Diffractive ρ and ϕ production at HERA using a holographic AdS/QCD light-front meson wave function
NASA Astrophysics Data System (ADS)
Ahmady, Mohammad; Sandapen, Ruben; Sharma, Neetika
2016-10-01
We use an anti-de Sitter/quantum chromodynamics holographic light-front wave function for the ρ and ϕ mesons, in conjunction with the color glass condensate dipole cross section whose parameters are fitted to the most recent 2015 high precision HERA data on inclusive deep inelastic scattering, in order to predict the cross sections for diffractive ρ and ϕ electroproduction. Our results suggest that the holographic meson light-front wave function is able to give a simultaneous description of ρ and ϕ production data provided we use a set of light quark masses with mu ,d
Heavy and Heavy-Light Mesons in the Covariant Spectator Theory
NASA Astrophysics Data System (ADS)
Stadler, Alfred; Leitão, Sofia; Peña, M. T.; Biernat, Elmar P.
2018-05-01
The masses and vertex functions of heavy and heavy-light mesons, described as quark-antiquark bound states, are calculated with the Covariant Spectator Theory (CST). We use a kernel with an adjustable mixture of Lorentz scalar, pseudoscalar, and vector linear confining interaction, together with a one-gluon-exchange kernel. A series of fits to the heavy and heavy-light meson spectrum were calculated, and we discuss what conclusions can be drawn from it, especially about the Lorentz structure of the kernel. We also apply the Brodsky-Huang-Lepage prescription to express the CST wave functions for heavy quarkonia in terms of light-front variables. They agree remarkably well with light-front wave functions obtained in the Hamiltonian basis light-front quantization approach, even in excited states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Dotto, Alessio; Pace, Emanuele; Salme, Giovanni
Poincare covariant definitions for the spin-dependent spectral function and for the momentum distributions within the light-front Hamiltonian dynamics are proposed for a three-fermion bound system, starting from the light-front wave function of the system. The adopted approach is based on the Bakamjian–Thomas construction of the Poincaré generators, which allows one to easily import the familiar and wide knowledge on the nuclear interaction into a light-front framework. The proposed formalism can find useful applications in refined nuclear calculations, such as those needed for evaluating the European Muon Collaboration effect or the semi-inclusive deep inelastic cross sections with polarized nuclear targets, sincemore » remarkably the light-front unpolarized momentum distribution by definition fulfills both normalization and momentum sum rules. As a result, also shown is a straightforward generalization of the definition of the light-front spectral function to an A-nucleon system.« less
Del Dotto, Alessio; Pace, Emanuele; Salme, Giovanni; ...
2017-01-10
Poincare covariant definitions for the spin-dependent spectral function and for the momentum distributions within the light-front Hamiltonian dynamics are proposed for a three-fermion bound system, starting from the light-front wave function of the system. The adopted approach is based on the Bakamjian–Thomas construction of the Poincaré generators, which allows one to easily import the familiar and wide knowledge on the nuclear interaction into a light-front framework. The proposed formalism can find useful applications in refined nuclear calculations, such as those needed for evaluating the European Muon Collaboration effect or the semi-inclusive deep inelastic cross sections with polarized nuclear targets, sincemore » remarkably the light-front unpolarized momentum distribution by definition fulfills both normalization and momentum sum rules. As a result, also shown is a straightforward generalization of the definition of the light-front spectral function to an A-nucleon system.« less
NASA Astrophysics Data System (ADS)
Maji, Tanmay; Chakrabarti, Dipankar; Mukherjee, Asmita
2018-01-01
The spin asymmetries in SIDIS associated with T -odd TMDs are presented in a light-front quark-diquark model of a proton. To incorporate the effects of the final-state interaction, the light front wave functions are modified to have a phase factor which is essential to have Sivers or Boer-Mulders functions. The Sivers and Boer-Mulder asymmetries are compared with HERMES and COMPASS data.
Experimentally determining the locations of two astigmatic images for an underwater light source
NASA Astrophysics Data System (ADS)
Yang, Pao-Keng; Liu, Jian-You; Ying, Shang-Ping
2015-05-01
Images formed by an underwater object from light rays refracted in the sagittal and tangential planes are located at different positions for an oblique viewing position. The overlapping of these two images from the observer's perspective will thus prevent the image-splitting astigmatism from being directly observable. In this work, we present a heuristic method to experimentally visualize the astigmatism. A point light source is used as an underwater object and the emerging wave front is recorded using a Shack-Hartmann wave-front sensor. The wave front is found to deform from a circular paraboloid to an elliptic paraboloid as the viewing position changes from normal to oblique. Using geometric optics, we derive an analytical expression for the image position as a function of the rotating angle of an arm used to carry the wave-front sensor in our experimental setup. The measured results are seen to be in good agreement with the theoretical predictions.
Light-front holographic QCD and emerging confinement
Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; ...
2015-05-21
In this study we explore the remarkable connections between light-front dynamics, its holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and conformal quantum mechanics. This approach provides new insights into the origin of a fundamental mass scale and the physics underlying confinement dynamics in QCD in the limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary spin with an effective confinement potential derived from a conformal action and its embedding in AdS space. This equation allows for the computation of essential features of hadron spectra in terms of a single scale. Themore » light-front holographic methods described here give a precise interpretation of holographic variables and quantities in AdS space in terms of light-front variables and quantum numbers. This leads to a relation between the AdS wave functions and the boost-invariant light-front wave functions describing the internal structure of hadronic bound-states in physical spacetime. The pion is massless in the chiral limit and the excitation spectra of relativistic light-quark meson and baryon bound states lie on linear Regge trajectories with identical slopes in the radial and orbital quantum numbers. In the light-front holographic approach described here currents are expressed as an infinite sum of poles, and form factors as a product of poles. At large q 2 the form factor incorporates the correct power-law fall-off for hard scattering independent of the specific dynamics and is dictated by the twist. At low q 2 the form factor leads to vector dominance. The approach is also extended to include small quark masses. We briefly review in this report other holographic approaches to QCD, in particular top-down and bottom-up models based on chiral symmetry breaking. We also include a discussion of open problems and future applications.« less
Nonperturbative light-front Hamiltonian methods
NASA Astrophysics Data System (ADS)
Hiller, J. R.
2016-09-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.
Chang, Qin; Brodsky, Stanley J.; Li, Xin-Qiang
2017-05-30
In this article the dynamical spin effects of the light-front holographic wave functions for light pseudoscalar mesons are studied. These improved wave functions are then confronted with a number of hadronic observables: the decay constants of π and K mesons, their ξ -moments, the pion-to-photon transition form factor, and the pure annihilationmore » $$\\bar{B}_s$$ → π + π - and $$\\bar{B}_d$$ → K + K - decays. Taking f π , fK , and their ratio fK / f π as constraints, we perform a χ 2 analysis for the holographic parameters, including the mass scale parameter $$\\sqrtλ$$ and the effective quark masses, and find that the fitted results are quite consistent with the ones obtained from the light-quark hadronic Regge trajectories. In addition, we also show that the end point divergence appearing in the pure annihilation $$\\bar{B}_s$$ → π + π - and $$\\bar{B}_d$$ → K + K - decays can be controlled well by using these improved light-front holographic distribution amplitudes.« less
Pion and kaon valence-quark parton quasidistributions
NASA Astrophysics Data System (ADS)
Xu, Shu-Sheng; Chang, Lei; Roberts, Craig D.; Zong, Hong-Shi
2018-05-01
Algebraic Ansätze for the Poincaré-covariant Bethe-Salpeter wave functions of the pion and kaon are used to calculate their light-front wave functions, parton distribution amplitudes, parton quasidistribution amplitudes, valence parton distribution functions, and parton quasidistribution functions (PqDFs). The light-front wave functions are broad, concave functions, and the scale of flavor-symmetry violation in the kaon is roughly 15%, being set by the ratio of emergent masses in the s - and u -quark sectors. Parton quasidistribution amplitudes computed with longitudinal momentum Pz=1.75 GeV provide a semiquantitatively accurate representation of the objective parton distribution amplitude, but even with Pz=3 GeV , they cannot provide information about this amplitude's end point behavior. On the valence-quark domain, similar outcomes characterize PqDFs. In this connection, however, the ratio of kaon-to-pion u -quark PqDFs is found to provide a good approximation to the true parton distribution function ratio on 0.4 ≲x ≲0.8 , suggesting that with existing resources computations of ratios of parton quasidistributions can yield results that support empirical comparison.
Semileptonic decays of B and D mesons in the light-front formalism
NASA Astrophysics Data System (ADS)
Jaus, W.
1990-06-01
The light-front formalism is used to present a relativistic calculation of form factors for semileptonic D and B decays in the constituent quark model. The quark-antiquark wave functions of the mesons can be obtained, in principle, from an analysis of the meson spectrum, but are approximated in this work by harmonic-oscillator wave functions. The predictions of the model are consistent with the experimental data for B decays. The Kobayashi-Maskawa (KM) matrix element ||Vcs|| is determined by a comparison of the experimental and theoretical rates for D0-->K-e+ν, and is consistent with a unitary KM matrix for three families. The predictions for D-->K* transitions are in conflict with the data.
Deuteron electromagnetic form factors with the light-front approach
NASA Astrophysics Data System (ADS)
Sun, Bao-dong; Dong, Yu-bing
2017-01-01
The electromagnetic form factors and low-energy observables of the deuteron are studied with the help of the light-front approach, where the deuteron is regarded as a weakly bound state of a proton and a neutron. Both the S and D wave interacting vertexes among the deuteron, proton, and neutron are taken into account. Moreover, the regularization functions are also introduced. In our calculations, the vertex and the regularization functions are employed to simulate the momentum distribution inside the deuteron. Our numerical results show that the light-front approach can roughly reproduce the deuteron electromagnetic form factors, like charge G 0, magnetic G 1, and quadrupole G 2, in the low Q 2 region. The important effect of the D wave vertex on G 2 is also addressed. Supported by National Natural Science Foundation of China (10975146, 11475192), The fund provided by the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD" project is also appreciated, YBD thanks FAPESP grant 2011/11973-4 for funding his visit to ICTP-SAIFR
Light-front Ward-Takahashi identity for two-fermion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinho, J. A. O.; Frederico, T.; Pace, E.
We propose a three-dimensional electromagnetic current operator within light-front dynamics that satisfies a light-front Ward-Takahashi identity for two-fermion systems. The light-front current operator is obtained by a quasipotential reduction of the four-dimensional current operator and acts on the light-front valence component of bound or scattering states. A relation between the light-front valence wave function and the four-dimensional Bethe-Salpeter amplitude both for bound or scattering states is also derived, such that the matrix elements of the four-dimensional current operator can be fully recovered from the corresponding light-front ones. The light-front current operator can be perturbatively calculated through a quasipotential expansion, andmore » the divergence of the proposed current satisfies a Ward-Takahashi identity at any given order of the expansion. In the quasipotential expansion the instantaneous terms of the fermion propagator are accounted for by the effective interaction and two-body currents. We exemplify our theoretical construction in the Yukawa model in the ladder approximation, investigating in detail the current operator at the lowest nontrivial order of the quasipotential expansion of the Bethe-Salpeter equation. The explicit realization of the light-front form of the Ward-Takahashi identity is verified. We also show the relevance of instantaneous terms and of the pair contribution to the two-body current and the Ward-Takahashi identity.« less
Bayesian extraction of the parton distribution amplitude from the Bethe-Salpeter wave function
NASA Astrophysics Data System (ADS)
Gao, Fei; Chang, Lei; Liu, Yu-xin
2017-07-01
We propose a new numerical method to compute the parton distribution amplitude (PDA) from the Euclidean Bethe-Salpeter wave function. The essential step is to extract the weight function in the Nakanishi representation of the Bethe-Salpeter wave function in Euclidean space, which is an ill-posed inversion problem, via the maximum entropy method (MEM). The Nakanishi weight function as well as the corresponding light-front parton distribution amplitude (PDA) can be well determined. We confirm prior work on PDA computations, which was based on different methods.
Digital Data Acquisition for Laser Radar for Vibration Analysis
1998-06-01
and the resulting signal is a function of the relative phase of the two waves , which changes as the target vibrates. The relative phase is inversely...light crosses the medium in a direction perpendicular to the acoustic waves , a modulated optical wave front will result. A standing acoustic wave in the...mean that the frequency can be up or down-shifted, depending on the orientation of the AOM, or the direction of the traveling acoustic waves . An
NASA Astrophysics Data System (ADS)
Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.; Luke, Theodore E.
1997-04-01
A lateral shearing interferometer was used to measure the slope of perturbed wave fronts after they propagated through a He N 2 mixing layer in a rectangular channel. Slope measurements were used to reconstruct the phase of the turbulence-corrupted wave front. The random phase fluctuations induced by the mixing layer were captured in a large ensemble of wave-front measurements. Phase structure functions, computed from the reconstructed phase surfaces, were stationary in first increments. A five-thirds power law is shown to fit streamwise and cross-stream slices of the structure function, analogous to the Kolmogorov model for isotropic turbulence, which describes the structure function with a single parameter. Strehl ratios were computed from the phase structure functions and compared with a measured experiment obtained from simultaneous point-spread function measurements. Two additional Strehl ratios were calculated by using classical estimates that assume statistical isotropy throughout the flow. The isotropic models are a reasonable estimate of the optical degradation only within a few centimeters of the initial mixing, where the Reynolds number is low. At higher Reynolds numbers, Strehl ratios calculated from the structure functions match the experiment much better than Strehl ratio calculations that assume isotropic flow.
Relativistic bound-state problem in the light-front Yukawa model
NASA Astrophysics Data System (ADS)
Głazek, Stanisław; Harindranath, Avaroth; Pinsky, Stephen; Shigemitsu, Junko; Wilson, Kenneth
1993-02-01
We study the renormalization problem on the light front for the two-fermion bound state in the (3+1)-dimensional Yukawa model, working within the lowest-order Tamm-Dancoff approximation. In addition to traditional mass and wave-function renormalization, new types of counterterms are required. These are nonlocal and involve arbitrary functions of the longitudinal momenta. Their appearance is consistent with general power-counting arguments on the light front. We estimate the ``arbitrary function'' in two ways: (1) by using perturbation theory as a guide and (2) by considering the asymptotic large transverse momentum behavior of the kernel in the bound-state equations. The latter method, as it is currently implemented, is applicable only to the helicity-zero sector of the theory. Because of triviality, in the Yukawa model one must retain a finite cutoff Λ in order to have a nonvanishing renormalized coupling. For the range of renormalized couplings (and cutoffs) allowed by triviality, one finds that the perturbative counterterm does a good job in eliminating cutoff dependence in the low-energy spectrum (masses <<Λ).
LightWAVE: Waveform and Annotation Viewing and Editing in a Web Browser.
Moody, George B
2013-09-01
This paper describes LightWAVE, recently-developed open-source software for viewing ECGs and other physiologic waveforms and associated annotations (event markers). It supports efficient interactive creation and modification of annotations, capabilities that are essential for building new collections of physiologic signals and time series for research. LightWAVE is constructed of components that interact in simple ways, making it straightforward to enhance or replace any of them. The back end (server) is a common gateway interface (CGI) application written in C for speed and efficiency. It retrieves data from its data repository (PhysioNet's open-access PhysioBank archives by default, or any set of files or web pages structured as in PhysioBank) and delivers them in response to requests generated by the front end. The front end (client) is a web application written in JavaScript. It runs within any modern web browser and does not require installation on the user's computer, tablet, or phone. Finally, LightWAVE's scribe is a tiny CGI application written in Perl, which records the user's edits in annotation files. LightWAVE's data repository, back end, and front end can be located on the same computer or on separate computers. The data repository may be split across multiple computers. For compatibility with the standard browser security model, the front end and the scribe must be loaded from the same domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Yang; Wang, Ruixing; Ma, Haotong
Purpose: The measurement based on Shack-Hartmann wave-front sensor(WFS), obtaining both the high and low order wave-front aberrations simultaneously and accurately, has been applied in the detection of human eyes aberration in recent years. However, Its application is limited by the small field of view (FOV), slight eye movement leads the optical bacon image exceeds the lenslet array which result in uncertain detection error. To overcome difficulties of precise eye location, the capacity of detecting eye wave-front aberration over FOV much larger than simply a single conjugate Hartmann WFS accurately and simultaneously is demanded. Methods: Plenoptic camera’s lenslet array subdivides themore » aperture light-field in spatial frequency domain, capture the 4-D light-field information. Data recorded by plenoptic cameras can be used to extract the wave-front phases associated to the eyes aberration. The corresponding theoretical model and simulation system is built up in this article to discuss wave-front measurement performance when utilizing plenoptic camera as wave-front sensor. Results: The simulation results indicate that the plenoptic wave-front method can obtain both the high and low order eyes wave-front aberration with the same accuracy as conventional system in single visual angle detectionand over FOV much larger than simply a single conjugate Hartmann systems. Meanwhile, simulation results show that detection of eye aberrations wave-front in different visual angle can be achieved effectively and simultaneously by plenoptic method, by both point and extended optical beacon from the eye. Conclusion: Plenoptic wave-front method possesses the feasibility in eye aberrations wave-front detection. With larger FOV, the method can effectively reduce the detection error brought by imprecise eye location and simplify the eye aberrations wave-front detection system comparing with which based on Shack-Hartmann WFS. Unique advantage of the plenoptic method lies in obtaining wave-front in different visual angle simultaneously, which provides an approach in building up 3-D model of eye refractor tomographically. Funded by the key Laboratory of High Power Laser and Physics, CAS Research Project of National University of Defense Technology No. JC13-07-01; National Natural Science Foundation of China No. 61205144.« less
Light-front representation of chiral dynamics with Δ isobar and large-N c relations
Granados, C.; Weiss, C.
2016-06-13
Transverse densities describe the spatial distribution of electromagnetic current in the nucleon at fixed light-front time. At peripheral distances b = O(M π –1) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). Recent work has shown that the EFT results can be represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft-pion-nucleon intermediate states, resulting in a quantum-mechanical picture of the peripheral transverse densities. We now extend this representation to include intermediate states with Δ isobars and implement relations basedmore » on the large-N c limit of QCD. We derive the wave function overlap formulas for the Δ contributions to the peripheral transverse densities by way of a three-dimensional reduction of relativistic chiral EFT expressions. Our procedure effectively maintains rotational invariance and avoids the ambiguities with higher-spin particles in the light-front time-ordered approach. We study the interplay of πN and πΔ intermediate states in the quantum-mechanical picture of the densities in a transversely polarized nucleon. We show that the correct N c-scaling of the charge and magnetization densities emerges as the result of the particular combination of currents generated by intermediate states with degenerate N and Δ. The off-shell behavior of the chiral EFT is summarized in contact terms and can be studied easily. As a result, the methods developed here can be applied to other peripheral densities and to moments of the nucleon's generalized parton distributions.« less
Wave refraction in negative-index media: always positive and very inhomogeneous.
Valanju, P M; Walser, R M; Valanju, A P
2002-05-06
We present the first treatment of the refraction of physical electromagnetic waves in newly developed negative index media (NIM), also known as left-handed media (LHM). The NIM dispersion relation implies that group fronts refract positively even when phase fronts refract negatively. This difference results in rapidly dispersing, very inhomogeneous waves. In fact, causality and finite signal speed always prevent negative wave signal (not phase) refraction. Earlier interpretations of phase refraction as "negative light refraction" and "light focusing by plane slabs" are therefore incorrect, and published NIM experiments can be explained without invoking negative signal refraction.
Three Dimensional Imaging of the Nucleon
NASA Astrophysics Data System (ADS)
More, Jai; Mukherjee, Asmita; Nair, Sreeraj
2018-05-01
We study the Wigner distributions of quarks and gluons in light-front dressed quark model using the overlap of light front wave functions (LFWFs). We take the target to be a dressed quark, this is a composite spin -1/2 state of quark dressed with a gluon. This state allows us to calculate the quark and gluon Wigner distributions analytically in terms of LFWFs using Hamiltonian perturbation theory. We analyze numerically the Wigner distributions of quark and gluon and report their nature in the contour plots. We use an improved numerical technique to remove the cutoff dependence of the Fourier transformed integral over \\varvec{Δ}_\\perp.
Study of the performance of image restoration under different wavefront aberrations
NASA Astrophysics Data System (ADS)
Wang, Xinqiu; Hu, Xinqi
2016-10-01
Image restoration is an effective way to improve the quality of images degraded by wave-front aberrations. If the wave-front aberration is too large, the performance of the image restoration will not be good. In this paper, the relationship between the performance of image restoration and the degree of wave-front aberrations is studied. A set of different wave-front aberrations is constructed by Zernike polynomials, and the corresponding PSF under white-light illumination is calculated. A set of blurred images is then obtained through convolution methods. Next we recover the images with the regularized Richardson-Lucy algorithm and use the RMS of the original image and the homologous deblurred image to evaluate the quality of restoration. Consequently, we determine the range of wave-front errors in which the recovered images are acceptable.
The Kalman-Tran-D'Souza model and the semileptonic decay rates of heavy baryons
NASA Astrophysics Data System (ADS)
D'Souza, I.; Kalman, C. S.; Kulikov, P. Yu.; Narodetskii, I. M.
2001-03-01
We present an investigation of the inclusive semileptonic decay widths of the heavy baryons Λ Q, Σ Q and Ξ Q, ( q = b, c) performed within a relativistic constituent quark model, formulated on the light-front. In a way conceptually similar to the deep-inelastic scattering case, the H Q-baryon inclusive width is expressed as the integral of the free Q-quark partial width multiplied by a bound-state factor related to the Q-quark distribution function in the H Q. The non-perturbative meson structure is described through the quark-model wave functions, constructed via the Hamiltonian light-front formalism using as input the Kalman-Tran-D'Souza equal time wave functions. A link between spectroscopic quark models and the H Q decay physics is obtained in this way. It is shown that the bound-state effects and the Fermi motion of the b-quark remarkably reduce the decay rate with respect to the free-quark result. Our predictions for the BR(Λ c → X sl ν e) and BR(Λ b → X cl ν e) decays are in good agreement with existing data.
Nuclear reactions in shock wave front during supernova events
NASA Technical Reports Server (NTRS)
Lavrukhina, A. K.
1985-01-01
The new unique isotopic anomalous coponent of Xe(XeX) was found in the carbonaceous chondrites. It is enriched in light shielded isotopes (124Xe and 126Xe) and in heavy nonshielded isotopes (134Xe and 136Xe. All characteristics of Xe-X can be explained by a model of nucleosynthesis of the Xe isotopes in shock wave front passed through the He envelope during supernova events. The light isotopes are created by p process and the heavy isotopes are created by n process (slow r process). They were captured with high temperature carbon grains condensing by supernova shock waves.
NASA Astrophysics Data System (ADS)
Marcos, Susana; Diaz-Santana, Luis; Llorente, Lourdes; Dainty, Chris
2002-06-01
Ocular aberrations were measured in 71 eyes by using two reflectometric aberrometers, employing laser ray tracing (LRT) (60 eyes) and a Shack-Hartmann wave-front sensor (S-H) (11 eyes). In both techniques a point source is imaged on the retina (through different pupil positions in the LRT or a single position in the S-H). The aberrations are estimated by measuring the deviations of the retinal spot from the reference as the pupil is sampled (in LRT) or the deviations of a wave front as it emerges from the eye by means of a lenslet array (in the S-H). In this paper we studied the effect of different polarization configurations in the aberration measurements, including linearly polarized light and circularly polarized light in the illuminating channel and sampling light in the crossed or parallel orientations. In addition, completely depolarized light in the imaging channel was obtained from retinal lipofuscin autofluorescence. The intensity distribution of the retinal spots as a function of entry (for LRT) or exit pupil (for S-H) depends on the polarization configuration. These intensity patterns show bright corners and a dark area at the pupil center for crossed polarization, an approximately Gaussian distribution for parallel polarization and a homogeneous distribution for the autofluorescence case. However, the measured aberrations are independent of the polarization states. These results indicate that the differences in retardation across the pupil imposed by corneal birefringence do not produce significant phase delays compared with those produced by aberrations, at least within the accuracy of these techniques. In addition, differences in the recorded aerial images due to changes in polarization do not affect the aberration measurements in these reflectometric aberrometers.
Using a plenoptic camera to measure distortions in wavefronts affected by atmospheric turbulence
NASA Astrophysics Data System (ADS)
Eslami, Mohammed; Wu, Chensheng; Rzasa, John; Davis, Christopher C.
2012-10-01
Ideally, as planar wave fronts travel through an imaging system, all rays, or vectors pointing in the direction of the propagation of energy are parallel, and thus the wave front is focused to a particular point. If the wave front arrives at an imaging system with energy vectors that point in different directions, each part of the wave front will be focused at a slightly different point on the sensor plane and result in a distorted image. The Hartmann test, which involves the insertion of a series of pinholes between the imaging system and the sensor plane, was developed to sample the wavefront at different locations and measure the distortion angles at different points in the wave front. An adaptive optic system, such as a deformable mirror, is then used to correct for these distortions and allow the planar wave front to focus at the point desired on the sensor plane, thereby correcting the distorted image. The apertures of a pinhole array limit the amount of light that reaches the sensor plane. By replacing the pinholes with a microlens array each bundle of rays is focused to brighten the image. Microlens arrays are making their way into newer imaging technologies, such as "light field" or "plenoptic" cameras. In these cameras, the microlens array is used to recover the ray information of the incoming light by using post processing techniques to focus on objects at different depths. The goal of this paper is to demonstrate the use of these plenoptic cameras to recover the distortions in wavefronts. Taking advantage of the microlens array within the plenoptic camera, CODE-V simulations show that its performance can provide more information than a Shack-Hartmann sensor. Using the microlens array to retrieve the ray information and then backstepping through the imaging system provides information about distortions in the arriving wavefront.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Ryun-Young; Ofman, Leon; Kramar, Maxim
2013-03-20
We report white-light observations of a fast magnetosonic wave associated with a coronal mass ejection observed by STEREO/SECCHI/COR1 inner coronagraphs on 2011 August 4. The wave front is observed in the form of density compression passing through various coronal regions such as quiet/active corona, coronal holes, and streamers. Together with measured electron densities determined with STEREO COR1 and Extreme UltraViolet Imager (EUVI) data, we use our kinematic measurements of the wave front to calculate coronal magnetic fields and find that the measured speeds are consistent with characteristic fast magnetosonic speeds in the corona. In addition, the wave front turns outmore » to be the upper coronal counterpart of the EIT wave observed by STEREO EUVI traveling against the solar coronal disk; moreover, stationary fronts of the EIT wave are found to be located at the footpoints of deflected streamers and boundaries of coronal holes, after the wave front in the upper solar corona passes through open magnetic field lines in the streamers. Our findings suggest that the observed EIT wave should be in fact a fast magnetosonic shock/wave traveling in the inhomogeneous solar corona, as part of the fast magnetosonic wave propagating in the extended solar corona.« less
Light-front representation of chiral dynamics in peripheral transverse densities
Granados, Carlos G.; Weiss, Christian
2015-07-31
The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independentmore » and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.« less
CASOAR - An infrared active wave front sensor for atmospheric turbulence analysis
NASA Astrophysics Data System (ADS)
Cariou, Jean-Pierre; Dolfi, Agnes
1992-12-01
Knowledge of deformation of every point of a wave front over time allows statistical turbulence parameters to be analyzed, and the definition of real time adaptive optics to be designed. An optical instrumentation was built to meet this need. Integrated in a compact enclosure for experiments on outdoor sites, the CASOAR allows the deformations of a wave front to be measured rapidly (100 Hz) and with accuracy (1 deg). The CASOAR is an active system: it includes its own light source (CW CO2 laser), making it self-contained, self-aligned and insensitive to spurious light rays. After being reflected off a mirror located beyond the atmospheric layer to be analyzed (range of several kilometers), the beam is received and detected by coherent mixing. Electronic phase is converted in optical phase and recorded or displayed in real time on a monitor. Experimental results are shown, pointing out the capabilities of this device.
An ANN-Based Smart Tomographic Reconstructor in a Dynamic Environment
de Cos Juez, Francisco J.; Lasheras, Fernando Sánchez; Roqueñí, Nieves; Osborn, James
2012-01-01
In astronomy, the light emitted by an object travels through the vacuum of space and then the turbulent atmosphere before arriving at a ground based telescope. By passing through the atmosphere a series of turbulent layers modify the light's wave-front in such a way that Adaptive Optics reconstruction techniques are needed to improve the image quality. A novel reconstruction technique based in Artificial Neural Networks (ANN) is proposed. The network is designed to use the local tilts of the wave-front measured by a Shack Hartmann Wave-front Sensor (SHWFS) as inputs and estimate the turbulence in terms of Zernike coefficients. The ANN used is a Multi-Layer Perceptron (MLP) trained with simulated data with one turbulent layer changing in altitude. The reconstructor was tested using three different atmospheric profiles and compared with two existing reconstruction techniques: Least Squares type Matrix Vector Multiplication (LS) and Learn and Apply (L + A). PMID:23012524
Effect of aberrations in human eye on contrast sensitivity function
NASA Astrophysics Data System (ADS)
Quan, Wei; Wang, Feng-lin; Wang, Zhao-qi
2011-06-01
The quantitative analysis of the effect of aberrations in human eye on vision has important clinical value in the correction of aberrations. The wave-front aberrations of human eyes were measured with the Hartmann-Shack wave-front sensor and modulation transfer function (MTF) was computed from the wave-front aberrations. Contrast sensitivity function (CSF) was obtained from MTF and the retinal aerial image modulation (AIM). It is shown that the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations deteriorate contrast sensitivity function. When the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations are corrected high contrast sensitivity function can be obtained.
Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing
NASA Astrophysics Data System (ADS)
Vorontsov, Mikhail A.; Kolosov, Valeriy
2005-01-01
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.
Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing.
Vorontsov, Mikhail A; Kolosov, Valeriy
2005-01-01
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.
Zarmi, Yair
2016-01-01
Slower-than-light multi-front solutions of the Sine-Gordon in (1+2) dimensions, constructed through the Hirota algorithm, are mapped onto spatially localized structures, which emulate free, spatially extended, massive relativistic particles. A localized structure is an image of the junctions at which the fronts intersect. It propagates together with the multi-front solution at the velocity of the latter. The profile of the localized structure obeys the linear wave equation in (1+2) dimensions, to which a term that represents interaction with a slower-than-light, Sine-Gordon-multi-front solution has been added. This result can be also formulated in terms of a (1+2)-dimensional Lagrangian system, in which the Sine-Gordon and wave equations are coupled. Expanding the Euler-Lagrange equations in powers of the coupling constant, the zero-order part of the solution reproduces the (1+2)-dimensional Sine-Gordon fronts. The first-order part is the spatially localized structure. PACS: 02.30.Ik, 03.65.Pm, 05.45.Yv, 02.30.Ik. PMID:26930077
Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles
Benjamin, R.F.
1983-10-18
An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.
Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles
Benjamin, Robert F.
1987-01-01
An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.
Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles
Benjamin, R.F.
1987-03-10
An apparatus is disclosed for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously. 3 figs.
Spin dynamics of qqq wave function on light front in high momentum limit of QCD: Role of qqq force
NASA Astrophysics Data System (ADS)
Mitra, A. N.
2008-04-01
The contribution of a spin-rich qqq force (in conjunction with pairwise qq forces) to the analytical structure of the qqq wave function is worked out in the high momentum regime of QCD where the confining interaction may be ignored, so that the dominant effect is Coulombic. A distinctive feature of this study is that the spin-rich qqq force is generated by a ggg vertex (a genuine part of the QCD Lagrangian) wherein the 3 radiating gluon lines end on as many quark lines, giving rise to a (Mercedes-Benz type) Y-shaped diagram. The dynamics is that of a Salpeter-like equation (3D support for the kernel) formulated covariantly on the light front, a la Markov-Yukawa Transversality Principle (MYTP) which warrants a 2-way interconnection between the 3D and 4D Bethe-Salpeter (BSE) forms for 2 as well as 3 fermion quarks. With these ingredients, the differential equation for the 3D wave function ϕ receives well-defined contributions from the qq and qqq forces. In particular a negative eigenvalue of the spin operator iσ1 · σ2 × σ3 which is an integral part of the qqq force, causes a characteristic singularity in the differential equation, signalling the dynamical effect of a spin-rich qqq force not yet considered in the literature. The potentially crucial role of this interesting effect vis-a-vis the so-called 'spin anomaly' of the proton, is a subject of considerable physical interest.
NASA Technical Reports Server (NTRS)
Kurtz, R. L.; Liu, H. K.
1974-01-01
When a hologram storing more than one wave is illuminated with coherent light, the reconstructed wave fronts interfere with each other or with any other phase-related wave front derived from the illuminating source. This multiple wave front comparison is called holographic interferometry, and its application is called holographic nondestructive testing (HNDT). The theoretical aspects of HNDT techniques and the sensitivity of the holographic system to the geometrical placement of the optical components are briefly discussed. A unique HNDT system which is mobile and possesses variable sensitivity to stress amplitude is discribed, the experimental evidence of the application of this system to the testing of the hidden debonds in a ceramic-epoxy-fiberglass structure used for sample testing of the radome of the Pershing missile system is presented.
Transverse Momentum Distributions of Electron in Simulated QED Model
NASA Astrophysics Data System (ADS)
Kaur, Navdeep; Dahiya, Harleen
2018-05-01
In the present work, we have studied the transverse momentum distributions (TMDs) for the electron in simulated QED model. We have used the overlap representation of light-front wave functions where the spin-1/2 relativistic composite system consists of spin-1/2 fermion and spin-1 vector boson. The results have been obtained for T-even TMDs in transverse momentum plane for fixed value of longitudinal momentum fraction x.
Wilson lines in the MHV action
Kotko, P.; Stasto, A. M.
2017-09-12
The MHV action is the Yang-Mills action quantized on the light-front, where the two explicit physical gluonic degrees of freedom have been canonically transformed to a new set of fields. This transformation leads to the action with vertices being off-shell continuations of the MHV amplitudes. We show that the solution to the field transformation expressing one of the new fields in terms of the Yang-Mills field is a certain type of the Wilson line. More precisely, it is a straight infinite gauge link with a slope extending to the light-cone minus and the transverse direction. One of the consequences ofmore » that fact is that certain MHV vertices reduced partially on-shell are gauge invariant — a fact discovered before using conventional light-front perturbation theory. We also analyze the diagrammatic content of the field transformations leading to the MHV action. We found that the diagrams for the solution to the transformation (given by the Wilson line) and its inverse differ only by light-front energy denominators. Further, we investigate the coordinate space version of the inverse solution to the one given by the Wilson line. We find an explicit expression given by a power series in fields. We also give a geometric interpretation to it by means of a specially defined vector field. Finally, we discuss the fact that the Wilson line solution to the transformation is directly related to the all-like helicity gluon wave function, while the inverse functional is a generating functional for solutions of self-dual Yang-Mills equations.« less
Wilson lines in the MHV action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotko, P.; Stasto, A. M.
The MHV action is the Yang-Mills action quantized on the light-front, where the two explicit physical gluonic degrees of freedom have been canonically transformed to a new set of fields. This transformation leads to the action with vertices being off-shell continuations of the MHV amplitudes. We show that the solution to the field transformation expressing one of the new fields in terms of the Yang-Mills field is a certain type of the Wilson line. More precisely, it is a straight infinite gauge link with a slope extending to the light-cone minus and the transverse direction. One of the consequences ofmore » that fact is that certain MHV vertices reduced partially on-shell are gauge invariant — a fact discovered before using conventional light-front perturbation theory. We also analyze the diagrammatic content of the field transformations leading to the MHV action. We found that the diagrams for the solution to the transformation (given by the Wilson line) and its inverse differ only by light-front energy denominators. Further, we investigate the coordinate space version of the inverse solution to the one given by the Wilson line. We find an explicit expression given by a power series in fields. We also give a geometric interpretation to it by means of a specially defined vector field. Finally, we discuss the fact that the Wilson line solution to the transformation is directly related to the all-like helicity gluon wave function, while the inverse functional is a generating functional for solutions of self-dual Yang-Mills equations.« less
Baryon spectrum from superconformal quantum mechanics and its light-front holographic embedding
de Teramond, Guy F.; Dosch, Hans Gunter; Brodsky, Stanley J.
2015-02-27
We describe the observed light-baryon spectrum by extending superconformal quantum mechanics to the light front and its embedding in AdS space. This procedure uniquely determines the confinement potential for arbitrary half-integer spin. To this end, we show that fermionic wave equations in AdS space are dual to light-front supersymmetric quantum-mechanical bound-state equations in physical space-time. The specific breaking of conformal invariance explains hadronic properties common to light mesons and baryons, such as the observed mass pattern in the radial and orbital excitations, from the spectrum generating algebra. Lastly, the holographic embedding in AdS also explains distinctive and systematic features, suchmore » as the spin-J degeneracy for states with the same orbital angular momentum, observed in the light-baryon spectrum.« less
In-Medium K^+ Electromagnetic Form Factor with a Symmetric Vertex in a Light Front Approach
NASA Astrophysics Data System (ADS)
Yabusaki, George H. S.; de Melo, J. P. B. C.; de Paula, Wayne; Tsushima, K.; Frederico, T.
2018-05-01
Using the light-front K^ +-Meson wave function based on a Bethe-Salpeter amplitude model for the Quark-Antiquark bound state, we study the Electromagnetic Form Factor (EMFF) of the K^ +-Meson in nuclear medium within the framework of light-front field theory. The K^ +-Meson model we adopt is well constrained by previous and recent studies to explain its properties in vacuum. The in-medium K^ +-Meson EMFF is evaluated for the plus-component of the electromagnetic current, J^+, in the Breit frame. In order to consistently incorporate the constituent up and antistrange Quarks of the K^ +-Meson immersed in symmetric nuclear matter, we use the Quark-Meson coupling model, which has been widely applied to various hadronic and nuclear phenomena in a nuclear medium with success. We predict the in-medium modification of the K^ +-Meson EMFF in symmetric nuclear matter. It is found that, after a fine tuning of the regulator mass, i.e. m_R = 0.600 GeV, the model is suitable to fit the available experimental data in vacuum within the theoretical uncertainties, and based on this we predict the in-medium modification of the K^ +-Meson EMFF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Yijun; Zhang, Jun; Li, Ting
Recent high-resolution observations from the Interface Region Imaging Spectrograph reveal bright wall-shaped structures in active regions (ARs), especially above sunspot light bridges. Their most prominent feature is the bright oscillating front in the 1400/1330 Å channel. These structures are named light walls and are often interpreted to be driven by p-mode waves. Above the light bridge of AR 12222 on 2014 December 06, we observed intermittent ejections superimposed on an oscillating light wall in the 1400 Å passband. At the base location of each ejection, the emission enhancement was detected in the Solar Dynamics Observatory 1600 Å channel. Thus, wemore » suggest that in wall bases (light bridges), in addition to the leaked p-mode waves consistently driving the oscillating light wall, magnetic reconnection could happen intermittently at some locations and eject the heated plasma upward. Similarly, in the second event occurring in AR 12371 on 2015 June 16, a jet was simultaneously detected in addition to the light wall with a wave-shaped bright front above the light bridge. At the footpoint of this jet, lasting brightening was observed, implying magnetic reconnection at the base. We propose that in these events, two mechanisms, p-mode waves and magnetic reconnection, simultaneously play roles in the light bridge, and lead to the distinct kinetic features of the light walls and the ejection-like activities, respectively. To illustrate the two mechanisms and their resulting activities above light bridges, in this study we present a cartoon model.« less
Highly Efficient Wave-Front Reshaping of Surface Waves with Dielectric Metawalls
NASA Astrophysics Data System (ADS)
Dong, Shaohua; Zhang, Yu; Guo, Huijie; Duan, Jingwen; Guan, Fuxin; He, Qiong; Zhao, Haibin; Zhou, Lei; Sun, Shulin
2018-01-01
Controlling the wave fronts of surface waves (including surface-plamon polaritons and their equivalent counterparts) at will is highly important in photonics research, but the available mechanisms suffer from the issues of low efficiency, bulky size, and/or limited functionalities. Inspired by recent studies of metasurfaces that can freely control the wave fronts of propagating waves, we propose to use metawalls placed on a plasmonic surface to efficiently reshape the wave fronts of incident surface waves (SWs). Here, the metawall is constructed by specifically designed meta-atoms that can reflect SWs with desired phases and nearly unit amplitudes. As a proof of concept, we design and fabricate a metawall in the microwave regime (around 12 GHz) that can anomalously reflect the SWs following the generalized Snell's law with high efficiency (approximately 70%). Our results, in excellent agreement with full-wave simulations, provide an alternative yet efficient way to control the wave fronts of SWs in different frequency domains. We finally employ full-wave simulations to demonstrate a surface-plasmon-polariton focusing effect at telecom wavelength based on our scheme.
Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators
NASA Astrophysics Data System (ADS)
Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.; Vainchtein, A.; Rubin, J. E.
2016-06-01
Motivated by earlier studies of artificial perceptions of light called phosphenes, we analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolution and stability of planar fronts. Our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.
Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators
Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.; ...
2016-02-27
Artificial perceptions of light called phosphenes were motivated by earlier studies. We analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolutionmore » and stability of planar fronts. Moreover, our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.« less
Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.
Artificial perceptions of light called phosphenes were motivated by earlier studies. We analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolutionmore » and stability of planar fronts. Moreover, our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.« less
Image formation in microwave holography
NASA Technical Reports Server (NTRS)
Cribbs, R. W.; Lamb, B. L.
1973-01-01
Microwave holograms are made without offset reference beam, but it has been found that Van der Lugt filter can be used to produce image offset. Also, filter permits "decoding" of holograms in contrast with usual practice of reconstructing visible-light analogs of original micro-wave wave fronts.
Testing Quantum Chromodynamics with Antiprotons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, S.
2004-10-21
The antiproton storage ring HESR to be constructed at GSI will open up a new range of perturbative and nonperturbative tests of QCD in exclusive and inclusive reactions. I discuss 21 tests of QCD using antiproton beams which can illuminate novel features of QCD. The proposed experiments include the formation of exotic hadrons, measurements of timelike generalized parton distributions, the production of charm at threshold, transversity measurements in Drell-Yan reactions, and searches for single-spin asymmetries. The interactions of antiprotons in nuclear targets will allow tests of exotic nuclear phenomena such as color transparency, hidden color, reduced nuclear amplitudes, and themore » non-universality of nuclear antishadowing. The central tool used in these lectures are light-front Fock state wavefunctions which encode the bound-state properties of hadrons in terms of their quark and gluon degrees of freedom at the amplitude level. The freedom to choose the light-like quantization four-vector provides an explicitly covariant formulation of light-front quantization and can be used to determine the analytic structure of light-front wave functions. QCD becomes scale free and conformally symmetric in the analytic limit of zero quark mass and zero {beta} function. This ''conformal correspondence principle'' determines the form of the expansion polynomials for distribution amplitudes and the behavior of non-perturbative wavefunctions which control hard exclusive processes at leading twist. The conformal template also can be used to derive commensurate scale relations which connect observables in QCD without scale or scheme ambiguity. The AdS/CFT correspondence of large N{sub C} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time has important implications for hadron phenomenology in the conformal limit, including the nonperturbative derivation of counting rules for exclusive processes and the behavior of structure functions at large x{sub bj}. String/gauge duality also predicts the QCD power-law fall-off of light-front Fock-state hadronic wavefunctions with arbitrary orbital angular momentum at high momentum transfer. I also review recent work which shows that the diffractive component of deep inelastic scattering, single spin asymmetries, as well as nuclear shadowing and antishadowing, cannot be computed from the LFWFs of hadrons in isolation.« less
Perturbing laser field dependent high harmonic phase modulations
NASA Astrophysics Data System (ADS)
Li, Zhengyan; Kong, Fanqi; Brown, Graham; Hammond, TJ; Ko, Dong-Hyuk; Zhang, Chunmei; Corkum, P. B.
2018-06-01
A perturbing laser pulse modulates and controls the phase of the high harmonic radiation driven by an intense fundamental pulse. Thus, a structured wave front can impress a specific spatial phase onto the generated high harmonic wave front. This modulation procedure leads to all-optical spatial light modulators for VUV or XUV radiation created by high harmonic generation. Here, through theoretical analysis and experiment, we study the correlation between the high harmonic phase modulations and the perturbing laser field amplitude and phase, providing guidelines for practical high harmonic spatial light modulators. In addition, we show that the petahertz optical oscilloscope for measuring electric fields of a perturbing beam is most robust using low order harmonics, far from the cut-off.
1990-12-01
Zerodur ,irror, 2" relfects light. 1OZ20BD.1; 20th wave zerodur mirror , 1" reflects light. LS-35; 3’ x 5’ optical breadboard; for mounting components...profile measurements using the diffuse screen were compared with measurements using a front surface mirror and a fluorescent screen. The 20 DISTRIBUTION...Beam current and profile measurements using the diffuse screen were compared with measurements using a front surface mirror and a fluorescent screen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granados, Carlos; Weiss, Christian
The nucleon's peripheral transverse charge and magnetization densities are computed in chiral effective field theory. The densities are represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft pion-nucleon intermediate states. The orbital motion of the pion causes a large left-right asymmetry in a transversely polarized nucleon. As a result, the effect attests to the relativistic nature of chiral dynamics [pion momenta k = O(M π)] and could be observed in form factor measurements at low momentum transfer.
AdS/QCD and Light Front Holography: A New Approximation to QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; de Teramond, Guy
2010-02-15
The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give themore » hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n+L+S/2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.« less
On the Traversal Time of Barriers
NASA Astrophysics Data System (ADS)
Aichmann, Horst; Nimtz, Günter
2014-06-01
Fifty years ago Hartman studied the barrier transmission time of wave packets (J Appl Phys 33:3427-3433, 1962). He was inspired by the tunneling experiments across thin insulating layers at that time. For opaque barriers he calculated faster than light propagation and a transmission time independent of barrier length, which is called the Hartman effect. A faster than light (FTL or superluminal) wave packet velocity was deduced in analog tunneling experiments with microwaves and with infrared light thirty years later. Recently, the conjectured zero time of electron tunneling was claimed to have been observed in ionizing helium inside the barrier. The calculated and measured short tunneling time arises at the barrier front. This tunneling time was found to be universal for elastic fields as well as for electromagnetic fields. Remarkable is that the delay time is the same for the reflected and the transmitted waves in the case of symmetric barriers. Several theoretical physicists predicted this strange nature of the tunneling process. However, even with this background many members of the physics community do not accept a FTL signal velocity interpretation of the experimental tunneling results. Instead a luminal front velocity was calculated to explain the FTL experimental results frequently. However, Brillouin stated in his book on wave propagation and group velocity that the front velocity is given by the group velocity of wave packets in the case of physical signals, which have only finite frequency bandwidths. Some studies assumed barriers to be cavities and the observed tunneling time does represent the cavity lifetime. We are going to discus these continuing misleading interpretations, which are found in journals and in textbooks till today.
Generation of spiral optical beams using a spatial light modulator
NASA Astrophysics Data System (ADS)
Rodrigo, Peter J.; Alonzo, Carlo A.; Gluckstad, Jesper
2005-08-01
Recently, a new type of beam termed "spiral optical beam" has been introduced [Alonzo, et al., Opt. Express 13, 1749 (2005)]. Spiral beams are created from multiplicative mixtures of helical and conical phase distributions. Helico-conical phase fronts that generate these novel beams are not achieved with a sequence of a corkscrew wave-plate and an axicon (as this sequence gives a sum of helical and conical phase terms). Nevertheless, the availability of phase-only spatial light modulators (SLM) allows one to directly imprint helico-conical phase functions on an incident plane wave and provides an easy way to modify the profile of the encoded phase. Focusing the phase-modified field results in spiral intensity distributions that may find use for optical manipulation of mesoscopic particles. In this paper, we have extended the discussion to translation and rotation (as well as chirality switching) of the spiral beams using SLM control.
Dynamics of Proton Spin: Role of qqq Force
NASA Astrophysics Data System (ADS)
Mitra, A. N.
The analytic structure of the qqq wave function, obtained recently in the high momentum regime of QCD, is employed for the formulation of baryonic transition amplitudes via quark loops. A new aspect of this study is the role of a direct (Y -shaped, Mercedes-Benz type) qqq force in generating the qqq wave function The dynamics is that of a Salpeter-like equation (3D support for the kernel) formulated covariantly on the light front, a la Markov-Yukawa Transversality Principle (MYTP) which warrants a 2-way interconnection between the 3D and 4D Bethe-Salpeter (BSE) forms for 2 as well as 3 fermion quarks. The dynamics of this 3-body force shows up through a characteristic singularity in the hypergeometric differential equation for the 3D wave function ϕ, corresponding to a negative eigenvalue of the spin operator iσ1·σ2 × σ3 which is an integral part of the qqq force. As a first application of this wave function to the problem of the proton spin anomaly, the two-gluon contribution to the anomaly yields an estimate of the right sign, although somewhat smaller in magnitude.
Inverse Optimization of Plasmonic and Antireflective Grating in Thin Film PV Cells
NASA Astrophysics Data System (ADS)
Hajimirza, Shima; Howell, John
2012-06-01
This work addresses inverse optimization of three dimensional front and back surface texture grating specifications, for the purpose of shaping the absorptivity spectrum of silicon thin film cells in targeted ways. Periodic plasmonic gratings with dimensions comparable or less than the incident light wavelength are known to enhance light absorption. We consider surface patterning of amorphous silicon (a-Si) thin films using front and/or back metallic nanostrips and ITO coatings, and show that wideband enhancement in unpolarized absorptivity spectrum can be achieved when back reflectors are used. The overall short circuit current enhancement using such structures is significant and can be as high as 97%. For TM-polarized wave it can be even higher as reported in previous work. In this work however, we focus on the optimization for the more realistic unpolarized radiation which is of significantly higher complexity. In addition, optimization is done with respect to two objective functions independently: spectral absorptivity and gain-bandwidth product of the absorptivity spectrum.
Form factors and differential branching ratio of B →K μ+μ- in AdS/QCD
NASA Astrophysics Data System (ADS)
Momeni, S.; Khosravi, R.
2018-03-01
The holographic distribution amplitudes (DAs) for the K pseudoscalar meson are derived. For this aim, the light-front wave function (LFWF) of the K meson is extracted within the framework of the anti-de Sitter/quantum chromodynamics (AdS/QCD) correspondence. We consider a momentum-dependent (dynamical) helicity wave function that contains the dynamical spin effects. We use the LFWF to predict the radius and the electromagnetic form factor of the kaon and compare them with the experimental values. Then, the holographic twist-2 DA of K meson ϕK(α ,μ ) is investigated and compared with the result of the light-cone sum rules (LCSR). The transition form factors of the semileptonic B →K ℓ+ℓ- decays are derived from the holographic DAs of the kaon. With the help of these form factors, the differential branching ratio of the B →K μ+μ- on q2 is plotted. A comparison is made between our prediction in AdS/QCD and the results obtained from two models including the LCSR and the lattice QCD as well as the experimental values.
NASA Astrophysics Data System (ADS)
Vlasov, R. A.; Gadomskii, O. H.; Gadomskaia, I. V.; Samartsev, V. V.
1986-06-01
The method of integrodifferential equations related to the optical Bloch equations is used to study the nonlinear reflection (or refraction) of a scanning laser beam at the surface of a resonant medium excited by traveling and standing surface electromagnetic waves at resonant frequency. The effect of the phase memory of surface atoms on the pulsed action of fields with space-time resolution is taken into account. The reversal of the scanning beam from the excited surface with phase conjugation of the wave front is considered. In addition, the spectrum of the nonlinear surface polaritons is analyzed as a function of the area of the exciting pulse and the penetration depth of polaritons in the resonant optical medium.
Sen, Novonil; Kundu, Tribikram
2018-07-01
Estimating the location of an acoustic source in a structure is an important step towards passive structural health monitoring. Techniques for localizing an acoustic source in isotropic structures are well developed in the literature. Development of similar techniques for anisotropic structures, however, has gained attention only in the recent years and has a scope of further improvement. Most of the existing techniques for anisotropic structures either assume a straight line wave propagation path between the source and an ultrasonic sensor or require the material properties to be known. This study considers different shapes of the wave front generated during an acoustic event and develops a methodology to localize the acoustic source in an anisotropic plate from those wave front shapes. An elliptical wave front shape-based technique was developed first, followed by the development of a parametric curve-based technique for non-elliptical wave front shapes. The source coordinates are obtained by minimizing an objective function. The proposed methodology does not assume a straight line wave propagation path and can predict the source location without any knowledge of the elastic properties of the material. A numerical study presented here illustrates how the proposed methodology can accurately estimate the source coordinates. Copyright © 2018 Elsevier B.V. All rights reserved.
Photographic laboratory studies of explosions.
NASA Technical Reports Server (NTRS)
Kamel, M. M.; Oppenheim, A. K.
1973-01-01
Description of a series of cinematographic studies of explosions made with a high-speed rotating-mirror streak camera which uses a high-frequency stroboscopic ruby laser as the light source. The results obtained mainly concern explosions initiated by focused laser irradiation from a pulsed neodymium laser in a detonating gas consisting essentially of an equimolar mixture of acetylene and oxygen at an initial pressure of 100 torr at room temperature. Among the most significant observations were observations of a spherical blast wave preceded by a Chapman-Jouguet detonation which is stabilized immediately after initiation, the merging of a spherical flame with a shock front of the blast wave in which the flame is propagating, the division of a spherical detonation front into a shock wave and flame, and the generation of shock waves by a network of spherical flames.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.
2011-01-10
AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equalmore » light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.« less
Correia, Carlos M; Teixeira, Joel
2014-12-01
Computationally efficient wave-front reconstruction techniques for astronomical adaptive-optics (AO) systems have seen great development in the past decade. Algorithms developed in the spatial-frequency (Fourier) domain have gathered much attention, especially for high-contrast imaging systems. In this paper we present the Wiener filter (resulting in the maximization of the Strehl ratio) and further develop formulae for the anti-aliasing (AA) Wiener filter that optimally takes into account high-order wave-front terms folded in-band during the sensing (i.e., discrete sampling) process. We employ a continuous spatial-frequency representation for the forward measurement operators and derive the Wiener filter when aliasing is explicitly taken into account. We further investigate and compare to classical estimates using least-squares filters the reconstructed wave-front, measurement noise, and aliasing propagation coefficients as a function of the system order. Regarding high-contrast systems, we provide achievable performance results as a function of an ensemble of forward models for the Shack-Hartmann wave-front sensor (using sparse and nonsparse representations) and compute point-spread-function raw intensities. We find that for a 32×32 single-conjugated AOs system the aliasing propagation coefficient is roughly 60% of the least-squares filters, whereas the noise propagation is around 80%. Contrast improvements of factors of up to 2 are achievable across the field in the H band. For current and next-generation high-contrast imagers, despite better aliasing mitigation, AA Wiener filtering cannot be used as a standalone method and must therefore be used in combination with optical spatial filters deployed before image formation actually takes place.
Embedded optical fibers for PDV measurements in shock-loaded, light and heavy water
NASA Astrophysics Data System (ADS)
Mercier, Patrick; Benier, Jacky; Frugier, Pierre-Antoine; Debruyne, Michel; Bolis, Cyril
2011-06-01
In order to study the shock-detonation transition, it is necessary to characterize the shock loading of a high explosive plane wave generator into a nitromethane cell. To eliminate the reactive behaviour, we replace the nitromethane by an inert liquid compound. Light water has been first employed; eventually heavy water has been chosen for its better infrared spectral properties. We present the PDV results of different submerged embedded optical fibers which sense the medium with two different approaches: a non-intrusive optical observation of phenomena coming in front of them (interface, shock wave) followed by the mechanical interaction with the shock wave.
NASA Astrophysics Data System (ADS)
Schroer, M. A.; Gutt, C.; Grübel, G.
2014-07-01
Recently the analysis of scattering patterns by angular cross-correlation analysis (CCA) was introduced to reveal the orientational order in disordered samples with special focus to future applications on x-ray free-electron laser facilities. We apply this CCA approach to ultra-small-angle light-scattering data obtained from two-dimensional monolayers of microspheres. The films were studied in addition by optical microscopy. This combined approach allows to calculate the cross-correlations of the scattering patterns, characterized by the orientational correlation function Ψl(q), as well as to obtain the real-space structure of the monolayers. We show that CCA is sensitive to the orientational order of monolayers formed by the microspheres which are not directly visible from the scattering patterns. By mixing microspheres of different radii the sizes of ordered monolayer domains is reduced. For these samples it is shown that Ψl(q) quantitatively describes the degree of hexagonal order of the two-dimensional films. The experimental CCA results are compared with calculations based on the microscopy images. Both techniques show qualitatively similar features. Differences can be attributed to the wave-front distortion of the laser beam in the experiment. This effect is discussed by investigating the effect of different wave fronts on the cross-correlation analysis results. The so-determined characteristics of the cross-correlation analysis will be also relevant for future x-ray-based studies.
Wave front engineering by means of diffractive optical elements for applications in microscopy
NASA Astrophysics Data System (ADS)
Cojoc, Dan; Ferrari, Enrico; Garbin, Valeria; Cabrini, Stefano; Carpentiero, Alessandro; Prasciolu, Mauro; Businaro, Luca; Kaulich, Burchard; Di Fabrizio, Enzo
2006-05-01
We present a unified view regarding the use of diffractive optical elements (DOEs) for microscopy applications a wide range of electromagnetic spectrum. The unified treatment is realized through the design and fabrication of DOE through which wave front beam shaping is obtained. In particular we show applications ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy. We report some details on the design and physical implementation of diffractive elements that beside focusing perform also other optical functions: beam splitting, beam intensity and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of spherical micro beads and for direct trapping and manipulation of biological cells with non-spherical shapes. Another application is the Gauss to Laguerre-Gaussian mode conversion, which allows to trap and transfer orbital angular momentum of light to micro particles with high refractive index and to trap and manipulate low index particles. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for DOEs implementation. High resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in X-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field X-ray microscopy.
Wave-front singularities for two-dimensional anisotropic elastic waves.
NASA Technical Reports Server (NTRS)
Payton, R. G.
1972-01-01
Wavefront singularities for the displacement functions, associated with the radiation of linear elastic waves from a point source embedded in a finitely strained two-dimensional elastic solid, are examined in detail. It is found that generally the singularities are of order d to the -1/2 power, where d measures distance away from the front. However, in certain exceptional cases singularities of order d to the -n power, where n = 1/4, 2/3, 3/4, may be encountered.
Light-front field theory in the description of hadrons
NASA Astrophysics Data System (ADS)
Ji, Chueng-Ryong
2017-03-01
We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.
Failure Waves in Glass and Ceramics under Shock Compression
NASA Astrophysics Data System (ADS)
Singh Brar, N.
1999-06-01
The response of various types of glasses (fused silica, borosilicates, soda-lime, and lead filled) to shock wave loading, especially the failure of glass behind the shock wave through the ``so called" failure wave or front has been the subject of intense research among a number of investigators. The variations in material properties across this front include complete loss of tensile (spall) strength, loss in shear strength, reduction in acoustic impedance, and opacity to light. Both the Stress and velocity history from VISAR measurements have shown that the failure front propagates at a speed of 1.5 to 2.5 mm/s, depending on the peak shock stress level. The shear strength [τ = 1/2(σ_x-σ_y)] behind the failure front, determined using embedded transverse gauges, is found to decrease to about 2 GPa for soda-lime, borosilicate, and filled glasses. The optical (high-speed photography) observations also confirm the formation of failure front. There is a general agreement among various researchers on these observations. However, three proposed mechanisms for the formation of failure front are based on totally different formulations. The first, due to Clifton is based on the process of nucleation of local densification due to shock compression followed by shear failure around inhomogeneities resulting in phase boundary between the comminuted from the intact material. The second, proposed by Grady involves the transfer of elastic shear strain energy to dilatant strain energy as a result of severe microcracking originating from impact face. The third, by Espinosa and Brar proposes that the front is created through shear microcracks, which nucleate and propagate from the impact face, as originally suggested by Kanel. This mechanism is incorporated in multiple-plane model and simulations predict the increase in lateral stress and an observed reduction in spall strength behind the failure front. Failure front studies, in terms of loss of shear strength, have been recently extended to alumina and SiC ceramics by Bourne et. al.
Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces
Hashemi, Mohammed Reza M.; Yang, Shang-Hua; Wang, Tongyu; Sepúlveda, Nelson; Jarrahi, Mona
2016-01-01
Engineered metamaterials offer unique functionalities for manipulating the spectral and spatial properties of electromagnetic waves in unconventional ways. Here, we report a novel approach for making reconfigurable metasurfaces capable of deflecting electromagnetic waves in an electronically controllable fashion. This is accomplished by tilting the phase front of waves through a two-dimensional array of resonant metasurface unit-cells with electronically-controlled phase-change materials embedded inside. Such metasurfaces can be placed at the output facet of any electromagnetic radiation source to deflect electromagnetic waves at a desired frequency, ranging from millimeter-wave to far-infrared frequencies. Our design does not use any mechanical elements, external light sources, or reflectarrays, creating, for the first time, a highly robust and fully-integrated beam-steering device solution. We demonstrate a proof-of-concept beam-steering metasurface optimized for operation at 100 GHz, offering up to 44° beam deflection in both horizontal and vertical directions. Dynamic control of electromagnetic wave propagation direction through this unique platform could be transformative for various imaging, sensing, and communication applications, among others. PMID:27739471
Production of confluent hypergeometric beam by computer-generated hologram
NASA Astrophysics Data System (ADS)
Chen, Jiannong; Wang, Gang; Xu, Qinfeng
2011-02-01
Because of their spiral wave front, phase singularity, zero-intensity center and orbital angular momentum, dark hollow vortex beams have been found many applications in the field of atom optics such as atom cooling, atom transport and atom guiding. In this paper, a method for generating confluent hypergeometric beam by computer-generated hologram displayed on the spatial light modulator is presented. The hologram is formed by interference between a single ring Laguerre-Gaussian beam and a plane wave. The far-field Fraunhofer diffraction of this optical field transmitted from the hologram is the confluent hypergeometric beam. This beam is a circular symmetric beam which has a phase singularity, spiral wave front, zero-intensity center, and intrinsic orbital angular momentum. It is a new dark hollow vortex beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre M.
2014-12-14
We propose a novel Smoothed Particle Hydrodynamics (SPH) discretization of the fully-coupled Landau-Lifshitz-Navier-Stokes (LLNS) and advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations are found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for the coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study the formation ofmore » the so-called giant fluctuations of the front between light and heavy fluids with and without gravity, where the light fluid lays on the top of the heavy fluid. We find that the power spectra of the simulated concentration field is in good agreement with the experiments and analytical solutions. In the absence of gravity the the power spectra decays as the power -4 of the wave number except for small wave numbers which diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations resulting in the much weaker dependence of the power spectra on the wave number. Finally the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlying a light fluid. The front dynamics is shown to agree well with the analytical solutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; de Teramond, Guy F.; Deur, Alexandre P.
2015-09-01
The valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a relativistic equation of motion with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. If one requires that the effective action which underlies the QCD Lagrangian remains conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light front Hamiltonian theory, the potential U has a unique form of a harmonic oscillator potential, and a mass gap arises. The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic andmore » dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter κ appears. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. We also show how the mass scale κ underlying confinement and hadron masses determines the scale Λ {ovr MS} controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime computed to four-loop order. The result is an effective coupling defined at all momenta. The predicted value Λ {ovr MS}=0.328±0.034 GeV is in agreement with the world average 0.339±0.010 GeV. The analysis applies to any renormalization scheme.« less
Color-suppression of non-planar diagrams in bosonic bound states
NASA Astrophysics Data System (ADS)
Alvarenga Nogueira, J. H.; Ji, Chueng-Ryong; Ydrefors, E.; Frederico, T.
2018-02-01
We study the suppression of non-planar diagrams in a scalar QCD model of a meson system in 3 + 1 space-time dimensions due to the inclusion of the color degrees of freedom. As a prototype of the color-singlet meson, we consider a flavor-nonsinglet system consisting of a scalar-quark and a scalar-antiquark with equal masses exchanging a scalar-gluon of a different mass, which is investigated within the framework of the homogeneous Bethe-Salpeter equation. The equation is solved by using the Nakanishi representation for the manifestly covariant bound-state amplitude and its light-front projection. The resulting non-singular integral equation is solved numerically. The damping of the impact of the cross-ladder kernel on the binding energies are studied in detail. The color-suppression of the cross-ladder effects on the light-front wave function and the elastic electromagnetic form factor are also discussed. As our results show, the suppression appears significantly large for Nc = 3, which supports the use of rainbow-ladder truncations in practical non-perturbative calculations within QCD.
Failure Waves in Cylindrical Glass Bars
NASA Astrophysics Data System (ADS)
Cazamias, James U.; Bless, Stephan J.; Marder, Michael P.
1997-07-01
Failure waves, a propagating front separating virgin and comminuted material, have been receiving a fair amount of attention the last couple of years. While most scientists have been looking at failure waves in plate impact geometries, we have conducted a series of experiments on Pyrex bars. In this paper, we present two types of photographic data from a series of tests. A streak camera was used to determine velocities of the failure front as a function of impact stress. A polaroid camera and a flash lamp provide detailed pictures of the actual event. Attempts were made to observe failure waves in amorphous quartz and acrylic.
Numerical analysis of wavefront measurement characteristics by using plenoptic camera
NASA Astrophysics Data System (ADS)
Lv, Yang; Ma, Haotong; Zhang, Xuanzhe; Ning, Yu; Xu, Xiaojun
2016-01-01
To take advantage of the large-diameter telescope for high-resolution imaging of extended targets, it is necessary to detect and compensate the wave-front aberrations induced by atmospheric turbulence. Data recorded by Plenoptic cameras can be used to extract the wave-front phases associated to the atmospheric turbulence in an astronomical observation. In order to recover the wave-front phase tomographically, a method of completing the large Field Of View (FOV), multi-perspective wave-front detection simultaneously is urgently demanded, and it is plenoptic camera that possesses this unique advantage. Our paper focuses more on the capability of plenoptic camera to extract the wave-front from different perspectives simultaneously. In this paper, we built up the corresponding theoretical model and simulation system to discuss wave-front measurement characteristics utilizing plenoptic camera as wave-front sensor. And we evaluated the performance of plenoptic camera with different types of wave-front aberration corresponding to the occasions of applications. In the last, we performed the multi-perspective wave-front sensing employing plenoptic camera as wave-front sensor in the simulation. Our research of wave-front measurement characteristics employing plenoptic camera is helpful to select and design the parameters of a plenoptic camera, when utilizing which as multi-perspective and large FOV wave-front sensor, which is expected to solve the problem of large FOV wave-front detection, and can be used for AO in giant telescopes.
Zarmi, Yair
2015-01-01
The (1+1)-dimensional Sine-Gordon equation passes integrability tests commonly applied to nonlinear evolution equations. Its kink solutions (one-dimensional fronts) are obtained by a Hirota algorithm. In higher space-dimensions, the equation does not pass these tests. Although it has been derived over the years for quite a few physical systems that have nothing to do with Special Relativity, the Sine-Gordon equation emerges as a non-linear relativistic wave equation. This opens the way for exploiting the tools of the Theory of Special Relativity. Using no more than the relativistic kinematics of tachyonic momentum vectors, from which the solutions are constructed through the Hirota algorithm, the existence and classification of N-moving-front solutions of the (1+2)- and (1+3)-dimensional equations for all N ≥ 1 are presented. In (1+2) dimensions, each multi-front solution propagates rigidly at one velocity. The solutions are divided into two subsets: Solutions whose velocities are lower than a limiting speed, c = 1, or are greater than or equal to c. To connect with concepts of the Theory of Special Relativity, c will be called "the speed of light." In (1+3)-dimensions, multi-front solutions are characterized by spatial structure and by velocity composition. The spatial structure is either planar (rotated (1+2)-dimensional solutions), or genuinely three-dimensional--branes. Planar solutions, propagate rigidly at one velocity, which is lower than, equal to, or higher than c. Branes must contain clusters of fronts whose speed exceeds c = 1. Some branes are "hybrids": different clusters of fronts propagate at different velocities. Some velocities may be lower than c but some must be equal to, or exceed, c. Finally, the speed of light cannot be approached from within the subset of slower-than-light solutions in both (1+2) and (1+3) dimensions.
Statistical anisotropy in free turbulence for mixing layers at high Reynolds numbers
NASA Astrophysics Data System (ADS)
Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.; Luke, Theodore E.
1996-08-01
A lateral shearing interferometer was used to measure the slope of perturbed wave fronts after propagating through free turbulent mixing layers. Shearing interferometers provide a two-dimensional flow visualization that is nonintrusive. Slope measurements were used to reconstruct the phase of the turbulence-corrupted wave front. The random phase fluctuations induced by the mixing layer were captured in a large ensemble of wave-front measurements. Experiments were performed on an unbounded, plane shear mixing layer of helium and nitrogen gas at fixed velocities and high Reynolds numbers for six locations in the flow development. Statistical autocorrelation functions and structure functions were computed on the reconstructed phase maps. The autocorrelation function results indicated that the turbulence-induced phase fluctuations were not wide-sense stationary. The structure functions exhibited statistical homogeneity, indicating that the phase fluctuations were stationary in first increments. However, the turbulence-corrupted phase was not isotropic. A five-thirds power law is shown to fit orthogonal slices of the structure function, analogous to the Kolmogorov model for isotropic turbulence. Strehl ratios were computed from the phase structure functions and compared with classical estimates that assume isotropy. The isotropic models are shown to overestimate the optical degradation by nearly 3 orders of magnitude compared with the structure function calculations.
Embedded optical fibers for PDV measurements in shock-loaded, light and heavy water
NASA Astrophysics Data System (ADS)
Mercier, Patrick; Benier, Jacky; Frugier, Pierre Antoine; Debruyne, Michel; Bolis, Cyril
2012-03-01
In order to study the shock-detonation transition, we propose to characterize the shock loading of a high explosive plane wave generator into a nitromethane cell. To eliminate the reactive behaviour, we replace the nitromethane by an inert liquid compound. Light water (H2O) has been first employed; eventually heavy water (D2O) has been chosen for its better infrared spectral properties. We present the PDV results of different embedded optical fibers which sense the medium with two different approaches: a non intrusive optical observation of phenomena coming in front of them (interface, shock wave, detonation wave) followed by their mechanical interaction with the fiber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatiblemore » with the momentum and other sum rules for the nuclear parton distribution functions.« less
Observation of Wave Packet Distortion during a Negative-Group-Velocity Transmission
Ye, Dexin; Salamin, Yannick; Huangfu, Jiangtao; Qiao, Shan; Zheng, Guoan; Ran, Lixin
2015-01-01
In Physics, causality is a fundamental postulation arising from the second law of thermodynamics. It states that, the cause of an event precedes its effect. In the context of Electromagnetics, the relativistic causality limits the upper bound of the velocity of information, which is carried by electromagnetic wave packets, to the speed of light in free space (c). In anomalously dispersive media (ADM), it has been shown that, wave packets appear to propagate with a superluminal or even negative group velocity. However, Sommerfeld and Brillouin pointed out that the “front” of such wave packets, known as the initial point of the Sommerfeld precursor, always travels at c. In this work, we investigate the negative-group-velocity transmission of half-sine wave packets. We experimentally observe the wave front and the distortion of modulated wave packets propagating with a negative group velocity in a passive artificial ADM in microwave regime. Different from previous literature on the propagation of superluminal Gaussian packets, strongly distorted sinusoidal packets with non-superluminal wave fronts were observed. This result agrees with Brillouin's assertion, i.e., the severe distortion of seemingly superluminal wave packets makes the definition of group velocity physically meaningless in the anomalously dispersive region. PMID:25631746
Laser Light Scattering by Shock Waves
NASA Technical Reports Server (NTRS)
Panda, J.; Adamovsky, G.
1995-01-01
Scattering of coherent light as it propagates parallel to a shock wave, formed in front of a bluff cylindrical body placed in a supersonic stream, is studied experimentally and numerically. Two incident optical fields are considered. First, a large diameter collimated beam is allowed to pass through the shock containing flow. The light intensity distribution in the resultant shadowgraph image, measured by a low light CCD camera, shows well-defined fringes upstream and downstream of the shadow cast by the shock. In the second situation, a narrow laser beam is brought to a grazing incidence on the shock and the scattered light, which appears as a diverging sheet from the point of interaction, is visualized and measured on a screen placed normal to the laser path. Experiments are conducted on shocks formed at various free-stream Mach numbers, M, and total pressures, P(sub 0). It is found that the widths of the shock shadows in a shadowgraph image become independent of M and P(sub 0) when plotted against the jump in the refractive index, (Delta)n, created across the shock. The total scattered light measured from the narrow laser beam and shock interaction also follows the same trend. In the numerical part of the study, the shock is assumed to be a 'phase object', which introduces phase difference between the upstream and downstream propagating parts of the light disturbances. For a given shape and (Delta)n of the bow shock the phase and amplitude modulations are first calculated by ray tracing. The wave front is then propagated to the screen using the Fresnet diffraction equation. The calculated intensity distribution, for both of the incident optical fields, shows good agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Dorofeyev, Illarion
2009-03-01
Characteristics of a quasi-spherical wave front of an electromagnetic field diffracted by a subwavelength hole in a thin film with real optical properties are studied. Related diffraction problem is solved in general by use of the scalar and vector Green's theorems and related Green's function of a boundary-value problem. Local phase deviations of a diffracted wave front from an ideal spherical front are calculated. Diffracted patterns are calculated for the coherent incident fields in case of holes array in a screen of perfect conductivity.
Null geodesics and wave front singularities in the Gödel space-time
NASA Astrophysics Data System (ADS)
Kling, Thomas P.; Roebuck, Kevin; Grotzke, Eric
2018-01-01
We explore wave fronts of null geodesics in the Gödel metric emitted from point sources both at, and away from, the origin. For constant time wave fronts emitted by sources away from the origin, we find cusp ridges as well as blue sky metamorphoses where spatially disconnected portions of the wave front appear, connect to the main wave front, and then later break free and vanish. These blue sky metamorphoses in the constant time wave fronts highlight the non-causal features of the Gödel metric. We introduce a concept of physical distance along the null geodesics, and show that for wave fronts of constant physical distance, the reorganization of the points making up the wave front leads to the removal of cusp ridges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashinov, Aleksei V; Gonoskov, Arkady A; Kim, A V
2013-04-30
A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features ofmore » the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed. (extreme light fields and their applications)« less
Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.
2012-02-16
Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z inmore » AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse momentum distributions. The effective confining potential also creates quark-antiquark pairs from the amplitude q {yields} q{bar q}q. Thus in holographic QCD higher Fock states can have any number of extra q{bar q} pairs. We discuss the relevance of higher Fock-states for describing the detailed structure of space and time-like form factors. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also obtained.« less
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
NASA Astrophysics Data System (ADS)
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 < 2 (1 + αγ) θ < αβγ; the existence and stability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and γ2 ε > 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 <γ2 ε < 1; the existence and instability of an upside down standing pulse solution if 0 < (1 + αγ) θ < αβγ < 2 (1 + αγ) θ. To establish the bifurcation for the scalar equation, we will study the existence and stability of a traveling wave front as well as the existence and instability of a standing pulse solution if 0 < 2 θ < β; the existence and stability of two standing wave fronts if 2 θ = β; the existence and stability of a traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 < θ < β < 2 θ. By the way, we will also study the existence and stability of a traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 < 2 θ < β. To achieve the main goals, we will make complete use of the special structures of the model equations and we will construct Evans functions and apply them to study the eigenvalues and eigenfunctions of several eigenvalue problems associated with several linear differential operators. It turns out that a complex number λ0 is an eigenvalue of the linear differential operator, if and only if λ0 is a zero of the Evans function. The stability, instability and bifurcations of the nonlinear waves follow from the zeros of the Evans functions. A very important motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.
Levitán, D; D'Onofrio, A
2012-09-01
A vertical Hele-Shaw cell was used to study the influence of temperature on Rayleigh-Taylor instabilities on reaction-diffusion fronts. The propagation of the chemical front can thus be observed, and experimental results can be obtained via image treatment. A chemical front produced by the coupling between molecular diffusion and the auto-catalysis of the chlorite-tetrathionate reaction, descends through the cell, consuming the reactants below while the product is formed above. Buoyancy-driven instabilities are formed due to the density difference between reactants and products, and the front takes a fingering pattern, whose growth rate has temperature dependence. In this study, the effect of temperature on the linear regime of the instability (that is, when the effects of such instability start to appear) was analyzed. To measure the instability, Fourier transform analysis is performed, in order to obtain the different wave numbers and their power as a function of time. Thus, the growth rate for each wave number and the most unstable wave number is obtained for each of the temperatures under study. Based on repeated experiments, a decrease in the growth rate for the most unstable wave number can be observed with the increase of temperature.
NASA Astrophysics Data System (ADS)
Kupke, Renate; Gavel, Don; Johnson, Jess; Reinig, Marc
2008-07-01
We investigate the non-modulating pyramid wave-front sensor's (P-WFS) implementation in the context of Lick Observatory's Villages visible light AO system on the Nickel 1-meter telescope. A complete adaptive optics correction, using a non-modulated P-WFS in slope sensing mode as a boot-strap to a regime in which the P-WFS can act as a direct phase sensor is explored. An iterative approach to reconstructing the wave-front phase, given the pyramid wave-front sensor's non-linear signal, is developed. Using Monte Carlo simulations, the iterative reconstruction method's photon noise propagation behavior is compared to both the pyramid sensor used in slope-sensing mode, and the traditional Shack Hartmann sensor's theoretical performance limits. We determine that bootstrapping using the P-WFS as a slope sensor does not offer enough correction to bring the phase residuals into a regime in which the iterative algorithm can provide much improvement in phase measurement. It is found that both the iterative phase reconstructor and the slope reconstruction methods offer an advantage in noise propagation over Shack Hartmann sensors.
On Emulation of Flueric Devices in Excitable Chemical Medium
Adamatzky, Andrew
2016-01-01
Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies. PMID:27997561
On Emulation of Flueric Devices in Excitable Chemical Medium.
Adamatzky, Andrew
2016-01-01
Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.
Heavy quarkonium in a holographic basis
Li, Yang; Maris, Pieter; Zhao, Xingbo; ...
2016-05-04
Here, we study the heavy quarkonium within the basis light-front quantization approach. We implement the one-gluon exchange interaction and a confining potential inspired by light-front holography. We adopt the holographic light-front wavefunction (LFWF) as our basis function and solve the non-perturbative dynamics by diagonalizing the Hamiltonian matrix. We obtain the mass spectrum for charmonium and bottomonium. With the obtained LFWFs, we also compute the decay constants and the charge form factors for selected eigenstates. The results are compared with the experimental measurements and with other established methods.
Failure waves in glass and ceramics under shock compression
NASA Astrophysics Data System (ADS)
Brar, N. S.
2000-04-01
The response of various types of glasses (fused silica, borosilicates, soda-lime, and lead filled) to shock wave loading, especially the failure of glass behind the shock wave through the "so called" failure wave or front, has been the subject of intense research among a number of investigators. The variations in material properties across this front include complete loss of tensile (spall) strength, loss in shear strength, reduction in acoustic impedance and opacity to light. Both the Stress and velocity history from VISAR measurements have shown that the failure front propagates at a speed of 1.5 to 2.5 mm/s, depending on the peak shock stress. The shear strength [τ=1/2(σ1-σ2)] behind the failure front, determined using embedded transverse gauges, is found to decrease to about 1 GPa for soda-lime, borosilicate, and filled glasses. Optical (high-speed photography) observations also confirm formation of this failure front. There is a general agreement among various researchers on these failure observations. However, three proposed mechanisms for the formation of failure front are based on totally different formulations. The first, due to Clifton, is based on the hypothesis of densification of glass under shock compression. Densification is followed by shear failure around inhomogeneities resulting in a phase boundary between the comminuted and the intact material. The second, proposed by Grady, involves the transfer of elastic shear strain energy to dilatant strain energy as a result of severe micro-cracking originating from impact. The third, by Espinosa and Brar, proposes that the front is created through shear micro-cracks, which nucleate and propagate from the impact face; as originally suggested by Kanel. This later mechanism is supported by the observed loss of shear strength of glass by Clifton et al. at shock stress above the threshold level. Espinosa has incorporated this mechanism in multiple-plane model and simulations predict the increase in lateral stress and an observed reduction in spall strength behind the failure front. Failure front studies, in terms of loss of shear strength, have been recently extended to alumina and SiC ceramics by Bourne et al.
Generalized self-similar unsteady gas flows behind the strong shock wave front
NASA Astrophysics Data System (ADS)
Bogatko, V. I.; Potekhina, E. A.
2018-05-01
Two-dimensional (plane and axially symmetric) nonstationary gas flows behind the front of a strong shock wave are considered. All the gas parameters are functions of the ratio of Cartesian coordinates to some degree of time tn, where n is a self-similarity index. The problem is solved in Lagrangian variables. It is shown that the resulting system of partial differential equations is suitable for constructing an iterative process. ¢he "thin shock layer" method is used to construct an approximate analytical solution of the problem. The limit solution of the problem is constructed. A formula for determining the path traversed by a gas particle in the shock layer along the front of a shock wave is obtained. A system of equations for determining the first approximation corrections is constructed.
NASA Astrophysics Data System (ADS)
Chouika, N.; Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.
2018-05-01
A systematic approach for the model building of Generalized Parton Distributions (GPDs), based on their overlap representation within the DGLAP kinematic region and a further covariant extension to the ERBL one, is applied to the valence-quark pion's case, using light-front wave functions inspired by the Nakanishi representation of the pion Bethe-Salpeter amplitudes (BSA). This simple but fruitful pion GPD model illustrates the general model building technique and, in addition, allows for the ambiguities related to the covariant extension, grounded on the Double Distribution (DD) representation, to be constrained by requiring a soft-pion theorem to be properly observed.
Directional imaging of the retinal cone mosaic
NASA Astrophysics Data System (ADS)
Vohnsen, Brian; Iglesias, Ignacio; Artal, Pablo
2004-05-01
We describe a near-IR scanning laser ophthalmoscope that allows the retinal cone mosaic to be imaged in the human eye in vivo without the use of wave-front correction techniques. The method takes advantage of the highly directional quality of cone photoreceptors that permits efficient coupling of light to individual cones and subsequent detection of most directional components of the backscattered light produced by the light-guiding effect of the cones. We discuss details of the system and describe cone-mosaic images obtained under different conditions.
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.; Deur, Alexandre; de Téramond, Guy F.; Dosch, Hans Günter
2015-11-01
A primary question in hadron physics is how the mass scale for hadrons consisting of light quarks, such as the proton, emerges from the QCD Lagrangian even in the limit of zero quark mass. If one requires the effective action which underlies the QCD Lagrangian to remain conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory, then a unique, color-confining potential with a mass parameter κ emerges. The actual value of the parameter κ is not set by the model - only ratios of hadron masses and other hadronic mass scales are predicted. The result is a nonperturbative, relativistic light-front quantum mechanical wave equation, the Light-Front Schrödinger Equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the identical slope in the radial quantum number n and orbital angular momentum L. The same light-front equations for mesons with spin J also can be derived from the holographic mapping to QCD (3+1) at fixed light-front time from the soft-wall model modification of AdS5 space with a specific dilaton profile. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. One can also extend the analysis to baryons using superconformal algebra - 2 × 2 supersymmetric representations of the conformal group. The resulting fermionic LF bound-state equations predict striking similarities between the meson and baryon spectra. In fact, the holographic QCD light-front Hamiltonians for the states on the meson and baryon trajectories are identical if one shifts the internal angular momenta of the meson (LM) and baryon (LB) by one unit: LM = LB + 1. We also show how the mass scale κ underlying confinement and the masses of light-quark hadrons determines the scale ΛMS¯ controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime. The data for the effective coupling defined from the Bjorken sum rule αg1(Q2) are remarkably consistent with the Gaussian form predicted by LF holographic QCD. The result is an effective coupling defined at all momenta. The predicted value ΛMS¯(NF=3)=0.440mρ=0.341±0.024GeV is in agreement with the world average 0.339±0.010GeV. We thus can connect ΛMS¯ to hadron masses. The analysis applies to any renormalization scheme.
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.
2017-05-01
A remarkable feature of QCD is that the mass scale κ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ ^4 ζ ^2 for mesons, where ζ ^2 is the LF radial variable conjugate to the q \\bar{q} invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS_5, the space of isometries of the conformal group—if one modifies the action of AdS_5 by the dilaton e^{κ ^2 z^2} in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ _{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α _s(Q^2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q_0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q_0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front-form vacuum has important consequences for the cosmological constant. I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with sum rules for nuclear parton distribution functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
A remarkable feature of QCD is that the mass scalemore » $k$ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the $$q\\bar{q}$$ invariant mass. The same result, including spin terms, is obtained using light-front holography$-$the duality between the front form and AdS 5, the space of isometries of the conformal group$-$if one modifies the action of AdS 5 by the dilaton e $κ^2z^2$ in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κκ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s (Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q 0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front-form vacuum has important consequences for the cosmological constant. In conclusion, I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with sum rules for nuclear parton distribution functions.« less
Brodsky, Stanley J.
2017-04-19
A remarkable feature of QCD is that the mass scalemore » $k$ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the $$q\\bar{q}$$ invariant mass. The same result, including spin terms, is obtained using light-front holography$-$the duality between the front form and AdS 5, the space of isometries of the conformal group$-$if one modifies the action of AdS 5 by the dilaton e $κ^2z^2$ in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κκ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s (Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q 0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front-form vacuum has important consequences for the cosmological constant. In conclusion, I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with sum rules for nuclear parton distribution functions.« less
A Deeper Look at the Fundamentals of Heterodyne Detection Requirements
NASA Technical Reports Server (NTRS)
Roychoudhuri, Chandrasekhar; Prasad, Narasimha S.
2007-01-01
We generally accept the experimentally observed criteria for heterodyne detections that the two waves that are mixed must (i) be collinear, (ii) have matched wave fronts and (iii) cannot be orthogonally polarized. We have not found in the literature adequate physical explanations for these requirements. The purpose of this paper is to find deeper physical understanding of the coherent heterodyne detection processes that could lead to better coherent laser radar system designs1. We find that there are a number of unresolved paradoxes in classical and quantum optics regarding the definitions and understanding of the "interference" and "coherence" properties of light, which are attributed as essentially due to inherent properties of the EM waves. A deeper exploration indicates that it is the various quantum mechanical properties of the detecting material dipoles that make light detectable (visible, or measurable) to us. Accordingly, all the properties that we generally attribute to only light, are in reality manifestations of collective properties of dipole-light interactions. "Interference" and "coherence" can be better understood in terms of this mutual interaction, followed by energy absorption by the dipoles from EM wave fields, manifesting in some measurable transformation of the detecting dipoles. Light beams do not interfere by themselves. The superposition effects due to light beams become manifest through the response characteristics of the detecting dipoles. In this paper, we will show some preliminary expe rimental results that clearly demonstrate that the heterodyning wave fronts have quantitative degradation in signal generation as the angle between them deviates from perfect collinearity. Subsequently, we will propose a hypothesis for this behavior. We will present experimental data establishing that the so called incoherent light can be detected through heterodyne mixing as long as the pulse length contained in the "incoherent" light is longer than the response time of the detector. We will also present a correspondingly better interpretation of two distinguishable coherence properties, temporal coherence and spectral coherence. Our investigation provides a deeper insight into how to rela x various system requirements for heterodyne detection and accordingly develop systems that are simpler, more reliable and lower in cost. Also, we believe that engineering of detector architecture by appropriately modifying dipole behavior using emerging nanotechnology to optimize heterodyne efficiency will be advantageous.
Hemanth, Thayyullathil; Rajesh, Langoju; Padmaram, Renganathan; Vasu, R Mohan; Rajan, Kanjirodan; Patnaik, Lalit M
2004-07-20
We report experimental results of quantitative imaging in supersonic circular jets by using a monochromatic light probe. An expanding cone of light interrogates a three-dimensional volume of a supersonic steady-state flow from a circular jet. The distortion caused to the spherical wave by the presence of the jet is determined through our measuring normal intensity transport. A cone-beam tomographic algorithm is used to invert wave-front distortion to changes in refractive index introduced by the flow. The refractive index is converted into density whose cross sections reveal shock and other characteristics of the flow.
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.
2018-05-01
Light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining q \\bar{q} potential κ ^4 ζ ^2, where ζ ^2 is the light-front radial variable related in momentum space to the q \\bar{q} invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS_5, the space of isometries of the conformal group—if one modifies the action of AdS_5 by the dilaton e^{κ ^2 z^2} in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α _s(Q^2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q_0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.
Understanding Beam Alignment in a Coherent Lidar System
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Roychoudhari, Chandrasekhar
2015-01-01
Optical beam alignment in a coherent lidar (or ladar) receiver system plays a critical role in optimizing its performance. Optical alignment in a coherent lidar system dictates the wavefront curvature (phase front) and Poynting vector) matching of the local oscillator beam with the incoming receiver beam on a detector. However, this alignment is often not easy to achieve and is rarely perfect. Furthermore, optical fibers are being increasingly used in coherent lidar system receivers for transporting radiation to achieve architectural elegance. Single mode fibers also require stringent mode matching for efficient light coupling. The detector response characteristics vary with the misalignment of the two pointing vectors. Misalignment can lead to increase in DC current. Also, a lens in front of the detector may exasperate phase front and Poynting vector mismatch. Non-Interaction of Waves, or the NIW property indicates the light beams do not interfere by themselves in the absence of detecting dipoles. In this paper, we will analyze the extent of misalignment on the detector specifications using pointing vectors of mixing beams in light of the NIW property.
How to use a phase-only spatial light modulator as a color display.
Harm, Walter; Jesacher, Alexander; Thalhammer, Gregor; Bernet, Stefan; Ritsch-Marte, Monika
2015-02-15
We demonstrate that a parallel aligned liquid crystal on silicon (PA-LCOS) spatial light modulator (SLM) without any attached color mask can be used as a full color display with white light illumination. The method is based on the wavelength dependence of the (voltage controlled) birefringence of the liquid crystal pixels. Modern SLMs offer a wide range over which the birefringence can be modulated, leading (in combination with a linear polarizer) to several intensity modulation periods of a reflected light wave as a function of the applied voltage. Because of dispersion, the oscillation period strongly depends on the wavelength. Thus each voltage applied to an SLM pixel corresponds to another reflected color spectrum. For SLMs with a sufficiently broad tuning range, one obtains a color palette (i.e., a "color lookup-table"), which allows one to display color images. An advantage over standard liquid crystal displays (LCDs), which use color masks in front of the individual pixels, is that the light efficiency and the display resolution are increased by a factor of three.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.
2011-01-04
We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency changemore » due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.« less
Broadband, Achromatic Twyman-Green Interferometer
NASA Technical Reports Server (NTRS)
Steimle, Lawrence J.
1991-01-01
Improved Twyman-Green interferometer used in wave-front testing optical components at wavelengths from 200 to 1,100 nm, without having to readjust focus when changing wavelength. Built to measure aberrations of light passing through optical filters. Collimating and imaging lenses of classical Twyman-Green configuration replaced by single spherical mirror. Field lens replaced by field mirror. Mirrors exhibit no axial chromatic aberration and made to reflect light efficiently over desired broad range of wavelengths.
Study of Pressure Oscillations in Supersonic Parachute
NASA Astrophysics Data System (ADS)
Dahal, Nimesh; Fukiba, Katsuyoshi; Mizuta, Kazuki; Maru, Yusuke
2018-04-01
Supersonic parachutes are a critical element of planetary mission whose simple structure, light-weight characteristics together with high ratio of aerodynamic drag makes them the most suitable aerodynamic decelerators. The use of parachute in supersonic flow produces complex shock/shock and wake/shock interaction giving rise to dynamic pressure oscillations. The study of supersonic parachute is difficult, because parachute has very flexible structure which makes obtaining experimental pressure data difficult. In this study, a supersonic wind tunnel test using two rigid bodies is done. The wind tunnel test was done at Mach number 3 by varying the distance between the front and rear objects, and the distance of a bundle point which divides suspension lines and a riser. The analysis of Schlieren movies revealed shock wave oscillation which was repetitive and had large pressure variation. The pressure variation differed in each case of change in distance between the front and rear objects, and the change in distance between riser and the rear object. The causes of pressure oscillation are: interaction of wake caused by front object with the shock wave, fundamental harmonic vibration of suspension lines, interference between shock waves, and the boundary layer of suspension lines.
Intracellular signal propagation in a two-dimensional autocatalytic reaction model.
Castiglione, F; Bernaschi, M; Succi, S; Heinrich, R; Kirschner, M W
2002-09-01
We study a simple reaction scheme in a two-dimensional lattice of particles or molecules with a refractory state. We analyze the dynamics of the propagating front as a function of physical-chemical properties of the host medium. The anisotropy of the medium significantly affects the smoothness of the wave front. Similarly, if particles or molecules may diffuse slowly to neighboring sites, then the front wave is more likely to be irregular. Both situations affect the ability of the whole system to relax to the original state, which is a required feature in the biological cells. Attempts to map this simple reaction scheme to reactions involved in the intracellular pathways suggest that, in some cases, signal transduction might take both connotation of a random walk and a propagating wave, depending on the local density of the medium. In particular, a sufficient condition for the appearance of waves in high-density regions of the media, is the existence of at least one autocatalytic reaction in the chain of reactions characterizing the pathway.
Weakly and strongly coupled Belousov-Zhabotinsky patterns.
Weiss, Stephan; Deegan, Robert D
2017-02-01
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
Weakly and strongly coupled Belousov-Zhabotinsky patterns
NASA Astrophysics Data System (ADS)
Weiss, Stephan; Deegan, Robert D.
2017-02-01
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
Measuring seeing with a Shack-Hartmann wave-front sensor during an active-optics experiment.
Zhang, Yong; Yang, Dehua; Cui, Xiangqun
2004-02-01
We describe the measurement of atmospheric enclosure seeing along a 120-m light path by use of a Shack-Hartmann wave-front sensor (S-H WFS) for the first time to our knowledge in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) outdoor active-optics experiment system, based on the differential image motion method and a S-H WFS. Seeing estimates that were gained with the S-H WFS were analyzed and found to be in close agreement with the actual seeing conditions, the estimates of refractive-index structure constant, and the thin-mirror active optics results, which usually include the shape sensing precision and the active correction precision of the experimental system. Finally, some countermeasures against poor seeing conditions were considered and adopted.
Brodsky, Stanley J.
2018-03-06
Here, light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining qq¯ potential κ 4ζ 2, where ζ 2 is the light-frontmore » radial variable related in momentum space to the qq¯ invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS 5, the space of isometries of the conformal group—if one modifies the action of AdS 5 by the dilaton e κ2 z2 in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ MS¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
Here, light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining qq¯ potential κ 4ζ 2, where ζ 2 is the light-frontmore » radial variable related in momentum space to the qq¯ invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS 5, the space of isometries of the conformal group—if one modifies the action of AdS 5 by the dilaton e κ2 z2 in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ MS¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.« less
Structure of the detonation wave front in a mixture of nitromethane with acetone
NASA Astrophysics Data System (ADS)
Buravova, S. N.
2012-09-01
It is shown that the leading front of an inhomogeneous detonation wave is a shock wave in which wave structures of the type of triple shock configurations are moving. It was experimentally found that the reaction in these inhomogeneities occurs in oblique shock waves. The reaction sites at the wave front are ring-shaped. In a 75: 25 mixture of nitromethane with acetone, up to 70% of the front surface is occupied by the reaction at the sites in the wave front. Measurements of the mass velocity profile indicate that afterburning takes place in the unloading area behind the Jouguet plane. Calculations of the heat release in the reaction mixture with a decrease in the mass velocity indicate that the material that have not reacted in the inhomogeneities can be ignited in the induction zone. It is suggested that the adiabatic flashes are a mechanism that generates inhomogeneities in the detonation wave front.
PHASE QUANTIZATION STUDY OF SPATIAL LIGHT MODULATOR FOR EXTREME HIGH-CONTRAST IMAGING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Jiangpei; Ren, Deqing, E-mail: jpdou@niaot.ac.cn, E-mail: jiangpeidou@gmail.com
2016-11-20
Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave-front control is a critical technique to attenuate the speckle noise in order to achieve an extremely high contrast. We present a phase quantization study of a spatial light modulator (SLM) for wave-front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimizationmore » algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask. The simulation result has constrained the specification for SLM phase accuracy in the above two optical configurations, which gives us a phase accuracy of 0.4/1000 and 1/1000 waves to achieve a contrast of 10{sup -10}. Finally, we have demonstrated that an SLM with more actuators can deliver a competitive contrast performance on the order of 10{sup -10} in comparison to that by using a deformable mirror.« less
Phase Quantization Study of Spatial Light Modulator for Extreme High-contrast Imaging
NASA Astrophysics Data System (ADS)
Dou, Jiangpei; Ren, Deqing
2016-11-01
Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave-front control is a critical technique to attenuate the speckle noise in order to achieve an extremely high contrast. We present a phase quantization study of a spatial light modulator (SLM) for wave-front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimization algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask. The simulation result has constrained the specification for SLM phase accuracy in the above two optical configurations, which gives us a phase accuracy of 0.4/1000 and 1/1000 waves to achieve a contrast of 10-10. Finally, we have demonstrated that an SLM with more actuators can deliver a competitive contrast performance on the order of 10-10 in comparison to that by using a deformable mirror.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovsky, J.E.
1995-02-20
The return-stroke breakdown pulse and the dart leader are treated as electric waves guided by conducting lightning channels; such waves are launched when current is injected into a conducting channel (producing the dart leader) or when charge on a channel begins to drain to Earth (producing the return stroke). The guided waves are self-consistent solutions to the full set of Maxwell`s equations, obeying the physical boundary conditions for cylindrical channels. These waves are shown (1) to move with velocities substantially slower than c along the channel, (2) to push current inside the lightning channel, (3) to move charge and voltagemore » along the channel, and (4) to transport energy along and into the channel via Poynting flux. The velocity of a guided wave is a function of only three parameters: the channel radius r{sub ch}, the channel temperature T, and the risetime {triangle}t of the wave front. These velocities are found to fall in the range of velocities of return strokes and of dart leaders. The dart leader and the return stroke are caused by the same type of guided electromagnetic waves: the difference in velocity is owed mostly to the difference in channel temperature. In the case of the dart leader the waves deliver Poynting flux along the outside of the channel down from a thundercloud generator to the downward-propagating wave front. At the wave front of the dart leader the delivered energy goes into heating the channel and into storage in the form of E{sup 2}/8{pi} around the newly charged channel. In the case of the return stroke the Poynting flux is localized to the vicinity of the wave front where stored energy E{sup 2}/8{pi} is delivered radially inward onto the channel to heat the channel in the propagating front. The net result of a dart leader and return stroke is that charge is moved from the cloud to the ground and that energy is moved from the cloud onto the channel. 123 refs., 11 figs., 5 tabs.« less
Signatures of Nonlinear Waves in Coronal Plumes and Holes
NASA Technical Reports Server (NTRS)
Ofman, Leon
1999-01-01
In recent Ultraviolet Coronagraph Spectrometer/Solar and Heliospheric Observatory (UVCS/SOHO) White Light Channel (WLC) observations we found quasi-periodic variations in the polarized brightness (pB) in the polar coronal holes at heliocentric distances of 1.9-2.45 solar radii. The motivation for the observation is the 2.5D Magnetohydrodynamics (MHD) model of solar wind acceleration by nonlinear waves, that predicts compressive fluctuations in coronal holes. To help identify the waves observed with the UVCS/WLC we model the propagation and dissipation of slow magnetosonic waves in polar plumes using 1D MHD code in spherical geometry, We find that the slow waves nonlinearly steepen in the gravitationally stratified plumes. The nonlinear steepening of the waves leads to enhanced dissipation due to compressive viscosity at the wave-fronts.
Quantizing the electromagnetic field near two-sided semitransparent mirrors
NASA Astrophysics Data System (ADS)
Furtak-Wells, Nicholas; Clark, Lewis A.; Purdy, Robert; Beige, Almut
2018-04-01
This paper models light scattering through flat surfaces with finite transmission, reflection, and absorption rates, with wave packets approaching the mirror from both sides. While using the same notion of photons as in free space, our model also accounts for the presence of mirror images and the possible exchange of energy between the electromagnetic field and the mirror surface. To test our model, we derive the spontaneous decay rate and the level shift of an atom in front of a semitransparent mirror as a function of its transmission and reflection rates. When considering limiting cases and using standard approximations, our approach reproduces well-known results but it also paves the way for the modeling of more complex scenarios.
Soliton-induced relativistic-scattering and amplification.
Rubino, E; Lotti, A; Belgiorno, F; Cacciatori, S L; Couairon, A; Leonhardt, U; Faccio, D
2012-01-01
Solitons are of fundamental importance in photonics due to applications in optical data transmission and also as a tool for investigating novel phenomena ranging from light generation at new frequencies and wave-trapping to rogue waves. Solitons are also moving scatterers: they generate refractive index perturbations moving at the speed of light. Here we found that such perturbations scatter light in an unusual way: they amplify light by the mixing of positive and negative frequencies, as we describe using a first Born approximation and numerical simulations. The simplest scenario in which these effects may be observed is within the initial stages of optical soliton propagation: a steep shock front develops that may efficiently scatter a second, weaker probe pulse into relatively intense positive and negative frequency modes with amplification at the expense of the soliton. Our results show a novel all-optical amplification scheme that relies on soliton induced scattering.
NASA Astrophysics Data System (ADS)
Blanc, Elisabeth; Rickel, Dwight
1989-06-01
Different wave fronts affected by significant nonlinearities have been observed in the ionosphere by a pulsed HF sounding experiment at a distance of 38 km from the source point of a 4800-kg ammonium nitrate and fuel oil (ANFO) explosion on the ground. These wave fronts are revealed by partial reflections of the radio sounding waves. A small-scale irregular structure has been generated by a first wave front at the level of a sporadic E layer which characterized the ionosphere at the time of the experiment. The time scale of these fluctuations is about 1 to 2 s; its lifetime is about 2 min. Similar irregularities were also observed at the level of a second wave front in the F region. This structure appears also as diffusion on a continuous wave sounding at horizontal distances of the order of 200 km from the source. In contrast, a third front unaffected by irregularities may originate from the lowest layers of the ionosphere or from a supersonic wave front propagating at the base of the thermosphere. The origin of these structures is discussed.
RF to millimeter wave integration and module technologies
NASA Astrophysics Data System (ADS)
Vähä-Heikkilä, T.
2015-04-01
Radio Frequency (RF) consumer applications have boosted silicon integrated circuits (IC) and corresponding technologies. More and more functions are integrated to ICs and their performance is also increasing. However, RF front-end modules with filters and switches as well as antennas still need other way of integration. This paper focuses to RF front-end module and antenna developments as well as to the integration of millimeter wave radios. VTT Technical Research Centre of Finland has developed both Low Temperature Co-fired Ceramics (LTCC) and Integrated Passive Devices (IPD) integration platforms for RF and millimeter wave integrated modules. In addition to in-house technologies, VTT is using module and component technologies from other commercial sources.
Nanthakumar, Kumaraswamy; Jalife, José; Massé, Stéphane; Downar, Eugene; Pop, Mihaela; Asta, John; Ross, Heather; Rao, Vivek; Mironov, Sergey; Sevaptsidis, Elias; Rogers, Jack; Wright, Graham; Dhopeshwarkar, Rajesh
2007-07-01
Our objective was to establish a novel model for the study of ventricular fibrillation (VF) in humans. We adopted the established techniques of optical mapping to human ventricles for the first time to determine whether human VF is the result of wave breaks and singularity point formation and is maintained by high-frequency rotors and fibrillatory conduction. We describe the technique of acquiring optical signals in human hearts during VF, their characteristics, and the feasibility of possible analyses that could be performed to elucidate mechanisms of human VF. We used explanted hearts from five cardiomyopathic patients who underwent transplantation. The hearts were Langendorff perfused with Tyrode solution (95% O(2)-5% CO(2)), and the potentiometric dye di-4-ANEPPS was injected as a bolus into the coronary circulation. Fluorescence was excited at 531 +/- 20 nm with a 150-W halogen light source; the emission signal was long-pass filtered at 610 nm and recorded with a mapping camera. Fractional change of fluorescence varied between 2% and 12%. Average signal-to-noise ratio was 40 dB. The mean velocity of VF wave fronts was 0.25 +/- 0.04 m/s. Submillimetric spatial resolution (0.65-0.85 mm), activation mapping, and transformation of the data to phase-based analysis revealed reentrant, colliding, and fractionating wave fronts in human VF. On many occasions the VF wave fronts were as large as the entire vertical length (8 cm) of the mapping field, suggesting that there are a limited number of wave fronts on the human heart during VF. Phase transformation of the optical signals allowed the first demonstration ever of phase singularity point, wave breaks, and rotor formation in human VF. This method provides opportunities for potential analyses toward elucidation of the mechanisms of VF and defibrillation in humans.
Pulsed discharges produced by high-power surface waves
NASA Astrophysics Data System (ADS)
Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.
1996-02-01
The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.
Breaking Wave Impact on a Partially Submerged Rigid Cube in Deep Water
NASA Astrophysics Data System (ADS)
Ikeda, C. M.; Choquette, M.; Duncan, J. H.
2011-11-01
The impact of a plunging breaking wave on a partially submerged cube is studied experimentally. The experiments are performed in a wave tank that is 14.8 m long, 1.15 m wide and 2.2 m high with a water depth of 0.91 m. A single repeatable plunging breaker is generated from a dispersively focused wave packet (average frequency of 1.4 Hz) that is created with a programmable wave maker. The rigid (L = 30 . 5 cm) cube is centered in the width of the tank and mounted from above with one face oriented normal to the oncoming wave. The position of the center of the front face of the cube is varied from the breaker location (xb ~ 6 . 35 m) to xb + 0 . 05 m in the streamwise direction and from - 0 . 25 L to 0 . 25 L vertically relative to the mean water level. A high-speed digital camera is used to record both white-light and laser-induced fluorescence (LIF) movies of the free surface shape in front of the cube before and after the wave impact. When the wave hits the cube just as the plunging jet is formed, a high-velocity vertical jet is created and the trajectory and maximum height of the jet are strongly influenced by the vertical position of the cube. Supported by the Office of Naval Research, Contract Monitor R. D. Joslin.
Characterizing shock waves in hydrogel using high speed imaging and a fiber-optic probe hydrophone
NASA Astrophysics Data System (ADS)
Anderson, Phillip A.; Betney, M. R.; Doyle, H. W.; Tully, B.; Ventikos, Y.; Hawker, N. A.; Roy, Ronald A.
2017-05-01
The impact of a stainless steel disk-shaped projectile launched by a single-stage light gas gun is used to generate planar shock waves with amplitudes on the order of 102MPa in a hydrogel target material. These shock waves are characterized using ultra-high-speed imaging as well as a fiber-optic probe hydrophone. Although the hydrogel equation of state (EOS) is unknown, the combination of these measurements with conservation of mass and momentum allows us to calculate pressure. It is also shown that although the hydrogel behaves similarly to water, the use of a water EOS underpredicts pressure amplitudes in the hydrogel by ˜10 % at the shock front. Further, the water EOS predicts pressures approximately 2% higher than those determined by conservation laws for a given value of the shock velocity. Shot to shot repeatability is controlled to within 10%, with the shock speed and pressure increasing as a function of the velocity of the projectile at impact. Thus the projectile velocity may be used as an adequate predictor of shock conditions in future work with a restricted suite of diagnostics.
NASA Astrophysics Data System (ADS)
Kong, Duanhua; Kim, Taek; Kim, Sihan; Hong, Hyungi; Shcherbatko, Igor; Park, Youngsoo; Shin, Dongjae; Ha, Kyoung-Ho; Jeong, Gitae
2014-03-01
We designed and fabricated a 1.3-um hybrid vertical Resonant-Cavity Light-Emitting Diode for optical interconnect by using direct III-V wafer bonding on silicon on insulator (SOI). The device included InP based front distributed Bragg reflector (DBR), InGaAlAs based active layer, and SOI-based high-contrast-grating (HCG) as a back reflector. 42-uW continuous wave optical power was achieved at 20mA at room temperature.
NASA Astrophysics Data System (ADS)
de Araújo, W. R. B.; de Melo, J. P. B. C.; Tsushima, K.
2018-02-01
We study the nucleon electromagnetic (EM) form factors in symmetric nuclear matter as well as in vacuum within a light-front approach using the in-medium inputs calculated by the quark-meson coupling model. The same in-medium quark properties are used as those used for the study of in-medium pion properties. The zero of the proton EM form factor ratio in vacuum, the electric to magnetic form factor ratio μpGEp (Q2) /GMp (Q2) (Q2 = -q2 > 0 with q being the four-momentum transfer), is determined including the latest experimental data by implementing a hard constituent quark component in the nucleon wave function. A reasonable fit is achieved for the ratio μpGEp (Q2) /GMp (Q2) in vacuum, and we predict that the Q02 value to cross the zero of the ratio to be about 15 GeV2. In addition the double ratio data of the proton EM form factors in 4He and H nuclei, [GEp4He (Q2) /G4HeMp (Q2) ] / [GEp1H (Q2) /GMp1H (Q2) ], extracted by the polarized (e → ,e‧ p →) scattering experiment on 4He at JLab, are well described. We also predict that the Q02 value satisfying μpGEp (Q02) /GMp (Q0 2) = 0 in symmetric nuclear matter, shifts to a smaller value as increasing nuclear matter density, which reflects the facts that the faster falloff of GEp (Q2) as increasing Q2 and the increase of the proton mean-square charge radius. Furthermore, we calculate the neutron EM form factor double ratio in symmetric nuclear matter for 0.1
NASA Astrophysics Data System (ADS)
Hwang, Stephen
Combustion synthesis (CS) is an attractive method for producing advanced materials, including ceramics, intermetallics, and composites. In this process, after initiation by an external heat source, a highly exothermic reaction propagates through the sample in a self-sustained combustion wave. The process offers the possibility of producing materials with novel structures and properties. At conventional magnifications and imaging rates, the combustion wave appears to propagate in a planar, steady manner. However, using higher magnifications (>400X) and imaging rates (1000 frames/sec), fluctuations in the shape and propagation of the combustion front were observed. These variations in local conditions (i.e., the microstructure of the combustion wave) can influence the microstructure and properties of materials produced by combustion synthesis. In this work, the microstructure of wave propagation during combustion synthesis is investigated experimentally and theoretically. Using microscopic high-speed imaging, the spatial and temporal fluctuations of the combustion front shape and propagation were investigated. New image analysis methods were developed to characterize the heterogeneity of the combustion front quantitatively. The initial organization of the reaction medium was found to affect the heterogeneity of the combustion wave. Moreover, at the microscopic level, two different regimes of combustion propagation were observed. In the quasihomogeneous mechanism, the microstructure of the combustion wave resembles what is viewed macroscopically, and steady, planar propagation is observed. In the relay-race mechanism, while planar at the macroscopic level, the combustion front profiles are irregularly shaped, with arc-shaped convexities and concavities at the microscopic level. Also, the reaction front propagates as a series of rapid jumps and hesitations. Based on the combustion wave microstructure, new criteria were developed to determine the boundaries between quasihomogeneous and relay-race mechanisms, as functions of the initial organization of the reaction medium (i.e. particle size and porosity). In conjunction with the experiments, a microheterogeneous cell model was developed that simulates the local propagation of the combustion wave. Accounting for the stochastically organized medium with non-uniform properties, calculated results for the microstructural parameters of the combustion wave, and their dependence on density and reactant particle size, were in good qualitative agreement with experimental data.
Wave-front propagation in a discrete model of excitable media
NASA Astrophysics Data System (ADS)
Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.
1998-06-01
We generalize our recent discrete cellular automata (CA) model of excitable media [Y. B. Chernyak, A. B. Feldman, and R. J. Cohen, Phys. Rev. E 55, 3215 (1997)] to incorporate the effects of inhibitory processes on the propagation of the excitation wave front. In the common two variable reaction-diffusion (RD) models of excitable media, the inhibitory process is described by the v ``controller'' variable responsible for the restoration of the equilibrium state following excitation. In myocardial tissue, the inhibitory effects are mainly due to the inactivation of the fast sodium current. We represent inhibition using a physical model in which the ``source'' contribution of excited elements to the excitation of their neighbors decreases with time as a simple function with a single adjustable parameter (a rate constant). We sought specific solutions of the CA state transition equations and obtained (both analytically and numerically) the dependence of the wave-front speed c on the four model parameters and the wave-front curvature κ. By requiring that the major characteristics of c(κ) in our CA model coincide with those obtained from solutions of a specific RD model, we find a unique set of CA parameter values for a given excitable medium. The basic structure of our CA solutions is remarkably similar to that found in typical RD systems (similar behavior is observed when the analogous model parameters are varied). Most notably, the ``turn-on'' of the inhibitory process is accompanied by the appearance of a solution branch of slow speed, unstable waves. Additionally, when κ is small, we obtain a family of ``eikonal'' relations c(κ) that are suitable for the kinematic analysis of traveling waves in the CA medium. We compared the solutions of the CA equations to CA simulations for the case of plane waves and circular (target) waves and found excellent agreement. We then studied a spiral wave using the CA model adjusted to a specific RD system and found good correspondence between the shapes of the RD and CA spiral arms in the region away from the tip where kinematic theory applies. Our analysis suggests that only four physical parameters control the behavior of wave fronts in excitable media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chizhov, P A; Ushakov, A A; Bukin, V V
2015-05-31
We propose a scheme for measuring the spatial distribution of the THz pulse electric field strength in an electro-optic crystal using optical interferometry. The resulting images of the field distribution from a test source with a spherical wave front are presented. (extreme light fields and their applications)
Wavelets and spacetime squeeze
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Noz, Marilyn E.
1993-01-01
It is shown that the wavelet is the natural language for the Lorentz covariant description of localized light waves. A model for covariant superposition is constructed for light waves with different frequencies. It is therefore possible to construct a wave function for light waves carrying a covariant probability interpretation. It is shown that the time-energy uncertainty relation (Delta(t))(Delta(w)) is approximately 1 for light waves is a Lorentz-invariant relation. The connection between photons and localized light waves is examined critically.
Sharp-front wave of strong magnetic field diffusion in solid metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Bo; Gu, Zhuo-wei; Kan, Ming-xian
When a strong magnetic field diffuses into a solid metal, if the metal's resistance possesses an abrupt rise at some critical temperature and the magnetic field strength is above some critical value, the magnetic field will diffuse into the metal in the form of a sharp-front wave. Formulas for the critical conditions under which a sharp-front magnetic diffusion wave emerges and a formula for the wave-front velocity are derived in this work.
Di Fabrizio, Enzo; Cojoc, Dan; Emiliani, Valentina; Cabrini, Stefano; Coppey-Moisan, Maite; Ferrari, Enrico; Garbin, Valeria; Altissimo, Matteo
2004-11-01
The aim of this report is to demonstrate a unified version of microscopy through the use of advanced diffractive optics. The unified scheme derives from the technical possibility of realizing front wave engineering in a wide range of electromagnetic spectrum. The unified treatment is realized through the design and nanofabrication of phase diffractive elements (PDE) through which wave front beam shaping is obtained. In particular, we will show applications, by using biological samples, ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy combined with X-ray fluorescence. We report some details on the design and physical implementation of diffractive elements that besides focusing also perform other optical functions: beam splitting, beam intensity, and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of micro-beads surrounding a cell as an array of tweezers and for arraying and sorting microscopic size biological samples. Another application is the Gauss to Laguerre-Gauss mode conversion, which allows for trapping and transfering orbital angular momentum of light to micro-particles immersed in a fluid. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for diffractive optics implementation. High-resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in x-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field x-ray microscopy. Besides the topographic information, fluorescence allows detection of certain chemical elements (Cl, P, Sc, K) in the same setup, by changing the photon energy of the x-ray beam. (c) 2005 Wiley-Liss, Inc.
Phase and amplitude wave front sensing and reconstruction with a modified plenoptic camera
NASA Astrophysics Data System (ADS)
Wu, Chensheng; Ko, Jonathan; Nelson, William; Davis, Christopher C.
2014-10-01
A plenoptic camera is a camera that can retrieve the direction and intensity distribution of light rays collected by the camera and allows for multiple reconstruction functions such as: refocusing at a different depth, and for 3D microscopy. Its principle is to add a micro-lens array to a traditional high-resolution camera to form a semi-camera array that preserves redundant intensity distributions of the light field and facilitates back-tracing of rays through geometric knowledge of its optical components. Though designed to process incoherent images, we found that the plenoptic camera shows high potential in solving coherent illumination cases such as sensing both the amplitude and phase information of a distorted laser beam. Based on our earlier introduction of a prototype modified plenoptic camera, we have developed the complete algorithm to reconstruct the wavefront of the incident light field. In this paper the algorithm and experimental results will be demonstrated, and an improved version of this modified plenoptic camera will be discussed. As a result, our modified plenoptic camera can serve as an advanced wavefront sensor compared with traditional Shack- Hartmann sensors in handling complicated cases such as coherent illumination in strong turbulence where interference and discontinuity of wavefronts is common. Especially in wave propagation through atmospheric turbulence, this camera should provide a much more precise description of the light field, which would guide systems in adaptive optics to make intelligent analysis and corrections.
Holley, Scott A.; Geisler, Robert; Nüsslein-Volhard, Christiane
2000-01-01
Somitogenesis has been linked both to a molecular clock that controls the oscillation of gene expression in the presomitic mesoderm (PSM) and to Notch pathway signaling. The oscillator, or clock, is thought to create a prepattern of stripes of gene expression that regulates the activity of the Notch pathway that subsequently directs somite border formation. Here, we report that the zebrafish gene after eight (aei) that is required for both somitogenesis and neurogenesis encodes the Notch ligand DeltaD. Additional analysis revealed that stripes of her1 expression oscillate within the PSM and that aei/DeltaD signaling is required for this oscillation. aei/DeltaD expression does not oscillate, indicating that the activity of the Notch pathway upstream of her1 may function within the oscillator itself. Moreover, we found that her1 stripes are expressed in the anlage of consecutive somites, indicating that its expression pattern is not pair-rule. Analysis of her1 expression in aei/DeltaD, fused somites (fss), and aei;fss embryos uncovered a wave-front activity that is capable of continually inducing her1 expression de novo in the anterior PSM in the absence of the oscillation of her1. The wave-front activity, in reference to the clock and wave-front model, is defined as such because it interacts with the oscillator-derived pattern in the anterior PSM and is required for somite morphogenesis. This wave-front activity is blocked in embryos mutant for fss but not aei/DeltaD. Thus, our analysis indicates that the smooth sequence of formation, refinement, and fading of her1 stripes in the PSM is governed by two separate activities. PMID:10887161
The wave-field from an array of periodic emitters driven simultaneously by a broadband pulse.
Dixon, Steve; Hill, Samuel; Fan, Yichao; Rowlands, George
2013-06-01
The use of phased array methods are commonplace in ultrasonic applications, where controlling the variation of the phase between the narrowband emitters in an array facilitates beam steering and focusing of ultrasonic waves. An approach is presented here whereby emitters of alternating polarity arranged in a one-dimensional array are pulsed simultaneously, and have sufficiently wide, controlled bandwidth to emit a two-dimensional wave. This pulsed approach provides a rapid means of simultaneously covering a region of space with a wave-front, whereby any wave that scatters or reflects off a body to a detector will have a distinct arrival time and frequency. This is a general wave phenomenon with a potential application in radar, sonar, and ultrasound. The key result is that one can obtain a smooth, continuous wave-front emitted from the array, over a large solid angle, whose frequency varies as a function of angle to the array. Analytic and finite element models created to describe this phenomenon have been validated with experimental results using ultrasonic waves in metal samples.
Nonlinear waves in reaction-diffusion systems: The effect of transport memory
NASA Astrophysics Data System (ADS)
Manne, K. K.; Hurd, A. J.; Kenkre, V. M.
2000-04-01
Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.
CIAO: wavefront sensors for GRAVITY
NASA Astrophysics Data System (ADS)
Scheithauer, Silvia; Brandner, Wolfgang; Deen, Casey; Adler, Tobias; Bonnet, Henri; Bourget, Pierre; Chemla, Fanny; Clenet, Yann; Delplancke, Francoise; Ebert, Monica; Eisenhauer, Frank; Esselborn, Michael; Finger, Gert; Gendron, Eric; Glauser, Adrian; Gonte, Frederic; Henning, Thomas; Hippler, Stefan; Huber, Armin; Hubert, Zoltan; Jakob, Gerd; Jochum, Lieselotte; Jocou, Laurent; Kendrew, Sarah; Klein, Ralf; Kolb, Johann; Kulas, Martin; Laun, Werner; Lenzen, Rainer; Mellein, Marcus; Müller, Eric; Moreno-Ventas, Javier; Neumann, Udo; Oberti, Sylvain; Ott, Jürgen; Pallanca, Laurent; Panduro, Johana; Ramos, Jose; Riquelme, Miguel; Rohloff, Ralf-Rainer; Rousset, Gérard; Schuhler, Nicolas; Suarez, Marcos; Zins, Gerard
2016-07-01
GRAVITY is a second generation near-infrared VLTI instrument that will combine the light of the four unit or four auxiliary telescopes of the ESO Paranal observatory in Chile. The major science goals are the observation of objects in close orbit around, or spiraling into the black hole in the Galactic center with unrivaled sensitivity and angular resolution as well as studies of young stellar objects and evolved stars. In order to cancel out the effect of atmospheric turbulence and to be able to see beyond dusty layers, it needs infrared wave-front sensors when operating with the unit telescopes. Therefore GRAVITY consists of the Beam Combiner Instrument (BCI) located in the VLTI laboratory and a wave-front sensor in each unit telescope Coudé room, thus aptly named Coudé Infrared Adaptive Optics (CIAO). This paper describes the CIAO design, assembly, integration and verification at the Paranal observatory.
Sequential deconvolution from wave-front sensing using bivariate simplex splines
NASA Astrophysics Data System (ADS)
Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai
2015-05-01
Deconvolution from wave-front sensing (DWFS) is an imaging compensation technique for turbulence degraded images based on simultaneous recording of short exposure images and wave-front sensor data. This paper employs the multivariate splines method for the sequential DWFS: a bivariate simplex splines based average slopes measurement model is built firstly for Shack-Hartmann wave-front sensor; next, a well-conditioned least squares estimator for the spline coefficients is constructed using multiple Shack-Hartmann measurements; then, the distorted wave-front is uniquely determined by the estimated spline coefficients; the object image is finally obtained by non-blind deconvolution processing. Simulated experiments in different turbulence strength show that our method performs superior image restoration results and noise rejection capability especially when extracting the multidirectional phase derivatives.
Emergent geometries and nonlinear-wave dynamics in photon fluids.
Marino, F; Maitland, C; Vocke, D; Ortolan, A; Faccio, D
2016-03-22
Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.
Emergent geometries and nonlinear-wave dynamics in photon fluids
NASA Astrophysics Data System (ADS)
Marino, F.; Maitland, C.; Vocke, D.; Ortolan, A.; Faccio, D.
2016-03-01
Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.
MAVEN Observations of Solar Wind-Driven Magnetosonic Waves Heating the Martian Dayside Ionosphere
NASA Astrophysics Data System (ADS)
Fowler, C. M.; Andersson, L.; Ergun, R. E.; Harada, Y.; Hara, T.; Collinson, G.; Peterson, W. K.; Espley, J.; Halekas, J.; Mcfadden, J.; Mitchell, D. L.; Mazelle, C.; Benna, M.; Jakosky, B. M.
2018-05-01
We present Mars Atmosphere and Volatile EvolutioN observations of large-amplitude magnetosonic waves propagating through the magnetosheath into the Martian ionosphere near the subsolar point on the dayside of the planet. The observed waves grow in amplitude as predicted for a wave propagating into a denser, charged medium, with wave amplitudes reaching 25 nT, equivalent to ˜40% of the background field strength. These waves drive significant density and temperature variations (˜20% to 100% in amplitude) in the suprathermal electrons and light ion species (H+) that correlate with compressional fronts of the magnetosonic waves. Density and temperature variations are also observed for the ionospheric electrons, and heavy ion species (O+ and O2+); however, these variations are not in phase with the magnetic field variations. Whistler waves are observed at compressional wave fronts and are thought to be produced by unstable, anistropic suprathermal electrons. The magnetosonic waves drive significant ion and electron heating down to just above the exobase region. Ion heating rates are estimated to be between 0.03 and 0.2 eVs-1 per ion, and heavier ions could thus gain escape energy if located in this heating region for ˜10-70 s. The measured ionospheric density profile indicates severe ionospheric erosion above the exobase region, and this is likely caused by substantial ion outflow that is driven by the observed heating. The effectiveness of these magnetosonic waves to energize the plasma close to the exobase could have important implications for the long-term climate evolution for unmagnetized bodies that are exposed to the solar wind.
Cui, Xiquan; Ren, Jian; Tearney, Guillermo J.; Yang, Changhuei
2010-01-01
We report the implementation of an image sensor chip, termed wavefront image sensor chip (WIS), that can measure both intensity/amplitude and phase front variations of a light wave separately and quantitatively. By monitoring the tightly confined transmitted light spots through a circular aperture grid in a high Fresnel number regime, we can measure both intensity and phase front variations with a high sampling density (11 µm) and high sensitivity (the sensitivity of normalized phase gradient measurement is 0.1 mrad under the typical working condition). By using WIS in a standard microscope, we can collect both bright-field (transmitted light intensity) and normalized phase gradient images. Our experiments further demonstrate that the normalized phase gradient images of polystyrene microspheres, unstained and stained starfish embryos, and strongly birefringent potato starch granules are improved versions of their corresponding differential interference contrast (DIC) microscope images in that they are artifact-free and quantitative. Besides phase microscopy, WIS can benefit machine recognition, object ranging, and texture assessment for a variety of applications. PMID:20721059
Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction.
Wang, H Y; Lin, C; Liu, B; Sheng, Z M; Lu, H Y; Ma, W J; Bin, J H; Schreiber, J; He, X T; Chen, J E; Zepf, M; Yan, X Q
2014-01-01
A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2.
Universality of Generalized Parton Distributions in Light-Front Holographic QCD
NASA Astrophysics Data System (ADS)
de Téramond, Guy F.; Liu, Tianbo; Sufian, Raza Sabbir; Dosch, Hans Günter; Brodsky, Stanley J.; Deur, Alexandre; Hlfhs Collaboration
2018-05-01
The structure of generalized parton distributions is determined from light-front holographic QCD up to a universal reparametrization function w (x ) which incorporates Regge behavior at small x and inclusive counting rules at x →1 . A simple ansatz for w (x ) that fulfills these physics constraints with a single-parameter results in precise descriptions of both the nucleon and the pion quark distribution functions in comparison with global fits. The analytic structure of the amplitudes leads to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory and the hadron spectrum.
Universality of Generalized Parton Distributions in Light-Front Holographic QCD.
de Téramond, Guy F; Liu, Tianbo; Sufian, Raza Sabbir; Dosch, Hans Günter; Brodsky, Stanley J; Deur, Alexandre
2018-05-04
The structure of generalized parton distributions is determined from light-front holographic QCD up to a universal reparametrization function w(x) which incorporates Regge behavior at small x and inclusive counting rules at x→1. A simple ansatz for w(x) that fulfills these physics constraints with a single-parameter results in precise descriptions of both the nucleon and the pion quark distribution functions in comparison with global fits. The analytic structure of the amplitudes leads to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory and the hadron spectrum.
Brodsky, Stanley J.
2018-01-01
Tmore » he QCD light-front Hamiltonian equation H L F Ψ = M 2 Ψ derived from quantization at fixed LF time τ = t + z / c provides a causal, frame-independent method for computing hadron spectroscopy as well as dynamical observables such as structure functions, transverse momentum distributions, and distribution amplitudes. he QCD Lagrangian with zero quark mass has no explicit mass scale. de Alfaro, Fubini, and Furlan (dAFF) have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the dAFF procedure to the QCD light-front Hamiltonian, it leads to a color-confining potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q q ¯ invariant mass squared. he same result, including spin terms, is obtained using light-front holography, the duality between light-front dynamics and A d S 5 , if one modifies the A d S 5 action by the dilaton e κ 2 z 2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions provide a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons and a universal Regge slope. he pion q q ¯ eigenstate has zero mass at m q = 0 . he superconformal relations also can be extended to heavy-light quark mesons and baryons. his approach also leads to insights into the physics underlying hadronization at the amplitude level. I will also discuss the remarkable features of the Poincaré invariant, causal vacuum defined by light-front quantization and its impact on the interpretation of the cosmological constant. AdS/QCD also predicts the analytic form of the nonperturbative running coupling α s ( Q 2 ) ∝ e - Q 2 / 4 κ 2 . he mass scale κ underlying hadron masses can be connected to the parameter Λ M S ¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. he result is an effective coupling α s ( Q 2 ) defined at all momenta. One obtains empirically viable predictions for spacelike and timelike hadronic form factors, structure functions, distribution amplitudes, and transverse momentum distributions. Finally, I address the interesting question of whether the momentum sum rule is valid for nuclear structure functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
Tmore » he QCD light-front Hamiltonian equation H L F Ψ = M 2 Ψ derived from quantization at fixed LF time τ = t + z / c provides a causal, frame-independent method for computing hadron spectroscopy as well as dynamical observables such as structure functions, transverse momentum distributions, and distribution amplitudes. he QCD Lagrangian with zero quark mass has no explicit mass scale. de Alfaro, Fubini, and Furlan (dAFF) have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the dAFF procedure to the QCD light-front Hamiltonian, it leads to a color-confining potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q q ¯ invariant mass squared. he same result, including spin terms, is obtained using light-front holography, the duality between light-front dynamics and A d S 5 , if one modifies the A d S 5 action by the dilaton e κ 2 z 2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions provide a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons and a universal Regge slope. he pion q q ¯ eigenstate has zero mass at m q = 0 . he superconformal relations also can be extended to heavy-light quark mesons and baryons. his approach also leads to insights into the physics underlying hadronization at the amplitude level. I will also discuss the remarkable features of the Poincaré invariant, causal vacuum defined by light-front quantization and its impact on the interpretation of the cosmological constant. AdS/QCD also predicts the analytic form of the nonperturbative running coupling α s ( Q 2 ) ∝ e - Q 2 / 4 κ 2 . he mass scale κ underlying hadron masses can be connected to the parameter Λ M S ¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. he result is an effective coupling α s ( Q 2 ) defined at all momenta. One obtains empirically viable predictions for spacelike and timelike hadronic form factors, structure functions, distribution amplitudes, and transverse momentum distributions. Finally, I address the interesting question of whether the momentum sum rule is valid for nuclear structure functions.« less
Statistical analysis of wavefront fluctuations from measurements of a wave-front sensor
NASA Astrophysics Data System (ADS)
Botygina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Lukin, V. P.
2017-11-01
Measurements of the wave front aberrations at the input aperture of the Big Solar Vacuum Telescope (LSVT) were carried out by a wave-front sensor (WFS) of an adaptive optical system when the controlled deformable mirror was replaced by a plane one.
Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zong, Weiguo; Dai, Yu, E-mail: ydai@nju.edu.cn
2017-01-10
We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile gettingmore » significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.« less
Formation of temperature front in stably stratified turbulence
NASA Astrophysics Data System (ADS)
Kimura, Yoshifumi; Sullivan, Peter; Herring, Jackson
2016-11-01
An important feature of stably stratified turbulence is the significant influence of internal gravity waves which makes stably stratified turbulence unique compared to homogeneous isotropic turbulence. In this paper, we investigate the genesis of temperature fronts-a crucial subject both practically and fundamentally-in stably stratified turbulence using Direct Numerical Simulations (DNS) of the Navier-Stokes equation under the Boussinesq approximation with 10243 grid points. Vertical profiles of temperature fluctuations show almost vertically periodic sawtooth wavy structures with negative and positive layers stacked together with clear boundaries implying a sharp temperature fronts. The sawtooth waves consist of gradual decreasing temperature fluctuations with rapid recovery to a positive value as the frontal boundary is crossed vertically. This asymmetry of gradients comes from the structure that warm temperature region lies on top of cool temperature region, and can be verified in the skewed probability density function (PDF) of vertical temperature gradient. We try to extract the flow structures and mechanism for the formation and maintenance of the strong temperature front numerically.
Understanding Effects of Traumatic Insults on Brain Structure and Function
2016-08-01
42 Fig. 33 The supersonic shock wave at the various distances from its launch. The liposome is located at 117.4 nm. The...For instance, although the pressure front of a shock wave travels at supersonic speeds (the speed of sound in water is 1,497 m/s), the shock wave... supersonic shock wave at the various distances from its launch. The liposome is located at 117.4 nm. The Mach number is 1.49. b) The pressure profile at t
Holography of Wi-fi Radiation.
Holl, Philipp M; Reinhard, Friedemann
2017-05-05
Wireless data transmission systems such as wi-fi or Bluetooth emit coherent light-electromagnetic waves with a precisely known amplitude and phase. Propagating in space, this radiation forms a hologram-a two-dimensional wave front encoding a three-dimensional view of all objects traversed by the light beam. Here we demonstrate a scheme to record this hologram in a phase-coherent fashion across a meter-sized imaging region. We recover three-dimensional views of objects and emitters by feeding the resulting data into digital reconstruction algorithms. Employing a digital implementation of dark-field propagation to suppress multipath reflection, we significantly enhance the quality of the resulting images. We numerically simulate the hologram of a 10-m-sized building, finding that both localization of emitters and 3D tomography of absorptive objects could be feasible by this technique.
NASA Astrophysics Data System (ADS)
McLaughlin, Joyce; Renzi, Daniel
2006-04-01
Transient elastography and supersonic imaging are promising new techniques for characterizing the elasticity of soft tissues. Using this method, an 'ultrafast imaging' system (up to 10 000 frames s-1) follows in real time the propagation of a low-frequency shear wave. The displacement of the propagating shear wave is measured as a function of time and space. Here we develop a fast level set based algorithm for finding the shear wave speed from the interior positions of the propagating front. We compare the performance of level curve methods developed here and our previously developed (McLaughlin J and Renzi D 2006 Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts Inverse Problems 22 681-706) distance methods. We give reconstruction examples from synthetic data and from data obtained from a phantom experiment accomplished by Mathias Fink's group (the Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII).
Focusing light into desired patterns through turbid media by feedback-based wavefront shaping
NASA Astrophysics Data System (ADS)
Wan, Lipeng; Chen, Ziyang; Huang, Huiling; Pu, Jixiong
2016-07-01
We demonstrate that the focusing of light into desired patterns through turbid media can be realized using feedback-based wavefront shaping. Three desired focused patterns—a triangle, a circle, and a rectangle—are used as examples to study this ability. During the process of modulating scattered light, the Pearson's correlation coefficient is introduced as a feedback signal. It is found that the speckle field formed by the turbid media gradually transforms into the desired pattern through a process of modulation of the input beam wave front. The proposed approach has potential applications in biomedical treatment and laser material processing.
Experimental study of an adaptive CFRC reflector for high order wave-front error correction
NASA Astrophysics Data System (ADS)
Lan, Lan; Fang, Houfei; Wu, Ke; Jiang, Shuidong; Zhou, Yang
2018-03-01
The recent radio frequency communication system developments are generating the need for creating space antennas with lightweight and high precision. The carbon fiber reinforced composite (CFRC) materials have been used to manufacture the high precision reflector. The wave-front errors caused by fabrication and on-orbit distortion are inevitable. The adaptive CFRC reflector has received much attention to do the wave-front error correction. Due to uneven stress distribution that is introduced by actuation force and fabrication, the high order wave-front errors such as print-through error is found on the reflector surface. However, the adaptive CFRC reflector with PZT actuators basically has no control authority over the high order wave-front errors. A new design architecture assembled secondary ribs at the weak triangular surfaces is presented in this paper. The virtual experimental study of the new adaptive CFRC reflector has conducted. The controllability of the original adaptive CFRC reflector and the new adaptive CFRC reflector with secondary ribs are investigated. The virtual experimental investigation shows that the new adaptive CFRC reflector is feasible and efficient to diminish the high order wave-front error.
The Coronal Analysis of SHocks and Waves (CASHeW) framework
NASA Astrophysics Data System (ADS)
Kozarev, Kamen A.; Davey, Alisdair; Kendrick, Alexander; Hammer, Michael; Keith, Celeste
2017-11-01
Coronal bright fronts (CBF) are large-scale wavelike disturbances in the solar corona, related to solar eruptions. They are observed (mostly in extreme ultraviolet (EUV) light) as transient bright fronts of finite width, propagating away from the eruption source location. Recent studies of individual solar eruptive events have used EUV observations of CBFs and metric radio type II burst observations to show the intimate connection between waves in the low corona and coronal mass ejection (CME)-driven shocks. EUV imaging with the atmospheric imaging assembly instrument on the solar dynamics observatory has proven particularly useful for detecting large-scale short-lived CBFs, which, combined with radio and in situ observations, holds great promise for early CME-driven shock characterization capability. This characterization can further be automated, and related to models of particle acceleration to produce estimates of particle fluxes in the corona and in the near Earth environment early in events. We present a framework for the coronal analysis of shocks and waves (CASHeW). It combines analysis of NASA Heliophysics System Observatory data products and relevant data-driven models, into an automated system for the characterization of off-limb coronal waves and shocks and the evaluation of their capability to accelerate solar energetic particles (SEPs). The system utilizes EUV observations and models written in the interactive data language. In addition, it leverages analysis tools from the SolarSoft package of libraries, as well as third party libraries. We have tested the CASHeW framework on a representative list of coronal bright front events. Here we present its features, as well as initial results. With this framework, we hope to contribute to the overall understanding of coronal shock waves, their importance for energetic particle acceleration, as well as to the better ability to forecast SEP events fluxes.
High Resolution WENO Simulation of 3D Detonation Waves
2012-02-27
pocket behind the detonation front was not observed in their results because the rotating transverse detonation completely consumed the unburned gas. Dou...three-dimensional detonations We add source terms (functions of x, y, z and t) to the PDE system so that the following functions are exact solutions to... detonation rotates counter-clockwise, opposite to that in [48]. It can be seen that, the triple lines and transverse waves collide with the walls, and strong
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; Mikhaylov, A. L.; Men'Shikh, A. V.; Nazarov, D. V.; Finyushin, S. A.; Davydov, V. A.
2010-10-01
We performed experimental studies on the stability of the detonation wave front in mixtures of the liquids tetranitromethane (TNM) and nitrobenzene (NB). Tetranitromethane is an oxygen-rich explosive and nitrobenzene was used as a solvent or dilutant. (NB is not classed as an explosive but as an explosive would be oxygen poor and fuel rich.) The primary diagnostic was a laser velocimetry method with high temporal resolution. Data obtained were compared with the detonation parameters of the TNM/NB mixtures. In previous experimental work [1,2] it was shown that the detonation wave front in liquid explosives may be either smooth or rough. Rough detonation fronts have been reported in nitromethane, as well as nitromethane mixed with a solvent. Smooth detonation fronts have been reported in tetranitromethane. Previously, we conducted studies on the structure of the detonation wave front in liquid explosives containing tetranitromethane [3-5]. Smooth, stable fronts were recorded in pure tetranitromethane and in a 46/54 mixture of tetranitromethane and nitromethane. A pulsating, unstable detonation wave front was recorded in a 74/26 mixture of tetranitromethane and nitrobenzene. The goal of the present work is to extend our research on the structure of the detonation wave front in mixtures of tetranitromethane diluted with less energetic nitrobenzene. To this end, the following TNM/NB mixtures were studied: 95/5, 90/10, 85/15, 80/20, 74/26, and 50/50.
Electronic recording of holograms with applications to holographic displays
NASA Technical Reports Server (NTRS)
Claspy, P. C.; Merat, F. L.
1979-01-01
The paper describes an electronic heterodyne recording which uses electrooptic modulation to introduce a sinusoidal phase shift between the object and reference wave. The resulting temporally modulated holographic interference pattern is scanned by a commercial image dissector camera, and the rejection of the self-interference terms is accomplished by heterodyne detection at the camera output. The electrical signal representing this processed hologram can then be used to modify the properties of a liquid crystal light valve or a similar device. Such display devices transform the displayed interference pattern into a phase modulated wave front rendering a three-dimensional image.
Doppler-shifted self-reflected wave from a semiconductor
NASA Astrophysics Data System (ADS)
Schuelzgen, Alex; Hughes, S.; Peyghambarian, Nasser
1997-06-01
We report the first experimental observation of a self- reflected wave inside a very dense saturable absorber. An intense femtosecond pulse saturates the absorption and causes a density front moving into the semiconductor sample. Due to the motion of the boundary between saturated and unsaturated areas of the sample the light reflected at this boundary is red-shifted by the Doppler effect. The spectrally shifted reflection makes it possible to distinguish between surface reflection and self-reflection and is used to proof the concept of the dynamic nonlinear skin effect experimentally. Quite well agreement with model calculations is found.
Type II Radio Bursts Observed by STEREO/Waves and Wind/Waves instruments
NASA Astrophysics Data System (ADS)
Krupar, V.; Magdalenic, J.; Zhukov, A.; Rodriguez, L.; Mierla, M.; Maksimovic, M.; Cecconi, B.; Santolik, O.
2013-12-01
Type II radio bursts are slow-drift emissions triggered by suprathermal electrons accelerated on shock fronts of propagating CMEs. We present several events at kilometric wavelengths observed by radio instruments onboard the STEREO and Wind spacecraft. The STEREO/Waves and Wind/Waves have goniopolarimetric (GP, also referred to as direction finding) capabilities that allow us to triangulate radio sources when an emission is observed by two or more spacecraft. As the GP inversion has high requirements on the signal-to-noise ratio we only have a few type II radio bursts with sufficient intensity for this analysis. We have compared obtained radio sources with white-light observations of STEREO/COR and STEREO/HI instruments. Our preliminary results indicate that radio sources are located at flanks of propagating CMEs.
Rolling rhythms in front crawl swimming with six-beat kick.
Sanders, Ross H; Psycharakis, Stelios G
2009-02-09
The purpose of this study was to establish the rhythm characteristics of skilled front crawl swimmers using a six-beat kick. These included the amplitudes of the first three Fourier harmonics (H1, H2, H3) and their percent contributions to power contained in the angular displacement signals of the shoulders, hips, knees, and ankles with respect to the longitudinal axis in line with the swimming direction. Three-dimensional video data of seven national/international level swimmers were collected during simulated 200m front crawl races in which swimmers maintained six-beat kicking patterns. Swimmers differed in all variables but had small variability across the four 50m laps. Modest changes occurred during the 200m, with the exception of shoulder roll, which remained constant and was represented almost entirely by a single sinusoid (H1). Changes across laps reached significance for swimming speed, stroke rate, hip roll, and H3 wave velocity between the knee and ankle. A H3 body wave of moderate and increasing velocity travelled caudally from hip to ankle. In the light of existing knowledge of aquatic locomotion this was compatible with the goal of generating propulsion in an efficient manner.
NASA Astrophysics Data System (ADS)
Bini, Donato; Chicone, Carmen; Mashhoon, Bahram
2018-03-01
In general relativity (GR), linearized gravitational waves propagating in empty Minkowski spacetime along a fixed spatial direction have the property that the wave front is the Euclidean plane. Beyond the linear regime, exact plane waves in GR have been studied theoretically for a long time and many exact vacuum solutions of the gravitational field equations are known that represent plane gravitational waves. These have parallel rays and uniform wave fronts. It turns out, however, that GR also admits exact solutions representing gravitational waves propagating along a fixed direction that are nonplanar. The wave front is then nonuniform and the bundle of rays is twisted. We find a class of solutions representing nonplanar unidirectional gravitational waves and study some of the properties of these twisted waves.
Quick reproduction of blast-wave flow-field properties of nuclear, TNT, and ANFO explosions
NASA Astrophysics Data System (ADS)
Groth, C. P. T.
1986-04-01
In many instances, extensive blast-wave flow-field properties are required in gasdynamics research studies of blast-wave loading and structure response, and in evaluating the effects of explosions on their environment. This report provides a very useful computer code, which can be used in conjunction with the DNA Nuclear Blast Standard subroutines and code, to quickly reconstruct complete and fairly accurate blast-wave data for almost any free-air (spherical) and surface-burst (hemispherical) nuclear, trinitrotoluene (TNT), or ammonium nitrate-fuel oil (ANFO) explosion. This code is capable of computing all of the main flow properties as functions of radius and time, as well as providing additional information regarding air viscosity, reflected shock-wave properties, and the initial decay of the flow properties just behind the shock front. Both spatial and temporal distributions of the major blast-wave flow properties are also made readily available. Finally, provisions are also included in the code to provide additional information regarding the peak or shock-front flow properties over a range of radii, for a specific explosion of interest.
Tabereaux, Paul B; Walcott, Greg P; Rogers, Jack M; Kim, Jong; Dosdall, Derek J; Robertson, Peter G; Killingsworth, Cheryl R; Smith, William M; Ideker, Raymond E
2007-09-04
The roles of Purkinje fibers (PFs) and focal wave fronts, if any, in the maintenance of ventricular fibrillation (VF) are unknown. If PFs are involved in VF maintenance, it should be possible to map wave fronts propagating from PFs into the working ventricular myocardium during VF. If wave fronts ever arise focally during VF, it should be possible to map them appearing de novo. Six canine hearts were isolated, and the left main coronary artery was cannulated and perfused. The left ventricular cavity was exposed, which allowed direct endocardial mapping of the anterior papillary muscle insertion. Nonperfused VF was induced, and 6 segments of data, each 5 seconds long, were analyzed during 10 minutes of VF. During 36 segments of data that were analyzed, 1018 PF or focal wave fronts of activation were identified. In 534 wave fronts, activation was mapped propagating from working ventricular myocardium to PF. In 142 wave fronts, activation was mapped propagating from PF to working ventricular myocardium. In 342 wave fronts, activation was mapped arising focally. More than 1 of these 3 patterns could occur in the same wave front. PFs are highly active throughout the first 10 minutes of VF. In addition to retrograde propagation from the working ventricular myocardium to PFs, antegrade propagation occurs from PFs to working ventricular myocardium, which suggests PFs are important in VF maintenance. Prior plunge needle recordings in dogs indicate activation propagates from the endocardium toward the epicardium after 1 minute of VF, which suggests that focal sites on the endocardium may represent foci and not breakthrough. If so, in addition to reentry, abnormal automaticity or triggered activity may also occur during VF.
Thermal field theory and generalized light front quantization
NASA Astrophysics Data System (ADS)
Weldon, H. Arthur
2003-04-01
The dependence of thermal field theory on the surface of quantization and on the velocity of the heat bath is investigated by working in general coordinates that are arbitrary linear combinations of the Minkowski coordinates. In the general coordinates the metric tensor gμν¯ is nondiagonal. The Kubo-Martin-Schwinger condition requires periodicity in thermal correlation functions when the temporal variable changes by an amount -i/(T(g00¯)). Light-front quantization fails since g00¯=0; however, various related quantizations are possible.
Influence of wave-front sampling in adaptive optics retinal imaging
Laslandes, Marie; Salas, Matthias; Hitzenberger, Christoph K.; Pircher, Michael
2017-01-01
A wide range of sampling densities of the wave-front has been used in retinal adaptive optics (AO) instruments, compared to the number of corrector elements. We developed a model in order to characterize the link between number of actuators, number of wave-front sampling points and AO correction performance. Based on available data from aberration measurements in the human eye, 1000 wave-fronts were generated for the simulations. The AO correction performance in the presence of these representative aberrations was simulated for different deformable mirror and Shack Hartmann wave-front sensor combinations. Predictions of the model were experimentally tested through in vivo measurements in 10 eyes including retinal imaging with an AO scanning laser ophthalmoscope. According to our study, a ratio between wavefront sampling points and actuator elements of 2 is sufficient to achieve high resolution in vivo images of photoreceptors. PMID:28271004
NASA Astrophysics Data System (ADS)
Webb, G. M.; Zank, G. P.; Burrows, R. H.; Ratkiewicz, R. E.
2011-02-01
Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ϕ, which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ϕ. This leads to an implicit equation for the phase function and a generalization of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure, and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigenequations require that the rate of change of the magnetic induction B with ϕ throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ϕ) or B(ϕ) are developed.
NASA Astrophysics Data System (ADS)
Webb, G. M.; Zank, G. P.; Burrows, R.
2009-12-01
Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ǎrphi which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ǎrphi. This leads to an implicit equation for the phase function, and a generalisation of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigen-equations require that the rate of change of the magnetic induction B with ǎrphi throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ǎrphi) or B(ǎrphi) are developed.
Three Great Eyes on Kepler Supernova Remnant
2004-10-06
NASA's three Great Observatories -- the Hubble Space Telescope, the SpitzerSpace Telescope, and the Chandra X-ray Observatory -- joined forces to probe theexpanding remains of a supernova, called Kepler's supernova remnant, first seen 400 years ago by sky watchers, including astronomer Johannes Kepler. The combined image unveils a bubble-shaped shroud of gas and dust that is 14light-years wide and is expanding at 4 million miles per hour (2,000 kilometersper second). Observations from each telescope highlight distinct features of thesupernova remnant, a fast-moving shell of iron-rich material from the explodedstar, surrounded by an expanding shock wave that is sweeping up interstellar gasand dust. Each color in this image represents a different region of the electromagneticspectrum, from X-rays to infrared light. These diverse colors are shown in thepanel of photographs below the composite image. The X-ray and infrared datacannot be seen with the human eye. By color-coding those data and combining themwith Hubble's visible-light view, astronomers are presenting a more completepicture of the supernova remnant. Visible-light images from the Hubble telescope (colored yellow) reveal where the supernova shock wave is slamming into the densest regions of surrounding gas.The bright glowing knots are dense clumps from instabilities that form behindthe shock wave. The Hubble data also show thin filaments of gas that look likerippled sheets seen edge-on. These filaments reveal where the shock wave isencountering lower-density, more uniform interstellar material. The Spitzer telescope shows microscopic dust particles (colored red) that havebeen heated by the supernova shock wave. The dust re-radiates the shock wave'senergy as infrared light. The Spitzer data are brightest in the regionssurrounding those seen in detail by the Hubble telescope. The Chandra X-ray data show regions of very hot gas, and extremely high-energyparticles. The hottest gas (higher-energy X-rays, colored blue) is locatedprimarily in the regions directly behind the shock front. These regions alsoshow up in the Hubble observations, and also align with the faint rim of glowingmaterial seen in the Spitzer data. The X-rays from the region on the lower left(colored blue) may be dominated by extremely high-energy electrons that wereproduced by the shock wave and are radiating at radio through X-ray wavelengthsas they spiral in the intensified magnetic field behind the shock front. CoolerX-ray gas (lower-energy X-rays, colored green) resides in a thick interior shelland marks the location of heated material expelled from the exploded star. Kepler's supernova, the last such object seen to explode in our Milky Waygalaxy, resides about 13,000 light-years away in the constellation Ophiuchus. The Chandra observations were taken in June 2000, the Hubble in August 2003;and the Spitzer in August 2004. http://photojournal.jpl.nasa.gov/catalog/PIA06907
MIMIC For Millimeter Wave Integrated Circuit Radars
NASA Astrophysics Data System (ADS)
Seashore, C. R.
1987-09-01
A significant program is currently underway in the U.S. to investigate, develop and produce a variety of GaAs analog circuits for use in microwave and millimeter wave sensors and systems. This represents a "new wave" of RF technology which promises to significantly change system engineering thinking relative to RF Architectures. At millimeter wave frequencies, we look forward to a relatively high level of critical component integration based on MESFET and HEMT device implementations. These designs will spawn more compact RF front ends with colocated antenna/transceiver functions and innovative packaging concepts which will survive and function in a typical military operational environment which includes challenging temperature, shock and special handling requirements.
Spatial Dynamics of Multilayer Cellular Neural Networks
NASA Astrophysics Data System (ADS)
Wu, Shi-Liang; Hsu, Cheng-Hsiung
2018-02-01
The purpose of this work is to study the spatial dynamics of one-dimensional multilayer cellular neural networks. We first establish the existence of rightward and leftward spreading speeds of the model. Then we show that the spreading speeds coincide with the minimum wave speeds of the traveling wave fronts in the right and left directions. Moreover, we obtain the asymptotic behavior of the traveling wave fronts when the wave speeds are positive and greater than the spreading speeds. According to the asymptotic behavior and using various kinds of comparison theorems, some front-like entire solutions are constructed by combining the rightward and leftward traveling wave fronts with different speeds and a spatially homogeneous solution of the model. Finally, various qualitative features of such entire solutions are investigated.
Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration
NASA Astrophysics Data System (ADS)
Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty
2018-03-01
An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.
Performance of synchronous optical receivers using atmospheric compensation techniques.
Belmonte, Aniceto; Khan, Joseph
2008-09-01
We model the impact of atmospheric turbulence-induced phase and amplitude fluctuations on free-space optical links using synchronous detection. We derive exact expressions for the probability density function of the signal-to-noise ratio in the presence of turbulence. We consider the effects of log-normal amplitude fluctuations and Gaussian phase fluctuations, in addition to local oscillator shot noise, for both passive receivers and those employing active modal compensation of wave-front phase distortion. We compute error probabilities for M-ary phase-shift keying, and evaluate the impact of various parameters, including the ratio of receiver aperture diameter to the wave-front coherence diameter, and the number of modes compensated.
Surge-like Oscillations above Sunspot Light Bridges Driven by Magnetoacoustic Shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingwen; Tian, Hui; He, Jiansen
2017-03-20
High-resolution observations of the solar chromosphere and transition region often reveal surge-like oscillatory activities above sunspot light bridges (LBs). These oscillations are often interpreted as intermittent plasma jets produced by quasi-periodic magnetic reconnection. We have analyzed the oscillations above an LB in a sunspot using data taken by the Interface Region Imaging Spectrograph . The chromospheric 2796 Å images show surge-like activities above the entire LB at any time, forming an oscillating wall. Within the wall we often see that the core of the Mg ii k 2796.35 Å line first experiences a large blueshift, and then gradually decreases tomore » zero shift before increasing to a redshift of comparable magnitude. Such a behavior suggests that the oscillations are highly nonlinear and likely related to shocks. In the 1400 Å passband, which samples emission mainly from the Si iv ion, the most prominent feature is a bright oscillatory front ahead of the surges. We find a positive correlation between the acceleration and maximum velocity of the moving front, which is consistent with numerical simulations of upward propagating slow-mode shock waves. The Si iv 1402.77 Å line profile is generally enhanced and broadened in the bright front, which might be caused by turbulence generated through compression or by the shocks. These results, together with the fact that the oscillation period stays almost unchanged over a long duration, lead us to propose that the surge-like oscillations above LBs are caused by shocked p-mode waves leaked from the underlying photosphere.« less
Small-Amplitude Richtmyer-Meshkov Instability at a Re-Shocked Material Interface
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Zalesak, S. T.; Metzler, N.; Aglitskiy, Y.
2008-11-01
We report an exact small-amplitude theory of the Richtmyer-Meshkov (RM) instability developing at a re-shocked material interface and favorably compare it to our simulations. The re-shock is seen to restart the classical RM instability growth from a larger initial amplitude, at a higher rate, and change its direction from heavy-to-light to light-to heavy and vice versa. Similarly, if a Rayleigh-Taylor (RT) unstable interface is strongly re-shocked from either the heavy or light fluid side, the fast RM growth is triggered. If a RT-unstable ablation front is re-shocked, it exhibits the ablative RM-instability, that is, low-frequency decaying oscillations [V. N. Goncharov, PRL 82, 2091 (1998); Y. Aglitskiy et al., PRL 87, 265001 (2001)]. This is predicted for colliding foil experiments on the Nike laser, where a RT-unstable ablation front is re-shocked by the strong shock wave produced in the collision of the laser-driven plastic foil with a stationary foam layer. The re-shock stops the acceleration and switches the perturbation evolution from the ablative RT to the ablative RM regime.
NASA Astrophysics Data System (ADS)
Capone, Cristiano; Mattia, Maurizio
2017-01-01
Neural field models are powerful tools to investigate the richness of spatiotemporal activity patterns like waves and bumps, emerging from the cerebral cortex. Understanding how spontaneous and evoked activity is related to the structure of underlying networks is of central interest to unfold how information is processed by these systems. Here we focus on the interplay between local properties like input-output gain function and recurrent synaptic self-excitation of cortical modules, and nonlocal intermodular synaptic couplings yielding to define a multiscale neural field. In this framework, we work out analytic expressions for the wave speed and the stochastic diffusion of propagating fronts uncovering the existence of an optimal balance between local and nonlocal connectivity which minimizes the fluctuations of the activation front propagation. Incorporating an activity-dependent adaptation of local excitability further highlights the independent role that local and nonlocal connectivity play in modulating the speed of propagation of the activation and silencing wavefronts, respectively. Inhomogeneities in space of local excitability give raise to a novel hysteresis phenomenon such that the speed of waves traveling in opposite directions display different velocities in the same location. Taken together these results provide insights on the multiscale organization of brain slow-waves measured during deep sleep and anesthesia.
NASA Astrophysics Data System (ADS)
Yang, Yang; Li, Jiafang; Li, Zhi-Yuan; Chen, Yue-Gang
2015-07-01
In this paper, through a vector-spherical harmonics approach, we investigate the optical spectra of plasmonic Au nanoparticles excited by two special accelerating beams: a non-paraxial Airy beam and a Bessel beam. We systematically analyze the impacts of the beam profile, phase, and helical wave front of the electromagnetic fields on the optical spectrum and the excitation of the surface plasmon resonance (SPR). We find that the high-order phase in the Airy beam would result in strong plasmonic oscillations in the optical spectra, while the cone angle and orbital angular momentum carried by the Bessel beam could be employed to engineer the plasmon modes excited in Au nanoparticles. Furthermore, the optical spectrum excited by a combined Airy-Bessel-Gauss beam is discussed. The study could help to deeply explore new ways to manipulate SPR in metal nanoparticles via the wave front engineering of optical beams for enhancing light-matter interaction and optical sensing performance.
Chilean Tsunami Rocks the Ross Ice Shelf
NASA Astrophysics Data System (ADS)
Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.
2016-12-01
The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.
Woo, Jeong Min; Hussain, Sajid; Jang, Jae-Hyung
2017-01-01
A terahertz (THz) in-line polarization converter that yields a polarization conversion ratio as high as 99.9% is demonstrated at 1 THz. It has double-layer slot structures oriented in orthogonal directions that are electrically connected by 1/8-wavelngth-long through-via holes beside the slot structures. The slots on the front metal-plane respond to the incident THz wave with polarization orthogonal to the slots and generates a circulating surface current around the slots. The surface current propagates along a pair of through-via holes that function as a two-wire transmission line. The propagating current generates a surface current around the backside slot structures oriented orthogonal to the slot structures on the front metal layer. The circulating current generates a terahertz wave polarized orthogonal to the backside slot structures and the 90° polarization conversion is completed. The re-radiating THz wave with 90° converted polarization propagates in the same direction as the incident THz wave. PMID:28211498
Biobeam—Multiplexed wave-optical simulations of light-sheet microscopy
Weigert, Martin; Bundschuh, Sebastian T.
2018-01-01
Sample-induced image-degradation remains an intricate wave-optical problem in light-sheet microscopy. Here we present biobeam, an open-source software package that enables simulation of operational light-sheet microscopes by combining data from 105–106 multiplexed and GPU-accelerated point-spread-function calculations. The wave-optical nature of these simulations leads to the faithful reproduction of spatially varying aberrations, diffraction artifacts, geometric image distortions, adaptive optics, and emergent wave-optical phenomena, and renders image-formation in light-sheet microscopy computationally tractable. PMID:29652879
NASA Astrophysics Data System (ADS)
Choi, Y.; Park, S.; Baik, S.; Jung, J.; Lee, S.; Yoo, J.
A small scale laboratory adaptive optics system using a Shack-Hartmann wave-front sensor (WFS) and a membrane deformable mirror (DM) has been built for robust image acquisition. In this study, an adaptive limited control technique is adopted to maintain the long-term correction stability of an adaptive optics system. To prevent the waste of dynamic correction range for correcting small residual wave-front distortions which are inefficient to correct, the built system tries to limit wave-front correction when a similar small difference wave-front pattern is repeatedly generated. Also, the effect of mechanical distortion in an adaptive optics system is studied and a pre-recognition method for the distortion is devised to prevent low-performance system operation. A confirmation process for a balanced work assignment among deformable mirror (DM) actuators is adopted for the pre-recognition. The corrected experimental results obtained by using a built small scale adaptive optics system are described in this paper.
NASA Astrophysics Data System (ADS)
Hozumi, Y.; Saito, A.; Sakanoi, T.; Yamazaki, A.; Hosokawa, K.
2017-12-01
Mesospheric bores were observed by Visible and near Infrared Spectral Imager (VISI) of the ISS-IMAP mission (Ionosphere, Mesosphere, upper Atmosphere and Plasmasphere mapping mission from the International Space Station) in O2 airglow at 762 nm wavelength. The mesospheric bore is moving front of sharp jump followed by undulations or turbulence in the mesopause region. Since previous studies of mesospheric bore were mainly based on ground-based airglow imaging that is limited in field-of-view and observing site, little is known about its horizontal extent and global behavior. Space-borne imaging by ISS-IMAP/VISI provides an opportunity to study the mesospheric bore with a wide field-of-view and global coverage. A mesospheric bore was captured by VISI in two consecutive paths on 9 July 2015 over the south of African continent (48ºS - 54ºS and 15ºE). The wave front aligned with south-north direction and propagated to west. The phase velocity and wave length of the following undulation were estimated to 100 m/s and 30 km, respectively. Those parameters are similar to those reported by previous studies. 30º anti-clockwise rotation of the wave front was recognized in 100 min. Another mesospheric bore was captured on 9 May 2013 over the south Atlantic ocean (35ºS - 43ºS and 24ºW - 1ºE) with more than 2,200 km horizontal extent of wave front. The wave front aligned with southeast-northwest direction. Because the following undulation is recognized in the southwest side of the wave front, it is estimated to propagate to northeast direction. The wave front was modulated with 1,000 km wave length. This modulation implies inhomogeneity of the phase velocity.
Wavespace-Based Coherent Deconvolution
NASA Technical Reports Server (NTRS)
Bahr, Christopher J.; Cattafesta, Louis N., III
2012-01-01
Array deconvolution is commonly used in aeroacoustic analysis to remove the influence of a microphone array's point spread function from a conventional beamforming map. Unfortunately, the majority of deconvolution algorithms assume that the acoustic sources in a measurement are incoherent, which can be problematic for some aeroacoustic phenomena with coherent, spatially-distributed characteristics. While several algorithms have been proposed to handle coherent sources, some are computationally intractable for many problems while others require restrictive assumptions about the source field. Newer generalized inverse techniques hold promise, but are still under investigation for general use. An alternate coherent deconvolution method is proposed based on a wavespace transformation of the array data. Wavespace analysis offers advantages over curved-wave array processing, such as providing an explicit shift-invariance in the convolution of the array sampling function with the acoustic wave field. However, usage of the wavespace transformation assumes the acoustic wave field is accurately approximated as a superposition of plane wave fields, regardless of true wavefront curvature. The wavespace technique leverages Fourier transforms to quickly evaluate a shift-invariant convolution. The method is derived for and applied to ideal incoherent and coherent plane wave fields to demonstrate its ability to determine magnitude and relative phase of multiple coherent sources. Multi-scale processing is explored as a means of accelerating solution convergence. A case with a spherical wave front is evaluated. Finally, a trailing edge noise experiment case is considered. Results show the method successfully deconvolves incoherent, partially-coherent, and coherent plane wave fields to a degree necessary for quantitative evaluation. Curved wave front cases warrant further investigation. A potential extension to nearfield beamforming is proposed.
3D structure and kinematics characteristics of EUV wave front
NASA Astrophysics Data System (ADS)
Podladchikova, T.; Veronig, A.; Dissauer, K.
2017-12-01
We present 3D reconstructions of EUV wave fronts using multi-point observations from the STEREO-A and STEREO-B spacecraft. EUV waves are large-scale disturbances in the solar corona that are initiated by coronal mass ejections, and are thought to be large-amplitude fast-mode MHD waves or shocks. The aim of our study is to investigate the dynamic evolution of the 3D structure and wave kinematics of EUV wave fronts. We study the events on December 7, 2007 and February 13, 2009 using data from the STEREO/EUVI-A and EUVI-B instruments in the 195 Å filter. The proposed approach is based on a complementary combination of epipolar geometry of stereo vision and perturbation profiles. We propose two different solutions to the matching problem of the wave crest on images from the two spacecraft. One solution is suitable for the early and maximum stage of event development when STEREO-A and STEREO-B see the different facets of the wave, and the wave crest is clearly outlined. The second one is applicable also at the later stage of event development when the wave front becomes diffuse and is faintly visible. This approach allows us to identify automatically the segments of the diffuse front on pairs of STEREO-A and STEREO-B images and to solve the problem of identification and matching of the objects. We find that the EUV wave observed on December 7, 2007 starts with a height of 30-50 Mm, sharply increases to a height of 100-120 Mm about 10 min later, and decreases to 10-20 Mm in the decay phase. Including the 3D evolution of the EUV wave front allowed us to correct the wave kinematics for projection and changing height effects. The velocity of the wave crest (V=215-266 km/s) is larger than the trailing part of the wave pulse (V=103-163 km/s). For the February 9, 2009 event, the upward movement of the wave crest shows an increase from 20 to 100 Mm over a period of 30 min. The velocity of wave crest reaches values of 208-211 km/s.
NASA Astrophysics Data System (ADS)
Brodsky, S. J.
2017-07-01
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses - such as m ρ/ m p - can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q\\overline{q} invariant mass squared. The same result, including spin terms, is obtained using light-front holography - the duality between light-front dynamics and AdS5, the space of isometries of the conformal group if one modifies the action of AdS5 by the dilaton {e}^{κ^2}{z}^2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter {Λ}_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s ( Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes also determines a scale Q0 which sets the interface between perturbative and nonperturbative hadron dynamics.
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
ERIC Educational Resources Information Center
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
Spreading of correlations in the XXZ chain at finite temperatures
NASA Astrophysics Data System (ADS)
Bonnes, Lars; Läuchli, Andreas
2014-03-01
In a quantum quench, for instance by abruptly changing the interaction parameter in a spin chain, correlations can spread across the system but have to obey a speed limit set by the Lieb-Robinson bound. This results into a causal structure where the propagation front resembles a light-cone. One can ask how fast a correlation front actually propagates and how its velocity depends on the nature of the quench. This question is addressed by performing global quenches in the XXZ chain initially prepared in a finite-temperature state using minimally entangled typical thermal states (METTS). We provide numerical evidence that the spreading velocity of the spin correlation functions for the quench into the gapless phase is solely determined by the value of the final interaction and the amount of excess energy of the system. This is quite surprising as the XXZ model is integrable and its dynamics is constrained by a large amount of conserved quantities. In particular, the spreading velocity seems to interpolate linearly from a universal value at T = ∞ to the spin wave velocity of the final Hamiltonian in the limit of zero excess energy for Δfinal > 0 .
NASA Astrophysics Data System (ADS)
Dou, Jiangpei; Ren, Deqing; Zhang, Xi; Zhu, Yongtian; Zhao, Gang; Wu, Zhen; Chen, Rui; Liu, Chengchao; Yang, Feng; Yang, Chao
2014-08-01
Almost all high-contrast imaging coronagraphs proposed until now are based on passive coronagraph optical components. Recently, Ren and Zhu proposed for the first time a coronagraph that integrates a liquid crystal array (LCA) for the active pupil apodizing and a deformable mirror (DM) for the phase corrections. Here, for demonstration purpose, we present the initial test result of a coronagraphic system that is based on two liquid crystal spatial light modulators (SLM). In the system, one SLM is served as active pupil apodizing and amplitude correction to suppress the diffraction light; another SLM is used to correct the speckle noise that is caused by the wave-front distortions. In this way, both amplitude and phase error can be actively and efficiently compensated. In the test, we use the stochastic parallel gradient descent (SPGD) algorithm to control two SLMs, which is based on the point spread function (PSF) sensing and evaluation and optimized for a maximum contrast in the discovery area. Finally, it has demonstrated a contrast of 10-6 at an inner working angular distance of ~6.2 λ/D, which is a promising technique to be used for the direct imaging of young exoplanets on ground-based telescopes.
Analyses of electron runaway in front of the negative streamer channel
NASA Astrophysics Data System (ADS)
Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.; Neubert, T.; Chanrion, O.
2017-08-01
X-ray and γ-ray emissions, observed in correlation with negative leaders of lightning and long sparks of high-voltage laboratory experiments, are conventionally connected with the bremsstrahlung of high-energy runaway electrons (REs). Here we extend a focusing mechanism, analyzed in our previous paper, which allows the electric field to reach magnitudes, required for a generation of significant RE fluxes and associated bremsstrahlung, when the ionization wave propagates in a narrow, ionized channel created by a previous streamer. Under such conditions we compute the production rate of REs per unit streamer length as a function of the streamer velocity and predict that, once a streamer is formed with the electric field capable of producing REs ahead of the streamer front, the ionization induced by the REs is capable of creating an ionized channel that allows for self-sustained propagation of the RE-emitting ionization wave independent of the initial electron concentration. Thus, the streamer coronas of the leaders are probable sources of REs producing the observed high-energy radiation. To prove these predictions, new simulations are planned, which would show explicitly that the preionization in front of the channel via REs will lead to the ionization wave propagation self-consistent with RE generation.
A comparison of the Maslov integral seismogram and the finite-difference method
NASA Astrophysics Data System (ADS)
Huang, X.; Kendall, J.-M.; Thomson, C. J.; West, G. F.
1998-03-01
The Maslov asymptotic method addresses some of the problems with standard ray theory, such as caustics and shadows. However, it has been applied relatively little, perhaps because its accuracy remains untested. In this study we examine Maslov integral (MI) seismograms by comparing them with finite-difference (FD) seismograms for several cases of interest, such as (1) velocity gradients generating traveltime triplications and shadows, (2) wave-front bending, kinking and folding in a low-velocity waveguide, and (3) wavefield propagation perturbed by a high-velocity slab. The results show that many features of high- and intermediate-frequency waveforms are reliably predicted by Maslov's technique, but also that it is far less reliable and even fails for low frequencies. The terms `high' and `low' are model-dependent, but we mean the range over which it is sensible to discuss signals associated with identifiable wave fronts and local (if complicated) effects that potentially can be unravelled in interpretation. Of the high- and intermediate-frequency wave components, those wave- front anomalies due to wave-front bending, kinking, folding or rapid ray divergence can be accurately given by MI. True diffractions due to secondary wave-front sections are theoretically not included in Maslov theory (as they require true diffracted rays), but in practice they can often be satisfactorily predicted. This occurs roughly within a wavelength of the truncated geometrical wave front, where such diffractions are most important since their amplitudes may still be as large as half that on the geometrical wave front itself. Outside this region MI is inaccurate (although then the diffractions are usually small). Thus waveforms of high and intermediate frequencies are essentially controlled by classical wave-front geometry. Our results also show that the accuracy of MI can be improved by rotating the Maslov integration axis so that the nearest wave-front anomaly is adequately `sampled'. This rotation can be performed after ray tracing and it can serve to avoid pseudo-caustics by using it in conjunction with the phase-partitioning approach. The effort needed in phase partitioning has been reduced by using an interactive graphics technique. It is difficult to formulate a general rule prescribing the limitations of MI accuracy because of model dependency. However, our experiences indicate that two space- and two timescales need to be considered. These are the pulse width in space, the length scale over which the instantaneous wave-front curvature changes, and the timescales of pulse width and significant features in the ray traveltime curve. It seems, from our examples, that when these scales are comparable, the Maslov method gives very acceptable results.
A cryogenic 'set-and-forget' deformable mirror
NASA Astrophysics Data System (ADS)
Trines, Robin; Janssen, Huub; Paalvast, Sander; Teuwen, Maurice; Brandl, Bernhard; Rodenhuis, Michiel
2016-07-01
This paper discusses the development, realization and initial characterization of a demonstrator for a cryogenic 'set and forget' deformable mirror. Many optical and cryogenic infrared instruments on modern very and extremely large telescopes aim at diffraction-limited performance and require total wave front errors in the order of 50 nanometers or less. At the same time, their complex optical functionality requires either a large number of spherical mirrors or several complex free-form mirrors. Due to manufacturing and alignment tolerances, each mirror contributes static aberrations to the wave front. Many of these aberrations are not known in the design phase and can only be measured once the system has been assembled. A 'set-and-forget' deformable mirror can be used to compensate for these aberrations, making it especially interesting for systems with complex free-form mirrors or cryogenic systems where access to iterative realignment is very difficult or time consuming. The mirror with an optical diameter of 200 mm is designed to correct wave front aberrations of up to 2 μm root-mean square (rms). The shape of the wave front is approximated by the first 15 Zernike modes. Finite element analysis of the mirror shows a theoretically possible reduction of the wave front error from 2 μm to 53 nm rms. To produce the desired shapes, the mirror surface is controlled by 19 identical actuator modules at the back of the mirror. The actuator modules use commercially available Piezo-Knob actuators with a high technology readiness level (TRL). These provide nanometer resolution at cryogenic temperatures combined with high positional stability, and allow for the system to be powered off once the desired shape is obtained. The stiff design provides a high resonance frequency (>200 Hz) to suppress external disturbances. A full-size demonstrator of the deformable mirror containing 6 actuators and 13 dummy actuators is realized and characterized. Measurement results show that the actuators can provide sufficient stroke to correct the 2 μm rms WFE. The resolution of the actuator influence functions is found to be 0.24 nm rms or better depending on the position of the actuator within the grid. Superposition of the actuator influence functions shows that a 2 μm rms WFE can be accurately corrected with a 38 nm fitting error. Due to the manufacturing method of the demonstrator an artificially large print-through error of 182 nm is observed. The main cause of this print-through error has been identified and will be reduced in future design iterations. After these design changes the system is expected to have a total residual error of less than 70 nm and offer diffraction limited performance (λ14) for wavelengths of 1 μm and above.
Evaluation of blue light exposure to beta brainwaves on simulated night driving
NASA Astrophysics Data System (ADS)
Purawijaya, Dandri Aly; Fitri, Lulu Lusianti; Suprijanto
2015-09-01
Numbers of night driving accident in Indonesia since 2010 are exponentially rising each year with total of loss more than 50 billion rupiah. One of the causes that contribute to night driving accident is drowsiness. Drowsiness is affected by circadian rhythm resulted from the difference of blue light quality and quantity between night and day. Blue light may effect on human physiology through non-visual pathway by suppressing melatonin hormone suppression that influence drowsiness. Meanwhile, the production of hormones and other activities in brain generate bioelectrical activity such as brainwaves and can be recorded using Electroencephalograph (EEG). Therefore, this research objective is to evaluate the effect of blue light exposure to beta brainwave emergence during night driving simulation to a driver. This research was conducted to 4 male subjects who are able to drive and have a legitimate car driving license. The driving simulator was done using SCANIA Truck Driving Simulator on freeform driving mode in dark environment. Subjects drove for total 32 minutes. The data collections were taken in 2 days with 16 minutes for each day. The 16 minutes were divided again into 8 minutes adaptation in dark and 8 minutes for driving either in blue light exposure or in total darkness. While driving the simulation, subjects' brainwaves were recorded using EEG EMOTIV 14 Channels, exposed by LED monochromatic blue light with 160 Lux from source and angle 45o and sat 1 m in front of the screen. Channels used on this research were for visual (O1; O2), cognition (F3; F4; P7; P8), and motor (FC5; FC6). EEG brainwave result was filtered with EEGLab to obtain beta waves at 13 - 30 Hz frequencies. Results showed that beta waves response to blue light varied for each subject. Blue light exposure either increased or decreased beta waves in 2 minutes pattern and maintaining beta waves on cognition and motor area in 3 out of 4 subjects. Meanwhile, blue light exposure did not maintain and induce beta waves fluctuation on visual area of another 2 subjects. The conclusion of this research is that blue light exposure affected the pattern of beta waves on frontal, parietal, premotor cortex and visual lobes.
NASA Astrophysics Data System (ADS)
Honegger, D. A.; Haller, M. C.; Diaz Mendez, G. M.; Pittman, R.; Catalan, P. A.
2012-12-01
Land-based X-band marine radar observations were collected as part of the month-long DARLA-MURI / RIVET-DRI field experiment at New River Inlet, NC in May 2012. Here we present a synopsis of preliminary results utilizing microwave radar backscatter time series collected from an antenna located 400 m inside the inlet mouth and with a footprint spanning 1000 m beyond the ebb shoals. Two crucial factors in the forcing and constraining of nearshore numerical models are accurate bathymetry and offshore variability in the wave field. Image time series of radar backscatter from surface gravity waves can be utilized to infer these parameters over a large swath and during times of poor optical visibility. Presented are radar-derived wavenumber vector maps obtained from the Plant et al. (2008) algorithm and bathymetric estimates as calculated using Holman et al. (JGR, in review). We also evaluate the effects of tidal currents on the wave directions and depth inversion accuracy. In addition, shifts in the average wave breaking patterns at tidal frequencies shed light on depth- (and possibly current-) induced breaking as a function of tide level and tidal current velocity, while shifts over longer timescales imply bedform movement during the course of the experiment. Lastly, lowpass filtered radar image time series of backscatter intensity are shown to identify the structure and propagation of tidal plume fronts and multiscale ebb jets at the offshore shoal boundary.
Traveling waves in a spring-block chain sliding down a slope
NASA Astrophysics Data System (ADS)
Morales, J. E.; James, G.; Tonnelier, A.
2017-07-01
Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.
Traveling waves in a spring-block chain sliding down a slope.
Morales, J E; James, G; Tonnelier, A
2017-07-01
Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.
Shock wave polarizations and optical metrics in the Born and the Born–Infeld electrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minz, Christoph, E-mail: christoph.minz@alumni.tu-berlin.de; Borzeszkowski, Horst-Heino von, E-mail: borzeszk@mailbox.tu-berlin.de; Chrobok, Thoralf, E-mail: tchrobok@mailbox.tu-berlin.de
We analyze the behavior of shock waves in nonlinear theories of electrodynamics. For this, by use of generalized Hadamard step functions of increasing order, the electromagnetic potential is developed in a series expansion near the shock wave front. This brings about a corresponding expansion of the respective electromagnetic field equations which allows for deriving relations that determine the jump coefficients in the expansion series of the potential. We compute the components of a suitable gauge-normalized version of the jump coefficients given for a prescribed tetrad compatible with the shock front foliation. The solution of the first-order jump relations shows that,more » in contrast to linear Maxwell’s electrodynamics, in general the propagation of shock waves in nonlinear theories is governed by optical metrics and polarization conditions describing the propagation of two differently polarized waves (leading to a possible appearance of birefringence). In detail, shock waves are analyzed in the Born and Born–Infeld theories verifying that the Born–Infeld model exhibits no birefringence and the Born model does. The obtained results are compared to those ones found in literature. New results for the polarization of the two different waves are derived for Born-type electrodynamics.« less
Characterising a holographic modal phase mask for the detection of ocular aberrations
NASA Astrophysics Data System (ADS)
Corbett, A. D.; Leyva, D. Gil; Diaz-Santana, L.; Wilkinson, T. D.; Zhong, J. J.
2005-12-01
The accurate measurement of the double-pass ocular wave front has been shown to have a broad range of applications from LASIK surgery to adaptively corrected retinal imaging. The ocular wave front can be accurately described by a small number of Zernike circle polynomials. The modal wave front sensor was first proposed by Neil et al. and allows the coefficients of the individual Zernike modes to be measured directly. Typically the aberrations measured with the modal sensor are smaller than those seen in the ocular wave front. In this work, we investigated a technique for adapting a modal phase mask for the sensing of the ocular wave front. This involved extending the dynamic range of the sensor by increasing the pinhole size to 2.4mm and optimising the mask bias to 0.75λ. This was found to decrease the RMS error by up to a factor of three for eye-like aberrations with amplitudes up to 0.2μm. For aberrations taken from a sample of real-eye measurements a 20% decrease in the RMS error was observed.
NASA Astrophysics Data System (ADS)
Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.
2015-05-01
On Friday, 7 March 2009, a 200 m-long section of the tourist pier in Puerto Colombia collapsed under the impact of the waves generated by a cold front in the area. The aim of this study is to determine the contribution and importance of cold fronts and storms on extreme waves in different areas of the Colombian Caribbean to determine the degree of the threat posed by the flood processes to which these coastal populations are exposed and the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the wave's height; therefore, it is necessary to definitively know the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. Using Gumbel's extreme value methodology, the significant height values for the study area were calculated. The methodology was evaluated using data from the re-analysis of the spectral NOAA Wavewatch III (WW3) model for 15 points along the 1600 km of the Colombia Caribbean coast (continental and insular) of the last 15 years. The results demonstrated that the extreme waves caused by tropical cyclones and cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area formed by Baja Guajira, Santa Marta, Barranquilla, and Cartagena, the strong influence of cold fronts on extreme waves is evident. On the other hand, in the southern region of the Colombian Caribbean coast, from the Gulf of Morrosquillo to the Gulf of Urabá, even though extreme waves are lower than in the previous regions, extreme waves are dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from that in the continental area due to its geographic location. The wave heights in the extreme regime are similar in magnitude to those found in Alta Guajira, but the extreme waves associated with the passage of cold fronts in this region have lower return periods than the extreme waves associated with hurricane season. These results are of great importance when evaluating the threat of extreme waves in the coastal and port infrastructure, for purposes of the design of new constructions, and in the coastal flood processes due to run-up because, according to the site of interest in the coast, the forces that shape extreme waves are not the same.
Smoldering wave-front velocity in fiberboard
John J. Brenden; Erwin L. Schaffer
1980-01-01
In fiberboard, the phenomena of smoldering can be visualized as decomposition resulting from the motion of a thermal wave-front through the material. The tendency to smolder is then directly proportional to the velocity of the front. Velocity measurements were made on four fiberboards and were compared to values given in the literature for several substances....
1995-06-08
Scientists at Marshall's Adaptive Optics Lab demonstrate the Wave Front Sensor alignment using the Phased Array Mirror Extendible Large Aperture (PAMELA) optics adjustment. The primary objective of the PAMELA project is to develop methods for aligning and controlling adaptive optics segmented mirror systems. These systems can be used to acquire or project light energy. The Next Generation Space Telescope is an example of an energy acquisition system that will employ segmented mirrors. Light projection systems can also be used for power beaming and orbital debris removal. All segmented optical systems must be adjusted to provide maximum performance. PAMELA is an on going project that NASA is utilizing to investigate various methods for maximizing system performance.
NASA Astrophysics Data System (ADS)
Sánchez-Guerrero, Guillermo E.; Viera-González, Perla M.; Ceballos-Herrera, Daniel E.; Martínez-Guerra, Edgar
2016-09-01
Extraction light in light-pipes with different specular surfaces was analyzed. In the analysis, the impact of the surface shape in all properties of the extracted light in order to obtain an efficient extraction and a uniform illumination using a LED as light source. Also, several parameters of the specular surface to obtain spatial uniformity inside the light-pipe are considered. In this case, the simulation was made for a rectangular lightpipe. One objective of this work is to compare how the front face shape of the specular surface can affect the extraction of light in the lateral face of the light-pipe, only straight and elliptical front faces were used in this work and the comparison between them at different tilts and lengths were made. The main purpose of the front face was extract the light uniformly at the lateral face and this was done by studying simulations on OpticStudio Zemax. The results show how the extraction length is lower in the elliptical front but its total power performs better than the line front.
Ling, Yonghong; Huang, Lirong; Hong, Wei; Liu, Tongjun; Jing, Luan; Liu, Wenbin; Wang, Ziyong
2017-11-27
Realizing versatile functionalities in a single photonic device is crucial for photonic integration. We here propose a polarization-switchable and wavelength-controllable multi-functional metasurface. By changing the polarization state of incident light, its functionality can be switched between the flat focusing lens and exciting surface-plasmon-polariton (SPP) wave. Interestingly, by tuning the wavelength of incident light, the generated SPP waves can also be controlled at desired interfaces, traveling along the upper or lower interface of the metasurface, or along both of them, depending on whether the incident light satisfies the first or second Kerker condition. This polarization-switchable and wavelength-controllable multifunctional metasurface may provide flexibility in designing tunable or multifunctional metasurfaces and may find potential applications in highly integrated photonic systems.
Three Great Eyes on Kepler's Supernova Remnant
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Composite [figure removed for brevity, see original site] [figure removed for brevity, see original site] Chandra X-Ray Data (blue) Chandra X-Ray Data (green)Hubble Telescope (visible-light)Spitzer Telescope (infrared) NASA's three Great Observatories -- the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory -- joined forces to probe the expanding remains of a supernova, called Kepler's supernova remnant, first seen 400 years ago by sky watchers, including astronomer Johannes Kepler. The combined image unveils a bubble-shaped shroud of gas and dust that is 14 light-years wide and is expanding at 4 million miles per hour (2,000 kilometers per second). Observations from each telescope highlight distinct features of the supernova remnant, a fast-moving shell of iron-rich material from the exploded star, surrounded by an expanding shock wave that is sweeping up interstellar gas and dust. Each color in this image represents a different region of the electromagnetic spectrum, from X-rays to infrared light. These diverse colors are shown in the panel of photographs below the composite image. The X-ray and infrared data cannot be seen with the human eye. By color-coding those data and combining them with Hubble's visible-light view, astronomers are presenting a more complete picture of the supernova remnant. Visible-light images from the Hubble telescope (colored yellow) reveal where the supernova shock wave is slamming into the densest regions of surrounding gas. The bright glowing knots are dense clumps from instabilities that form behind the shock wave. The Hubble data also show thin filaments of gas that look like rippled sheets seen edge-on. These filaments reveal where the shock wave is encountering lower-density, more uniform interstellar material. The Spitzer telescope shows microscopic dust particles (colored red) that have been heated by the supernova shock wave. The dust re-radiates the shock wave's energy as infrared light. The Spitzer data are brightest in the regions surrounding those seen in detail by the Hubble telescope. The Chandra X-ray data show regions of very hot gas, and extremely high-energy particles. The hottest gas (higher-energy X-rays, colored blue) is located primarily in the regions directly behind the shock front. These regions also show up in the Hubble observations, and also align with the faint rim of glowing material seen in the Spitzer data. The X-rays from the region on the lower left (colored blue) may be dominated by extremely high-energy electrons that were produced by the shock wave and are radiating at radio through X-ray wavelengths as they spiral in the intensified magnetic field behind the shock front. Cooler X-ray gas (lower-energy X-rays, colored green) resides in a thick interior shell and marks the location of heated material expelled from the exploded star. Kepler's supernova, the last such object seen to explode in our Milky Way galaxy, resides about 13,000 light-years away in the constellation Ophiuchus. The Chandra observations were taken in June 2000, the Hubble in August 2003; and the Spitzer in August 2004.DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Ding, M. D.; Chen, P. F., E-mail: guoyang@nju.edu.cn
2015-08-15
Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUVmore » propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.« less
Analysis of moving surface structures at a laser-induced boiling front
NASA Astrophysics Data System (ADS)
Matti, R. S.; Kaplan, A. F. H.
2014-10-01
Recently ultra-high speed imaging enabled to observe moving wave patterns on metal melts that experience laser-induced boiling. In laser materials processing a vertical laser-induced boiling front governs processes like keyhole laser welding, laser remote fusion cutting, laser drilling or laser ablation. The observed waves originate from temperature variations that are closely related to the melt topology. For improved understanding of the essential front mechanisms and of the front topology, for the first time a deeper systematic analysis of the wave patterns was carried out. Seven geometrical shapes of bright or dark domains were distinguished and categorized, in particular bright peaks of three kinds and dark valleys, often inclined. Two categories describe special flow patterns at the top and bottom of the front. Dynamic and statistical analysis has revealed that the shapes often combine or separate from one category to another when streaming down the front. The brightness of wave peaks typically fluctuates during 20-50 μs. This variety of thermal wave observations is interpreted with respect to the accompanying surface topology of the melt and in turn for governing local mechanisms like absorption, shadowing, boiling, ablation pressure and melt acceleration. The findings can be of importance for understanding the key process mechanisms and for optimizing laser materials processing.
Cold fronts in the Colombian Caribbean Sea and their relationship to extreme wave events
NASA Astrophysics Data System (ADS)
Ortiz-Royero, J. C.; Otero, L. J.; Restrepo, J. C.; Ruiz, J.; Cadena, M.
2013-11-01
Extreme ocean waves in the Caribbean Sea are commonly related to the effects of storms and hurricanes during the months of June through November. The collapse of 200 m of the Puerto Colombia pier in March 2009 revealed the effects of meteorological phenomena other than storms and hurricanes that may be influencing the extreme wave regime in the Colombian Caribbean. The marked seasonality of these atmospheric fronts was established by analyzing the meteorological-marine reports of the Instituto de Hidrología, Meteorología y Estudios Ambientales of Colombia (IDEAM, based on its initials in Spanish) and the Centro de Investigación en Oceanografía y Meteorología of Colombia (CIOH, based on its initials in Spanish) during the last 16 yr. The highest number of cold fronts was observed during the months of January, February, and March, with 6 fronts occurring per year. An annual trend was observed and the highest number of fronts occurred in 2010 (20 in total); moreover, an annual strong relationship between the maximum average wave values and the cold fronts in the central zone of the Colombian Caribbean during the first three months of the year was established. In addition, the maximum values of the significant height produced by the passage of cold fronts during the last 16 yr were identified. Although the Colombian Caribbean has been affected by storms and hurricanes in the past, this research allows us to conclude that there is a strong relationship between cold fronts and the largest waves in the Colombian Caribbean during the last 16 yr, which have caused damage to coastal infrastructure. We verified that the passage of a cold front corresponded to the most significant extreme wave event of the last two decades in the Colombian Caribbean, which caused the structural collapse of the Puerto Colombia pier, located near the city of Barranquilla, between 5 and 10 March 2009. This information is invaluable when evaluating average and extreme wave regimes for the purpose of informing the design of structures in this region of the Caribbean.
Electroexcitation of Nucleon Resonances in a Light-Front Relativistic Quark Model
Aznauryan, Inna G.; Burkert, Volker G.
2018-06-08
Here, we report the predictions for the 3q core contributions to the electroexcitation of the resonances Delta(1232)3/2 +, N(1440)1/2 +, N(1520)3/2 -, N(1535)1/2 -, and N(1675)5/2 - on the proton obtained in the light-front relativistic quark model (LF RQM). For these states, experimental data on the electroexcitation transition amplitudes allow us to make comparison between the experiment and LF RQM predictions in wide range of Q 2 and also to quantify the expected meson-baryon contributions as a function of Q 2.
Dynamics and stability of relativistic gamma-ray-bursts blast waves
NASA Astrophysics Data System (ADS)
Meliani, Z.; Keppens, R.
2010-09-01
Aims: In gamma-ray-bursts (GRBs), ultra-relativistic blast waves are ejected into the circumburst medium. We analyse in unprecedented detail the deceleration of a self-similar Blandford-McKee blast wave from a Lorentz factor 25 to the nonrelativistic Sedov phase. Our goal is to determine the stability properties of its frontal shock. Methods: We carried out a grid-adaptive relativistic 2D hydro-simulation at extreme resolving power, following the GRB jet during the entire afterglow phase. We investigate the effect of the finite initial jet opening angle on the deceleration of the blast wave, and identify the growth of various instabilities throughout the coasting shock front. Results: We find that during the relativistic phase, the blast wave is subject to pressure-ram pressure instabilities that ripple and fragment the frontal shock. These instabilities manifest themselves in the ultra-relativistic phase alone, remain in full agreement with causality arguments, and decay slowly to finally disappear in the near-Newtonian phase as the shell Lorentz factor drops below 3. From then on, the compression rate decreases to levels predicted to be stable by a linear analysis of the Sedov phase. Our simulations confirm previous findings that the shell also spreads laterally because a rarefaction wave slowly propagates to the jet axis, inducing a clear shell deformation from its initial spherical shape. The blast front becomes meridionally stratified, with decreasing speed from axis to jet edge. In the wings of the jetted flow, Kelvin-Helmholtz instabilities occur, which are of negligible importance from the energetic viewpoint. Conclusions: Relativistic blast waves are subject to hydrodynamical instabilities that can significantly affect their deceleration properties. Future work will quantify their effect on the afterglow light curves.
The Shift of ERG B-Wave Induced by Hours' Dark Exposure in Rodents.
Li, Dake; Fang, Qi; Yu, Hongbo
2016-01-01
Dark adaptation can induce a rapid functional shift in the retina, and after that, the retinal function is believed to remain stable during the continuous dark exposure. However, we found that electroretinograms (ERG) b-waves gradually shifted during 24 hours' dark exposure in rodents. Detailed experiments were designed to explore this non-classical dark adaptation. In vivo ERG recording in adult and developing rodents after light manipulations. We revealed a five-fold decrease in ERG b-waves in adult rats that were dark exposed for 24 hours. The ERG b-waves significantly increased within the first hour's dark exposure, but after that decreased continuously and finally attained steady state after 1 day's dark exposure. After 3 repetitive, 10 minutes' light exposure, the dark exposed rats fully recovered. This recovery effect was eye-specific, and light exposure to one eye could not restore the ERGs in the non-exposed eye. The prolonged dark exposure-induced functional shift was also reflected in the down-regulation on the amplitude of intensity-ERG response curve, but the dynamic range of the responsive light intensity remained largely stable. Furthermore, the ERG b-wave shifts occurred in and beyond classical critical period, and in both rats and mice. Importantly, when ERG b-wave greatly shifted, the amplitude of ERG a-wave did not change significantly after the prolonged dark exposure. This rapid age-independent ERG change demonstrates a generally existing functional shift in the retina, which is at the entry level of visual system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erokhin, A. N., E-mail: nerokhin@mx.iki.rssi.ru; Zol’nikova, N. N.; Erokhin, N. S.
Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front g{sub y}(0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phasemore » Ψ(0) on the particle trajectory. It is assumed in the calculations that vertical bar Ψ(0) vertical bar ≤ π. For strongly relativistic values of g{sub y}(0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones.« less
Diffraction of a plane wave by a three-dimensional corner
NASA Technical Reports Server (NTRS)
Ting, L.; Kung, F.
1971-01-01
By the superposition of the conical solution for the diffraction of a plane pulse by a three dimensional corner, the solution for a general incident plane wave is constructed. A numerical program is presented for the computation of the pressure distribution on the surface due to an incident plane wave of any wave form and at any incident angle. Numerical examples are presented to show the pressure signature at several points on the surface due to incident wave with a front shock wave, two shock waves in succession, or a compression wave with same peak pressure. The examples show that when the distance of a point on the surface from the edges or the vertex is comparable to the distance for the front pressure raise to reach the maximum, the peak pressure at that point can be much less than that given by a regular reflection, because the diffracted wave front arrives at that point prior to the arrival of the peak incident wave.
9. INTERIOR OF LIVING ROOM SHOWING OPEN 6LIGHT FRONT ENTRY ...
9. INTERIOR OF LIVING ROOM SHOWING OPEN 6-LIGHT FRONT ENTRY DOOR AND TWO 6-LIGHT OVER 1-LIGHT SASH WINDOWS OVERLOOKING FRONT ENTRY STEPS. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Clubhouse Cottage, Rush Creek, June Lake, Mono County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2012-04-03
Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steadymore » deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.« less
Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts
NASA Astrophysics Data System (ADS)
McLaughlin, Joyce; Renzi, Daniel
2006-04-01
Transient elastography and supersonic imaging are promising new techniques for characterizing the elasticity of soft tissues. Using this method, an 'ultrafast imaging' system (up to 10 000 frames s-1) follows in real time the propagation of a low frequency shear wave. The displacement of the propagating shear wave is measured as a function of time and space. The objective of this paper is to develop and test algorithms whose ultimate product is images of the shear wave speed of tissue mimicking phantoms. The data used in the algorithms are the front of the propagating shear wave. Here, we first develop techniques to find the arrival time surface given the displacement data from a transient elastography experiment. The arrival time surface satisfies the Eikonal equation. We then propose a family of methods, called distance methods, to solve the inverse Eikonal equation: given the arrival times of a propagating wave, find the wave speed. Lastly, we explain why simple inversion schemes for the inverse Eikonal equation lead to large outliers in the wave speed and numerically demonstrate that the new scheme presented here does not have any large outliers. We exhibit two recoveries using these methods: one is with synthetic data; the other is with laboratory data obtained by Mathias Fink's group (the Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII).
Negative pressure and spallation in graphite targets under nano- and picosecond laser irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belikov, R S; Khishchenko, K V; Krasyuk, I K
We present the results of experiments on the spallation phenomena in graphite targets under shock-wave nano- and picosecond irradiation, which have been performed on Kamerton-T (GPI, Moscow, Russia) and PHELIX (GSI, Darmstadt, Germany) laser facilities. In the range of the strain rates of 10{sup 6} – 10{sup 7} s{sup -1}, the data on the dynamic mechanical strength of the material at rapure (spallation) have been for the first time obtained. With a maximal strain rate of 1.4 × 10{sup 7} s{sup -1}, the spall strength of 2.1 GPa is obtained, which constitutes 64% of the theoretical ultimate tensile strength ofmore » graphite. The effect of spallation is observed not only on the rear side of the target, but also on its irradiated (front) surface. With the use of optical and scanning electron microscopes, the morphology of the front and rear surfaces of the targets is studied. By means of Raman scattering of light, the graphite structure both on the target front surface under laser exposure and on its rear side in the spall zone is investigated. A comparison of the dynamic strength of graphite and synthetic diamond is performed. (extreme light fields and their applications)« less
Projection display industry market and technology trends
NASA Astrophysics Data System (ADS)
Castellano, Joseph A.; Mentley, David E.
1995-04-01
The projection display industry is diverse, embracing a variety of technologies and applications. In recent years, there has been a high level of interest in projection displays, particularly those using LCD panels or light valves because of the difficulty in making large screen, direct view displays. Many developers feel that projection displays will be the wave of the future for large screen HDTV (high-definition television), penetrating the huge existing market for direct view CRT-based televisions. Projection displays can have the images projected onto a screen either from the rear or the front; the main characteristic is their ability to be viewed by more than one person. In addition to large screen home television receivers, there are numerous other uses for projection displays including conference room presentations, video conferences, closed circuit programming, computer-aided design, and military command/control. For any given application, the user can usually choose from several alternative technologies. These include CRT front or rear projectors, LCD front or rear projectors, LCD overhead projector plate monitors, various liquid or solid-state light valve projectors, or laser-addressed systems. The overall worldwide market for projection information displays of all types and for all applications, including home television, will top DOL4.6 billion in 1995 and DOL6.45 billion in 2001.
Two-photon excitation cross-section in light and intermediate atoms
NASA Technical Reports Server (NTRS)
Omidvar, K.
1980-01-01
The method of explicit summation over the intermediate states is used along with LS coupling to derive an expression for two-photon absorption cross section in light and intermediate atoms in terms of integrals over radial wave functions. Two selection rules, one exact and one approximate, are also derived. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum defect method are used. A relationship between the cross section and the oscillator strengths is derived. Cross sections due to selected transitions in nitrogen, oxygen, and chlorine are given. The expression for the cross section is useful in calculating the two-photon absorption in light and intermediate atoms.
The density compression ratio of shock fronts associated with coronal mass ejections
NASA Astrophysics Data System (ADS)
Kwon, Ryun-Young; Vourlidas, Angelos
2018-02-01
We present a new method to extract the three-dimensional electron density profile and density compression ratio of shock fronts associated with coronal mass ejections (CMEs) observed in white light coronagraph images. We demonstrate the method with two examples of fast halo CMEs (˜2000 km s-1) observed on 2011 March 7 and 2014 February 25. Our method uses the ellipsoid model to derive the three-dimensional geometry and kinematics of the fronts. The density profiles of the sheaths are modeled with double-Gaussian functions with four free parameters, and the electrons are distributed within thin shells behind the front. The modeled densities are integrated along the lines of sight to be compared with the observed brightness in COR2-A, and a χ2 approach is used to obtain the optimal parameters for the Gaussian profiles. The upstream densities are obtained from both the inversion of the brightness in a pre-event image and an empirical model. Then the density ratio and Alfvénic Mach number are derived. We find that the density compression peaks around the CME nose, and decreases at larger position angles. The behavior is consistent with a driven shock at the nose and a freely propagating shock wave at the CME flanks. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes) than past reports. It follows that CME shocks are capable of accelerating energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere. Our results also demonstrate the power of multi-viewpoint coronagraphic observations and forward modeling in remotely deriving key shock properties in an otherwise inaccessible regime.
8. INTERIOR OF LIVING ROOM SHOWING 6LIGHT FRONT ENTRY DOOR ...
8. INTERIOR OF LIVING ROOM SHOWING 6-LIGHT FRONT ENTRY DOOR AND TWO 6-LIGHT OVER 1-LIGHT SASH WINDOWS TO PHOTO RIGHT OF FRONT DOOR OVERLOOKING PORCH. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
NASA Astrophysics Data System (ADS)
Xia, Yongfang; Shi, Junrui; Xu, Youning; Ma, Rui
2018-03-01
Filtration combustion (FC) is one style of porous media combustion with inert matrix, in which the combustion wave front propagates, only downstream or reciprocally. In this paper, we investigate the FC flame front inclinational instability of lean methane/air mixtures flowing through a packed bed as a combustion wave front perturbation of the initial preheating temperature non-uniformity is assumed. The predicted results show that the growth rate of the flame front inclinational angle is proportional to the magnitude of the initial preheating temperature difference. Additionally, depending on gas inlet gas velocity and equivalence ratio, it is demonstrated that increase of gas inlet gas velocity accelerates the FC wave front deformation, and the inclinational instability evolves faster at lower equivalence ratio. The development of the flame front inclinational angle may be regarded as a two-staged evolution, which includes rapid increase, and approaching maximum value of inclinational angle due to the quasi-steady condition of the combustion system. The hydrodynamic and thermal mechanisms of the FC inclinational instability are analyzed. Consequently, the local propagation velocity of the FC wave front is non-uniform to result in the development of inclinational angle at the first stage of rapid increase.
NASA Astrophysics Data System (ADS)
Lorenz, P.; Bayer, L.; Ehrhardt, M.; Zimmer, K.; Engisch, L.
2015-03-01
Micro- and nanostructures exhibit a growing commercial interest where a fast, cost-effective, and large-area production is attainable. Laser methods have a great potential for the easy fabrication of surface structures into flexible polymer foils like polyimide (PI). In this study two different concepts for the structuring of polymer foils using a KrF excimer laser were tested and compared: the laser-induced ablation and the laser-induced shock wave structuring. The direct front side laser irradiation of these polymers allows the fabrication of different surface structures. For example: The low laser fluence treatment of PI results in nano-sized cone structures where the cone density can be controlled by the laser parameters. This allows inter alia the laser fabrication of microscopic QR code and high-resolution grey-tone images. Furthermore, the laser treatment of the front side of the polymer foil allows the rear side structuring due to a laserinduced shock wave. The resultant surface structures were analysed by optical and scanning electron microscopy (SEM) as well as white light interferometry (WLI).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, S. J.
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses – such as mρ/mp – can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to themore » $$q\\bar{q}$$ invariant mass squared. The same result, including spin terms, is obtained using light-front holography – the duality between light-front dynamics and AdS 5, the space of isometries of the conformal group if one modifies the action of AdS 5 by the dilaton e $κ^2$ z$^2$ in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. Lastly, the matching of the high and low momentum transfer regimes also determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics.« less
Brodsky, S. J.
2017-07-11
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses – such as mρ/mp – can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to themore » $$q\\bar{q}$$ invariant mass squared. The same result, including spin terms, is obtained using light-front holography – the duality between light-front dynamics and AdS 5, the space of isometries of the conformal group if one modifies the action of AdS 5 by the dilaton e $κ^2$ z$^2$ in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. Lastly, the matching of the high and low momentum transfer regimes also determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics.« less
Unsteady self-sustained detonation in flake aluminum dust/air mixtures
NASA Astrophysics Data System (ADS)
Liu, Q.; Li, S.; Huang, J.; Zhang, Y.
2017-07-01
Self-sustained detonation waves in flake aluminum dust/air mixtures have been studied in a tube of diameter 199 mm and length 32.4 m. A pressure sensor array of 32 sensors mounted around certain circumferences of the tube was used to measure the shape of the detonation front in the circumferential direction and pressure histories of the detonation wave. A two-head spin detonation wave front was observed for the aluminum dust/air mixtures, and the cellular structure resulting from the spinning movement of the triple point was analyzed. The variations in velocity and overpressure of the detonation wave with propagation distance in a cell were studied. The interactions of waves in triple-point configurations were analyzed and the flow-field parameters were calculated. Three types of triple-point configuration have been found in the wave front of the detonation wave of an aluminum dust/air mixture. Both strong and weak transverse waves exist in the unstable self-sustained detonation wave.
Fully vectorial accelerating diffraction-free Helmholtz beams.
Aleahmad, Parinaz; Miri, Mohammad-Ali; Mills, Matthew S; Kaminer, Ido; Segev, Mordechai; Christodoulides, Demetrios N
2012-11-16
We show that new families of diffraction-free nonparaxial accelerating optical beams can be generated by considering the symmetries of the underlying vectorial Helmholtz equation. Both two-dimensional transverse electric and magnetic accelerating wave fronts are possible, capable of moving along elliptic trajectories. Experimental results corroborate these predictions when these waves are launched from either the major or minor axis of the ellipse. In addition, three-dimensional spherical nondiffracting field configurations are presented along with their evolution dynamics. Finally, fully vectorial self-similar accelerating optical wave solutions are obtained via oblate-prolate spheroidal wave functions. In all occasions, these effects are illustrated via pertinent examples.
PECULIAR STATIONARY EUV WAVE FRONTS IN THE ERUPTION ON 2011 MAY 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, R.; Fulara, A.; Chen, P. F.
We present and interpret the observations of extreme ultraviolet (EUV) waves associated with a filament eruption on 2011 May 11. The filament eruption also produces a small B-class two ribbon flare and a coronal mass ejection. The event is observed by the Solar Dynamic Observatory with high spatio-temporal resolution data recorded by the Atmospheric Imaging Assembly. As the filament erupts, we observe two types of EUV waves (slow and fast) propagating outwards. The faster EUV wave has a propagation velocity of ∼500 km s{sup −1} and the slower EUV wave has an initial velocity of ∼120 km s{sup −1}. Wemore » report, for the first time, that not only does the slower EUV wave stop at a magnetic separatrix to form bright stationary fronts, but also the faster EUV wave transits a magnetic separatrix, leaving another stationary EUV front behind.« less
Laboratory Study of Wave Generation Near Dipolarization Fronts
NASA Astrophysics Data System (ADS)
Tejero, E. M.; Enloe, C. L.; Amatucci, B.; Crabtree, C. E.; Ganguli, G.; Malaspina, D.
2017-12-01
Experiments conducted in the Space Physics Simulation Chamber at the Naval Research Laboratory (NRL) create plasma equilibria that replicate those found in dipolarization fronts. These experiments were designed to study the dynamics of boundary layers, such as dipolarization fronts, and it was found that there are instabilities generated by highly inhomogeneous plasma flows. It has previously been shown that these highly inhomogeneous flows can generate waves in the lower hybrid frequency range. Analysis of satellite observations indicate that the sheared flows are a plausible explanation for the observed lower hybrid waves at dipolarization fronts since they can generate longer wavelengths compared to the electron gyroradius, which is consistent with observations. Recent experiments at NRL have demonstrated that these flows can also generate electromagnetic waves in the whistler band. These waves are large amplitude, bursty waves that exhibit frequency chirps similar to whistler mode chorus. Recent results from these experiments and comparisons to in situ observations will be presented. * Work supported by the Naval Research Laboratory Base Program and NASA Grant No. NNH17AE70I.
The Effect of Sedimentary Basins on Through-Passing Short-Period Surface Waves
NASA Astrophysics Data System (ADS)
Feng, L.; Ritzwoller, M. H.
2017-12-01
Surface waves propagating through sedimentary basins undergo elastic wave field complications that include multiple scattering, amplification, the formation of secondary wave fronts, and subsequent wave front healing. Unless these effects are accounted for accurately, they may introduce systematic bias to estimates of source characteristics, the inference of the anelastic structure of the Earth, and ground motion predictions for hazard assessment. Most studies of the effects of basins on surface waves have centered on waves inside the basins. In contrast, we investigate wave field effects downstream from sedimentary basins, with particular emphasis on continental basins and propagation paths, elastic structural heterogeneity, and Rayleigh waves at 10 s period. Based on wave field simulations through a recent 3D crustal and upper mantle model of East Asia, we demonstrate significant Rayleigh wave amplification downstream from sedimentary basins in eastern China such that Ms measurements obtained on the simulated wave field vary by more than a magnitude unit. We show that surface wave amplification caused by basins results predominantly from elastic focusing and that amplification effects produced through 3D basin models are reproduced using 2D membrane wave simulations through an appropriately defined phase velocity map. The principal characteristics of elastic focusing in both 2D and 3D simulations include (1) retardation of the wave front inside the basins; (2) deflection of the wave propagation direction; (3) formation of a high amplitude lineation directly downstream from the basin bracketed by two low amplitude zones; and (4) formation of a secondary wave front. Finally, by comparing the impact of elastic focusing with anelastic attenuation, we argue that on-continent sedimentary basins are expected to affect surface wave amplitudes more strongly through elastic focusing than through the anelastic attenuation.
Role of lower hybrid waves in ion heating at dipolarization fronts
NASA Astrophysics Data System (ADS)
Greco, A.; Artemyev, A.; Zimbardo, G.; Angelopoulos, V.; Runov, A.
2017-05-01
One of the important sources of hot ions in the magnetotail is the bursty bulk flows propagating away from the reconnection region and heating the ambient plasma. Charged particles interact with nonlinear magnetic field pulses (dipolarization fronts, DFs) embedded into these flows. The convection electric fields associated with DF propagation are known to reflect and accelerate ambient ions. Moreover, a wide range of waves is observed within/near these fronts, the electric field fluctuations being dominated by the lower hybrid drift (LHD) instability. Here we investigate the potential role of these waves in the further acceleration of ambient ions. We use a LHD wave emission profile superimposed on the leading edge of a two-dimensional model profile of a DF and a test particle approach. We show that LHD waves with realistic amplitudes can significantly increase the upper limit of energies gained by ions. Wave-particle interaction near the front is more effective in producing superthermal ions than in increasing the flux of thermal ions. Comparison of test particle simulations and Time History of Events and Macroscale Interactions during Substorms observations show that ion acceleration by LHD waves is more important for slower DFs.
An Analysis of Fundamental Waffle Mode in Early AEOS Adaptive Optics Images
NASA Astrophysics Data System (ADS)
Makidon, Russell B.; Sivaramakrishnan, Anand; Perrin, Marshall D.; Roberts, Lewis C., Jr.; Oppenheimer, Ben R.; Soummer, Rémi; Graham, James R.
2005-08-01
Adaptive optics (AO) systems have significantly improved astronomical imaging capabilities over the last decade and are revolutionizing the kinds of science possible with 4-5 m class ground-based telescopes. A thorough understanding of AO system performance at the telescope can enable new frontiers of science as observations push AO systems to their performance limits. We look at recent advances with wave-front reconstruction (WFR) on the Advanced Electro-Optical System (AEOS) 3.6 m telescope to show how progress made in improving WFR can be measured directly in improved science images. We describe how a ``waffle mode'' wave-front error (which is not sensed by a Fried geometry Shack-Hartmann wave-front sensor) affects the AO point-spread function. We model details of AEOS AO to simulate a PSF that matches the actual AO PSF in the I band and show that while the older observed AEOS PSF contained several times more waffle error than expected, improved WFR techniques noticeably improve AEOS AO performance. We estimate the impact of these improved WFRs on H-band imaging at AEOS, chosen based on the optimization of the Lyot Project near-infrared coronagraph at this bandpass. Based on observations made at the Maui Space Surveillance System, operated by Detachment 15 of the US Air Force Research Laboratory's Directed Energy Directorate.
Poyneer, Lisa A; Bauman, Brian J
2015-03-31
Reference-free compensated imaging makes an estimation of the Fourier phase of a series of images of a target. The Fourier magnitude of the series of images is obtained by dividing the power spectral density of the series of images by an estimate of the power spectral density of atmospheric turbulence from a series of scene based wave front sensor (SBWFS) measurements of the target. A high-resolution image of the target is recovered from the Fourier phase and the Fourier magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marti-Lopez, L.; Ocana, R.; Porro, J. A.
2009-07-01
We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.
Electromagnetic deformable mirror for space applications
NASA Astrophysics Data System (ADS)
Kuiper, S.; Doelman, N.; Overtoom, T.; Nieuwkoop, E.; Russchenberg, T.; van Riel, M.; Wildschut, J.; Baeten, M.; Spruit, H.; Brinkers, S.; Human, J.
2017-09-01
To increase the collecting power and to improve the angular imaging resolution, space telescopes are evolving towards larger primary mirrors. The aerial density of the telescope mirrors needs to be kept low, however, to be compatible with the launch requirements. A light-weight (primary) mirror will introduce additional optical aberrations to the system. These may be caused by for instance manufacturing errors, gravity release and thermo-elastic effects. Active Optics (AO) is a key candidate technology to correct for the resultant wave front aberrations [1].
Analog of Optical Elements for Sound Waves in Air
ERIC Educational Resources Information Center
Gluck, Paul; Perkalskis, Benjamin
2009-01-01
Optical elements manipulate light waves. They may be used to focus the light or to change the phase, the polarization, the direction, or the intensity of light. Many of these functions are often demonstrated with microwaves, since the devices normally available in teaching laboratories produce wavelengths in the centimeter range and are therefore…
Effect of cross grain on stress waves in lumber
C.C. Gerhards
1980-01-01
An evaluation is made of the effect of cross grain on the transit time of longitudinal compression stress waves in Douglas-fir 2 by 8 lumber. Cross grain causes the stress wave to advance with a front or contour skewed in the direction of the grain angle, rather than to advance with a front normal to the long axis of lumber. Thus, the timing of the stress wave in...
Chernyak, Dimitri A; Campbell, Charles E
2003-11-01
Now that excimer laser systems can be programmed to correct complex aberrations of the eye on the basis of wave-front measurements, a method is needed to test the accuracy of the system from measurement through treatment. A closed-loop test method was developed to ensure that treatment plans generated by a wavefront measuring system were accurately transferred to and executed by the excimer laser. A surface was analytically defined, and a Shack-Hartmann-based wave-front system was used to formulate a treatment plan, which was downloaded to an excimer laser system. A plastic lens was ablated by the laser and then returned to the wave-front device, where it was measured and compared with the analytically defined wave-front surface. The two surfaces agreed up to 6th-order Zernike terms, validating the accuracy of the system.
The Shift of ERG B-Wave Induced by Hours' Dark Exposure in Rodents
Li, Dake; Fang, Qi; Yu, Hongbo
2016-01-01
Purpose Dark adaptation can induce a rapid functional shift in the retina, and after that, the retinal function is believed to remain stable during the continuous dark exposure. However, we found that electroretinograms (ERG) b-waves gradually shifted during 24 hours’ dark exposure in rodents. Detailed experiments were designed to explore this non-classical dark adaptation. Methods In vivo ERG recording in adult and developing rodents after light manipulations. Results We revealed a five-fold decrease in ERG b-waves in adult rats that were dark exposed for 24 hours. The ERG b-waves significantly increased within the first hour’s dark exposure, but after that decreased continuously and finally attained steady state after 1 day’s dark exposure. After 3 repetitive, 10 minutes’ light exposure, the dark exposed rats fully recovered. This recovery effect was eye-specific, and light exposure to one eye could not restore the ERGs in the non-exposed eye. The prolonged dark exposure-induced functional shift was also reflected in the down-regulation on the amplitude of intensity-ERG response curve, but the dynamic range of the responsive light intensity remained largely stable. Furthermore, the ERG b-wave shifts occurred in and beyond classical critical period, and in both rats and mice. Importantly, when ERG b-wave greatly shifted, the amplitude of ERG a-wave did not change significantly after the prolonged dark exposure. Conclusions This rapid age-independent ERG change demonstrates a generally existing functional shift in the retina, which is at the entry level of visual system. PMID:27517462
NASA Astrophysics Data System (ADS)
Ortiz-Royero, J. C.; Otero, L. J.; Restrepo, J. C.; Ruiz, J.; Cadena, M.
2013-07-01
Extreme ocean waves in the Caribbean Sea are commonly related to the effects of storms and hurricanes during the months of June through November. The collapse of 200 m of the Puerto Colombia pier in March 2009 revealed the effects of meteorological phenomena other than storms and hurricanes that may be influencing the extreme wave regime in the Colombian Caribbean. The marked seasonality of these atmospheric fronts was established by analyzing the meteorological-marine reports of Instituto de Hidrología, Meteorología y Estudios Ambientales of Colombia (IDEAM, based on its initials in Spanish) and Centro de Investigación en Oceanografía y Meteorología of Colombia (CIOH, based on its initials in Spanish). The highest occurrences were observed during the months of January, February, and March, with 6 fronts occurring per year. An annual trend was not observed, although the highest number of fronts occurred in 2010 (20 in total). An annual strong relationship between the maximum average wave values and the cold fronts, in the central zone of the Colombian Caribbean during the first three months of the year was established. In addition, the maximum values of the significant height produced by the passage of cold fronts during the last 16 yr were identified. Although the Colombian Caribbean has been affected by storms and hurricanes in the past, this research allows us to conclude that, there is a strong relationship between cold fronts and the largest waves in the Colombian Caribbean during the last 16 yr, which have caused damage to coastal infrastructure. We verified that the passage of a cold front corresponded to the most significant extreme wave event of the last two decades in the Colombian Caribbean, which caused the structural collapse of the Puerto Colombia pier, located near the city of Barranquilla, between 5 and 10 March 2009. This information is invaluable when evaluating average and extreme wave regimes for the purpose of informing the design of structures in this region of the Caribbean.
NASA Astrophysics Data System (ADS)
David, Christian; Sarout, Joël.; Dautriat, Jérémie; Pimienta, Lucas; Michée, Marie; Desrues, Mathilde; Barnes, Christophe
2017-07-01
Fluid substitution processes have been investigated in the laboratory on 14 carbonate and siliciclastic reservoir rock analogues through spontaneous imbibition experiments on vertical cylindrical specimens with simultaneous ultrasonic monitoring and imaging. The motivation of our study was to identify the seismic attributes of fluid substitution in reservoir rocks and to link them to physical processes. It is shown that (i) the P wave velocity either decreases or increases when the capillary front reaches the Fresnel clearance zone, (ii) the P wave amplitude is systematically impacted earlier than the velocity is, (iii) this precursory amplitude decrease occurs when the imbibition front is located outside of the Fresnel zone, and (iv) the relative variation of the P wave amplitude is always much larger than that of the P wave velocity. These results suggest that moisture diffuses into the pore space ahead of the water front. This postulate is further supported by a quantitative analysis of the time evolution of the observed P wave amplitudes. In a sense, P wave amplitude acts as a precursor of the arrival of the capillary front. This phenomenon is used to estimate the effective diffusivity of moisture in the tested rocks. The effective moisture diffusivity estimated from the ultrasonic data is strongly correlated with permeability: a power law with exponent 0.96 predicts permeability from ultrasonic monitoring within a factor 3 without noticeable bias. When the effective diffusivity is high, moisture diffusion affects ultrasonic P wave attributes even before the imbibition starts and impacts the P wave reflectivity as evidenced by the variations recorded in the waveform coda.
Scintillation Control for Adaptive Optical Sensors
1999-09-21
defining where one influence function goes to zero fall directly under the peaks of the adjoining influcence functions. These actuators were fit to ^>gp(i...not orthogonal the influence function interaction matrix R must be computed with elements given by [3] rH = J dxPW(xp)e/b(xp)e,(xp). (22) In our...control signals can be found from the wave front phase by the least squares phase reconstruction technique [3]. An influence function and the
SDO AIA Observations of Large-Scale Coronal Disturbances in the Form of Propagating Fronts
NASA Astrophysics Data System (ADS)
Nitta, Nariaki V.; Schrijver, Carolus J.; Title, Alan M.; Liu, Wei
2013-03-01
One of the most spectacular phenomena detected by SOHO EIT was the large-scale propagating fronts associated with solar eruptions. Initially these 'EIT' waves were thought to be coronal counterparts of chromospheric Moreton waves. However, different spatial and kinematic properties of the fronts seen in H-alpha and EUV images, and far more frequent occurrences of the latter have led to various interpretations that are still actively debated by a number of researchers. A major factor for the lack of closure was the various limitation in EIT data, including the cadence that was typically every 12 minutes. Now we have significantly improved data from SDO AIA, which have revealed some very interesting phenomena associated with EIT waves. However, the studies so far conducted using AIA data have primarily dealt with single or a small number of events, where selection bias and particular observational conditions may prevent us from discovering the general and true nature of EIT waves. Although automated detection of EIT waves was promised for AIA images some time ago, it is still not actually implemented in the data pipeline. Therefore we have manually found nearly 200 examples of large-scale propagating fronts, going through movies of difference images from the AIA 193 A channel up to January 2013. We present our study of the kinematic properties of the fronts in a subset of about 150 well-observed events in relation with other phenomena that can accompany EIT waves. Our emphasis is on the relation of the fronts with the associated coronal eruptions often but not always taking the form of full-blown CMEs, utilizing STEREO data for a subset of more than 80 events that have occurred near the limb as viewed from one of the STEREO spacecraft. In these events, the availability of data from the STEREO inner coronagraph (COR1) as well as from the EUVI allows us to trace eruptions off the solar disk during the times of our propagating fronts. The representative relations between the fronts and CMEs will be discussed in terms of the evolution of EIT waves observed in different channels of AIA, which provide information of the thermal properties of the fronts. Our study will further clarify the variety of solar eruptions and their associated manifestations in the corona.
Phased Array Mirror Extendible Large Aperture (PAMELA) Optics Adjustment
NASA Technical Reports Server (NTRS)
1995-01-01
Scientists at Marshall's Adaptive Optics Lab demonstrate the Wave Front Sensor alignment using the Phased Array Mirror Extendible Large Aperture (PAMELA) optics adjustment. The primary objective of the PAMELA project is to develop methods for aligning and controlling adaptive optics segmented mirror systems. These systems can be used to acquire or project light energy. The Next Generation Space Telescope is an example of an energy acquisition system that will employ segmented mirrors. Light projection systems can also be used for power beaming and orbital debris removal. All segmented optical systems must be adjusted to provide maximum performance. PAMELA is an on going project that NASA is utilizing to investigate various methods for maximizing system performance.
Development Tests of a Cryogenic Filter Wheel Assembly for the NIRCam Instrument
NASA Technical Reports Server (NTRS)
McCully, Sean; Clark, Charles; Schermerhorn, Michael; Trojanek, Filip; O'Hara, Mark; Williams, Jeff; Thatcher, John
2006-01-01
The James Webb Space Telescope is an infrared-optimized space telescope scheduled for launch in 201 3. Its 6.5-m diameter primary mirror will collect light from some of the first galaxies formed after the big bang. The Near Infrared camera (NIRCam) will detect the first light from these galaxies, provide the necessary tools for studying the formation of stars, aid in discovering planets around other stars, and adjust the wave front error on the primary mirror (Fig. 1). The instrument and its complement of mechanisms and optics will operate at a cryogenic temperature of 35 K. This paper describes tests and test results of the NIRCam Filter Wheel assembly prototype.
5-D interpolation with wave-front attributes
NASA Astrophysics Data System (ADS)
Xie, Yujiang; Gajewski, Dirk
2017-11-01
Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that there are significant advantages for steep dipping events using the 5-D WABI method when compared to the rank-reduction-based 5-D interpolation technique. Diffraction tails substantially benefit from this improved performance of the partial CRS stacking approach while the CPU time is comparable to the CPU time consumed by the rank-reduction-based method.
NASA Astrophysics Data System (ADS)
Pushkin, A. V.; Bychkov, A. S.; Karabutov, A. A.; Potemkin, F. V.
2018-06-01
The processes of conversion of light energy into mechanical energy under mid-IR nanosecond laser excitation on a rigid boundary of water are investigated. Strong water absorption of Q-switched Cr:Yb:Ho:YSGG (2.85 µm, 6 mJ, 45 ns) laser radiation provides rapid energy deposition of ~8 kJ cm‑3 accompanied with strong mechanical transients. The evolution of shock waves and cavitation bubbles is studied using the technique of shadowgraphy and acoustic measurements, and the conversion efficiency into these energy channels for various laser fluence (0.75–2.0 J cm‑2) is calculated. For 6 mJ laser pulse with fluence of 2.0 J cm‑2, the conversion into shock wave energy reaches 67%. The major part of the shock wave energy (92%) is dissipated when the shock front travels the first 250 µm, and the remaining 8% is transferred to the acoustic far field. The calculated pressure in the vicinity of water-silicon interface is 0.9 GPa. Cavitation efficiency is significantly less and reaches up to 5% of the light energy. The results of the current study could be used in laser parameters optimization for micromachining and biological tissue ablation.
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-03-09
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-01-01
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics. PMID:28276500
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter
NASA Astrophysics Data System (ADS)
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-03-01
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.
NASA Astrophysics Data System (ADS)
Giongo, Gabriel Augusto; Valentin Bageston, José; Prado Batista, Paulo; Wrasse, Cristiano Max; Dornelles Bittencourt, Gabriela; Paulino, Igo; Paes Leme, Neusa Maria; Fritts, David C.; Janches, Diego; Hocking, Wayne; Schuch, Nelson Jorge
2018-02-01
The main goals of this work are to characterize and investigate the potential wave sources of four mesospheric fronts identified in the hydroxyl near-infrared (OH-NIR) airglow images, obtained with an all-sky airglow imager installed at Comandante Ferraz Antarctic Station (EACF, as per its Portuguese acronym) located on King George Island in the Antarctic Peninsula. We identified and analyzed four mesospheric fronts in 2011 over King George Island. In addition, we investigate the atmospheric background environment between 80 and 100 km altitude and discuss the ducts and propagation conditions for these waves. For that, we used wind data obtained from a meteor radar operated at EACF and temperature data obtained from the TIMED/SABER satellite. The vertical wavenumber squared, m2, was calculated for each of the four waves. Even though no clearly defined duct (indicated by positive values of m2 sandwiched between layers above and below with m2 < 0) was found in any of the events, favorable propagation conditions for horizontal propagation of the fronts were found in three cases. In the fourth case, the wave front did not find any duct support and it appeared to dissipate near the zenith, transferring energy and momentum to the medium and, consequently, accelerating the wind in the wave propagation direction (near to south) above the OH peak (88-92 km). The likely wave sources for these four cases were investigated by using meteorological satellite images and in two cases we could find that strong instabilities were potential sources, i.e., a cyclonic activity and a large convective cloud cell. In the other two cases it was not possible to associate troposphere sources as potential candidates for the generation of such wave fronts observed in the mesosphere and secondary wave sources were attributed to these cases.
Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation
NASA Astrophysics Data System (ADS)
Li, Panxiao; Wu, Shi-Liang
2018-04-01
This paper is concerned with a time-periodic and delayed nonlocal reaction-diffusion population model with monostable nonlinearity. Under quasi-monotone or non-quasi-monotone assumptions, it is known that there exists a critical wave speed c_*>0 such that a periodic traveling wave exists if and only if the wave speed is above c_*. In this paper, we first prove the uniqueness of non-critical periodic traveling waves regardless of whether the model is quasi-monotone or not. Further, in the quasi-monotone case, we establish the exponential stability of non-critical periodic traveling fronts. Finally, we illustrate the main results by discussing two types of death and birth functions arising from population biology.
Spontaneous Wave Generation from Submesoscale Fronts and Filaments
NASA Astrophysics Data System (ADS)
Shakespeare, C. J.; Hogg, A.
2016-02-01
Submesoscale features such as eddies, fronts, jets and filaments can be significant sources of spontaneous wave generation at the ocean surface. Unlike near-inertial waves forced by winds, these spontaneous waves are typically of higher frequency and can propagate through the thermocline, whereupon they break and drive mixing in the ocean interior. Here we investigate the spontaneous generation, propagation and subsequent breaking of these waves using a combination of theory and submesoscale resolving numerical models. The mechanism of generation is nearly identical to that of lee waves where flow is deflected over a rigid obstacle on the sea floor. Here, very sharp fronts and filaments of order 100m width moving in the submesoscale surface flow generate "surface lee waves" by presenting an obstacle to the surrounding stratified fluid. Using our numerical model we quantify the net downward wave energy flux from the surface, and where it is dissipated in the water column. Our results suggest an alternative to the classical paradigm where the energy associated with mixing in the ocean interior is sourced from bottom-generated lee waves.
Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction.
Gilles, Luc; Vogel, Curtis R; Ellerbroek, Brent L
2002-09-01
We introduce a multigrid preconditioned conjugate-gradient (MGCG) iterative scheme for computing open-loop wave-front reconstructors for extreme adaptive optics systems. We present numerical simulations for a 17-m class telescope with n = 48756 sensor measurement grid points within the aperture, which indicate that our MGCG method has a rapid convergence rate for a wide range of subaperture average slope measurement signal-to-noise ratios. The total computational cost is of order n log n. Hence our scheme provides for fast wave-front simulation and control in large-scale adaptive optics systems.
Appearance of wavefront dislocations under interference among beams with simple wavefronts
NASA Astrophysics Data System (ADS)
Angelsky, Oleg V.; Besaha, R. N.; Mokhun, Igor I.
1997-12-01
The appearance of wave front dislocations under interference among beams with simple wave fronts is considered. It is shown, that even two beams with the smooth wave fonts is possible the formation of dislocations screw type. The screw dislocations are formed in cross point of lines of equal amplitude of beams and minimum of an interference pattern.
Iterative wave-front reconstruction in the Fourier domain.
Bond, Charlotte Z; Correia, Carlos M; Sauvage, Jean-François; Neichel, Benoit; Fusco, Thierry
2017-05-15
The use of Fourier methods in wave-front reconstruction can significantly reduce the computation time for large telescopes with a high number of degrees of freedom. However, Fourier algorithms for discrete data require a rectangular data set which conform to specific boundary requirements, whereas wave-front sensor data is typically defined over a circular domain (the telescope pupil). Here we present an iterative Gerchberg routine modified for the purposes of discrete wave-front reconstruction which adapts the measurement data (wave-front sensor slopes) for Fourier analysis, fulfilling the requirements of the fast Fourier transform (FFT) and providing accurate reconstruction. The routine is used in the adaptation step only and can be coupled to any other Wiener-like or least-squares method. We compare simulations using this method with previous Fourier methods and show an increase in performance in terms of Strehl ratio and a reduction in noise propagation for a 40×40 SPHERE-like adaptive optics system. For closed loop operation with minimal iterations the Gerchberg method provides an improvement in Strehl, from 95.4% to 96.9% in K-band. This corresponds to ~ 40 nm improvement in rms, and avoids the high spatial frequency errors present in other methods, providing an increase in contrast towards the edge of the correctable band.
Traveling waves in a spatially-distributed Wilson-Cowan model of cortex: From fronts to pulses
NASA Astrophysics Data System (ADS)
Harris, Jeremy D.; Ermentrout, Bard
2018-04-01
Wave propagation in excitable media has been studied in various biological, chemical, and physical systems. Waves are among the most common evoked and spontaneous organized activity seen in cortical networks. In this paper, we study traveling fronts and pulses in a spatially-extended version of the Wilson-Cowan equations, a neural firing rate model of sensory cortex having two population types: Excitatory and inhibitory. We are primarily interested in the case when the local or space-clamped dynamics has three fixed points: (1) a stable down state; (2) a saddle point with stable manifold that acts as a threshold for firing; (3) an up state having stability that depends on the time scale of the inhibition. In the case when the up state is stable, we look for wave fronts, which transition the media from a down to up state, and when the up state is unstable, we are interested in pulses, a transient increase in firing that returns to the down state. We explore the behavior of these waves as the time and space scales of the inhibitory population vary. Some interesting findings include bistability between a traveling front and pulse, fronts that join the down state to an oscillation or spatiotemporal pattern, and pulses which go through an oscillatory instability.
Blasco, G; Traversa, U; Drago, F
1997-11-01
Nicergoline is an ergot alkaloid derivative acting as a neuroprotective agent. In the present investigation, b-wave time-course recovery profiles under both light- and dark-adapted conditions, were studied in order to evaluate the possible effectiveness of nicergoline in the protection of the rabbit retina. Retinal ischaemia was induced by bilateral occlusion of common carotid artery in male rabbit of the Dutch strain. Groups of animals were subjected to 15-, 30- and 60-min periods of ischaemia under pentobarbital anaesthesia. Electroretinogram recordings were simultaneously obtained from both eyes, using, as the stimulus, the brightest flash from a stimulator positioned 15 cm in front of each eye. The treatment with nicergoline, administered immediately before the carotid occlusion, induced a significant protection only when the ischaemia seemed to cause retinal damage that the reperfusion alone was not able to recover completely. Nicergoline did not modify the recovery rate after 15-min or 30-min light-adapted and 15-min dark-adapted ischaemia; in these conditions the controls showed a full recovery. After 30-min dark-adapted ischaemia, the maximum recovery of the controls was 82%, and nicergoline significantly improved b-wave amplitude at all time points of reperfusion up to the complete recovery. Rabbit retina was irreversibly damaged by a 60-min ischaemia. In these conditions nicergoline significantly increased the percentage of b-wave recovery both in light- and dark-adapted ERG. Nicergoline, probably on the basis of its metabolic actions, seems to be effective in severe conditions of hypoxia and is more potent in dark than in light-adapted conditions. Its effectiveness in these experimental conditions could be justified by the different oxygen consumption of the photoreceptors in light and dark and the different sensitivity of cones and rods to the ischaemia.
Supersymmetry across the light and heavy-light hadronic spectrum. II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dosch, Hans Gunter; de Téramond, Guy F.; Brodsky, Stanley J.
We extend our analysis of the implications of hadronic supersymmetry for heavy-light hadrons in light-front holographic QCD. Although conformal symmetry is strongly broken by the heavy quark mass, supersymmetry and the holographic embedding of semiclassical light-front dynamics derived from five-dimensional anti-de Sitter space nevertheless determine the form of the confining potential in the light-front Hamiltonian to be harmonic. The resulting light-front bound-state equations lead to a heavy-light Regge-like spectrum for both mesons and baryons. The confinement hadron mass scale and their Regge slopes depend, however, on the mass of the heavy quark in the meson or baryon as expected frommore » heavy quark effective theory. Furthermore, this procedure reproduces the observed spectra of heavy-light hadrons with good precision and makes predictions for yet unobserved states.« less
Supersymmetry across the light and heavy-light hadronic spectrum. II.
Dosch, Hans Gunter; de Téramond, Guy F.; Brodsky, Stanley J.
2017-02-15
We extend our analysis of the implications of hadronic supersymmetry for heavy-light hadrons in light-front holographic QCD. Although conformal symmetry is strongly broken by the heavy quark mass, supersymmetry and the holographic embedding of semiclassical light-front dynamics derived from five-dimensional anti-de Sitter space nevertheless determine the form of the confining potential in the light-front Hamiltonian to be harmonic. The resulting light-front bound-state equations lead to a heavy-light Regge-like spectrum for both mesons and baryons. The confinement hadron mass scale and their Regge slopes depend, however, on the mass of the heavy quark in the meson or baryon as expected frommore » heavy quark effective theory. Furthermore, this procedure reproduces the observed spectra of heavy-light hadrons with good precision and makes predictions for yet unobserved states.« less
Hubble Spins a Web Into a Giant Red Spider Nebula
2017-12-08
Huge waves are sculpted in this two-lobed nebula called the Red Spider Nebula, located some 3,000 light-years away in the constellation of Sagittarius. This warm planetary nebula harbors one of the hottest stars known and its powerful stellar winds generate waves 100 billion kilometers (62.4 billion miles) high. The waves are caused by supersonic shocks, formed when the local gas is compressed and heated in front of the rapidly expanding lobes. The atoms caught in the shock emit the spectacular radiation seen in this image. Image credit: ESA/Garrelt Mellema (Leiden University, the Netherlands) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Ultrarelativistic boost of a black hole in the magnetic universe of Levi-Civita-Bertotti-Robinson
NASA Astrophysics Data System (ADS)
Ortaggio, Marcello; Astorino, Marco
2018-05-01
We consider an exact Einstein-Maxwell solution constructed by Alekseev and Garcia, which describes a Schwarzschild black hole immersed in the magnetic universe of Levi-Civita, Bertotti, and Robinson (LCBR). After reviewing the basic properties of this spacetime, we study the ultrarelativistic limit in which the black hole is boosted to the speed of light, while sending its mass to 0. This results in a nonexpanding impulsive wave traveling in the LCBR universe. The wave front is a 2-sphere carrying two null point particles at its poles—a remnant of the structure of the original static spacetime. It is also shown that the obtained line element belongs to the Kundt class of spacetimes, and the relation with the known family of exact gravitational waves of finite duration propagating in the LCBR background is clarified. In the limit of a vanishing electromagnetic field, one point particle is pushed away to infinity and the single-particle Aichelburg-Sexl p p -wave propagating in Minkowski space is recovered.
Taylor Instability of Incompressible Liquids
DOE R&D Accomplishments Database
Fermi, E.; von Neumann, J.
1955-11-01
A discussion is presented in simplified form of the problem of the growth of an initial ripple on the surface of an incompressible liquid in the presence of an acceleration, g, directed from the outside into the liquid. The model is that of a heavy liquid occupying at t = 0 the half space above the plane z = 0, and a rectangular wave profile is assumed. The theory is found to represent correctly one feature of experimental results, namely the fact that the half wave of the heavy liquid into the vacuum becomes rapidly narrower while the half wave pushing into the heavy liquid becomes more and more blunt. The theory fails to account for the experimental results according to which the front of the wave pushing into the heavy liquid moves with constant velocity. The case of instability at the boundary of 2 fluids of different densities is also explored. Similar results are obtained except that the acceleration of the heavy liquid into the light liquid is reduced.
A miniature bidirectional telemetry system for in vivo gastric slow wave recordings.
Farajidavar, Aydin; O'Grady, Gregory; Rao, Smitha M N; Cheng, Leo K; Abell, Thomas; Chiao, J-C
2012-06-01
Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical userinter face. The front-end module conditions the analogue signals, then digitizes and loads the data into a radio for transmission. Data receipt at the backend is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35 × 35 × 27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124 h operation when utilizing a 560 mAh, 3 V battery. In vivo,slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles min−1), automated activation time detection was modestly better for the wireless system (5% versus 14% FP rate), and signal amplitudes were modestly higher via the wireless system (462 versus 3 86μV; p<0.001). This telemetric system for slow wave acquisition is reliable,power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients.0967-3334/
A miniature bidirectional telemetry system for in-vivo gastric slow wave recordings
Farajidavar, Aydin; O’Grady, Gregory; Rao, Smitha M.N.; Cheng, Leo K; Abell, Thomas; Chiao, J.-C.
2012-01-01
Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical user interface. The front-end module conditions the analog signals, then digitizes and loads the data into a radio for transmission. Data receipt at the back-end is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in-vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35×35×27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124-hour operation when utilizing a 560-mAh, 3-V battery. In-vivo, slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles/min), automated activation time detection was modestly better for the wireless system (5% vs 14% false positive rate), and signal amplitudes were modestly higher via the wireless system (462 vs 386 μV; p<0.001). This telemetric system for slow wave acquisition is reliable, power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients. PMID:22635054
Wave front sensing for next generation earth observation telescope
NASA Astrophysics Data System (ADS)
Delvit, J.-M.; Thiebaut, C.; Latry, C.; Blanchet, G.
2017-09-01
High resolution observations systems are highly dependent on optics quality and are usually designed to be nearly diffraction limited. Such a performance allows to set a Nyquist frequency closer to the cut off frequency, or equivalently to minimize the pupil diameter for a given ground sampling distance target. Up to now, defocus is the only aberration that is allowed to evolve slowly and that may be inflight corrected, using an open loop correction based upon ground estimation and refocusing command upload. For instance, Pleiades satellites defocus is assessed from star acquisitions and refocusing is done with a thermal actuation of the M2 mirror. Next generation systems under study at CNES should include active optics in order to allow evolving aberrations not only limited to defocus, due for instance to in orbit thermal variable conditions. Active optics relies on aberration estimations through an onboard Wave Front Sensor (WFS). One option is using a Shack Hartmann. The Shack-Hartmann wave-front sensor could be used on extended scenes (unknown landscapes). A wave-front computation algorithm should then be implemented on-board the satellite to provide the control loop wave-front error measure. In the worst case scenario, this measure should be computed before each image acquisition. A robust and fast shift estimation algorithm between Shack-Hartmann images is then needed to fulfill this last requirement. A fast gradient-based algorithm using optical flows with a Lucas-Kanade method has been studied and implemented on an electronic device developed by CNES. Measurement accuracy depends on the Wave Front Error (WFE), the landscape frequency content, the number of searched aberrations, the a priori knowledge of high order aberrations and the characteristics of the sensor. CNES has realized a full scale sensitivity analysis on the whole parameter set with our internally developed algorithm.
NASA Astrophysics Data System (ADS)
Zocchi, Fabio E.
2017-10-01
One of the approaches that is being tested for the integration of the mirror modules of the advanced telescope for high-energy astrophysics x-ray mission of the European Space Agency consists in aligning each module on an optical bench operated at an ultraviolet wavelength. The mirror module is illuminated by a plane wave and, in order to overcome diffraction effects, the centroid of the image produced by the module is used as a reference to assess the accuracy of the optical alignment of the mirror module itself. Among other sources of uncertainty, the wave-front error of the plane wave also introduces an error in the position of the centroid, thus affecting the quality of the mirror module alignment. The power spectral density of the position of the point spread function centroid is here derived from the power spectral density of the wave-front error of the plane wave in the framework of the scalar theory of Fourier diffraction. This allows the defining of a specification on the collimator quality used for generating the plane wave starting from the contribution to the error budget allocated for the uncertainty of the centroid position. The theory generally applies whenever Fourier diffraction is a valid approximation, in which case the obtained result is identical to that derived by geometrical optics considerations.
A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions
NASA Technical Reports Server (NTRS)
Huff, R. G.
1984-01-01
The equations of momentum annd continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in Earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.
A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions
NASA Technical Reports Server (NTRS)
Huff, R. G.
1984-01-01
The equations of momentum and continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.
Baker, Bryan C; Nolan, Joseph M; O'Neill, Brian; Genetos, Alexander P
2008-01-01
Passenger vehicles are designed to absorb crash energy in frontal crashes through deformation or crush of energy-absorbing structures forward of the occupant compartment. In collisions between cars and light trucks (i.e., pickups and SUVs), however, the capacity of energy-absorption structures may not be fully utilized because mismatches often exist between the heights of these structures in the colliding vehicles. In 2003 automakers voluntarily committed to new design standards aimed at reducing the height mismatches between cars and light trucks. By September 2009 all new light trucks will have either the primary front structure (typically the frame rails) or a secondary structure connected to the primary structure low enough to interact with the primary structures in cars, which for most cars is about the height of the front bumper. To estimate the overall benefit of the voluntary commitment, the real-world crash experience of light trucks already meeting the height-matching criteria was compared with that of light trucks not meeting the criteria for 2000-2003 model light trucks in collisions with passenger cars during calendar years 2001-2004. The estimated benefits of lower front energy-absorbing structure were a 19 percent reduction (p<0.05) in fatality risk to belted car drivers in front-to-front crashes with light trucks and a 19 percent reduction (p<0.05) in fatality risk to car drivers in front-to-driver-side crashes with light trucks.
NASA Astrophysics Data System (ADS)
Walterscheid, R. L.; Hecht, J. H.; Hickey, M. P.; Gelinas, L. J.; Vincent, R. A.; Reid, I. M.; Woithe, J.
2010-12-01
The Aerospace Corporation’s Nightglow Imager observed a large step-function change in airglow in the form of a traveling front in the OH and O2 airglow emissions over Alice Springs Australia on February 2, 2003. The front exhibited a stepwise increase of nearly a factor two in the OH brightness and a stepwise decrease in the O2 brightness. The change in brightness in each layer was associated with a strong leading disturbance followed by a train of weak barely visible waves. The OH airglow brightness behind the front was the brightness night for 02 at Alice Springs that we have measured in seven years of observations. The OH brightness was among the five brightest. The event was associated with a strong phase-locked two-day wave (TDW).We have analyzed the stability conditions for the upper mesosphere and lower thermosphere and found that the airglow layers were found in a region of strong ducting. The thermal structure was obtained from combining data from the SABER instrument on the TIMED satellite and the NRLMSISE-00 model. The wind profile was obtained by combining the HWM07 model and MF radar winds from Buckland Park Australia. We found that the TDW-disturbed profile was significantly more effective in supporting a high degree of ducting than a profile based only on HWM07 winds. Dramatic wall events have been interpreted as manifestations of undular bores (e.g., Smith et al. [2003]). Undular bores are nonlinear high Froude number events that must generate an ever increasing train of waves to carry the excess energy away from the bore front. Only a very weak wave train behind the initial disturbance was seen for the Alice Springs event. The form of the amplitude ordering was not typical of a nonlinear wave train. Therefore a bore interpretation requires another means of energy dissipation, namely turbulent dissipation. We suggest that a reasonable interpretation of the observed event is a turbulent bore. We are unaware of any previous event having characteristics of a turbulent bore. Smith, S. M., et al., A multidiagnostic investigation of the mesospheric bore phenomenon, J. Geophys. Res., 108, 2003
NASA Astrophysics Data System (ADS)
Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.
2016-02-01
The aim of this study is to determine the contribution and importance of cold fronts and storms to extreme waves in different areas of the Colombian Caribbean in an attempt to determine the extent of the threat posed by the flood processes to which these coastal populations are exposed. Furthermore, the study wishes to establish the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the height of the wave. For this reason, it is necessary to establish the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. The significant height values for the areas focused on in the study were calculated in accordance with Gumbel's extreme value methodology. The methodology was evaluated using data from the reanalysis of the spectral National Oceanic and Atmospheric Administration (NOAA) WAVEWATCH III® (WW3) model for 15 points along the 1600 km of the Colombian Caribbean coastline (continental and insular) between the years 1979 and 2009. The results demonstrated that the extreme waves caused by tropical cyclones and those caused by cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area (consisting of Baja Guajira, and the cities of Santa Marta, Barranquilla, and Cartagena), the strong impact of cold fronts on extreme waves is evident. However, in the southern region of the Colombian Caribbean coast (ranging from the Gulf of Morrosquillo to the Gulf of Urabá), the extreme values of wave heights are lower than in the previously mentioned regions, despite being dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from that in the continental area due to their geographic location. The wave heights in the extreme regime are similar in magnitude to those found in Alta Guajira, but the extreme waves associated with the passage of cold fronts in this region have lower return periods than those associated with the hurricane season.
Solar tomography adaptive optics.
Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang
2014-03-10
Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.
Measurement of the shock front velocity produced in a T-tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djurović, S.; Mijatović, Z.; Vujičić, B.
2015-01-15
A set of shock front velocity measurements is described in this paper. The shock waves were produced in a small electromagnetically driven shock T-tube. Most of the measurements were performed in hydrogen. The shock front velocity measurements in other gases and the velocity of the gas behind the shock front were also analyzed, as well as the velocity dependence on applied input energy. Some measurements with an applied external magnetic field were also performed. The used method of shock front velocity is simple and was shown to be very reliable. Measured values were compared with the calculated ones for themore » incident and reflected shock waves.« less
AdS/QCD and Applications of Light-Front Holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Cao, Fu-Guang
2012-02-16
Light-Front Holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space and frame-independent light-front wavefunctions of hadrons in 3 + 1 physical space-time, thus providing a compelling physical interpretation of the AdS/CFT correspondence principle and AdS/QCD, a useful framework which describes the correspondence between theories in a modified AdS5 background and confining field theories in physical space-time. To a first semiclassical approximation, where quantum loops and quark masses are not included, this approach leads to a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spinmore » and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time. The internal structure of hadrons is explicitly introduced and the angular momentum of the constituents plays a key role. We give an overview of the light-front holographic approach to strongly coupled QCD. In particular, we study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The results for the TFFs for the {eta} and {eta}' mesons are also presented. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.« less
NASA Astrophysics Data System (ADS)
Mueller, Jan Philipp Balthasar
In the last three or so decades, optical scientists have begun to capitalize in earnest on the advances in nanofabrication that is owed to the explosive rise of miniaturized semiconductor electronics. The resulting field, nanophotonics, has opened a vast design space for applied researchers and required revisiting some of the oldest problems and assumptions of optical physics. Polarization, meaning, in the context of light, the direction of oscillation of the electromagnetic field in space, is a particularly malleable property of light that can be used to shape and direct wave fronts, to measure and control light-matter interactions, and to encode information. It remains an underexplored and underutilized feature of nature, though the new methods of nanophotonics can harness its potential to a much greater extent than any previous optical technology platform. This thesis explores some aspects of the role light's polarization plays at the interface of optics and nanotechnology. In particular, it will touch upon the way polarization may be used to control the generation of optical nearfields, how the polarization structure of evanescent waves leads to unusual optical forces, and how nanoscale polarization-transformations enable a new class of polarization-sensitive optical elements. It will also show how nanophotonics may address the problem of measuring polarization based on a new polarimeter architecture.
Symmetries for Light-Front Quantization of Yukawa Model with Renormalization
NASA Astrophysics Data System (ADS)
Żochowski, Jan; Przeszowski, Jerzy A.
2017-12-01
In this work we discuss the Yukawa model with the extra term of self-interacting scalar field in D=1+3 dimensions. We present the method of derivation the light-front commutators and anti-commutators from the Heisenberg equations induced by the kinematical generating operator of the translation P+. Mentioned Heisenberg equations are the starting point for obtaining this algebra of the (anti-) commutators. Some discrepancies between existing and proposed method of quantization are revealed. The Lorentz and the CPT symmetry, together with some features of the quantum theory were applied to obtain the two-point Wightman function for the free fermions. Moreover, these Wightman functions were computed especially without referring to the Fock expansion. The Gaussian effective potential for the Yukawa model was found in the terms of the Wightman functions. It was regularized by the space-like point-splitting method. The coupling constants within the model were redefined. The optimum mass parameters remained regularization independent. Finally, the Gaussian effective potential was renormalized.
Nonperturbative QCD Coupling and its $$\\beta$$-function from Light-Front Holography
Brodskey, Stanley J.; de Teramond, Guy; Deur, Alexandre P.
2010-05-28
The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective couplingmore » $$\\alpha_s^{AdS}(Q^2)$$. It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale $$ \\sim 1$$ GeV. The resulting $$\\beta$$-function appears to capture the essential characteristics of the full $$\\beta$$-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on $$\\alpha_s^{AdS}(Q^2)$$.« less
Calculated shock pressures in the aquarium test
NASA Astrophysics Data System (ADS)
Johnson, J. N.
1982-04-01
A new method of analysis has been developed for determintion of shock pressures in aquarium tests on commercial explosives. This test consists of photographing the expanding cylindrical tube wall (which contains the detonation products) and the shock wave in water surrounding the explosive charge. By making a least-squares fit to the shock-front data, it is possible to determine the peak shock-front pressure as a function of distance from the cylinder wall. This has been done for 10-cm and 20-cm-diam ANFO (ammonium nitrate/fuel oil) and aluminized ANFO (7.5 wt% Al) aquarium test data.
Dopamine D2 receptors preferentially regulate the development of light responses of the inner retina
Tian, Ning; Xu, Hong-ping; Wang, Ping
2014-01-01
Retinal light responsiveness measured via electroretinography undergoes developmental modulation and is thought to be critically regulated by both visual experience and dopamine. The primary goal of this study is to determine whether the dopamine D2 receptor regulates the visual experience-dependent functional development of the retina. Accordingly, we recorded electroretinograms from wild type mice and mice with a genetic deletion of the gene that encodes the dopamine D2 receptor raised under normal cyclic light conditions and constant darkness. Our results demonstrate that mutation of the dopamine D2 receptors preferentially increases the amplitude of the inner retinal light responses evoked by high intensity light measured as oscillatory potentials in adult mice. During postnatal development, all three major components of electroretinograms, the a-wave, b-wave and oscillatory potentials, increase with age. Comparatively, mutation of the dopamine D2 receptors preferentially reduces the age-dependent increase of b-waves evoked by low intensity light. Light deprivation from birth reduces the amplitude of b-waves and completely diminishes the increased amplitude of oscillatory potentials. Taken together, these results demonstrate that the dopamine D2 receptor plays an important role in the activity-dependent functional development of the mouse retina. PMID:25393815
Yang, Ping; Ning, Yu; Lei, Xiang; Xu, Bing; Li, Xinyang; Dong, Lizhi; Yan, Hu; Liu, Wenjing; Jiang, Wenhan; Liu, Lei; Wang, Chao; Liang, Xingbo; Tang, Xiaojun
2010-03-29
We present a slab laser amplifier beam cleanup experimental system based on a 39-actuator rectangular piezoelectric deformable mirror. Rather than use a wave-front sensor to measure distortions in the wave-front and then apply a conjugation wave-front for compensating them, the system uses a Stochastic Parallel Gradient Descent algorithm to maximize the power contained within a far-field designated bucket. Experimental results demonstrate that at the output power of 335W, more than 30% energy concentrates in the 1x diffraction-limited area while the beam quality is enhanced greatly.
Front acceleration by dynamic selection in Fisher population waves
NASA Astrophysics Data System (ADS)
Bénichou, O.; Calvez, V.; Meunier, N.; Voituriez, R.
2012-10-01
We introduce a minimal model of population range expansion in which the phenotypes of individuals present no selective advantage and differ only in their diffusion rate. We show that such neutral phenotypic variability (i.e., that does not modify the growth rate) alone can yield phenotype segregation at the front edge, even in absence of genetic noise, and significantly impact the dynamical properties of the expansion wave. We present an exact asymptotic traveling wave solution and show analytically that phenotype segregation accelerates the front propagation. The results are compatible with field observations such as invasions of cane toads in Australia or bush crickets in Britain.
NASA Astrophysics Data System (ADS)
Yu, Xin; Dong, Lizhi; Lai, Boheng; Yang, Ping; Wang, Shuai; Wang, Xun; Liu, Yong; Tang, Guomao; Xu, Bing
2017-11-01
In order to solve the problem of large low-order aberrations with solid-state zigzag slab lasers, an automatic compensator has been developed in this paper. In this compensator, three lenses are mounted on a motorized rail, whose positions can be obtained using ray tracing method based on the beam parameters detected by a wave-front sensor. The initial peak to valley (PV) values of the wave-front range up to several tens of microns. Both simulated and experimental results show that the PV values of the wave-front can be reduced to around 1 . 6 μm with the proposed automatic compensator.
Atmospheric turbulence characterization with the Keck adaptive optics systems. I. Open-loop data.
Schöck, Matthias; Le Mignant, David; Chanan, Gary A; Wizinowich, Peter L; van Dam, Marcos A
2003-07-01
We present a detailed investigation of different methods of the characterization of atmospheric turbulence with the adaptive optics systems of the W. M. Keck Observatory. The main problems of such a characterization are the separation of instrumental and atmospheric effects and the accurate calibration of the devices involved. Therefore we mostly describe the practical issues of the analysis. We show that two methods, the analysis of differential image motion structure functions and the Zernike decomposition of the wave-front phase, produce values of the atmospheric coherence length r0 that are in excellent agreement with results from long-exposure images. The main error source is the calibration of the wave-front sensor. Values determined for the outer scale L0 are consistent between the methods and with typical L0 values found at other sites, that is, of the order of tens of meters.
Optimal front light design for reflective displays under different ambient illumination
NASA Astrophysics Data System (ADS)
Wang, Sheng-Po; Chang, Ting-Ting; Li, Chien-Ju; Bai, Yi-Ho; Hu, Kuo-Jui
2011-01-01
The goal of this study is to find out the optimal luminance and color temperature of front light for reflective displays in different ambient illumination by conducting series of psychophysical experiments. A color and brightness tunable front light device with ten LED units was built and been calibrated to present 256 luminance levels and 13 different color temperature at fixed luminance of 200 cd/m2. The experiment results revealed the best luminance and color temperature settings for human observers under different ambient illuminant, which could also assist the e-paper manufacturers to design front light device, and present the best image quality on reflective displays. Furthermore, a similar experiment procedure was conducted by utilizing new flexible e-signage display developed by ITRI and an optimal front light device for the new display panel has been designed and utilized.
Impurity-doped optical shock, detonation and damage location sensor
Weiss, J.D.
1995-02-07
A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.
Impurity-doped optical shock, detonation and damage location sensor
Weiss, Jonathan D.
1995-01-01
A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.
Shock Interaction with a Finite Thickness Two-Gas Interface
NASA Astrophysics Data System (ADS)
Labenski, John; Kim, Yong
2006-03-01
A dual-driver shock tube was used to investigate the growth rate of a finite thickness two-gas interface after shock forcing. One driver was used to create an argon-refrigerant interface as the contact surface behind a weak shock wave. The other driver, at the opposite end of the driven section, generates a stronger shock of Mach 1.1 to 1.3 to force the interface back in front of the detector station. Two schlieren systems record the density fluctuations while light scattering detectors record the density of the refrigerant as a function of position over the interface during both it's initial passage and return. A pair of digital cameras take stereo images of the interface, as mapped out by the tracer particles under illumination by a Q-switched ruby laser. The amount of time that the interface is allowed to travel up the driven section determines the interaction time as a control. Comparisons made between the schlieren signals, light scattering detector outputs, and the images quantify the fingered characteristics of the interface and its growth due to shock forcing. The results show that the interface has a distribution of thicknesses and that the interaction with a shock further broadens the interface.
Laboratory test of a polarimetry imaging subtraction system for the high-contrast imaging
NASA Astrophysics Data System (ADS)
Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Li, Rong
2012-09-01
We propose a polarimetry imaging subtraction test system that can be used for the direct imaging of the reflected light from exoplanets. Such a system will be able to remove the speckle noise scattered by the wave-front error and thus can enhance the high-contrast imaging. In this system, we use a Wollaston Prism (WP) to divide the incoming light into two simultaneous images with perpendicular linear polarizations. One of the images is used as the reference image. Then both the phase and geometric distortion corrections have been performed on the other image. The corrected image is subtracted with the reference image to remove the speckles. The whole procedure is based on an optimization algorithm and the target function is to minimize the residual speckles after subtraction. For demonstration purpose, here we only use a circular pupil in the test without integrating of our apodized-pupil coronagraph. It is shown that best result can be gained by inducing both phase and distortion corrections. Finally, it has reached an extra contrast gain of 50-times improvement in average, which is promising to be used for the direct imaging of exoplanets.
NASA Astrophysics Data System (ADS)
Paschall, Randall N.; Anderson, David J.
1993-11-01
A linear quadratic Gaussian method is proposed for a deformable mirror adaptive optics system control. Estimates of system states describing the distortion are generated by a Kalman filter based on Hartmann wave front measurements of the wave front gradient.
Maximum likelihood phase-retrieval algorithm: applications.
Nahrstedt, D A; Southwell, W H
1984-12-01
The maximum likelihood estimator approach is shown to be effective in determining the wave front aberration in systems involving laser and flow field diagnostics and optical testing. The robustness of the algorithm enables convergence even in cases of severe wave front error and real, nonsymmetrical, obscured amplitude distributions.
NASA Astrophysics Data System (ADS)
Smith, Malcolm; Kerley, Dan; Chapin, Edward L.; Dunn, Jennifer; Herriot, Glen; Véran, Jean-Pierre; Boyer, Corinne; Ellerbroek, Brent; Gilles, Luc; Wang, Lianqi
2016-07-01
Prototyping and benchmarking was performed for the Real-Time Controller (RTC) of the Narrow Field InfraRed Adaptive Optics System (NFIRAOS). To perform wavefront correction, NFIRAOS utilizes two deformable mirrors (DM) and one tip/tilt stage (TTS). The RTC receives wavefront information from six Laser Guide Star (LGS) Shack- Hartmann WaveFront Sensors (WFS), one high-order Natural Guide Star Pyramid WaveFront Sensor (PWFS) and multiple low-order instrument detectors. The RTC uses this information to determine the commands to send to the wavefront correctors. NFIRAOS is the first light AO system for the Thirty Meter Telescope (TMT). The prototyping was performed using dual-socket high performance Linux servers with the real-time (PREEMPT_RT) patch and demonstrated the viability of a commercial off-the-shelf (COTS) hardware approach to large scale AO reconstruction. In particular, a large custom matrix vector multiplication (MVM) was benchmarked which met the required latency requirements. In addition all major inter-machine communication was verified to be adequate using 10Gb and 40Gb Ethernet. The results of this prototyping has enabled a CPU-based NFIRAOS RTC design to proceed with confidence and that COTS hardware can be used to meet the demanding performance requirements.
NASA Astrophysics Data System (ADS)
del Hougne, Philipp; Fink, Mathias; Lerosey, Geoffroy
2017-12-01
Wave-front shaping has emerged over the past decade as a powerful tool to control wave propagation through complex media, initially in optics and more recently also in the microwave domain with important applications in telecommunication, imaging, and energy transfer. The crux of implementing wave-front shaping concepts in real life is often its need for (direct) feedback, requiring access to the target to focus on. Here, we present the shaping of a microwave field based on indirect, unsolicited, and blind feedback which may be the pivotal step towards practical implementations. With the example of a radio-frequency harvester in a metallic cavity, we demonstrate tenfold enhancement of the harvested power by wave-front shaping based on nonlinear signals detected at an arbitrary position away from the harvesting device.
Extremely simple holographic projection of color images
NASA Astrophysics Data System (ADS)
Makowski, Michal; Ducin, Izabela; Kakarenko, Karol; Suszek, Jaroslaw; Kolodziejczyk, Andrzej; Sypek, Maciej
2012-03-01
A very simple scheme of holographic projection is presented with some experimental results showing good quality image projection without any imaging lens. This technique can be regarded as an alternative to classic projection methods. It is based on the reconstruction real images from three phase iterated Fourier holograms. The illumination is performed with three laser beams of primary colors. A divergent wavefront geometry is used to achieve an increased throw angle of the projection, compared to plane wave illumination. Light fibers are used as light guidance in order to keep the setup as simple as possible and to provide point-like sources of high quality divergent wave-fronts at optimized position against the light modulator. Absorbing spectral filters are implemented to multiplex three holograms on a single phase-only spatial light modulator. Hence color mixing occurs without any time-division methods, which cause rainbow effects and color flicker. The zero diffractive order with divergent illumination is practically invisible and speckle field is effectively suppressed with phase optimization and time averaging techniques. The main advantages of the proposed concept are: a very simple and highly miniaturizable configuration; lack of lens; a single LCoS (Liquid Crystal on Silicon) modulator; a strong resistance to imperfections and obstructions of the spatial light modulator like dead pixels, dust, mud, fingerprints etc.; simple calculations based on Fast Fourier Transform (FFT) easily processed in real time mode with GPU (Graphic Programming).
Rossby waves, extreme fronts, and wildfires in southeastern Australia
NASA Astrophysics Data System (ADS)
Reeder, Michael J.; Spengler, Thomas; Musgrave, Ruth
2015-03-01
The most catastrophic fires in recent history in southern Australia have been associated with extreme cold fronts. Here an extreme cold front is defined as one for which the maximum temperature at 2 m is at least 17°C lower on the day following the front. An anticyclone, which precedes the cold front, directs very dry northerlies or northwesterlies from the interior of the continent across the region. The passage of the cold front is followed by strong southerlies or southwesterlies. European Centre for Medium-Range Weather Forecasts ERA-Interim Reanalyses show that this regional synoptic pattern common to all strong cold fronts, and hence severe fire conditions, is a consequence of propagating Rossby waves, which grow to large amplitude and eventually irreversibly overturn. The process of overturning produces the low-level anticyclone and dry conditions over southern Australia, while simultaneously producing an upper level trough and often precipitation in northeastern Australia.
Detonative propagation and accelerative expansion of the Crab Nebula shock front.
Gao, Yang; Law, Chung K
2011-10-21
The accelerative expansion of the Crab Nebula's outer envelope is a mystery in dynamics, as a conventional expanding blast wave decelerates when bumping into the surrounding interstellar medium. Here we show that the strong relativistic pulsar wind bumping into its surrounding nebula induces energy-generating processes and initiates a detonation wave that propagates outward to form the current outer edge, namely, the shock front, of the nebula. The resulting detonation wave, with a reactive downstream, then provides the needed power to maintain propagation of the shock front. Furthermore, relaxation of the curvature-induced reduction of the propagation velocity from the initial state of formation to the asymptotic, planar state of Chapman-Jouguet propagation explains the observed accelerative expansion. Potential richness in incorporating reactive fronts in the description of various astronomical phenomena is expected. © 2011 American Physical Society
Chang, Chao; Tang, Chuanxiang; Wu, Juhao
2017-05-09
An improved optical undulator for use in connection with free electron radiation sources is provided. A tilt is introduced between phase fronts of an optical pulse and the pulse front. Two such pulses in a counter-propagating geometry overlap to create a standing wave pattern. A line focus is used to increase the intensity of this standing wave pattern. An electron beam is aligned with the line focus. The relative angle between pulse front and phase fronts is adjusted such that there is a velocity match between the electron beam and the overlapping optical pulses along the line focus. This allows one to provide a long interaction length using short and intense optical pulses, thereby greatly increasing the radiation output from the electron beam as it passes through this optical undulator.
Shock Waves Propagation in Scope of the Nonlocal Theory of Dynamical Plasticity
NASA Astrophysics Data System (ADS)
Khantuleva, Tatyana A.
2004-07-01
From the point of view of the modern statistical mechanics the problems on shock compression of solids require a reformulation in terms of highly nonequilibrium effects arising inside the wave front. The self-organization during the multiscale and multistage momentum and energy exchange are originated by the correlation function. The theory of dynamic plasticity has been developed by the author on the base of the self-consistent nonlocal hydrodynamic approach had been applied to the shock wave propagation in solids. Nonlocal balance equations describe both the reversible wave type transport at the initial stage and the diffusive (dissipative) one in the end. The involved inverse influence of the mesoeffects on the wave propagation makes the formulation of problems self-consistent and involves a concept of the cybernetic control close-loop.
Structured light generation by magnetic metamaterial half-wave plates at visible wavelength
NASA Astrophysics Data System (ADS)
Zeng, Jinwei; Luk, Ting S.; Gao, Jie; Yang, Xiaodong
2017-12-01
Metamaterial or metasurface unit cells functioning as half-wave plates play an essential role for realizing ideal Pancharatnam-Berry phase optical elements capable of tailoring light phase and polarization as desired. Complex light beam manipulation through these metamaterials or metasurfaces unveils new dimensions of light-matter interactions for many advances in diffraction engineering, beam shaping, structuring light, and holography. However, the realization of metamaterial or metasurface half-wave plates in visible spectrum range is still challenging mainly due to its specific requirements of strong phase anisotropy with amplitude isotropy in subwavelength scale. Here, we propose magnetic metamaterial structures which can simultaneously exploit the electric field and magnetic field of light for achieving the nanoscale half-wave plates at visible wavelength. We design and demonstrate the magnetic metamaterial half-wave plates in linear grating patterns with high polarization conversion purity in a deep subwavelength thickness. Then, we characterize the equivalent magnetic metamaterial half-wave plates in cylindrical coordinate as concentric-ring grating patterns, which act like an azimuthal half-wave plate and accordingly exhibit spatially inhomogeneous polarization and phase manipulations including spin-to-orbital angular momentum conversion and vector beam generation. Our results show potentials for realizing on-chip beam converters, compact holograms, and many other metamaterial devices for structured light beam generation, polarization control, and wavefront manipulation.
Flicker in a twisted nematic spatial light modulator
NASA Astrophysics Data System (ADS)
Calderón-Hermosillo, Yuliana; García-Márquez, Jorge; Espinosa-Luna, Rafael; Ochoa, Noé Alcalá; López, Víctor; Aguilar, Alberto; Noé-Arias, Enrique; Alayli, Yasser
2013-06-01
Liquid Crystal on Silicon (LCoS) Spatial Light Modulators (SLM) are widely used for their capability to control beams howbeit fluctuations in phase and amplitude. It is then necessary to understand the negative effects of these fluctuations, also known as flicker, and the means to mitigate them. The flicker is observed either as high frequency variations of polarization, attenuation or high phase fluctuations on the wave front modulated by the LCoS device. Here, we compare the flicker behavior in a twisted nematic (TN) LCoS-SLM for different polarization schemes and temperatures. The quantitative evaluation shows that flicker is effectively reduced only by chilling the LCoS panel to temperatures just below 0 °C but, the LCoS modulation capability is also affected.
Discovery of a Giant, 200,000 Light-year Long Wave Rolling Through the Perseus Galaxy Cluster
NASA Astrophysics Data System (ADS)
Walker, Stephen; Hlavacek-Larrondo, Julie; Gendon-Marsolais, Marie-Lou; Fabian, Andy; Intema, Huib; Sanders, Jeremy
2018-01-01
Deep observations of nearby galaxy clusters with Chandra have revealed concave 'bay' structures in a number of clusters (Perseus, Centaurus and Abell 1795), which have similar X-ray and radio properties. These bays have all the properties of cold fronts brought about by minor mergers causing the cluster gas to slosh around in the gravitational potential. At these cold fronts the temperature rises and density falls sharply. Unusually, in the case of the 'bays' these cold fronts are concave rather than convex. By comparing to simulations of gas sloshing, we find that the bay in the Perseus cluster bears a striking resemblance in its size, location and thermal structure, to a giant (≈50 kpc) wave resulting from Kelvin-Helmholtz instabilities. Such instabilities are commonly seen on far smaller scales in nature, from billow clouds in the Earth's atmosphere, to structures in the cloud belts of gas giant planets. Here we are witnessing this phenomenon on the largest scale ever seen, twice the size of the Milky Way galaxy. The morphology of this structure seen in Perseus can be compared to simulations to put constraints on the initial magnetic pressure throughout the overall cluster before the sloshing occurs. Such Kelvin-Helmholtz features in galaxy clusters have long been predicted by simulations, but it is only now that they have finally been observed, opening up an important new way to probe the physics of the intracluster medium, which contains the majority of the baryonic matter in clusters.
NASA Astrophysics Data System (ADS)
Laslandes, M.; Ferrari, M.; Hugot, E.; Lemaitre, G.
2017-11-01
The need for both high quality images and light structures is a constant concern in the conception of space telescopes. In this paper, we present an active optics system as a way to fulfill those two objectives. Indeed, active optics consists in controlling mirrors' deformations in order to improve the images quality [1]. The two main applications of active optics techniques are the in-situ compensation of phase errors in a wave front by using a corrector deformable mirror [2] and the manufacturing of aspherical mirrors by stress polishing or by in-situ stressing [3]. We will focus here on the wave-front correction. Indeed, the next generation of space telescopes will have lightweight primary mirrors; in consequence, they will be sensitive to the environment variations, inducing optical aberrations in the instrument. An active optics system is principally composed of a deformable mirror, a wave front sensor, a set of actuators deforming the mirror and control/command electronics. It is used to correct the wave-front errors due to the optical design, the manufacturing imperfections, the large lightweight primary mirrors' deflection in field gravity, the fixation devices, and the mirrors and structures' thermal distortions due to the local turbulence [4]. Active optics is based on the elasticity theory [5]; forces and/or load are used to deform a mirror. Like in adaptive optics, actuators can simply be placed under the optical surface [1,2], but other configurations have also been studied: a system's simplification, inducing a minimization of the number of actuators can be achieved by working on the mirror design [5]. For instance, in the so called Vase form Multimode Deformable Mirror [6], forces are applied on an external ring clamped on the pupil. With this method, there is no local effect due to the application of forces on the mirror's back face. Furthermore, the number of actuators needed to warp the mirror does not depend on the pupil size; it is a fully scalable configuration. The insertion of a Vase form Multimode Deformable Mirror on the design of an optical instrument will allow correcting the most common low spatial frequency aberrations. This concept could be applied in a space telescope. A Finite Element Analysis of the developed model has been conducted in order to characterize the system's behavior and to validate the concept.
Flavour symmetry breaking in the kaon parton distribution amplitude
none,
2014-11-01
We compute the kaon's valence-quark (twist-two parton) distribution amplitude (PDA) by projecting its Poincaré-covariant Bethe–Salpeter wave-function onto the light-front. At a scale ζ = 2 GeV, the PDA is a broad, concave and asymmetric function, whose peak is shifted 12–16% away from its position in QCD's conformal limit. These features are a clear expression of SU(3)-flavour-symmetry breaking. They show that the heavier quark in the kaon carries more of the bound-state's momentum than the lighter quark and also that emergent phenomena in QCD modulate the magnitude of flavour-symmetry breaking: it is markedly smaller than one might expect based on themore » difference between light-quark current masses. Our results add to a body of evidence which indicates that at any energy scale accessible with existing or foreseeable facilities, a reliable guide to the interpretation of experiment requires the use of such nonperturbatively broadened PDAs in leading-order, leading-twist formulae for hard exclusive processes instead of the asymptotic PDA associated with QCD's conformal limit. We illustrate this via the ratio of kaon and pion electromagnetic form factors: using our nonperturbative PDAs in the appropriate formulae, F K/F π=1.23 at spacelike-Q 2=17 GeV 2, which compares satisfactorily with the value of 0.92(5) inferred in e +e - annihilation at s=17 GeV 2.« less
Chen, Guangyao; Li, Yang; Maris, Pieter; ...
2017-04-14
Using the charmonium light-front wavefunctions obtained by diagonalizing an effective Hamiltonian with the one-gluon exchange interaction and a confining potential inspired by light-front holography in the basis light-front quantization formalism, we compute production of charmonium states in diffractive deep inelastic scattering and ultra-peripheral heavy ion collisions within the dipole picture. Our method allows us to predict yields of all vector charmonium states below the open flavor thresholds in high-energy deep inelastic scattering, proton-nucleus and ultra-peripheral heavy ion collisions, without introducing any new parameters in the light-front wavefunctions. The obtained charmonium cross section is in reasonable agreement with experimental data atmore » HERA, RHIC and LHC. We observe that the cross-section ratio σΨ(2s)/σJ/Ψ reveals significant independence of model parameters« less
Lyakh, A.; Maulini, R.; Tsekoun, A.; Go, R.; Von der Porten, S.; Pflügl, C.; Diehl, L.; Capasso, Federico; Patel, C. Kumar N.
2010-01-01
A strain-balanced, AlInAs/InGaAs/InP quantum cascade laser structure, designed for light emission at 4.0 μm using nonresonant extraction design approach, was grown by molecular beam epitaxy. Laser devices were processed in buried heterostructure geometry. An air-cooled laser system incorporating a 10-mm × 11.5-μm laser with antireflection-coated front facet and high-reflection-coated back facet delivered over 2 W of single-ended optical power in a collimated beam. Maximum continuous-wave room temperature wall plug efficiency of 5.0% was demonstrated for a high-reflection-coated 3.65-mm × 8.7-μm laser mounted on an aluminum nitride submount.
NASA Astrophysics Data System (ADS)
Holl, Philipp M.; Reinhard, Friedemann
2017-05-01
Wireless data transmission systems such as wi-fi or Bluetooth emit coherent light—electromagnetic waves with a precisely known amplitude and phase. Propagating in space, this radiation forms a hologram—a two-dimensional wave front encoding a three-dimensional view of all objects traversed by the light beam. Here we demonstrate a scheme to record this hologram in a phase-coherent fashion across a meter-sized imaging region. We recover three-dimensional views of objects and emitters by feeding the resulting data into digital reconstruction algorithms. Employing a digital implementation of dark-field propagation to suppress multipath reflection, we significantly enhance the quality of the resulting images. We numerically simulate the hologram of a 10-m-sized building, finding that both localization of emitters and 3D tomography of absorptive objects could be feasible by this technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafer, D.; Toker, G. R.; Gurovich, V. Tz.
2013-05-15
Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and its velocity. It was found that the shock wave preserves its circular front shape in the range of radii 50μm
Dopamine D1 Receptors Regulate the Light Dependent Development of Retinal Synaptic Responses
He, Quanhua; Xu, Hong-ping; Wang, Ping; Tian, Ning
2013-01-01
Retinal synaptic connections and function are developmentally regulated. Retinal synaptic activity plays critical roles in the development of retinal synaptic circuitry. Dopamine receptors have been thought to play important roles in the activity-dependent synaptic plasticity in central nervous system. The primary goal of this study is to determine whether dopamine D1 receptor regulates the activity-dependent development of retinal light responsiveness. Accordingly, we recorded electroretinogram from wild type mice and mice with genetic deletion of D1 dopamine receptor (D1−/− mice) raised under cyclic light conditions and constant darkness. Our results demonstrated that D1−/− mice have reduced amplitudes of all three major components of electroretinogram in adulthood. When the relative strength of the responses is considered, the D1−/− mice have selective reduction of the amplitudes of a-wave and oscillatory potentials evoked by low-intermediate intensities of lights. During postnatal development, D1−/− mice have increased amplitude of b-wave at the time of eye-opening but reduced developmental increase of the amplitude of b-wave after eye opening. Light deprivation from birth significantly reduced the amplitudes of b-wave and oscillatory potentials, increased the outer retinal light response gain and altered the light response kinetics of both a- and b-waves of wild type mice. In D1−/− mice, the effect of dark rearing on the amplitude of oscillatory potentials was diminished and dark rearing induced effects on the response gain of outer retina and the kinetics of a-wave were reversed. These results demonstrated roles of dopamine D1 receptor in the activity-dependent functional development of mouse retina. PMID:24260267
NASA Astrophysics Data System (ADS)
Sun, Yang-Yi; Liu, Jann-Yenq; Lin, Charles Chien-Hung; Lin, Chi-Yen; Shen, Ming-Hsueh; Chen, Chieh-Hung; Chen, Chia-Hung; Chou, Min-Yang
2018-01-01
A moon shadow of the total solar eclipse swept through the continent of United States (CONUS) from west to east on 21 August 2017. Massive total electron content (integration of electron density from 0 km to 20,200 km altitude) observations from 2,255 ground-based Global Navigation Satellite System receivers show that the moon shadow ship generates a great ionospheric bow wave front which extends 1,500 km away from the totality path covering the entire CONUS. The bow wave front consists of the acoustic shock wave due to the supersonic/near-supersonic moon shadow ship and the significant plasma recombination due to the reduction in solar irradiation within the shadow area. The deep bow wave trough (-0.02 total electron content unit (1 TECU = 1016 el m-2) area) nearly coincides with the 100% obscuration moving along the totality path over the CONUS through the entire eclipse period. The supersonic moon shadow ship induces a bow wave crest in front of the ship ( 80% obscuration). It is the first time to find the acoustic shock wave-formed bow wave trough and crest near the totality.
Shock wave and flame front induced detonation in a rapid compression machine
NASA Astrophysics Data System (ADS)
Wang, Y.; Qi, Y.; Xiang, S.; Mével, R.; Wang, Z.
2018-05-01
The present study focuses on one mode of detonation initiation observed in a rapid compression machine (RCM). This mode is referred to as shock wave and flame front-induced detonation (SWFID). Experimental high-speed imaging and two-dimensional numerical simulations with skeletal chemistry are combined to unravel the dominant steps of detonation initiation under SWFID conditions. It is shown that the interaction between the shock wave generated by the end-gas auto-ignition and the spherical flame creates a region of high pressure and temperature which enables the acceleration of the flame front and the detonation onset. The experimental observation lacks adequate spatial and temporal resolution despite good reproducibility of the detonation onset. Based on the numerical results, phenomenological interpretation of the event within the framework of shock wave refraction indicates that the formation of a free-precursor shock wave at the transition between regular and irregular refraction may be responsible for detonation onset. The present results along with previous findings on shock wave reflection-induced detonation in the RCM indicate that super-knock occurs after the interaction of the shock wave generated by end-gas auto-ignition with the RCM walls, preignition flame, or another shock wave.
Longitudinal nonlinear wave propagation through soft tissue.
Valdez, M; Balachandran, B
2013-04-01
In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated strain-rates introduced at the end of the structure where the load is applied. In addition, it is shown that when steep wave fronts are generated in the nonlinear viscoelastic material, energy dissipation is focused in those wave fronts implying deposition of energy in a highly localized region of the material. Novel mechanisms for brain tissue damage are proposed based on the results obtained. The first mechanism is related to the dissipation of energy at steep wave fronts, while the second one is related to the interaction of steep wave fronts with axons encountered on its way through the structure. Copyright © 2013 Elsevier Ltd. All rights reserved.
Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations
NASA Astrophysics Data System (ADS)
Zhang, Tianran
2017-05-01
In this paper, we study the traveling wave solutions and minimal wave speed for a class of non-cooperative reaction-diffusion systems consisting of three equations. Based on the eigenvalues, a pair of upper-lower solutions connecting only the invasion-free equilibrium are constructed and the Schauder's fixed-point theorem is applied to show the existence of traveling semi-fronts for an auxiliary system. Then the existence of traveling semi-fronts of original system is obtained by limit arguments. The traveling semi-fronts are proved to connect another equilibrium if natural birth and death rates are not considered and to be persistent if these rates are incorporated. Then non-existence of bounded traveling semi-fronts is obtained by two-sided Laplace transform. Then the above results are applied to some disease-transmission models and a predator-prey model.
NASA Technical Reports Server (NTRS)
Omidvar, K.
1980-01-01
Using the method of explicit summation over the intermediate states two-photon absorption cross sections in light and intermediate atoms based on the simplistic frozen-core approximation and LS coupling have been formulated. Formulas for the cross section in terms of integrals over radial wave functions are given. Two selection rules, one exact and one approximate, valid within the stated approximations are derived. The formulas are applied to two-photon absorptions in nitrogen, oxygen, and chlorine. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum-defect method have been used. A relationship between the cross section and the oscillator strengths is derived.
Subnanosecond measurements of detonation fronts in solid high explosives
NASA Astrophysics Data System (ADS)
Sheffield, S. A.; Bloomquist, D. D.; Tarver, C. M.
1984-04-01
Detonation fronts in solid high explosives have been examined through measurements of particle velocity histories resulting from the interaction of a detonation wave with a thin metal foil backed by a water window. Using a high time resolution velocity-interferometer system, experiments were conducted on three explosives—a TATB (1,3,5-triamino-trinitrobenzene)-based explosive called PBX-9502, TNT (2,4,6-Trinitrotoluene), and CP (2-{5-cyanotetrazolato} pentaamminecobalt {III} perchlorate). In all cases, detonation-front rise times were found to be less than the 300 ps resolution of the interferometer system. The thermodynamic state in the front of the detonation wave was estimated to be near the unreacted state determined from an extrapolation of low-pressure unreacted Hugoniot data for both TNT and PBX-9502 explosives. Computer calculations based on an ignition and growth model of a Zeldovich-von Neumann-Doering (ZND) detonation wave show good agreement with the measurements. By using the unreacted Hugoniot and a JWL equation of state for the reaction products, we estimated the initial reaction rate in the high explosive after the detonation wave front interacted with the foil to be 40 μs-1 for CP, 60 μs-1 for TNT, and 80 μs-1 for PBX-9502. The shape of the profiles indicates the reaction rate decreases as reaction proceeds.
Synchro-ballistic recording of detonation phenomena
NASA Astrophysics Data System (ADS)
Critchfield, Robert R.; Asay, Blaine W.; Bdzil, John B.; Davis, William C.; Ferm, Eric N.; Idar, Deanne J.
1997-12-01
Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic detonation shock dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of the events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film's spatial dimension and the phase velocity is adjusted to provide synchronization at the camera's maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to- diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric denotation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.
Synchro-ballistic recording of detonation phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Critchfield, R.R.; Asay, B.W.; Bdzil, J.B.
1997-09-01
Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic Detonation Shock Dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of themore » events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film`s spatial dimension and the phase velocity is adjusted to provide synchronization at the camera`s maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to-diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric detonation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.« less
All-solid-state single longitudinal mode MOPA laser system
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Gu, Haidong; Hu, Wenhua; Ren, Shilong
2018-03-01
Side diode pumped electro-optical Q Switching Nd: YAG is demonstrated as master oscillator. F-P etalon and twisted-mode cavity combined configuration is introduced to select longitudinal modes. The seed light experiences a round trip through the two flash pump amplifiers, in this device, the 4f image transmission system and SBS phase conjugate mirror is adopted in order to improved beam quality, by compensating the heat depolarization effect and eliminate wave-front distortion. In the condition of 1 or 5 repetitions of the wavelength at 1064nm, it produces the pulse energy of 300mJ, pulse width of 12ns, and energy instability (RMS) below 3% in single longitudinal mode operation. With a type two-phase matched KTP crystal, 532nm green light is yielded, at 1 Hz repetition rate, the pulse energy of green light is more than 150mJ.
Parameter Governing of Wave Resonance in Water Chamber and Its Application
NASA Astrophysics Data System (ADS)
Husain, F.; Alie, M. Z. M.; Rahman, T.
2018-04-01
It has become known that the oscillating water column (OWC) device is very popular as one of wave energy extraction facilities installed in coastal and ocean structures. However, it has not been clarified sufficiently how to obtain an effective cross section design of the structure until now. This paper describes theoretical procedure to yield effective cross section of water chamber type of sea wall, which is similar to the OWC type structure in relation to wave period or wave length. The water chamber type sea wall has a water chamber partitioned by a curtain wall installed in front of part of the structure. This type of sea wall also can be applied to extract wave power same as of OWC function. When the wave conditions on site are known, the dimensions especially the breadth of water chamber type sea wall can be determined.
A practical implementation of wave front construction for 3-D isotropic media
NASA Astrophysics Data System (ADS)
Chambers, K.; Kendall, J.-M.
2008-06-01
Wave front construction (WFC) methods are a useful tool for tracking wave fronts and are a natural extension to standard ray shooting methods. Here we describe and implement a simple WFC method that is used to interpolate wavefield properties throughout a 3-D heterogeneous medium. Our approach differs from previous 3-D WFC procedures primarily in the use of a ray interpolation scheme, based on approximating the wave front as a `locally spherical' surface and a `first arrival mode', which reduces computation times, where only first arrivals are required. Both of these features have previously been included in 2-D WFC algorithms; however, until now they have not been extended to 3-D systems. The wave front interpolation scheme allows for rays to be traced from a nearly arbitrary distribution of take-off angles, and the calculation of derivatives with respect to take-off angles is not required for wave front interpolation. However, in regions of steep velocity gradient, the locally spherical approximation is not valid, and it is necessary to backpropagate rays to a sufficiently homogenous region before interpolation of the new ray. Our WFC technique is illustrated using a realistic velocity model, based on a North Sea oil reservoir. We examine wavefield quantities such as traveltimes, ray angles, source take-off angles and geometrical spreading factors, all of which are interpolated on to a regular grid. We compare geometrical spreading factors calculated using two methods: using the ray Jacobian and by taking the ratio of a triangular area of wave front to the corresponding solid angle at the source. The results show that care must be taken when using ray Jacobians to calculate geometrical spreading factors, as the poles of the source coordinate system produce unreliable values, which can be spread over a large area, as only a few initial rays are traced in WFC. We also show that the use of the first arrival mode can reduce computation time by ~65 per cent, with the accuracy of the interpolated traveltimes, ray angles and source take-off angles largely unchanged. However, the first arrival mode does lead to inaccuracies in interpolated angles near caustic surfaces, as well as small variations in geometrical spreading factors for ray tubes that have passed through caustic surfaces.
NASA Astrophysics Data System (ADS)
Massie, U. W.
When Planck introduced the 1/2 hv term to his 1911 black body equation he showed that there is a residual energy remaining at zero degree K after all thermal energy ceased. Other investigators, including Lamb, Casimir, and Dirac added to this information. Today zero point energy (ZPE) is accepted as an established condition. The purpose of this paper is to demonstrate that the density of the ZPE is given by the gravity constant (G) and the characteristics of its particles are revealed by the cosmic microwave background (CMB). Eddies of ZPE particles created by flow around mass bodies reduce the pressure normal to the eddy flow and are responsible for the force of gravity. Helium atoms resonate with ZPE particles at low temperature to produce superfluid helium. High velocity micro vortices of ZPE particles about a basic particle or particles are responsible for electromagnetic forces. The speed of light is the speed of the wave front in the ZPE and its value is a function of the temperature and density of the ZPE.
Multifunctional millimeter-wave radar system for helicopter safety
NASA Astrophysics Data System (ADS)
Goshi, Darren S.; Case, Timothy J.; McKitterick, John B.; Bui, Long Q.
2012-06-01
A multi-featured sensor solution has been developed that enhances the operational safety and functionality of small airborne platforms, representing an invaluable stride toward enabling higher-risk, tactical missions. This paper demonstrates results from a recently developed multi-functional sensor system that integrates a high performance millimeter-wave radar front end, an evidence grid-based integration processing scheme, and the incorporation into a 3D Synthetic Vision System (SVS) display. The front end architecture consists of a w-band real-beam scanning radar that generates a high resolution real-time radar map and operates with an adaptable antenna architecture currently configured with an interferometric capability for target height estimation. The raw sensor data is further processed within an evidence grid-based integration functionality that results in high-resolution maps in the region surrounding the platform. Lastly, the accumulated radar results are displayed in a fully rendered 3D SVS environment integrated with local database information to provide the best representation of the surrounding environment. The integrated system concept will be discussed and initial results from an experimental flight test of this developmental system will be presented. Specifically, the forward-looking operation of the system demonstrates the system's ability to produce high precision terrain mapping with obstacle detection and avoidance capability, showcasing the system's versatility in a true operational environment.
Polarization and wavelength diversities of Gulf Stream fronts imaged by AIRSAR
NASA Technical Reports Server (NTRS)
Lee, J. S.; Jansen, R. W.; Marmorino, G. O.; Chubb, S. R.
1995-01-01
During the 1990 Gulf Stream Experiment, NASA/JPL AIRSAR imaged the north edge of the Gulf Stream near the coast of Virginia. Simultaneous in-situ measurements of currents, temperatures, salinities, etc. were made for several crossings of the north edge by the R/V Cape Henlopen. Measurements identified two fronts with shearing and converging flows. The polarimetric SAR images from the fronts showed two bright linear features. One of them corresponds to the temperature front, which separated the warm Gulf Stream water to the south from a cool, freshwater filament to the north. The other line, located about 8 km north of the temperature front, is believed to correspond to the velocity front between the filament and the slope water. At these fronts, wave-current interactions produced narrow bands of steep and breaking waves manifesting higher radar returns in polarimetric SAR images. In general, our AIRSAR imagery shows that the signal-to-clutter ratio of radar cross sections for the temperature front is higher than that of the velocity front. In this paper, we study the polarization and wavelength diversities of radar response of these two fronts using the P-, L-, and C-Band Polarimetric SAR data. The north-south flight path of the AIRSAR crossed the temperature front several times and provided valuable data for analysis. Three individual passes are investigated. We found that for the temperature front, the cross-pol (HV) responses are much higher than co-pol responses (VV and HH), and that P-Band HV has the highest signal to clutter ratio. For the velocity front, the ratio is the strongest in P-Band VV, and it is indistinguishable for all polarizations in C-Band. The radar cross sections for all three polarization (HH, HV, and VV) and for all three bands are modelled using an ocean wave model and a composite Bragg scattering model. In our initial investigations, the theoretical model agrees qualitatively with the AIRSAR observations.
A Catalog of Coronal "EIT Wave" Transients
NASA Technical Reports Server (NTRS)
Thompson, B. J.; Myers, D. C.
2009-01-01
Solar and Heliospheric Observatory (SOHO) Extreme ultraviolet Imaging Telescope (EIT) data have been visually searched for coronal "EIT wave" transients over the period beginning from 1997 March 24 and extending through 1998 June 24. The dates covered start at the beginning of regular high-cadence (more than one image every 20 minutes) observations, ending at the four-month interruption of SOHO observations in mid-1998. One hundred and seventy six events are included in this catalog. The observations range from "candidate" events, which were either weak or had insufficient data coverage, to events which were well defined and were clearly distinguishable in the data. Included in the catalog are times of the EIT images in which the events are observed, diagrams indicating the observed locations of the wave fronts and associated active regions, and the speeds of the wave fronts. The measured speeds of the wave fronts varied from less than 50 to over 700 km s(exp -1) with "typical" speeds of 200-400 km s(exp -1).
Nonlinear interaction of strong S-waves with the rupture front in the shallow subsurface
NASA Astrophysics Data System (ADS)
Sleep, N. H.
2017-12-01
Shallow deformation in moderate to large earthquakes is sometimes distributed rather than being concentrated on a single fault plane. Strong high-frequency S-waves interact with the rupture front to produce this effect. For strike-slip faults, the rupture propagation velocity is a fraction of the S-wave velocity. The rupture propagation vector refracts essentially vertically in the low (S-wave) velocity shallow subsurface. So does the propagation direction of S-waves. The shallow rupture front is essentially mode 3 near the surface. Strong S-waves arrive before the rupture front. They continue to arrive for several seconds in a large event. There are simple scaling relationships. The dynamic Coulomb stress ratio of horizontal stress on horizontal planes from S-waves is the normalized acceleration in g's. For fractured rock and gravel, frictional failure occurs when the normalized acceleration exceeds the effective coefficient of friction. Acceleration tends to saturate at that level as the anelastic strain rate increases rapidly with stress. For muddy materials, failure begins at a low normalized acceleration but increases slowly with dynamic stress. Dynamic accelerations sometimes exceed 1 g. In both cases, the rupture tip finds the shallow subsurface already in nonlinear failure down to a few to tens of meters depth. The material does not distinguish between S-wave and rupture tip stresses. Both stresses add to the stress invariant and hence to the anelastic strain rate tensor. Surface anelastic strain from fault slip is thus distributed laterally over a distance scaling to the depth of nonlinearity from S-waves. The environs of the fault anelastically accommodate the fault slip at depth. This process differs from blind faults where the shallow coseismic strain is mostly elastic and interseismic anelastic processes accommodate the long-term shallow deformation.
Classification and asymptotic scaling of the light-cone wave-function amplitudes of hadrons
Ji, Xiangdong; Ma, Jian-Ping; Yuan, Feng
2004-01-29
Here we classify the hadron light-cone wave-function amplitudes in terms of parton helicity, orbital angular momentum, and quark-flavor and color symmetries. We show in detail how this is done for the pion, ρ meson, nucleon, and delta resonance up to and including three partons. For the pion and nucleon, we also consider four-parton amplitudes. Using the scaling law derived previously, we show how these amplitudes scale in the limit that all parton transverse momenta become large.
Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light.
Taira, Yoshitaka; Hayakawa, Takehito; Katoh, Masahiro
2017-07-10
Inverse Thomson scattering is a well-known radiation process that produces high-energy photons both in nature and in the laboratory. Nonlinear inverse Thomson scattering occurring inside an intense light field is a process which generates higher harmonic photons. In this paper, we theoretically show that the higher harmonic gamma-ray produced by nonlinear inverse Thomson scattering of circularly polarized light is a gamma-ray vortex, which means that it possesses a helical wave front and carries orbital angular momentum. Our work explains a recent experimental result regarding nonlinear inverse Thomson scattering that clearly shows an annular intensity distribution as a remarkable feature of a vortex beam. Our work implies that gamma-ray vortices should be produced in various situations in astrophysics in which high-energy electrons and intense circularly polarized light fields coexist. Nonlinear inverse Thomson scattering is a promising radiation process for realizing a gamma-ray vortex source based on currently available laser and accelerator technologies, which would be an indispensable tool for exploring gamma-ray vortex science.
How Reflected Wave Fronts Dynamically Establish Hooke's Law in a Spring
ERIC Educational Resources Information Center
Fahy, Stephen; O'Riordan, John; O'Sullivan, Colm; Twomey, Patrick
2012-01-01
A simple benchtop experiment in which a moving cart collides with a fixed spring is described. Force-time and force-distance data recorded during the collision display the transit of compression wave fronts through the spring following impact. These data can be used by students to develop a computational model of the dynamics of this simple…
Optical analysis of laser systems using interferometry
NASA Astrophysics Data System (ADS)
Viswanathan, V. K.; Liberman, I.; Lawrence, G.; Seery, B. D.
1980-06-01
It is noted that previous approaches of predicting focal spot parameters involved the digitization of interference patterns of the optical components and propagation of the complex amplitude and phase of the wave front throughout the system. The present paper describes an approach in which the computational procedure is extended to produce computer plots of the final emerging wave front. It is shown that this enables direct comparison with the experimentally produced wave front of the total system and makes possible the optical analysis, design, and possible optimization of laser systems. A description is given of the computational procedure and the Twyman-Green and Smartt IR interferometers constructed to verify this approach. Finally, consideration is given to the implications of the results.
Adaptive optics for array telescopes using piston-and-tilt wave-front sensing
NASA Technical Reports Server (NTRS)
Wizinowich, P.; Mcleod, B.; Lloyd-Yhart, M.; Angel, J. R. P.; Colucci, D.; Dekany, R.; Mccarthy, D.; Wittman, D.; Scott-Fleming, I.
1992-01-01
A near-infrared adaptive optics system operating at about 50 Hz has been used to control phase errors adaptively between two mirrors of the Multiple Mirror Telescope by stabilizing the position of the interference fringe in the combined unresolved far-field image. The resultant integrated images have angular resolutions of better than 0.1 arcsec and fringe contrasts of more than 0.6. Measurements of wave-front tilt have confirmed the wavelength independence of image motion. These results show that interferometric sensing of phase errors, when combined with a system for sensing the wave-front tilt of the individual telescopes, will provide a means of achieving a stable diffraction-limited focus with segmented telescopes or arrays of telescopes.
Growth rates of the buoyancy-driven instability of an autocatalytic reaction front in a narrow cell
Bockmann; Muller
2000-09-18
Experimental studies were performed on the buoyancy-driven instability of an autocatalytic reaction front in a quasi-2D cell. The unstable density stratification at an ascending front leads to convection that results in a fingerlike front deformation. The growth rates of the spatial modes of the instability are determined at the initial stage. A stabilization is found at higher wave numbers, while the system is unstable against low wave number perturbations. Whereas comparison with a reported model governed by Hele-Shaw flow fails, a two-dimensional Navier-Stokes model yields more satisfactory results. Still, present deviations suggest the presence of an additional mechanism that suppresses the growth.
Charged Particle Distribution near the Shock Front in a Glow Discharge
NASA Astrophysics Data System (ADS)
Baryshnikov, A. S.; Basargin, I. V.; Bezverkhnii, N. O.; Bobashev, S. V.; Monakhov, N. A.; Popov, P. A.; Sakharov, V. A.; Chistyakova, M. V.
2018-02-01
The charged particle distribution near the front of a shock wave propagating in the glow discharge plasma has been investigated. It has been found that the ion concentration before the front varies nonmonotonically. Behind the shock front, the charged particle concentration varies smoothly in contrast to the neutral component density.
NFIRAOS beamsplitters subsystems optomechanical design
NASA Astrophysics Data System (ADS)
Lamontagne, Frédéric; Desnoyers, Nichola; Nash, Reston; Boucher, Marc-André; Martin, Olivier; Buteau-Vaillancourt, Louis; Châteauneuf, François; Atwood, Jenny; Hill, Alexis; Byrnes, Peter W. G.; Herriot, Glen; Véran, Jean-Pierre
2016-07-01
The early-light facility adaptive optics system for the Thirty Meter Telescope (TMT) is the Narrow-Field InfraRed Adaptive Optics System (NFIRAOS). The science beam splitter changer mechanism and the visible light beam splitter are subsystems of NFIRAOS. This paper presents the opto-mechanical design of the NFIRAOS beam splitters subsystems (NBS). In addition to the modal and the structural analyses, the beam splitters surface deformations are computed considering the environmental constraints during operation. Surface deformations are fit to Zernike polynomials using SigFit software. Rigid body motion as well as residual RMS and peak-to-valley surface deformations are calculated. Finally, deformed surfaces are exported to Zemax to evaluate the transmitted and reflected wave front error. The simulation results of this integrated opto-mechanical analysis have shown compliance with all optical requirements.
Stone, G.W.; Pepper, D.A.; Xu, Jie; Zhang, X.
2004-01-01
Ship Shoal, a transgressive sand body located at the 10 m isobath off south-central Louisiana, is deemed a potential sand source for restoration along the rapidly eroding Isles Dernieres barrier chain and possibly other sites in Louisiana. Through numerical wave modeling we evaluate the potential response of mining Ship Shoal on the wave field. During severe and strong storms, waves break seaward of the western flank of Ship Shoal. Therefore, removal of Ship Shoal (approximately 1.1 billion m3) causes a maximum increase of the significant wave height by 90%-100% and 40%-50% over the shoal and directly adjacent to the lee of the complex for two strong storm scenarios. During weak storms and fair weather conditions, waves do not break over Ship Shoal. The degree of increase in significant wave height due to shoal removal is considerably smaller, only 10%-20% on the west part of the shoal. Within the context of increasing nearshore wave energy levels, removal of the shoal is not significant enough to cause increased erosion along the Isles Dernieres. Wave approach direction exerts significant control on the wave climate leeward of Ship Shoal for stronger storms, but not weak storms or fairweather. Instrumentation deployed at the shoal allowed comparison of measured wave heights with numerically derived wave heights using STWAVE. Correlation coefficients are high in virtually all comparisons indicating the capability of the model to simulate wave behavior satisfactorily at the shoal. Directional waves, currents and sediment transport were measured during winter storms associated with frontal passages using three bottom-mounted arrays deployed on the seaward and landward sides of Ship Shoal (November, 1998-January, 1999). Episodic increases in wave height, mean and oscillatory current speed, shear velocity, and sediment transport rates, associated with recurrent cold front passages, were measured. Dissipation mechanisms included both breaking and bottom friction due to variable depths across the shoal crest and variable wave amplitudes during storms and fair-weather. Arctic surge fronts were associated with southerly storm waves, and southwesterly to westerly currents and sediment transport. Migrating cyclonic fronts generated northerly swell that transformed into southerly sea, and currents and sediment transport that were southeasterly overall. Waves were 36% higher and 9% longer on the seaward side of the shoal, whereas mean currents were 10% stronger landward, where they were directed onshore, in contrast to the offshore site, where seaward currents predominated. Sediment transport initiated by cold fronts was generally directed southeasterly to southwesterly at the offshore site, and southerly to westerly at the nearshore site. The data suggest that both cold fronts and the shoal, exert significant influences on regional hydrodynamics and sediment transport.
NASA Astrophysics Data System (ADS)
Zhang, W. L.; Qiao, B.; Shen, X. F.; You, W. Y.; Huang, T. W.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.
2016-09-01
Laser-driven ion acceleration potentially offers a compact, cost-effective alternative to conventional accelerators for scientific, technological, and health-care applications. A novel scheme for heavy ion acceleration in near-critical plasmas via staged shock waves driven by intense laser pulses is proposed, where, in front of the heavy ion target, a light ion layer is used for launching a high-speed electrostatic shock wave. This shock is enhanced at the interface before it is transmitted into the heavy ion plasmas. Monoenergetic heavy ion beam with much higher energy can be generated by the transmitted shock, comparing to the shock wave acceleration in pure heavy ion target. Two-dimensional particle-in-cell simulations show that quasi-monoenergetic {{{C}}}6+ ion beams with peak energy 168 MeV and considerable particle number 2.1 × {10}11 are obtained by laser pulses at intensity of 1.66 × {10}20 {{W}} {{cm}}-2 in such staged shock wave acceleration scheme. Similarly a high-quality {{Al}}10+ ion beam with a well-defined peak with energy 250 MeV and spread δ E/{E}0=30 % can also be obtained in this scheme.
Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.
Arora, M; Junge, L; Ohl, C D
2005-06-01
The spatiotemporal dynamics of cavitation bubble growth and collapse in shock-wave lithotripsy in a free field was studied experimentally. The lithotripter was equipped with two independently triggerable layers of piezoceramics. The front and back layers generated positive pressure amplitudes of 30 MPa and 15 MPa, respectively, and -10 MPa negative amplitude. The time interval between the launch of the shock waves was varied from 0 and 0.1 s, covering the regimens of pulse-modification (regimen A, delay 0 to 4 micros), shock wave-cavitation cluster interaction (B, 4 micros to 64 micros) and shock wave-gas bubble interaction (C, 256 micros to 0.1 s). The time-integrated cavitation activity was most strongly influenced in regimen A and, in regimen B, the spatial distribution of bubbles was altered, whereas enhancement of cavitation activity was observed in regimen C. Quantitative measurements of the spatial- and time-integrated void fractions were obtained with a photographic and light-scattering technique. The preconditions for a reproducible experiment are explained, with the existence of two distinct types of cavitation nuclei, small particles suspended in the liquid and residuals of bubbles from prior cavitation clusters.
Wave and ion evolution downstream of quasi-perpendicular bow shocks
NASA Technical Reports Server (NTRS)
Mckean, M. E.; Omidi, N.; Krauss-Varban, D.
1995-01-01
Distribution functions of ions heated in quasi-perpendicular bow shocks have a large perpendicular temperature anisotropy that provides free energy for the growth of Alfven ion cyclotron (AIC) waves and mirror waves. Both types of waves have been observed in the Earth's magnetosheath downstream of quasi-perpendicular shocks. We use a two-dimensional hybrid simulations to give a self-consistent description of the evolution of the wave spectra downstream of quasi-perpendicular shocks. Both mirror and AIC waves are identified in the simulated magnetosheath. They are generated at or near the shock front and convected away from it by the sheath plasma. Near the shock, the waves have a broad spectrum, but downstream of the shock, shorter-wavelength modes are heavily damped and only longer-wavelength modes persist. The characteristics of these surviving modes can be predicted with reasonable accuracy by linear kinetic theory appropriate for downstream conditions. We also follow the evolution of the ion distribution function. The shocked ions that provide the free energy for wave growth have a two-component distribution function. The halo is initially gyrophase-bunched and extremely anisotropic. Within a relatively short distance downstream of the shock (of the order of 10 ion inertial lengths), wave-particle interactions remove these features from the halo and reduce the anisotropy of the distribution to near-threshold levels for the mirror and AIC instabilities. A similar evolution has been observed for ions at the Earth's bow shock.
Tunable modulation of refracted lamb wave front facilitated by adaptive elastic metasurfaces
NASA Astrophysics Data System (ADS)
Li, Shilong; Xu, Jiawen; Tang, J.
2018-01-01
This letter reports designs of adaptive metasurfaces capable of modulating incoming wave fronts of elastic waves through electromechanical-tuning of their cells. The proposed elastic metasurfaces are composed of arrayed piezoelectric units with individually connected negative capacitance elements that are online tunable. By adjusting the negative capacitances properly, accurately formed, discontinuous phase profiles along the elastic metasurfaces can be achieved. Subsequently, anomalous refraction with various angles can be realized on the transmitted lowest asymmetric mode Lamb wave. Moreover, designs to facilitate planar focal lenses and source illusion devices can also be accomplished. The proposed flexible and versatile strategy to manipulate elastic waves has potential applications ranging from structural fault detection to vibration/noise control.
Fluctuations uncover a distinct class of traveling waves
Korolev, Kirill S.
2018-01-01
Epidemics, flame propagation, and cardiac rhythms are classic examples of reaction–diffusion waves that describe a switch from one alternative state to another. Only two types of waves are known: pulled, driven by the leading edge, and pushed, driven by the bulk of the wave. Here, we report a distinct class of semipushed waves for which both the bulk and the leading edge contribute to the dynamics. These hybrid waves have the kinetics of pushed waves, but exhibit giant fluctuations similar to pulled waves. The transitions between pulled, semipushed, and fully pushed waves occur at universal ratios of the wave velocity to the Fisher velocity. We derive these results in the context of a species invading a new habitat by examining front diffusion, rate of diversity loss, and fluctuation-induced corrections to the expansion velocity. All three quantities decrease as a power law of the population density with the same exponent. We analytically calculate this exponent, taking into account the fluctuations in the shape of the wave front. For fully pushed waves, the exponent is −1, consistent with the central limit theorem. In semipushed waves, however, the fluctuations average out much more slowly, and the exponent approaches 0 toward the transition to pulled waves. As a result, a rapid loss of genetic diversity and large fluctuations in the position of the front occur, even for populations with cooperative growth and other forms of an Allee effect. The evolutionary outcome of spatial spreading in such populations could therefore be less predictable than previously thought. PMID:29610340
Fluctuations uncover a distinct class of traveling waves.
Birzu, Gabriel; Hallatschek, Oskar; Korolev, Kirill S
2018-04-17
Epidemics, flame propagation, and cardiac rhythms are classic examples of reaction-diffusion waves that describe a switch from one alternative state to another. Only two types of waves are known: pulled, driven by the leading edge, and pushed, driven by the bulk of the wave. Here, we report a distinct class of semipushed waves for which both the bulk and the leading edge contribute to the dynamics. These hybrid waves have the kinetics of pushed waves, but exhibit giant fluctuations similar to pulled waves. The transitions between pulled, semipushed, and fully pushed waves occur at universal ratios of the wave velocity to the Fisher velocity. We derive these results in the context of a species invading a new habitat by examining front diffusion, rate of diversity loss, and fluctuation-induced corrections to the expansion velocity. All three quantities decrease as a power law of the population density with the same exponent. We analytically calculate this exponent, taking into account the fluctuations in the shape of the wave front. For fully pushed waves, the exponent is -1, consistent with the central limit theorem. In semipushed waves, however, the fluctuations average out much more slowly, and the exponent approaches 0 toward the transition to pulled waves. As a result, a rapid loss of genetic diversity and large fluctuations in the position of the front occur, even for populations with cooperative growth and other forms of an Allee effect. The evolutionary outcome of spatial spreading in such populations could therefore be less predictable than previously thought. Copyright © 2018 the Author(s). Published by PNAS.
Instant-Form and Light-Front Quantization of Field Theories
NASA Astrophysics Data System (ADS)
Kulshreshtha, Usha; Kulshreshtha, Daya Shankar; Vary, James
2018-05-01
In this work we consider the instant-form and light-front quantization of some field theories. As an example, we consider a class of gauged non-linear sigma models with different regularizations. In particular, we present the path integral quantization of the gauged non-linear sigma model in the Faddeevian regularization. We also make a comparision of the possible differences in the instant-form and light-front quantization at appropriate places.
Wavefront sensor for the GAIA Mission
NASA Astrophysics Data System (ADS)
Vosteen, Amir; Draaisma, Folkert; van Werkhoven, Willem; van Riel, Luud; Mol, Margreet; Gielesen, Wim
2017-11-01
TNO has developed, built and tested the Wave Front Sensor (WFS) for ESA's Gaia mission. The WFS will help Gaia create an extraordinarily precise three-dimensional map of more than one billion stars in our Galaxy. Part of ESA's Cosmic Vision programme, Gaia's build is led by EADS Astrium and is scheduled for launch in 2012. The Wave Front Sensor will be used to monitor the wave front errors of the two main telescopes mounted on the GAIA satellite. These mirrors include a 5-degree of freedom (DOF) mechanism that can be used to minimize the wave front errors during operation. The GAIA-WFS will operate over a broad wavelength (450 to 900 nm) and under cryogenic conditions (130 to 200 K operation temperature). The WFS uses an all reflective, a-thermal design and is of the type of Shack-Hartmann. The boundary condition for the design is that the focal plane of the WFS is the same plane as the focal plane of the GAIA telescopes. The spot pattern generated after a micro lens array ( MLA) by a star is compared to the pattern of one of the three calibration sources that is included in the WFS, allowing in flight calibration. We show the robust and lightweight opto mechanical design that is optimised for launch and cryogenic operation. Details are given on its alignment and commissioning. The WFS is able to measure relative wave front distortions in the order of lambda/1000, and can determine the optimum position of the focal plane with an accuracy of 50 μm
Spiraling Light with Magnetic Metamaterial Quarter-Wave Turbines.
Zeng, Jinwei; Luk, Ting S; Gao, Jie; Yang, Xiaodong
2017-09-19
Miniaturized quarter-wave plate devices empower spin to orbital angular momentum conversion and vector polarization formation, which serve as bridges connecting conventional optical beam and structured light. Enabling the manipulability of additional dimensions as the complex polarization and phase of light, quarter-wave plate devices are essential for exploring a plethora of applications based on orbital angular momentum or vector polarization, such as optical sensing, holography, and communication. Here we propose and demonstrate the magnetic metamaterial quarter-wave turbines at visible wavelength to produce radially and azimuthally polarized vector vortices from circularly polarized incident beam. The magnetic metamaterials function excellently as quarter-wave plates at single wavelength and maintain the quarter-wave phase retardation in broadband, while the turbine blades consist of multiple polar sections, each of which contains homogeneously oriented magnetic metamaterial gratings near azimuthal or radial directions to effectively convert circular polarization to linear polarization and induce phase shift under Pancharatnum-Berry's phase principle. The perspective concept of multiple polar sections of magnetic metamaterials can extend to other analogous designs in the strongly coupled nanostructures to accomplish many types of light phase-polarization manipulation and structured light conversion in the desired manner.
An Analysis of Processes in the Solar Wind in a Thin Layer Adjacent to the Front of the Shock Wave
NASA Astrophysics Data System (ADS)
Molotkov, I. A.; Atamaniuk, B.
2018-05-01
A two-dimensional stationary system of nonlinear magnetohydrodynamics (MHD) equations in a thin layer adjoining the front of the interplanetary shock wave has been solved. Previously, any available publications relied on linear transport equations. But the presence of high-energy particles in the solar wind (SW) requires taking into account the processes of self-interaction. Our analysis examines the nonlinear terms in the MHD equations. A solution has been constructed for three cases: (1) in the absence of magnetic reconnections; (2) for magnetic reconnections; and (3) with the simultaneous action of reconnections and junction of magnetic islands. In all three cases, expressions were found for the main parameters of the SW. The results obtained on the basis of the solution of the MHD equations are consistent with the conclusions based on the investigation of the particle velocity distribution functions. This makes it possible to confirm the previously established fraction of particles excited to energies above 1 MeV.
Robustness study of the pseudo open-loop controller for multiconjugate adaptive optics.
Piatrou, Piotr; Gilles, Luc
2005-02-20
Robustness of the recently proposed "pseudo open-loop control" algorithm against various system errors has been investigated for the representative example of the Gemini-South 8-m telescope multiconjugate adaptive-optics system. The existing model to represent the adaptive-optics system with pseudo open-loop control has been modified to account for misalignments, noise and calibration errors in deformable mirrors, and wave-front sensors. Comparison with the conventional least-squares control model has been done. We show with the aid of both transfer-function pole-placement analysis and Monte Carlo simulations that POLC remains remarkably stable and robust against very large levels of system errors and outperforms in this respect least-squares control. Approximate stability margins as well as performance metrics such as Strehl ratios and rms wave-front residuals averaged over a 1-arc min field of view have been computed for different types and levels of system errors to quantify the expected performance degradation.
Basic features of the pion valence-quark distribution function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Lei; Mezrag, Cédric; Moutarde, Hervé
2014-10-07
The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables amore » realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, q π(x); namely, at a characteristic hadronic scale, q π(x)~(1-x) 2 for x≳0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.« less
Generation of optical vortices with controllable topological charges and polarization patterns
NASA Astrophysics Data System (ADS)
Yang, Ching-Han; Fuh, Andy Ying-Guey
2017-02-01
We present a simple and flexible method of generating various vectorial vortex beams (VVBs) based on the scheme of double modulations from a single liquid crystal spatial light modulator (SLM). In this configuration, a half-wave plate (HWP) placed in front of the SLM is first used to control the weights of linear polarization components of incident light. Then, we respectively encode two orbital angular momentum (OAM) eigenstates displayed on each half of the SLM onto each of the linear components of light. This yields the generation of VVB fields spanned by a pair of linearly polarized OAM eigenstates. In order to convert polarization bases from the linear pair into another orthogonal pair, a quarter-wave plate (QWP) placed behind the SLM is used. This enables us to generate VVBs spanned by any pair of orthogonally polarized OAM eigenstates. Generally, the light states of polarization (SOP) can be presented as a geodesic path located on the plane perpendicular to the axis connecting the pair of bases used on the Poincaré sphere. The light property is adjustable depending on both slow axes of HWP and QWP, as well as via computer generated holograms. To validate generated beams, two measurement procedures are subsequently applied. First, Stokes polarimetry is used to measure the light SOP over the transverse plane. Next, a Shack-Hartmann wavefront sensor is used to measure the OAM charge. Both the simulated and experimental results are shown to be in a good qualitative agreement. In addition, both polarization patterns and OAM charges can be controlled independently using the proposed method.
NASA Technical Reports Server (NTRS)
Liu, Wei; Ofman, Leon; Nitta, Nariaki; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.
2012-01-01
We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances greater than approximately solar radius/2 along the solar surface, with initial velocities up to 1400 kilometers per second decelerating to approximately 650 kilometers per second. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by approximately 50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.
Research of centroiding algorithms for extended and elongated spot of sodium laser guide star
NASA Astrophysics Data System (ADS)
Shao, Yayun; Zhang, Yudong; Wei, Kai
2016-10-01
Laser guide stars (LGSs) increase the sky coverage of astronomical adaptive optics systems. But spot array obtained by Shack-Hartmann wave front sensors (WFSs) turns extended and elongated, due to the thickness and size limitation of sodium LGS, which affects the accuracy of the wave front reconstruction algorithm. In this paper, we compared three different centroiding algorithms , the Center-of-Gravity (CoG), weighted CoG (WCoG) and Intensity Weighted Centroid (IWC), as well as those accuracies for various extended and elongated spots. In addition, we compared the reconstructed image data from those three algorithms with theoretical results, and proved that WCoG and IWC are the best wave front reconstruction algorithms for extended and elongated spot among all the algorithms.
NASA Astrophysics Data System (ADS)
Li, Zhaokun; Zhao, Xiaohui
2017-02-01
The sensor-less adaptive optics (AO) is one of the most promising methods to compensate strong wave front disturbance in free space optics communication (FSO). The back propagation (BP) artificial neural network is applied for the sensor-less AO system to design a distortion correction scheme in this study. This method only needs one or a few online measurements to correct the wave front distortion compared with other model-based approaches, by which the real-time capacity of the system is enhanced and the Strehl Ratio (SR) is largely improved. Necessary comparisons in numerical simulation with other model-based and model-free correction methods proposed in Refs. [6,8,9,10] are given to show the validity and advantage of the proposed method.
A Photographic Study of Combustion and Knock in a Spark-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Spencer, R C
1938-01-01
Report presents the results of a photographic study of the combustion in a spark-ignition engine using both Schlieren and flame photographs taken at high rates of speed. Although shock waves are present after knock occurs, there was no evidence of any type of sonic or supersonic compression waves existing in the combustion gases prior to the occurrence of knock. Artificially induced shock waves in the engine did not in themselves cause knock. The photographs also indicate that, although auto-ignition ahead of the flame front may occur in conjunction with knock, it is not necessary for the occurrence of knock. There is also evidence that the reaction is not completed in the flame front but continues for some time after the flame front has passed through the charge.
A downslope propagating thermal front over the continental slope
NASA Astrophysics Data System (ADS)
van Haren, Hans; Hosegood, Phil J.
2017-04-01
In the ocean, internal frontal bores above sloping topography have many appearances, depending on the local density stratification, and on the angle and source of generation of the carrier wave. However, their common characteristics are a backward breaking wave, strong sediment resuspension, and relatively cool (denser) water moving more or less upslope underneath warm (less dense) water. In this paper, we present a rare example of a downslope moving front of cold water moving over near-bottom warm water. Large backscatter is observed in the downslope moving front's trailing edge, rather than the leading edge as is common in upslope moving fronts. Time series observations have been made during a fortnight in summer, using a 101 m long array of high-resolution temperature sensors moored with an acoustic Doppler current profiler at 396 m depth in near-homogeneous waters, near a small canyon in the continental slope off the Malin shelf (West-Scotland, UK). Occurring between fronts that propagate upslope with tidal periodicity, the rare downslope propagating one resembles a gravity current and includes strong convective turbulence coming from the interior rather than the more usual frictionally generated turbulence arising from interaction with the seabed. Its turbulence is 3-10 times larger than that of more common upslope propagating fronts. As the main turbulence is in the interior with a thin stratified layer close to the bottom, little sediment is resuspended by a downslope propagating front. The downslope propagating front is suggested to be generated by oblique propagation of internal (tidal) waves and flow over a nearby upstream promontory.
Origins of spectral broadening of incoherent waves: Catastrophic process of coherence degradation
NASA Astrophysics Data System (ADS)
Xu, G.; Garnier, J.; Rumpf, B.; Fusaro, A.; Suret, P.; Randoux, S.; Kudlinski, A.; Millot, G.; Picozzi, A.
2017-08-01
We revisit the mechanisms underlying the process of spectral broadening of incoherent optical waves propagating in nonlinear media on the basis of nonequilibrium thermodynamic considerations. A simple analysis reveals that a prerequisite for the existence of a significant spectral broadening of the waves is that the linear part of the energy (Hamiltonian) has different contributions of opposite signs. It turns out that, at variance with the expected soliton turbulence scenario, an increase of the amount of disorder (incoherence) in the system does not require the generation of a coherent soliton structure. We illustrate the idea by considering the propagation of two wave components in an optical fiber with opposite dispersion coefficients. A wave turbulence approach to the problem reveals that the increase of kinetic energy in one component is offset by the negative reduction in the other component, so that the waves exhibit, as a general rule, virtually unlimited spectral broadening. More precisely, a self-similar solution of the kinetic equations reveals that the spectra of the incoherent waves tend to relax toward a homogeneous distribution in the wake of a front that propagates in frequency space with a decelerating velocity. We discuss this catastrophic process of spectral broadening in the light of different important phenomena, in particular supercontinuum generation, soliton turbulence, wave condensation, and the runaway motion of mechanical systems composed of positive and negative masses.
Broadband high-frequency waves and intermittent energy conversion at dipolarization fronts
NASA Astrophysics Data System (ADS)
Yang, J.; Cao, J.; Fu, H.; Wang, T.; Liu, W.; Yao, Z., Sr.
2017-12-01
Dipolarization front (DF) is a sharp boundary most probably separating the reconnection jet from the background plasma sheet. So far at this boundary, the observed waves are mainly in low-frequency range (e.g., magnetosonic waves and lower hybrid waves). Few high-frequency waves are observed in this region. In this paper, we report the broadband high-frequency wave emissions at the DF. These waves, having frequencies extending from the electron cyclotron frequency fce, up to the electron plasma frequency fpe, could contribute 10% to the in situ measurement of intermittent energy conversion at the DF layer. Their generation may be attributed to electron beams, which are simultaneously observed at the DF as well. Furthermore, we find intermittent energy conversion is primarily to the broadband fluctuations in the lower hybrid frequency range although the net energy conversion is small.
Wave combustors for trans-atmospheric vehicles
NASA Technical Reports Server (NTRS)
Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc; Bowles, Jeffrey V.
1989-01-01
The Wave Combustor is an airbreathing hypersonic propulsion system which utilizes shock and detonation waves to enhance fuel-air mixing and combustion in supersonic flow. In this concept, an oblique shock wave in the combustor can act as a flameholder by increasing the pressure and temperature of the air-fuel mixture and thereby decreasing the ignition delay. If the oblique shock is sufficiently strong, then the combustion front and the shock wave can couple into a detonation wave. In this case, combustion occurs almost instantaneously in a thin zone behind the wave front. The result is a shorter, lighter engine compared to the scramjet. This engine, which is called the Oblique Detonation Wave Engine (ODWE), can then be utilized to provide a smaller, lighter vehicle or to provide a higher payload capability for a given vehicle weight. An analysis of the performance of a conceptual trans-atmospheric vehicle powered by an ODWE is given here.
Trajectories and traversal times in quantum tunneling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhi Hong.
1989-01-01
The classical concepts of trajectories and traversal times applied to quantum tunneling are discussed. By using the Wentzel-Kramers-Brillouin approximation, it is found that in a forbidden region of a multidimensional space the wave function can be described by two sets of trajectories, or equivalently by two sets of wave fronts. The trajectories belonging to different sets are mutually orthogonal. An extended Huygens construction is proposed to determine these wave fronts and trajectories. In contrast to the classical results in the allowed region, these trajectories couple to each other. However, if the incident wave is normal to the turning surface, themore » trajectories are found to be independent and can be determined by Newton's equations of motion with inverted potential and energy. The multidimensional tunneling theory is then applied to the scanning tunneling microscope to calculate the current density distribution and to derive the expressions for the lateral resolution and the surface corrugation amplitude. The traversal time in quantum tunneling, i.e. tunneling time, is found to depend on model calculations and simulations. Computer simulation of a wave packet tunneling through a square barrier is performed. Several approaches, including the phase method, Larmor clock, and time-dependent barrier model, are investigated. For a square barrier, two characteristic times are found: One is equal to the barrier width divided by the magnitude of the imaginary velocity; the other is equal to the decay length divided by the incident velocity. It is believed that the tunneling time can only be defined operationally.« less
Two-zone elastic-plastic single shock waves in solids.
Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T
2011-09-23
By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.
Ultrafast semi-metallic layer formation in detonating nitromethane
NASA Astrophysics Data System (ADS)
Reed, Evan; Manaa, M. Riad; Fried, Laurence; Glaesemann, Kurt; Joannopoulos, John
2008-03-01
We present the first quantum molecular dynamics simulations behind a detonation front (up to 0.2 ns) of the explosive nitromethane (CH3NO2) represented by the density-functional-based tight-binding method (DFTB). This simulation is enabled by our recently developed multi-scale shock wave molecular dynamics technique (MSST) that opens the door to longer duration simulations by several orders of magnitude. The electronic density of states around the Fermi energy initially increases as metastable material states are produced but then later decreases, perhaps unexpectedly. These changes indicate that the shock front is characterized by an increase in optical thickness and conductivity followed by a reduction around 100 picoseconds behind the front. We find that a significant population of intermediate metastable molecules are charged and charged species play an important role in the density of states evolution. The transient transformation to a semi-metallic state can be understood within the Anderson picture of metallization.
A semi-metallic layer in detonating nitromethane
NASA Astrophysics Data System (ADS)
Reed, Evan; Manaa, Riad; Fried, Laurence; Glaesemann, Kurt; Joannopoulos, John
2007-06-01
We present the first ever glimpse behind a detonation front in a chemically reactive quantum molecular dynamics simulation (up to 0.2 ns) of the explosive nitromethane (CH3NO2) represented by the density-functional-based tight-binding method (DFTB). This simulation is enabled by our recently developed multi-scale shock wave molecular dynamics technique (MSST) that opens the door to longer duration simulations by several orders of magnitude. The electronic DOS around the Fermi energy initially increases as metastable material states are produced but then later decreases, perhaps unexpectedly. These changes indicate that the shock front is characterized by an increase in optical thickness followed by a reduction in optical thickness hundreds of picoseconds behind the front, explaining recent experimental observations. We find that a significant population of intermediate metastable molecules are charged and charged species play an important role in the density of states evolution and a possible Mott metal-insulator transition.
Shock-like haemodynamic responses induced in the primary visual cortex by moving visual stimuli
Robinson, P. A.
2016-01-01
It is shown that recently discovered haemodynamic waves can form shock-like fronts when driven by stimuli that excite the cortex in a patch that moves faster than the haemodynamic wave velocity. If stimuli are chosen in order to induce shock-like behaviour, the resulting blood oxygen level-dependent (BOLD) response is enhanced, thereby improving the signal to noise ratio of measurements made with functional magnetic resonance imaging. A spatio-temporal haemodynamic model is extended to calculate the BOLD response and determine the main properties of waves induced by moving stimuli. From this, the optimal conditions for stimulating shock-like responses are determined, and ways of inducing these responses in experiments are demonstrated in a pilot study. PMID:27974572
Inferring Pre-shock Acoustic Field From Post-shock Pitot Pressure Measurement
NASA Astrophysics Data System (ADS)
Wang, Jian-Xun; Zhang, Chao; Duan, Lian; Xiao, Heng; Virginia Tech Team; Missouri Univ of Sci; Tech Team
2017-11-01
Linear interaction analysis (LIA) and iterative ensemble Kalman method are used to convert post-shock Pitot pressure fluctuations to static pressure fluctuations in front of the shock. The LIA is used as the forward model for the transfer function associated with a homogeneous field of acoustic waves passing through a nominally normal shock wave. The iterative ensemble Kalman method is then employed to infer the spectrum of upstream acoustic waves based on the post-shock Pitot pressure measured at a single point. Several test cases with synthetic and real measurement data are used to demonstrate the merits of the proposed inference scheme. The study provides the basis for measuring tunnel freestream noise with intrusive probes in noisy supersonic wind tunnels.
Baker, Kevin Louis
2013-01-08
X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.
How to Directly Image a Habitable Planet Around Alpha Centauri with a 30-45 cm Space Telescope
NASA Technical Reports Server (NTRS)
Belikov, Ruslan; Bendek, Eduardo; Thomas, Sandrine; Males, Jared
2015-01-01
Several mission concepts are being studied to directly image planets around nearby stars. It is commonly thought that directly imaging a potentially habitable exoplanet around a Sun-like star requires space telescopes with apertures of at least 1m. A notable exception to this is Alpha Centauri (A and B), which is an extreme outlier among FGKM stars in terms of apparent habitable zone size: the habitable zones are approximately 3x wider in apparent size than around any other FGKM star. This enables a approximately 30-45cm visible light space telescope equipped with a modern high performance coronagraph or star shade to resolve the habitable zone at high contrast and directly image any potentially habitable planet that may exist in the system. The raw contrast requirements for such an instrument can be relaxed to 1e-8 if the mission spends 2 years collecting tens of thousands of images on the same target, enabling a factor of 500-1000 speckle suppression in post processing using a new technique called Orbital Difference Imaging (ODI). The raw light leak from both stars is controllable with a special wave front control algorithm known as Multi-Star Wave front Control (MSWC), which independently suppresses diffraction and aberrations from both stars using independent modes on the deformable mirror. This paper will present an analysis of the challenges involved with direct imaging of Alpha Centauri with a small telescope and how the above technologies are used together to solve them. We also show an example of a small coronagraphic mission concepts to take advantage of this opportunity called "ACESat: Alpha Centauri Exoplanet Satellite" submitted to NASA's small Explorer (SMEX) program in December of 2014.
Compression and ablation of the photo-irradiated molecular cloud the Orion Bar.
Goicoechea, Javier R; Pety, Jérôme; Cuadrado, Sara; Cernicharo, José; Chapillon, Edwige; Fuente, Asunción; Gerin, Maryvonne; Joblin, Christine; Marcelino, Nuria; Pilleri, Paolo
2016-09-08
The Orion Bar is the archetypal edge-on molecular cloud surface illuminated by strong ultraviolet radiation from nearby massive stars. Our relative closeness to the Orion nebula (about 1,350 light years away from Earth) means that we can study the effects of stellar feedback on the parental cloud in detail. Visible-light observations of the Orion Bar show that the transition between the hot ionized gas and the warm neutral atomic gas (the ionization front) is spatially well separated from the transition between atomic and molecular gas (the dissociation front), by about 15 arcseconds or 6,200 astronomical units (one astronomical unit is the Earth-Sun distance). Static equilibrium models used to interpret previous far-infrared and radio observations of the neutral gas in the Orion Bar (typically at 10-20 arcsecond resolution) predict an inhomogeneous cloud structure comprised of dense clumps embedded in a lower-density extended gas component. Here we report one-arcsecond-resolution millimetre-wave images that allow us to resolve the molecular cloud surface. In contrast to stationary model predictions, there is no appreciable offset between the peak of the H 2 vibrational emission (delineating the H/H 2 transition) and the edge of the observed CO and HCO + emission. This implies that the H/H 2 and C + /C/CO transition zones are very close. We find a fragmented ridge of high-density substructures, photoablative gas flows and instabilities at the molecular cloud surface. The results suggest that the cloud edge has been compressed by a high-pressure wave that is moving into the molecular cloud, demonstrating that dynamical and non-equilibrium effects are important for the cloud evolution.
Compression and ablation of the photo-irradiated molecular cloud the Orion Bar
NASA Astrophysics Data System (ADS)
Goicoechea, Javier R.; Pety, Jérôme; Cuadrado, Sara; Cernicharo, José; Chapillon, Edwige; Fuente, Asunción; Gerin, Maryvonne; Joblin, Christine; Marcelino, Nuria; Pilleri, Paolo
2016-09-01
The Orion Bar is the archetypal edge-on molecular cloud surface illuminated by strong ultraviolet radiation from nearby massive stars. Our relative closeness to the Orion nebula (about 1,350 light years away from Earth) means that we can study the effects of stellar feedback on the parental cloud in detail. Visible-light observations of the Orion Bar show that the transition between the hot ionized gas and the warm neutral atomic gas (the ionization front) is spatially well separated from the transition between atomic and molecular gas (the dissociation front), by about 15 arcseconds or 6,200 astronomical units (one astronomical unit is the Earth-Sun distance). Static equilibrium models used to interpret previous far-infrared and radio observations of the neutral gas in the Orion Bar (typically at 10-20 arcsecond resolution) predict an inhomogeneous cloud structure comprised of dense clumps embedded in a lower-density extended gas component. Here we report one-arcsecond-resolution millimetre-wave images that allow us to resolve the molecular cloud surface. In contrast to stationary model predictions, there is no appreciable offset between the peak of the H2 vibrational emission (delineating the H/H2 transition) and the edge of the observed CO and HCO+ emission. This implies that the H/H2 and C+/C/CO transition zones are very close. We find a fragmented ridge of high-density substructures, photoablative gas flows and instabilities at the molecular cloud surface. The results suggest that the cloud edge has been compressed by a high-pressure wave that is moving into the molecular cloud, demonstrating that dynamical and non-equilibrium effects are important for the cloud evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Yukio; Abe, Akihisa; Tokushima, Koji
The aim of this study is to examine the difference between shock temperatures predicted by an equation for temperature inside a steady wave front and the Walsh-Christian equation. Calculations are for yttria-doped tetragonal zirconia, which shows an elastic-plastic and a phase transition: Thus the shock waves treated are multiple structure waves composed of one to three steady wave fronts. The evaluated temperature was 3350K at the minimum specific volume of 0.1175 cm{sup 3}/g (or maximum Hugoniot shock pressure of 140GPa) considered in the present examination, while the temperature predicted by the Walsh-Christian equation under identical conditions was 2657K. The causemore » of the large temperature discrepancy is considered to be that the present model treats nonequilibrium states inside steady waves.« less
Problem of image superresolution with a negative-refractive-index slab.
Nieto-Vesperinas, Manuel
2004-04-01
By means of the angular spectrum representation of wave fields, a discussion is given on the propagation and restoration of the wave-front structure in a slab of a left-handed medium (or negative-index medium) whose surface impedance matches that of vacuum, namely, one whose effective optical parameters are n = epsilon = mu = -1. This restoration was previously discussed [Phys. Rev. Lett. 85, 3866 (2000)] in regard to whether it may yield superresolved images. The divergence of the wave field in the slab, and its equivalence with that of the inverse diffraction propagator in free space, is addressed. Further, the existence of absorption, its regularization of this divergence, and the trade-off of a resulting limited superresolution are analyzed in detail in terms of its effect on the evanescent components of the wave field and hence on the transfer function width.
7. INTERIOR LIVING ROOM SHOWING 6LIGHT FRONT DOOR FLANKED BY ...
7. INTERIOR LIVING ROOM SHOWING 6-LIGHT FRONT DOOR FLANKED BY ONE OF TWO 6-LIGHT OVER 1-LIGHT SASH WINDOWS AT PHOTO RIGHT, AND OPEN DOORWAY TO BEDROOM NUMBER ONE (AND BEDROOM NUMBER TWO IN BACKGROUND) AT PHOTO LEFT. VIEW TO NORTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
Shock Waves in a Bose-Einstein Condensate
NASA Technical Reports Server (NTRS)
Kulikov, Igor; Zak, Michail
2005-01-01
A paper presents a theoretical study of shock waves in a trapped Bose-Einstein condensate (BEC). The mathematical model of the BEC in this study is a nonlinear Schroedinger equation (NLSE) in which (1) the role of the wave function of a single particle in the traditional Schroedinger equation is played by a space- and time-dependent complex order parameter (x,t) proportional to the square root of the density of atoms and (2) the atoms engage in a repulsive interaction characterized by a potential proportional to | (x,t)|2. Equations that describe macroscopic perturbations of the BEC at zero temperature are derived from the NLSE and simplifying assumptions are made, leading to equations for the propagation of sound waves and the transformation of sound waves into shock waves. Equations for the speeds of shock waves and the relationships between jumps of velocity and density across shock fronts are derived. Similarities and differences between this theory and the classical theory of sound waves and shocks in ordinary gases are noted. The present theory is illustrated by solving the equations for the example of a shock wave propagating in a cigar-shaped BEC.
Early light deprivation effects on human cone-driven retinal function.
Esposito Veneruso, Paolo; Ziccardi, Lucia; Magli, Giulia; Parisi, Vincenzo; Falsini, Benedetto; Magli, Adriano
2017-03-01
To assess whether the early light deprivation induced by congenital cataract may influence the cone-driven retinal function in humans. Forty-one patients affected by congenital cataract (CC) who had undergone uncomplicated cataract extraction surgery and intraocular lens implant, and 14 healthy subjects (HS) were enrolled. All patients underwent complete ophthalmological and orthoptic evaluations and best-corrected visual acuity (BCVA) measurement; light-adapted full-field electroretinograms (ERG) and photopic negative responses (PhNR) were recorded to obtain a reliable measurement of the outer/inner retinal function and of the retinal ganglion cells' function respectively. Mean values of light-adapted ERG a- and b-wave and PhNR amplitude of CC eyes were significantly reduced and photopic ERG b-wave implicit time mean values were significantly delayed when compared to HS ones. When studying photopic ERG mean amplitudes at 5 ms, significant differences were found when comparing CC and control eyes. In CC eyes, statistically significant correlations were found between a- and b- wave amplitudes and PhNR amplitudes. No significant correlations were found between ERG parameters and BCVA, as well as between the age of CC patients at surgery and the time elapsed from lens extraction. No significant differences were found when functional parameters of bilateral and unilateral congenital cataract (uCC) eyes were compared, however uCC eyes showed significant differences when compared with contralateral healthy eyes. We found a significant impairment of cone-driven retinal responses in patients with a history of congenital cataract. These changes might result from the long-lasting effects of early light deprivation on the cone retinal pathways. Our findings support the relevance of retinal involvement in deficits induced by early light deprivation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Fronts and waves of actin polymerization in a bistability-based mechanism of circular dorsal ruffles
NASA Astrophysics Data System (ADS)
Bernitt, Erik; Döbereiner, Hans-Günther; Gov, Nir S.; Yochelis, Arik
2017-06-01
During macropinocytosis, cells remodel their morphologies for the uptake of extracellular matter. This endocytotic mechanism relies on the collapse and closure of precursory structures, which are propagating actin-based, ring-shaped vertical undulations at the dorsal (top) cell membrane, a.k.a. circular dorsal ruffles (CDRs). As such, CDRs are essential to a range of vital and pathogenic processes alike. Here we show, based on both experimental data and theoretical analysis, that CDRs are propagating fronts of actin polymerization in a bistable system. The theory relies on a novel mass-conserving reaction-diffusion model, which associates the expansion and contraction of waves to distinct counter-propagating front solutions. Moreover, the model predicts that under a change in parameters (for example, biochemical conditions) CDRs may be pinned and fluctuate near the cell boundary or exhibit complex spiral wave dynamics due to a wave instability. We observe both phenomena also in our experiments indicating the conditions for which macropinocytosis is suppressed.
Fronts and waves of actin polymerization in a bistability-based mechanism of circular dorsal ruffles
Bernitt, Erik; Döbereiner, Hans-Günther; Gov, Nir S.; Yochelis, Arik
2017-01-01
During macropinocytosis, cells remodel their morphologies for the uptake of extracellular matter. This endocytotic mechanism relies on the collapse and closure of precursory structures, which are propagating actin-based, ring-shaped vertical undulations at the dorsal (top) cell membrane, a.k.a. circular dorsal ruffles (CDRs). As such, CDRs are essential to a range of vital and pathogenic processes alike. Here we show, based on both experimental data and theoretical analysis, that CDRs are propagating fronts of actin polymerization in a bistable system. The theory relies on a novel mass-conserving reaction–diffusion model, which associates the expansion and contraction of waves to distinct counter-propagating front solutions. Moreover, the model predicts that under a change in parameters (for example, biochemical conditions) CDRs may be pinned and fluctuate near the cell boundary or exhibit complex spiral wave dynamics due to a wave instability. We observe both phenomena also in our experiments indicating the conditions for which macropinocytosis is suppressed. PMID:28627511
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
SURFplus is a reactive burn model for high explosives aimed at modelling shock initiation and propagation of detonation waves. It utilizes the SURF model for the fast hot-spot reaction plus a slow reaction for the energy released by carbon clustering. A feature of the SURF model is that there is a partially decoupling between burn rate parameters and detonation wave properties. Previously, parameters for PBX 9502 that control shock ini- tiation had been calibrated to Pop plot data (distance-of-run to detonation as a function of shock pressure initiating the detonation). Here burn rate parameters for the high pres- sure regimemore » are adjusted to t the failure diameter and the limiting detonation speed just above the failure diameter. Simulated results are shown for an uncon ned rate stick when the 9502 diameter is slightly above and slightly below the failure diameter. Just above the failure diameter, in the rest frame of the detonation wave, the front is sonic at the PBX/air interface. As a consequence, the lead shock in the neighborhood of the interface is supported by the detonation pressure in the interior of the explosive rather than the reaction immediately behind the front. In the interior, the sonic point occurs near the end of the fast hot-spot reaction. Consequently, the slow carbon clustering reaction can not a ect the failure diameter. Below the failure diameter, the radial extent of the detonation front decreases starting from the PBX/air interface. That is, the failure starts at the PBX boundary and propagates inward to the axis of the rate stick.« less
Determination of wave speed and wave separation in the arteries.
Khir, A W; O'Brien, A; Gibbs, J S; Parker, K H
2001-09-01
Considering waves in the arteries as infinitesimal wave fronts rather than sinusoidal wavetrains, the change in pressure across the wave front, dP, is related to the change in velocity, dU, that it induces by the "water hammer" equation, dP=+/-rhocdU, where rho is the density of blood and c is the local wave speed. When only unidirectional waves are present, this relationship corresponds to a straight line when P is plotted against U with slope rhoc. When both forward and backward waves are present, the PU-loop is no longer linear. Measurements in latex tubes and systemic and pulmonary arteries exhibit a linear range during early systole and this provides a way of determining the local wave speed from the slope of the linear portion of the loop. Once the wave speed is known, it is also possible to separate the measured P and U into their forward and backward components. In cases where reflected waves are prominent, this separation of waves can help clarify the pattern of waves in the arteries throughout the cardiac cycle.
NASA Astrophysics Data System (ADS)
Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin
2018-03-01
Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.
Sensory Function: Insights From Wave 2 of the National Social Life, Health, and Aging Project
Kern, David W.; Wroblewski, Kristen E.; Chen, Rachel C.; Schumm, L. Philip; McClintock, Martha K.
2014-01-01
Objectives. Sensory function, a critical component of quality of life, generally declines with age and influences health, physical activity, and social function. Sensory measures collected in Wave 2 of the National Social Life, Health, and Aging Project (NSHAP) survey focused on the personal impact of sensory function in the home environment and included: subjective assessment of vision, hearing, and touch, information on relevant home conditions and social sequelae as well as an improved objective assessment of odor detection. Method. Summary data were generated for each sensory category, stratified by age (62–90 years of age) and gender, with a focus on function in the home setting and the social consequences of sensory decrements in each modality. Results. Among both men and women, older age was associated with self-reported impairment of vision, hearing, and pleasantness of light touch. Compared with women, men reported significantly worse hearing and found light touch less appealing. There were no gender differences for vision. Overall, hearing loss seemed to have a greater impact on social function than did visual impairment. Discussion. Sensory function declines across age groups, with notable gender differences for hearing and light touch. Further analysis of sensory measures from NSHAP Wave 2 may provide important information on how sensory declines are related to health, social function, quality of life, morbidity, and mortality in this nationally representative sample of older adults. PMID:25360015
Speed of fast and slow rupture fronts along frictional interfaces
NASA Astrophysics Data System (ADS)
Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Thøgersen, Kjetil; Scheibert, Julien; Malthe-Sørenssen, Anders
2015-07-01
The transition from stick to slip at a dry frictional interface occurs through the breaking of microjunctions between the two contacting surfaces. Typically, interactions between junctions through the bulk lead to rupture fronts propagating from weak and/or highly stressed regions, whose junctions break first. Experiments find rupture fronts ranging from quasistatic fronts, via fronts much slower than elastic wave speeds, to fronts faster than the shear wave speed. The mechanisms behind and selection between these fronts are still imperfectly understood. Here we perform simulations in an elastic two-dimensional spring-block model where the frictional interaction between each interfacial block and the substrate arises from a set of junctions modeled explicitly. We find that material slip speed and rupture front speed are proportional across the full range of front speeds we observe. We revisit a mechanism for slow slip in the model and demonstrate that fast slip and fast fronts have a different, inertial origin. We highlight the long transients in front speed even along homogeneous interfaces, and we study how both the local shear to normal stress ratio and the local strength are involved in the selection of front type and front speed. Last, we introduce an experimentally accessible integrated measure of block slip history, the Gini coefficient, and demonstrate that in the model it is a good predictor of the history-dependent local static friction coefficient of the interface. These results will contribute both to building a physically based classification of the various types of fronts and to identifying the important mechanisms involved in the selection of their propagation speed.
Qiao, Mu; Liu, Honglin; Pang, Guanghui; Han, Shensheng
2017-08-29
Manipulating light non-invasively through inhomogeneous media is an attractive goal in many disciplines. Wavefront shaping and optical phase conjugation can focus light to a point. Transmission matrix method can control light on multiple output modes simultaneously. Here we report a non-invasive approach which enables three-dimension (3D) light control between two turbid layers. A digital optical phase conjugation mirror measured and conjugated the diffused wavefront, which originated from a quasi-point source on the front turbid layer and passed through the back turbid layer. And then, because of memory effect, the phase-conjugated wavefront could be used as a carrier wave to transport a pre-calculated wavefront through the back turbid layer. The pre-calculated wavefront could project a desired 3D light field inside the sample, which, in our experiments, consisted of two 220-grid ground glass plates spaced by a 20 mm distance. The controllable range of light, according to the memory effect, was calculated to be 80 mrad in solid angle and 16 mm on z-axis. Due to the 3D light control ability, our approach may find applications in photodynamic therapy and optogenetics. Besides, our approach can also be combined with ghost imaging or compressed sensing to achieve 3D imaging between turbid layers.
Layer-oriented simulation tool.
Arcidiacono, Carmelo; Diolaiti, Emiliano; Tordi, Massimiliano; Ragazzoni, Roberto; Farinato, Jacopo; Vernet, Elise; Marchetti, Enrico
2004-08-01
The Layer-Oriented Simulation Tool (LOST) is a numerical simulation code developed for analysis of the performance of multiconjugate adaptive optics modules following a layer-oriented approach. The LOST code computes the atmospheric layers in terms of phase screens and then propagates the phase delays introduced in the natural guide stars' wave fronts by using geometrical optics approximations. These wave fronts are combined in an optical or numerical way, including the effects of wave-front sensors on measurements in terms of phase noise. The LOST code is described, and two applications to layer-oriented modules are briefly presented. We have focus on the Multiconjugate adaptive optics demonstrator to be mounted upon the Very Large Telescope and on the Near-IR-Visible Adaptive Interferometer for Astronomy (NIRVANA) interferometric system to be installed on the combined focus of the Large Binocular Telescope.
Integration of transmissible organic electronic devices for sensor application
NASA Astrophysics Data System (ADS)
Tam, Hoi Lam; Wang, Xizu; Zhu, Furong
2013-09-01
A high performance proximity sensor that integrates a front semitransparent organic photodiode (OPD) and an organic light-emitting diode (OLED) is demonstrated. A 0.3-nm-thick plasma-polymerized fluorocarbon film (CFX)-modified thin silver interlayer, serving simultaneously as a semitransparent cathode for the OPD and an anode for OLED, is used to vertically connect the functional organic electronic components. A microcavity OLED is formed between a semitransparent Ag/CFX interlayer and the rear Al cathode enhancing the forward electroluminescence emission in the integrated device. The semitransparent-OPD/OLED stack is designed using an optical admittance analysis method. In the integrated sensor, the front semitransparent OPD component enables a high transmission of light emitted by the integrated OLED unit and a high absorption when light is reflected from objects, thereby to increase the signal/noise ratio. The design and fabrication flexibility of an integrated semitransparent-OPD/OLED device also has cost benefit, making it possible for application in organic proximity sensors.
Weiss, Jonathan D.
1995-01-01
A shock velocity and damage location sensor providing a means of measuring shock speed and damage location. The sensor consists of a long series of time-of-arrival "points" constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the "points" of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor.
Weiss, J.D.
1995-08-29
A shock velocity and damage location sensor providing a means of measuring shock speed and damage location is disclosed. The sensor consists of a long series of time-of-arrival ``points`` constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the ``points`` of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor. 6 figs.
EGF Search for Compound Source Time Functions in Microearthquakes
NASA Astrophysics Data System (ADS)
Ampuero, J.; Rubin, A. M.
2003-12-01
Numerical simulations of stopping ruptures on bimaterial interfaces seem to indicate a pronounced asymmetry in the time it takes to reach the peak Coulomb stress shortly beyond the rupture ends. For the rupture front moving in the direction of slip of the stiffer medium, the timescale is controlled by the arrival of stopping phases from the opposite side of the crack, but for the opposite rupture front this timescale is controlled by the much shorter-duration tensile stress pulse that moves in front of the crack tip as it slows down. This behavior may have implications for rupture complexity on bimaterial interfaces. In addition to observing an asymmetry in aftershock occurrence on the San Andreas fault, Rubin and Gillard (2000) noted that for all 5 of the compound earthquakes they observed in a cluster of 72 events, the second subevent occurred to the NW of the first (that is, near the rupture front moving in the direction of slip of the stiffer medium). They suggested that these 5``second events'' were simply examples of ``early aftershocks'' which also occur preferentially to the NW; however, the fact that these 5 earthquakes could not be recognized as compound at stations located to the SE indicates that the second event actually occurred on the timescale of the passage of the dynamic stress waves. Thus, observations of asymmetry in rupture complexity may form an independent dataset, complimentary to observations of aftershock asymmetry, for constraining models of rupture on bimaterial interfaces. Microseismicity recorded on dense seismological networks has proved interesting for earthquake physics because the high number of events allows one to gain statistical insight into the observed source properties. However, microearthquakes are usually so small that the range of methods that can be applied to their analysis is limited and of low resolution. To address the questions raised above we would like to characterize the source time functions (STF) of a large number of microearthquakes, in particular the statistics of compound events and the possible asymmetry of their spatial distribution. We will show results of the systematic application of empirical Green's function deconvolution methods to a large dataset from the Parkfield HRSN. On the methodological side the performance and robustness of various deconvolution schemes is tested. These range from trivially stabilized spectral division to projected Landweber and blind deconvolution. Use is also made of the redundance available in highly clustered seismicity with many similar seismograms. The observations will be interpreted in the light of recent numerical simulations of dynamic rupture on bimaterial interfaces (see abstract of Rubin and Ampuero).
Patterns of spiral wave attenuation by low-frequency periodic planar fronts
NASA Astrophysics Data System (ADS)
de la Casa, Miguel A.; de la Rubia, F. Javier; Ivanov, Plamen Ch.
2007-03-01
There is evidence that spiral waves and their breakup underlie mechanisms related to a wide spectrum of phenomena ranging from spatially extended chemical reactions to fatal cardiac arrhythmias [A. T. Winfree, The Geometry of Biological Time (Springer-Verlag, New York, 2001); J. Schutze, O. Steinbock, and S. C. Muller, Nature 356, 45 (1992); S. Sawai, P. A. Thomason, and E. C. Cox, Nature 433, 323 (2005); L. Glass and M. C. Mackey, From Clocks to Chaos: The Rhythms of Life (Princeton University Press, Princeton, 1988); R. A. Gray et al., Science 270, 1222 (1995); F. X. Witkowski et al., Nature 392, 78 (1998)]. Once initiated, spiral waves cannot be suppressed by periodic planar fronts, since the domains of the spiral waves grow at the expense of the fronts [A. N. Zaikin and A. M. Zhabotinsky, Nature 225, 535 (1970); A. T. Stamp, G. V. Osipov, and J. J. Collins, Chaos 12, 931 (2002); I. Aranson, H. Levine, and L. Tsimring, Phys. Rev. Lett. 76, 1170 (1996); K. J. Lee, Phys. Rev. Lett. 79, 2907 (1997); F. Xie, Z. Qu, J. N. Weiss, and A. Garfinkel, Phys. Rev. E 59, 2203 (1999)]. Here, we show that introducing periodic planar waves with long excitation duration and a period longer than the rotational period of the spiral can lead to spiral attenuation. The attenuation is not due to spiral drift and occurs periodically over cycles of several fronts, forming a variety of complex spatiotemporal patterns, which fall into two distinct general classes. Further, we find that these attenuation patterns only occur at specific phases of the descending fronts relative to the rotational phase of the spiral. We demonstrate these dynamics of phase-dependent spiral attenuation by performing numerical simulations of wave propagation in the excitable medium of myocardial cells. The effect of phase-dependent spiral attenuation we observe can lead to a general approach to spiral control in physical and biological systems with relevance for medical applications.
Wave activity in the neighborhood of the bowshock of Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagdeev, R.Z.; Shapiro, V.D.; Shevchenko, V.I.
Plasma wave activity in the neighborhood of the Martial bow shock were measured for the first time by the Soviet spacecraft Phobos-2 in a wide frequency range from dc to 150 kHz. The wave activity varied in character as the spacecraft moved across different plasma regions: in the neighborhood of the Martian bow shock, inside the magnetosheath and in the tail region. In this paper the authors provide suggestions for the processes responsible for these plasma waves. The most interesting peculiarities of the wave activity around Mars is the sharp increase of wave intensity in the magnetosheath region. This increasemore » is attributed to two different physical mechanisms. High frequency waves are excited at the shock front due to currents flowing along the front; these ion acoustic waves are convected inside by the solar wind. The low frequency waves ({approximately}100 Hz) close to the inside boundary were, they believe, generated by heavy Martian ions diffusing through the planetopause into the magnetosheath.« less
Controllable Planar Optical Focusing System
NASA Technical Reports Server (NTRS)
Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)
2016-01-01
An optical device has a first metasurface disposed over a substrate. A high-contrast pattern of the first metasurface is operable for modifying, over a first phase profile, a phase front of an incident light beam. A second metasurface, is disposed over a plane parallel to the first metasurface with a second high-contrast pattern and operable for shaping, over a second phase profile, the modified phase front of the incident light beam into a converging spherical phase front. A spacer layer, in which the modified phase front of the incident light beam diffracts, is disposed in a controllably changeable separation between the first and second metasurfaces. Controllably changing the separation between the first and the second metasurfaces by a first distance correspondingly changes the position of the focus point of the converging spherical phase front by a second distance significantly greater than the first distance.
The Epstein–Glaser causal approach to the light-front QED{sub 4}. II: Vacuum polarization tensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bufalo, R., E-mail: rodrigo.bufalo@helsinki.fi; Instituto de Física Teórica; Pimentel, B.M., E-mail: pimentel@ift.unesp.br
2014-12-15
In this work we show how to construct the one-loop vacuum polarization for light-front QED{sub 4} in the framework of the perturbative causal theory. Usually, in the canonical approach, it is considered for the fermionic propagator the so-called instantaneous term, but it is known in the literature that this term is controversial because it can be omitted by computational reasons; for instance, by compensation or vanishing by dimensional regularization. In this work we propose a solution to this paradox. First, in the Epstein–Glaser causal theory, it is shown that the fermionic propagator does not have instantaneous term, and with thismore » propagator we calculate the one-loop vacuum polarization, from this calculation it follows the same result as those obtained by the standard approach, but without reclaiming any extra assumptions. Moreover, since the perturbative causal theory is defined in the distributional framework, we can also show the reason behind our obtaining the same result whether we consider or not the instantaneous fermionic propagator term. - Highlights: • We develop the Epstein–Glaser causal approach for light-front field theory. • We evaluate in detail the vacuum polarization at one-loop for the light-front QED. • We discuss the subtle issues of the Instantaneous part of the fermionic propagator in the light-front. • We evaluate the vacuum polarization at one-loop for the light-front QED with the Instantaneous fermionic part.« less
Propagation of a shock wave in a radiating spherically symmetric distribution of matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, L.; Nunez, L.
1987-08-01
A method used to study the evolution of radiating spheres reported by Herrera et al. (1980) is extended to the case in which the sphere is divided in two regions by a shock wave front. The equations of state at both sides of the shock are different, and the solutions are matched on it via the Rankine-Hugoniot conditions. The outer-region metric is matched with a Vaidya solution on the boundary surface of the sphere. As an example of the procedure, two known solutions for radiating systems are considered. The matter distribution is free of singularities everywhere within the sphere andmore » a Gaussian-like pulse is assumed to carry out a fraction of the total mass. Exploding models are then obtained. Finally, the results are discussed in the light of recent work on gravitational collapse and supernovae. 29 references.« less
Precision Targeting With a Tracking Adaptive Optics Scanning Laser Ophthalmoscope
2006-01-01
automatic high- resolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an...structures can lead to earlier detection of retinal diseases such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Combined...optics systems sense perturbations in the detected wave-front and apply corrections to an optical element that flatten the wave-front and allow near
Experimental Investigation of Turbojet Thrust Augmentation Using an Ejector
2007-03-01
mechanisms in which a particle can exchange energy. Thrust augmenting devices can be divided into two categories: ones that exchange net work or heat and...two categories from the energy equation discussion above. Thrust augmentation is achieved through turbulent entrainment where work and/or heat is...front sustained by compression waves from a trailing reaction zone. A deflagration wave is a subsonic flame front sustained by heat transfer
NASA Astrophysics Data System (ADS)
Gao, Y.; Wang, Q.; SHI, Y.
2017-12-01
There are orogenic belts and strong deformation in northeastern zone of Tibetan Plateau. The media in crust and in the upper mantle are seismic anisotropic there. This study uses seismic records by permanent seismic stations and portable seismic arrays, and adopts analysis techniques on body waves to obtain spatial anisotropic distribution in northeastern front zone of Tibetan Plateau. With seismic records of small local earthquakes, we study shear-wave splitting in the upper crust. The polarization of fast shear wave (PFS) can be obtained, and PFS is considered parallel to the strike of the cracks, as well as the direction of maximum horizontal compressive stress. However, the result shows the strong influence from tectonics, such as faults. It suggests multiple-influence including stress and fault. Spatial distribution of seismic anisotropy in study zone presents the effect in short range. PFS at the station on the strike-slip fault is quite different to PFS at station just hundreds of meters away from the fault. With seismic records of teleseismic waveforms, we obtained seismic anisotropy in the whole crust by receiver functions. The PFS directions from Pms receiver functions show consistency, generally in WNW. The time-delay of slow S phases is significant. With seismic records of SKS, PKS and SKKS phases, we can detect seismic anisotropy in the upper mantle by splitting analysis. The fast directions of these phases also show consistency, generally in WNW, similar to those of receiver functions, but larger time-delays. It suggests significant seismic anisotropy in the crust and crustal deformation is coherent to that in the upper mantle.Seismic anisotropy in the upper crust, in the whole crust and in the upper mantle are discussed both in difference and tectonic implications [Grateful to the support by NSFC Project 41474032].
Li, Zhenghan; Li, Xinyang
2018-04-30
Real time transverse wind estimation contributes to predictive correction which is used to compensate for the time delay error in the control systems of adaptive optics (AO) system. Many methods that apply Shack-Hartmann wave-front sensor to wind profile measurement have been proposed. One of the obvious problems is the lack of a fundamental benchmark to compare the various methods. In this work, we present the fundamental performance limits for transverse wind estimator from Shack-Hartmann wave-front sensor measurements using Cramér-Rao lower bound (CRLB). The bound provides insight into the nature of the transverse wind estimation, thereby suggesting how to design and improve the estimator in the different application scenario. We analyze the theoretical bound and find that factors such as slope measurement noise, wind velocity and atmospheric coherence length r 0 have important influence on the performance. Then, we introduced the non-iterative gradient-based transverse wind estimator. The source of the deterministic bias of the gradient-based transverse wind estimators is analyzed for the first time. Finally, we derived biased CRLB for the gradient-based transverse wind estimators from Shack-Hartmann wave-front sensor measurements and the bound can predict the performance of estimator more accurately.
NASA Astrophysics Data System (ADS)
Remo, John L.
2010-10-01
An electro-optic laser probe was developed to obtain parameters for high energy density equations of state (EoS), Hugoniot pressures (PH), and strain rates for high energy density laser irradiation intensity, I, experiments at ˜170 GW/cm2 (λ = 1064 nm) to ˜13 TW/cm2 (λ = 527 nm) on Al, Cu, Ti, Fe, Ni metal targets in a vacuum. At I ˜7 TW/cm2 front surface plasma pressures and temperatures reached 100's GPa and over two million K. Rear surface PH ranged from 7-120 GPa at average shock wave transit velocities 4.2-8.5 km/s, depending on target thickness and I. A surface plasma compression ˜100's GPa generated an impulsive radial expanding shock wave causing compression, rarefactions, and surface elastic and plastic deformations depending on I. A laser/fiber optic system measured rear surface shock wave emergence and particle velocity with ˜3 GHz resolution by monitoring light deflection from diamond polished rear surfaces of malleable metallic targets, analogous to an atomic force microscope. Target thickness, ˜0.5-2.9 mm, prevented front surface laser irradiation penetration, due to low radiation skin depth, from altering rear surface reflectivity (refractive index). At ˜10 TW electromagnetic plasma pulse noise generated from the target chamber overwhelmed detector signals. Pulse frequency analysis using Moebius loop antennae probed transient noise characteristics. Average shock (compression) and particle (rear surface displacement) velocity measurements determined rear surface PH and GPa) EoS that are compared with gas guns.
NASA Astrophysics Data System (ADS)
Coelho, Flávio S.; Sampaio, Marco O. P.
2016-05-01
We analyze the causal structure of the two-dimensional (2D) reduced background used in the perturbative treatment of a head-on collision of two D-dimensional Aichelburg-Sexl gravitational shock waves. After defining all causal boundaries, namely the future light-cone of the collision and the past light-cone of a future observer, we obtain characteristic coordinates using two independent methods. The first is a geometrical construction of the null rays which define the various light cones, using a parametric representation. The second is a transformation of the 2D reduced wave operator for the problem into a hyperbolic form. The characteristic coordinates are then compactified allowing us to represent all causal light rays in a conformal Carter-Penrose diagram. Our construction holds to all orders in perturbation theory. In particular, we can easily identify the singularities of the source functions and of the Green’s functions appearing in the perturbative expansion, at each order, which is crucial for a successful numerical evaluation of any higher order corrections using this method.
Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 1: Basic theory.
Berkouk, K; Carpenter, P W; Lucey, A D
2003-12-01
Our work is motivated by ideas about the pathogenesis of syringomyelia. This is a serious disease characterized by the appearance of longitudinal cavities within the spinal cord. Its causes are unknown, but pressure propagation is probably implicated. We have developed an inviscid theory for the propagation of pressure waves in co-axial, fluid-filled, elastic tubes. This is intended as a simple model of the intraspinal cerebrospinal-fluid system. Our approach is based on the classic theory for the propagation of longitudinal waves in single, fluid-filled, elastic tubes. We show that for small-amplitude waves the governing equations reduce to the classic wave equation. The wave speed is found to be a strong function of the ratio of the tubes' cross-sectional areas. It is found that the leading edge of a transmural pressure pulse tends to generate compressive waves with converging wave fronts. Consequently, the leading edge of the pressure pulse steepens to form a shock-like elastic jump. A weakly nonlinear theory is developed for such an elastic jump.
NASA Astrophysics Data System (ADS)
Roy, Sabyasachi; Choudhury, D. K.
2014-03-01
Nambu-Goto action for bosonic string predicts the quark-antiquark potential to be V(r) = -γ/r + σr + μ0. The coefficient γ = π(d - 2)/24 is the Lüscher coefficient of the Lüscher term 7/r, which depends upon the space-time dimension 'd'. Very recently, we have developed meson wave functions in higher dimension with this potential from higher dimensional Schrodinger equation by applying quantum mechanical perturbation technique with both Lüscher term as parent and as perturbation. In this letter, we analyze Isgur-Wise function for heavy-light mesons using these wave functions in higher dimension and make a comparative study on the status of the perturbation technique in both the cases.
Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P
2016-09-07
We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B. -L.; Chang, L.; Ding, M.
A symmetry-preserving truncation of the two-body light-quark bound-state problem in relativistic quantum field theory is used to calculate the leading-twist parton distribution amplitudes (PDAs) of scalar systems, both ground-state and radial excitations, and the radial excitations of vector mesons. Owing to the fact that the scale-independent leptonic decay constant of a scalar meson constituted from equal-mass valence-constituents vanishes, it is found that the PDA of a given scalar system possesses one more zero than that of an analogous vector meson. Consequently, whereas the mean light-front relative momentum of the valence-constituents within a vector meson is zero, that within a scalarmore » meson is large, an outcome which hints at a greater role for light-front angular momentum in systems classified as P-wave in quantum mechanical models. Values for the scale-dependent decay constants of ground-state scalar and vector systems are a by-product of this analysis, and they turn out to be roughly equal, viz. ≃ 0.2 GeV at an hadronic scale. In addition, it is confirmed that the dilation characterising ground-state PDAs is manifest in the PDAs of radial excitations too. The impact of SU(3)-flavour symmetry breaking is also considered. When compared with pseudoscalar states, it is a little stronger in scalar systems, but the size is nevertheless determined by the flavour-dependence of dynamical chiral symmetry breaking and the PDAs are still skewed toward the heavier valence-quark in asymmetric systems.« less
NASA Astrophysics Data System (ADS)
Mazova, Raissa; Kisel'Man, Broneslav; Baranova, Natalya; Lobkovsky, Leopold
2010-05-01
The analysis of the Indian Ocean earthquake and tsunami on 26 December 2004 carried out in a number of works demonstrates that rupture process in the seismic source was realized during several minutes. In some works, there was suggested that a source probably consists of several segments with width near above hundred of kilometers and with total length more than 1000 km. Such a picture is consistent with subduction keyboard model of tsunamigenic earthquake (see, e.g. [1]) which treats the anomalously long source of Indian Ocean tsunami, caused by oblique subduction, as a multiblock piston mechanism with non-simultaneous realization of each block. Because of existing in literature uncertainty with source structure and movements at all its extent, it is interesting for given event to study in details the dependence of characteristics of surface water wave induced by seismic source on its extent [1,2]. In the work it was studied the influence of submarine seismic source extention to wave field distribution in basin of Bengal bay and central part of Indian ocean. To analyze, it was considered separately the influence of large segment of seismic source for given tsunami. On the basis of keyboard model it is considered the earthquake origin with extension near 1200 km comprises 3 seismic source: Sumatran, Andaman and Nicobar ones, each of which comprises 6, 4 and 3 keyboard blocks, respectively (1, 2 and 3 scenarios). It was calculated the maximal vertical displacement of these segments on 2-5 meters. The velocity of block movement was taken in correspondence with available data on characteristic times in the source. For scenario 1 tsunami source, formed at the ocean surface, generates almost circular wave which, due to bathymetry of given basin, preserve its form and propagates most quickly in west and south-west direction. To north-east, to Indian coast, the wave came with large delay, as compared with records of real mareographs. As follows from the wave field picture for second series of calculations, the wave front, as it was expected, becomes to be more elongated, and the time of approach of the wave front up to east Indian coast is decreased, as compared with the case of wave generation by only Sumatra segment. At turning on of third segment wave field is characterized by else more elongated to north wave front, and time of approach of wave front the south-east Indian coast is more decreased. It's seen that from the source side faced to Bengal bay there are well pronounced three wave fronts in correspondence with marked segments. These fronts evolve then in plane enough united front with bend in the region of Nicobar islands. The change of wave field character for three taken cases is well seen on accounted satellite altimetry. Adequateness of the calculations performed was verified by comparison of mareograms, obtained from real mareographs with records of virtual mareographs placed us in calculating basin and obtained by us for each scenario. The same verification was performed by comparison of real altimetric records of satellite "Yason-1" with virtual altimetric record obtained by us for each scenario. The computations performed explain the complex character of tsunami wave propagation for given earthquake. This work was supported by the Russian Foundation for Basic Research, project no. 08-05-01027 1.Lobkovsky L.I., Mazova R.Kh. The mechanism of source of Indian Ocean tsunami 2004: analysis and numerical simulation // Physics of Earth, v.43, № 7, pp.46-56, 2007. 2.Lobkovsky L.I., Mazova R.Kh., Garagash I.A., Kataeva L.Yu., Nardin I. To analysis of source mechanism of the 26 December 2004 Indian Ocean tsunami, Russ.J.Earth Sci. V.8, ES5001, doi:10.2205/2006ES000208 http://dx.doi.org/ 10.2205/2006ES000208 (2006b).
The physical basis for absorption of light. [effects on wave functions of gas molecules and atoms
NASA Technical Reports Server (NTRS)
Pickett, H. M.
1979-01-01
The effects of light absorption on the wave functions of gas-phase molecules and atoms are investigated by high resolution spectral measurements of radiation emerging from a sample. A Stark-modulated sample of methyl fluoride was irradiated at the 102 GHz rotational transition and the emergent radiation was resolved by means of a spectrum analyzer. For signal oscillator frequencies below or above the molecular resonance by one modulation frequency, the amplitudes of the upper and lower modulation sidebands are found to be of nonuniform intensity, which is inconsistent with amplitude modulation. Emission due to polarization is, however, calculated to be consistent with the results observed, indicating that light absorption should be considered as a subtractive stimulated emission.
NASA Technical Reports Server (NTRS)
Wilkniss, P. E.; Rodgers, E. B.; Swinnerton, J. W.; Larson, R. E.; Lamontagne, R. A.
1979-01-01
Descriptions of the intertropical convergence zones (ITCZ) in the tropical Pacific have been obtained from shipboard measurements of Rn-222, CO, and CH4 in combination with conventional meteorological data and satellite images. The intertropical convergence zone is marked by light shifting waves near an area of heavy cloud cover and precipitation, and appears to be located north and south of the south equatorial current. A 'second' ITCZ with the same atmospheric features was encountered just north of the south equatorial current in the Southern Hemisphere. Atmospheric Rn-222 increases north of the ITCZ and serves as a sensitive indicator for this atmospheric boundary.
NASA Technical Reports Server (NTRS)
Davis, R. E.; Champine, R. A.; Ehernberger, L. J.
1979-01-01
The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encouraged on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program. The flight planning, operations, and turbulence forecasting aspects conducted with the B-57B aircraft are presented.
Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface.
Zhu, Z; Liu, H; Wang, D; Li, Y X; Guan, C Y; Zhang, H; Shi, J H
2016-11-22
Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell's law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping.
Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface
Zhu, Z.; Liu, H.; Wang, D.; Li, Y. X.; Guan, C. Y.; Zhang, H.; Shi, J. H.
2016-01-01
Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping. PMID:27874053
Radiation sensitive area detection device and method
NASA Technical Reports Server (NTRS)
Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)
1991-01-01
A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.
NASA Technical Reports Server (NTRS)
Moore, J. H.
1973-01-01
A model was developed for the switching radiometer utilizing a continuous method of calibration. Sources of system degradation were identified and include losses and voltage standing wave ratios in front of the receiver input. After computing the three modes of operation, expressions were developed for the normalized radiometer output, the minimum detectable signal (normalized RMS temperature fluctuation), sensitivity, and accuracy correction factors).
Quantum cybernetics and its test in “late choice” experiments
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
1986-11-01
A relativistically invariant wave equation for the propagation of wave fronts S = const ( S being the action function) is derived on the basis of a cybernetic model of quantum systems involving “hidden variables”. This equation can be considered both as an expression of Huygens' principle and as a general continuity equation providing a close link between classical and quantum mechanics. Although the theory reproduces ordinary quantum mechanics, there are particular situations providing experimental predictions differing from those existing theories. Such predictions are made for so-called “late choice” experiments, which are modified versions of the familiar “delayed choice” experiments.
Fundamental limits on isoplanatic correction with multiconjugate adaptive optics
NASA Astrophysics Data System (ADS)
Lloyd-Hart, Michael; Milton, N. Mark
2003-10-01
We investigate the performance of a general multiconjugate adaptive optics (MCAO) system in which signals from multiple reference beacons are used to drive several deformable mirrors in the optical beam train. Taking an analytic approach that yields a detailed view of the effects of low-order aberration modes defined over the metapupil, we show that in the geometrical optics approximation, N deformable mirrors conjugated to different ranges can be driven to correct these modes through order N with unlimited isoplanatic angle, regardless of the distribution of turbulence along the line of sight. We find, however, that the optimal deformable mirror shapes are functions of target range, so the best compensation for starlight is in general not the correction that minimizes the wave-front aberration in a laser guide beacon. This introduces focal anisoplanatism in the wave-front measurements that can be overcome only through the use of beacons at several ranges. We derive expressions for the number of beacons required to sense the aberration to arbitrary order and establish necessary and sufficient conditions on their geometry for both natural and laser guide stars. Finally, we derive an expression for the residual uncompensated error by mode as a function of field angle, target range, and MCAO system geometry.
NASA Astrophysics Data System (ADS)
Li, Guoqiang; Eralp, Muhsin; Thomas, Jayan; Tay, Savaş; Schülzgen, Axel; Norwood, Robert A.; Peyghambarian, N.
2005-04-01
All-optical real-time dynamic correction of wave front aberrations for image transmission is demonstrated using a photorefractive polymeric hologram. The material shows video rate response time with a low power laser. High-fidelity, high-contrast images can be reconstructed when the oil-filled phase plate generating atmospheric-like wave front aberrations is moved at 0.3mm/s. The architecture based on four-wave mixing has potential application in free-space optical communication, remote sensing, and dynamic tracking. The system offers a cost-effective alternative to closed-loop adaptive optics systems.
Selected Topics in Light Front Field Theory and Applications to the High Energy Phenomena
NASA Astrophysics Data System (ADS)
Kundu, Rajen
1999-10-01
In this thesis, we have presented some of the aspects of light-front (LF) field theory through their successful application in the Deep Inelastic Scattering (DIS). We have developed a LFQCD Hamiltonian description of the DIS structure functions starting from Bjorken-Johnson-Low limit of virtual forward Compton scattering amplitude and using LF current commutators. We worked in the LF gauge A^+=0 and used the old-fashioned LFQCD perturbation theory in our calculations. The importance of our work are summarized below. Our approach shares the intution of parton model and addresses directly the structure functions, which are experimental objects, instead of its moments as in OPE method. Moreover, it can potentially incorporate the non-perturbative contents of the structure functions as we have demonstrated by introducing a new factorization scheme. In the context of nucleonic helicity structure, the well known gauge fixed LF helicity operator is shown to provide consistent physical information and helps us defining new relevant structure functions. The anomalous dimensions relevant for the Q^2-evolution of such structure functions are calculated. Our study is important in establishing the equivalance of LF field theory and the usual equal-time one through perturbative calculations of the dressed parton structure functions reproducing the well known results. Also the importance of Gallilean boost symmetry in understanding the correctness of any higher order calculation using (x^+)-ordered LFQCD perturbation theory are emphasized.
Wang, Yong; Yu, Yu-Song; Li, Guo-Xiu; Jia, Tao-Ming
2017-01-05
The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern's Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu's, Varde's and Merrigton's model). It is found that the Merrigton's model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton's model is fitted with experimental results.
Wang, Yong; Yu, Yu-song; Li, Guo-xiu; Jia, Tao-ming
2017-01-01
The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern’s Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu’s, Varde’s and Merrigton’s model). It is found that the Merrigton’s model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton’s model is fitted with experimental results. PMID:28054555
Self-similar relativistic blast waves with energy injection
NASA Astrophysics Data System (ADS)
van Eerten, Hendrik
2014-08-01
A sufficiently powerful astrophysical source with power-law luminosity in time will give rise to a self-similar relativistic blast wave with a reverse shock travelling into the ejecta and a forward shock moving into the surrounding medium. Once energy injection ceases and the last energy is delivered to the shock front, the blast wave will transit into another self-similar stage depending only on the total amount of energy injected. I describe the effect of limited duration energy injection into environments with density depending on radius as a power law, emphasizing optical/X-ray Gamma-ray Burst afterglows as applications. The blast wave during injection is treated analytically, the transition following last energy injection with one-dimensional simulations. Flux equations for synchrotron emission from the forward and reverse shock regions are provided. The reverse shock emission can easily dominate, especially with different magnetizations for both regions. Reverse shock emission is shown to support both the reported X-ray and optical correlations between afterglow plateau duration and end time flux, independently of the luminosity power-law slope. The model is demonstrated by application to bursts 120521A and 090515, and can accommodate their steep post-plateau light-curve slopes.
Quantum vacuum emission from a moving refractive index front
NASA Astrophysics Data System (ADS)
Jacquet, M.; König, F.
2015-09-01
We investigate the spontaneous emission of light from the quantum vacuum in a dispersive dielectric at a moving Refractive Index Front (RIF). Our aim is to develop further an existing analytical model to fully characterize the emission and calculate its spectrum in different configurations. We show in which conditions the RIF acts as a point of non-return, an artificial black hole event horizon, for modes of the field. We calculate the spectrum of this emission and the number of photons emitted from the vacuum in the unique escaping mode as a function of the RIF height and velocity in the medium.
Initiation and structures of gaseous detonation
NASA Astrophysics Data System (ADS)
Vasil'ev, A. A.; Vasiliev, V. A.
2018-03-01
The analysis of the initiation of a detonation wave (DW) and the emergence of a multi-front structure of the DW-front are presented. It is shown that the structure of the DW arises spontaneously at the stage of a strong overdriven of the wave. The hypothesis of the gradual enhancement of small perturbations on an initially smooth initiating blast wave, traditionally used in the numerical simulation of multi-front detonation, does not agree with the experimental data. The instability of the DW is due to the chemical energy release of the combustible mixture Q. A technique for determining the Q-value of mixture was proposed, based on reconstruction of the trajectory of the expanding wave from the position of the strong explosion model. The wave trajectory at the critical initiation of a multifront detonation in a combustible mixture is compared with the trajectory of an explosive wave from the same initiator in an inert mixture whose gas-dynamic parameters are equivalent to the parameters of the combustible mixture. The energy release of a mixture is defined as the difference in the joint energy release of the initiator and the fuel mixture during the critical initiation and energy release of the initiator when the blast wave is excited in an inert mixture. Observable deviations of the experimental profile of Q from existing model representations were found.
Resolving the depth of fluorescent light by structured illumination and shearing interferometry
NASA Astrophysics Data System (ADS)
Schindler, Johannes; Elmaklizi, Ahmed; Voit, Florian; Hohmann, Ansgar; Schau, Philipp; Brodhag, Nicole; Krauter, Philipp; Frenner, Karsten; Kienle, Alwin; Osten, Wolfgang
2016-03-01
A method for the depth-sensitive detection of fluorescent light is presented. It relies on a structured illumination restricting the excitation volume and on an interferometric detection of the wave front curvature. The illumination with two intersecting beams of a white-light laser separated in a Sagnac interferometer coupled to the microscope provides a coarse confinement in lateral and axial direction. The depth reconstruction is carried out by evaluating shearing interferograms produced with a Michelson interferometer. This setup can also be used with spatially and temporally incoherent light as emitted by fluorophores. A simulation workflow of the method was developed using a combination of a solution of Maxwell's equations with the Monte Carlo method. These simulations showed the principal feasibility of the method. The method is validated by measurements at reference samples with characterized material properties, locations and sizes of fluorescent regions. It is demonstrated that sufficient signal quality can be obtained for materials with scattering properties comparable to dental enamel while maintaining moderate illumination powers in the milliwatt range. The depth reconstruction is demonstrated for a range of distances and penetration depths of several hundred micrometers.
NASA Astrophysics Data System (ADS)
De Lorenzo, Tommaso; Perez, Alejandro
2018-02-01
We show that null surfaces defined by the outgoing and infalling wave fronts emanating from and arriving at a sphere in Minkowski spacetime have thermodynamical properties that are in strict formal correspondence with those of black hole horizons in curved spacetimes. Such null surfaces, made of pieces of light cones, are bifurcate conformal Killing horizons for suitable conformally stationary observers. They can be extremal and nonextremal depending on the radius of the shining sphere. Such conformal Killing horizons have a constant light cone (conformal) temperature, given by the standard expression in terms of the generalization of surface gravity for conformal Killing horizons. Exchanges of conformally invariant energy across the horizon are described by a first law where entropy changes are given by 1 /(4 ℓp2) of the changes of a geometric quantity with the meaning of horizon area in a suitable conformal frame. These conformal horizons satisfy the zeroth to the third laws of thermodynamics in an appropriate way. In the extremal case they become light cones associated with a single event; these have vanishing temperature as well as vanishing entropy.
9. INTERIOR OF LIVING ROOM SHOWING OPEN 6LIGHT FRONT ENTRY ...
9. INTERIOR OF LIVING ROOM SHOWING OPEN 6-LIGHT FRONT ENTRY DOOR, OPEN PANEL DOOR TO BEDROOM NUMBER ONE, AND 6-LIGHT OVER 1-LIGHT SASH WINDOW ON REAR WALL AT PHOTO LEFT CENTER. FIREPLACE ORIGINALLY OCCUPIED SPACE UNDER ROUND HEATER VENT HOLE AT PHOTO LEFT. VIEW TO WEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
Geometric controls of the flexural gravity waves on the Ross Ice Shelf
NASA Astrophysics Data System (ADS)
Sergienko, O. V.
2017-12-01
Long-period ocean waves, formed locally or at distant sources, can reach sub-ice-shelf cavities and excite coupled motion in the cavity and the ice shelf - flexural gravity waves. Three-dimensional numerical simulations of the flexural gravity waves on the Ross Ice Shelf show that propagation of these waves is strongly controlled by the geometry of the system - the cavity shape, its water-column thickness and the ice-shelf thickness. The results of numerical simulations demonstrate that propagation of the waves is spatially organized in beams, whose orientation is determined by the direction of the of the open ocean waves incident on the ice-shelf front. As a result, depending on the beams orientation, parts of the Ross Ice Shelf experience significantly larger flexural stresses compared to other parts where the flexural gravity beams do not propagate. Very long-period waves can propagate farther away from the ice-shelf front exciting flexural stresses in the vicinity of the grounding line.
Angular momentum conservation law in light-front quantum field theory
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
2017-03-31
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less
Angular momentum conservation law in light-front quantum field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less
Angular momentum conservation law in light-front quantum field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QEDmore » and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less
Sparse aperture differential piston measurements using the pyramid wave-front sensor
NASA Astrophysics Data System (ADS)
Arcidiacono, Carmelo; Chen, Xinyang; Yan, Zhaojun; Zheng, Lixin; Agapito, Guido; Wang, Chaoyan; Zhu, Nenghong; Zhu, Liyun; Cai, Jianqing; Tang, Zhenghong
2016-07-01
In this paper we report on the laboratory experiment we settled in the Shanghai Astronomical Observatory (SHAO) to investigate the pyramid wave-front sensor (WFS) ability to measure the differential piston on a sparse aperture. The ultimate goal is to verify the ability of the pyramid WFS work in close loop to perform the phasing of the primary mirrors of a sparse Fizeau imaging telescope. In the experiment we installed on the optical bench we performed various test checking the ability to flat the wave-front using a deformable mirror and to measure the signal of the differential piston on a two pupils setup. These steps represent the background from which we start to perform full close loop operation on multiple apertures. These steps were also useful to characterize the achromatic double pyramids (double prisms) manufactured in the SHAO optical workshop.
Prakash, Om; Dixit, Sudhir Kumar; Bhatnagar, Rajiva
2005-03-20
The conversion efficiency in second-harmonic generation of an amplified beam in a master-oscillator power amplifier copper-vapor laser (CVL) is lower than that of the oscillator beam alone. This lower efficiency is often vaguely attributed to wave-front degradation in the amplifier. We investigate the role of wave-front degradation and thermal dephasing in the second-harmonic generation of a CVL from a beta-barium borate crystal. Choosing two beams with constant intrapulse divergence, one from a generalized diffraction filtered resonator master oscillator alone and other obtained by amplifying oscillator by use of a power amplifier, we show that at low flux levels the decrease in efficiency is due to wave-front degradation. At a fundamental power above the critical power for thermal dephasing, the decrease is due to increased UV absorption and consequent thermal dephasing. Thermal dephasing is higher for the beam with the lower coherence width.
Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon
2014-01-01
This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall. PMID:25254260
Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon
2014-01-01
This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall.
Image registration for daylight adaptive optics.
Hart, Michael
2018-03-15
Daytime use of adaptive optics (AO) at large telescopes is hampered by shot noise from the bright sky background. Wave-front sensing may use a sodium laser guide star observed through a magneto-optical filter to suppress the background, but the laser beacon is not sensitive to overall image motion. To estimate that, laser-guided AO systems generally rely on light from the object itself, collected through the full aperture of the telescope. Daylight sets a lower limit to the brightness of an object that may be tracked at rates sufficient to overcome the image jitter. Below that limit, wave-front correction on the basis of the laser alone will yield an image that is approximately diffraction limited but that moves randomly. I describe an iterative registration algorithm that recovers high-resolution long-exposure images in this regime from a rapid series of short exposures with very low signal-to-noise ratio. The technique takes advantage of the fact that in the photon noise limit there is negligible penalty in taking short exposures, and also that once the images are recorded, it is not necessary, as in the case of an AO tracker loop, to estimate the image motion correctly and quickly on every cycle. The algorithm is likely to find application in space situational awareness, where high-resolution daytime imaging of artificial satellites is important.
Comparison of performance of some common Hartmann-Shack centroid estimation methods
NASA Astrophysics Data System (ADS)
Thatiparthi, C.; Ommani, A.; Burman, R.; Thapa, D.; Hutchings, N.; Lakshminarayanan, V.
2016-03-01
The accuracy of the estimation of optical aberrations by measuring the distorted wave front using a Hartmann-Shack wave front sensor (HSWS) is mainly dependent upon the measurement accuracy of the centroid of the focal spot. The most commonly used methods for centroid estimation such as the brightest spot centroid; first moment centroid; weighted center of gravity and intensity weighted center of gravity, are generally applied on the entire individual sub-apertures of the lens let array. However, these processes of centroid estimation are sensitive to the influence of reflections, scattered light, and noise; especially in the case where the signal spot area is smaller compared to the whole sub-aperture area. In this paper, we give a comparison of performance of the commonly used centroiding methods on estimation of optical aberrations, with and without the use of some pre-processing steps (thresholding, Gaussian smoothing and adaptive windowing). As an example we use the aberrations of the human eye model. This is done using the raw data collected from a custom made ophthalmic aberrometer and a model eye to emulate myopic and hyper-metropic defocus values up to 2 Diopters. We show that the use of any simple centroiding algorithm is sufficient in the case of ophthalmic applications for estimating aberrations within the typical clinically acceptable limits of a quarter Diopter margins, when certain pre-processing steps to reduce the impact of external factors are used.
Analyzing and Post-modelling the High Speed Images of a Wavy Laser Induced Boiling Front
NASA Astrophysics Data System (ADS)
Matti, R. S.; Kaplan, A. F. H.
The boiling front in laser materials processing like remote fusion cutting, keyhole welding or drilling can nowadays be recorded by high speed imaging. It was recently observed that bright waves flow down the front. Several complex physical mechanisms are associated with a stable laser-induced boiling front, like beam absorption, shadowing, heating, ablation pressure, fluid flow, etc. The evidence of dynamic phenomena from high speed imaging is closely linked to these phenomena. As a first step, the directly visible phenomena were classified and analyzed. This has led to the insight that the appearance of steady flow of the bright front peaks is a composition of many short flashing events of 20-50 μs duration, though composing a rather constant melt film flow downwards. Five geometrical front shapes of bright and dark domains were categorized, for example long inclined dark valleys. In addition, the special top and bottom regions of the front are distinguished. As a second step, a new method of post-modelling based on the greyscale variation of the images was applied, to approximately reconstruct the topology of the wavy front and subsequently to calculate the absorption across the front. Despite certain simplifications this kind of analysis provides a variety of additional information, including statistical analysis. In particular, the model could show the sensitivity of front waves to the formation of shadow domains and the robustness of fiber lasers to keep most of an irradiated steel surface in an absorptivity window between 35 to 43%.
RF current distribution and topology of RF sheath potentials in front of ICRF antennae
NASA Astrophysics Data System (ADS)
Colas, L.; Heuraux, S.; Brémond, S.; Bosia, G.
2005-08-01
The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pécoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed.
8. INTERIOR OF LIVING ROOM SHOWING OPEN DOORWAY TO KITCHEN ...
8. INTERIOR OF LIVING ROOM SHOWING OPEN DOORWAY TO KITCHEN AT PHOTO RIGHT, 6-LIGHT OVER 1-LIGHT SASH WINDOWS ON FRONT (EAST) WALL AT PHOTO CENTER. ENTRY ROOM AND OPEN 1-LIGHT FRONT DOOR AT EXTREME PHOTO LEFT. VIEW TO SOUTHEAST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
NASA Astrophysics Data System (ADS)
Zhang, Qing; Li, Maozhong; Liao, Tingdi; Cui, Xudong
2018-03-01
Under the trend of miniaturization and reduction of system complexity, conventional bulky photonic elements are expected to be replaced by new compact and ultrathin dielectric metasurface elements. In this letter, we propose an αTiO2 dielectric metasurface (DM) platform that could be exploited to design high efficiency wave-front control devices at visible wavelength. Combining with fundamental principles and full wave simulations (Lumerical FDTD 3D solver ®), we successfully realize four DM devices, such as anomalous beam deflectors, polarization insensitive metalens, wave plates and polarization beam splitters. All these devices can achieve high transmission efficiencies (larger than 80%). Among them, the anomalous refraction beam deflectors can bend light propagation to any desired directions; the polarization insensitive metalens maintains diffraction limited focus (focal spot as small as 0.67 λ); the quarter-wave and half-wave plates have broadband working wavelengths from 550 to 1000 nm; and the polarization beam splitter can split an arbitrarily polarized incident beam into two orthogonally polarized beams, the TM components is deflected to the right side, and the TE components is deflected to the left side. These devices may find applications in the areas of imaging, polarization control, spectroscopy, and on-chip optoelectronic systems etc., and our studies may richen the design of all-dielectric optical elements at visible wavelength.
Solar Demon: near real-time Flare, Dimming and EUV wave monitoring
NASA Astrophysics Data System (ADS)
Kraaikamp, Emil; Verbeeck, Cis
Dimmings and EUV waves have been observed routinely in EUV images since 1996. They are closely associated with coronal mass ejections (CMEs), and therefore provide useful information for early space weather alerts. On the one hand, automatic detection and characterization of dimmings and EUV waves can be used to gain better understanding of the underlying physical mechanisms. On the other hand, every dimming and EUV wave provides extra information on the associated front side CME, and can improve estimates of the geo-effectiveness and arrival time of the CME. Solar Demon has been designed to detect and characterize dimmings, EUV waves, as well as solar flares in near real-time on Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data. The detection modules are running continuously at the Royal Observatory of Belgium on both quick-look data, as well as synoptic science data. The output of Solar Demon can be accessed in near real-time on the Solar Demon website, and includes images, movies, light curves, and the numerical evolution of several parameters. Solar Demon is the result of collaboration between the FP7 projects AFFECTS and COMESEP. Flare detections of Solar Demon are integrated into the COMESEP alert system. Here we present the Solar Demon detection algorithms and their output. We will show several interesting flare, dimming and EUV wave events, and present general statistics of the detections made so far during solar cycle 24.
Metasurfaces based on Gallium Nitride High Contrast Gratings at Visible Range
NASA Astrophysics Data System (ADS)
Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei; Wang, Yongjin; Zhu, Hongbo; Grünberg Research Centre Team
2015-03-01
Metasurfaces are currently attracting global attention due to their ability to achieve full control of light propagation. However, these metasurfaces have thus far been constructed mostly from metallic materials, which greatly limit the diffraction efficiencies because of the ohmic losses. Semiconducting metasurfaces offer one potential solution to the issue of losses. Besides, the use of semiconducting materials can broaden the applicability of metasurfaces, as they enable facile integration with electronics and mechanical systems and can benefit from mature semiconductor fabrication technologies. We have proposed visible-light metasurfaces (VLMs) capable of serving as lenses and beam deflecting elements based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wave-fronts of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 83.0% and numerical aperture of 0.77, and a VLM with beam deflection angle of 6.03° and transmissivity as high as 93.3%. The proposed metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.
Bonekamp, Jeffrey E.; Boven, Michelle L.; Gaston, Ryan S.
2014-09-09
The invention is an optoelectronic device comprising an active portion which converts light to electricity or converts electricity to light, the active portion having a front side for the transmittal of the light and a back side opposite from the front side, at least two electrical leads to the active portion to convey electricity to or from the active portion, an enclosure surrounding the active portion and through which the at least two electrical leads pass wherein the hermetically sealed enclosure comprises at the front side of the active portion a barrier material which allows for transmittal of light, one or more getter materials disposed so as to not impede the transmission of light to or from the active portion, and a contiguous gap pathway to the getter material which pathway is disposed between the active portion and the barrier material.
Steady-state propagation speed of rupture fronts along one-dimensional frictional interfaces.
Amundsen, David Skålid; Trømborg, Jørgen Kjoshagen; Thøgersen, Kjetil; Katzav, Eytan; Malthe-Sørenssen, Anders; Scheibert, Julien
2015-09-01
The rupture of dry frictional interfaces occurs through the propagation of fronts breaking the contacts at the interface. Recent experiments have shown that the velocities of these rupture fronts range from quasistatic velocities proportional to the external loading rate to velocities larger than the shear wave speed. The way system parameters influence front speed is still poorly understood. Here we study steady-state rupture propagation in a one-dimensional (1D) spring-block model of an extended frictional interface for various friction laws. With the classical Amontons-Coulomb friction law, we derive a closed-form expression for the steady-state rupture velocity as a function of the interfacial shear stress just prior to rupture. We then consider an additional shear stiffness of the interface and show that the softer the interface, the slower the rupture fronts. We provide an approximate closed form expression for this effect. We finally show that adding a bulk viscosity on the relative motion of blocks accelerates steady-state rupture fronts and we give an approximate expression for this effect. We demonstrate that the 1D results are qualitatively valid in 2D. Our results provide insights into the qualitative role of various key parameters of a frictional interface on its rupture dynamics. They will be useful to better understand the many systems in which spring-block models have proved adequate, from friction to granular matter and earthquake dynamics.
NASA Astrophysics Data System (ADS)
Gordeev, E. V.; Kuskov, V. V.; Razenkov, I. A.; Shesternin, A. N.
2017-11-01
The quality of adaptive suppression of initial aberrations of the wave front of a main laser beam with the use of the method of aperture sensing by the signal of atmospheric backscattering of the additional (sensing) laser radiation at a different wavelength has been studied experimentally. It is shown that wavefront distortions of the main laser beam were decreased significantly during the setup operation.
Experimental results for correlation-based wavefront sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poyneer, L A; Palmer, D W; LaFortune, K N
2005-07-01
Correlation wave-front sensing can improve Adaptive Optics (AO) system performance in two keys areas. For point-source-based AO systems, Correlation is more accurate, more robust to changing conditions and provides lower noise than a centroiding algorithm. Experimental results from the Lick AO system and the SSHCL laser AO system confirm this. For remote imaging, Correlation enables the use of extended objects for wave-front sensing. Results from short horizontal-path experiments will show algorithm properties and requirements.
Using PVDF to locate the debris cloud impact position
NASA Astrophysics Data System (ADS)
Pang, Baojun; Liu, Zhidong
2010-03-01
With the increase of space activities, space debris environment has deteriorated. Space debris impact shields of spacecraft creates debris cloud, the debris cloud is a threat to module wall. In order to conduct an assessment of spacecraft module wall damage impacted by debris cloud, the damage position must be known. In order to design a light weight location system, polyvinylidene fluoride (PVDF) has been studied. Hyper-velocity impact experiments were conducted using two-stage light gas gun, the experimental results indicate that: the virtual wave front location method can be extended to debris cloud impact location, PVDF can be used to locate the damage position effectively, the signals gathered by PVDF from debris cloud impact contain more high frequency components than the signals created by single projectile impact event. The results provide a reference for the development of the sensor systems to detect impacts on spacecraft.
Fabrication of Fiber-Optic Tilted Bragg Grating Filter in 40 nm Range with A Single Phase Mask
NASA Technical Reports Server (NTRS)
Grant, Joseph; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)
2002-01-01
Fiber-optic Bragg grating filters are fabricated with a range of Bragg wavelength between 1296 and 1336 nm, using a single phase mask. 30 mW of continuous-wave light at 244 nm is used from a frequency-doubled argon-ion laser having an intracavity etalon. Gratings are fabricated by tilting the photosensitive fiber with respect to the phase mask up to an angle of 15 degrees. The variation of Bragg wavelength with the fiber-tilt is explained with a simple formula. High spatial coherence of 244 nm light makes it possible to displace the fiber as much as 6 mm in front of the phase mask and tilt the fiber by as much as 15 degrees. This results in nearly constant band-width and near 100% reflectively for all gratings throughout the 40 nm range.
Atmospheric effects on active illumination
NASA Astrophysics Data System (ADS)
Shaw, Scot E. J.; Kansky, Jan E.
2005-08-01
For some beam-control applications, we can rely on the cooperation of the target when gathering information about the target location and the state of the atmosphere between the target and the beam-control system. The typical example is a cooperative point-source beacon on the target. Light from such a beacon allows the beam-control system to track the target accurately, and, if higher-order adaptive optics is to be employed, to make wave-front measurements and apply appropriate corrections with a deformable mirror. In many applications, including directed-energy weapons, the target is not cooperative. In the absence of a cooperative beacon, we must find other ways to collect the relevant information. This can be accomplished with an active-illumination system. Typically, this means shining one or more lasers at the target and observing the reflected light. In this paper, we qualitatively explore a number of difficulties inherent to active illumination, and suggest some possible mitigation techniques.
Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface
Forst, M.; Wilkins, S. B.; Caviglia, A. D.; ...
2015-07-06
Static strain in complex oxide heterostructures 1,2 has been extensively used to engineer electronic and magnetic properties at equilibrium 3. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically 4. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO 3 substrate we induce magnetic order melting in a NdNiO 3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speedmore » that suggests electronically driven motion. Lastly, light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices.« less
Aznauryan, I. G.; Burkert, V. D.
2017-06-13
We utilize the light-front relativistic quark model to predict the 3q core contribution to the electroexcitation of nucleon resonances of the [70,1 –] multiplet on the proton and neutron at Q 2 < 5 GeV 2. The investigation is motivated by new experimental data from continuous electron beam accelerator facility large acceptance spectrometer on meson electroproduction for a wide range of the hadronic invariant mass including the full third nucleon resonance region up to √s = 1.8 GeV. For the states N(1520)3/2 –, N(1535)1/2 –, and N(1675)5/2 –, experimental results on the electroexcitation amplitudes on the proton are available formore » a wide range of Q 2. Lastly, this allowed us also to quantify the expected meson-baryon contributions to these amplitudes as a function of Q 2.« less
NASA Astrophysics Data System (ADS)
Aznauryan, I. G.; Burkert, V. D.
2017-06-01
We utilize the light-front relativistic quark model to predict the 3 q core contribution to the electroexcitation of nucleon resonances of the [70 ,1-] multiplet on the proton and neutron at Q2<5 GeV2 . The investigation is motivated by new experimental data from continuous electron beam accelerator facility large acceptance spectrometer on meson electroproduction for a wide range of the hadronic invariant mass including the full third nucleon resonance region up to √{s }=1.8 GeV. For the states N (1520 ) 3/2-,N (1535 ) 1/2- , and N (1675 ) 5/2- , experimental results on the electroexcitation amplitudes on the proton are available for a wide range of Q2. This allowed us also to quantify the expected meson-baryon contributions to these amplitudes as a function of Q2.
Energy-flux characterization of conical and space-time coupled wave packets
NASA Astrophysics Data System (ADS)
Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di
2010-02-01
We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.
Phantu, Metinee; Sutthiopad, Malee; Luengviriya, Jiraporn; Müller, Stefan C; Luengviriya, Chaiya
2017-04-01
We present an investigation on the breakup of free and pinned spiral waves under an applied electrical current in the Belousov-Zhabotinsky reaction. Spiral fronts propagating towards the negative electrode are decelerated. A breakup of the spiral waves occurs when some segments of the fronts are stopped by a sufficiently strong electrical current. In the absence of obstacles (i.e., free spiral waves), the critical value of the electrical current for the wave breakup increases with the excitability of the medium. For spiral waves pinned to circular obstacles, the critical electrical current increases with the obstacle diameter. Analysis of spiral dynamics shows that the enhancement of the robustness against the breakup of both free and pinned spiral waves is originated by the increment of wave speed when either the excitability is strengthened or the obstacle size is enlarged. The experimental findings are reproduced by numerical simulations using the Oregonator model. In addition, the simulations reveal that the robustness against the forced breakup increases with the activator level in both cases of free and pinned spiral waves.
NASA Astrophysics Data System (ADS)
Park, Seoung-Hwan; Ahn, Doyeol
2018-05-01
Ultraviolet light emission characteristics of lattice-matched BxAlyGa1-x-y N/AlN quantum well (QW) structures with double AlGaN delta layers were investigated theoretically. In contrast to conventional single dip-shaped QW structure where the reduction effect of the spatial separation between electron and hole wave functions is negligible, proposed double dip-shaped QW shows significant enhancement of the ultraviolet light emission intensity from a BAlGaN/AlN QW structure due to the reduced spatial separation between electron and hole wave functions. The emission peak of the double dip-shaped QW structure is expected to be about three times larger than that of the conventional rectangular AlGaN/AlN QW structure.
Coronal "wave": Magnetic Footprint Of A Cme?
NASA Astrophysics Data System (ADS)
Attrill, Gemma; Harra, L. K.; van Driel-Gesztelyi, L.; Demoulin, P.; Wuelser, J.
2007-05-01
We propose a new mechanism for the generation of "EUV coronal waves". This work is based on new analysis of data from SOHO/EIT, SOHO/MDI & STEREO/EUVI. Although first observed in 1997, the interpretation of coronal waves as flare-induced or CME-driven remains a debated topic. We investigate the properties of two "classical" SOHO/EIT coronal waves in detail. The source regions of the associated CMEs possess opposite helicities & the coronal waves display rotations in opposite senses. We observe deep dimmings near the flare site & also widespread diffuse dimming, accompanying the expansion of the EIT wave. We report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions & simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behaviour is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME & quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings & widespread diffuse dimming are identified as innate characteristics of this process. In addition we present some of the first analysis of a STEREO/EUVI limb coronal wave. We show how the evolution of the diffuse bright front & dimmings can be understood in terms of the model described above. We show that an apparently stationary part of the bright front can be understood in terms of magnetic interchange reconnections between the expanding CME & the "open" magnetic field of a low-latitude coronal hole. We use both the SOHO/EIT & STEREO/EUVI events to demonstrate that through successive reconnections, this new model provides a natural mechanism via which CMEs can become large-scale in the lower corona.
Ultracompact beam splitters based on plasmonic nanoslits
Zhou, Chuanhong; Kohli, Punit
2011-01-01
An ultracompact plasmonic beam splitter is theoretically and numerically investigated. The splitter consists of a V-shaped nanoslit in metal films. Two groups of nanoscale metallic grooves inside the slit (A) and at the small slit opening (B) are investigated. We show that there are two energy channels guiding light out by the splitter: the optical and the plasmonic channels. Groove A is used to couple incident light into the plasmonic channel. Groove B functions as a plasmonic scatter. We demonstrate that the energy transfer through plasmonic path is dominant in the beam splitter. We find that more than four times the energy is transferred by the plasmonic channel using structures A and B. We show that the plasmonic waves scattered by B can be converted into light waves. These light waves redistribute the transmitted energy through interference with the field transmitted from the nanoslit. Therefore, different beam splitting effects are achieved by simply changing the interference conditions between the scattered waves and the transmitted waves. The impact of the width and height of groove B are also investigated. It is found that the plasmonic scattering of B is changed into light scattering with increase of the width and the height of B. These devices have potential applications in optical sampling, signal processing, and integrated optical circuits. PMID:21647248
Gent, David H.; Mehra, Lucky K.; Christie, David; Magarey, Roger
2017-01-01
Empirical and mechanistic modeling indicate that pathogens transmitted via aerially dispersed inoculum follow a power law, resulting in dispersive epidemic waves. The spread parameter (b) of the power law model, which is an indicator of the distance of the epidemic wave front from an initial focus per unit time, has been found to be approximately 2 for several animal and plant diseases over a wide range of spatial scales under conditions favorable for disease spread. Although disease spread and epidemic expansion can be influenced by several factors, the stability of the parameter b over multiple epidemic years has not been determined. Additionally, the size of the initial epidemic area is expected to be strongly related to the final epidemic extent for epidemics, but the stability of this relationship is also not well established. Here, empirical data of cucurbit downy mildew epidemics collected from 2008 to 2014 were analyzed using a spatio-temporal model of disease spread that incorporates logistic growth in time with a power law function for dispersal. Final epidemic extent ranged from 4.16 ×108 km2 in 2012 to 6.44 ×108 km2 in 2009. Current epidemic extent became significantly associated (P < 0.0332; 0.56 < R2 < 0.99) with final epidemic area beginning near the end of April, with the association increasing monotonically to 1.0 by the end of the epidemic season in July. The position of the epidemic wave-front became exponentially more distant with time, and epidemic velocity increased linearly with distance. Slopes from the temporal and spatial regression models varied with about a 2.5-fold range across epidemic years. Estimates of b varied substantially ranging from 1.51 to 4.16 across epidemic years. We observed a significant b ×time (or distance) interaction (P < 0.05) for epidemic years where data were well described by the power law model. These results suggest that the spread parameter b may not be stable over multiple epidemic years. However, b ≈ 2 may be considered the lower limit of the distance traveled by epidemic wave-fronts for aerially transmitted pathogens that follow a power law dispersal function. PMID:28649473
Electronic transitions in quantum dots and rings induced by inhomogeneous off-centered light beams.
Quinteiro, G F; Lucero, A O; Tamborenea, P I
2010-12-22
We theoretically investigate the effect of inhomogeneous light beams with (twisted light) and without (plane-wave light) orbital angular momentum on semiconductor-based nanostructures, when the symmetry axes of the beam and the nanostructure are displaced parallel to each other. Exact analytical results are obtained by expanding the off-centered light field in terms of the appropriate light modes centered around the nanostructure. We demonstrate how electronic transitions involving the transfer of different amounts of orbital angular momentum are switched on and off as a function of the separation between the axes of the beam and the system. In particular, we show that even off-centered plane-wave beams induce transitions such that the angular momenta of the initial and final states are different.
Nonlinear self-sustained structures and fronts in spatially developing wake flows
NASA Astrophysics Data System (ADS)
Pier, Benoît; Huerre, Patrick
2001-05-01
A family of slowly spatially developing wakes with variable pressure gradient is numerically demonstrated to sustain a synchronized finite-amplitude vortex street tuned at a well-defined frequency. This oscillating state is shown to be described by a steep global mode exhibiting a sharp Dee Langer-type front at the streamwise station of marginal absolute instability. The front acts as a wavemaker which sends out nonlinear travelling waves in the downstream direction, the global frequency being imposed by the real absolute frequency prevailing at the front station. The nonlinear travelling waves are determined to be governed by the local nonlinear dispersion relation resulting from a temporal evolution problem on a local wake profile considered as parallel. Although the vortex street is fully nonlinear, its frequency is dictated by a purely linear marginal absolute instability criterion applied to the local linear dispersion relation.
Parameterization of synoptic weather systems in the South Atlantic Bight for modeling applications
NASA Astrophysics Data System (ADS)
Wu, Xiaodong; Voulgaris, George; Kumar, Nirnimesh
2017-10-01
An event based, long-term, climatological analysis is presented that allows the creation of coastal ocean atmospheric forcing on the coastal ocean that preserves both frequency of occurrence and event time history. An algorithm is developed that identifies individual storm event (cold fronts, warm fronts, and tropical storms) from meteorological records. The algorithm has been applied to a location along the South Atlantic Bight, off South Carolina, an area prone to cyclogenesis occurrence and passages of atmospheric fronts. Comparison against daily weather maps confirms that the algorithm is efficient in identifying cold fronts and warm fronts, while the identification of tropical storms is less successful. The average state of the storm events and their variability are represented by the temporal evolution of atmospheric pressure, air temperature, wind velocity, and wave directional spectral energy. The use of uncorrected algorithm-detected events provides climatologies that show a little deviation from those derived using corrected events. The effectiveness of this analysis method is further verified by numerically simulating the wave conditions driven by the characteristic wind forcing and comparing the results with the wave climatology that corresponds to each storm type. A high level of consistency found in the comparison indicates that this analysis method can be used for accurately characterizing event-based oceanic processes and long-term storm-induced morphodynamic processes on wind-dominated coasts.
Analysis and Application of the Bi-Directional Scatter Distribution Function of Photonic Crystals
2009-03-01
and reflected light ..................17 10. A CASI source box, showing the beam path, chopper , scaling photodetector, half-wave plate, and linear...off of a semi-reflective beam chopper , shown in Figure 10. Any variation in the output of the laser is detected by it, and the incident power is...box, showing the beam path, chopper , scaling photodetector, half-wave plate, and linear polarizers. 20 The CASI is not sensitive to ambient light
Analysis and modeling of localized invariant solutions in pipe flow
NASA Astrophysics Data System (ADS)
Ritter, Paul; Zammert, Stefan; Song, Baofang; Eckhardt, Bruno; Avila, Marc
2018-01-01
Turbulent spots surrounded by laminar flow are a landmark of transitional shear flows, but the dependence of their kinematic properties on spatial structure is poorly understood. We here investigate this dependence in pipe flow for Reynolds numbers between 1500 and 5000. We compute spatially localized relative periodic orbits in long pipes and show that their upstream and downstream fronts decay exponentially towards the laminar profile. This allows us to model the fronts by employing the linearized Navier-Stokes equations, and the resulting model yields the spatial decay rate and the front velocity profiles of the periodic orbits as a function of Reynolds number, azimuthal wave number, and propagation speed. In addition, when applied to a localized turbulent puff, the model is shown to accurately approximate the spatial decay rate of its upstream and downstream tails. Our study provides insight into the relationship between the kinematics and spatial structure of localized turbulence and more generally into the physics of localization.
NASA Astrophysics Data System (ADS)
Verveiko, N. D.; Shashkin, A. I.; Krupenko, S. E.
2018-03-01
The destruction of solid physical objects is a complex process in which mechanical, chemical, thermobaric and other matter transformations take place. Under mechanical destruction is understood the violation of the integrity of the object due to the occurrence of cracks. High-speed impact of a solid body on deformable materials is accompanied by the spread of cracks and is of a wave nature. This article presents an analysis of the dynamic stress-strain state in an elastoviscoplastic (EVP) material near the leading edge of a moving crack, approximated by a zone of continuous deformation. An analysis of the distribution of the intensity of tangential stresses and plastic deformations that occur behind the front of the longitudinal and shear head waves of a spherical shape generated by the impact of the vertex of the solid cone is carried out on the model EVP of the medium by the ray method. It is shown that the presence of a maximum of the jump of the tangential velocity component on the shear wave leads to a development with time of a jump in the displacements of the tangents to the front of the shear wave. This can be interpreted as the moment of initiation of the head part of a crack running along with the front of the elastic wave with the velocity of shear waves.
Impacts of storms on coastal circulation in Long Bay, South Carolina
NASA Astrophysics Data System (ADS)
Kim, H.; Warner, J. C.; Voulgaris, G.; Work, P.
2006-12-01
We investigate the effects of coastal storms on the regional circulation in Long Bay, South Carolina, using a coupled ROMS (Regional Ocean Modeling System)- SWAN (Simulating WAves Nearshore) model. Meteorological observations during the South Carolina Coastal Erosion Study (October 2003 April 2004) reveal three dominant types of storms in the region warm fronts, cold fronts, and tropical storms. Each storm has a characteristic progression of wind patterns: (1) Warm fronts start with southwestward winds and change to northeastward after the front passes; (2) Cold fronts begin with northeastward winds and shift to southeastward when the front moves out; and (3) Tropical storms change wind directions from the southwest to the southeast during the storm. It is observed the coastal circulation distinctly responds to such atmospheric disturbances in either a upwelling-favorable condition to the northeastward winds or a downwelling-favorable condition to the southwestward winds. The study domain encompasses 300-km of gently arcing shoreline between Cape Romain to Cape Fear, and approximately 100-km offshore to the shelf edge. The model domain is resolved by a 300×130 mesh at 1-km intervals in the horizontal and twenty terrain-following layers in the vertical. The ROMS model is driven by tides and wind stress, and it includes wave-current interactions via dynamic coupling to the surface wave model SWAN. Salinity and temperature along the open boundaries are included by nudging to climatological values. A time period of six months is simulated from October 2003 to April 2004, concurrent with the observation study. Model results are compared to an extensive set of measurements collected at eight sites in the inner part of Long Bay, and are used to identify varying circulation response to each storm type. In addition, we investigate the significance of the Capes on the development of the alongshore pressure gradients, and examine the importance of wave-current interactions in the study region.
Propagation of transition fronts in nonlinear chains with non-degenerate on-site potentials
NASA Astrophysics Data System (ADS)
Shiroky, I. B.; Gendelman, O. V.
2018-02-01
We address the problem of transition front propagation in chains with a bi-stable nondegenerate on-site potential and a nonlinear gradient coupling. For generic nonlinear coupling, one encounters a special regime of transitions, characterized by extremely narrow fronts, far supersonic velocities of the front propagation, and long waves in the oscillatory tail. This regime can be qualitatively associated with a shock wave. The front propagation can be described with the help of a simple reduced-order model; the latter delivers a kinetic law, which is almost not sensitive to the fine details of the on-site potential. Besides, it is possible to predict all main characteristics of the transition front, including its velocity, as well as the frequency and the amplitude of the oscillatory tail. Numerical results are in good agreement with the analytical predictions. The suggested approach allows one to consider the effects of an external pre-load, the next-nearest-neighbor coupling and the on-site damping. When the damping is moderate, it is possible to consider the shock propagation in the damped chain as a perturbation of the undamped dynamics. This approach yields reasonable predictions. When the damping is high, the transition front enters a completely different asymptotic regime of a subsonic kink. The gradient nonlinearity generically turns negligible, and the propagating front converges to the regime described by a simple exact solution for a continuous model with linear coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, D.V.; Sawicki, M.
Using the Weinberg-Soper formalism we construct the front-form ([ital j],0)[direct sum](0,[ital j]) spinors. Explicit expressions for the generalized Melosh transformations up to spin two are obtained. The formalism, without explicitly invoking any wave equations, reproduces the spin-1/2 front-form results of Melosh, Lepage and Brodsky, and Dziembowski.
NASA Astrophysics Data System (ADS)
Andrushchenko, V. A.; Murashkin, I. V.; Shevelev, Yu. D.
2016-06-01
Within the investigation of various aspects of asteroid and comet danger and, in particular, the explosion of several fragments of meteoroids in the atmosphere above the Earth surface, the toy problem about four point explosions in the case of their special arrangement above the underlying surface is numerically solved. Complex interactions of primary and secondary shock waves between themselves, with the hard surface, and with tangential discontinuities are examined. The structure of flow inside gas regions disturbed by the explosions—the occurrence of eddy structures in them and the influence of reflected shocks waves on them—are investigated. The tendency of the external wave fronts of each explosion to form a unified front and the tendency of their internal hot domains to merge into a joined configuration (where the second process proceeds a little later than the first one) is revealed. This unified front and joined configuration are qualitatively identical to the external internal structure for the solitary explosion. The specially arranged explosions are chosen because the effects of multiple diffraction, interference, and, the main thing, cumulation of spherical waves are manifested more clearly in this caseTwo variants with different altitude of the explosions above the surface are calculated.
Vibration waveform effects on dynamic stabilization of ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piriz, A. R.; Lucchio, L. Di; Rodriguez Prieto, G.
2011-08-15
An analysis of dynamic stabilization of Rayleigh-Taylor instability in an ablation front is performed by considering a general square wave for modulating the vertical acceleration of the front. Such a kind of modulation allows for clarifying the role of thermal conduction in the mechanism of dynamic stabilization. In addition, the study of the effect of different modulations by varying the duration and amplitude of the square wave in each half-period provides insight on the optimum performance of dynamic stabilization.
Scanning Shack-Hartmann wavefront sensor
NASA Astrophysics Data System (ADS)
Molebny, Vasyl V.
2004-09-01
Criss-crossing of focal images is the cause of a narrow dynamic range in Shack-Hartmann sensors. Practically, aberration range wider than +/-3 diopters can not be measured. A method has been proposed for ophthalmologic applications using a rarefied lenslet array through which a wave front is projected with the successive step-by-step changing of the global tilt. The data acquired in each step are accumulated and processed. In experimental setup, a doubled dynamic range was achieved with four steps of wave front tilting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, Ian M.; Dixit, Sham N.; Summers, Leslie J.
2000-01-01
A diffractive Alvarez lens is demonstrated that consists of two separate phase plates, each having complementary 16-level surface-relief profiles that contain cubic phase delays. Translation of these two components in the plane of the phase plates is shown to produce a variable astigmatic focus. Both spherical and cylindrical phase profiles are demonstrated with good accuracy, and the discrete surface-relief features are shown to cause less than {lambda}/10 wave-front aberration in the transmitted wave front over a 40 mmx80 mm region. (c) 2000 Optical Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ageeva, N. N.; Bronevoi, I. L., E-mail: bil@cplire.ru; Zabegaev, D. N.
2015-04-15
The self-modulation of absorption of a picosecond light pulse was observed earlier [1] in a thin (∼1-μm thick) GaAs layer pumped by a high-power picosecond pulse. Analysis of the characteristics of this self-modulation predicted [5] that the dependences of the probe pulse absorption on the pump pulse energy and picosecond delay between pump and probe pulses should be self-modulated by oscillations. Such self-modulation was experimentally observed in this work. Under certain conditions, absorption oscillations proved to be a function of part of the energy of picosecond stimulated emission of GaAs lying above a certain threshold in the region where themore » emission front overlapped the probe pulse front. Absorption oscillations are similar to self-modulation of the GaAs emission characteristics observed earlier [4]. This suggests that the self-modulation of absorption and emission is determined by the same type of interaction of light pulses in the active medium, the physical mechanism of which has yet to be determined.« less
High power water load for microwave and millimeter-wave radio frequency sources
Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.
1999-01-01
A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.
Wave combustors for trans-atmospheric vehicles
NASA Technical Reports Server (NTRS)
Menees, Gene P.; Bowles, Jeffrey V.; Adelman, Henry G.; Cambier, Jean-Luc
1989-01-01
A performance analysis is given of a conceptual transatmospheric vehicle (TAV). The TAV is powered by a an oblique detonation wave engine (ODWE). The ODWE is an airbreathing hypersonic propulsion system which utilizes shock and detonation waves to enhance fuel-air mixing and combustion in supersonic flow. In this wave combustor concept, an oblique shock wave in the combustor can act as a flameholder by increasing the pressure and temperature of the air-fuel mixture, thereby decreasing the ignition delay. If the oblique shock is sufficiently strong, then the combustion front and the shock wave can couple into a detonation wave. In this case, combustion occurs almost instantaneously in a thin zone behind the wave front. The result is a shorter lighter engine compared to the scramjet. The ODWE-powered hypersonic vehicle performance is compared to that of a scramjet-powered vehicle. Among the results outlined, it is found that the ODWE trades a better engine performance above Mach 15 for a lower performance below Mach 15. The overall higher performance of the ODWE results in a 51,000-lb weight savings and a higher payload weight fraction of approximately 12 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gregory L.; Arnold, Dorian; LeGendre, Matthew
STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallel application. STAT uses the MRNet tree based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to form a similar function call patterns and to delineate a small set of equivalence classes. A representative task from each of these classes can then be fed into a full featuremore » debugger like TolalView for root cause analysis.« less
7. INTERIOR OF VESTIBULE SHOWING OPEN 1LIGHT FRONT DOOR AT ...
7. INTERIOR OF VESTIBULE SHOWING OPEN 1-LIGHT FRONT DOOR AT PHOTO RIGHT, AND OPEN PANEL DOOR TO BEDROOM ADDITION (BEDROOM NUMBER TWO) AT PHOTO CENTER. VIEW TO WEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
Shock wave interaction with L-shaped structures
NASA Astrophysics Data System (ADS)
Miller, Richard C.
1993-12-01
This study investigated the interaction of shock waves with L-shaped structures using the CTH hydrodynamics code developed by Sandia National Laboratories. Computer models of shock waves traveling through air were developed using techniques similar to shock tube experiments. Models of L-shaped buildings were used to determine overpressures achieved by the reflecting shock versus angle of incidence of the shock front. An L-shaped building model rotated 45 degrees to the planar shock front produced the highest reflected overpressure of 9.73 atmospheres in the corner joining the two wings, a value 9.5 times the incident overpressure of 1.02 atmospheres. The same L-shaped building was modeled with the two wings separated by 4.24 meters to simulate an open courtyard. This open area provided a relief path for the incident shock wave, creating a peak overpressure of only 4.86 atmospheres on the building's wall surfaces from the same 1.02 atmosphere overpressure incident shock wave.
NASA Astrophysics Data System (ADS)
Matsuura, Masahiro; Mano, Takaaki; Noda, Takeshi; Shibata, Naokazu; Hotta, Masahiro; Yusa, Go
2018-02-01
Quantum energy teleportation (QET) is a proposed protocol related to quantum vacuum. The edge channels in a quantum Hall system are well suited for the experimental verification of QET. For this purpose, we examine a charge-density wave packet excited and detected by capacitively coupled front gate electrodes. We observe the waveform of the charge packet, which is proportional to the time derivative of the applied square voltage wave. Further, we study the transmission and reflection behaviors of the charge-density wave packet by applying a voltage to another front gate electrode to control the path of the edge state. We show that the threshold voltages where the dominant direction is switched in either transmission or reflection for dense and sparse wave packets are different from the threshold voltage where the current stops flowing in an equilibrium state.
Tiflova, O A; Karu, T I
1986-01-01
It was shown that under defined conditions blue light can accelerate E. coli WP2 growth. The stimulatory effect is a function of radiation dose, intensity wave length, and postirradiation incubation time.
Features in the speckle correlations of light scattered from volume-disordered dielectric media
NASA Astrophysics Data System (ADS)
Malyshkin, V.; McGurn, A. R.; Maradudin, A. A.
1999-03-01
A diagrammatic perturbation theory approach, based on a scalar wave treatment, is used to study the scattering of light of frequency ω from a volume disordered dielectric medium. The dielectric medium is described by a position-dependent dielectric constant of the form ɛ(r-->)=ɛ(ω)+δɛ(r-->), where ɛ(ω) does not depend on r-->, and δɛ(r-->) is a zero-mean Gaussian random process defined by <δɛ(r-->)δɛ(r-->')>=σ2 exp(-\\|r-->-r-->'\\|2/a2), where the angle brackets denote an average over the ensemble of realizations of δɛ(r-->), a is the correlation length of the disorder, and σ is the root mean square deviation of the dielectric constant from its average value ɛ(ω). The speckle correlation function C(q-->,k-->\\|q-->',k-->')=<[I(q-->\\|k-->)-\\|k-->)>][I(q-->'\\|k-->')-'\\|k-->')]> where I(q-->\\|k-->) is proportional to the differential-scattering coefficient for the scattering of light of incident wave vector k--> into light of wave vector q--> is computed. In these calculations the contributions associated with both ladder and maximally crossed diagrams are summed in a Feynman diagram treatment of the speckle correlator, in the approximation that only s-wave-scattering terms are retained. Results are presented for the differential-scattering coefficient of light scattered from the disordered medium, which displays the phenomenon of enhanced backscattering, and for the correlator C in the approximation where C=C(1)+C(10)+C(1.5). The contribution C(1) is proportional to δ(q-->-k-->-q-->'+k-->') and describes the memory and time-reversed memory effects. C(10) is proportional to δ(q-->-k-->+q-->'-k-->'), while C(1.5) is unrestricted in its dependence on q-->,k-->,q-->',k-->'. The latter two contributions have recently been treated in the scattering of light from randomly rough surfaces, but have not been previously treated in the scattering of light by volume disordered media. A number of peaks associated with resonant processes are observed in C(1.5) considered as a function of the wave vectors of the incident and scattered light.
Gene surfing in expanding populations.
Hallatschek, Oskar; Nelson, David R
2008-02-01
Large scale genomic surveys are partly motivated by the idea that the neutral genetic variation of a population may be used to reconstruct its migration history. However, our ability to trace back the colonization pathways of a species from their genetic footprints is limited by our understanding of the genetic consequences of a range expansion. Here, we study, by means of simulations and analytical methods, the neutral dynamics of gene frequencies in an asexual population undergoing a continual range expansion in one dimension. During such a colonization period, lineages can fix at the wave front by means of a "surfing" mechanism [Edmonds, C.A., Lillie, A.S., Cavalli-Sforza, L.L., 2004. Mutations arising in the wave front of an expanding population. Proc. Natl. Acad. Sci. 101, 975-979]. We quantify this phenomenon in terms of (i) the spatial distribution of lineages that reach fixation and, closely related, (ii) the continual loss of genetic diversity (heterozygosity) at the wave front, characterizing the approach to fixation. Our stochastic simulations show that an effective population size can be assigned to the wave that controls the (observable) gradient in heterozygosity left behind the colonization process. This effective population size is markedly higher in the presence of cooperation between individuals ("pushed waves") than when individuals proliferate independently ("pulled waves"), and increases only sub-linearly with deme size. To explain these and other findings, we develop a versatile analytical approach, based on the physics of reaction-diffusion systems, that yields simple predictions for any deterministic population dynamics. Our analytical theory compares well with the simulation results for pushed waves, but is less accurate in the case of pulled waves when stochastic fluctuations in the tip of the wave are important.
Bozzola, Angelo; Liscidini, Marco; Andreani, Lucio Claudio
2012-03-12
We theoretically investigate the light-trapping properties of one- and two-dimensional periodic patterns etched on the front surface of c-Si and a-Si thin film solar cells with a silver back reflector and an anti-reflection coating. For each active material and configuration, absorbance A and short-circuit current density Jsc are calculated by means of rigorous coupled wave analysis (RCWA), for different active materials thicknesses in the range of interest of thin film solar cells and in a wide range of geometrical parameters. The results are then compared with Lambertian limits to light-trapping for the case of zero absorption and for the general case of finite absorption in the active material. With a proper optimization, patterns can give substantial absorption enhancement, especially for 2D patterns and for thinner cells. The effects of the photonic patterns on light harvesting are investigated from the optical spectra of the optimized configurations. We focus on the main physical effects of patterning, namely a reduction of reflection losses (better impedance matching conditions), diffraction of light in air or inside the cell, and coupling of incident radiation into quasi-guided optical modes of the structure, which is characteristic of photonic light-trapping.
NASA Astrophysics Data System (ADS)
Balakshiĭ, V. I.; Kazar'yan, A. Y.; Lee, A. A.
1995-10-01
An investigation was made of an acousto-optical system with hybrid feedback used to control the frequency of ultrasonic waves excited in an acousto-optical cell. An amplitude transparency, placed in front of a photodetector, ensured a nonlinear dependence of the intensity of the diffracted radiation reaching the detector on the ultrasound frequency. Conditions were found under which this nonlinearity gave rise to multistable states differing in respect of the amplitude, frequency, and direction of propagation of the diffracted beam. An analysis was made of various uses of such a system as an optical channel switch and in stabilisation of the direction of propagation of a light beam.
NASA Astrophysics Data System (ADS)
Crouzet, B.; Soulard, L.; Carion, N.; Manczur, P.
2007-12-01
Two copper cylinder expansion tests were carried out on nitromethane. They differ from the classical cylinder test in that the liner includes evenly-spaced protruding circular defects. The aim is to study how a detonation front propagating in the liquid explosive interacts with the confining material defects. The subsequent motion of the metal, accelerated by the expanding detonation products, is measured using a range of diagnostic techniques: electrical probes, a rapid framing camera, a glass block associated with a streak camera and velocity laser interferometers. The different experimental records have been examined in the light of previous classical cylinder test measurements, simple 2D theoretical shock polar analysis results and 2D numerical simulations.
Inertial fusion program and national laser users facility program
NASA Astrophysics Data System (ADS)
1995-01-01
This is the 1994 annual report for the University of Rochester, Laboratory for Laser Energetics. The report is presented as a series of research type reports. The titles emphasize the breadth of work carried out. They are: stability analysis of unsteady ablation fronts; characterization of laser-produced plasma density profiles using grid image refractometry; transport and sound waves in plasmas with light and heavy ions; three-halves-harmonic radiation from long-scale-length plasmas revisited; OMEGA upgrade status report; target imaging and backlighting diagnosis; effect of electron collisions on ion-acoustic waves and heat flow; particle-in-cell code simulations of the interaction of gaussian ultrashort laser pulses with targets of varying initial scale lengths; characterization of thick cryogenic fuel layers: compensation for the lens effect using convergent beam interferometry; compact, multijoule-output, Nd:Glass, large-aperture ring amplifier; atomic force microscopy observation of water-induced morphological changes in Y2O3 monolayer coatings; observation of longitudinal acceleration of electrons born in a high-intensity laser focus; spatial intensity nonuniformities of an OMEGA beam due to nonlinear beam propagation; calculated X-ray backlighting images of mixed imploded targets; evaluation of cosmic rays for use in the monitoring of the MEDUSA scintillator-photomultiplier diagnostic array; highly efficient second-harmonic generation of ultra-intense Nd:Glass laser pulses multiple cutoff wave numbers of the ablative Rayleigh-Taylor instability; ultrafast, all-silicon light modulator; angular dependence of the stimulated Brillouin scattering in homogeneous plasma; and femtosecond excited-state dynamics of a conjugated ladder polymer.
NASA Astrophysics Data System (ADS)
Piron, P.; Delacroix, C.; Huby, E.; Mawet, D.; Karlsson, M.; Ruane, G.; Habraken, S.; Absil, O.; Surdej, J.
2015-09-01
The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a π phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relatively poor. To solve this problem, we propose to add a birefringent wave-plate in each arm to compensate this birefringence. In this paper, we will develop the mathematical model of the wave front using the Jones formalism. The performance of the interferometer is at first computed for the simple version without the birefringent plate. Then the effect of the birefringent plate is be mathematically described and the performance is re-computed.
Sensory function: insights from Wave 2 of the National Social Life, Health, and Aging Project.
Pinto, Jayant M; Kern, David W; Wroblewski, Kristen E; Chen, Rachel C; Schumm, L Philip; McClintock, Martha K
2014-11-01
Sensory function, a critical component of quality of life, generally declines with age and influences health, physical activity, and social function. Sensory measures collected in Wave 2 of the National Social Life, Health, and Aging Project (NSHAP) survey focused on the personal impact of sensory function in the home environment and included: subjective assessment of vision, hearing, and touch, information on relevant home conditions and social sequelae as well as an improved objective assessment of odor detection. Summary data were generated for each sensory category, stratified by age (62-90 years of age) and gender, with a focus on function in the home setting and the social consequences of sensory decrements in each modality. Among both men and women, older age was associated with self-reported impairment of vision, hearing, and pleasantness of light touch. Compared with women, men reported significantly worse hearing and found light touch less appealing. There were no gender differences for vision. Overall, hearing loss seemed to have a greater impact on social function than did visual impairment. Sensory function declines across age groups, with notable gender differences for hearing and light touch. Further analysis of sensory measures from NSHAP Wave 2 may provide important information on how sensory declines are related to health, social function, quality of life, morbidity, and mortality in this nationally representative sample of older adults. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Fault zone reverberations from cross-correlations of earthquake waveforms and seismic noise
NASA Astrophysics Data System (ADS)
Hillers, Gregor; Campillo, Michel
2016-03-01
Seismic wavefields interact with low-velocity fault damage zones. Waveforms of ballistic fault zone head waves, trapped waves, reflected waves and signatures of trapped noise can provide important information on structural and mechanical fault zone properties. Here we extend the class of observable fault zone waves and reconstruct in-fault reverberations or multiples in a strike-slip faulting environment. Manifestations of the reverberations are significant, consistent wave fronts in the coda of cross-correlation functions that are obtained from scattered earthquake waveforms and seismic noise recorded by a linear fault zone array. The physical reconstruction of Green's functions is evident from the high similarity between the signals obtained from the two different scattered wavefields. Modal partitioning of the reverberation wavefield can be tuned using different data normalization techniques. The results imply that fault zones create their own ambiance, and that the here reconstructed reverberations are a key seismic signature of wear zones. Using synthetic waveform modelling we show that reverberations can be used for the imaging of structural units by estimating the location, extend and magnitude of lateral velocity contrasts. The robust reconstruction of the reverberations from noise records suggests the possibility to resolve the response of the damage zone material to various external and internal loading mechanisms.
Kinetic models for historical processes of fast invasion and aggression
NASA Astrophysics Data System (ADS)
Aristov, Vladimir V.; Ilyin, Oleg V.
2015-04-01
In the last few decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological, and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France, and the USSR based on kinetic theory. We simulate this process with the Cauchy boundary problem for two-element kinetic equations. The solution of the problem is given in the form of a traveling wave. The propagation velocity of a front line depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the front-line velocities agree with the historical data.
Amplitude and Wavelength Measurement of Sound Waves in Free Space using a Sound Wave Phase Meter
NASA Astrophysics Data System (ADS)
Ham, Sounggil; Lee, Kiwon
2018-05-01
We developed a sound wave phase meter (SWPM) and measured the amplitude and wavelength of sound waves in free space. The SWPM consists of two parallel metal plates, where the front plate was operated as a diaphragm. An aluminum perforated plate was additionally installed in front of the diaphragm, and the same signal as that applied to the sound source was applied to the perforated plate. The SWPM measures both the sound wave signal due to the diaphragm vibration and the induction signal due to the electric field of the aluminum perforated plate. Therefore, the two measurement signals interfere with each other due to the phase difference according to the distance between the sound source and the SWPM, and the amplitude of the composite signal that is output as a result is periodically changed. We obtained the wavelength of the sound wave from this periodic amplitude change measured in the free space and compared it with the theoretically calculated values.
Co-evolution of upstream waves and accelerated ions at parallel shocks
NASA Astrophysics Data System (ADS)
Fujimoto, M.; Sugiyama, T.
2016-12-01
Shock waves in space plasmas have been considered as the agents for various particle acceleration phenomena. The basic idea behind shock acceleration is that particles are accelerated as they move back-and-forth across a shock front. Detailed studies of ion acceleration at the terrestrial bow shock have been performed, however, the restricted maximum energies attained prevent a straight-forward application of obtained knowledge to more energetic astrophysical situations. Here we show by a large-scale self-consistent particle simulation that the co-evolution of magnetic turbulence and accelerated ion population is the foundation for continuous operation of shock acceleration to ever higher energies. Magnetic turbulence is created by ions reflected back upstream of a parallel shock front. The co-evolution arises because more energetic ions excite waves of longer wavelengths, and because longer wavelength modes are capable of scattering (in the upstream) and reflecting (at the shock front) more energetic ions. Via carefully designed numerical experiments, we show very clearly that this picture is true.
Resent Status of ITER Equatorial Launcher Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, K.; Kajiwara, K.; Kasugai, A.
2009-11-26
The ITER equatorial launcher is divided into a front shield and a port plug. The front shield is composed of fourteen blanket shield modules so as to form three openings for the injection of mm-wave beams into plasma. Twenty-four waveguide transmission lines, internal shields, cooling pipes and so on are installed in the port plug. The transmission lines consist of the corrugated waveguides, miter bends and the free space propagation region utilizing two mirrors in front of the waveguide outlet. The analysis of mm-wave beam propagation in the region shows that the transmission efficiency more than 99.5% is attained. Themore » high power experiments of the launcher mock-up have been carried out and the measured field patterns at each mirror and the outlet of the launcher are agreed with the calculations. It is concluded that the transmission line components in the launcher mock-up are fabricated as designed and the present mm-wave design in the launcher is feasible.« less
NASA Astrophysics Data System (ADS)
Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Burachenko, Alexandr G.; Rybka, Dmitry V.; Kostyrya, Igor'D.; Lomaev, Mikhail I.; Baksht, Evgeni Kh.; Yan, Ping
2013-05-01
The breakdown of different air gaps at high overvoltages in an inhomogeneous electric field was investigated with a time resolution of up to 100 ps. Dynamic displacement current was used for diagnostics of ionization processes between the ionization wave front and a plane anode. It is demonstrated that during the generation of a supershort avalanche electron beam (SAEB) with amplitudes of ˜10 A and more, conductivity in the air gaps at the breakdown stage is ensured by the ionization wave, whose front propagates from the electrode of small curvature radius, and by the dynamic displacement current between the ionization wave front and the plane electrode. The amplitude of the dynamic displacement current measured by a current shunt is 100 times greater than the SAEB. It is shown that with small gaps and with a large cathode diameter, the amplitude of the dynamic displacement current during a subnanosecond rise time of applied pulse voltage can be higher than 4 kA.
One-loop corrections to light cone wave functions: The dipole picture DIS cross section
NASA Astrophysics Data System (ADS)
Hänninen, H.; Lappi, T.; Paatelainen, R.
2018-06-01
We develop methods to perform loop calculations in light cone perturbation theory using a helicity basis, refining the method introduced in our earlier work. In particular this includes implementing a consistent way to contract the four-dimensional tensor structures from the helicity vectors with d-dimensional tensors arising from loop integrals, in a way that can be fully automatized. We demonstrate this explicitly by calculating the one-loop correction to the virtual photon to quark-antiquark dipole light cone wave function. This allows us to calculate the deep inelastic scattering cross section in the dipole formalism to next-to-leading order accuracy. Our results, obtained using the four dimensional helicity scheme, agree with the recent calculation by Beuf using conventional dimensional regularization, confirming the regularization scheme independence of this cross section.
NASA Astrophysics Data System (ADS)
Smith, Eric Ryan; Farrow, Darcie A.; Jonas, David M.
2005-07-01
Four-wave-mixing nonlinear-response functions are given for intermolecular and intramolecular vibrations of a perpendicular dimer and intramolecular vibrations of a square-symmetric molecule containing a doubly degenerate state. A two-dimensional particle-in-a-box model is used to approximate the electronic wave functions and obtain harmonic potentials for nuclear motion. Vibronic interactions due to symmetry-lowering distortions along Jahn-Teller active normal modes are discussed. Electronic dephasing due to nuclear motion along both symmetric and asymmetric normal modes is included in these response functions, but population transfer between states is not. As an illustration, these response functions are used to predict the pump-probe polarization anisotropy in the limit of impulsive excitation.
Millimeter wave front-end figure of merit, part 2
NASA Astrophysics Data System (ADS)
Silberman, Gabriel G.
1995-09-01
This report presents a practical approach for defining and calculating a meaningful figure of merit for frequency modulated continuous wave radar systems with separate receive and transmit (bistatic) antennas.
Rabani, Amir
2016-01-01
The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications. PMID:27754324
Rabani, Amir
2016-10-12
The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.
NASA Astrophysics Data System (ADS)
Kuramitsu, Y.; Nakanii, N.; Kondo, K.; Sakawa, Y.; Mori, Y.; Miura, E.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Takeda, K.; Tampo, M.; Kodama, R.; Kitagawa, Y.; Mima, K.; Tanaka, K. A.; Hoshino, M.; Takabe, H.
2011-02-01
Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.
Non-LTE radiating acoustic shocks and Ca II K2V bright points
NASA Technical Reports Server (NTRS)
Carlsson, Mats; Stein, Robert F.
1992-01-01
We present, for the first time, a self-consistent solution of the time-dependent 1D equations of non-LTE radiation hydrodynamics in solar chromospheric conditions. The vertical propagation of sinusoidal acoustic waves with periods of 30, 180, and 300 s is calculated. We find that departures from LTE and ionization recombination determine the temperature profiles of the shocks that develop. In LTE almost all the thermal energy goes into ionization, so the temperature rise is very small. In non-LTE, the finite transition rates delay the ionization to behind the shock front. The compression thus goes into thermal energy at the shock front leading to a high temperature amplitude. Further behind the shock front, the delayed ionization removes energy from the thermal pool, which reduces the temperature, producing a temperature spike. The 180 s waves reproduce the observed temporal changes in the calcium K line profiles quite well. The observed wing brightening pattern, the violet/red peak asymmetry and the observed line center behavior are all well reproduced. The short-period waves and the 5 minute period waves fail especially in reproducing the observed behavior of the wings.
Digital off-axis holographic interferometry with simulated wavefront.
Belashov, A V; Petrov, N V; Semenova, I V
2014-11-17
The paper presents a novel algorithm based on digital holographic interferometry and being promising for evaluation of phase variations from highly noisy or modulated by speckle-structures digital holograms. The suggested algorithm simulates an interferogram in finite width fringes, by analogy with classical double exposure holographic interferometry. Thus obtained interferogram is then processed as a digital hologram. The advantages of the suggested approach are demonstrated in numerical experiments on calculations of differences in phase distributions of wave fronts modulated by speckle structure, as well as in a physical experiment on the analysis of laser-induced heating dynamics of an aqueous solution of a photosensitizer. It is shown that owing to the inherent capability of the approach to perform adjustable smoothing of compared wave fronts, the resulting difference undergoes noise filtering. This capability of adjustable smoothing may be used to minimize losses in spatial resolution. Since the method allows to vary an observation angle of compared wave fields, an opportunity to compensate misalignment of optical axes of these wave fronts arises. This feature can be required, for example, when using two different setups in comparative digital holography or for compensation of recording system displacements during a set of exposures in studies of dynamic processes.
Collective cell migration without proliferation: density determines cell velocity and wave velocity
NASA Astrophysics Data System (ADS)
Tlili, Sham; Gauquelin, Estelle; Li, Brigitte; Cardoso, Olivier; Ladoux, Benoît; Delanoë-Ayari, Hélène; Graner, François
2018-05-01
Collective cell migration contributes to embryogenesis, wound healing and tumour metastasis. Cell monolayer migration experiments help in understanding what determines the movement of cells far from the leading edge. Inhibiting cell proliferation limits cell density increase and prevents jamming; we observe long-duration migration and quantify space-time characteristics of the velocity profile over large length scales and time scales. Velocity waves propagate backwards and their frequency depends only on cell density at the moving front. Both cell average velocity and wave velocity increase linearly with the cell effective radius regardless of the distance to the front. Inhibiting lamellipodia decreases cell velocity while waves either disappear or have a lower frequency. Our model combines conservation laws, monolayer mechanical properties and a phenomenological coupling between strain and polarity: advancing cells pull on their followers, which then become polarized. With reasonable values of parameters, this model agrees with several of our experimental observations. Together, our experiments and model disantangle the respective contributions of active velocity and of proliferation in monolayer migration, explain how cells maintain their polarity far from the moving front, and highlight the importance of strain-polarity coupling and density in long-range information propagation.
Transport of pollutants and sediment in the area of the Wave Hub (Celtic Sea)
NASA Astrophysics Data System (ADS)
Shapiro, Georgy; Huntley, David
2010-05-01
Ocean waves are a sustainable source of alternative energy that, if properly developed, will provide a quarter of current electricity demand and contribute to lowering the UK's reliance on fossil fuels. The UK government has given planning approval for a pilot power plant called the Wave Hub located in the eastern Celtic Sea off the Cornish north coast. The impact of a small number of devices on the physical environment is expected to be subtle outside the exclusion zone. However, such pilot projects are considered as the launching pad in the UK's ambitious programme to create a new wave energy industry. Large scale off-shore industrial activity can interact with the physical environment of the shelf sea in a two-fold manner: (i) the wave farm is affected by the waves, currents, variation in temperature and movements of sediment, and (ii) it can impact on the marine environment via a number of ways including release of dissolved and suspended matter during construction, operational and decommission stages of the project. These changes in the physical environment can then be translated into changes of the ecosystem and corresponding human activities. The Celtic Sea has a highly variable and complex thermal structure. In the spring and summer the water column becomes stratified due to solar heating of the surface layer, particularly in the areas of greater depth and/or low currents, where the turbulence is insufficient to mix the entire water column. Fronts form at the junctions of stratified and mixed water columns and these fronts generate currents which flow along the fronts. These frontal currents are subject to baroclinic instability and generate a whole set of mesoscale (i.e. comparable with the baroclinic Rossby radius) features such as eddies, filaments and mushroom currents, which are clearly seen on satellite images. Ecosystems are particularly concentrated in the vicinity of fronts so changes in frontal strength or location can have significant biological consequences. This paper presents some preliminary modelling results of a baseline study focussed on hind-cast and now-cast simulation of the 3D structure of temperature, salinity and current velocity in the area immediately adjacent to the location of the Wave Hub. Of the range of available 3D numerical models for shelf sea hydrodynamics, we have selected the Proudman Oceanographic Laboratory Coastal Modelling System (POLCOMS). The POLCOMS has successfully been used in a number of coastal/shelf sea regions to simulate circulation of coastal waters. Modelling is carried out in the region of approximately 200x 200 km with the variable vertical resolution typically less than 2 m. Such parameters allow resololution of the formation of coastal density fronts both within and outside the wave shadow zone, expected to be of the order of tens of kilometres. The meteorological parameters are obtained from the publicly available NCEP re-analyses data base. These parameters include components of the wind velocity and the surface heat fluxes, air pressure at sea level; temperature and humidity in the low troposphere; precipitation and cloudiness. In this study, the transport of pollution is simulated by a number of passive drifters located at a certain depth at a number of locations including the central point of the Wave Hub. Sediment transport is modelled using the Engelund-Hansen algorithm taking the current velocities produced by the POLCOMS as an input parameter. The Celtic sea is a tidally dominated region, and the modelling is run both in full-forcing and in tide-only modes in order to assess effects of density fronts on the residual (tidally averaged) circulation pattern. The results show that the pollution pathways are very sensitive to the formation of temperature fronts. In some cases the passive traces move in nearly opposite directions when the effect of temperature fronts is disregarded. Sediment transport is highly non-uniform spatially with some four areas along the Cornish coast being particularly affected. Sediment transport is also sensitive to the neap-spring phase of the tidal cycle. Residual currents caused by the non-linear tidal stream rectification are comparable or slower (depending on location) than the density driven currents caused by formation of temperature fronts. Location of the Wave Hub is particularly prone to strong transport of suspended particulate matter subject to availability of sediment on the seabed. These preliminary results suggest that the region of the Celtic Sea where the proposed Wave Hub is sited is an excellent location for assessing potential impacts of wave energy extraction. The authors wish to thank D. L. Aleynik for his help in setting up the POLCOMS model and the PRIMaRE project for providing computing facilities.
Solar module having reflector between cells
Kardauskas, Michael J.
1999-01-01
A photovoltaic module comprising an array of electrically interconnected photovoltaic cells disposed in a planar and mutually spaced relationship between a light-transparent front cover member in sheet form and a back sheet structure is provided with a novel light-reflecting means disposed between adjacent cells for reflecting light falling in the areas between cells back toward said transparent cover member for further internal reflection onto the solar cells. The light-reflecting comprises a flexible plastic film that has been embossed so as to have a plurality of small V-shaped grooves in its front surface, and a thin light-reflecting coating on said front surface, the portions of said coating along the sides of said grooves forming light-reflecting facets, said grooves being formed so that said facets will reflect light impinging thereon back into said transparent cover sheet with an angle of incidence greater than the critical angle, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to said solar modules, thereby increasing the current output of the module.