantum dots in light-emitting diodes (LEDs) with novel structures of nanorods embedded in microholes has been demonstrated. Via the integration of nano-imprint and photolithography technologies, nanorods structures can be fabricated at specific locations, generating functional nanostructured LEDs for high-efficiency performance. With the novel structured LED, the color-conversion efficiency of the existing quantum dots can be enhanced by up to 32.4%. The underlying mechanisms can be attributed to the enhanced light extraction and non-radiative energy transfer, characterized by conducting a series of electroluminescence and time-resolved photoluminescence measurements. This hybrid nanostructured device therefore exhibits a great potential for the application of multi-color lighting sources.

  3. Nano-light-emitting-diodes based on InGaN mesoscopic structures for energy saving optoelectronics

    NASA Astrophysics Data System (ADS)

    Mikulics, M.; Winden, A.; Marso, M.; Moonshiram, A.; Lüth, H.; Grützmacher, D.; Hardtdegen, H.

    2016-07-01

    Vertically integrated III-nitride based nano-LEDs (light emitting diodes) were designed and fabricated for operation in the telecommunication wavelength range in the (p-GaN/InGaN/n-GaN/sapphire) material system. The band edge luminescence energy of the nano-LEDs could be engineered by tuning the composition and size of the InGaN mesoscopic structures. Narrow band edge photoluminescence and electroluminescence were observed. Our mesoscopic InGaN structures (depending on diameter) feature a very low power consumption in the range between 2 nW and 30 nW. The suitability of the technological process for the long-term operation of LEDs is demonstrated by reliability measurements. The optical and electrical characterization presented show strong potential for future low energy consumption optoelectronics.

  4. Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting at U.S. Department of Labor Headquarters

    SciTech Connect

    Kinzey, Bruce R.; Myer, Michael

    2013-03-01

    This report documents a solid-state lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL) Headquarters in Washington, DC, in which light-emitting diode (LED) luminaires were substituted for the incumbent high-pressure sodium (HPS) luminaires and evaluated for relative light quantity and performance. The demonstration results show energy savings of 52% from the initial conversion of HPS to the LED product. These savings were increased to 88% by using occupancy sensor controls that were ultimately set to reduce power to 10% of high state operation after a time delay of 2.5 minutes. Because of the relatively high cost of the LED luminaires at their time of purchase for this project (2010), the simple payback periods were 6.5 years and 4.9 years for retrofit and new construction scenarios, respectively. Staff at DOL Headquarters reported high satisfaction with the operation of the LED product.

  5. Methods and apparatus of spatially resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)

    2008-01-01

    A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.

  6. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City

    SciTech Connect

    Myer, Michael; Goettel, Russell T.; Kinzey, Bruce R.

    2012-09-30

    A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide post-top luminaire. This report reviews the energy savings potential and lighting delivered by the LED post-top luminaires.

  7. Light-Emitting Diodes with Hierarchical and Multifunctional Surface Structures for High Light Extraction and an Antifouling Effect.

    PubMed

    Leem, Young-Chul; Park, Jung Su; Kim, Joon Heon; Myoung, NoSoung; Yim, Sang-Youp; Jeong, Sehee; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju

    2016-01-13

    Bioinspired hierarchical structures on the surface of vertical light-emitting diodes (VLEDs) are demonstrated by combining a self-assembled dip-coating process and nanopatterning transfer method using thermal release tape. This versatile surface structure can efficiently reduce the total internal reflection and add functions, such as superhydrophobicity and high oleophobicity, to achieve an antifouling effect for VLEDs.

  8. 77 FR 45377 - Certain Light-Emitting Diodes and Products Containing the Same; Notice of Request for Statements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ...Notice is hereby given that the presiding administrative law judge has issued a Final Initial Determination and a Recommended Determination on Remedy and Bonding in the above-captioned investigation. The Commission is soliciting comments on public interest issues raised by the recommended relief, specifically, a limited exclusion order (``LEO'') against light-emitting diodes (``LEDs'') found......

  9. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    ERIC Educational Resources Information Center

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  10. Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing

    PubMed Central

    Choi, Moon Kee; Yang, Jiwoong; Kang, Kwanghun; Kim, Dong Chan; Choi, Changsoon; Park, Chaneui; Kim, Seok Joo; Chae, Sue In; Kim, Tae-Ho; Kim, Ji Hoon; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2015-01-01

    Deformable full-colour light-emitting diodes with ultrafine pixels are essential for wearable electronics, which requires the conformal integration on curvilinear surface as well as retina-like high-definition displays. However, there are remaining challenges in terms of polychromatic configuration, electroluminescence efficiency and/or multidirectional deformability. Here we present ultra-thin, wearable colloidal quantum dot light-emitting diode arrays utilizing the intaglio transfer printing technique, which allows the alignment of red–green–blue pixels with high resolutions up to 2,460 pixels per inch. This technique is readily scalable and adaptable for low-voltage-driven pixelated white quantum dot light-emitting diodes and electronic tattoos, showing the best electroluminescence performance (14,000 cd m−2 at 7 V) among the wearable light-emitting diodes reported up to date. The device performance is stable on flat, curved and convoluted surfaces under mechanical deformations such as bending, crumpling and wrinkling. These deformable device arrays highlight new possibilities for integrating high-definition full-colour displays in wearable electronics. PMID:25971194

  11. A Simple, Small-Scale Lego Colorimeter with a Light-Emitting Diode (LED) Used as Detector

    ERIC Educational Resources Information Center

    Asheim, Jonas; Kvittingen, Eivind V.; Kvittingen, Lise; Verley, Richard

    2014-01-01

    This article describes how to construct a simple, inexpensive, and robust colorimeter from a few Lego bricks, in which one light-emitting diode (LED) is used as a light source and a second LED as a light detector. The colorimeter is suited to various grades and curricula.

  12. Effect of halogenated impurities on lifetime of organic light emitting diode

    NASA Astrophysics Data System (ADS)

    Yamawaki, Hayato; Suzuki, Kunihiko; Kubota, Tomohiro; Watabe, Takeyoshi; Ishigaki, Ayumi; Nakamura, Rina; Inoue, Hideko; Nakashima, Harue; Horikoshi, Nozomi; Nowatari, Hiromi; Kataishi, Riho; Hamada, Toshiki; Sasaki, Toshiki; Suzuki, Tsunenori; Seo, Satoshi

    2016-09-01

    We investigated a correlation between lifetime and the halogen element concentration in an organic light-emitting diode (OLED) and conducted experiments and simulations to discuss degradation mechanisms due to the halogen. OELD is generally formed of high-purity materials. Since the synthesis of high-purity materials takes time and cost, quantitative understanding of the kind, amount, and influence of impurities in OLED devices is expected. The results of combustion ion chromatography show that, if the chlorine concentration in the host material is more than several parts per million, the lifetime of the device is drastically reduced. The chlorine element, which is derived from the chlorinated by-product of the host material, is found to be transferred from the chloride to other materials (e.g., an emissive dopant) according to the results of LC-MS analysis. In addition, the electron transport layer including such impurities is also found to adversely affect the lifetime. The results of TOF-SIMS analysis suggest that the dissociated chlorine element diffuse to the light-emitting layer side when the device is driven. The results of simulations (Gaussian 09) and electrochemical analyses (cyclic voltammetry and electrolysis) reveal that the halogen element is easy to dissociate from halide by excitation or reduction. The halogen element can repeat reactions with the peripheral materials by excitation or reduction and cause damages, e.g., generate radicals or further reaction products due to the radicals. The results of simulation suggest that, such compounds have low energy level and become quenchers.

  13. n-ZnO/p-GaN heterojunction light-emitting diodes featuring a buried polarization-induced tunneling junction

    NASA Astrophysics Data System (ADS)

    Li, Ling; Zhang, Yuantao; Yan, Long; Jiang, Junyan; Han, Xu; Deng, Gaoqiang; Chi, Chen; Song, Junfeng

    2016-12-01

    n-ZnO/p-GaN heterojunction light-emitting diodes with a p-GaN/Al0.1Ga0.9N/n+-GaN polarization-induced tunneling junction (PITJ) were fabricated by metal-organic chemical vapor deposition. An intense and sharp ultraviolet emission centered at ˜396 nm was observed under forward bias. Compared with the n-ZnO/p-GaN reference diode without PITJ, the light intensity of the proposed diode is increased by ˜1.4-folds due to the improved current spreading. More importantly, the studied diode operates continuously for eight hours with the decay of only ˜3.5% under 20 mA, suggesting a remarkable operating stability. The results demonstrate the feasibility of using PITJ as hole injection layer for high-performance ZnO-based light-emitting devices.

  14. Effect of light emitting diode (LED) therapy on the survival of photoreceptors following argon laser injury

    NASA Astrophysics Data System (ADS)

    DiCarlo, Cheryl D.; Brown, Jeremiah; Hacker, Henry D.; Cheramie, Rachel; Schuschereba, Steven; Valo, Lynn; Clarkson, Donna R.; Sankovich, James; Zwick, Harry; Lund, David J.; Stuck, Bruce E.

    2005-04-01

    Due to the increasing number of optic systems that military personnel are exposed, the development of countermeasures for laser eye injury is of significant concern. Recent reports in the literature suggest some benefit form the use of Light Emitting Diode (LED) therapy on the retina that received a toxic insult. The purpose of this study was to compare retinal cell survival and multifocal electroretinography (mfERG) in a laser retinal injury model following treatment with LED photoillumination. Control and LED array (670 nm) illuminated cynomolgus monkeys received macular Argon laser lesions (514 nm, 130 mW, 100 ms). LED array exposure was accomplished for 4 days for a total dose of 4 J/cm2 per day. Baseline and post-laser exposure mfERGs were performed on most of the subjects. Ocular tissues were collected from four animals at Day 4 poast laser exposure and from two animals at 4 months post laser exposure. The tissues were processed for plastic embedding. Retinal cell counts were performed on the lesion sections. Analysis of Variance (ANOVA) results yielded no significant difference in the sparing of photoreceptors, inner nuclear and ganglion cells between the control and LED illuminated subjects. Although pathology showed no significant support for diode therapy, our early mfERG observations previously reported suggested a more rapid functional recovery. Since there is still no uniform therapy for laser retinal injury, research is continuing to determine novel therapies that may provide retinal cell sparing and functional retinal return.

  15. GaN-based light-emitting diodes suitable for white light

    NASA Astrophysics Data System (ADS)

    Mukai, Takashi; Yamada, Motokazu; Mitani, Tomotsugu; Narukawa, Yukio; Shioji, Shuji; Niki, Isamu; Sonobe, Shin-ya; Izuno, Kunihiro; Suenaga, Ryoma

    2003-07-01

    High-efficient light emitting diodes (LEDs) emitting red, amber, green, blue and ultraviolet light have been obtained through the use of an InGaN active layers. The localized energy states caused by In composition fluctuation in the InGaN active layer seem to be related to the high efficiency of the InGaN-based emitting devices in spite of having a large number of threading dislocations (TDs). InGaN single-quantum-well-structure blue LEDs were grown on epitaxially laterally overgrown GaN (ELOG) and sapphire substrates. The characteristics of both LEDs was almost same. These results indicate that the dislocation doesn't affect the efficiency practically. Recently, the development of high-power light source using GaN-based LEDs has become active. In such high-power LEDs, the density of forward current is much higher than that of past LEDs. Therefore, an advantage of carrier localization in InGaN active layer becomes small, because of band filling under high injection level. This means that reducing the density of TDs becomes important, just like GaN-based laser diodes. Also, we show recent results of GaN-based LEDs.

  16. Bipolar charge and current distributions in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Scott, J. C.; Karg, S.; Carter, S. A.

    1997-08-01

    The electron and hole charge distributions and the luminance profile in organic light-emitting diodes (OLEDs) depend upon the bulk properties of the emissive layer, as well as on the injection characteristics at the anode and cathode interfaces. We address the problem of separating the relative contributions of hole injection, electron injection, and recombination to the overall performance of single layer OLED devices. Using the approach of Parmenter and Ruppel [J. Appl. Phys. 30, 1548 (1959)], and including Langevin recombination, expressions are derived for the current-voltage and radiance-current dependencies in terms of electron and hole mobility, luminescence yield, and a "current balance" factor. When one carrier dominates the current flow, as in many practical cases, it is possible to obtain a simple asymptotic relationship which permits a test of the assumptions required to obtain the analytic solution. Experimental data from poly(2-methoxy-5(2'-ethyl)hexoxy-phenylenevinylene) diodes fabricated with various anode and cathode materials are evaluated in the context of this analytical approach.

  17. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting in Leavenworth, KS

    SciTech Connect

    Myer, Michael; Kinzey, Bruce R.; Curry, Ku'uipo

    2011-05-06

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a commercial parking lot lighting application, under the U.S. Department of Energy (DOE) Solid-State Lighting Technology GATEWAY Demonstration Program. The parking lot is for customers and employees of a Walmart Supercenter in Leavenworth, Kansas and this installation represents the first use of the LED Parking Lot Performance Specification developed by the DOE’s Commercial Building Energy Alliance. The application is a parking lot covering more than a half million square feet, lighted primarily by light-emitting diodes (LEDs). Metal halide wall packs were installed along the building facade. This site is new construction, so the installed baseline(s) were hypothetical designs. It was acknowledged early on that deviating from Walmart’s typical design would reduce the illuminance on the site. Walmart primarily uses 1000W pulse-start metal halide (PMH) lamps. In order to provide a comparison between both typical design and a design using conventional luminaires providing a lower illuminance, a 400W PMH design was also considered. As mentioned already, the illuminance would be reduced by shifting from the PMH system to the LED system. The Illuminating Engineering Society of North America (IES) provides recommended minimum illuminance values for parking lots. All designs exceeded the recommended illuminance values in IES RP-20, some by a wider margin than others. Energy savings from installing the LED system compared to the different PMH systems varied. Compared to the 1000W PMH system, the LED system would save 63 percent of the energy. However, this corresponds to a 68 percent reduction in illuminance as well. In comparison to the 400W PMH system, the LED system would save 44 percent of the energy and provide similar minimum illuminance values at the time of relamping. The LED system cost more than either of the PMH systems when comparing initial costs

  18. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes

    SciTech Connect

    Blochwitz-Nimoth, Jan; Bhandari, Abhinav; Boesch, Damien; Fincher, Curtis R.; Gaspar, Daniel J.; Gotthold, David W.; Greiner, Mark T.; Kido, Junji; Kondakov, Denis; Korotkov, Roman; Krylova, Valentina A.; Loeser, Falk; Lu, Min-Hao; Lu, Zheng-Hong; Lussem, Bjorn; Moro, Lorenza; Padmaperuma, Asanga B.; Polikarpov, Evgueni; Rostovtsev, Vsevolod V.; Sasabe, Hisahiro; Silverman, Gary; Thompson, Mark E.; Tietze, Max; Tyan, Yuan-Sheng; Weaver, Michael; Xin , Xu; Zeng, Xianghui

    2015-05-26

    What is an organic light emitting diode (OLED)? Why should we care? What are they made of? How are they made? What are the challenges in seeing these devices enter the marketplace in various applications? These are the questions we hope to answer in this book, at a level suitable for knowledgeable non-experts, graduate students and scientists and engineers working in the field who want to understand the broader context of their work. At the most basic level, an OLED is a promising new technology composed of some organic material sandwiched between two electrodes. When current is passed through the device, light is emitted. The stack of layers can be very thin and has many variations, including flexible and/or transparent. The organic material can be polymeric or composed small molecules, and may include inorganic components. The electrodes may consist of metals, metal oxides, carbon nanomaterials, or other species, though of course for light to be emitted, one electrode must be transparent. OLEDs may be fabricated on glass, metal foils, or polymer sheets (though polymeric substrates must be modified to protect the organic material from moisture or oxygen). In any event, the organic material must be protected from moisture during storage and operation. A control circuit, the exact nature of which depends on the application, drives the OLED. Nevertheless, the control circuit should have very stable current control to generate uniform light emission. OLEDs can be designed to emit a single color of light, white light, or even tunable colors. The devices can be switched on and off very rapidly, which makes them suitable for displays or for general lighting. Given the amazing complexity of the technical and design challenges for practical OLED applications, it is not surprising that applications are still somewhat limited. Although organic electroluminescence is more than 50 years old, the modern OLED field is really only about half that age – with the first high

  19. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics

    PubMed Central

    Allen, Thomas J.; Beard, Paul C.

    2016-01-01

    The use of visible light emitting diodes (LEDs) as an alternative to Q-switched lasers conventionally used as photoacoustic excitation sources has been explored. In common with laser diodes, LEDs offer the advantages of compact size, low cost and high efficiency. However, laser diodes suitable for pulsed photoacoustic generation are typically available only at wavelengths greater than 750nm. By contrast, LEDs are readily available at visible wavelengths below 650nm where haemoglobin absorption is significantly higher, offering the prospect of increased SNR for superficial vascular imaging applications. To demonstrate feasibility, a range of low cost commercially available LEDs operating in the 420-620nm spectral range were used to generate photoacoustic signals in physiologically realistic vascular phantoms. Overdriving with 200ns pulses and operating at a low duty cycle enabled pulse energies up to 10µJ to be obtained with a 620nm LED. By operating at a high pulse repetition frequency (PRF) in order to rapidly signal average over many acquisitions, this pulse energy was sufficient to generate detectable signals in a blood filled tube immersed in an Intralipid suspension (µs’ = 1mm−1) at a depth of 15mm using widefield illumination. In addition, a compact four-wavelength LED (460nm, 530nm, 590nm, 620nm) in conjunction with a coded excitation scheme was used to illustrate rapid multiwavelength signal acquisition for spectroscopic applications. This study demonstrates that LEDs could find application as inexpensive and compact multiwavelength photoacoustic excitation sources for imaging superficial vascular anatomy. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. PMID:27446652

  20. Increased light extraction and directional emission control in gallium nitride photonic crystal light emitting diodes

    NASA Astrophysics Data System (ADS)

    McGroddy, Kelly C.

    GaN has become the prominent material for blue-green light emitting diodes (LEDs) and efficient white light sources. Advancements in LED efficiency for lighting has the potential to dramatically impact energy consumption world wide. A limiting factor to achieving high efficiencies in GaN LEDs is the light extraction efficiency. This work addresses many key issues pertaining to the use of PhCs to increase the extraction efficiency and emission directionality of GaN LEDs. Limitations in extraction efficiency of GaN photonic crystal light emitting diodes (LEDs) are addressed by implementing an LED design using both 2D photonic crystals (PhCs) in-plane and index guiding layers (IGLs) in the vertical direction. The effects of PhCs on light extraction and emission directionality from GaN LEDs are studied experimentally. Angular resolved electroluminescence clearly shows the combined effect of controlling the vertical mode profile with the IGLs and tailoring the emission profile with the periodicity of the PhC lattice. Various materials are used to increase the index contrast of the IGL and the effects are measured. Increases in vertical emission as high as 3.5x are achieved for PhC LEDs with an Al0.12Ga0.88N IGL over non-PhC LEDs with a ˜30% improvement attributed to the incorporation of the AlGaN IGL. This enhancement is achieved by tailoring both the directionality and guided mode control. The impact of incorporating PhCs and IGLs on LED device design and performance are addressed. Effects of etching the PhCs near the QWs have been observed and explanations for this behavior will be discussed. It will be shown that an un-doped IGL can severely limit current spreading in the n-type side of the device and have a detrimental impact on device performance. Finally, a method of patterning PhCs with periodicities as small as 230nm by laser interference lithography and imprint lithography has been developed to provide a fast, inexpensive method of pattering PhCs over large

  1. Improvements to III-nitride light-emitting diodes through characterization and material growth

    NASA Astrophysics Data System (ADS)

    Getty, Amorette Rose Klug

    A variety of experiments were conducted to improve or aid the improvement of the efficiency of III-nitride light-emitting diodes (LEDs), which are a critical area of research for multiple applications, including high-efficiency solid state lighting. To enhance the light extraction in ultraviolet LEDs grown on SiC substrates, a distributed Bragg reflector (DBR) optimized for operation in the range from 250 to 280 nm has been developed using MBE growth techniques. The best devices had a peak reflectivity of 80% with 19.5 periods, which is acceptable for the intended application. DBR surfaces were sufficiently smooth for subsequent epitaxy of the LED device. During the course of this work, pros and cons of AlGaN growth techniques, including analog versus digital alloying, were examined. This work highlighted a need for more accurate values of the refractive index of high-Al-content AlxGa1-xNin the UV wavelength range. We present refractive index results for a wide variety of materials pertinent to the fabrication of optical III-nitride devices. Characterization was done using Variable-Angle Spectroscopic Ellipsometry. The three binary nitrides, and all three ternaries, have been characterized to a greater or lesser extent depending on material compositions available. Semi-transparent p-contact materials and other thin metals for reflecting contacts have been examined to allow optimization of deposition conditions and to allow highly accurate modeling of the behavior of light within these devices. Standard substrate materials have also been characterized for completeness and as an indicator of the accuracy of our modeling technique. We have demonstrated a new technique for estimating the internal quantum efficiency (IQE) of nitride light-emitting diodes. This method is advantageous over the standard low-temperature photoluminescence-based method of estimating IQE, as the new method is conducted under the same conditions as normal device operation. We have developed

  2. Organic light-emitting diodes incorporating nanometer thick films of europium-cored complexes

    NASA Astrophysics Data System (ADS)

    Phelan, Gregory D.; Carlson, Brenden; Jiang, Xuezhong; Jen, Alex K. Y.; Dalton, Larry R.

    2002-11-01

    Europium cored complexes may be used as a source of red emission in light emitting diodes. Novel europium cored complexes have been synthesized and incorporated into organic light emitting diodes (OLED's). These complexes emit red light at 615 nm with a full width half maximum (FWHM) of less than 5 nm. The europium complexes consist of one equivalent of europium chelated to three equivalents of a nonsymmetrical β-diketone ligand. The Claissen condensation of a polycyclic aromatic sensitizer and an ester of a fluorinated carboxylic acid create the ligands. The use of a sensitizer such as phenanthrene results in a ligand that has an emission band that directly overlaps with the absorption band of europium. The use of fluorinated chains improves the overall processibility as well as the charge transfer capability of the resulting metal cored complex. The europium core is further encapsulated by the inclusion of an additional polycyclic aromatic compound such as 4, 7 diphenyl - 1, 10 phenanthroline. Emission of 615 nm light is accomplished through excitation of the ligand and efficient Forrester energy transfer to the europium complex. A multiple layer device consisting of a substrate of indium tin oxide, followed by thin layers of BTPD-PFCB (with a thickness of 20nm), a polymer blend containing the europium complex (30 nm), followed by a layer of calcium (50nm) and finally a protective layer of silver (120 nm). The polymer blends were either poly(n-vinyl carbazole)(PVK) or poly vinyl naphthalene (PVN). The device performance was further improved by the incorporation of another lanthanide metal complex. These complexes were based upon similar ligands surrounding gadolinium. In these devices, there is a Dexter energy transfer as well as the Forster energy transfer. For the devices that are based on a PVN:PBD as a polymer host, the lowest turn on voltage was 12.0 volts. The devices that use PVK:TPD devices was 178 cd/m2 with an external quantum efficiency of 0.61%.For

  3. Synthesis, characterization and properties of novel blue light emitting discrete π-functional polymer consisting of carbazole and anthracene units and their applications in polymer light emitting diodes

    NASA Astrophysics Data System (ADS)

    Gopal, Ram; Huang, Yi-Chiang; Lee, Hsu-Feng; Chang, Ming-Sien; Huang, Wen-Yao

    2017-03-01

    A new novel blue light emitting polymer containing carbazole and anthracene derivatives has been successfully synthesized via polycondensation chemical reaction of diol and difluoro monomers. An effort has been made to raise the band gap of blue light emitter by lowering the conjugation extent in the backbone. The synthesized blue polymer exhibits decent solubility, good process ability, high thermal stability, high glass transition temperature (272 °C) and the decomposition temperature of 358 °C. The UV-vis absorption spectra and photoluminescence spectra depict that the light emission lies in blue region. The solid state photoluminescence (PL) spectra of the polymer (λPL=456 nm) shows red shift (Δλ = 37 nm) as compared with the corresponding solution PL spectra, presumably due to lower intermolecular distance in solid state. The multi-layered polymer light emitting diode was fabricated, using blue polymer with ITO/PEDOT: PSS/BP/LiF/Al architecture. The luminance-voltage (L-V) and current density-voltage (J-V) curves show a maximum luminance of 7544 cd m-2, a maximum emission efficiency of 4.2 cd A-1, a maximum current density of 453 mA cm-2 at a turn-on voltage of 4.5 V. Moreover, the PLED instigate pure blue EL emission, stable at 436 nm with outstanding CIE coordinates of (x = 0.15, y = 0.08), which is close to the pure NTSC blue coordinates of (0.14, 0.08). [Figure not available: see fulltext.

  4. Development of ultraviolet electroabsorption modulators and light emitting diodes based on AlGaN alloys

    NASA Astrophysics Data System (ADS)

    Kao, Chen-Kai

    The research in this dissertation addressed the development of ultraviolet (UV) electroabsorption modulators and ultraviolet light emitting diodes (UV-LEDs), covering the spectral range from 360 to 265 nm. The materials system for both types of devices is the AlGaN alloys, either in bulk or quantum well (QW) form, grown by plasma-assisted molecular beam epitaxy (MBE). Potential applications of these devices either individually or in combination include UV non-line-of-sight free-space-optical communications, UV sensing and spectroscopic systems, Q-switched pulsed lasers, water/air purification and various medical applications. Optical modulators based on cubic III-V semiconductors have been the subject of extensive research over the past several years. Such devices are typically based on the quantum-confined Stark effect to modify the absorption spectrum of multiple-quantum-well active regions. On the other hand, in wurtzite III-Nitride semiconductors, strong electric fields are already present in the quantum wells due to intrinsic and piezoelectric polarizations; as a result, an even greater change in absorption is achievable, especially if the internal fields are compensated by the external bias so that the net field in the quantum wells is reduced. A number of UV electroabsorption modulators based on Schottky barriers on bulk GaN and GaN /AlGaN multiple quantum wells (MQWs) were designed, fabricated and characterized. Record modulation ratio of 30 % was obtained from bulk GaN Schottky barrier modulators at the excitonic resonant energy of 3.45 eV (360 nm) upon the application of 12 V reverse bias. Similarly, record modulation ratio of 43% was obtained from GaN / AlGaN MQWs Schottky barrier modulators at the excitonic resonant energy of 3.48 eV (356 nm) upon the application of 17 V reverse bias. The external quantum efficiency (EQE) of AlGaN based deep UV LEDS is relatively low (˜1% at 270 nm). This is generally attributed to the poor internal quantum efficiency

  5. Effect of Hole Mobility Through Emissive Layer on Temporal Stability of Blue Organic Light-Emitting Diodes

    SciTech Connect

    Culligan, S.W.; Chen, A.C.-A.; Wallace, J.U.; Klubek, K.P.; Tang, C.W.; Chen, S.H.

    2006-07-13

    Light-emitting conjugated oligomers comprising anthracene, naphthalene, and fluorene units have been synthesized to investigate three configurations of blue organic light-emitting diodes (OLEDs) that are designed to identify the origins of device instablilty. The transient OLED technique is employed to measure hole mobilities, which are found to be 3.1 x 10^-4, 8.9 x 10^-5, and 3.6 x 10^-5 cm^2V^-1s^-1 for three different blue-light-emitting model compounds with varying fluorene content. A higher hole mobility through the emissive layer results in a wider recombination zone, which, in turn, is responsible for a longer device lifetime and a lower drive voltage at the expense of luminance yield.

  6. Color tuning of light-emitting-diodes by modulating the concentration of red-emitting silicon nanocrystal phosphors

    SciTech Connect

    Barillaro, G. Strambini, L. M.

    2014-03-03

    Luminescent forms of nanostructured silicon have received significant attention in the context of quantum-confined light-emitting devices thanks to size-tunable emission wavelength and high-intensity photoluminescence, as well as natural abundance, low cost, and non-toxicity. Here, we show that red-emitting silicon nanocrystal (SiN) phosphors, obtained by electrochemical erosion of silicon, allow for effectively tuning the color of commercial light-emitting-diodes (LEDs) from blue to violet, magenta, and red, by coating the LED with polydimethylsiloxane encapsulating different SiN concentrations. High reliability of the tuning process, with respect to SiN fabrication and concentration, and excellent stability of the tuning color, with respect to LED bias current, is demonstrated through simultaneous electrical/optical characterization of SiN-modified commercial LEDs, thus envisaging exciting perspectives for silicon nanocrystals in the field of light-emitting applications.

  7. Fabrication and optimization of phosphorescent organic light emitting diodes for solid-state lighting applications

    NASA Astrophysics Data System (ADS)

    Bhansali, Unnat S.

    Organic Light Emitting Diodes (OLEDs) have made tremendous progress over the last decade and are under consideration for use as solid-state lighting sources to replace the existing incandescent and fluorescent technology. Use of metal-organic phosphorescent complexes as bright emitters and efficient charge transporting organic semiconductors has resulted in OLEDs with internal quantum efficiency ˜ 100% and power efficiency ˜100 lm/W (green OLEDs) at 1000 cd/m2. For lighting applications, white OLEDs (WOLEDs) are required to have a color rendering index (CRI) > 80, correlated color temperature (CCT) (2700 ≤ WOLEDs ≤ 6500 °K), power efficiency > 100 lm/W and a lifetime > 25,000 hrs (at 70% of its original lumen value) at a brightness of 1000 cd/m2. Typically, high CRIs and high power efficiencies are obtained by either a combination of a blue fluorescent emitter with green and red phosphorescent emitters or a stack of blue, green and red phosphorescent emitters doped in a host material. In this work, we implement a single-emitter WOLEDs (SWOLEDs) approach by using monomer (blue) and broad excimer emissions (green and orange) from a self-sensitizing Pt-based phosphorescent complex, designed and synthesized by Prof. M.A. Omary's group. We have optimized and demonstrated high efficiency turquoise-blue OLEDs from monomer emission of Pt(ptp)2-bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) doped in a phosphine-oxide based host molecule and an electron transport molecule. The device peak power efficiency and external quantum efficiency were maintained >40 lm/W and >11%, respectively throughout the wide range of dopant concentrations (1% to 10%). A monotonic increase in the excimer/monomer emission intensity ratio is observed at the higher doping concentrations within 1%-10%, causing a small green-shift in the color. The peak performance of 60 -- 70 lm/W for the best optimized device represents the highest power efficiency known to date for blue OLEDs. Typically

  8. Nanocavity Integrated van der Waals Heterostructure Light-Emitting Tunneling Diode.

    PubMed

    Liu, Chang-Hua; Clark, Genevieve; Fryett, Taylor; Wu, Sanfeng; Zheng, Jiajiu; Hatami, Fariba; Xu, Xiaodong; Majumdar, Arka

    2017-01-11

    Developing a nanoscale, integrable, and electrically pumped single mode light source is an essential step toward on-chip optical information technologies and sensors. Here, we demonstrate nanocavity enhanced electroluminescence in van der Waals heterostructures (vdWhs) at room temperature. The vertically assembled light-emitting device uses graphene/boron nitride as top and bottom tunneling contacts and monolayer WSe2 as an active light emitter. By integrating a photonic crystal cavity on top of the vdWh, we observe the electroluminescence is locally enhanced (>4 times) by the nanocavity. The emission at the cavity resonance is single mode and highly linearly polarized (84%) along the cavity mode. By applying voltage pulses, we demonstrate direct modulation of this single mode electroluminescence at a speed of ∼1 MHz, which is faster than most of the planar optoelectronics based on transition metal chalcogenides (TMDCs). Our work shows that cavity integrated vdWhs present a promising nanoscale optoelectronic platform.

  9. Red-emitting fluorescent organic light emitting diodes with low sensitivity to self-quenching

    NASA Astrophysics Data System (ADS)

    Forget, S.; Chenais, S.; Tondelier, D.; Geffroy, B.; Gozhyk, I.; Lebental, M.; Ishow, E.

    2010-09-01

    Concentration quenching is a major impediment to efficient organic light-emitting devices (OLEDs). We herein report on OLEDs based on a fluorescent amorphous red-emitting starbust triarylamine molecule [4-di(4'-tert-butylbiphenyl-4-yl)amino-4'-dicyanovinylbenzene, named FVIN], exhibiting a very small sensitivity to concentration quenching. OLEDs are fabricated with various doping levels of FVIN into Alq3, and show a remarkably stable external quantum efficiency of 1.5% for doping rates ranging from 5% up to 40%, which strongly relaxes the technological constraints on the doping accuracy. An efficiency of 1% is obtained for a pure undoped active region, along with deep red emission (x=0.6; y=0.35 in the Commission Internationale de l'Energie (CIE) coordinates). A comparison of FVIN with the archetypal 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye is presented in an identical multilayer OLED structure.

  10. An Analysis of the Far-Field Radiation Pattern of the Ultraviolet Light-Emitting Diode (LED) Engin LZ4-00UA00 Diode with and without Beam Shaping Optics

    DTIC Science & Technology

    2015-09-01

    SEP 2015 US Army Research Laboratory An Analysis of the Far-Field Radiation Pattern of the Ultraviolet Light - Emitting Diode (LED) Engin...Radiation Pattern of the Ultraviolet Light - Emitting Diode (LED) Engin LZ4-00UA00 Diode with and without Beam Shaping Optics 5a. CONTRACT NUMBER... light - emitting diode (LED), with and without beam shaping optics. This LED has 4 emitters arranged in a square pattern that are off-center from the

  11. Bright luminescence from pure DNA-curcumin–based phosphors for bio hybrid light-emitting diodes

    PubMed Central

    Reddy, M. Siva Pratap; Park, Chinho

    2016-01-01

    Recently, significant advances have occurred in the development of phosphors for bio hybrid light-emitting diodes (Bio-HLEDs), which have created brighter, metal-free, rare-earth phosphor-free, eco-friendly, and cost-competitive features for visible light emission. Here, we demonstrate an original approach using bioinspired phosphors in Bio-HLEDs based on natural deoxyribonucleic acid (DNA)-curcumin complexes with cetyltrimethylammonium (CTMA) in bio-crystalline form. The curcumin chromophore was bound to the DNA double helix structure as observed using field emission tunnelling electron microscopy (FE-TEM). Efficient luminescence occurred due to tightly bound curcumin chromophore to DNA duplex. Bio-HLED shows low luminous drop rate of 0.0551 s−1. Moreover, the solid bio-crystals confined the activating bright luminescence with a quantum yield of 62%, thereby overcoming aggregation-induced quenching effect. The results of this study herald the development of commercially viable large-scale hybrid light applications that are environmentally benign. PMID:27572113

  12. A hole modulator for InGaN/GaN light-emitting diodes

    SciTech Connect

    Zhang, Zi-Hui; Kyaw, Zabu; Liu, Wei; Ji, Yun; Wang, Liancheng; Tan, Swee Tiam; Sun, Xiao Wei E-mail: VOLKAN@stanfordalumni.org; Demir, Hilmi Volkan E-mail: VOLKAN@stanfordalumni.org

    2015-02-09

    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall hole concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ∼332 meV to ∼294 meV at 80 A/cm{sup 2} and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs.

  13. Efficient polymer light-emitting diode with air-stable aluminum cathode

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, D.; Wetzelaer, G. A. H.; Doumon, N. Y.; Blom, P. W. M.

    2016-03-01

    The fast degradation of polymer light-emitting diodes (PLEDs) in ambient conditions is primarily due to the oxidation of highly reactive metals, such as barium or calcium, which are used as cathode materials. Here, we report the fabrication of PLEDs using an air-stable partially oxidized aluminum (AlOx) cathode. Usually, the high work function of aluminum (4.2 eV) imposes a high barrier for injecting electrons into the lowest unoccupied molecular orbital (LUMO) of the emissive polymer (2.9 eV below the vacuum level). By partially oxidizing aluminum, its work function is decreased, but not sufficiently low for efficient electron injection. Efficient injection is obtained by inserting an electron transport layer of poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT), which has its LUMO at 3.3 eV below vacuum, between the AlOx cathode and the emissive polymer. The intermediate F8BT layer not only serves as a hole-blocking layer but also provides an energetic staircase for electron injection from AlOx into the emissive layer. PLEDs with an AlOx cathode and F8BT interlayer exhibit a doubling of the efficiency as compared to conventional Ba/Al PLEDs, and still operate even after being kept in ambient atmosphere for one month without encapsulation.

  14. Platinum (II) azatetrabenzoporphyrins for near-infrared organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Huang, L.; Park, C. D.; Fleetham, T.; Li, J.

    2016-12-01

    This article describes a series of platinum (II) azatetrabenzoporphyrin emitters for near-infrared (NIR) organic light emitting diode (OLED) applications. Platinum (II) aza-triphenyltetrabenzoporphyrin (PtNTBP) results in a 72 nm shift in the photoluminescent (PL) emission spectrum to 842 nm compared to 770 nm of the platinum (II) tetraphenyltetrabenzoporphyrin (PtTPTBP). Also, the full width at half maximum of the emission spectrum of PtNTBP was significantly narrowed to 27 nm compared to 40 nm for PtTPTBP. The multilayer devices fabricated by thermal vacuum evaporation process employing PtTPTBP, PtNTBP, and cis-PtN2TBP exhibit electroluminescent (EL) emission peak at 770 nm, 848 nm, and 846 nm with the peak external quantum efficiency (EQE) of 8.0%, 2.8%, and 1.5%, respectively. Even with the decrease in EQE of devices employing PtNTBP and cis-PtN2TBP compared with those employing PtTPTBP, the combination of the spectral narrowing and the bathochromic shift to lower energy EL emission demonstrates the promise of PtNTBP for NIR applications. In the meanwhile, the solution-processed single-layer device using PtNTBP demonstrates the EQE of 0.33% and the peak EL emission at 844 nm.

  15. Flash photolysis using a light emitting diode: an efficient, compact, and affordable solution.

    PubMed

    Bernardinelli, Yann; Haeberli, Christian; Chatton, Jean-Yves

    2005-06-01

    Flash photolysis has become an essential technique for dynamic investigations of living cells and tissues. This approach offers several advantages for instantly changing the concentration of bioactive compounds outside and inside living cells with high spatial resolution. Light sources for photolysis need to deliver pulses of high intensity light in the near UV range (300-380 nm), to photoactivate a sufficient amount of molecules in a short time. UV lasers are often required as the light source, making flash photolysis a costly approach. Here we describe the use of a high power 365 nm light emitting diode (UV LED) coupled to an optical fiber to precisely deliver the light to the sample. The ability of the UV LED light source to photoactivate several caged compounds (CMNB-fluorescein, MNI-glutamate, NP-EGTA, DMNPE-ATP) as well as to evoke the associated cellular Ca(2+) responses is demonstrated in both neurons and astrocytes. This report shows that UV LEDs are an efficient light source for flash photolysis and represent an alternative to UV lasers for many applications. A compact, powerful, and low-cost system is described in detail.

  16. Color rendition engineering of phosphor-converted light-emitting diodes.

    PubMed

    Žukauskas, Artūras; Vaicekauskas, Rimantas; Vitta, Pranciškus; Zabiliūtė, Akvilė; Petrulis, Andrius; Shur, Michael

    2013-11-04

    We present an approach to the optimization of the trichromatic spectral power distributions (SPDs) of phosphor-converted (p-c) light-emitting diodes (LEDs) in respect of each of four different color rendition properties (high color fidelity, color saturating, color dulling, and color preference). The approach is based on selecting a model family of Eu2+ phosphors and finding the optimal peak wavelengths of the phosphor bands as functions of the luminous efficacy of radiation. A blue component due to either phosphor photoluminescence or InGaN electroluminescence with the peak wavelength at about 460 nm was found to be an optimal one for the high-fidelity, color-dulling, and color-preference LEDs. The high-fidelity and color-preference LEDs need red phosphors with the peak wavelength of 610-615 nm. The high-fidelity LEDs were shown to require a true green (~530 nm) phosphor component, whereas a cyan (~510 nm) component is the prerequisite of the color-saturating and color-preference LEDs. Deep-blue (~445 nm) and deep-red (~625 nm) components are required for the color-saturating LEDs. A broad yellow band similar to that of Ce(3+) emission is to be used in the color-dulling LEDs. The SPDs of practical phosphor blends for the high-fidelity, color-saturating, and color-preference p-c LEDs are demonstrated.

  17. High-brightness blue organic light emitting diodes with different types of guest-host systems

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Zhang, Jing-shuang; Peng, Cui-yun; Guo, Kun-ping; Wei, Bin; Zhang, Hao

    2016-03-01

    We demonstrate high-brightness blue organic light emitting diodes (OLEDs) using two types of guest-host systems. A series of blue OLEDs were fabricated using three organic emitters of dibenz anthracene (perylene), di(4-fluorophenyl) amino-di (styryl) biphenyl (DSB) and 4,4'-bis[2-(9-ethyl-3-carbazolyl)vinyl]biphenyl (BCzVBi) doped into two hosting materials of 4,4'-bis(9-carbazolyl) biphenyl (CBP) and 2-(4-biphenylyl)-5(4-tert-butyl-phenyl)-1,3,4-oxadiazole (PBD) as blue emitting layers, respectively. We achieve three kinds of devices with colors of deep-blue, pure-blue and sky-blue with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.16, 0.10), (0.15, 0.15) and (0.17, 0.24), respectively, by employing PBD as host material. In addition, we present a microcavity device using the PBD guest-host system and achieve high-purity blue devices with narrowed spectrum.

  18. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes

    PubMed Central

    Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin; Jin Park, Myung; Jin Kim, Sang; Myoung, NoSoung; Lee, Chang-Lyoul; Hee Hong, Byung; Hyeok Park, Jong

    2015-01-01

    Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions. PMID:26067060

  19. Improved efficiency in blue phosphorescent organic light-emitting diodes by the stepwise doping structure

    NASA Astrophysics Data System (ADS)

    Yang, Liping; Wang, Xiaoping; Kou, Zhiqi; Ji, Changyan

    2017-04-01

    The electro-optical properties of the blue phosphorescent organic light-emitting diodes (PHOLEDs) can be affected by the stepwise doping structure in the emitting layer (EML). A series of multi-EML devices with different doping concentration of blue dopant (FIrpic) are fabricated. The effect of the stepwise doping structure close to the electron transport layer is more obvious than that close to the hole transport layer. When the doping concentration increases gradually from the hole injection side to the electron injection side, the maximum values of the luminance, current and power efficiency can reach to 9745 cd/m2 (at 9 V), 32.0 cd/A and 25.1 lm/W in the device with the asymmetric tri-EML structure, which is improved by about 10% compared with that in the bi-EML device. When the number of the EML is four, the performance of the device becomes worse because of the interface effect resulting from different concentration of dopant.

  20. Light-emitting diode and laser fluorescence-based devices in detecting occlusal caries

    NASA Astrophysics Data System (ADS)

    Rodrigues, Jonas A.; Hug, Isabel; Neuhaus, Klaus W.; Lussi, Adrian

    2011-10-01

    The aim of this study was to assess the performance of two light-emitting diode (LED)- and two laser fluorescence-based devices in detecting occlusal caries in vitro. Ninety-seven permanent molars were assessed twice by two examiners using two LED- (Midwest Caries - MID and VistaProof - VP) and two laser fluorescence-based (DIAGNOdent 2095 - LF and DIAGNOdent pen 2190 - LFpen) devices. After measuring, the teeth were histologically prepared and classified according to lesion extension. At D1 the specificities were 0.76 (LF and LFpen), 0.94 (MID), and 0.70 (VP); the sensitivities were 0.70 (LF), 0.62 (LFpen), 0.31 (MID), and 0.75 (VP). At D3 threshold the specificities were 0.88 (LF), 0.87 (LFpen), 0.90 (MID), and 0.70 (VP); the sensitivities were 0.63 (LF and LFpen), 0.70 (MID), and 0.96 (VP). Spearman's rank correlations with histology were 0.56 (LF), 0.51 (LFpen), 0.55 (MID), and 0.58 (VP). Inter- and intraexaminer ICC values were high and varied from 0.83 to 0.90. Both LF devices seemed to be useful auxiliary tools to the conventional methods, presenting good reproducibility and better accuracy at D3 threshold. MID was not able to differentiate sound surfaces from enamel caries and VP still needs improvement on the cut-off limits for its use.

  1. Cuban experience for therapy in dentistry with light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Sopena, Esperanza P.; Serra, Mayra C.; Sopena, Maria d. l. A.; Lopez Silva, Sonnia M.

    1996-01-01

    Interest in the interaction of low power light with tissues has increased in the last few years. Very often, the stimulating effects of irradiation have been explained by the role of the coherence of laser radiation as it acts upon biological objects. This argument is not convincing and the purpose of the present report is to describe the experiences during two years working with infrared (IR) GaAs light emitting diodes (LED) as clinical light for the therapy of some dental diseases. Equipment was designed and built, FOTOTER, which was approved by the National Health Office (registration No. 7910B). The treatment was practiced on 360 patients. They presented pain on buccal or facial structures and disorders on buccal tissues. Pathologies, number of patients treated, application time in each trigger point, number of sessions, and the relief pain patients are summarized. We conclude that the therapy with IR LED has the same effects as the HeNe and GaAs laser therapy on the biological buccal tissues. We recommend LED therapy for the treatment of these dentistry diseases.

  2. Probability characteristics of electrical noise in heterojunction light-emitting diodes

    SciTech Connect

    Sergeev, V. A. Frolov, I. V.; Shirokov, A. A.; Shcherbatyuk, Yu. N.

    2011-12-15

    A hardware-software complex for measurements of the characteristics of electrical and optical noise in light-emitting diodes (LEDs) in the frequency range from 1 to 40 kHz is described. The electrical noise of several types of heterojunction-based LEDs are studied; these types include red-emission LEDs with AlInGaP/GaAs quantum wells and the green- and blue-emission LEDs with AlInGaN/SiC quantum wells are studied by the method of discrete samples. The spectra of all studied LEDs in the frequency range from 1 to 10 kHz have the form 1/f{sup {gamma}}. It is noteworthy that, for red-emission LEDs, the exponent {gamma} is significantly smaller than unity; this index is close to unity for the green- and blue-emission LEDs. The characteristic time of correlation of the noise of red-emission LEDs by several times exceeds the correlation times for the blue- and green-emission LEDs. It is shown that reduced functions of the amplitude distribution of the noise voltage are close to Gaussian functions with almost the same dispersion for all LED types.

  3. A Solution Processed Flexible Nanocomposite Electrode with Efficient Light Extraction for Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; Zhibinyu; Pei, Qibing

    2014-03-01

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.

  4. Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction

    SciTech Connect

    Park, Joong-Mok; Gan, Zhengqing; Leung, Wai Y.; Liu, Rui; Ye, Zhuo; Constant, Kristen; Shinar, Joseph; Shinar, Ruth; Ho, Kai-Ming

    2011-06-06

    Very uniform 2 {micro}m-pitch square microlens arrays ({micro}LAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by {approx}100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement. The arrays are fabricated by very economical soft lithography imprinting of a polydimethylsiloxane (PDMS) mold (itself obtained from a Ni master stamp that is generated from holographic interference lithography of a photoresist) on a UV-curable polyurethane drop placed on the glass. Green and blue OLEDs are then fabricated on the ITO to complete the device. When the {mu}LA is {approx}15 x 15 mm{sup 2}, i.e., much larger than the {approx}3 x 3 mm{sup 2} OLED pixel, the electroluminescence (EL) in the forward direction is enhanced by {approx}100%. Similarly, a 19 x 25 mm{sup 2} {mu}LA enhances the EL extracted from a 3 x 3 array of 2 x 2 mm{sup 2} OLED pixels by 96%. Simulations that include the effects of absorption in the organic and ITO layers are in accordance with the experimental results and indicate that a thinner 0.7 mm thick glass would yield a {approx}140% enhancement.

  5. Contact light-emitting diodes based on vertical ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Panin, G. N.; Cho, Hak Dong; Lee, Sang Wuk; Kang, Tae Won

    2014-05-01

    We report vertical contact light-emitting diodes (VCLEDs), that are based on heterojunctions formed by using the point contacts of n-ZnO nanorods (NRs) to the p-type semiconductor substrate and that are fabricated using a new approach to the formation of LEDs (Appl. Phys. Lett. 98, 093110 (2011)). A p-type GaN film grown on a sapphire substrate was used to form n-ZnO NRs/p-GaN VCLEDs on a large area of about 4 cm2. The VCLEDs emitted a pure blue electroluminescence with high efficiency. Electroluminescence at 470 nm, which is visible to the naked eye, started at small current of about 50 μA and is attributed to the good optical properties of the structurallyperfect heterojunctions in the point contacts. The VCLED configuration allows the creation of ZnO/p-GaN nano-LEDs of high density and high-quality with a greatly reduced concentration of nonradiative defects in the active regions. The VCLEDs showed the high brightness of light required for active matrix displays and general solid-state lighting.

  6. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Wang, Nana; Cheng, Lu; Ge, Rui; Zhang, Shuting; Miao, Yanfeng; Zou, Wei; Yi, Chang; Sun, Yan; Cao, Yu; Yang, Rong; Wei, Yingqiang; Guo, Qiang; Ke, You; Yu, Maotao; Jin, Yizheng; Liu, Yang; Ding, Qingqing; di, Dawei; Yang, Le; Xing, Guichuan; Tian, He; Jin, Chuanhong; Gao, Feng; Friend, Richard H.; Wang, Jianpu; Huang, Wei

    2016-11-01

    Organometal halide perovskites can be processed from solutions at low temperatures to form crystalline direct-bandgap semiconductors with promising optoelectronic properties. However, the efficiency of their electroluminescence is limited by non-radiative recombination, which is associated with defects and leakage current due to incomplete surface coverage. Here we demonstrate a solution-processed perovskite light-emitting diode (LED) based on self-organized multiple quantum wells (MQWs) with excellent film morphologies. The MQW-based LED exhibits a very high external quantum efficiency of up to 11.7%, good stability and exceptional high-power performance with an energy conversion efficiency of 5.5% at a current density of 100 mA cm-2. This outstanding performance arises because the lower bandgap regions that generate electroluminescence are effectively confined by perovskite MQWs with higher energy gaps, resulting in very efficient radiative decay. Surprisingly, there is no evidence that the large interfacial areas between different bandgap regions cause luminescence quenching.

  7. Bright and efficient blue light-emitting diodes based on conjugated polymer blends

    NASA Astrophysics Data System (ADS)

    Palilis, Leonidas C.; Lidzey, David G.; Redecker, Michael; Bradley, Donal D. C.; Inbasekaran, Michael; Woo, Edmund P.; Wu, Weishi W.

    1999-12-01

    We report on the fabrication and properties of single layer blue light-emitting diodes (LEDs) based on conjugated polymer blends. We have used poly(9,9-dioctylfluorene) (PFO) as the host and a hole transport triarylamine/fluorene copolymer as the guest. Despite the fact that the photoluminescence quantum efficiency of the blend is lower compared than that of the host and guest polymers on their own, an enhancement in both the electroluminescence quantum and power efficiency is seen for the blend. This observation indicates that the hole transport material leads to a significant improvement in hole injection and transport and a greatly improved charge carrier balance factor. A careful comparison of the photoluminescence and the electroluminescence spectra reveals that more emission originates from the guest polymer for electroluminescence than for photoluminescence. This can be rationalized by the expectation that both Forster transfer and charge transfer from the host to the guest occur under electrical operation of the device. Only Forster transfer is expected for optical excitation. A much higher brightness and a lower turn on and operating voltage is achieved for the blend. The emission from our optimized blue single layer LED reaches a maximum brightness of 1550 cd/m2 and has a maximum external quantum efficiency of .4% and a maximum power efficiency of 0.3 lm/W.

  8. Stable bending performance of flexible organic light-emitting diodes using IZO anodes.

    PubMed

    Kwak, Kiyeol; Cho, Kyoungah; Kim, Sangsig

    2013-09-27

    We report luminescent characteristics and mechanical stability of a flexible organic light-emitting diode (FOLED) using an amorphous ZnO-doped In2O3 (a-IZO) anode with a low sheet resistance of and a high optical transparency of 86%. The FOLED consisting of a-IZO/poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS)/poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)] (F8BT)/LiF/Al exhibits the efficient luminescent characteristics, which are nearly identical with the photoluminescence spectrum of the organic emitting material in our FOLED. This observation clearly indicates that the luminescent characteristics of the FOLED are solely ascribed to molecular exciton formation within the F8BT layer, since exciplex and charge transfer exciton formation are strictly suppressed by both tunneling/thermionic injection of holes at the PEDOT:PSS/F8BT interface and enhanced hole transport. Furthermore, the use of the considerably flexible a-IZO anode and PEDOT:PSS acting as a strain-relief buffering material enables good retention of the efficient luminescent characteristics of the FOLED even after continuous bending of up to 1000 times.

  9. Non-synchronization of lattice and carrier temperatures in light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Jihong; Shih, Tienmo; Lu, Yijun; Merlitz, Holger; Ru-Gin Chang, Richard; Chen, Zhong

    2016-01-01

    Pulse implementation or switching-off (PISO) of electrical currents has become a common operation in junction-temperature (Tj) measurements for semiconductor devices since 2004. Here we have experimentally discovered a substantial discrepancy between Tj values with, and without, PISO (e.g., 36.8 °C versus 76.5 °C above the ambient temperature at 25.0 °C). Our research indicates that methods associated with PISO are flawed due to non-synchronization of lattice temperatures and carrier temperatures in transient states. To scrutinize this discrepancy, we propose a lattice-inertia thermal anchoring mechanism that (1) explains the cause of this discrepancy, (2) helps to develop a remedy to eliminate this discrepancy by identifying three transient phases, (3) has been applied to establishing an original, accurate, and noninvasive technique for light-emitting diodes to measure Tj in the absence of PISO. Our finding may pave the foundation for LED communities to further establish reliable junction-temperature measurements based on the identified mechanism.

  10. Magnetic field enhancement of generation-recombination and shot noise in organic light emitting diodes

    SciTech Connect

    Djidjou, T. K.; Basel, Tek; Rogachev, A.; Chen, Ying; Shinar, J.

    2015-03-21

    We have studied the effect of magnetic field on noise in series of 2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene-based organic light emitting diodes with dominant hole injection, dominant electron injection, and balanced electron and hole injection. The noise spectra of the balanced devices revealed the generation-recombination (g-r) noise term, which we associated with bimolecular electron-hole recombination. The presence of the g-r noise term is correlated with the strong organic magnetoresistance (up to 25%) observed in the balanced devices. The noise spectra also have the shot noise contribution with the Fano factor 0.25–0.4. We found that time constant of the g-r term decreases and the magnitude of shot noise increases when magnetic field is applied. This behavior can be consistently explained within the polaron-polaron model of organic magnetoresistance. We have not found any evidence that the magnetoresistance in studied devices is affected by traps.

  11. Tunable, full-color nanowire light emitting diode arrays monolithically integrated on Si and sapphire

    NASA Astrophysics Data System (ADS)

    Wang, Renjie; Ra, Yong-Ho; Wu, Yuanpeng; Zhao, Songrui; Nguyen, Hieu P. T.; Shih, Ishiang; Mi, Zetian

    2016-02-01

    The monolithic integration of red, green and blue (RGB) GaN-based light-emitting diodes (LEDs) directly on a single chip is critically important for smart lighting and full color display applications. In this work, RGB InGaN/GaN dot-in-a-wire LED arrays were laterally arranged on a Si wafer using a three-step SiOx-mask selective area growth (SAG) technique, and on a sapphire wafer using a Ti-mask SAG technique. Tunable emission across the entire visible spectral range (~ 450 nm to 700 nm) can be readily achieved on a single Si wafer by varying the sizes and/or compositions of the dots. By separately biasing lateral-arranged multi-color LED subpixels, the correlated color temperature (CCT) values of such a ~ 0.016 mm2 pixel can be varied from ~ 1900 K to 6800 K. The RGB pixel size can be further reduced by using the Ti-mask SAG technique on sapphire wafer. Full-color InGaN/GaN nanowire arrays with sizes of 2.8 × 2.8 μm2 have been monolithically fabricated into the same pixel.

  12. Color-Pure Violet-Light-Emitting Diodes Based on Layered Lead Halide Perovskite Nanoplates.

    PubMed

    Liang, Dong; Peng, Yuelin; Fu, Yongping; Shearer, Melinda J; Zhang, Jingjing; Zhai, Jianyuan; Zhang, Yi; Hamers, Robert J; Andrew, Trisha L; Jin, Song

    2016-07-26

    Violet electroluminescence is rare in both inorganic and organic light-emitting diodes (LEDs). Low-cost and room-temperature solution-processed lead halide perovskites with high-efficiency and color-tunable photoluminescence are promising for LEDs. Here, we report room-temperature color-pure violet LEDs based on a two-dimensional lead halide perovskite material, namely, 2-phenylethylammonium (C6H5CH2CH2NH3(+), PEA) lead bromide [(PEA)2PbBr4]. The natural quantum confinement of two-dimensional layered perovskite (PEA)2PbBr4 allows for photoluminescence of shorter wavelength (410 nm) than its three-dimensional counterpart. By converting as-deposited polycrystalline thin films to micrometer-sized (PEA)2PbBr4 nanoplates using solvent vapor annealing, we successfully integrated this layered perovskite material into LEDs and achieved efficient room-temperature violet electroluminescence at 410 nm with a narrow bandwidth. This conversion to nanoplates significantly enhanced the crystallinity and photophysical properties of the (PEA)2PbBr4 samples and the external quantum efficiency of the violet LED. The solvent vapor annealing method reported herein can be generally applied to other perovskite materials to increase their grain size and, ultimately, improve the performance of optoelectronic devices based on perovskite materials.

  13. Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes

    SciTech Connect

    Price, J. S.; Giebink, N. C.

    2015-06-29

    Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series of analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.

  14. A Solution Processed Flexible Nanocomposite Electrode with Efficient Light Extraction for Organic Light Emitting Diodes

    PubMed Central

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; ZhibinYu; Pei, Qibing

    2014-01-01

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost. PMID:24632742

  15. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    SciTech Connect

    Arto V. Nurmikko; Jung Han

    2005-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  16. Recent advances in the science and engineering of organic light-emitting diodes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kippelen, Bernard; Gaj, Michael P.; Zhang, Xiaoqing; Choi, Sangmoo; Fuentes-Hernandez, Canek; Zhang, Yadong; Barlow, Stephen; Marder, Seth R.; Voit, Walter E.; Wei, Andrew

    2016-09-01

    In this talk, we will discuss recent advances in the science and engineering of organic light-emitting diodes (OLEDs). First, we will focus on materials in which light emission involves the process of thermally activated delayed fluorescence (TADF). In these materials, triplet excited states can convert into optically emissive singlet excited states by reverse intersystem crossing, allowing for nearly 100% internal quantum efficiency. This process can be used to design a new class of materials that are all organic, offering a lower cost alternative to conventional electrophosphorescent materials that contain heavy and expensive elements such as Pt and Ir. We will discuss molecular design strategies and present examples of materials that can be used as emitters or hosts in the emissive layer. In a second part of this talk, we will review recent progress in fabricating OLEDs on shape memory polymer substrates (SMPs). SMPs are mechanically active, smart materials that can exhibit a significant drop in modulus once an external stimulus such as temperature is applied. In their rubbery state upon heating, the SMP can be easily deformed by external stresses into a temporary geometric configuration that can be retained even after the stress is removed by cooling the SMP to below the glass transition temperature. Reheating the SMP causes strain relaxation within the polymer network and induces recovery of its original shape. We will discuss how these unique mechanical properties can also be extended to a new class of OLEDs.

  17. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    SciTech Connect

    Arto V. Nurmikko; Jung Han

    2007-03-31

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  18. Efficient hybrid white organic light-emitting diodes for application of triplet harvesting with simple structure

    NASA Astrophysics Data System (ADS)

    Hwang, Kyo Min; Lee, Song Eun; Lee, Sungkyu; Yoo, Han Kyu; Baek, Hyun Jung; Kim, Young Kwan; Kim, Jwajin; Yoon, Seung Soo

    2016-08-01

    In this study, we fabricated hybrid white organic light-emitting diodes (WOLEDs) based on triplet harvesting with a simple structure. All the hole transporting material and host in the emitting layer (EML) of devices utilized the same material N,N'-di-1-naphthalenyl-N,N'-diphenyl [1,1':4',1″:4″,1‴-quaterphenyl]-4,4‴-diamine (4P-NPD), which is known to be blue fluorescent material. Simple hybrid WOLEDs were fabricated with blue fluorescent, green and red phosphorescent materials. We investigated the effect of triplet harvesting (TH) by an exciton generation zone on simple hybrid WOLEDs. The simple hybrid WOLEDs characteristically had a dominant hole mobility, so an exciton generation zone was expected in the EML. Additionally, the optimal the thickness of the hole transporting layer and electron transporting layer was fabricated a simple hybrid WOLEDs. The simple hybrid WOLED exhibits a maximum luminous efficiency of 29.3 cd/A and a maximum external quantum efficiency of 11.2%. The Commission Internationale de l'Éclairage (International Commission on Illumination) coordinates were (0.45, 0.43) at about 10,000 cd/m2.

  19. Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes

    SciTech Connect

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge

    2015-11-07

    We compared the performance of phosphorescent white organic light emitting diodes (WOLEDs) with red-blue-green and green-blue-red sequent emissive layers. It was found that the influence of red and green dopants on electron and hole transport in emissive layers leads to the large difference in the efficiency of fabricated WOLEDs. This improvement mechanism is well investigated by the current density-voltage characteristics of single-carrier devices based on dopant doped emissive layers and the comparison of electroluminescent and photoluminescence spectra, and attributed to the different change of charge carrier transport by the dopants. The optimized device achieves a maximum power efficiency, current efficiency, and external quantum efficiency of 37.0 lm/W, 38.7 cd/A, and 17.7%, respectively, which are only reduced to 32.8 lm/W, 38.5 cd/A, and 17.3% at 1000 cd/m{sup 2} luminance. The critical current density is as high as 210 mA/cm{sup 2}. It can be seen that the efficiency roll-off in phosphorescent WOLEDs can be well improved by effectively designing the structure of emissive layers.

  20. Optical fiber light-emitting diode-induced fluorescence detection for capillary electrophoresis.

    PubMed

    Zhao, Shulin; Yuan, Hongyan; Xiao, Dan

    2006-02-01

    A highly sensitive optical fiber light-emitting diode (LED)-induced fluorescence detector for CE has been constructed and evaluated. In this detector, a violet or blue LED was used as the excitation source and an optical fiber with 40 microm OD was used to transmit the excitation light. The upper end of the fiber was inserted into the separation capillary and was situated right at the detection window. Fluorescence emission was collected by a 40 x microscope objective, focused on a spatial filter, and passed through a cutoff filter before reaching the photomultiplier tube. Output signals were recorded and processed with a computer using in-house written software. The present CE/fluorescence detector deploys a simple and inexpensive optical system that requires only an LED as the light source. Its utility was successfully demonstrated by the separation and determination of amino acids (AAs) labeled with naphthalene-2,3-dicarboxaldehyde (NDA) and FITC. Low detection limits were obtained ranging from 17 to 23 nM for NDA-tagged AAs and 8 to 12 nM for FITC-labeled AAs (S/N=3). By virtue of such valuable features as low cost, convenience, and miniaturization, the presented detection scheme was proven to be attractive for sensitive fluorescence detection in CE.

  1. High performance near-ultraviolet flip-chip light-emitting diodes with distributed Bragg reflector

    NASA Astrophysics Data System (ADS)

    Choi, Il-Gyun; Jin, Geun-Mo; Park, Jun-Cheon; Jeon, Soo-Kun; Park, Eun-Hyun

    2015-09-01

    We have fabricated the near-ultraviolet (NUV) flip-chip (FC) light-emitting diodes (LEDs) with the high external quantum efficiency (EQE) using distributed Bragg reflectors (DBRs) and compared with conventional FC-LED using silver (Ag) reflector. Reflectance of Ag is very high (90 ~ 95 %) at visible spectrum region, but sharply decrease at NUV region. Therefore we used DBR composed of two different materials which have high-index contrast, such as TiO2 and SiO2. However, to achieve high-performance NUV flip-chip LEDs, we used Ta2O5 instead of TiO2 that absorbs lights of NUV region. Thus, we have designed a DBR composed of twenty pairs of Ta2O5 and SiO2 using optical coating design software. The DBR designed by our group achieves a reflectance of ~99 % in the NUV region (350 ~ 500 nm), which is much better than Ag reflector. Optical power is higher than the Ag-LED up to 22 % @ 390 nm.

  2. Simplified estimation of the eye's response to flashing light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Roberts, Adam T.; Medley, Stephanie K.; Gregory, Don A.; Dhote, Nilesh B.

    2015-06-01

    A useful laboratory technique has been devised using commonly available optical hardware and software to accurately measure the eye's response to flashing light-emitting diode (LED) sources. A simplified version of the modified Allard technique is implemented using a silicon detector, a digital multimeter, and Labview software to collect and analyze the data. Using calibrated radiometric measurements, the method presented allows quantifying, in photopic units, the human eye's response to these sources. The procedure first requires exact conversion of irradiance measurements from radiometric to photopic units and this is done; however, during the study, it was determined that for LEDs with narrow spectra, this conversion can be simplified using an approximation. This involves taking the spectral form of the LED to be a delta function situated at its peak wavelength, which makes the conversion from watts to lumens a simple multiplication by the luminous efficiency, η(λ) value at that peak wavelength. For LEDs with a full width at half maximum of 20 nm or less, this approximation is found to be accurate to ±5% throughout the visible range.

  3. Enhanced performance of photonic crystal GaN light-emitting diodes with graphene transparent electrodes

    NASA Astrophysics Data System (ADS)

    Ge, Hai-Liang; Xu, Chen; Xu, Kun; Xun, Meng; Wang, Jun; Liu, Jie

    2015-03-01

    The two-dimensional (2D) triangle lattice air hole photonic crystal (PC) GaN-based light-emitting diodes (LED) with double-layer graphene transparent electrodes (DGTE) have been produced. The current spreading effect of the double-layer graphene (GR) on the surface of the PC structure of the LED has been researched. Specially, we found that the part of the graphene suspending over the air hole of the PC structure was of much higher conductivity, which reduced the average sheet resistance of the graphene transparent conducting electrode and improved the current spreading of the PC LED. Therefore, the work voltage of the DGTE-PC LED was obviously decreased, and the output power was greatly enhanced. The COMSOL software was used to simulate the current density distribution of the samples. The results show that the etching of PC structure results in the degradation of the current spreading and that the graphene transparent conducting electrode can offer an uniform current spreading in the DGTE-PC LED. PACS: 85.60.Jb; 68.65.Pq; 42.70.Qs

  4. Collimating lens for light-emitting-diode light source based on non-imaging optics.

    PubMed

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Zhang, Gongjian

    2012-04-10

    A collimating lens for a light-emitting-diode (LED) light source is an essential device widely used in lighting engineering. Lens surfaces are calculated by geometrical optics and nonimaging optics. This design progress does not rely on any software optimization and any complex iterative process. This method can be used for any type of light source not only Lambertian. The theoretical model is based on point source. But the practical LED source has a certain size. So in the simulation, an LED chip whose size is 1 mm*1 mm is used to verify the feasibility of the model. The mean results show that the lenses have a very compact structure and good collimating performance. Efficiency is defined as the ratio of the flux in the illuminated plane to the flux from LED source without considering the lens material transmission. Just investigating the loss in the designed lens surfaces, the two types of lenses have high efficiencies of more than 90% and 99%, respectively. Most lighting area (possessing 80% flux) radii are no more than 5 m when the illuminated plane is 200 m away from the light source.

  5. Effectiveness of light emitting diode and halogen light curing units for curing microhybrid and nanocomposites

    PubMed Central

    Choudhary, Shwetha; Suprabha, BS

    2013-01-01

    Aim: To compare the polymerization efficacy of micro-hybrid and nanocomposites cured with Quartz-tungsten halogen (QTH) and light emitting diode (LED) light curing units (LCUs). The effectiveness of pulse cure mode in LED LCU was also investigated. Materials and Methods: Both micro-hybrid and nanocomposite specimens were cured using four different curing protocols giving a total of eight experimental groups. Ten cylindrical specimens were prepared for each group, and light cured for 40 s on the top surface, thus giving a total of eighty specimens. Vicker hardness measurements were carried out on the top and bottom surfaces after 24 h and hardness ratio was calculated. Results: For both micro-hybrid and nanocomposites, highest mean VHN was observed for the group cured with QTH LCU, and the lowest was observed for the group cured with second LED LCU in standard mode but the difference was significant only in case of nanocomposite. Conclusion: Curing nanocomposites with QTH LCU results in better micro hardness. Pulse cure mode does not effectively increase polymerization efficacy than the standard mode of curing. PMID:23833457

  6. Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes

    PubMed Central

    Suzuri, Yoshiyuki; Oshiyama, Tomohiro; Ito, Hiroto; Hiyama, Kunihisa; Kita, Hiroshi

    2014-01-01

    Phosphorescent emitters are extremely important for efficient organic light-emitting diodes (OLEDs), which attract significant attention. Phosphorescent emitters, which have a high phosphorescence quantum yield at room temperature, typically contain a heavy metal such as iridium and have been reported to emit blue, green and red light. In particular, the blue cyclometalated complexes with high efficiency and high stability are being developed. In this review, we focus on blue cyclometalated complexes. Recent progress of computational analysis necessary to design a cyclometalated complex is introduced. The prediction of the radiative transition is indispensable to get an emissive cyclometalated complex. We summarize four methods to control phosphorescence peak of the cyclometalated complex: (i) substituent effect on ligands, (ii) effects of ancillary ligands on heteroleptic complexes, (iii) design of the ligand skeleton, and (iv) selection of the central metal. It is considered that novel ligand skeletons would be important to achieve both a high efficiency and long lifetime in the blue OLEDs. Moreover, the combination of an emitter and a host is important as well as the emitter itself. According to the dependences on the combination of an emitter and a host, the control of exciton density of the triplet is necessary to achieve both a high efficiency and a long lifetime, because the annihilations of the triplet state cause exciton quenching and material deterioration. PMID:27877712

  7. Differential interference contrast microscopy using light-emitting diode illumination in conjunction with dual optical traps.

    PubMed

    Battle, C; Lautscham, L; Schmidt, C F

    2013-05-01

    Differential interference contrast (DIC) microscopy is a common mode of biological light microscopy used to achieve maximal resolution and contrast with label-free, weakly absorbing specimens such as cells. Maintaining the polarization state of the illuminating light is essential for the technique, and this requirement can conflict with optical trapping. We describe how to optimize DIC imaging using a light-emitting diode illumination source in a microscope while integrating a dual optical trap into the set up. Every time a polarized light beam reflects off or transmits through a dichroic mirror in the beam path, its polarization state will change if it is not polarized exactly parallel (p) or perpendicular (s) to the plane of incidence. We observe wavelength-dependent optical rotation and depolarization effects in our illumination light upon reflection from/transmission through dichroic mirrors in the beam path, resulting in significant degradation of image quality. We describe a method to compensate for these effects by introducing quarter-waveplates and a laser clean-up filter into the imaging pathway. We show that this approach achieves a full recovery of image quality.

  8. Influence of vacuum chamber impurities on the lifetime of organic light-emitting diodes

    PubMed Central

    Fujimoto, Hiroshi; Suekane, Takashi; Imanishi, Katsuya; Yukiwaki, Satoshi; Wei, Hong; Nagayoshi, Kaori; Yahiro, Masayuki; Adachi, Chihaya

    2016-01-01

    We evaluated the influence of impurities in the vacuum chamber used for the fabrication of organic light-emitting diodes on the lifetime of the fabricated devices and found a correlation between lifetime and the device fabrication time. The contact angle of the ITO substrates stored the chamber under vacuum were used to evaluate chamber cleanliness. Liquid chromatography-mass spectrometry was performed on Si wafers stored in the vacuum chamber before device fabrication to examine the impurities in the chamber. Surprisingly, despite the chamber and evaporation sources being at room temperature, a variety of materials were detected, including previously deposited materials and plasticizers from the vacuum chamber components. We show that the impurities, and not differences in water content, in the chamber were the source of lifetime variations even when the duration of exposure to impurities only varied before and after deposition of the emitter layer. These results suggest that the impurities floating in the vacuum chamber significantly impact lifetime values and reproducibility. PMID:27958304

  9. The activation of directional stem cell motility by green light-emitting diode irradiation.

    PubMed

    Ong, Wei-Kee; Chen, How-Foo; Tsai, Cheng-Ting; Fu, Yun-Ju; Wong, Yi-Shan; Yen, Da-Jen; Chang, Tzu-Hao; Huang, Hsien-Da; Lee, Oscar Kuang-Sheng; Chien, Shu; Ho, Jennifer Hui-Chun

    2013-03-01

    Light-emitting diode (LED) irradiation is potentially a photostimulator to manipulate cell behavior by opsin-triggered phototransduction and thermal energy supply in living cells. Directional stem cell motility is critical for the efficiency and specificity of stem cells in tissue repair. We explored that green LED (530 nm) irradiation directed the human orbital fat stem cells (OFSCs) to migrate away from the LED light source through activation of extracellular signal-regulated kinases (ERK)/MAP kinase/p38 signaling pathway. ERK inhibitor selectively abrogated light-driven OFSC migration. Phosphorylation of these kinases as well as green LED irradiation-induced cell migration was facilitated by increasing adenosine triphosphate (ATP) production in OFSCs after green LED exposure, and which was thermal stress-independent mechanism. OFSCs, which are multi-potent mesenchymal stem cells isolated from human orbital fat tissue, constitutionally express three opsins, i.e. retinal pigment epithelium-derived rhodopsin homolog (RRH), encephalopsin (OPN3) and short-wave-sensitive opsin 1 (OPN1SW). However, only two non-visual opsins, i.e. RRH and OPN3, served as photoreceptors response to green LED irradiation-induced OFSC migration. In conclusion, stem cells are sensitive to green LED irradiation-induced directional cell migration through activation of ERK signaling pathway via a wavelength-dependent phototransduction.

  10. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes

    PubMed Central

    Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup

    2016-01-01

    Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening. PMID:27250743

  11. Accurate thickness/density measurements of organic light-emitting diodes

    SciTech Connect

    Maree, C.H.; Weller, R.A.; Feldman, L.C.; Pakbaz, K.; Lee, H.W.

    1998-10-01

    We report on the use of Rutherford backscattering spectroscopy for thickness analysis of organic light-emitting diode structures (OLEDs) with subnanometer resolution and a spatial resolution {lt}1thinspmm. A careful study of ion beam induced effects revealed some organic film degradation, but not so severe as to inhibit meaningful measurements. The method is independent of the substrate and is still applicable if the organic film is capped with a metal cathode. Common OLED materials have been the subject of this study: poly(2-methoxy,5-(2{sup {prime}}-ethylhexoxy)-1,4-phenylene-vinylene) (MEH-PPV), N{sup {prime}},N{sup {prime}}-diphenyl-N, N{sup {prime}}-bis(3-methylphenyl)-1,1{sup {prime}} biphenyl-4,4{sup {prime}}-diamine (TPD), and tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}). The densities of thin films of evaporated TPD ({rho}=1.22{plus_minus}0.05thinspg/cm{sup 3}) and Alq{sub 3} ({rho}=1.51{plus_minus}0.03thinspg/cm{sup 3}) have been established. {copyright} {ital 1998 American Institute of Physics.}

  12. Fully transparent quantum dot light-emitting diode integrated with graphene anode and cathode.

    PubMed

    Seo, Jung-Tak; Han, Junebeom; Lim, Taekyung; Lee, Ki-Heon; Hwang, Jungseek; Yang, Heesun; Ju, Sanghyun

    2014-12-23

    A fully transparent quantum dot light-emitting diode (QD-LED) was fabricated by incorporating two types (anode and cathode) of graphene-based electrodes, which were controlled in their work functions and sheet resistances. Either gold nanoparticles or silver nanowires were inserted between layers of graphene to control the work function, whereas the sheet resistance was determined by the number of graphene layers. The inserted gold nanoparticles or silver nanowires in graphene films caused a charge transfer and changed the work function to 4.9 and 4.3 eV, respectively, from the original work function (4.5 eV) of pristine graphene. Moreover the sheet resistance values for the anode and cathode electrodes were improved from ∼63,000 to ∼110 Ω/sq and from ∼100,000 to ∼741 Ω/sq as the number of graphene layers increased from 1 to 12 and from 1 to 8, respectively. The main peak wavelength, luminance, current efficiency, and optical transmittance of the fully transparent QD-LED integrated with graphene anode and cathode were 535 nm, ∼358 cd/m2, ∼0.45 cd/A, and 70-80%, respectively. The findings of the study are expected to lay a foundation for the production of high-efficiency, fully transparent, and flexible displays using graphene-based electrodes.

  13. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup

    2016-06-01

    Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening.

  14. Real-time optical monitoring of microbial growth using optimal combination of light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Ken-ichi; Yamada, Takeshi; Hiraishi, Akira; Nakauchi, Shigeki

    2012-12-01

    We developed a real-time optical monitoring system consisting of a monochrome complementary metal-oxide semiconductor (CMOS) camera and two light-emitting diodes (LEDs) with a constant temperature incubator for the rapid detection of microbial growth on solid media. As a target organism, we used Alicyclobacillus acidocaldarius, which is an acidophilic thermophilic endospore-forming bacterium able to survive in pasteurization processes and grow in acidic drink products such as apple juice. This bacterium was cultured on agar medium with a redox dye applied to improve detection sensitivity. On the basis of spectroscopic properties of the colony, medium, and LEDs, an optimal combination of two LED illuminations was selected to maximize the contrast between the colony and medium areas. We measured A. acidocaldarius and Escherichia coli at two different dilution levels using these two LEDs. From the results of time-course changes in the number of detected pixels in the detection images, a similar growth rate was estimated amongst the same species of microbes, regardless of the dilution level. This system has the ability to detect a colony of approximately 26 μm in diameter in a detection image, and it can be interpreted that the size corresponds to less than 20 μm diameter in visual inspection.

  15. Colour tuning in white hybrid inorganic/organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Bruckbauer, Jochen; Brasser, Catherine; Findlay, Neil J.; Edwards, Paul R.; Wallis, David J.; Skabara, Peter J.; Martin, Robert W.

    2016-10-01

    White hybrid inorganic/organic light-emitting diodes (LEDs) were fabricated by combining a novel organic colour converter with a blue inorganic LED. An organic small molecule was specifically synthesised to act as down-converter. The characteristics of the white colour were controlled by changing the concentration of the organic molecule based on the BODIPY unit, which was embedded in a transparent matrix, and volume of the molecule and encapsulant mixture. The concentration has a critical effect on the conversion efficiency, i.e. how much of the absorbed blue light is converted into yellow light. With increasing concentration the conversion efficiency decreases. This quenching effect is due to aggregation of the organic molecule at higher concentrations. Increasing the deposited amount of the converter does not increase the yellow emission despite more blue light being absorbed. Degradation of the organic converter was also observed during a period of 15 months from LED fabrication. Angular-dependent measurements revealed slight deviation from a Lambertian profile for the blue and yellow emission peaks leading to a small change in ‘whiteness’ with emission angle. Warm white and cool white light with correlated colour temperatures of 2770 K and 7680 K, respectively, were achieved using different concentrations of the converter molecule. Although further work is needed to improve the lifetime and poor colour rendering, these hybrid LEDs show promising results as an alternative approach for generating white LEDs compared with phosphor-based white LEDs.

  16. Degradation mechanism beyond device self-heating in high power light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yung, K. C.; Liem, H.; Choy, H. S.; Lun, W. K.

    2011-05-01

    A unique degradation property of high power InGaN/GaN multiple quantum well (MQW) white light-emitting diodes (LEDs) was identified. The LEDs were stressed under different forward-currents. The various ageing characteristics were analyzed for both the electrical response and electro-luminescence (EL) spectra. The Raman spectroscopy allowed noninvasive probing of LED junction temperature profiles which correlated well with the EL characteristics, showing a junction temperature drop during degradation at certain current levels. In addition to the common observations: (1) a broadening of the light intensity-current (L-I) characteristic in the nonlinear regime, and (2) a shift of the current-voltage (I-V) dependence to higher current levels, the EL spectra showed different temperature responses of the two blue emission peaks, 440 and 463 nm. The former was temperature sensitive and thus related to shallow defect levels, while the latter was thermally stable and deeper defect states were involved in the degradation process. This unique selection rule resulted in the enhancement of the blue emission peak at 463 nm after degrading the LEDs. This study suggests that LED device heating is not directly linked to the degradation process.

  17. Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting

    NASA Astrophysics Data System (ADS)

    Krames, Michael R.; Shchekin, Oleg B.; Mueller-Mach, Regina; Mueller, Gerd O.; Zhou, Ling; Harbers, Gerard; Craford, M. George

    2007-06-01

    Status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented. Light extraction techniques are reviewed and extraction efficiencies are quantified in the 60%+ (AlGaInP) and ~80% (InGaN) regimes for state-of-the-art devices. The phosphor-based white LED concept is reviewed and recent performance discussed, showing that high-power white LEDs now approach the 100-lm/W regime. Devices employing multiple phosphors for “warm” white color temperatures (~3000 4000 K) and high color rendering (CRI > 80), which provide properties critical for many illumination applications, are discussed. Recent developments in chip design, packaging, and high current performance lead to very high luminance devices (~50 Mcd/m2 white at 1 A forward current in 1 x 1 mm2 chip) that are suitable for application to automotive forward lighting. A prognosis for future LED performance levels is considered given further improvements in internal quantum efficiency, which to date lag achievements in light extraction efficiency for InGaN LEDs.

  18. Breaking the carrier injection bottleneck of phosphor-free nanowire white light-emitting diodes.

    PubMed

    Nguyen, Hieu Pham Trung; Zhang, Shaofei; Connie, Ashfiqua T; Kibria, Md Golam; Wang, Qi; Shih, Ishiang; Mi, Zetian

    2013-01-01

    We have examined the carrier injection process of axial nanowire light-emitting diode (LED) structures and identified that poor carrier injection efficiency, due to the large surface recombination, is the primary cause for the extremely low output power of phosphor-free nanowire white LEDs. We have further developed InGaN/GaN/AlGaN dot-in-a-wire core-shell white LEDs on Si substrate, which can break the carrier injection efficiency bottleneck, leading to a massive enhancement in the output power. At room temperature, the devices can exhibit an output power of ~1.5 mW, which is more than 2 orders of magnitude stronger than nanowire LEDs without shell coverage. Additionally, such phosphor-free nanowire white LEDs can deliver an unprecedentedly high color rendering index of ~92-98 in both the warm and cool white regions, with the color rendering capability approaching that of an ideal light source, i.e. a blackbody.

  19. A novel orange phosphor of Eu 2+-activated calcium chlorosilicate for white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Ding, Weijia; Wang, Jing; Zhang, Mei; Zhang, Qiuhong; Su, Qiang

    2006-11-01

    Novel orange phosphor of Eu 2+-activated calcium chlorosilicate was synthesized at 1273 K by conventional solid-state reactions under reductive atmosphere and investigated by means of photoluminescence excitation, diffuse reflectance and emission spectroscopies. These results show that this phosphor can be efficiently excited by the incident light of 300-450 nm, well matched with the emission band of 395 nm-emitting InGaN chip, and emits an intense orange light peaking at 585 nm. By combining this phosphor with a 395 nm-emitting InGaN chip, an intense orange light-emitting diode (LED) was fabricated. Under 20 mA forward-bias current, its CIE chromaticity coordinates are (0.486, 0.446). The dependence of as-fabricated orange LED on forward-bias current indicates that it shows excellent chromaticity stability and luminance saturation. These results show that this Eu 2+-activated calcium chlorosilicate is a promising orange-emitting phosphor for near-ultraviolet (UV) InGaN-based white LED.

  20. Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors

    PubMed Central

    2016-01-01

    We report the first demonstration of flexible white phosphor-converted light emitting diodes (LEDs) based on p–n junction core/shell nitride nanowires. GaN nanowires containing seven radial In0.2Ga0.8N/GaN quantum wells were grown by metal–organic chemical vapor deposition on a sapphire substrate by a catalyst-free approach. To fabricate the flexible LED, the nanowires are embedded into a phosphor-doped polymer matrix, peeled off from the growth substrate, and contacted using a flexible and transparent silver nanowire mesh. The electroluminescence of a flexible device presents a cool-white color with a spectral distribution covering a broad spectral range from 400 to 700 nm. Mechanical bending stress down to a curvature radius of 5 mm does not yield any degradation of the LED performance. The maximal measured external quantum efficiency of the white LED is 9.3%, and the wall plug efficiency is 2.4%. PMID:27331079

  1. Multifunctional Dendrimer Ligands for High-Efficiency, Solution-Processed Quantum Dot Light-Emitting Diodes.

    PubMed

    Cho, Ikjun; Jung, Heeyoung; Jeong, Byeong Guk; Chang, Jun Hyuk; Kim, Younghoon; Char, Kookheon; Lee, Doh C; Lee, Changhee; Cho, Jinhan; Bae, Wan Ki

    2017-01-24

    We present multifunctional dendrimer ligands that serve as the charge injection controlling layer as well as the adhesive layer at the interfaces between quantum dots (QDs) and the electron transport layer (ETL) in quantum dot light-emitting diodes (QLEDs). Specifically, we use primary amine-functionalized dendrimer ligands (e.g., a series of poly(amidoamine) dendrimers (PADs, also referred to PAMAM)) that bind to the surface of QDs by replacing the native ligands (oleic acids) and also to the surface of ZnO ETL. PAD ligands control the electron injection rate from ZnO ETL into QDs by altering the electronic energy levels of the surface of ZnO ETL and thereby improve the charge balance within QDs in devices, leading to the enhancement of the device efficiency. As an ultimate achievement, the device efficiency (peak external quantum efficiency) improves by a factor of 3 by replacing the native ligands (3.86%) with PAD ligands (11.36%). In addition, multibranched dendrimer ligands keep the QD emissive layer intact during subsequent solution processing, enabling us to accomplish solution-processed QLEDs. The approach and results in the present study emphasize the importance of controlling the ligands of QDs to enhance QLED performance and also offer simple yet effective chemical mean toward all-solution-processed QLEDs.

  2. Light conversion efficiency of top-emitting organic light-emitting diode structure.

    PubMed

    Lee, Hyeongi; Won, Taeyoung

    2014-11-01

    Top-emitting organic light-emitting diodes (OLEDs) with a microcavity structure are presented in this paper. We performed a finite element (FE) analysis of a trilayer OLED that was inserted between the reflective layer and the semi-reflective layer of a device. We carried out an optical analysis of this OLED device and calculated the optimal width between the reflective layer and the semi-reflective layer to consider the microcavity effect. Our simulation revealed that the thickness of each layer can affect the recombination rate at the emission layer. We used five OLED devices. Device A is a reference device with a 42.5 nm hole transport layer (HTL), a 15 nm emission layer (EML) and a 45 nm electron transport layer (ETL). We varied the thickness of the HTL of Device A to 20 nm and 65 nm, and designated these devices as Device B and Device C, respectively. We also varied the thickness of the ETL of Device A to 20 nm and 65 nm, and designated these devices as Device D and Device E, respectively. As the thickness of the HTL and the ETL are decreased, a higher recombination rate is achieved. However, the highest recombination rate does not necessarily correspond to the highest external quantum efficiency (EQE) owing to the resonance effect. Our simulation revealed that the overall thickness of the device seems to be a more significant factor owing to the path of light.

  3. Thermally cross-linkable hole transport polymers for solution-based organic light-emitting diodes.

    PubMed

    Cha, Seung Ji; Cho, Se-Na; Lee, Woo-Hyung; Chung, Ha-Seul; Kang, In-Nam; Suh, Min Chul

    2014-04-01

    Two thermally cross-linkable hole transport polymers that contain phenoxazine and triphenylamine moieties, X-P1 and X-P2, are developed for use in solution-processed multi-stack organic light-emitting diodes (OLEDs). Both X-P1 and X-P2 exhibit satisfactory cross-linking and optoelectronic properties. The highest occupied molecular orbital (HOMO) levels of X-P1 and X-P2 are -5.24 and -5.16 eV, respectively. Solution-processed super yellow polymer devices (ITO/X-P1 or X-P2/PDY-132/LiF/Al) with X-P1 or X-P2 hole transport layers of various thicknesses are fabricated with the aim of optimizing the device characteristics. The fabricated multi-stack yellow devices containing the newly synthesized hole transport polymers exhibit satisfactory currents and power efficiencies. The optimized X-P2 device exhibits a device efficiency that is dramatically improved by more than 66% over that of a reference device without an HTL.

  4. Bright luminescence from pure DNA-curcumin–based phosphors for bio hybrid light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Reddy, M. Siva Pratap; Park, Chinho

    2016-08-01

    Recently, significant advances have occurred in the development of phosphors for bio hybrid light-emitting diodes (Bio-HLEDs), which have created brighter, metal-free, rare-earth phosphor-free, eco-friendly, and cost-competitive features for visible light emission. Here, we demonstrate an original approach using bioinspired phosphors in Bio-HLEDs based on natural deoxyribonucleic acid (DNA)-curcumin complexes with cetyltrimethylammonium (CTMA) in bio-crystalline form. The curcumin chromophore was bound to the DNA double helix structure as observed using field emission tunnelling electron microscopy (FE-TEM). Efficient luminescence occurred due to tightly bound curcumin chromophore to DNA duplex. Bio-HLED shows low luminous drop rate of 0.0551 s‑1. Moreover, the solid bio-crystals confined the activating bright luminescence with a quantum yield of 62%, thereby overcoming aggregation-induced quenching effect. The results of this study herald the development of commercially viable large-scale hybrid light applications that are environmentally benign.

  5. Dislocation-related trap levels in nitride-based light emitting diodes

    SciTech Connect

    Venturi, Giulia; Castaldini, Antonio; Cavallini, Anna

    2014-05-26

    Deep level transient spectroscopy was performed on InGaN/GaN multiple quantum well light emitting diodes (LEDs) in order to determine the effect of the dislocation density on the deep intragap electronic levels. The LEDs were grown by metalorganic vapor phase epitaxy on GaN templates with a high dislocation density of 8 × 10{sup 9} cm{sup −2} and a low dislocation density of 3 × 10{sup 8} cm{sup −2}. Three trapping levels for electrons were revealed, named A, A1, and B, with energies E{sub A} ≈ 0.04 eV, E{sub A1} ≈ 0.13 eV, and E{sub B} ≈ 0.54 eV, respectively. The trapping level A has a much higher concentration in the LEDs grown on the template with a high density of dislocations. The logarithmic dependence of the peak amplitude on the bias pulse width for traps A and A1 identifies the defects responsible for these traps as associated with linearly arranged defects. We conclude that traps A and A1 are dislocation-related intragap energy levels.

  6. Development of substrate-removal-free vertical ultraviolet light-emitting diode (RefV-LED)

    SciTech Connect

    Kurose, N. Aoyagi, Y.; Shibano, K.; Araki, T.

    2014-02-15

    A vertical ultraviolet (UV) light-emitting diode (LED) that does not require substrate removal is developed. Spontaneous via holes are formed in n-AlN layer epitaxially grown on a high conductive n+Si substrate and the injected current flows directly from the p-electrode to high doped n{sup +} Si substrate through p-AlGaN, multi-quantum wells, n-AlGaN and spontaneous via holes in n-AlN. The spontaneous via holes were formed by controlling feeding-sequence of metal-organic gas sources and NH{sub 3} and growth temperature in MOCVD. The via holes make insulating n-AlN to be conductive. We measured the current-voltage, current-light intensity and emission characteristics of this device. It exhibited a built-in voltage of 3.8 V and emission was stated at 350 nm from quantum wells with successive emission centered at 400 nm. This UV LED can be produced, including formation of n and p electrodes, without any resist process.

  7. Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro.

    PubMed

    Chamorro, Eva; Bonnin-Arias, Cristina; Pérez-Carrasco, María Jesús; Muñoz de Luna, Javier; Vázquez, Daniel; Sánchez-Ramos, Celia

    2013-01-01

    Human visual system is exposed to high levels of natural and artificial lights of different spectra and intensities along lifetime. Light-emitting diodes (LEDs) are the basic lighting components in screens of PCs, phones and TV sets; hence it is so important to know the implications of LED radiations on the human visual system. The aim of this study was to investigate the effect of LEDs radiations on human retinal pigment epithelial cells (HRPEpiC). They were exposed to three light-darkness (12 h/12 h) cycles, using blue-468 nm, green-525 nm, red-616 nm and white light. Cellular viability of HRPEpiC was evaluated by labeling all nuclei with DAPI; Production of reactive oxygen species (ROS) was determined by H2DCFDA staining; mitochondrial membrane potential was quantified by TMRM staining; DNA damage was determined by H2AX histone activation, and apoptosis was evaluated by caspases-3,-7 activation. It is shown that LED radiations decrease 75-99% cellular viability, and increase 66-89% cellular apoptosis. They also increase ROS production and DNA damage. Fluorescence intensity of apoptosis was 3.7% in nonirradiated cells and 88.8%, 86.1%, 83.9% and 65.5% in cells exposed to white, blue, green or red light, respectively. This study indicates three light-darkness (12 h/12 h) cycles of exposure to LED lighting affect in vitro HRPEpiC.

  8. Spectrally narrowed edge emission from leaky waveguide modes in organic light-emitting diodes

    SciTech Connect

    Gan, Zhengqing; Tian, Yun; Lynch, David W.; Kang, Ji-hun; Park, Q-Han; and Shinar, Joseph

    2009-11-03

    A dramatic spectral line narrowing of the edge emission at room temperature from tris(quinolinolate) Al (Alq{sub 3}), N,N{prime}-diphenyl-N,N{prime}-bis(1-naphthylphenyl)-1,1{prime}-biphenyl-4,4{prime}-diamine (NPD), 4,4{prime}-bis(2,2{prime}-diphenyl-vinyl)-,1{prime}-biphenyl (DPVBi), and some guest-host small molecular organic light-emitting diodes (OLEDs), fabricated on indium tin oxide (ITO)-coated glass, is described. In all but the DPVBi OLEDs, the narrowed emission band emerges above a threshold thickness of the emitting layer, and narrows down to a full width at half maximum of only 5-10 nm. The results demonstrate that this narrowed emission is due to irregular waveguide modes that leak from the ITO to the glass substrate at a grazing angle. While measurements of variable stripe length l devices exhibit an apparent weak optical gain 0 {le} g {le} 1.86 cm{sup -1}, there is no observable threshold current or bias associated with this spectral narrowing. In addition, in the phosphorescent guest-host OLEDs, there is no decrease in the emission decay time of the narrowed edge emission relative to the broad surface emission. It is suspected that the apparent weak optical gain is due to misalignment of the axis of the waveguided mode and the axis of the collection lens of the probe.

  9. Active Matrix Driving Organic Light-Emitting Diode Panel Using Organic Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Ohta, Satoru; Chuman, Takashi; Miyaguchi, Satoshi; Satoh, Hideo; Tanabe, Takahisa; Okuda, Yoshiyuki; Tsuchida, Masami

    2005-06-01

    We developed an active matrix driving organic light-emitting diode (OLED) panel on a glass substrate using two organic thin-film transistors (OTFTs) per pixel, a switching OTFT and a driving OTFT. The OTFTs are bottom contact structures with the high-dielectric constant gate insulator tantalum oxide (Ta2O5, relative dielectric constant of 23) produced by anodization in ammonium adipate solution and with pentacene as the active layer. The W/L (where W and L are the OTFTs channel width and length, respectively) was 400 μm/10 μm for the switching OTFTs and 680 μm/10 μm for the driving OTFTs. The characteristics of the OTFTs were improved by treating the Ta2O5 surface with hexamethyldisilazane (HMDS), so that the field-effect mobility was 2.0× 10-1 cm2 V-1 s-1 and the current on/off ratio was 105. A green phosphorescent dopant, tris(2-phenylpyridine)iridium [Ir(ppy)3], was used for the OLED layer. The panel had 8× 8 pixels and the aperture ratio was 27%. We confirmed a 16-gray-scale representation and a luminance of 400 cd/m2.

  10. Performance of light-emitting diode traps for collecting sand flies in entomological surveys in Argentina.

    PubMed

    Fernández, María Soledad; Martínez, Mariela Florencia; Pérez, Adriana Alicia; Santini, María Soledad; Gould, Ignacio Tomás; Salomón, Oscar Daniel

    2015-12-01

    The performance of two light-emitting diode traps with white and black light for capturing phlebotomine sand flies, developed by the Argentinean Leishmaniasis Research Network (REDILA-WL and REDILA-BL traps), were compared with the traditional CDC incandescent light trap. Entomological data were obtained from six sand fly surveys conducted in Argentina in different environments. Data analyses were conducted for the presence and the abundance of Lutzomyia longipalpis, Migonemyia migonei, and Nyssomyia whitmani (106 sites). No differences were found in presence/absence among the three types of traps for all sand fly species (p>0.05). The collection mean of Lu. longipalpis from the REDILA-BL didn´t differ from the CDC trap means, nor were differences seen between the REDILA-WL and the CDC trap collection means (p>0.05), but collections were larger from the REDILA-BL trap compared to the REDILA-WL trap (p<0.05). For Mg. migonei and Ny. whitmani, no differences were found among the three types of traps in the number of individuals captured (p>0.05). These results suggest that both REDILA traps could be used as an alternative capture tool to the original CDC trap for surveillance of these species, and that the REDILA-BL will also allow a comparable estimation of the abundance of these flies to the CDC light trap captures. In addition, the REDILA-BL has better performance than the REDILA-WL, at least for Lu. longipalpis.

  11. Eutectic Bonding Utilizing Radio Frequency Induction Heating for Fabricating Vertical Light-Emitting Diodes.

    PubMed

    Choi, Eunmi; Kim, Areum; Cui, Yinhua; Chae, Su Jin; Nam, Minwoo; Kwon, Soon Hyeong; Cha, Yong Won; Pyo, Sung Gyu

    2015-11-01

    Vertical light-emitting diodes (VLEDs) have attracted considerable attention owing to their improved thermal, electrical, and optical performance compared to conventional LEDs. To fabricate VLEDs, a bonding technique is required following laser lift-off. Eutectic bonding techniques are preferred owing to their low-heat mechanism and production safety. However, the conventional resistance heating method for eutectic bonding process, the extremely longer process time becomes a problem such as cost rise, wapage. In this study, the thermal efficiency was measured according to the diameter of the coil in order to optimize the eutectic bonding of the RF induction heating method in order to solve this problem. We confirmed that successful eutectic bonding is possible with less than 30 min processing using Sn-Glass. In addition, Au (20 wt%)/Sn (80 wt%) alloy, a mainly used the eutectic bonding interlayer material for VLEDs, can also be used as an interlayer to provide void-free eutectic bonding in less than 30 min.

  12. Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode

    NASA Astrophysics Data System (ADS)

    Jing, Pengtao; Ji, Wenyu; Zeng, Qinghui; Li, Di; Qu, Songnan; Wang, Jia; Zhang, Dandan

    2015-07-01

    Efficient transparent quantum-dot light emitting diodes (QD-LEDs) are demonstrated by using a silver nanowire (AgNW) cathode. The devices are fabricated through a solution technique, not any vacuum processes are involved. Almost identical performance is obtained for both sides of the transparent device, which is primary due to the high transmittance of AgNW cathode. The maximum luminance (efficiency) for ITO and AgNW side is 25,040 cd/m2 (5.6 cd/A) and 23,440 cd/m2 (5.2 cd/A), respectively. The average specular transmittance of the device (involving the glass substrate) is over 60% in the visible range. This study indicates that AgNW electrodes can serve as a cost-effective, flexible alternative to ITO, and thereby improve the economic viability and mechanical stability of QD-LEDs. All the results suggest that this is an important progress toward producing transparent QD-LEDs based displays and lighting sources.

  13. Light-emitting diodes (LED) for domestic lighting: any risks for the eye?

    PubMed

    Behar-Cohen, F; Martinsons, C; Viénot, F; Zissis, G; Barlier-Salsi, A; Cesarini, J P; Enouf, O; Garcia, M; Picaud, S; Attia, D

    2011-07-01

    Light-emitting diodes (LEDs) are taking an increasing place in the market of domestic lighting because they produce light with low energy consumption. In the EU, by 2016, no traditional incandescent light sources will be available and LEDs may become the major domestic light sources. Due to specific spectral and energetic characteristics of white LEDs as compared to other domestic light sources, some concerns have been raised regarding their safety for human health and particularly potential harmful risks for the eye. To conduct a health risk assessment on systems using LEDs, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES), a public body reporting to the French Ministers for ecology, for health and for employment, has organized a task group. This group consisted physicists, lighting and metrology specialists, retinal biologist and ophthalmologist who have worked together for a year. Part of this work has comprised the evaluation of group risks of different white LEDs commercialized on the French market, according to the standards and found that some of these lights belonged to the group risk 1 or 2. This paper gives a comprehensive analysis of the potential risks of white LEDs, taking into account pre-clinical knowledge as well as epidemiologic studies and reports the French Agency's recommendations to avoid potential retinal hazards.

  14. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods.

    PubMed

    Longcore, Travis; Aldern, Hannah L; Eggers, John F; Flores, Steve; Franco, Lesly; Hirshfield-Yamanishi, Eric; Petrinec, Laina N; Yan, Wilson A; Barroso, André M

    2015-05-05

    Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods.

  15. An Optically Stabilized Fast-Switching Light Emitting Diode as a Light Source for Functional Neuroimaging

    PubMed Central

    Wagenaar, Daniel A.

    2012-01-01

    Neuroscience research increasingly relies on optical methods for evoking neuronal activity as well as for measuring it, making bright and stable light sources critical building blocks of modern experimental setups. This paper presents a method to control the brightness of a high-power light emitting diode (LED) light source to an unprecedented level of stability. By continuously monitoring the actual light output of the LED with a photodiode and feeding the result back to the LED's driver by way of a proportional-integral controller, drift was reduced to as little as 0.007% per hour over a 12-h period, and short-term fluctuations to 0.005% root-mean-square over 10 seconds. The LED can be switched on and off completely within 100 s, a feature that is crucial when visual stimuli and light for optical recording need to be interleaved to obtain artifact-free recordings. The utility of the system is demonstrated by recording visual responses in the central nervous system of the medicinal leech Hirudo verbana using voltage-sensitive dyes. PMID:22238663

  16. Assessing the therapeutic effect of 625-nm light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Mao, Zongzhen; Xu, Guodong; Yang, Yi

    2014-09-01

    To evaluate the effects of red Light-Emitting Diodes on elbow extensor and flexor strength and the recovery of exercise induced fatigue, the torque values from the isokinetic dynamometer as well as biochemistry parameters were used as outcome measures. A randomized double-blind placebo-controlled crossover trial was performed with twenty male young tennis athletes. Active LED therapy (LEDT, with wavelength 625nm, 10 minutes total irradiation time, irradiated area amount to 30cm2, and 900J of total energy irradiated) or an identical placebo was delivered under double-blinded conditions to the left elbow just before exercise. The isokinetic muscle strength was measured immediately after irradiation. The blood lactate levels were sampled pre-exercise and post-exercise. The peak torque values of elbow extensor strength were significantly different between two groups. As in elbow flexor strength, the difference of peak torque was not significant. The blood lactate concentration of LEDT group post-exercise was significantly lower than those of placebo group. The results indicate that 625nm LED therapy is effective in preventing muscle fatigue as it can significantly reduce peak torque value of elbow extensors and blood lactate concentration. It has no effect on the strength of left elbow flexor or backhand performance in tennis.

  17. NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING

    SciTech Connect

    Arto V. Nurmikko; Jung Han

    2004-10-01

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  18. Carbon Nanotube Driver Circuit for 6 × 6 Organic Light Emitting Diode Display

    PubMed Central

    Zou, Jianping; Zhang, Kang; Li, Jingqi; Zhao, Yongbiao; Wang, Yilei; Pillai, Suresh Kumar Raman; Volkan Demir, Hilmi; Sun, Xiaowei; Chan-Park, Mary B.; Zhang, Qing

    2015-01-01

    Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical flexibility. Although there have been several publications about SWNT driver circuits, none of them have shown static and dynamic images with the AM OLED displays. Here we report on the first successful chemical vapor deposition (CVD)-grown SWNT network thin film transistor (TFT) driver circuits for static and dynamic AM OLED displays with 6 × 6 pixels. The high device mobility of ~45 cm2V−1s−1 and the high channel current on/off ratio of ~105 of the SWNT-TFTs fully guarantee the control capability to the OLED pixels. Our results suggest that SWNT-TFTs are promising backplane building blocks for future OLED displays. PMID:26119218

  19. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods

    PubMed Central

    Longcore, Travis; Aldern, Hannah L.; Eggers, John F.; Flores, Steve; Franco, Lesly; Hirshfield-Yamanishi, Eric; Petrinec, Laina N.; Yan, Wilson A.; Barroso, André M.

    2015-01-01

    Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods. PMID:25780237

  20. The rate equation based optical model for phosphor-converted white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Du, Kang; Li, Haokai; Guo, Keqin; Wang, Heng; Li, Dacheng; Zhang, Wending; Mei, Ting; Chua, Soo Jin

    2017-03-01

    An optical model based on the rate equation was developed to calculate the emission spectrum of a phosphor-converted white light-emitting diode (pc-WLED) taking into consideration the phosphor weight percentage, film thickness, and optical properties of phosphor, viz. absorption spectrum, quantum efficiency spectrum and fluorescent emission spectrum. Films containing a mixture of phosphor and silicone elastomer encapsulant were investigated using this model. A linear relationship was found between the peak absorption coefficient and the phosphor weight percentage with slopes of 66.76  ±  0.52 mm‑1 and 29.66  ±  2.05 mm‑1 for a red phosphor CaAlSiN3:Eu2+ and a yellow phosphor Y3Al5O12:Ce3+, respectively. With these parameters, the model predicted emission spectra which are in good agreement with measurement, thus verifying the validity of the model. The model correctly predicts redshift and spectral width reduction of the emission peak for increasing phosphor weight percentage or film thickness, as expected from the phenomenon of photon reabsorption by the phosphors. This model does not require the use of Monte Carlo simulation and Mie theory.