Science.gov

Sample records for light-induced survival response

  1. Differential Light-induced Responses in Sectorial Inherited Retinal Degeneration*

    PubMed Central

    Ramon, Eva; Cordomí, Arnau; Aguilà, Mònica; Srinivasan, Sundaramoorthy; Dong, Xiaoyun; Moore, Anthony T.; Webster, Andrew R.; Cheetham, Michael E.; Garriga, Pere

    2014-01-01

    Retinitis pigmentosa (RP) is a group of genetically and clinically heterogeneous inherited degenerative retinopathies caused by abnormalities of photoreceptors or retinal pigment epithelium in the retina leading to progressive sight loss. Rhodopsin is the prototypical G-protein-coupled receptor located in the vertebrate retina and is responsible for dim light vision. Here, novel M39R and N55K variants were identified as causing an intriguing sector phenotype of RP in affected patients, with selective degeneration in the inferior retina. To gain insights into the molecular aspects associated with this sector RP phenotype, whose molecular mechanism remains elusive, the mutations were constructed by site-directed mutagenesis, expressed in heterologous systems, and studied by biochemical, spectroscopic, and functional assays. M39R and N55K opsins had variable degrees of chromophore regeneration when compared with WT opsin but showed no gross structural misfolding or altered trafficking. M39R showed a faster rate for transducin activation than WT rhodopsin with a faster metarhodopsinII decay, whereas N55K presented a reduced activation rate and an altered photobleaching pattern. N55K also showed an altered retinal release from the opsin binding pocket upon light exposure, affecting its optimal functional response. Our data suggest that these sector RP mutations cause different protein phenotypes that may be related to their different clinical progression. Overall, these findings illuminate the molecular mechanisms of sector RP associated with rhodopsin mutations. PMID:25359768

  2. Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis.

    PubMed

    Zhang, Kun-Xiao; Xu, Heng-Hao; Yuan, Ting-Ting; Zhang, Liang; Lu, Ying-Tang

    2013-10-01

    Root negative phototropism is an important response in plants. Although blue light is known to mediate this response, the cellular and molecular mechanisms underlying root negative phototropism remain unclear. Here, we report that the auxin efflux carrier PIN-FORMED (PIN) 3 is involved in asymmetric auxin distribution and root negative phototropism. Unilateral blue-light illumination polarized PIN3 to the outer lateral membrane of columella cells at the illuminated root side, and increased auxin activity at the illuminated side of roots, where auxin promotes growth and causes roots bending away from the light source. Furthermore, root negative phototropic response and blue-light-induced PIN3 polarization were modulated by a brefeldin A-sensitive, GNOM-dependent, trafficking pathway and by phot1-regulated PINOID (PID)/PROTEIN PHOSPHATASE 2A (PP2A) activity. Our results indicate that blue-light-induced PIN3 polarization is needed for asymmetric auxin distribution during root negative phototropic response.

  3. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis.

    PubMed

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-03-09

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways.

  4. Light-induced transient ion flux responses from maize leaves and their association with leaf growth and photosynthesis.

    PubMed

    Zivanović, B D; Pang, J; Shabala, S

    2005-03-01

    Net fluxes of H+, K+ and Ca2+ ions from maize (Zea mays L.) isolated leaf segments were measured non-invasively using ion-selective vibrating microelectrodes (the MIFE technique). Leaf segments were isolated from the blade base, containing actively elongating cells (basal segments), and from non-growing tip regions (tip segments). Ion fluxes were measured in response to bright white light (2600 micromoles m-2 s-1) from either the leaf segments or the underlying mesophyll (after stripping the epidermis). Fluxes measured from the mesophyll showed no significant difference between basal and tip regions. In leaf segments (epidermis attached), light-induced flux kinetics of all ions measured (H+, Ca2+ and K+) were strikingly different between the two regions. It appears that epidermal K+ fluxes are required to drive leaf expansion growth, whereas in the mesophyll light-induced K+ flux changes are likely to play a charge balancing role. Light-stimulated Ca2+ influx was not directly attributable either to leaf photosynthetic performance or to leaf expansion growth. It is concluded that light-induced ion flux changes are associated with both leaf growth and photosynthesis.

  5. Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response

    PubMed Central

    Randhawa, Manpreet; Seo, InSeok; Liebel, Frank; Southall, Michael D.; Kollias, Nikiforos; Ruvolo, Eduardo

    2015-01-01

    Visible light (400–700 nm) lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions. PMID:26121474

  6. Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response.

    PubMed

    Randhawa, Manpreet; Seo, InSeok; Liebel, Frank; Southall, Michael D; Kollias, Nikiforos; Ruvolo, Eduardo

    2015-01-01

    Visible light (400-700 nm) lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions.

  7. Increased susceptibility to fundus camera-delivered light-induced retinal degeneration in mice deficient in oxidative stress response proteins.

    PubMed

    Ding, Yi; Aredo, Bogale; Zhong, Xin; Zhao, Cynthia X; Ufret-Vincenty, Rafael L

    2017-03-20

    Oxidative stress is an important contributor to the pathogenesis of many retinal diseases including age-related macular degeneration and retinal dystrophies. Light-induced retinal degeneration (LIRD) can serve as a model in which to study the response of the retina to stress. Of note, many genetic mutant mice are in a C57BL/6 J background and are thus resistant to the usual LIRD models. We recently developed a new model of fundus camera-delivered light-induced retinal degeneration (FCD-LIRD) which is effective in strains of mice expressing the light-resistant variant of RPE65 (450Met), including C57BL/6 J. In this work we investigated whether FCD-LIRD would be useful as a model in which to test the effect of genetic mutations on the response of the retina to stress. Furthermore, we tested whether oxidative stress plays an important role in the setting of this new FCD-LIRD model. FCD-LIRD was applied to C57BL/6 J mice and to mice simultaneously deficient in three proteins that are important in the response of the retina to oxidative stress (SOD1, DJ-1 and Parkin). Using fundus photography, we found that retinal damage was dramatically increased in the SOD1/DJ-1/Parkin deficient mice compared to C57BL/6 J. Outer retinal OCT volume and RPE cell morphology analysis in ZO-1-stained flat mounts added support to these findings. Gene expression analysis confirmed a strong oxidative stress response after FCD-LIRD, which was differentially altered in the SOD1/DJ1/Parkin deficient mice. We conclude that FCD-LIRD is useful to study the effect of genetic mutations on the response of the retina to light stress in light-resistant strains of mice. Furthermore, oxidative stress seems to be an important component of FCD-LIRD. Finally, we have established protocols to quantify the effect of FCD-LIRD on the retina and RPE which will be useful for future studies. Further dissection of the mechanisms by which the retina responds to light-induced oxidative stress may result in new

  8. Photosensory transduction in ciliates. I. An analysis of light-induced electrical and motile responses in Stentor coeruleus.

    PubMed

    Fabczak, S; Fabczak, H; Tao, N; Song, P S

    1993-04-01

    Light-induced membrane potential changes and motile responses have been studied in Stentor cells with intracellular microelectrodes and video microscopy, respectively. Intracellular microelectrode recordings showed that step-up increase in light intensity induced an electrical membrane response which consisted of an initial membrane depolarization (photoreceptor potential) followed by an action potential and maintaining phase of depolarization (afterdepolarization). The amplitude of the receptor potential is dependent on the intensity of light stimulus and the action potential appears with a lag period (latency) after the onset of light stimulus. The extent of the membrane afterdepolarization is dependent on the intensity and duration of stimulus used. A close time correlation has been established between the latency for the action potential and the onset of ciliary reversal (stop response). A time correlation was also observed between the duration of the membrane afterdepolarization and the duration of backward swimming. The action spectrum for the photoreceptor potential amplitude of Stentor resembled the action spectra for the latency of ciliary reversal and the photoresponsiveness, indicating that the photomovement response and membrane potential changes are coupled through the same photosensor system. A hypothesis on the photosensory transduction chain in Stentor is discussed according to which the photoreceptors and the ciliary apparatus is mediated by the membrane potential changes.

  9. Computational classification of different wild-type zebrafish strains based on their variation in light-induced locomotor response.

    PubMed

    Gao, Yuan; Zhang, Gaonan; Jelfs, Beth; Carmer, Robert; Venkatraman, Prahatha; Ghadami, Mohammad; Brown, Skye A; Pang, Chi Pui; Leung, Yuk Fai; Chan, Rosa H M; Zhang, Mingzhi

    2016-02-01

    Zebrafish larvae display a rapid and characteristic swimming behaviour after abrupt light onset or offset. This light-induced locomotor response (LLR) has been widely used for behavioural research and drug screening. However, the locomotor responses have long been shown to be different between different wild-type (WT) strains. Thus, it is critical to define the differences in the WT LLR to facilitate accurate interpretation of behavioural data. In this investigation, we used support vector machine (SVM) models to classify LLR data collected from three WT strains: AB, TL and TLAB (a hybrid of AB and TL), during early embryogenesis, from 3 to 9 days post-fertilisation (dpf). We analysed both the complete dataset and a subset of the data during the first 30after light change. This initial period of activity is substantially driven by vision, and is also known as the visual motor response (VMR). The analyses have resulted in three major conclusions: First, the LLR is different between the three WT strains, and at different developmental stages. Second, the distinguishable information in the VMR is comparable to, if not better than, the full dataset for classification purposes. Third, the distinguishable information of WT strains in the light-onset response differs from that in the light-offset response. While the classification accuracies were higher for the light-offset than light-onset response when using the complete LLR dataset, a reverse trend was observed when using a shorter VMR dataset. Together, our results indicate that one should use caution when extrapolating interpretations of LLR/VMR obtained from one WT strain to another.

  10. Arabidopsis FHY3 and FAR1 Regulate Light-Induced myo-Inositol Biosynthesis and Oxidative Stress Responses by Transcriptional Activation of MIPS1.

    PubMed

    Ma, Lin; Tian, Tian; Lin, Rongcheng; Deng, Xing-Wang; Wang, Haiyang; Li, Gang

    2016-04-04

    myo-Inositol-1-phosphate synthase (MIPS) catalyzes the limiting step of inositol biosynthesis and has crucial roles in plant growth and development. In response to stress, the transcription of MIPS1 is induced and the biosynthesis of inositol or inositol derivatives is promoted by unknown mechanisms. Here, we found that the light signaling protein FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1) regulate light-induced inositol biosynthesis and oxidative stress responses by activating the transcription of MIPS1. Disruption of FHY3 and FAR1 caused light-induced cell death after dark-light transition, precocious leaf senescence, and increased sensitivity to oxidative stress. Reduction of salicylic acid (SA) accumulation by overexpression of SALICYLIC ACID 3-HYDROXYLASE largely suppressed the cell death phenotype of fhy3 far1 mutant plants, suggesting that FHY3- and FAR1-mediated cell death is dependent on SA. Furthermore, comparative analysis of chromatin immunoprecipitation sequencing and microarray results revealed that FHY3 and FAR1 directly target both MIPS1 and MIPS2. The fhy3 far1 mutant plants showed severely decreased MIPS1/2 transcript levels and reduced inositol levels. Conversely, constitutive expression of MIPS1 partially rescued the inositol contents, caused reduced transcript levels of SA-biosynthesis genes, and prevented oxidative stress in fhy3 far1. Taken together, our results indicate that the light signaling proteins FHY3 and FAR1 directly bind the promoter of MIPS1 to activate its expression and thereby promote inositol biosynthesis to prevent light-induced oxidative stress and SA-dependent cell death.

  11. Light induced diffusion driven self assembly of Ag nanoparticles in a-Se/Ag bi-layer thin film with ultrafast optical response

    NASA Astrophysics Data System (ADS)

    Bapna, Mukund; Sharma, Rituraj; Barik, A. R.; Khan, Pritam; Ranjan Kumar, Rakesh; Adarsh, K. V.

    2013-05-01

    In this Letter, we demonstrate that femtosecond light-induced interdiffusion of Ag driven by the electrostatic attraction between photo-excited Ag+ ions and negatively charged amorphous layer can act as an efficient single step method for hybrid integration of spatially ordered and interconnected nanoparticles on the surface of amorphous films. Such self assembled complex hybrid structures of silver nanoparticles via bottom-up nano-construction method on a-Se thin film show an ultrafast optical response over an unusually broad wavelength range that can be used to construct optical modulators operating at switching speed of ˜5 ps.

  12. Effect of Percent Relative Humidity, Moisture Content, and Compression Force on Light-Induced Fluorescence (LIF) Response as a Process Analytical Tool.

    PubMed

    Shah, Ishan G; Stagner, William C

    2016-08-01

    The effect of percent relative humidity (16-84% RH), moisture content (4.2-6.5% w/w MC), and compression force (4.9-44.1 kN CF) on the light-induced fluorescence (LIF) response of 10% w/w active pharmaceutical ingredient (API) compacts is reported. The fluorescent response was evaluated using two separate central composite designs of experiments. The effect of % RH and CF on the LIF signal was highly significant with an adjusted R (2)  = 0.9436 and p < 0.0001. Percent relative humidity (p = 0.0022), CF (p < 0.0001), and % RH(2) (p = 0.0237) were statistically significant factors affecting the LIF response. The effects of MC and CF on LIF response were also statistically significant with a p value <0.0001 and adjusted R (2) value of 0.9874. The LIF response was highly impacted by MC (p < 0.0001), CF (p < 0.0001), and MC(2) (p = 0022). At 10% w/w API, increased % RH, MC, and CF led to a nonlinear decrease in LIF response. The derived quadratic model equations explained more than 94% of the data. Awareness of these effects on LIF response is critical when implementing LIF as a process analytical tool.

  13. Channelrhodopsin-1 Initiates Phototaxis and Photophobic Responses in Chlamydomonas by Immediate Light-Induced Depolarization[W

    PubMed Central

    Berthold, Peter; Tsunoda, Satoshi P.; Ernst, Oliver P.; Mages, Wolfgang; Gradmann, Dietrich; Hegemann, Peter

    2008-01-01

    Channelrhodopsins (CHR1 and CHR2) are light-gated ion channels acting as sensory photoreceptors in Chlamydomonas reinhardtii. In neuroscience, they are used to trigger action potentials by light in neuronal cells, tissues, or living animals. Here, we demonstrate that Chlamydomonas cells with low CHR2 content exhibit photophobic and phototactic responses that strictly depend on the availability of CHR1. Since CHR1 was described as a H+-channel, the ion specificity of CHR1 was reinvestigated in Xenopus laevis oocytes. Our experiments show that, in addition to H+, CHR1 also conducts Na+, K+, and Ca2+. The kinetic selectivity analysis demonstrates that H+ selectivity is not due to specific translocation but due to selective ion binding. Purified recombinant CHR1 consists of two isoforms with different absorption maxima, CHR1505 and CHR1463, that are in pH-dependent equilibrium. Thus, CHR1 is a photochromic and protochromic sensory photoreceptor that functions as a light-activated cation channel mediating phototactic and photophobic responses via depolarizing currents in a wide range of ionic conditions. PMID:18552201

  14. Photosensitizer-Loaded pH-Responsive Hollow Gold Nanospheres for Single Light-Induced Photothermal/Photodynamic Therapy.

    PubMed

    Yu, Meng; Guo, Fang; Wang, Jinping; Tan, Fengping; Li, Nan

    2015-08-19

    Novel photoinduced triple-response antitumor therapeutic system based on hollow gold nanospheres (HAuNS), pH (low) insertion peptide (pHLIP), and Chlorin e6 (Ce6), was reported for the first time. The system was able to intracellularly deliver the nanocarriers by the transmembrane ability of pHLIP at the condition of pH 6.2. Ce6 and pHLIP were then released from the surface of the carriers due to the weakening electrostatic interaction with HAuNS under the photoirradiation. Herein, HAuNS performed two different functions: (1) as a nanocarrier because of the excellent loading capability; (2) experienced the photothermal therapy (PTT) effect as a photothermal coupling agent (PTCA), thus enhancing the photodynamic therapy (PDT) effect of Ce6.

  15. The HT1 protein kinase is essential for red light-induced stomatal opening and genetically interacts with OST1 in red light and CO2 -induced stomatal movement responses.

    PubMed

    Matrosova, Anastasia; Bogireddi, Hanumakumar; Mateo-Peñas, Alfonso; Hashimoto-Sugimoto, Mimi; Iba, Koh; Schroeder, Julian I; Israelsson-Nordström, Maria

    2015-12-01

    The question of whether red light-induced stomatal opening is mediated by a photosynthesis-derived reduction in intercellular [CO2 ] (Ci ) remains controversial and genetic analyses are needed. The Arabidopsis thaliana protein kinase HIGH TEMPERATURE 1 (HT1) is a negative regulator of [CO2 ]-induced stomatal closing and ht1-2 mutant plants do not show stomatal opening to low [CO2 ]. The protein kinase mutant ost1-3 exhibits slowed stomatal responses to CO2 . The functions of HT1 and OPEN STOMATA 1 (OST1) to changes in red, blue light or [CO2 ] were analyzed. For comparison we assayed recessive ca1ca4 carbonic anhydrase double mutant plants, based on their slowed stomatal response to CO2 . Here, we report a strong impairment in ht1 in red light-induced stomatal opening whereas blue light was able to induce stomatal opening. The effects on photosynthetic performance in ht1 were restored when stomatal limitation of CO2 uptake, by control of [Ci ], was eliminated. HT1 was found to interact genetically with OST1 both during red light- and low [CO2 ]-induced stomatal opening. Analyses of ca1ca4 plants suggest that more than a low [Ci ]-dependent pathway may function in red light-induced stomatal opening. These results demonstrate that HT1 is essential for red light-induced stomatal opening and interacts genetically with OST1 during stomatal responses to red light and altered [CO2 ].

  16. Exclusion of the Unfolded Protein Response in Light-Induced Retinal Degeneration in the Canine T4R RHO Model of Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Marsili, Stefania; Genini, Sem; Sudharsan, Raghavi; Gingrich, Jeremy; Aguirre, Gustavo D.; Beltran, William A.

    2015-01-01

    Purpose To examine the occurrence of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) following acute light damage in the naturally-occurring canine model of RHO-adRP (T4R RHO dog). Methods The left eyes of T4R RHO dogs were briefly light-exposed and retinas collected 3, 6 and 24 hours later. The contra-lateral eyes were shielded and used as controls. To evaluate the time course of cell death, histology and TUNEL assays were performed. Electron microscopy was used to examine ultrastructural alterations in photoreceptors at 15 min, 1 hour, and 6 hours after light exposure. Gene expression of markers of ER stress and UPR were assessed by RT-PCR, qRT-PCR and western blot at the 6 hour time-point. Calpain and caspase-3 activation were assessed at 1, 3 and 6 hours after exposure. Results A brief exposure to clinically-relevant levels of white light causes within minutes acute disruption of the rod outer segment disc membranes, followed by prominent ultrastructural alterations in the inner segments and the initiation of cell death by 6 hours. Activation of the PERK and IRE1 pathways, and downstream targets (BIP, CHOP) of the UPR was not observed. However increased transcription of caspase-12 and hsp70 occurred, as well as calpain activation, but not that of caspase-3. Conclusion The UPR is not activated in the early phase of light-induced photoreceptor cell death in the T4R RHO model. Instead, disruption in rods of disc and plasma membranes within minutes after light exposure followed by increase in calpain activity and caspase-12 expression suggests a different mechanism of degeneration. PMID:25695253

  17. MerR and ChrR mediate blue light induced photo-oxidative stress response at the transcriptional level in Vibrio cholerae

    PubMed Central

    Tardu, Mehmet; Bulut, Selma; Kavakli, Ibrahim Halil

    2017-01-01

    Blue light (BL) is a major environmental factor that affects the physiology, behavior, and infectivity of bacteria as it contributes to the generation of reactive oxygen species (ROS) while increasing photo-oxidative stress in cells. However, precise photo-oxidative response mechanism in non-phototrophic bacteria is yet to be elucidated. In this study, we investigated the effect of BL in Vibrio cholerae by using genetics and transcriptome profiling. Genome-wide analysis revealed that transcription of 6.3% of V. cholerae genes were regulated by BL. We further showed that BL enhances ROS production, which is generated through the oxidative phosphorylation. To understand signaling mechanisms, we generated several knockouts and analyzed their transcriptome under BL exposure. Studies with a double-knockout confirm an anti-sigma factor (ChrR) and putative metalloregulatory-like protein (MerR) are responsible for the genome-wide regulation to BL response in V. cholerae. Collectively, these results demonstrate that MerR-like proteins, in addition to ChrR, are required for V. cholerae to mount an appropriate response against photo-oxidative stress induced by BL. Outside its natural host, V. cholerae can survive for extended periods in natural aquatic environments. Therefore, the regulation of light response for V. cholerae may be a critical cellular process for its survival in these environments. PMID:28098242

  18. Magnetic routing of light-induced waveguides

    NASA Astrophysics Data System (ADS)

    Izdebskaya, Yana; Shvedov, Vladlen; Assanto, Gaetano; Krolikowski, Wieslaw

    2017-02-01

    Among photofunctional materials that can be employed to control the propagation of light by modifying their properties, soft dielectrics such as nematic liquid crystals (NLCs) stand out for their large all-optical response. Through reorientation, the molecular distribution of NLCs can be modified by the electric field of light, permitting functional operations and supporting self-localized light beams or spatial optical solitons. To date, the generation and routing of such solitons have been limited by the boundary conditions employed to tailor the properties of NLCs in planar cells or capillaries. Here we report on spatial solitons in bulk NLCs with no lateral anchoring, where the application of an external magnetic field effectively controls the direction of propagation and the angular steering of the self-trapped wavepackets. Our results entail a completely new approach to the routing of self-localized beams and light-induced waveguides in three dimensions, without the usual limitations imposed by transverse boundary conditions.

  19. Magnetic routing of light-induced waveguides

    PubMed Central

    Izdebskaya, Yana; Shvedov, Vladlen; Assanto, Gaetano; Krolikowski, Wieslaw

    2017-01-01

    Among photofunctional materials that can be employed to control the propagation of light by modifying their properties, soft dielectrics such as nematic liquid crystals (NLCs) stand out for their large all-optical response. Through reorientation, the molecular distribution of NLCs can be modified by the electric field of light, permitting functional operations and supporting self-localized light beams or spatial optical solitons. To date, the generation and routing of such solitons have been limited by the boundary conditions employed to tailor the properties of NLCs in planar cells or capillaries. Here we report on spatial solitons in bulk NLCs with no lateral anchoring, where the application of an external magnetic field effectively controls the direction of propagation and the angular steering of the self-trapped wavepackets. Our results entail a completely new approach to the routing of self-localized beams and light-induced waveguides in three dimensions, without the usual limitations imposed by transverse boundary conditions. PMID:28198374

  20. Green light induces shade avoidance symptoms.

    PubMed

    Zhang, Tingting; Maruhnich, Stefanie A; Folta, Kevin M

    2011-11-01

    Light quality and quantity affect plant adaptation to changing light conditions. Certain wavelengths in the visible and near-visible spectrum are known to have discrete effects on plant growth and development, and the effects of red, far-red, blue, and ultraviolet light have been well described. In this report, an effect of green light on Arabidopsis (Arabidopsis thaliana) rosette architecture is demonstrated using a narrow-bandwidth light-emitting diode-based lighting system. When green light was added to a background of constant red and blue light, plants exhibited elongation of petioles and upward leaf reorientation, symptoms consistent with those observed in a shaded light environment. The same green light-induced phenotypes were also observed in phytochrome (phy) and cryptochrome (cry) mutant backgrounds. To explore the molecular mechanism underlying the green light-induced response, the accumulation of shade-induced transcripts was measured in response to enriched green light environments. Transcripts that have been demonstrated to increase in abundance under far-red-induced shade avoidance conditions either decrease or exhibit no change when green light is added. However, normal far-red light-associated transcript accumulation patterns are observed in cryptochrome mutants grown with supplemental green light, indicating that the green-absorbing form of cryptochrome is the photoreceptor active in limiting the green light induction of shade-associated transcripts. These results indicate that shade symptoms can be induced by the addition of green light and that cryptochrome receptors and an unknown light sensor participate in acclimation to the enriched green environment.

  1. Bacterial survival responses to extreme desiccation and high humidity

    NASA Astrophysics Data System (ADS)

    Yang, Yinjie; Yokobori, Shinichi; Yamagishi, Akihiko

    The presence of water is thought to be essential for life and strongly considered in life searching operation on extraterrestrial planets. In this study we show different survival responses of bacterial species to water availability and temperatures (25, 4 and - 70 o C). At these temperatures, E.coli lost viability much faster under extreme desiccation than under high humidity. Deinococcus radiodurans exhibited much higher survival rate under desiccation than under high humidity at 25 o C, while its survivals under desiccation and high humidity increased to the same level at 4 and - 70 o C. Bacillus pumilus spores generally survived well under all tested conditions. Water is favorable for the survival of most microorganisms but not a "safeguard" for all microorganisms. Microbial survival at low temperatures may not be affected by water availability. Water absence should not preclude us from seeking life on other planets.

  2. The Responses of Arabidopsis Early Light-Induced Protein2 to Ultraviolet B, High Light, and Cold Stress Are Regulated by a Transcriptional Regulatory Unit Composed of Two Elements1[OPEN

    PubMed Central

    Hayami, Natsuki; Sakai, Yusaku; Kimura, Mitsuhiro; Saito, Tatsunori; Tokizawa, Mutsutomo; Iuchi, Satoshi; Kurihara, Yukio; Matsui, Minami; Nomoto, Mika; Tada, Yasuomi; Yamamoto, Yoshiharu Y.

    2015-01-01

    The Arabidopsis (Arabidopsis thaliana) Early Light-Induced Protein (ELIP) is thought to act as a photoprotectant, reducing the damaging effects of high light (HL). Expression of ELIP2 is activated by multiple environmental stresses related to photoinhibition. We have identified putative regulatory elements in an ELIP2 promoter using an octamer-based frequency comparison method, analyzed the role of these elements using synthetic promoters, and revealed a key transcriptional regulatory unit for ultraviolet B (UV-B) radiation, HL, and cold stress responses. The unit is composed of two elements, designated as Elements A (TACACACC) and B (GGCCACGCCA), and shows functionality only when paired. Our genome-wide correlation analysis between possession of these elements in the promoter region and expression profiles in response to UV-B, HL, and cold suggests that Element B receives and integrates these multiple stress signals. In vitro protein-DNA binding assays revealed that LONG HYPOCOTYL5 (HY5), a basic domain-Leucine zipper transcription factor, directly binds to Element B. In addition, mutant analysis of HY5 showed partial involvement in the UV-B and HL responses but not in the cold stress response. These results suggest that signals for UV-B, HL, and cold stress join at Element B, which recognizes the signals of multiple transcription factors, including HY5. PMID:26175515

  3. Synergy between the light-induced acute response and the circadian cycle: a new mechanism for the synchronization of the Phaseolus vulgaris clock to light.

    PubMed

    Kaldis, Athanasios-Dimitrios; Prombona, Anastasia

    2006-08-01

    PvLHY and Lhcb expression has been studied in primary bean leaves after exposure of etiolated leaves to two or three white light-pulses and under different photoperiods. Under the tested photoperiods, the steady-state mRNA levels exhibit diurnal oscillations with zenith in the morning between ZT21 and 4 for PvLHY and between ZT4 and 6 for Lhcb. Nadir is in the evening between ZT12 and 18 for PvLHY and ZT18 and 24 for Lhcb. Light-pulses to etiolated seedlings induce a differentiated acute response that is reciprocally correlated with the amplitude of the following circadian cycle. In addition, the clock modulates the duration of the acute response (descending part of the curve included), which according to the phase of the rhythm at light application extends from 7 to 18 h. This constitutes the response dynamics of the Phaseolus clock to light. Similarly, the waveform of PvLHY and Lhcb expression during the day of different photoperiods resembles in induction capability (accomplishment of peak after lights-on) and duration (from lights-on phase to trough) the phase-dependent progression of acute response in etiolated seedlings. Consequently, the peak of Lhcb (all tested photoperiods) and PvLHY (in LD 18:6) attained in the photophase corresponds to the acute response peak, while the peak of PvLHY during the scotophase (in LD 12:12 and 6:18) corresponds to the circadian peak. Thus, the effect of the response dynamics in the photoperiod determines the coincidence of the peak with the photo- or scotophase, respectively. This represents a new model mechanism for the adaptation of the Phaseolus clock to light.

  4. Oxygen and hydrogen peroxide enhance light-induced carotenoid synthesis in Neurospora crassa.

    PubMed

    Iigusa, Hideo; Yoshida, Yusuke; Hasunuma, Kohji

    2005-07-18

    Previously, we found that intracellular reactive oxygen species (ROS) affect photomorphogenesis in Neurospora crassa. In this study, we investigated the physiological roles of ROS in the response to light and found that the exposure of mycelia to air was important for the light-induced carotenogenesis. Mycelia treated with a high concentration of O(2) gas and H(2)O(2) to release ROS showed an enhancement of light-induced carotenoid accumulation and the expression of gene related to light-inducible carotenogenesis. These results suggested that stimuli caused by the exposure of the mycelia to air containing O(2) gas triggered the light-induced carotenoid synthesis.

  5. Sprayed zinc oxide films: Ultra-violet light-induced reversible surface wettability and platinum-sensitization-assisted improved liquefied petroleum gas response.

    PubMed

    Nakate, Umesh T; Patil, Pramila; Bulakhe, R N; Lokhande, C D; Kale, Sangeeta N; Naushad, Mu; Mane, Rajaram S

    2016-10-15

    We report the rapid (superhydrophobic to superhydrophilic) transition property and improvement in the liquefied petroleum gas (LPG) sensing response of zinc oxide (ZnO) nanorods (NRs) on UV-irradiation and platinum (Pt) surface sensitization, respectively. The morphological evolution of ZnO NRs is evidenced from the field emission scanning electron microscope and atomic force microscope digital images and for the structural elucidation X-ray diffraction pattern is used. Elemental survey mapping is obtained from energy dispersive X-ray analysis spectrum. The optical properties have been studied by UV-Visible and photoluminescence spectroscopy measurements. The rapid (120sec) conversion of superhydrophobic (154°) ZnO NRs film to superhydrophilic (7°) is obtained under UV light illumination and the superhydrophobicity is regained by storing sample in dark. The mechanism for switching wettability behavior of ZnO NRs has thoroughly been discussed. In second phase, Pt-sensitized ZnO NRs film has demonstrated considerable gas sensitivity at 260ppm concentration of LPG. At 623K operating temperature, the maximum LPG response of 58% and the response time of 49sec for 1040ppm LPG concentration of Pt- sensitized ZnO NRs film are obtained. This higher LPG response of Pt-sensitized ZnO NRs film over pristine is primarily due to electronic effect and catalytic effect (spill-over effect) caused by an additional of Pt on ZnO NRs film surface.

  6. Differential responses to different light spectral ranges of violaxanthin de-epoxidation and accumulation of Cbr, an algal homologue of plant early light inducible proteins, in two strains of Dunaliella.

    PubMed

    Banet; Pick; Malkin; Zamir

    1999-11-01

    Unicellular green algae of the genus Dunaliella, similar to higher plants, respond to light stress by enhanced de-epoxidation of violaxanthin and accumulation of Cbr, a protein homologous to early light inducible proteins (Elips) in plants. These proteins belong to the superfamily of chlorophyll a/b binding proteins. Two Dunaliella strains, D. bardawil and D. salina, were compared for these two responses under light in the UVA, blue, green and red spectral ranges. In D. bardawil, the two stress responses were similarly induced under UVA, blue or red light and to a lesser extent under green light. In D. salina, a similar spectral range dependence was exhibited for violaxanthin de-epoxidation. However, Cbr accumulated only under UVA or blue light but not under green or red light. A strong synergistic effect of a low dose of blue light superimposed on red light resulted in Cbr accumulation. These results reveal strain-specific differences in spectral range requirements of the two light-stress responses. In the two strains, violaxanthin de-epoxidation is triggered under photosynthetically-active spectral ranges but at least in D. salina, Cbr accumulation appears to require a specific light signal additionally to a signal(s) generated by light stress.

  7. Rhythmic and light-inducible appearance of clock-associated pseudo-response regulator protein PRR9 through programmed degradation in the dark in Arabidopsis thaliana.

    PubMed

    Ito, Shogo; Nakamichi, Norihito; Kiba, Takatoshi; Yamashino, Takafumi; Mizuno, Takeshi

    2007-11-01

    In Arabidopsis thaliana, it is currently believed that the members of a small family of PSEUDO-RESPONSE REGULATOR (PRR) proteins, including TOC1 (TIMING OF CAB EXPRESSION 1), coordinately play roles close to the circadian clock. Among these PRR members, the PRR9 gene is unique in that not only does its transcription oscillate diurnally, but it is also rapidly induced by light in a manner dependent on phytochromes. These events at the level of transcription must be crucial for the clock-associated functions of PRR9. Nonetheless, little is known about the expression of the PRR9 protein product itself in plant cells. Here, we show that PRR9 polypeptides themselves oscillate diurnally, and that they accumulate rapidly in response to light. Our work further suggests that the presence of PRR9 polypeptides is controlled through proteasome-mediated programmed degradation in the dark.

  8. Functional development of the visual system in normal and protein deprived rats. I. Persistent changes in light-induced cortical evoked response.

    PubMed

    Sjöström, A; Conradi, N G; Andersson, S A

    1984-04-01

    During an investigation focused on development of visual evoked responses (VER) in normal and protein deprived rats indications of persisting latency differences were found. Since such differences are in variance with previous reports special attention was paid to compare control and protein deprived adult rats. Protein deprivation was induced by feeding rats a diet with 50% reduction in protein content compared with control rat diet from two weeks before onset of gestation until examination. Dependence on experimental variables of latencies and complexity of the VER illustrated the need of a well defined experimental situation. Adult protein deprived rats showed significantly longer latencies to onset and to the first three peaks of the VER and an altered complexity of the response. It is suggested that the observed alterations result from effects of the protein deprivation on early brain development since this and previous studies have shown similar alterations in developing young rats. The divergence in findings between the present and previous reports may be explained by differences in degree of malnutrition and in other experimental conditions.

  9. The STN8 kinase-PBCP phosphatase system is responsible for high-light-induced reversible phosphorylation of the PSII inner antenna subunit CP29 in rice.

    PubMed

    Betterle, Nico; Poudyal, Roshan Sharma; Rosa, Anthony; Wu, Guangxi; Bassi, Roberto; Lee, Choon-Hwan

    2017-02-01

    Reversible phosphorylation of thylakoid light-harvesting proteins is a mechanism to compensate for unbalanced excitation of photosystem I (PSI) versus photosystem II (PSII) under limiting light. In monocots, an additional phosphorylation event on the PSII antenna CP29 occurs upon exposure to excess light, enhancing resistance to light stress. Different from the case of the major LHCII antenna complex, the STN7 kinase and its related PPH1 phosphatase were proven not to be involved in CP29 phosphorylation, indicating that a different set of enzymes act in the high-light (HL) response. Here, we analyze a rice stn8 mutant in which both PSII core proteins and CP29 phosphorylation are suppressed in HL, implying that STN8 is the kinase catalyzing this reaction. In order to identify the phosphatase involved, we produced a recombinant enzyme encoded by the rice ortholog of AtPBCP, antagonist of AtSTN8, which catalyzes the dephosphorylation of PSII core proteins. The recombinant protein was active in dephosphorylating P-CP29. Based on these data, we propose that the activities of the OsSTN8 kinase and the antagonistic OsPBCP phosphatase, in addition to being involved in the repair of photo-damaged PSII, are also responsible for the HL-dependent reversible phosphorylation of the inner antenna CP29.

  10. Autophagy in light-induced retinal damage

    PubMed Central

    Chen, Yu; Perusek, Lindsay; Maeda, Akiko

    2015-01-01

    Vision is reliant upon converting photon signals to electrical information which is interpreted by the brain and therefore allowing us to receive information about our surroundings. However, when exposed to excessive light, photoreceptors and other types of cells in the retina can undergo light-induced cell death, termed light-induced retinal damage. In this review, we summarize our current knowledge regarding molecular events in the retina after excessive light exposure and mechanisms of light-induced retinal damage. We also introduce works which investigate potential roles of autophagy, an essential cellular mechanism required for maintaining homeostasis under stress conditions, in the illuminated retina and animal models of light-induced retinal damage. PMID:26325327

  11. Autophagy in light-induced retinal damage.

    PubMed

    Chen, Yu; Perusek, Lindsay; Maeda, Akiko

    2016-03-01

    Vision is reliant upon converting photon signals to electrical information which is interpreted by the brain and therefore allowing us to receive information about our surroundings. However, when exposed to excessive light, photoreceptors and other types of cells in the retina can undergo light-induced cell death, termed light-induced retinal damage. In this review, we summarize our current knowledge regarding molecular events in the retina after excessive light exposure and mechanisms of light-induced retinal damage. We also introduce works which investigate potential roles of autophagy, an essential cellular mechanism required for maintaining homeostasis under stress conditions, in the illuminated retina and animal models of light-induced retinal damage.

  12. Evidence for a distinct light-induced calcium-dependent potassium current in Hermissenda crassicornis.

    PubMed

    Blackwell, K T

    2000-01-01

    A model of phototransduction is developed as a first step toward a model for investigating the critical interaction of light and turbulence stimuli within the type B photoreceptor of Hermissenda crassicronis. The model includes equations describing phototransduction, release of calcium from intracellular stores, and other calcium regulatory mechanisms, as well as equations describing ligand-gating of a rhabdomeric sodium current. The model is used to determine the sources of calcium in the soma, whether calcium or IP3 is a plausible ligand of the light-induced sodium current, and whether the light-induced potassium current is equivalent to the calcium-dependent potassium current activated by light-induced calcium release. Simulations show that the early light-induced calcium elevation is due to influx through voltage-dependent channels, whereas the later calcium elevation is due to release from intracellular stores. Simulations suggest that the ligand of the fast, light-induced sodium current is IP3 but that there is a smaller, prolonged component of the light-induced sodium current that is activated by calcium. In the model, the calcium-dependent potassium current, located in the soma, is activated only slightly by light-induced calcium elevation, leading to the prediction that a calcium-dependent potassium current, active at resting potential, is located in the rhabdomere and is responsible for the light-induced potassium current.

  13. Light-induced atomic elevator in optical lattices

    NASA Astrophysics Data System (ADS)

    Prants, S. V.

    2016-12-01

    It is shown how an atomic elevator that can elevate falling cold atoms in a vertical optical lattice can be created. The effect appears near resonance owing to the nonlinear interaction between the electronic and mechanical degrees of freedom of an atom, which is responsible for its random walk in rigid optical lattices without any modulation and additional action. Numerical experiments involving spontaneous emission demonstrate that random walk of atoms and light-induced atomic elevator can be observed in a real experiment.

  14. Light-induced actuating nanotransducers

    PubMed Central

    Ding, Tao; Valev, Ventsislav K.; Salmon, Andrew R.; Forman, Chris J.; Smoukov, Stoyan K.; Scherman, Oren A.; Frenkel, Daan; Baumberg, Jeremy J.

    2016-01-01

    Nanoactuators and nanomachines have long been sought after, but key bottlenecks remain. Forces at submicrometer scales are weak and slow, control is hard to achieve, and power cannot be reliably supplied. Despite the increasing complexity of nanodevices such as DNA origami and molecular machines, rapid mechanical operations are not yet possible. Here, we bind temperature-responsive polymers to charged Au nanoparticles, storing elastic energy that can be rapidly released under light control for repeatable isotropic nanoactuation. Optically heating above a critical temperature Tc = 32 °C using plasmonic absorption of an incident laser causes the coatings to expel water and collapse within a microsecond to the nanoscale, millions of times faster than the base polymer. This triggers a controllable number of nanoparticles to tightly bind in clusters. Surprisingly, by cooling below Tc their strong van der Waals attraction is overcome as the polymer expands, exerting nanoscale forces of several nN. This large force depends on van der Waals attractions between Au cores being very large in the collapsed polymer state, setting up a tightly compressed polymer spring which can be triggered into the inflated state. Our insights lead toward rational design of diverse colloidal nanomachines. PMID:27140648

  15. Rapid changes in protein phosphorylation associated with light-induced gravity perception in corn roots

    NASA Technical Reports Server (NTRS)

    McFadden, J. J.; Poovaiah, B. W.

    1988-01-01

    The effect of light and calcium depletion on in vivo protein phosphorylation was tested using dark-grown roots of Merit corn. Light caused rapid and specific promotion of phosphorylation of three polypeptides. Pretreatment of roots with ethylene glycol bis N,N,N',N' tetraacetic acid and A23187 prevented light-induced changes in protein phosphorylation. We postulate that these changes in protein phosphorylation are involved in the light-induced gravity response.

  16. Metastable light induced defects in pentacene

    SciTech Connect

    Liguori, R.; Aprano, S.; Rubino, A.

    2014-02-21

    In this study we analyzed one of the environmental factors that could affect organic materials. Pentacene thin film samples were fabricated and the degradation of their electrical characteristics was measured when the devices were exposed to ultraviolet light irradiation. The results have been reported in terms of a trap density model, which provides a description of the dynamics of light induced electrically active defects in an organic semiconductor.

  17. Light-induced body color change in developing zebrafish.

    PubMed

    Shiraki, Tomoya; Kojima, Daisuke; Fukada, Yoshitaka

    2010-11-01

    In response to ambient light levels, many lower vertebrates darken or lighten their body colors by regulating dispersion or aggregation, respectively, of melanin granules (melanosomes) in the melanophore. This physiological reaction is mediated by photoreception in the eyes, the pineal gland, the deep brain and the melanophores themselves, depending on species and their developmental stages. In this study, we established a method for quantitative measurement of the light-induced body color change in zebrafish larvae. From 2 days post-fertilization (dpf), the dermal melanophores responded to light illumination, but the response patterns and temporal profiles changed across the developmental stages. At 2 dpf, light illumination on larvae induced a relatively fast dispersion of the pigments in the melanophores, whereas continuous illumination additionally caused a delayed pigment aggregation at 3 dpf or later stages. Removal of the eyes abolished the light-dependent pigment aggregation but not the pigment dispersion at 5 dpf, while the pigment dispersion at 2 dpf was retained even in the isolated tail. These results suggest that the pigment dispersion is triggered by photoreception intrinsic to the melanophores and that the pigment aggregation is mediated by photoreception in the eyes. The monitoring system developed in this study will be useful to understand the neural mechanisms underlying the body color change depending on the ocular system. We also discussed the putative role(s) of opsin-type photoreceptive molecules in the light-induced body color change of the larval zebrafish.

  18. Functional analysis of chloroplast early light inducible proteins (ELIPs)

    SciTech Connect

    Wetzel, Carolyn M

    2005-02-22

    The objectives of this project were to characterize gene expression patterns of early light inducible protein (ELIP) genes in Arabidopsis thaliana and in Lycopersicon esculentum, to identify knock mutants of the 2 ELIP genes in Arabidopsis, and to characterize the effects of the knockouts. Expression in Arabidopsis was studied in response to thylakoid electron transport chain (PETC) capacity, where it was found that there is a signal for expression associated with reduction of the PETC. Expression in response to salt was also studied, with different responses of the two gene copies. Knockout lines for ELIP1 and ELIP2 have been identified and are being characterized. In tomato, it was found that the single-copy ELIP gene is highly expressed in ripening fruit during the chloroplast-to-chromoplast transition. Studies of expression in tomato ripening mutants are ongoing.

  19. Transient light-induced intracellular oxidation revealed by redox biosensor

    SciTech Connect

    Kolossov, Vladimir L.; Beaudoin, Jessica N.; Hanafin, William P.; DiLiberto, Stephen J.; Kenis, Paul J.A.; Rex Gaskins, H.

    2013-10-04

    Highlights: •Time-resolved live cell imaging revealed light-induced oxidation. •Only the roGFP probe fused with glutaredoxin reveals photooxidation. •The transient oxidation is rapidly reduced by the cytosolic antioxidant system. •Intracellular photooxidation is media-dependent. •Oxidation is triggered exclusively by exposure to short wavelength excitation. -- Abstract: We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.

  20. Light-Induced Dielectrophoretic Manipulation of DNA

    PubMed Central

    Hoeb, Marco; Rädler, Joachim O.; Klein, Stefan; Stutzmann, Martin; Brandt, Martin S.

    2007-01-01

    Light-induced dielectrophoretic movement of polystyrene beads and λ-DNA is studied using thin films of amorphous hydrogenated silicon as local photoaddressable electrodes with a diameter of 4 μm. Positive (high-field seeking) dielectrophoretic movement is observed for both types of objects. The absence of strong negative (low-field seeking) dielectrophoresis of DNA at high frequencies is in agreement with the similarity of the dielectric constants of DNA and water, the real part of the dielectric function. The corresponding imaginary part of the dielectric function governed by the conductivity of DNA can be determined from a comparison of the frequency dependence of the dielectrophoretic drift velocity with the Clausius-Mossotti relation. PMID:17483160

  1. Visible-Light-Induced Click Chemistry.

    PubMed

    Mueller, Jan O; Schmidt, Friedrich G; Blinco, James P; Barner-Kowollik, Christopher

    2015-08-24

    A rapid and catalyst-free cycloaddition system for visible-light-induced click chemistry is reported. A readily accessible photoreactive 2H-azirine moiety was designed to absorb light at wavelengths above 400 nm. Irradiation with low-energy light sources thus enables efficient small-molecule synthesis with a diverse range of multiple-bond-containing compounds. Moreover, in order to demonstrate the efficiency of the current approach, quantitative ligation of the photoactivatable chromophore with functional polymeric substrates was performed and full conversion with irradiation times of only 1 min at ambient conditions was achieved. The current report thus presents a highly efficient method for applications involving selective cycloaddition to electron-deficient multiple-bond-containing materials.

  2. Broadband Visible Light Induced NO Formation

    SciTech Connect

    Lubart, Rachel; Eichler, Maor; Friedmann, Harry; Ankri, Rinat; Savion, N.; Breitbart, Haim

    2009-06-19

    Nitric oxide formation is a potential mechanism for photobiomodulation because it is synthesized in cells by nitric oxide synthase (NOS), which contains both flavin and heme, and thus absorbs visible light. The purpose of this work was to study broadband visible light induced NO formation in various cells. Cardiac, endothelial, sperm cells and RAW 264.7 macrophages were illuminated with broadband visible light, 40-130 mW/cm2, 2.4-39 J/cm2, and nitric oxide production was quantified by using the Griess reagent. The results showed that visible light illumination increased NO concentration both in sperm and endothelial cells, but not in cardiac cells. Activation of RAW 264.7 macrophages was very small. It thus appears that NO is involved in photobiomodulation, though different light parameters and illumination protocols are needed to induce NO in various cells.

  3. A light-induced microwave oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1995-01-01

    We describe a novel oscillator that converts continuous light energy into sta ble and spectrally pure microwave signals. This light-induced microwave oscillator (LIMO) consists of a pump laser and a feedback circuit, including an intensity modulator, an optical fiber delay line, a photodetector, an amplifier, and a filter. We develop a quasilinear theory and obtain expressions for the threshold condition, the amplitude, the frequency, the line width, and the spectral power density of the oscillation. We also present experimental data to compare with the theoretical results. Our findings indicate that the LIMO can generate ultrastable, spectrally pure microwave reference signals up to 75 GHz with a phase noise lower than -140 dBc/Hz at 10 kHz.

  4. Light-induced effects in dye-doped liquid crystals: role of space charges

    NASA Astrophysics Data System (ADS)

    Simoni, F.; Lucchetti, L.

    2014-10-01

    We report the experimental demonstration that both the extra-ordinarily large nonlinear response and the light-induced permanent reorientation in liquid crystals doped by the azo-dye Methyl-Red originates from the modification of the charge density on the irradiated surface. By recording the sample response by applying dc or ac voltage, it is shown that in the latter case no permanent anchoring is possible. It is also demonstrated the limited role of photo-isomerization that gives a contribution to the nonlinear reorientation process only in the high dose regime. The effects on light-induced tuning of the Freedericksz transition are also reported.

  5. Light-induced currents in Xenopus oocytes expressing bovine rhodopsin.

    PubMed Central

    Knox, B E; Khorana, H G; Nasi, E

    1993-01-01

    1. We have investigated the functioning of bovine rod opsin, which is efficiently synthesized from RNA made by in vitro transcription, following injection into Xenopus oocytes. We found that oocytes expressing the gene for opsin exhibit light-dependent ionic currents only after pigment generation by incubation with 11-cis-retinal. These currents are similar to the endogenous muscarinic acetylcholine (ACh) response of oocytes, but their amplitude is substantially smaller. 2. In order to optimize the conditions for obtaining light-induced currents in RNA-injected oocytes, the native ACh response was examined under several conditions. It was found that elevated external calcium markedly enhances the muscarinic response and that these currents have a non-linear dependence on membrane voltage, increasing substantially with depolarization. 3. Using the optimal conditions for evoking the largest ACh responses, (28 mM [Ca2+]o, 0 mV, omission of serum and Hepes from the media), the light-evoked currents obtained in RNA-injected oocytes were remarkably enhanced, and responses to multiple light stimuli could be obtained. 4. The light response appeared to desensitize, even after long periods of recovery and pigment regeneration. By contrast, the ACh responses continued to appear normal. These results suggest that desensitization of photoresponses expressed in Xenopus oocytes involve changes at early stages of the pathway, resulting in a reduced ability of rhodopsin to couple to the endogenous signalling system. Images Fig. 3 PMID:7692039

  6. EDITORIAL Light-induced material organization Light-induced material organization

    NASA Astrophysics Data System (ADS)

    Vainos, Nikos; Rode, Andrei V.

    2010-12-01

    Light-induced material organization extends over a broad area of research, from photon momentum transfer to atoms, molecules and particles, serving the basis for optical trapping, and expands into the laser-induced changes of material properties through photopolymerization, photodarkening, and materials ablation. Relevant phenomena are observed over many orders of magnitude of light intensity, from a few kW cm-2 for the optical trapping of living cells to 1014 W cm-2 encountered in femtosecond laser micromachining and micro-explosion. Relevant interactions reveal a rich palette of novel phenomena in the solid state, from subtle excitations and material organization to phase transformations, non-equilibrium and transient states. The laser-induced material modifications relate to changes in the crystal structure and the molecular bonding, phase transitions in liquid state, ablation and plasma production associated with extreme pressure and temperature conditions towards entirely new states of matter. The underlying physical mechanisms form the foundations for micro-engineering photonic and other functional devices and lead the way to relevant applications. At the same time, they hold the potential for creating non-equilibrium material states and a range of fundamentally new products not available by other means. The fundamental understanding of both materials nature and functional behaviour will ultimately yield novel devices and improved performance in several fields. The far reaching goals of these studies relate to the development of new methods and technologies for micro- and nano-fabrication, not only offering a significant reduction of cost, but also expanding the fabrication capabilities into unexplored areas of biophotonics and nanotechnology. This special issue of Journal of Optics presents some very recent and exciting advances in the field of materials manipulation by laser beams, aiming to underline its current trends. In optical trapping research we

  7. Light-induced fluorescence for pulpal diagnosis

    NASA Astrophysics Data System (ADS)

    Ebihara, Arata; Liaw, Lih-Huei L.; Krasieva, Tatiana B.; Wilder-Smith, Petra B. B.

    2001-04-01

    A direct non-histological means of pulpal diagnosis remains elusive to clinical practice. Clinical vitality testing remains limited to electric, thermal criteria, or laser Doppler flowmetry. The goal of these investigations was to determine the feasibility of using light-induced fluorescence as a non-invasive modality for pulpal evaluation. Such a capability would, for example, permit expanded use of pulpotomy/pulpectomy techniques. Clinically healthy and diseased human extirpated pulpal tissues were used in this study. After excision, they were rapidly frozen and standard cryosections prepared. Measurement of tissue excitation/emission characteristics was performed using spectrographic analysis. A low-light level fluorescence microscopy system was then used to image autofluorescence localization and intensity at optimal excitation/detection parameters. Excitation/detection parameters used in this study included 405/605, 405/635, 405/670, 440/550, and 440/635. Autofluorescence intensities in healthy tissues were significantly stronger than those in diseased tissues at optimal parameters. It is postulated that autofluorescence characteristics are related to pathology- related structural changes in the pulp. This work provides the basis for further investigation into the relation between autofluorescence, histology and clinical symptoms.

  8. Light-induced drift of Na atoms

    NASA Astrophysics Data System (ADS)

    Werij, H. G. C.; Woerdman, J. P.

    1988-10-01

    Light can induce a flux of optically absorbing particles immersed in a buffer gas, when these particles have a different mobility in the ground and excited state. This paper presents a study of light-induced drift (LID) of Na atoms in noble gases, which can be regarded as the “canonical” system for experiments in this field. We have experimentally studied the LID effect in the optically thin and the optically thick regimes. Parameters which have been varied are laser frequency, laser intensity, buffer gas pressure and buffer gas species. This work gives the first critical comparison of LID experiments with realistic theory in which the multilevel complications of the Na atom have been incorporated. In the optically thick case (“optical piston”) one can distinguish the open cell and the closed cell regimes. Effects of adsorption and desorption of Na atoms at the surface of the cell wall have been incorporated into the theory. The experimental data are in excellent agreement with the results of a four-level rate-equation model for LID which incorporates the fine and hyperfine structure of the level scheme of the Na absorbers.

  9. A green-light inducible lytic system for cyanobacterial cells

    PubMed Central

    2014-01-01

    Background Cyanobacteria are an attractive candidate for the production of biofuel because of their ability to capture carbon dioxide by photosynthesis and grow on non-arable land. However, because huge quantities of water are required for cultivation, strict water management is one of the greatest issues in algae- and cyanobacteria-based biofuel production. In this study, we aim to construct a lytic cyanobacterium that can be regulated by a physical signal (green-light illumination) for future use in the recovery of biofuel related compounds. Results We introduced T4 bacteriophage-derived lysis genes encoding holin and endolysin under the control of the green-light regulated cpcG2 promoter in Synechocystis sp. PCC 6803. When cells harboring the lysis genes were illuminated with both red and green light, we observed a considerable decrease in growth rate, a significant increase in cellular phycocyanin released in the medium, and a considerable fraction of dead cells. These effects were not observed when these cells were illuminated with only red light, or when cells not containing the lysis genes were grown under either red light or red and green light. These results indicate that our constructed green-light inducible lytic system was clearly induced by green-light illumination, resulting in lytic cells that released intracellular phycocyanin into the culture supernatant. This property suggests a future possibility to construct photosynthetic genetically modified organisms that are unable to survive under sunlight exposure. Expression of the self-lysis system with green-light illumination was also found to greatly increase the fragility of the cell membrane, as determined by subjecting the induced cells to detergent, osmotic-shock, and freeze-thaw treatments. Conclusions A green-light inducible lytic system was constructed in Synechocystis sp. PCC 6803. The engineered lytic cyanobacterial cells should be beneficial for the recovery of biofuels and related compounds

  10. Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens.

    PubMed

    Kasahara, Masahiro; Kagawa, Takatoshi; Sato, Yoshikatsu; Kiyosue, Tomohiro; Wada, Masamitsu

    2004-07-01

    Phototropin is the blue-light receptor that mediates phototropism, chloroplast movement, and stomatal opening in Arabidopsis. Blue and red light induce chloroplast movement in the moss Physcomitrella patens. To study the photoreceptors for chloroplast movement in P. patens, four phototropin genes (PHOTA1, PHOTA2, PHOTB1, and PHOTB2) were isolated by screening cDNA libraries. These genes were classified into two groups (PHOTA and PHOTB) on the basis of their deduced amino acid sequences. Then phototropin disruptants were generated by homologous recombination and used for analysis of chloroplast movement. Data revealed that blue light-induced chloroplast movement was mediated by phototropins in P. patens. Both photA and photB groups were able to mediate chloroplast avoidance, as has been reported for Arabidopsis phot2, although the photA group contributed more to the response. Red light-induced chloroplast movement was also significantly reduced in photA2photB1photB2 triple disruptants. Because the primary photoreceptor for red light-induced chloroplast movement in P. patens is phytochrome, phototropins may be downstream components of phytochromes in the signaling pathway. To our knowledge, this work is the first to show a function for the phototropin blue-light receptor in a response to wavelengths that it does not absorb.

  11. Centrilobular emphysema combined with pulmonary fibrosis results in improved survival: a response.

    PubMed

    Cottin, Vincent; Cordier, Jean-François; Wells, Athol U

    2011-07-25

    Better survival in combined pulmonary fibrosis and emphysema than in lone pulmonary fibrosis: bias or reality? A response to Centrilobular emphysema combined with pulmonary fibrosis results in improved survival by Todd et al., Fibrogenesis & Tissue Repair 2011, 4:6.Please see related letter http://fibrogenesis.com/content/4/1/17.

  12. Predicting response and survival in chemotherapy-treated triple-negative breast cancer

    PubMed Central

    Prat, A; Lluch, A; Albanell, J; Barry, W T; Fan, C; Chacón, J I; Parker, J S; Calvo, L; Plazaola, A; Arcusa, A; Seguí-Palmer, M A; Burgues, O; Ribelles, N; Rodriguez-Lescure, A; Guerrero, A; Ruiz-Borrego, M; Munarriz, B; López, J A; Adamo, B; Cheang, M C U; Li, Y; Hu, Z; Gulley, M L; Vidal, M J; Pitcher, B N; Liu, M C; Citron, M L; Ellis, M J; Mardis, E; Vickery, T; Hudis, C A; Winer, E P; Carey, L A; Caballero, R; Carrasco, E; Martín, M; Perou, C M; Alba, E

    2014-01-01

    Background: In this study, we evaluated the ability of gene expression profiles to predict chemotherapy response and survival in triple-negative breast cancer (TNBC). Methods: Gene expression and clinical–pathological data were evaluated in five independent cohorts, including three randomised clinical trials for a total of 1055 patients with TNBC, basal-like disease (BLBC) or both. Previously defined intrinsic molecular subtype and a proliferation signature were determined and tested. Each signature was tested using multivariable logistic regression models (for pCR (pathological complete response)) and Cox models (for survival). Within TNBC, interactions between each signature and the basal-like subtype (vs other subtypes) for predicting either pCR or survival were investigated. Results: Within TNBC, all intrinsic subtypes were identified but BLBC predominated (55–81%). Significant associations between genomic signatures and response and survival after chemotherapy were only identified within BLBC and not within TNBC as a whole. In particular, high expression of a previously identified proliferation signature, or low expression of the luminal A signature, was found independently associated with pCR and improved survival following chemotherapy across different cohorts. Significant interaction tests were only obtained between each signature and the BLBC subtype for prediction of chemotherapy response or survival. Conclusions: The proliferation signature predicts response and improved survival after chemotherapy, but only within BLBC. This highlights the clinical implications of TNBC heterogeneity, and suggests that future clinical trials focused on this phenotypic subtype should consider stratifying patients as having BLBC or not. PMID:25101563

  13. A light-induced shortcut in the planktonic microbial loop

    NASA Astrophysics Data System (ADS)

    Ptacnik, Robert; Gomes, Ana; Royer, Sarah-Jeanne; Berger, Stella A.; Calbet, Albert; Nejstgaard, Jens C.; Gasol, Josep M.; Isari, Stamatina; Moorthi, Stefanie D.; Ptacnikova, Radka; Striebel, Maren; Sazhin, Andrey F.; Tsagaraki, Tatiana M.; Zervoudaki, Soultana; Altoja, Kristi; Dimitriou, Panagiotis D.; Laas, Peeter; Gazihan, Ayse; Martínez, Rodrigo A.; Schabhüttl, Stefanie; Santi, Ioulia; Sousoni, Despoina; Pitta, Paraskevi

    2016-07-01

    Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.

  14. A possible mechanism for visible-light-induced skin rejuvenation

    NASA Astrophysics Data System (ADS)

    Longo, Leonardo; Lubart, Rachel; Friedman, Harry; Lavie, R.

    2004-09-01

    In recent years there has been intensive research in the field of non-ablative skin rejuvenation. This comes as a response to the desire for a simple method of treating rhytids caused by aging, UV exposure and acne scars. In numerous studies intense visible light pulsed systems (20-30J/cm2) are used. The mechanism of action was supposed to be a selective heat induced denaturalization of dermal collagen that leads to subsequent reactive synthesis. In this study we suggest a different mechanism for photorejuvenation based on light induced Reactive Oxygen Species (ROS) formation. We irradiated collagen in-vitro with a broad band of visible light, 400-800 nm, 12-22J/cm2, and used the spin trapping coupled with electron paramagnetic resonance (EPR) spectroscopy to detect ROS. In vivo, we used dose 30 J in average (35 for acnis scars, 25 for wrinkles and redness). Irradiated collagen results in hydroxyl and methyl radicals formation. We propose, as a new concept, that visible light at the intensity used for skin rejuvenation, 20-30J/cm2, produces high amounts of ROS which destroy old collagen fibers encouraging the formation of new ones. On the other hand at inner depths of the skin, where the light intensity is much weaker, low amounts of ROS are formed which are well known to stimulate fibroblast proliferation.

  15. A light-induced shortcut in the planktonic microbial loop

    PubMed Central

    Ptacnik, Robert; Gomes, Ana; Royer, Sarah-Jeanne; Berger, Stella A.; Calbet, Albert; Nejstgaard, Jens C.; Gasol, Josep M.; Isari, Stamatina; Moorthi, Stefanie D.; Ptacnikova, Radka; Striebel, Maren; Sazhin, Andrey F.; Tsagaraki, Tatiana M.; Zervoudaki, Soultana; Altoja, Kristi; Dimitriou, Panagiotis D.; Laas, Peeter; Gazihan, Ayse; Martínez, Rodrigo A.; Schabhüttl, Stefanie; Santi, Ioulia; Sousoni, Despoina; Pitta, Paraskevi

    2016-01-01

    Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light. PMID:27404551

  16. UV-A light induces anthocyanin biosynthesis in a manner distinct from synergistic blue + UV-B light and UV-A/blue light responses in different parts of the hypocotyls in turnip seedlings.

    PubMed

    Wang, Yu; Zhou, Bo; Sun, Mei; Li, Yuhua; Kawabata, Saneyuki

    2012-08-01

    The effects of irradiating blue, UV-A, UV-B and a combination of the lights on anthocyanin accumulation at different hypocotyl positions were investigated in seedlings of the purple top turnip 'Tsuda'. The location of anthocyanin accumulation varied depending on different light spectra. Stronger accumulation of anthocyanin was induced (i) at the upper hypocotyl positions by blue light; (ii) mainly at the upper position, but also at the middle position by UV-B light; and (iii) at the upper to lower position by UV-A light. There were synergistic effects between blue and UV-B, while such effects were not observed for the other light combinations. Among the six chalcone synthase (CHS) genes identified in the 'Tsuda' turnip, BrCHS1, 4 and 5 exhibited light-dependent expression patterns, while the other three showed no apparent light responses. The expression of BrCHS1, 4 and 5 was increased particularly by UV-A and blue + UV-B irradiation at the middle to lower hypocotyl positions, in accordance with anthocyanin accumulation patterns. The highest induction of gene expression was observed for BrCHS4 upon blue + UV-B co-irradiation. In contrast, CHS expression was induced only slightly at higher hypocotyl positions by blue light. The R2R3-type MYB transcription factor genes PAP1, MYB4, MYB12 and MYB111 exhibited differential expression patterns at different hypocotyl positions; these patterns were unique for different light spectra. These unique anthocyanin accumulation patterns and gene expression profiles depending on hypocotyl positions and light sources demonstrate that there is a distinct UV-A response, blue + UV-B synergistic response and blue/UV-A light response for anthocyanin biosynthesis in turnip. UV-A light-dependent anthocyanin biosynthesis appeared to be regulated in a manner that is distinct from that mediated by cryptochromes and UV-B photoreceptors.

  17. Lack of correlation between basal cell survival and gross response in irradiated swine skin

    SciTech Connect

    Shymko, R.M.; Hauser, D.L.; Archambeau, J.O.

    1984-07-01

    The relationship between basal cell survival and gross response in irradiated swine skin was tested by comparing dose survival curves derived from time-dose isoeffect data with curves obtained directly from basal cell counts in histological sections. Assuming equal effect per exposure and constant cell survival at isoeffect, best-fitting single-hit multi-target and liner-quadratic response curves were determined for time-dose schedules resulting in non-healing of 50% of irradiated fields. Basal cell survivals for single doses of 970, 1649, 2231, and 2619 rad were estimated 1) by counting regenerating islands and 2) by monitoring total basal cell counts through time. The dose survival curve derived from the isoeffect data was steeper than the curve obtained from direct basal cell counts. Furthermore, the direct basal cell survival curve extrapolates to less than 100% at zero dose, indicating the presence of a resistant basal cell subpopulation. The data show that the isoeffect in this case is not strongly coupled to basal cell survival.

  18. Polychromatic light-induced osteogenic activity in 2D and 3D cultures.

    PubMed

    Ülker, Nazife; Çakmak, Anıl S; Kiremitçi, Arlin S; Gümüşderelioğlu, Menemşe

    2016-11-01

    Photobiomodulation (PBM) has been applied to manipulate cellular responses by using monochromatic light in different wavelengths from ultraviolet (UV) to infrared (IR) region. Until now, an effective wavelength has not been revealed to induce proliferation and/or differentiation of cells. Therefore, in the presented study, we decided to use a specially designed plasma arc light source providing wavelengths between 590 and 1500 nm in order to investigate its biomodulatory effects on chitosan scaffold-supported three-dimensional (3D) cell cultures. For comparison, two-dimensional (2D) cell cultures were also carried out in tissue-culture polystyrene dishes (TCPS). The results showed that light-induced temperature rise did not affect cells when the distance between the light source and the cells was 10 cm and the frequency of administration was daily. Moreover, light was applied for 5 and 10 min to the cells in TCPS and in chitosan scaffold groups, respectively. Cell culture studies under static conditions indicated that polychromatic light significantly stimulated bone nodule formation via the prolonged cell survival and stimulated differentiation of MC3T3-E1 preosteoblastic cells in both TCPS and chitosan scaffold groups. In conclusion, specially designed plasma arc light source used in this study induces formation of bone tissue and so, this light source is proposed as an appropriate system for in vitro bone tissue engineering applications. Statistical analyses were performed with one-way ANOVA by using GraphPad Instat software and standard deviations were calculated by using data of three parallel samples for each group.

  19. Survival and Inflammatory Response in Adipose-derived Mesenchymal Stem Cell-enriched Mouse Fat Grafts

    PubMed Central

    Begic, Anadi; Isfoss, Björn L.; Lønnerød, Linn K.; Vigen, Alexander

    2016-01-01

    Background: Adipose tissue-derived mesenchymal stem cells (ATMSCs) are currently used in grafting procedures in a number of clinical trials. The reconstructive role of such cells in fat graft enrichment is largely unclear. This study was undertaken to assess survival and inflammatory response in fat grafts enriched with ATMSCs in mice. Methods: ATMSC-enriched adipose tissue was grafted subcutaneously in a clinically relevant manner in mice, and survival and inflammatory response were determined by bioluminescence imaging of transgenic tissue constitutively expressing luciferase or driven by inflammation in wild-type animals. Results: Only a minor fraction of ATMSCs transplanted subcutaneously were found to survive long term, yet fat grafts enriched with ATMSCs showed improved survival for a limited period, compared with no enrichment. NF-κB activity was transiently increased in ATMSC-enriched grafts, and the grafts responded adequately to a proinflammatory stimulus. In one animal, cells originating from the subcutaneous graft were found at a site of inflammation distant from the site of engraftment. Conclusion: ATMSCs display limited subcutaneous survival. Still, ATMSC enrichment may improve the outcome of adipose tissue grafting procedures by facilitating short-term graft survival and adequate inflammatory responses. Migration of cells from grafted adipose tissue requires further investigation. PMID:28293494

  20. The Hippo pathway promotes cell survival in response to chemical stress

    PubMed Central

    Di Cara, F; Maile, T M; Parsons, B D; Magico, A; Basu, S; Tapon, N; King-Jones, K

    2015-01-01

    Cellular stress defense mechanisms have evolved to maintain homeostasis in response to a broad variety of environmental challenges. Stress signaling pathways activate multiple cellular programs that range from the activation of survival pathways to the initiation of cell death when cells are damaged beyond repair. To identify novel players acting in stress response pathways, we conducted a cell culture RNA interference (RNAi) screen using caffeine as a xenobiotic stress-inducing agent, as this compound is a well-established inducer of detoxification response pathways. Specifically, we examined how caffeine affects cell survival when Drosophila kinases and phosphatases were depleted via RNAi. Using this approach, we identified and validated 10 kinases and 4 phosphatases that are essential for cell survival under caffeine-induced stress both in cell culture and living flies. Remarkably, our screen yielded an enrichment of Hippo pathway components, indicating that this pathway regulates cellular stress responses. Indeed, we show that the Hippo pathway acts as a potent repressor of stress-induced cell death. Further, we demonstrate that Hippo activation is necessary to inhibit a pro-apoptotic program triggered by the interaction of the transcriptional co-activator Yki with the transcription factor p53 in response to a range of stress stimuli. Our in vitro and in vivo loss-of-function data therefore implicate Hippo signaling in the transduction of cellular survival signals in response to chemical stress. PMID:26021298

  1. Efficient Light-Induced Phase Transitions in Halogen-Bonded Liquid Crystals

    PubMed Central

    2016-01-01

    Here, we present a new family of light-responsive, fluorinated supramolecular liquid crystals (LCs) showing efficient and reversible light-induced LC-to-isotropic phase transitions. Our materials design is based on fluorinated azobenzenes, where the fluorination serves to strengthen the noncovalent interaction with bond-accepting stilbazole molecules, and increase the lifetime of the cis-form of the azobenzene units. The halogen-bonded LCs were characterized by means of X-ray diffraction, hot-stage polarized optical microscopy, and differential scanning calorimetry. Simultaneous analysis of light-induced changes in birefringence, absorption, and optical scattering allowed us to estimate that <4% of the mesogenic units in the cis-form suffices to trigger the full LC-to-isotropic phase transition. We also report a light-induced and reversible crystal-to-isotropic phase transition, which has not been previously observed in supramolecular complexes. In addition to fundamental understanding of light-responsive supramolecular complexes, we foresee this study to be important in the development of bistable photonic devices and supramolecular actuators. PMID:27917024

  2. Difference in light-induced annealing behavior of deposition- and light-induced defects in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Hata, N.; Matsuda, A.

    1993-10-01

    First experimental results on light-induced annealing (LIA) of deposition-induced defects (DID) in hydrogenated amorphous silicon (a-Si:H) are reported. LIA of DID and of light-induced defects (LID) showed a big difference: the reduction in density of DID by LIA is as low as one third or less of LID reduced by LIA, while thermal annealing reduced DID and LID very similarly. Those results indicate a structural difference between DID and LID, and are discussed in connection with a structural model of a-Si:H.

  3. EP300 Protects from Light-Induced Retinopathy in Zebrafish

    PubMed Central

    Kawase, Reiko; Nishimura, Yuhei; Ashikawa, Yoshifumi; Sasagawa, Shota; Murakami, Soichiro; Yuge, Mizuki; Okabe, Shiko; Kawaguchi, Koki; Yamamoto, Hiroshi; Moriyuki, Kazumi; Yamane, Shinsaku; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki; Tanaka, Toshio

    2016-01-01

    Exposure of rhodopsin to bright white light can induce photoreceptor cell damage and degeneration. However, a comprehensive understanding of the mechanisms underlying light-induced retinopathy remains elusive. In this study, we performed comparative transcriptome analysis of three rodent models of light-induced retinopathy, and we identified 37 genes that are dysregulated in all three models. Gene ontology analysis revealed that this gene set is significantly associated with a cytokine signaling axis composed of signal transducer and activator of transcription 1 and 3 (STAT1/3), interleukin 6 signal transducer (IL6ST), and oncostatin M receptor (OSMR). Furthermore, the analysis suggested that the histone acetyltransferase EP300 may be a key upstream regulator of the STAT1/3–IL6ST/OSMR axis. To examine the role of EP300 directly, we developed a larval zebrafish model of light-induced retinopathy. Using this model, we demonstrated that pharmacological inhibition of EP300 significantly increased retinal cell apoptosis, decreased photoreceptor cell outer segments, and increased proliferation of putative Müller cells upon exposure to intense light. These results suggest that EP300 may protect photoreceptor cells from light-induced damage and that activation of EP300 may be a novel therapeutic approach for the treatment of retinal degenerative diseases. PMID:27242532

  4. LIGHT-INDUCED OIL GLOBULE MIGRATION IN HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE).

    PubMed

    Peled, Ehud; Pick, Uri; Zarka, Aliza; Shimoni, Eyal; Leu, Stefan; Boussiba, Sammy

    2012-10-01

    Astaxanthin-rich oil globules in Haematococcus pluvialis display rapid light-induced peripheral migration that is unique to this organism and serves to protect the photosynthetic system from excessive light. We observed rapid light-induced peripheral migration that is associated with chlorophyll fluorescence quenching, whereas the recovery was slow. A simple assay to follow globule migration, based on chlorophyll fluorescence level has been developed. Globule migration was induced by high intensity blue light, but not by high intensity red light. The electron transport inhibitor dichlorophenyl-dimethylurea did not inhibit globule migration, whereas the quinone analog (dibromo-methyl-isopropylbenzoquinone), induced globule migration even at low light. Actin microfilament-directed toxins, such as cytochalasin B and latrunculin A, inhibited the light-induced globule migration, whereas toxins against microtubules were ineffective. Electron microscopic (EM) imaging confirmed the cytoplasmic localization and peripheral migration of globules upon exposure to very high light (VHL). Scanning EM of freeze-fractured cells also revealed globules within cytoplasmic bridges traversing the chloroplast, presumably representing the pathway of migration. Close alignments of globules with endoplasmic reticulum (ER) membranes were also observed following VHL illumination. We propose that light-induced globule migration is regulated by the redox state of the photosynthetic electron transport system. Possible mechanisms of actin-based globule migration are discussed.

  5. Role of space charges on light-induced effects in nematic liquid crystals doped by methyl red

    NASA Astrophysics Data System (ADS)

    Lucchetti, L.; Simoni, F.

    2014-03-01

    We show that both the extraordinarily large nonlinear response and the light-induced permanent reorientation in liquid crystals doped by the azo dye methyl red originates from the same phenomenon of modification of the charge density on the irradiated surface. The demonstration is done by applying ac voltage to the samples, showing that in this case no permanent anchoring is possible. The measurements confirm the role of photoisomerization that gives a transient contribution to the actual reorientation process only in the high dose regime. This result allows us to draw a picture for light-induced effects that might be applied to a large class of compounds.

  6. Light induced structural changes of the photoprotein mnemiopsin: Characterization and contribution in photoinactivation.

    PubMed

    Pashandi, Zaiddodine; Molakarimi, Maryam; Sajedi, Reza H; Taghdir, Majid; Naderi-Manesh, Hossein

    2016-12-01

    Mnemiopsin, an EF-hand Ca(2+) binding photoprotein isolated from luminous ctenophore Mnemiopsis leidyi, emits blue light from its chromophore, coelenterazine, which is non-covalently bond in its central hydrophobic core. Previous studies have revealed unique biochemical properties for ctenophore photoproteins such as inactivation by light, but only few have focused on photoinactivation process. To understand the nature of photoinactivation process we have investigated the impact of light alone and in the presence of Ca(2+) ion on the structure of this photoprotein. We used UV-Vis, circular dichroism (CD) and fluorescence spectroscopy following Ca(2+) binding assay to analyze the light effects on mnemiopsin conformation in comparison with aequorin at both apo and holo form. Our results showed light induced structural changes which resulted into photoinactivation. These changes include significant modification on secondary structure of mnemiopsin in comparison with aequorin. Our data also revealed that light could influence structure of apo protein regardless of presence of coelenterazine. The comparative studies of Ca(2+) ion binding affinity following light exposure, also showed that light induced structural changes could presumably affect coelenterazine binding or its conformation in binding site in such a way that causes photoinactivation. In conclusion, we have proposed that structural rearrangement of helix 5 and C-terminal motif could be responsible for light induced structural changes.

  7. Identification of novel light-induced genes in the suprachiasmatic nucleus

    PubMed Central

    Porterfield, Veronica M; Piontkivska, Helen; Mintz, Eric M

    2007-01-01

    Background The transmission of information about the photic environment to the circadian clock involves a complex array of neurotransmitters, receptors, and second messenger systems. Exposure of an animal to light during the subjective night initiates rapid transcription of a number of immediate-early genes in the suprachiasmatic nucleus of the hypothalamus. Some of these genes have known roles in entraining the circadian clock, while others have unknown functions. Using laser capture microscopy, microarray analysis, and quantitative real-time PCR, we performed a comprehensive screen for changes in gene expression immediately following a 30 minute light pulse in suprachiasmatic nucleus of mice. Results The results of the microarray screen successfully identified previously known light-induced genes as well as several novel genes that may be important in the circadian clock. Newly identified light-induced genes include early growth response 2, proviral integration site 3, growth-arrest and DNA-damage-inducible 45 beta, and TCDD-inducible poly(ADP-ribose) polymerase. Comparative analysis of promoter sequences revealed the presence of evolutionarily conserved CRE and associated TATA box elements in most of the light-induced genes, while other core clock genes generally lack this combination of promoter elements. Conclusion The photic signalling cascade in the suprachiasmatic nucleus activates an array of immediate-early genes, most of which have unknown functions in the circadian clock. Detected evolutionary conservation of CRE and TATA box elements in promoters of light-induced genes suggest that the functional role of these elements has likely remained the same over evolutionary time across mammalian orders. PMID:18021443

  8. Complete Pathologic Response After Neoadjuvant Chemoradiotherapy for Esophageal Cancer Is Associated With Enhanced Survival

    PubMed Central

    Donahue, James M.; Nichols, Francis C.; Li, Zhuo; Schomas, David A.; Allen, Mark S.; Cassivi, Stephen D.; Jatoi, Aminah; Miller, Robert C.; Wigle, Dennis A.; Shen, K. Robert; Deschamps, Claude

    2010-01-01

    Background Neoadjuvant chemoradiotherapy followed by esophagogastrectomy has become the standard of care for patients with locally advanced esophageal cancer. This report analyzes our experience with this treatment approach. Methods From January 1998 through December 2003, all patients from a single institution receiving neoadjuvant chemoradiotherapy followed by esophagogastrectomy were reviewed for operative mortality, morbidity, long-term survival, and factors affecting survival. Only patients preoperatively staged with both computed tomographic scans and endoscopic ultrasound were included. Results There were 162 patients (142 men, 20 women), and the median age was 61 years (range, 22 to 81 years). Histopathology was adenocarcinoma in 143 patients and squamous cell in 19. Pretreatment clinical stage was II in 28 patients (17%), III in 111 (68%), and IV (M1a) in 23 (14%). Ivor Lewis esophagogastrectomy was the most common procedure, occurring in 132 patients. Operative mortality and morbidity was 4.9% and 37%, respectively. Pathologic response was complete in 42 patients (26%), near complete in 27 (17%), partial in 88 (54%), and unresectable in 5 (3%). Five-year survival for overall, complete, near complete, and partial response patients was 34%, 55%, 27%, and 27%, respectively (p = 0.013). Patients whose lymph nodes were rendered free of cancer showed improved overall and disease-free survival compared with patients having persistently positive lymph nodes (p = 0.019). Conclusion Esophagogastrectomy after neoadjuvant chemoradiotherapy can be performed with low mortality and morbidity. Patients with complete pathologic response have significantly improved long-term survival compared with patients with near complete and partial responses. Future efforts should be directed at understanding determinants of complete responses. PMID:19161745

  9. Response as a predictor of survival in patients with recurrent glioblastoma treated with bevacizumab

    PubMed Central

    Prados, Michael; Cloughesy, Timothy; Samant, Meghna; Fang, Liang; Wen, Patrick Y.; Mikkelsen, Tom; Schiff, David; Abrey, Lauren E.; Yung, W.K. Alfred; Paleologos, Nina; Nicholas, Martin K.; Jensen, Randy; Vredenburgh, James; Das, Asha; Friedman, Henry S.

    2011-01-01

    Development of effective therapies for recurrent glioblastoma multiforme (GBM) and reliable, timely evaluation of their benefit are needed. Understanding the relationship between objective response (OR) and survival is important for determining whether OR can provide an early signal of treatment activity in clinical trials. We performed a landmark analysis to evaluate the association between OR and survival at 9, 18, and 26 weeks for 167 patients with recurrent GBM who participated in BRAIN, a phase II trial that evaluated efficacy of bevacizumab alone or in combination with irinotecan, using the Cox regression models adjusted for age, baseline Karnofsky performance score, first vs second relapse, and treatment arm. Hazard ratios (HRs) and P-values for survival between responders and nonresponders were calculated. Additional analyses were performed to test robustness, validity, fit, and accuracy of the models. The relationships between progression-free survival (PFS) and survival and between OR and PFS were also explored. There were 55 responders and 112 nonresponders across the 2 treatment arms in BRAIN. OR status at 9, 18, and 26 weeks was a statistically significant predictor of survival (HR ≤ 0.52, P < .01). PFS was also a statistically significant predictor of survival at each landmark (HR ≤ 0.25, P < .0001). The association between OR and PFS was not statistically significant, likely due to inadequate statistical power for the analysis. Clarifying the relationship of OR and survival is important for determining whether OR can be a reliable predictor of the benefit of a therapeutic agent in patients with recurrent GBM. PMID:21084434

  10. Population density, call-response interval, and survival of out-of-hospital cardiac arrest

    PubMed Central

    2011-01-01

    Background Little is known about the effects of geographic variation on outcomes of out-of-hospital cardiac arrest (OHCA). The present study investigated the relationship between population density, time between emergency call and ambulance arrival, and survival of OHCA, using the All-Japan Utstein-style registry database, coupled with geographic information system (GIS) data. Methods We examined data from 101,287 bystander-witnessed OHCA patients who received emergency medical services (EMS) through 4,729 ambulatory centers in Japan between 2005 and 2007. Latitudes and longitudes of each center were determined with address-match geocoding, and linked with the Population Census data using GIS. The endpoints were 1-month survival and neurologically favorable 1-month survival defined as Glasgow-Pittsburgh cerebral performance categories 1 or 2. Results Overall 1-month survival was 7.8%. Neurologically favorable 1-month survival was 3.6%. In very low-density (<250/km2) and very high-density (≥10,000/km2) areas, the mean call-response intervals were 9.3 and 6.2 minutes, 1-month survival rates were 5.4% and 9.1%, and neurologically favorable 1-month survival rates were 2.7% and 4.3%, respectively. After adjustment for age, sex, cause of arrest, first aid by bystander and the proportion of neighborhood elderly people ≥65 yrs, patients in very high-density areas had a significantly higher survival rate (odds ratio (OR), 1.64; 95% confidence interval (CI), 1.44 - 1.87; p < 0.001) and neurologically favorable 1-month survival rate (OR, 1.47; 95%CI, 1.22 - 1.77; p < 0.001) compared with those in very low-density areas. Conclusion Living in a low-density area was associated with an independent risk of delay in ambulance response, and a low survival rate in cases of OHCA. Distribution of EMS centers according to population size may lead to inequality in health outcomes between urban and rural areas. PMID:21489299

  11. Predator functional response and prey survival: Direct and indirect interactions affecting a marked prey population

    USGS Publications Warehouse

    Miller, David A.; Grand, J.B.; Fondell, T.F.; Anthony, M.

    2006-01-01

    1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to

  12. Predator functional response and prey survival: direct and indirect interactions affecting a marked prey population.

    PubMed

    Miller, David A; Grand, James B; Fondell, Thomas F; Anthony, Michael

    2006-01-01

    1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to

  13. Multimodal treatment of unresectable hepatocellular carcinoma to achieve complete response results in improved survival

    PubMed Central

    Newell, Pippa H; Wu, YingXing; Hoen, Helena; Uppal, Richa; Thiesing, John Tyler; Sasadeusz, Kevin; Cassera, Maria A; Wolf, Ronald F; Hansen, Paul; Hammill, Chet W

    2015-01-01

    Introduction With technological advances, questions arise regarding how to best fit newer treatment modalities, such as transarterial therapies, into the treatment algorithm for patients with hepatocellular carcinoma (HCC). Methods Between 2005 and 2011, 128 patients initially treated with transarterial radioembolization or chemoembolization using drug-eluting beads were identified. The response was graded retrospectively. Toxicity was measured 1, 3, and 6 months after the first and last treatments. Results Sixty-five patients (53%) were advanced stage. Twenty patients (16%) had an initial complete response, but with additional treatments, this was increased to 46 (36%). Patients with a complete response as their best response to treatment had a median survival [95% confidence interval (CI)] of 5.77 (2.58, upper limit not yet reached) years, significantly longer than those whose best response was a partial response, 1.22 (0.84, 2.06) years and those with stable disease as their best response, 0.34 (0.29, 0.67) years. Repeated treatments did not increase toxicity. Discussion This retrospective review of patients treated for intermediate and advanced stage HCC revealed a significant survival advantage in patients who achieved a complete response. These data support use of a multi-modality approach to intermediate and advanced stage HCC, combining liver-directed treatments as necessary to achieve a complete response. PMID:25580988

  14. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS

    SciTech Connect

    Jee, Hye Jin; Kim, Hyun-Ju; Kim, Ae Jeong; Bae, Yoe-Sik; Bae, Sun Sik; Yun, Jeanho

    2009-06-05

    Akt/PKB plays a pivotal role in cell survival and proliferation. Previously, we reported that UV-irradiation induces extensive cell death in Akt2{sup -/-} mouse embryonic fibroblasts (MEFs) while Akt1{sup -/-} MEFs show cell cycle arrest. Here, we find that Akt1{sup -/-} MEFs exhibit phenotypic changes characteristics of senescence upon UV-irradiation. An enlarged and flattened morphology, a reduced cell proliferation and an increased senescence-associated {beta}-galactosidase (SA {beta}-gal) staining indicate that Akt1{sup -/-} MEFs undergo premature senescence after UV-irradiation. Restoring Akt1 expression in Akt1{sup -/-} MEFs suppressed SA {beta}-gal activity, indicating that UV-induced senescence is due to the absence of Akt1 function. Notably, levels of ROS were rapidly increased upon UV-irradiation and the ROS scavenger NAC inhibits UV-induced senescence of Akt1{sup -/-} MEFs, suggesting that UV light induces premature senescence in Akt1{sup -/-} MEFs by modulating intracellular levels of ROS. In conjunction with our previous work, this indicates that different isoforms of Akt have distinct function in response to UV-irradiation.

  15. Phytochromes A and B mediate red-light-induced positive phototropism in roots

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Mullen, Jack L.; Correll, Melanie J.; Hangarter, Roger P.

    2003-01-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.

  16. Pathological and immunological responses associated with differential survival of Chinook salmon following Renibacterium salmoninarum challenge

    USGS Publications Warehouse

    Metzger, David C.; Elliott, Diane G.; Wargo, Andrew; Park, Linda K.; Purcell, Maureen K.

    2010-01-01

    Chinook salmon Oncorhynchus tshawytscha are highly susceptible to Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD). Previously we demonstrated that introduced Chinook salmon from Lake Michigan, Wisconsin (WI), USA, have higher survival following R. salmoninarum challenge relative to the progenitor stock from Green River, Washington, USA. In the present study, we investigated the pathological and immunological responses that are associated with differential survival in the 2 Chinook salmon stocks following intra-peritoneal R. salmoninarum challenge of 2 different cohort years (2003 and 2005). Histological evaluation revealed delayed appearance of severe granulomatous lesions in the kidney and lower overall prevalence of membranous glomerulopathy in the higher surviving WI stock. The higher survival WI stock had a lower bacterial load at 28 d post-infection, as measured by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR). However, at all other time points, bacterial load levels were similar despite higher mortality in the more susceptible Green River stock, suggesting the possibility that the stocks may differ in their tolerance to infection by the bacterium. Interferon-γ, inducible nitric oxide synthase (iNOS), Mx-1, and transferrin gene expression were up-regulated in both stocks following challenge. A trend of higher iNOS gene expression at later time points (≥28 d post-infection) was observed in the lower surviving Green River stock, suggesting the possibility that higher iNOS expression may contribute to greater pathology in that stock.

  17. Drought responses, phenotypic plasticity and survival of Mediterranean species in two different microclimatic sites.

    PubMed

    Bongers, F J; Olmo, M; Lopez-Iglesias, B; Anten, N P R; Villar, R

    2017-01-05

    Climate models predict a further drying of the Mediterranean summer. One way for plant species to persist during such climate changes is through acclimation. Here, we determine the extent to which trait plasticity in response to drought differs between species and between sites, and address the question whether there is a trade-off between drought survival and phenotypic plasticity. Throughout the summer we measured physiological traits (photosynthesis - Amax , stomatal conductance - gs , transpiration - E, leaf water potential - ψl) and structural traits (specific leaf area - SLA, leaf density - LD, leaf dry matter content - LDMC, leaf relative water content - LRWC) of leaves of eight woody species in two sites with slightly different microclimate (north- versus south-facing slopes) in southern Spain. Plant recovery and survival was estimated after the summer drought period. We found high trait variability between species. In most variables, phenotypic plasticity was lower in the drier site. Phenotypic plasticity of SLA and LDMC correlated negatively with drought survival, which suggests a trade-off between them. On the other hand, high phenotypic plasticity of SLA and LDMC was positively related to traits associated with rapid recovery and growth after the drought period. Although phenotypic plasticity is generally seen as favourable during stress conditions, here it seemed beneficial for favourable conditions. We propose that in environments with fluctuating drought periods there can be a trade-off between drought survival and growth during favourable conditions. When climate become drier, species with high drought survival but low phenotypic plasticity might be selected for.

  18. MRE11 and ATM Expression Levels Predict Rectal Cancer Survival and Their Association with Radiotherapy Response

    PubMed Central

    Revoltar, Maxine; Lim, Stephanie H.; Tut, Thein-Ga; Abubakar, Askar; Henderson, Chris J.; Chua, Wei; Ng, Weng; Lee, Mark; De Souza, Paul; Morgan, Matthew; Lee, C. Soon; Shin, Joo-Shik

    2016-01-01

    Background Aberrant expression of DNA repair proteins is associated with poor survival in cancer patients. We investigated the combined expression of MRE11 and ATM as a predictive marker of response to radiotherapy in rectal cancer. Methods MRE11 and ATM expression were examined in tumor samples from 262 rectal cancer patients who underwent surgery for rectal cancer, including a sub-cohort of 54 patients who were treated with neoadjuvant radiotherapy. The relationship between expression of the two-protein panel and tumor regression grade (TRG) was assessed by Mann–Whitney U test and receiver operating characteristics area under curve (ROC-AUC) analysis. The association between expression of the two-protein panel and clinicopathologic variables and survival was examined by Kaplan-Meier methods and Cox regression analysis. Results A high score for two-protein combined expression in the tumor center (TC) was significantly associated with worse disease-free survival (DFS) (P = 0.035) and overall survival (OS) (P = 0.003) in the whole cohort, and with DFS (P = 0.028) and OS (P = 0.024) in the neoadjuvant subgroup (n = 54). In multivariate analysis, the two-protein combination panel (HR = 2.178, 95% CI 1.115–4.256, P = 0.023) and perineural invasion (HR = 2.183, 95% CI 1.222–3.899, P = 0.008) were significantly associated with DFS. Using ROC-AUC analysis of good versus poor histological tumor response among patients treated preoperatively with radiotherapy, the average ROC-AUC was 0.745 for the combined panel, 0.618 for ATM alone, and 0.711 for MRE11 alone. Conclusions The MRE11/ATM two-protein panel developed in this study may have clinical value as a predictive marker of tumor response to neoadjuvant radiotherapy, and a prognostic marker for disease-free and overall survival. PMID:27930716

  19. Influence of saliva-coating on the ultraviolet-light-induced photocatalytic bactericidal effects on modified titanium surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Park, So-Yoon; Chang, Young-Il; Lim, Young-Jun; Ahn, Sug-Joon

    2012-07-01

    The purpose of this study was to investigate the ultraviolet-light-induced photocatalytic bactericidal effects of titanium surfaces on Streptococcus sanguinis in the presence of saliva-coating. Three different titanium disks were prepared: machined (MA), heat-treated (HT), and anodized surfaces (AO). Each disk was incubated with whole saliva or phosphate-buffered saline for 2 h. Antibacterial tests were performed by incubating a S. sanguinis suspension with each disk for 90 or 180 min under ultraviolet (UV) illumination. The viable counts of bacteria were enumerated from the cell suspension and the UV-light-induced photocatalytic bactericidal effects were determined by the bacterial survival rate. Without saliva-coating, AO disks exhibited significantly decreased bacterial survival rates compared to MA disks. The bacterial survival rates of the HT disks were intermediate between MA and AO in the absence of saliva-coating. However, saliva-coating significantly increased bacterial survival rates in all surface types. There was no significant difference in bacterial survival rates among the three surface types after saliva-coating. This study suggests that Ti-based antibacterial implant materials using TiO2 photocatalyst may have a limitation for intraoral use.

  20. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma.

    PubMed

    SongTao, Qi; Lei, Yu; Si, Gui; YanQing, Ding; HuiXia, Han; XueLin, Zhang; LanXiao, Wu; Fei, Yao

    2012-02-01

    Recent studies have shown that isocitrate dehydrogenase 1/2 (IDH1/2) mutations occur frequently in secondary glioblastoma. This study aimed to investigate their impact on temozolomide chemosensitivity and relationship with O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation in secondary glioblastoma. Searches for IDH1 and IDH2 mutations, 1p19q codeletion, MGMT promoter methylation, and p53 expression were carried out in a series of 86 secondary glioblastomas and correlated with progression-free survival and overall survival. Response to temozolomide was evaluated by progression-free survival, as well as by tumor size on successive MRI scans, then correlated with molecular alterations. IDH (IDH1 or IDH2) mutations were found in 58/79 patients (73.4%). IDH mutation, MGMT promoter methylation, and 1p19q codeletion were associated with prolonged progression-free survival in univariate (P < 0.001, P < 0.001, P = 0.003, respectively) and multivariate analysis (P < 0.001, P < 0.001, P = 0.035, respectively). IDH mutation (P = 0.001) and MGMT promoter methylation (P = 0.011) were correlated with a higher rate of objective response to temozolomide. Further analysis of response to temozolomide showed that patients with both IDH mutation and MGMT promoter methylation had the best response rate to temozolomide. IDH mutation appears to be a significant marker of positive chemosensitivity in secondary glioblastoma. Use of IDH status combined with MGMT promoter status as a stratification factor seems appropriate in future clinical trials involving temozolomide for the treatment of patients with secondary glioblastoma.

  1. Light-Induced Resistance Effect Observed in Nano Au Films Covered Two-Dimensional Colloidal Crystals.

    PubMed

    Liu, Shuai; Huang, Meizhen; Yao, Yanjie; Wang, Hui; Jin, Kui-juan; Zhan, Peng; Wang, Zhenlin

    2015-09-09

    Tailoring resistance response using periodic nanostructures is one of the key issues in the current research. Two-dimensional colloidal crystals (CCs) structure is one of popular periodic nanospheres' structures and most of reports are focused on anomalous transmission of light or biomedical applications. In this work, a light-induced resistance effect is observed on silicon-based Au films covered CCs, featuring a remarkable resistance change as much as 56% and resistance switching characteristic. The diffusion and recombination of photocarriers is the crucial factor for this effect. This finding will expand photoelectricity functionality and be useful for future development of CC-based photoelectric devices.

  2. Response to combined modality therapy correlates with survival in locally advanced non-small-cell lung cancer

    SciTech Connect

    Kim, Dong Wook; Shyr, Yu; Chen, Heidi; Akerley, Wallace; Johnson, David H.; Choy, Hak . E-mail: Hak.Choy@utsouthwestern.edu

    2005-11-15

    Purpose: Although concurrent chemoradiotherapy can now achieve demonstrated long-term survival in patients with locally advanced non-small-cell lung cancer (LANSCLC), it is difficult to predict which patients will benefit most from this therapeutic approach. Studies have suggested that local control, and the response to therapy, may be linked to improved survival; however, detailed analysis of the impact of tumor response to chemoradiotherapy on survival has not been thoroughly reported. Therefore, we sought to determine the impact of the response rate on survival for patients who were treated with combined modality therapy for LANSCLC. Methods and Materials: We reviewed the data from 116 patients enrolled between 1994 and 1997 in three trials investigating paclitaxel-based concurrent chemoradiotherapy for LANSCLC. Tumor size measurements were assessed immediately before and 2 months after completion of combined modality therapy to determine the response and to calculate the percentage of decrease in tumor size. Results: Patients with a response (complete or partial) had an improved 4-year overall survival rate compared with patients with no response (stable or progressive disease; 21.1% vs. 3.3%, p <0.0001) in the 109 assessable patients. Progression-free survival also improved significantly with response. An analysis of the percentage of decrease in tumor size vs. survival was performed (n = 74) using Cox proportion model analysis. After combined modality therapy, a 20%, 40%, 60%, 80%, and 100% decrease in tumor size conferred a 39%, 63%, 78%, 86%, and 92% reduction in risk of death compared with a 0% decrease in tumor size (p <0.0001). Conclusion: The response by conventional response criteria correlated strongly with improved overall survival and progression-free survival and an increasing percentage of decrease in tumor size resulted in a reduction in the risk of death. Additional investigation of the degree of response as a factor predictive of improved

  3. Hidden survival heterogeneity of three Common eider populations in response to climate fluctuations.

    PubMed

    Guéry, Loreleï; Descamps, Sébastien; Pradel, Roger; Hanssen, Sveinn Are; Erikstad, Kjell Einar; Gabrielsen, Geir W; Gilchrist, H Grant; Bêty, Joël

    2017-01-26

    Understanding how individuals and populations respond to fluctuations in climatic conditions is critical to explain and anticipate changes in ecological systems. Most such studies focus on climate impacts on single populations without considering inter- and intra-population heterogeneity. However, comparing geographically dispersed populations limits the risk of faulty generalizations and helps to improve ecological and demographic models. We aimed to determine whether differences in migration tactics among and within populations would induce inter- or intra-population heterogeneity in survival in relation to winter climate fluctuations. Our study species was the Common eider (Somateria mollissima), a marine duck with a circumpolar distribution, which is strongly affected by climatic conditions during several phases of its annual cycle. Capture-mark-recapture data were collected in two arctic (northern Canada and Svalbard) and one subarctic (northern Norway) population over a period of 18, 15, and 29 years respectively. These three populations have different migration tactics and experience different winter climatic conditions. Using multi-event and mixture modelling, we assessed the association between adult female eider survival and winter conditions as measured by the North Atlantic Oscillation (NAO) index. We found that winter weather conditions affected the survival of female eiders from each of these three populations. However, different mechanisms seemed to be involved. Survival of the two migrating arctic populations was impacted directly by changes in the NAO, whereas the subarctic resident population was affected by the NAO with time lags of 2-3 years. Moreover, we found evidence for intra-population heterogeneity in the survival response to the winter NAO in the Canadian eider population, where individuals migrate to distinct wintering areas. Our results illustrate how individuals and populations of the same species can vary in their responses to

  4. Clinical Characteristics, Response to Therapy, and Survival of African American Patients Diagnosed With Chronic Lymphocytic Leukemia

    PubMed Central

    Falchi, Lorenzo; Keating, Michael J.; Wang, Xuemei; Coombs, Catherine C.; Lanasa, Mark C.; Strom, Sara; Wierda, William G.; Ferrajoli, Alessandra

    2015-01-01

    Background Little is known regarding racial disparities in characteristics and outcomes among patients with chronic lymphocytic leukemia (CLL). Methods The characteristics and outcomes of untreated African American (AA) patients with CLL (n=84) were analyzed and compared with a reference nonblack (NB) patient population (n=1571). Results At the time of presentation, AA patients had lower median hemoglobin levels (12.9 g/dL vs 13.7 g/dL), higher β2 microglobulin levels (2.7 mg/dL vs 2.4 mg/dL), greater frequency of constitutional symptoms (27% vs 10%), unmutated immunoglobulin heavy-chain variable region (IGHV) mutation status (65% vs 47%), ζ-chain-associated protein kinase 70 (ZAP70) expression (58% vs 32%), and deletion of chromosome 17p or chromosome 11q (28% vs 17%; P ≤ 02 for each comparison). Fifty-one percent of AA patients and 39% of NB patients required first-line therapy and 91% and 88%, respectively, received chemoimmunotherapy. Overall response rates to treatment were 85% for AA patients and 94% for NB patients (P=.06); and the complete response rates were 56% and 58%, respectively (P=.87). The median survival of AA patients was shorter compared with that of NB patients (event-free survival: 36 months vs 61 months; P=.007; overall survival: 152 months vs not reached; P=.0001). AA race was an independent predictor of shorter event-free and overall survival in multivariable regression models. Conclusions The current results indicated that AA patients with CLL have more unfavorable prognostic characteristics and shorter survival compared with their NB counterparts. PMID:24022787

  5. Postchemoradiotherapy Positron Emission Tomography Predicts Pathologic Response and Survival in Patients With Esophageal Cancer

    SciTech Connect

    Jayachandran, Priya; Pai, Reetesh K.; Quon, Andrew; Graves, Edward; Krakow, Trevor E.; La, Trang; Loo, Billy W.; Koong, Albert C.; Chang, Daniel T.

    2012-10-01

    Purpose: To correlate the prechemoradiotherapy (CRT) and post-CRT metabolic tumor volume (MTV) on positron emission tomography (PET) scanning with the pathologic response and survival in patients receiving preoperative CRT for esophageal cancer. Materials and Methods: The medical records of 37 patients with histologically confirmed Stage I-IVA esophageal cancer treated with CRT with or without surgical resection were reviewed. Of the 37 patients, 21 received preoperative CRT (57%) and 16 received definitive CRT (43%). All patients had a pre-CRT and 32 had a post-CRT PET scan. The MTV was measured on the pre-CRT PET and post-CRT PET scan, respectively, using a minimum standardized uptake value (SUV) threshold x, where x = 2, 2.5, 3, or the SUV maximum Multiplication-Sign 50%. The total glycolytic activity (TGA{sub x}) was defined as the mean SUV Multiplication-Sign MTV{sub x}. The MTV ratio was defined as the pre-CRT PET MTV/post-CRT MTV. The SUV ratio was defined similarly. A single pathologist scored the pathologic response using a tumor regression grade (TRG) scale. Results: The median follow-up was 1.5 years (range, 0.4-4.9). No significant correlation was found between any parameters on the pre-CRT PET scan and the TRG or overall survival (OS). Multiple post-CRT MTV values and post-TGA values correlated with the TRG and OS; however, the MTV{sub 2.5Post} and TGA{sub 2.5Post} had the greatest correlation. The MTV{sub 2} ratio correlated with OS. The maximum SUV on either the pre-CRT and post-CRT PET scans or the maximum SUV ratio did not correlate with the TRG or OS. Patients treated preoperatively had survival similar compared with those treated definitively with a good PET response (p = 0.97) and significantly better than that of patients treated definitively with a poor PET response (p < 0.0001). Conclusion: The maximum SUV was not a predictive or prognostic parameter. The MTV{sub 2.5} and TGA{sub 2.5} were useful markers for predicting the response and

  6. Survival interval in earthquake entrapments: research findings reinforced during the 2010 Haiti earthquake response.

    PubMed

    Macintyre, Anthony G; Barbera, Joseph A; Petinaux, Bruno P

    2011-03-01

    Earthquakes can result in collapsed structures with the potential to entrap individuals. In some cases, people can survive entrapment for lengthy periods. The search for and rescue of entrapped people is resource intensive and competes with other postdisaster priorities. The decision to end search and rescue activities is often difficult and in some cases protracted. Medical providers participating in response may be consulted about the probability of continued survival in undiscovered trapped individuals. Historically, many espouse a rigid time frame for viability of entrapped living people (eg, 2 days, 4 days, 14 days). The available medical and engineering data and media reports demonstrate a wide variety in survival "time to rescue," arguing against the acceptance of a single time interval applicable to all incidents. This article presents historical evidence and reports from the 2010 Haiti earthquake. Factors that may contribute to survival after entombment are listed. Finally, a decision process for projecting viability that considers the critical factors in each incident rather than adhering to a single time frame for ceasing search and rescue activities is proposed.

  7. Health-related quality of life as prognostic factor for response, progression-free survival, and survival in women with metastatic breast cancer.

    PubMed

    Svensson, Helene; Hatschek, Thomas; Johansson, Hemming; Einbeigi, Zakaria; Brandberg, Yvonne

    2012-06-01

    The purpose of this study was to, on an exploratory basis, investigate the role of health-related quality of life (HRQoL) at randomization as an independent prognostic factor for response to treatment, progression-free survival (PFS), and survival. In the TEX trial, 287 patients with locally advanced or distant metastatic breast cancer were randomized to either epirubicin and paclitaxel (ET) or epirubicin, paclitaxel, and capecitabine (TEX). Treatment was repeated every 3 weeks. The EORTC QLQ-C30 questionnaire was used to assess HRQoL before randomization. A total of 252 (88%) patients completed EORTC QLQ-C30 before randomization. Clinical conditions included in the multivariate model were age, number of metastases, ECOG performance status, time between diagnosis and randomization, and treatment arm. Univariate analysis revealed an association between prolonged survival and the HRQoL variables global health, physical functioning, role functioning, fatigue, and pain (P < 0.01). After controlling for clinical conditions, only fatigue remained statistically significant. No statistically significant relationships were found between HRQoL and PFS. In the analysis of the association between HRQoL and response to treatment, role functioning, social functioning, fatigue, nausea/vomiting, and appetite loss remained statistically significant. HRQoL variables could act as important predictors of response to treatment, progression-free survival, and overall survival in women with metastatic breast cancer.

  8. Blue Light-Induced Phosphorylation of a Plasma Membrane-Associated Protein in Zea mays L.

    PubMed Central

    Palmer, J. M.; Short, T. W.; Gallagher, S.; Briggs, W. R.

    1993-01-01

    Blue light induces a variety of photomorphogenic responses in higher plants, among them phototropic curvature, the bending of seedlings toward a unidirectional light source. In dark-grown coleoptiles of maize (Zea mays L.) seedlings, blue light induces rapid phosphorylation of a 114-kD protein at fluence levels that are sufficient to stimulate phototropic curvature. Phosphorylation in response to blue light can be detected in vivo in coleoptile tips preincubated in 32Pi or in vitro in isolated membranes supplemented with [[gamma]-32P]ATP. Phosphorylation reaches a maximum level in vitro within 2 min following an inductive light pulse, but substantial labeling occurs within the first 15 s. Isolated membranes remain activated for several minutes following an in vitro blue light stimulus, even in the absence of exogenous ATP. Phosphoamino acid analysis of the 114-kD protein detected phosphoserine and a trace of phosphothreonine. The kinase involved in phosphorylating the protein in vitro is not dependent on calcium. The 114-kD protein itself has an apparent binding site for ATP, detected by incubating with the nonhydrolyzable analog, 5[prime]-p-fluorosulfonyl-benzoyladenosine. This result suggests that the 114-kD protein, which becomes phosphorylated in response to blue light, may also be capable of kinase activity. PMID:12231896

  9. Light-induced metastable structural changes in hydrogenated amorphous silicon

    SciTech Connect

    Fritzsche, H.

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  10. Light-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, Jr., Edward I.; Soden, Jerry M.

    1995-01-01

    An apparatus and method are described for analyzing an integrated circuit (IC), The invention uses a focused light beam that is scanned over a surface of the IC to generate a light-induced voltage alteration (LIVA) signal for analysis of the IC, The LIVA signal may be used to generate an image of the IC showing the location of any defects in the IC; and it may be further used to image and control the logic states of the IC. The invention has uses for IC failure analysis, for the development of ICs, for production-line inspection of ICs, and for qualification of ICs.

  11. Light-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, E.I. Jr.; Soden, J.M.

    1995-07-04

    An apparatus and method are described for analyzing an integrated circuit (IC). The invention uses a focused light beam that is scanned over a surface of the IC to generate a light-induced voltage alteration (LIVA) signal for analysis of the IC. The LIVA signal may be used to generate an image of the IC showing the location of any defects in the IC; and it may be further used to image and control the logic states of the IC. The invention has uses for IC failure analysis, for the development of ICs, for production-line inspection of ICs, and for qualification of ICs. 18 figs.

  12. Effect of hyperfine splitting on light-induced drift

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. I.; Shalagin, A. M.

    1986-09-01

    The influence of the hyperfine structure (hfs) of the levels upon the light-induced drift (LID) effect is investigated. It is shown that hfs considerably affects the dependence of the LID velocity upon the radiation frequency. It is concluded that for decreasing separation between the hfs components the LID effect can both increase and decrease depending upon the relationship of the system parameters (collision frequencies in different levels, the pressure of a buffer gas, etc.). A considerable decrease of the effect however is highly unlikely. It is shown that a change in the buffer gas pressure can lead to reversal of the LID velocity direction.

  13. Preventing light-induced degradation in multicrystalline silicon

    SciTech Connect

    Lindroos, J. Boulfrad, Y.; Yli-Koski, M.; Savin, H.

    2014-04-21

    Multicrystalline silicon (mc-Si) is currently dominating the silicon solar cell market due to low ingot costs, but its efficiency is limited by transition metals, extended defects, and light-induced degradation (LID). LID is traditionally associated with a boron-oxygen complex, but the origin of the degradation in the top of the commercial mc-Si brick is revealed to be interstitial copper. We demonstrate that both a large negative corona charge and an aluminum oxide thin film with a built-in negative charge decrease the interstitial copper concentration in the bulk, preventing LID in mc-Si.

  14. Preventing light-induced degradation in multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Lindroos, J.; Boulfrad, Y.; Yli-Koski, M.; Savin, H.

    2014-04-01

    Multicrystalline silicon (mc-Si) is currently dominating the silicon solar cell market due to low ingot costs, but its efficiency is limited by transition metals, extended defects, and light-induced degradation (LID). LID is traditionally associated with a boron-oxygen complex, but the origin of the degradation in the top of the commercial mc-Si brick is revealed to be interstitial copper. We demonstrate that both a large negative corona charge and an aluminum oxide thin film with a built-in negative charge decrease the interstitial copper concentration in the bulk, preventing LID in mc-Si.

  15. Effect of temperature, salinity and nutrient content on the survival responses of Vibrio splendidus biotype I.

    PubMed

    Armada, Susana P; Farto, Rosa; Pérez, María J; Nieto, Teresa P

    2003-02-01

    The aim of this study was to evaluate the survival responses of two strains of Vibrio splendidus, both in natural and in defined media. For this purpose, freshwater and defined media containing different salinities (3.3-0.9 %) and nutrient concentrations (17-0.005 mg x l(-1)) were assayed. The incubation temperatures were established at 4, 10 and 22 degrees C. The acridine orange staining technique was used for total cell enumeration and the number of viable cells was determined using two direct assays, nalidixic acid and tetrazolium salt reduction and plate spreading. Resuscitation assays of viable but non-culturable (VBNC) cells were conducted. According to the counting procedures employed, at least four different subpopulations were found: (i). active (positive response in both nalidixic acid and tetrazolium assays) culturable cells; (ii). active non-culturable cells; (iii). tetrazolium-salt-responsive non-culturable cells and (iv). non-active (responsive to none of the direct viable assays) non-culturable cells. Long-term survival was found at salinities and nutrient concentrations of seawater environments (3.3 % and 5 mg x l(-1) or 1 g l(-1)), whereas the strains entered a VBNC state in freshwater and in brackish (0.9 or 1.6 % salinities) or high nutrient content (17 g x l(-1)) defined medium. The recovery of VBNC cells was not achieved.

  16. Survival, growth and stress response of juvenile tidewater goby, Eucyclogobius newberryi, to interspecific competition for food

    PubMed Central

    Chase, Daniel A.; Flynn, Erin E.; Todgham, Anne E.

    2016-01-01

    Reintroduction of endangered fishes to historic habitat has been used as a recovery tool; however, these fish may face competition from other fishes that established in their native habitat since extirpation. This study investigated the physiological response of tidewater goby, Eucyclogobius newberryi, an endangered California fish, when competing for food with threespine stickleback, Gasterosteus aculeatus, a native species, and rainwater killifish, Lucania parva, a non-native species. Survival, growth and physiological indicators of stress (i.e. cortisol, glucose and lactate concentrations) were assessed for juvenile fish held for 28 days in two food-limited conditions. When fed a 75% ration, survival of E. newberryi was significantly lower when held with G. aculeatus. In all fish assemblages, weight and relative condition decreased then stabilized over the 28 day experiment, while length remained unchanged. Whole-body cortisol in E. newberryi was not affected by fish assemblage; however, glucose and lactate concentrations were significantly higher with conspecifics than with other fish assemblages. When fed a 50% ration, survival of E. newberryi decreased during the second half of the experiment, while weight and relative condition decreased and length remained unchanged in all three fish assemblages. Cortisol concentrations were significantly higher for all fish assemblages compared with concentrations at the start of the experiment, whereas glucose and lactate concentrations were depressed relative to concentrations at the start of the experiment, with the magnitude of decrease dependent on the species assemblage. Our findings indicate that E. newberryi exhibited reduced growth and an elevated generalized stress response during low food availability. In response to reduced food availability, competition with G. aculeatus had the greatest physiological effect on E. newberryi, with minimal effects from the non-native L. parva. This study presents the first

  17. Blue light-induced oxidative stress in live skin.

    PubMed

    Nakashima, Yuya; Ohta, Shigeo; Wolf, Alexander M

    2017-03-15

    Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA.

  18. Light-induced vegetative anthocyanin pigmentation in Petunia.

    PubMed

    Albert, Nick W; Lewis, David H; Zhang, Huaibi; Irving, Louis J; Jameson, Paula E; Davies, Kevin M

    2009-01-01

    The Lc petunia system, which displays enhanced, light-induced vegetative pigmentation, was used to investigate how high light affects anthocyanin biosynthesis, and to assess the effects of anthocyanin pigmentation upon photosynthesis. Lc petunia plants displayed intense purple anthocyanin pigmentation throughout the leaves and stems when grown under high-light conditions, yet remain acyanic when grown under shade conditions. The coloured phenotypes matched with an accumulation of anthocyanins and flavonols, as well as the activation of the early and late flavonoid biosynthetic genes required for flavonol and anthocyanin production. Pigmentation in Lc petunia only occurred under conditions which normally induce a modest amount of anthocyanin to accumulate in wild-type Mitchell petunia [Petunia axillaris x (Petunia axillaris x Petunia hybrida cv. 'Rose of Heaven')]. Anthocyanin pigmentation in Lc petunia leaves appears to screen underlying photosynthetic tissues, increasing light saturation and light compensation points, without reducing the maximal photosynthetic assimilation rate (A(max)). In the Lc petunia system, where the bHLH factor Leaf colour is constitutively expressed, expression of the bHLH (Lc) and WD40 (An11) components of the anthocyanin regulatory system were not limited, suggesting that the high-light-induced anthocyanin pigmentation is regulated by endogenous MYB transcription factors.

  19. Burkholderia pseudomallei Differentially Regulates Host Innate Immune Response Genes for Intracellular Survival in Lung Epithelial Cells

    PubMed Central

    Vellasamy, Kumutha Malar; Mariappan, Vanitha; Shankar, Esaki M.; Vadivelu, Jamuna

    2016-01-01

    Background Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood. Methods We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS). Results We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages. Conclusion Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections. PMID:27367858

  20. High Dietary Folate in Mice Alters Immune Response and Reduces Survival after Malarial Infection

    PubMed Central

    Meadows, Danielle N.; Bahous, Renata H.; Best, Ana F.; Rozen, Rima

    2015-01-01

    Malaria is a significant global health issue, with nearly 200 million cases in 2013 alone. Parasites obtain folate from the host or synthesize it de novo. Folate consumption has increased in many populations, prompting concerns regarding potential deleterious consequences of higher intake. The impact of high dietary folate on the host’s immune function and response to malaria has not been examined. Our goal was to determine whether high dietary folate would affect response to malarial infection in a murine model of cerebral malaria. Mice were fed control diets (CD, recommended folate level for rodents) or folic acid-supplemented diets (FASD, 10x recommended level) for 5 weeks before infection with Plasmodium berghei ANKA. Survival, parasitemia, numbers of immune cells and other infection parameters were assessed. FASD mice had reduced survival (p<0.01, Cox proportional hazards) and higher parasitemia (p< 0.01, joint model of parasitemia and survival) compared with CD mice. FASD mice had lower numbers of splenocytes, total T cells, and lower numbers of specific T and NK cell sub-populations, compared with CD mice (p<0.05, linear mixed effects). Increased brain TNFα immunoreactive protein (p<0.01, t-test) and increased liver Abca1 mRNA (p<0.01, t-test), a modulator of TNFα, were observed in FASD mice; these variables correlated positively (rs = 0.63, p = 0.01). Bcl-xl/Bak mRNA was increased in liver of FASD mice (p<0.01, t-test), suggesting reduced apoptotic potential. We conclude that high dietary folate increases parasite replication, disturbs the immune response and reduces resistance to malaria in mice. These findings have relevance for malaria-endemic regions, when considering anti-folate anti-malarials, food fortification or vitamin supplementation programs. PMID:26599510

  1. High Dietary Folate in Mice Alters Immune Response and Reduces Survival after Malarial Infection.

    PubMed

    Meadows, Danielle N; Bahous, Renata H; Best, Ana F; Rozen, Rima

    2015-01-01

    Malaria is a significant global health issue, with nearly 200 million cases in 2013 alone. Parasites obtain folate from the host or synthesize it de novo. Folate consumption has increased in many populations, prompting concerns regarding potential deleterious consequences of higher intake. The impact of high dietary folate on the host's immune function and response to malaria has not been examined. Our goal was to determine whether high dietary folate would affect response to malarial infection in a murine model of cerebral malaria. Mice were fed control diets (CD, recommended folate level for rodents) or folic acid-supplemented diets (FASD, 10x recommended level) for 5 weeks before infection with Plasmodium berghei ANKA. Survival, parasitemia, numbers of immune cells and other infection parameters were assessed. FASD mice had reduced survival (p<0.01, Cox proportional hazards) and higher parasitemia (p< 0.01, joint model of parasitemia and survival) compared with CD mice. FASD mice had lower numbers of splenocytes, total T cells, and lower numbers of specific T and NK cell sub-populations, compared with CD mice (p<0.05, linear mixed effects). Increased brain TNFα immunoreactive protein (p<0.01, t-test) and increased liver Abca1 mRNA (p<0.01, t-test), a modulator of TNFα, were observed in FASD mice; these variables correlated positively (rs = 0.63, p = 0.01). Bcl-xl/Bak mRNA was increased in liver of FASD mice (p<0.01, t-test), suggesting reduced apoptotic potential. We conclude that high dietary folate increases parasite replication, disturbs the immune response and reduces resistance to malaria in mice. These findings have relevance for malaria-endemic regions, when considering anti-folate anti-malarials, food fortification or vitamin supplementation programs.

  2. CK2 inhibition induced PDK4-AMPK axis regulates metabolic adaptation and survival responses in glioma.

    PubMed

    Dixit, Deobrat; Ahmad, Fahim; Ghildiyal, Ruchi; Joshi, Shanker Datt; Sen, Ellora

    2016-05-15

    Understanding mechanisms that link aberrant metabolic adaptation and pro-survival responses in glioma cells is crucial towards the development of new anti-glioma therapies. As we have previously reported that CK2 is associated with glioma cell survival, we evaluated its involvement in the regulation of glucose metabolism. Inhibition of CK2 increased the expression of metabolic regulators, PDK4 and AMPK along with the key cellular energy sensor CREB. This increase was concomitant with altered metabolic profile as characterized by decreased glucose uptake in a PDK4 and AMPK dependent manner. Increased PDK4 expression was CREB dependent, as exogenous inhibition of CREB functions abrogated CK2 inhibitor mediated increase in PDK4 expression. Interestingly, PDK4 regulated AMPK phosphorylation which in turn affected cell viability in CK2 inhibitor treated glioma cells. CK2 inhibitor 4,5,6,7-Tetrabromobenzotriazole (TBB) significantly retarded the growth of glioma xenografts in athymic nude mouse model. Coherent with the in vitro findings, elevated senescence, pAMPK and PDK4 levels were also observed in TBB-treated xenograft tissue. Taken together, CK2 inhibition in glioma cells drives the PDK4-AMPK axis to affect metabolic profile that has a strong bearing on their survival.

  3. Role of Cell Cycle Regulation and MLH1, A Key DNA Mismatch Repair Protein, In Adaptive Survival Responses. Final Report

    SciTech Connect

    David A. Boothman

    1999-08-11

    Due to several interesting findings on both adaptive survival responses (ASRs) and DNA mismatch repair (MMR), this grant was separated into two discrete Specific Aim sets (each with their own discrete hypotheses). The described experiments were simultaneously performed.

  4. The mechanism of color change in the neon tetra fish: a light-induced tunable photonic crystal array.

    PubMed

    Gur, Dvir; Palmer, Benjamin A; Leshem, Ben; Oron, Dan; Fratzl, Peter; Weiner, Steve; Addadi, Lia

    2015-10-12

    The fresh water fish neon tetra has the ability to change the structural color of its lateral stripe in response to a change in the light conditions, from blue-green in the light-adapted state to indigo in the dark-adapted state. The colors are produced by constructive interference of light reflected from stacks of intracellular guanine crystals, forming tunable photonic crystal arrays. We have used micro X-ray diffraction to track in time distinct diffraction spots corresponding to individual crystal arrays within a single cell during the color change. We demonstrate that reversible variations in crystal tilt within individual arrays are responsible for the light-induced color variations. These results settle a long-standing debate between the two proposed models, the "Venetian blinds" model and the "accordion" model. The insight gained from this biogenic light-induced photonic tunable system may provide inspiration for the design of artificial optical tunable systems.

  5. MYB75 Phosphorylation by MPK4 Is Required for Light-Induced Anthocyanin Accumulation in Arabidopsis[OPEN

    PubMed Central

    Li, Shengnan; Wang, Wenyi; Gao, Jinlan; Yin, Kangquan; Wang, Rui; Wang, Chengcheng; Mundy, John

    2016-01-01

    Light is a major environmental cue affecting various physiological and metabolic processes in plants. Although plant photoreceptors are well characterized, the mechanisms by which light regulates downstream responses are less clear. In Arabidopsis thaliana, the accumulation of photoprotective anthocyanin pigments is light dependent, and the R2R3 MYB transcription factor MYB75/PAP1 regulates anthocyanin accumulation. Here, we report that MYB75 interacts with and is phosphorylated by MAP KINASE4 (MPK4). Their interaction is dependent on MPK4 kinase activity and is required for full function of MYB75. MPK4 can be activated in response to light and is involved in the light-induced accumulation of anthocyanins. We show that MPK4 phosphorylation of MYB75 increases its stability and is essential for light-induced anthocyanin accumulation. Our findings reveal an important role for a MAPK pathway in light signal transduction. PMID:27811015

  6. Light-induced metastable defects or light-induced metastable H atoms in a-Si:H films?

    SciTech Connect

    Godet, C.

    1997-07-01

    In hydrogenated amorphous silicon (a-Si:H) films, the increase of the metastable defect density under high-intensity illumination is usually described by an empirical two-parameter stretched-exponential time dependence (characteristic time {tau}{sub SE} and dispersion parameter {beta}). In this study, a clearly different (one-parameter) analytic function is obtained from a microscopic model based on the formation of metastable H (MSH) atoms in a-Si:H films. Assuming that MSH atoms are the only mobile species, only three chemical reactions are significant: MSH are produced from doubly hydrogenated (SiH HSi) configurations and trapped either at broken bonds or Si-H bonds, corresponding respectively to light-induced annealing (LIA) and light-induced creation (LIC) of defects. Competition between trapping sites results in a saturation of N(t) at a steady-state value N{sub ss}. A one-parameter fit of this analytical function to experimental data is generally good, indicating that the use of a statistical distribution of trap energies is not necessary.

  7. Light-induced size changes in BiFeO3 crystals

    NASA Astrophysics Data System (ADS)

    Kundys, B.; Viret, M.; Colson, D.; Kundys, D. O.

    2010-10-01

    Multifunctional oxides are promising materials because of their fundamental physical properties as well as their potential in applications. Among these materials, multiferroics exhibiting ferroelectricity and magnetism are good candidates for spin electronic applications using the magnetoelectric effect, which couples magnetism and ferroelecticity. Furthermore, because ferroelectrics are insulators with a reasonable bandgap, photons can efficiently interact with electrons leading to photoconduction or photovoltaic effects. However, until now, coupling of light with mechanical degrees of freedom has been elusive, although ferroelasticity is a well-known property of these materials. Here, we report on the observation, for the first time, of a substantial visible-light-induced change in the dimensions of BiFeO3 crystals at room temperature. The relative light-induced photostrictive effect is of the order of 10-5 with response times below 0.1 s. It depends on the polarization of incident light as well as applied magnetic fields. This opens the perspective of combining mechanical, magnetic, electric and optical functionalities in future generations of remote switchable devices.

  8. Sweet waste extract uptake by a mosquito vector: Survival, biting, fecundity responses, and potential epidemiological significance.

    PubMed

    Dieng, Hamady; Satho, Tomomitsu; Abang, Fatimah; Meli, Nur Khairatun Khadijah Binti; Ghani, Idris A; Nolasco-Hipolito, Cirilo; Hakim, Hafijah; Miake, Fumio; Ahmad, Abu Hassan; Noor, Sabina; Zuharah, Wan Fatma; Ahmad, Hamdan; Majid, Abdul Hafiz A; Morales Vargas, Ronald E; Morales, Noppawan P; Attrapadung, Siriluck; Noweg, Gabriel Tonga

    2017-05-01

    In nature, adult mosquitoes typically utilize nectar as their main energy source, but they can switch to other as yet unidentified sugary fluids. Contemporary lifestyles, with their associated unwillingness to consume leftovers and improper disposal of waste, have resulted in the disposal of huge amounts of waste into the environment. Such refuse often contains unfinished food items, many of which contain sugar and some of which can collect water from rain and generate juices. Despite evidence that mosquitoes can feed on sugar-rich suspensions, semi-liquids, and decaying fruits, which can be abundant in garbage sites, the impacts of sweet waste fluids on dengue vectors are unknown. Here, we investigated the effects of extracts from some familiar sweet home waste items on key components of vectorial capacity of Aedes aegypti. Adult mosquitoes were fed one of five diets in this study: water (WAT); sucrose (SUG); bakery product (remnant of chocolate cake, BAK); dairy product (yogurt, YOG); and fruit (banana (BAN). Differences in survival, response time to host, and egg production were examined between groups. For both males and females, maintenance on BAK extract resulted in marked survival levels that were similar to those seen with SUG. Sweet waste extracts provided better substrates for survival compared to water, but this superiority was mostly seen with BAK. Females maintained on BAK, YOG, and BAN exhibited shorter response times to a host compared to their counterparts maintained on SUG. The levels of egg production were equivalent in waste extract- and SUG-fed females. The findings presented here illustrate the potential of sweet waste-derived fluids to contribute to the vectorial capacity of dengue vectors and suggest the necessity of readdressing the issue of waste disposal, especially that of unfinished sweet foods. Such approaches can be particularly relevant in dengue endemic areas where rainfall is frequent and waste collection infrequent.

  9. Ubiquitination by SAG regulates macrophage survival/death and immune response during infection.

    PubMed

    Chang, S C; Ding, J L

    2014-09-01

    The checkpoint between the life and death of macrophages is crucial for the host's frontline immune defense during acute phase infection. However, the mechanism as to how the immune cell equilibrates between apoptosis and immune response is unclear. Using in vitro and ex vivo approaches, we showed that macrophage survival is synchronized by SAG (sensitive to apoptosis gene), which is a key member of the ubiquitin-proteasome system (UPS). When challenged by pathogen-associated molecular patterns (PAMPs), we observed a reciprocal expression profile of pro- and antiapoptotic factors in macrophages. However, SAG knockdown disrupted this balance. Further analysis revealed that ubiquitination of Bax and SARM (sterile α- and HEAT/armadillo-motif-containing protein) by SAG-UPS confers survival advantage to infected macrophages. SAG knockdown caused the accumulation of proapoptotic Bax and SARM, imbalance of Bcl-2/Bax in the mitochondria, induction of cytosolic cytochrome c and activation of caspase-9 and -3, all of which led to disequilibrium between life and death of macrophages. In contrast, SAG-overexpressing macrophages challenged with PAMPs exhibited upregulation of protumorigenic cytokines (IL-1β, IL-6 and TNF-α), and downregulation of antitumorigenic cytokine (IL-12p40) and anti-inflammatory cytokine (IL-10). This suggests that SAG-dependent UPS is a key switch between immune defense and apoptosis or immune overactivation and tumorigenesis. Altogether, our results indicate that SAG-UPS facilitates a timely and appropriate level of immune response, prompting future development of potential immunomodulators of SAG-UPS.

  10. Thermotolerance after fractionated hyperthermia: assessment of cell survival by response to X-rays.

    PubMed

    Law, M P; Ahier, R G; Somaia, S; Field, S B

    1985-01-01

    A previous study of the mouse ear showed that daily treatment at 43.5 degrees C, either 10 X 20 min or 20 min + 9 X 70 min, induced the same resistance to further heating as was induced by a single treatment of 20 min. The results could be explained in at least two ways: (a) no cells are killed by the heat treatments but thermotolerance is induced; and (b) a proportion of cells is killed by each fraction and the degree of thermotolerance induced in survivors increases as the number of fractions is increased. These two possibilities were tested by measuring the response to X-rays at 24 h after various regimes of fractionated hyperthermia. At this time interval the enhancing effect of a single heat treatment would have decayed, so that radiosensitivity should then be related to the number of surviving cells. Up to 49 daily treatments of 20 min had little effect on radiosensitivity, suggesting that these heating regimes did not cause a significant reduction in the number of basal epidermal cells. A regime of 20 min + 4 X 70 min daily also had little effect but a treatment of 20 min + 9 X 70 min daily increased the radiation response, suggesting that the more severe heat treatment had reduced cell survival to approximately 4 per cent.

  11. Intensity modulated radiotherapy induces pro-inflammatory and pro-survival responses in prostate cancer patients

    PubMed Central

    EL-SAGHIRE, HOUSSEIN; VANDEVOORDE, CHARLOT; OST, PIET; MONSIEURS, PIETER; MICHAUX, ARLETTE; DE MEERLEER, GERT; BAATOUT, SARAH; THIERENS, HUBERT

    2014-01-01

    Intensity modulated radiotherapy (IMRT) is one of the modern conformal radiotherapies that is widely used within the context of cancer patient treatment. It uses multiple radiation beams targeted to the tumor, however, large volumes of the body receive low doses of irradiation. Using γ-H2AX and global genome expression analysis, we studied the biological responses induced by low doses of ionizing radiation in prostate cancer patients following IMRT. By means of different bioinformatics analyses, we report that IMRT induced an inflammatory response via the induction of viral, adaptive, and innate immune signaling. In response to growth factors and immune-stimulatory signaling, positive regulation in the progression of cell cycle and DNA replication were induced. This denotes pro-inflammatory and pro-survival responses. Furthermore, double strand DNA breaks were induced in every patient 30 min after the treatment and remaining DNA repair and damage signaling continued after 18–24 h. Nine genes belonging to inflammatory responses (TLR3, SH2D1A and IL18), cell cycle progression (ORC4, SMC2 and CCDC99) and DNA damage and repair (RAD17, SMC6 and MRE11A) were confirmed by quantitative RT-PCR. This study emphasizes that the risk assessment of health effects from the out-of-field low doses during IMRT should be of concern, as these may increase the risk of secondary cancers and/or systemic inflammation. PMID:24435511

  12. The stringent response plays a key role in Bacillus subtilis survival of fatty acid starvation.

    PubMed

    Pulschen, André A; Sastre, Diego E; Machinandiarena, Federico; Crotta Asis, Agostina; Albanesi, Daniela; de Mendoza, Diego; Gueiros-Filho, Frederico J

    2017-02-01

    The stringent response is a universal adaptive mechanism to protect bacteria from nutritional and environmental stresses. The role of the stringent response during lipid starvation has been studied only in Gram-negative bacteria. Here, we report that the stringent response also plays a crucial role in the adaptation of the model Gram-positive Bacillus subtilis to fatty acid starvation. B. subtilis lacking all three (p)ppGpp-synthetases (RelBs , RelP and RelQ) or bearing a RelBs variant that no longer synthesizes (p)ppGpp suffer extreme loss of viability on lipid starvation. Loss of viability is paralleled by perturbation of membrane integrity and function, with collapse of membrane potential as the likely cause of death. Although no increment of (p)ppGpp could be detected in lipid starved B. subtilis, we observed a substantial increase in the GTP/ATP ratio of strains incapable of synthesizing (p)ppGpp. Artificially lowering GTP with decoyinine rescued viability of such strains, confirming observations that low intracellular GTP is important for survival of nutritional stresses. Altogether, our results show that activation of the stringent response by lipid starvation is a broadly conserved response of bacteria and that a key role of (p)ppGpp is to couple biosynthetic processes that become detrimental if uncoordinated.

  13. Light-induced spin polarizations in quantum rings

    NASA Astrophysics Data System (ADS)

    Joibari, Fateme K.; Blanter, Ya. M.; Bauer, Gerrit E. W.

    2014-10-01

    Nonresonant circularly polarized electromagnetic radiation can exert torques on magnetizations by the inverse Faraday effect (IFE). Here, we discuss the enhancement of IFE by spin-orbit interactions. We illustrate the principle by studying a simple generic model system, i.e., the quasi-one-dimensional ring in the presence of linear/cubic Rashba and Dresselhaus interactions. We combine the classical IFE in electron plasmas that is known to cause persistent currents in the plane perpendicular to the direction of the propagation of light with the concept of current and spin-orbit-induced spin transfer torques. We calculate light-induced spin polarization that in ferromagnets might give rise to magnetization switching.

  14. Light-induced effects in liquid crystals: recent developments

    NASA Astrophysics Data System (ADS)

    Simoni, F.; Lucchetti, L.

    2016-09-01

    In this paper we outline that light-induced effects in liquid crystals are still able to provide scientific and technological novelty in spite of a long time investigation started more than thirty years ago. Here we review some recent achievements related to new phenomena that have been studied in the past few years. In the first part of our report we discuss optical trapping of nematic colloids whose origin relies on the elastic properties of liquid crystals rather than on the field gradient that is on the basis of conventional optical tweezing. In the second part we present some recent results obtained in studying the self-phase modulation in bent core nematic liquid crystals, pointing out a peculiar two regimes behavior.

  15. Light-Induced Degradation of Thin Film Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Hamelmann, F. U.; Weicht, J. A.; Behrens, G.

    2016-02-01

    Silicon-wafer based solar cells are still domination the market for photovoltaic energy conversion. However, most of the silicon is used only for mechanical stability, while only a small percentage of the material is needed for the light absorption. Thin film silicon technology reduces the material demand to just some hundred nanometer thickness. But even in a tandem stack (amorphous and microcrystalline silicon) the efficiencies are lower, and light-induced degradation is an important issue. The established standard tests for characterisation are not precise enough to predict the performance of thin film silicon solar cells under real conditions, since many factors do have an influence on the degradation. We will show some results of laboratory and outdoor measurements that we are going to use as a base for advanced modelling and simulation methods.

  16. Light-induced structural changes in a monomeric bacteriophytochrome

    PubMed Central

    Takala, Heikki; Niebling, Stephan; Berntsson, Oskar; Björling, Alexander; Lehtivuori, Heli; Häkkänen, Heikki; Panman, Matthijs; Gustavsson, Emil; Hoernke, Maria; Newby, Gemma; Zontone, Federico; Wulff, Michael; Menzel, Andreas; Ihalainen, Janne A.; Westenhoff, Sebastian

    2016-01-01

    Phytochromes sense red light in plants and various microorganism. Light absorption causes structural changes within the protein, which alter its biochemical activity. Bacterial phytochromes are dimeric proteins, but the functional relevance of this arrangement remains unclear. Here, we use time-resolved X-ray scattering to reveal the solution structural change of a monomeric variant of the photosensory core module of the phytochrome from Deinococcus radiodurans. The data reveal two motions, a bend and a twist of the PHY domain with respect to the chromophore-binding domains. Infrared spectroscopy shows the refolding of the PHY tongue. We conclude that a monomer of the phytochrome photosensory core is sufficient to perform the light-induced structural changes. This implies that allosteric cooperation with the other monomer is not needed for structural activation. The dimeric arrangement may instead be intrinsic to the biochemical output domains of bacterial phytochromes. PMID:27679804

  17. Light-induced performance increase of silicon heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Kobayashi, Eiji; De Wolf, Stefaan; Levrat, Jacques; Christmann, Gabriel; Descoeudres, Antoine; Nicolay, Sylvain; Despeisse, Matthieu; Watabe, Yoshimi; Ballif, Christophe

    2016-10-01

    Silicon heterojunction solar cells consist of crystalline silicon (c-Si) wafers coated with doped/intrinsic hydrogenated amorphous silicon (a-Si:H) bilayers for passivating-contact formation. Here, we unambiguously demonstrate that carrier injection either due to light soaking or (dark) forward-voltage bias increases the open circuit voltage and fill factor of finished cells, leading to a conversion efficiency gain of up to 0.3% absolute. This phenomenon contrasts markedly with the light-induced degradation known for thin-film a-Si:H solar cells. We associate our performance gain with an increase in surface passivation, which we find is specific to doped a-Si:H/c-Si structures. Our experiments suggest that this improvement originates from a reduced density of recombination-active interface states. To understand the time dependence of the observed phenomena, a kinetic model is presented.

  18. Light-induced chemical vapour deposition painting with titanium dioxide

    NASA Astrophysics Data System (ADS)

    Halary-Wagner, E.; Bret, T.; Hoffmann, P.

    2003-03-01

    Light-induced chemical vapour deposits of titanium dioxide are obtained from titanium tetra-isopropoxide (TTIP) in an oxygen and nitrogen atmosphere with a long pulse (250 ns) 308 nm XeCl excimer laser using a mask projection set-up. The demonstrated advantages of this technique are: (i) selective area deposition, (ii) precise control of the deposited thickness and (iii) low temperature deposition, enabling to use a wide range of substrates. A revolving mask system enables, in a single reactor load, to deposit shapes of controlled heights, which overlap to build up a complex pattern. Interferential multi-coloured deposits are achieved, and the process limitations (available colours and resolution) are discussed.

  19. Femtosecond light-induced macromolecular self-assembly

    NASA Astrophysics Data System (ADS)

    Rebane, Aleksander; Mikhaylov, Alexander

    2016-09-01

    We report femtosecond light-induced macromolecular self-assembly (FLIMSA), which is observed when a high peak intensity femtosecond laser beam propagates through aqueous solution of pseudoisocyanine iodide (PIC) J-aggregates and induces the formation of 0.1 - 1.0 mm-size tube-like structure surrounding the laser beam, while at the same time allowing the beam to continue propagating without obstruction or scattering. The FLIMSA material is morphologically heterogeneous and gel-like and is formed at the margins rather than at the center of the beam. As a potential explanation of this effect we assume that the FLIMSA is induced by the high photon flux gradient characteristic of the femtosecond laser beam periphery. This hypothesis is corroborated by control experiments, where J-aggregate samples were illuminated with nanosecond laser sources with a varying pulse duration, power- and beam shape characteristics, but where no FLIMSA formation was observed.

  20. Light-induced suppression of endogenous circadian amplitude in humans

    NASA Technical Reports Server (NTRS)

    Jewett, Megan; Czeisler, Charles A.; Kronauer, Richard E.

    1991-01-01

    A recent demonstration that the phase of the human circadian pacemaker could be inverted using an unconventional three-cycle stimulus has led to an investigation of whether critically timed exposure to a more moderate stimulus could drive that oscillator toward its singularity, a phaseless position at which the amplitude of circadian oscillation is zero. It is reported here that exposure of humans to fewer cycles of bright light, centered around the time at which the human circadian pacemaker is most sensitive to light-induced phase shifts, can markedly attenuate endogenous cicadian amplitude. In some cases this results in an apparent loss of rhythmicity, as expected to occur in the region of singularity.

  1. Light-induced metastability in pure and hydrogenated amorphous silicon

    SciTech Connect

    Queen, D. R.; Liu, X.; Karel, J.; Wang, Q.; Crandall, R. S.; Metcalf, T. H.; Hellman, F.

    2015-10-01

    Light soaking is found to increase the specific heat C and internal friction Q-1 of pure (a-Si) and hydrogenated (a-Si:H) amorphous silicon. At the lowest temperatures, the increases in C and Q-1 are consistent with an increased density of two-level systems (TLS). The light-induced increase in C persists to room temperature. Neither the sound velocity nor shear modulus change with light soaking indicating that the Debye specific heat is unchanged which suggests that light soaking creates localized vibrational modes in addition to TLS. The increase can be reversibly added and removed by light soaking and annealing, respectively, suggesting that it is related to the Staebler-Wronski effect (SWE), even in a-Si without H, and involves a reversible nanoscale structural rearrangement that is facilitated by, but does not require, H to occur.

  2. A circulating ghrelin mimetic attenuates light-induced phase delay of mice and light-induced Fos expression in the suprachiasmatic nucleus of rats.

    PubMed

    Yi, Chun-Xia; Challet, Etienne; Pévet, Paul; Kalsbeek, Andries; Escobar, Carolina; Buijs, Ruud M

    2008-04-01

    Anatomical evidence suggests that the ventromedial arcuate nucleus (vmARC) is a route for circulating hormonal communications to the suprachiasmatic nucleus (SCN). Whether this vmARC-SCN connection is involved in the modulation of circadian activity of the SCN is not yet known. We recently demonstrated, in rats, that intravenous (i.v.) injection of a ghrelin mimetic, GHRP-6, during the daytime activated neurons in the vmARC and reduced the normal endogenous daytime Fos expression in the SCN. In the present study we show that i.v. administration of GHRP-6 decreases light-induced Fos expression at ZT13 in the rat SCN by 50%, indicating that light-induced changes in the SCN Fos expression can also be reduced by GHRP-6. Because it is difficult to study light-induced phase changes in rats, we examined the functional effects of GHRP-6 on light-induced phase shifts in mice and demonstrated that peripherally injected GHRP-6 attenuates light-induced phase delays at ZT13 by 45%. However, light-induced Fos expression in the mice SCN was not blocked by GHRP-6. These results illustrate that acute stimulation of the ghrelinergic system may modulate SCN activity, but that its effect on light-induced phase shifts and Fos expression in the SCN might be species related.

  3. Theory of light-induced drift. III. Models of surface and bulk light-induced drift in one dimension

    SciTech Connect

    Goodman, Frank O.

    2003-01-01

    Light-induced drift (LID) of a rarefied gas in a cell is studied, and exact analytical closed-form solutions to the model rate equations, which model the gas motion in one dimension, are obtained for cases of both surface LID (SLID) and bulk LID (BLID); the special case of the limit of low radiation absorption by the gas is given particular attention. Similarities and differences among the results for SLID and BLID are discussed. This is part III of a series of papers, parts I and II having studied LID, but concentrating on SLID, with flat-plate and circular-cylindrical cell geometries, respectively [F. O. Goodman, Phys. Rev. A 65, 064309 (2002); 65, 064310 (2002)].

  4. Intravenous Immunoglobulin with Enhanced Polyspecificity Improves Survival in Experimental Sepsis and Aseptic Systemic Inflammatory Response Syndromes

    PubMed Central

    Djoumerska-Alexieva, Iglika; Roumenina, Lubka; Pashov, Anastas; Dimitrov, Jordan; Hadzhieva, Maya; Lindig, Sandro; Voynova, Elisaveta; Dimitrova, Petya; Ivanovska, Nina; Bockmeyer, Clemens; Stefanova, Zvetanka; Fitting, Catherine; Bläss, Markus; Claus, Ralf; von Gunten, Stephan; Kaveri, Srini; Cavaillon, Jean-Marc; Bauer, Michael; Vassilev, Tchavdar

    2015-01-01

    Sepsis is a major cause for death worldwide. Numerous interventional trials with agents neutralizing single proinflammatory mediators have failed to improve survival in sepsis and aseptic systemic inflammatory response syndromes. This failure could be explained by the widespread gene expression dysregulation known as “genomic storm” in these patients. A multifunctional polyspecific therapeutic agent might be needed to thwart the effects of this storm. Licensed pooled intravenous immunoglobulin preparations seemed to be a promising candidate, but they have also failed in their present form to prevent sepsis-related death. We report here the protective effect of a single dose of intravenous immunoglobulin preparations with additionally enhanced polyspecificity in three models of sepsis and aseptic systemic inflammation. The modification of the pooled immunoglobulin G molecules by exposure to ferrous ions resulted in their newly acquired ability to bind some proinflammatory molecules, complement components and endogenous “danger” signals. The improved survival in endotoxemia was associated with serum levels of proinflammatory cytokines, diminished complement consumption and normalization of the coagulation time. We suggest that intravenous immunoglobulin preparations with additionally enhanced polyspecificity have a clinical potential in sepsis and related systemic inflammatory syndromes. PMID:26701312

  5. A retrospective study of ampullary adenocarcinomas: overall survival and responsiveness to fluoropyrimidine-based chemotherapy†

    PubMed Central

    Jiang, Z.-Q.; Varadhachary, G.; Wang, X.; Kopetz, S.; Lee, J. E.; Wang, H.; Shroff, R.; Katz, M.; Wolff, R. A.; Fleming, J.; Overman, M. J.

    2013-01-01

    Background Whether carcinomas of the ampulla of Vater should be classified with biliary tract tumors and treated in a similar manner remains unknown. We sought to compare the outcomes of similarly staged periampullary adenocarcinomas (AAs) and analyze the chemotherapy responsiveness of AAs. Patients and methods A total of 905 patients with resected periampullary adenocarcinomas were identified from a prospective surgical registry from 1988 to 2010. A second cohort of 64 metastatic AA patients from 1992 to 2009 who received either front-line fluoropyrimidine-based or gemcitabine-based chemotherapy was also identified. Results Overall survival (OS) for AAs was similar to survival with duodenal adenocarcinomas, but was significantly different from both extrahepatic biliary and pancreatic adenocarcinomas (P < 0.001 for each comparison). In multivariate analysis, AAs had a significantly improved OS in comparison with extrahepatic biliary adenocarcinomas (HR = 1.97, P = 0.006). Fluoropyrimidine-based as opposed to gemcitabine-based chemotherapy for metastatic AAs resulted in a significant improvement in time to progression (P = 0.001) but only a trend toward benefit for OS (P = 0.07) in multivariate analysis. Conclusions Differences in the natural history of ampullary and extrahepatic biliary adenocarcinomas exist. Analyses of metastatic ampullary adenocarcinomas suggest that fluoropyrimidine-based chemotherapy may represent a more appropriate front-line chemotherapy approach. PMID:23704197

  6. Translation suppression promotes stress granule formation and cell survival in response to cold shock

    PubMed Central

    Hofmann, Sarah; Cherkasova, Valeria; Bankhead, Peter; Bukau, Bernd; Stoecklin, Georg

    2012-01-01

    Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2α (eIF2α) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock–induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2α phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia. PMID:22875991

  7. AKT activation controls cell survival in response to HDAC6 inhibition

    PubMed Central

    Kaliszczak, M; Trousil, S; Ali, T; Aboagye, E O

    2016-01-01

    HDAC6 is emerging as an important therapeutic target for cancer. We investigated mechanisms responsible for survival of tumor cells treated with a HDAC6 inhibitor. Expression of the 20 000 genes examined did not change following HDAC6 treatment in vivo. We found that HDAC6 inhibition led to an increase of AKT activation (P-AKT) in vitro, and genetic knockdown of HDAC6 phenocopied drug-induced AKT activation. The activation of AKT was not observed in PTEN null cells; otherwise, PTEN/PIK3CA expression per se did not predict HDAC6 inhibitor sensitivity. Interestingly, HDAC6 inhibitor treatment led to inactivating phosphorylation of PTEN (P-PTEN Ser380), which likely led to the increased P-AKT in cells that express PTEN. Synergy was observed with phosphatidylinositol 3'-kinases (PI3K) inhibitor treatment in vitro, accompanied by increased caspase 3/7 activity. Furthermore, combination of HDAC6 inhibitor with a PI3K inhibitor caused substantial tumor growth inhibition in vivo compared with either treatment alone, also detectable by Ki-67 immunostaining and 18F-FLT positron emission tomography (PET). In aggregate AKT activation appears to be a key survival mechanism for HDAC6 inhibitor treatment. Our findings indicate that dual inhibition of HDAC6 and P-AKT may be necessary to substantially inhibit growth of solid tumors. PMID:27362804

  8. Adjuvant Autologous Melanoma Vaccine for Macroscopic Stage III Disease: Survival, Biomarkers, and Improved Response to CTLA-4 Blockade

    PubMed Central

    Lotem, Michal; Merims, Sharon; Frank, Stephen; Hamburger, Tamar; Nissan, Aviram; Kadouri, Luna; Cohen, Jonathan; Straussman, Ravid; Eisenberg, Galit; Frankenburg, Shoshana; Carmon, Einat; Alaiyan, Bilal; Shneibaum, Shlomo; Ozge Ayyildiz, Zeynep; Isbilen, Murat; Mert Senses, Kerem; Ron, Ilan; Steinberg, Hanna; Smith, Yoav; Shiloni, Eitan; Gure, Ali Osmay; Peretz, Tamar

    2016-01-01

    Background. There is not yet an agreed adjuvant treatment for melanoma patients with American Joint Committee on Cancer stages III B and C. We report administration of an autologous melanoma vaccine to prevent disease recurrence. Patients and Methods. 126 patients received eight doses of irradiated autologous melanoma cells conjugated to dinitrophenyl and mixed with BCG. Delayed type hypersensitivity (DTH) response to unmodified melanoma cells was determined on the vaccine days 5 and 8. Gene expression analysis was performed on 35 tumors from patients with good or poor survival. Results. Median overall survival was 88 months with a 5-year survival of 54%. Patients attaining a strong DTH response had a significantly better (p = 0.0001) 5-year overall survival of 75% compared with 44% in patients without a strong response. Gene expression array linked a 50-gene signature to prognosis, including a cluster of four cancer testis antigens: CTAG2 (NY-ESO-2), MAGEA1, SSX1, and SSX4. Thirty-five patients, who received an autologous vaccine, followed by ipilimumab for progressive disease, had a significantly improved 3-year survival of 46% compared with 19% in nonvaccinated patients treated with ipilimumab alone (p = 0.007). Conclusion. Improved survival in patients attaining a strong DTH and increased response rate with subsequent ipilimumab suggests that the autologous vaccine confers protective immunity. PMID:27294163

  9. CHUP1 mediates actin-based light-induced chloroplast avoidance movement in the moss Physcomitrella patens.

    PubMed

    Usami, Hiroka; Maeda, Takuma; Fujii, Yusuke; Oikawa, Kazusato; Takahashi, Fumio; Kagawa, Takatoshi; Wada, Masamitsu; Kasahara, Masahiro

    2012-12-01

    Chloroplasts change their intracellular distribution in response to light intensity. CHUP1 (CHLOROPLAST UNUSUAL POSITIONING1) is indispensable for this response in Arabidopsis thaliana. However, involvement of CHUP1 in light-induced chloroplast movement is unknown in other plants. In this study, CHUP1 orthologues were isolated from a moss, Physcomitrella patens, and a fern, Adiantum capillus-veneris, by cDNA library screening and PCR cloning based on the P. patens genome sequence. Functional motifs found in CHUP1 of A. thaliana were conserved among the CHUP1 orthologues. In addition to the putative functional regions, the C-terminal regions (approximately 250 amino acids), which are unique in CHUP1s, were highly conserved. Green fluorescent protein (GFP) fusions of P. patens CHUP1s (PpCHUP1A, PpCHUP1B and PpCHUP1C) were transiently expressed in protoplast cells. All GFP fusions were localized on the chloroplasts. Light-induced chloroplast avoidance movement of chup1 disruptants of P. patens was examined in the presence of cytoskeletal inhibitors because of the utilization of both microtubules and actin filaments for the movement in P. patens. When actin filaments were disrupted by cytochalasin B, the wild type (WT) and all chup1 disruptants showed chloroplast avoidance movement. However, when microtubules were disrupted by Oryzalin, chloroplasts in ∆chup1A and ∆chup1A/B rarely moved and stayed in the strong light-irradiated area. On the other hand, WT, ∆chup1B and ∆chup1C showed chloroplast avoidance movement. These results suggest that PpCHUP1A predominantly mediates the actin-based light-induced chloroplast avoidance movement. This study reveals that CHUP1 functions on the chloroplasts and is involved in the actin-based light-induced chloroplast avoidance movement in P. patens.

  10. Quantitative investigation of light induced defects in glassy Se90Ag10 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Anjani; Kumar, D.; Dwivedi, Prabhat K.; Kumar, A.

    2016-05-01

    An attempt is made to investigate light induced defects (LID) in amorphous chalcogenide Se90Ag10 thin films prepared by vacuum evaporation technique. For the determination of light induced defects quantitatively, space charge limited current (SCLC) measurements have been made in a vacuum ~ 10-3 Torr before and after exposing amorphous films to white light for different exposure times (0 to 6 hours). Results indicate that light induced defects are created due to prolonged exposure of light which is explained by a microscopic model for light induced defects creation proposed by Shimakawa and co-workers.

  11. Survival and behavioral responses of larvae of the caddis fly Hydropsyche angustipennis to copper and diazinon

    SciTech Connect

    Geest, H.G. van der; Greve, G.D.; Haas, E.M. De; Scheper, B.B.; Kraak, M.H.S.; Stuijfzand, S.C.; Augustijn, K.H.; Admiraal, W.

    1999-09-01

    This study reports on newly developed short-term survival and behavioral tests with larvae of the caddis fly Hydropsyche angustipennis using two model toxicants, copper and diazinon. Mortality of first instar larvae was shown to be a reliable endpoint, and it was demonstrated that H. angustipennis is among the more sensitive aquatic insects in terms of both copper and diazinon. In addition, short-term behavioral responses were found to be indicative of adverse effects of ecologically relevant low doses of copper. Using the tests developed in this study, hydropsychid species are excellent tools for discerning the effects of individual toxicants present in large European rivers, and these species may help in defining the conditions for ecological rehabilitation.

  12. A latent pharmacokinetic time profile to model dose-response survival data.

    PubMed

    Jacobs, Tom; Straetemans, Roel; Molenberghs, Geert; Adriaan Bouwknecht, J; Bijnens, Luc

    2010-07-01

    The accelerating rotarod test is a preclinical pharmacodynamic test to assess the effect of a treatment on an animal's motor coordination. Two models are proposed to analyze the dose-response time-to-event data that typically result from such experiments: (1) a linear regression model and (2) an E(max) model with latent drug concentration at the site of action. Both cope with the survival character of the data. The latter model allows a direct comparison of compounds, but raises the question of whether the study design would benefit from the inclusion of additional mice for plasma concentration sampling on the one hand or whether additional time-to-event data without plasma concentration sampling should be ascertained from these additional mice on the other hand. A simulation study explores the impact on operational characteristics of this change of study design.

  13. Centromere and kinetochore gene misexpression predicts cancer patient survival and response to radiotherapy and chemotherapy

    PubMed Central

    Zhang, Weiguo; Mao, Jian-Hua; Zhu, Wei; Jain, Anshu K.; Liu, Ke; Brown, James B.; Karpen, Gary H.

    2016-01-01

    Chromosomal instability (CIN) is a hallmark of cancer that contributes to tumour heterogeneity and other malignant properties. Aberrant centromere and kinetochore function causes CIN through chromosome missegregation, leading to aneuploidy, rearrangements and micronucleus formation. Here we develop a Centromere and kinetochore gene Expression Score (CES) signature that quantifies the centromere and kinetochore gene misexpression in cancers. High CES values correlate with increased levels of genomic instability and several specific adverse tumour properties, and prognosticate poor patient survival for breast and lung cancers, especially early-stage tumours. They also signify high levels of genomic instability that sensitize cancer cells to additional genotoxicity. Thus, the CES signature forecasts patient response to adjuvant chemotherapy or radiotherapy. Our results demonstrate the prognostic and predictive power of the CES, suggest a role for centromere misregulation in cancer progression, and support the idea that tumours with extremely high CIN are less tolerant to specific genotoxic therapies. PMID:27577169

  14. Survival response to increased ceramide involves metabolic adaptation through novel regulators of glycolysis and lipolysis.

    PubMed

    Nirala, Niraj K; Rahman, Motiur; Walls, Stanley M; Singh, Alka; Zhu, Lihua Julie; Bamba, Takeshi; Fukusaki, Eiichiro; Srideshikan, Sargur M; Harris, Greg L; Ip, Y Tony; Bodmer, Rolf; Acharya, Usha R

    2013-06-01

    The sphingolipid ceramide elicits several stress responses, however, organisms survive despite increased ceramide but how they do so is poorly understood. We demonstrate here that the AKT/FOXO pathway regulates survival in increased ceramide environment by metabolic adaptation involving changes in glycolysis and lipolysis through novel downstream targets. We show that ceramide kinase mutants accumulate ceramide and this leads to reduction in energy levels due to compromised oxidative phosphorylation. Mutants show increased activation of Akt and a consequent decrease in FOXO levels. These changes lead to enhanced glycolysis by upregulating the activity of phosphoglyceromutase, enolase, pyruvate kinase, and lactate dehydrogenase to provide energy. A second major consequence of AKT/FOXO reprogramming in the mutants is the increased mobilization of lipid from the gut through novel lipase targets, CG8093 and CG6277 for energy contribution. Ubiquitous reduction of these targets by knockdown experiments results in semi or total lethality of the mutants, demonstrating the importance of activating them. The efficiency of these adaptive mechanisms decreases with age and leads to reduction in adult life span of the mutants. In particular, mutants develop cardiac dysfunction with age, likely reflecting the high energy requirement of a well-functioning heart. The lipases also regulate physiological triacylglycerol homeostasis and are important for energy metabolism since midgut specific reduction of them in wild type flies results in increased sensitivity to starvation and accumulation of triglycerides leading to cardiac defects. The central findings of increased AKT activation, decreased FOXO level and activation of phosphoglyceromutase and pyruvate kinase are also observed in mice heterozygous for ceramide transfer protein suggesting a conserved role of this pathway in mammals. These data reveal novel glycolytic and non-autonomous lipolytic pathways in response to increased

  15. Comparative Transcriptomics Reveals Discrete Survival Responses of S. aureus and S. epidermidis to Sapienic Acid

    PubMed Central

    Moran, Josephine C.; Alorabi, Jamal A.; Horsburgh, Malcolm J.

    2017-01-01

    Staphylococcal colonization of human skin is ubiquitous, with particular species more frequent at different body sites. Whereas Staphylococcus epidermidis can be isolated from the skin of every individual tested, Staphylococcus aureus is isolated from <5% of healthy individuals. The factors that drive staphylococcal speciation and niche selection on skin are incompletely defined. Here we show that S. aureus is inhibited to a greater extent than S. epidermidis by the sebaceous lipid sapienic acid, supporting a role for this skin antimicrobial in selection of skin staphylococci. We used RNA-Seq and comparative transcriptomics to identify the sapienic acid survival responses of S. aureus and S. epidermidis. Consistent with the membrane depolarization mode of action of sapienic acid, both species shared a common transcriptional response to counteract disruption of metabolism and transport. The species differed in their regulation of SaeRS and VraRS regulons. While S. aureus upregulated urease operon transcription, S. epidermidis upregulated arginine deiminase, the oxygen-responsive NreABC nitrogen regulation system and the nitrate and nitrite reduction pathways. The role of S. aureus ACME and chromosomal arginine deiminase pathways in sapienic acid resistance was determined through mutational studies. We speculate that ammonia production could contribute to sapienic acid resistance in staphylococci. PMID:28179897

  16. Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): survival, reproduction and gene expression profile.

    PubMed

    Gomes, Susana I L; Soares, Amadeu M V M; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2013-06-15

    Silver has antimicrobial properties and silver nanoparticles (Ag-NPs) have been some of the most widely used NPs. Information regarding their effects is still insufficient, in particular for soil dwelling organisms. The standard soil Oligochaete Enchytraeus albidus was used to study the effects of Ag in soils, using differential gene expression (microarray) and population (survival, reproduction) response to Ag-NPs (PVP coated) and AgNO₃. Results showed higher toxicity of AgNO₃ (EC₅₀<50 mg/kg) compared to toxicity of Ag-NPs (EC₅₀=225 mg/kg). Based on the biological and material identity, the difference in toxicity between Ag-NPs and AgNO₃ could possibly be explained by a release of Ag(+) ions from the particles or by a slower uptake of Ag-NPs. The indications were that the responses to Ag-NPs reflect an effect of Ag ions and Ag-NPs given the extent of similar/dissimilar genes activated. The particles characterization supports this deduction as there were limited free ions measured in soil extracts, maybe related to little oxidation and/or complexation in the soil matrix. The possibility that gene differences were due to different levels of biological impact (i.e. physiological responses) should not be excluded. Testing of Ag-NPs seem to require longer exposure period to be comparable in terms of effect/risk assessment with other chemicals.

  17. Physiological, biochemical, and psychological responses to environmental survival training in the Royal Australian Air Force.

    PubMed

    Chester, Annalise L; Edwards, Andrew M; Crowe, Melissa; Quirk, Frances

    2013-07-01

    Military environmental survival training (EST) is designed and considered to evoke significant stressors to military personnel in preparation for combat-like scenarios. The aim of this study was to observe and report selected physiological, biochemical, psychological, and performance responses to this intense 15-day program of Royal Australian Air Force (RAAF) EST. Fourteen RAAF participants undertook the EST course. Physiological and psychological responses were collected across the 15 days across outcomes: (1) biochemical markers (blood lactate, interlukin-6, and creatine kinase), (2) performance and anthropometric indices (vertical jump, body mass), and (3) psychological questionnaires profile of mood states, depression anxiety stress scale, Kessler-10 etc.). Creatine kinase concentration increased significantly from baseline to day 5 (p < 0.05) and thereafter remained elevated for the remaining 10 days of EST (128%; p < 0.01). Vertical jump (-10%; p < 0.01) and body mass (-8%; p < 0.01) both decreased across 15 days of EST, while there were no significant change in interlukin-6. Negative psychological responses were observed for mood (p < 0.01), depression (p < 0.05), anxiety (p < 0.01), and stress (p < 0.01) following the EST course. This case study showed the RAAF EST course imposed significant physiological and psychological stress as observed from markers of muscle damage, deterioration in physical performance, substantial weight loss, negative mood, and psychological distress.

  18. Comparative Transcriptomics Reveals Discrete Survival Responses of S. aureus and S. epidermidis to Sapienic Acid.

    PubMed

    Moran, Josephine C; Alorabi, Jamal A; Horsburgh, Malcolm J

    2017-01-01

    Staphylococcal colonization of human skin is ubiquitous, with particular species more frequent at different body sites. Whereas Staphylococcus epidermidis can be isolated from the skin of every individual tested, Staphylococcus aureus is isolated from <5% of healthy individuals. The factors that drive staphylococcal speciation and niche selection on skin are incompletely defined. Here we show that S. aureus is inhibited to a greater extent than S. epidermidis by the sebaceous lipid sapienic acid, supporting a role for this skin antimicrobial in selection of skin staphylococci. We used RNA-Seq and comparative transcriptomics to identify the sapienic acid survival responses of S. aureus and S. epidermidis. Consistent with the membrane depolarization mode of action of sapienic acid, both species shared a common transcriptional response to counteract disruption of metabolism and transport. The species differed in their regulation of SaeRS and VraRS regulons. While S. aureus upregulated urease operon transcription, S. epidermidis upregulated arginine deiminase, the oxygen-responsive NreABC nitrogen regulation system and the nitrate and nitrite reduction pathways. The role of S. aureus ACME and chromosomal arginine deiminase pathways in sapienic acid resistance was determined through mutational studies. We speculate that ammonia production could contribute to sapienic acid resistance in staphylococci.

  19. Personalized Circulating Tumor DNA Biomarkers Dynamically Predict Treatment Response and Survival In Gynecologic Cancers

    PubMed Central

    Anand, Sanya; Sebra, Robert; Catalina Camacho, Sandra; Garnar-Wortzel, Leopold; Nair, Navya; Moshier, Erin; Wooten, Melissa; Uzilov, Andrew; Chen, Rong; Prasad-Hayes, Monica; Zakashansky, Konstantin; Beddoe, Ann Marie; Schadt, Eric; Dottino, Peter; Martignetti, John A.

    2015-01-01

    Background High-grade serous ovarian and endometrial cancers are the most lethal female reproductive tract malignancies worldwide. In part, failure to treat these two aggressive cancers successfully centers on the fact that while the majority of patients are diagnosed based on current surveillance strategies as having a complete clinical response to their primary therapy, nearly half will develop disease recurrence within 18 months and the majority will die from disease recurrence within 5 years. Moreover, no currently used biomarkers or imaging studies can predict outcome following initial treatment. Circulating tumor DNA (ctDNA) represents a theoretically powerful biomarker for detecting otherwise occult disease. We therefore explored the use of personalized ctDNA markers as both a surveillance and prognostic biomarker in gynecologic cancers and compared this to current FDA-approved surveillance tools. Methods and Findings Tumor and serum samples were collected at time of surgery and then throughout treatment course for 44 patients with gynecologic cancers, representing 22 ovarian cancer cases, 17 uterine cancer cases, one peritoneal, three fallopian tube, and one patient with synchronous fallopian tube and uterine cancer. Patient/tumor-specific mutations were identified using whole-exome and targeted gene sequencing and ctDNA levels quantified using droplet digital PCR. CtDNA was detected in 93.8% of patients for whom probes were designed and levels were highly correlated with CA-125 serum and computed tomography (CT) scanning results. In six patients, ctDNA detected the presence of cancer even when CT scanning was negative and, on average, had a predictive lead time of seven months over CT imaging. Most notably, undetectable levels of ctDNA at six months following initial treatment was associated with markedly improved progression free and overall survival. Conclusions Detection of residual disease in gynecologic, and indeed all cancers, represents a diagnostic

  20. Photosynthetic Independence of Light-induced Anthocyanin Formation in Zea Seedlings 1

    PubMed Central

    Duke, Stephen O.; Fox, Sue B.; Naylor, Aubrey W.

    1976-01-01

    Results are reported which support the view that the photosynthetic photosystems are not involved in the high irradiance response (HIR) phenomenon of light-dependent anthocyanin biosynthesis in dark-grown Zea mays L. seedlings. A negative correlation between change in greening rates and change in light-dependent anthocyanin accumulation rates with age was demonstrated. Lack of chlorophyll synthesis in a strain of maize possessing a temperature-sensitive lesion for chlorophyll synthesis could not be correlated with light-induced anthocyanin accumulation. Furthermore, seedlings totally lacking photosynthetic capabilities, either due to a genetic lesion or to excision of all photosynthetic tissue, had an enhanced rate of photoinduced anthocyanin formation. This evidence indicates that the HIR results in the initiation of processes that are in competition with chloroplast development for substrate in normal, intact seedlings. PMID:16659449

  1. Protein phosphatase PHLPP1 controls the light-induced resetting of the circadian clock

    PubMed Central

    Masubuchi, Satoru; Gao, Tianyan; O'Neill, Audrey; Eckel-Mahan, Kristin; Newton, Alexandra C.; Sassone-Corsi, Paolo

    2010-01-01

    The pleckstrin homology domain leucine-rich repeat protein phosphatase 1 (PHLPP1) differentially attenuates Akt, PKC, and ERK1/2 signaling, thereby controlling the duration and amplitude of responses evoked by these kinases. PHLPP1 is expressed in the mammalian central clock, the suprachiasmatic nucleus, where it oscillates in a circadian fashion. To explore the role of PHLPP1 in vivo, we have generated mice with a targeted deletion of the PHLPP1 gene. Here we show that PHLPP1-null mice, although displaying normal circadian rhythmicity, have a drastically impaired capacity to stabilize the circadian period after light-induced resetting, producing a large phase shift after light resetting. Our findings reveal that PHLPP1 exerts a previously unappreciated role in circadian control, governing the consolidation of circadian periodicity after resetting. PMID:20080691

  2. Light-Induced Temperature Transitions in Biodegradable Polymer and Nanorod Composites**

    PubMed Central

    Hribar, Kolin C.; Metter, Robert B.; Ifkovits, Jamie L.; Troxler, Thomas

    2010-01-01

    Shape-memory materials (including polymers, metals, and ceramics) are those that are processed into a temporary shape and respond to some external stimuli (e.g., temperature) to undergo a transition back to a permanent shape.[1, 2] Shape memory polymers are finding use in a range of applications from aerospace to fabrics, to biomedical devices and microsystem components.[3–5] For many applications, it would be beneficial to initiate heating with an external trigger (e.g., transdermal light exposure). In this work, we formulated composites of gold nanorods (<1% by volume) and biodegradable networks, where exposure to infrared light induced heating and consequently, shape transitions. The heating is repeatable and tunable based on nanorod concentration and light intensity and the nanorods did not alter the cytotoxicity or in vivo tissue response to the networks. PMID:19408258

  3. Early response to neoadjuvant chemotherapy can help predict long-term survival in patients with cervical cancer

    PubMed Central

    Shen, Jian; Zhou, Hang; Yang, Runfeng; Wang, Lin; Liu, Jiong; Zhang, Jincheng; Sun, Haiying; Jia, Yao; Du, Xiaofang; Wang, Haoran; Deng, Song; Ding, Ting; Jiang, Jingjing; Lu, Yunping; Li, Shuang; Wang, Shixuan; Ma, Ding

    2016-01-01

    It is still controversial whether cervical cancer patients with clinical responses after neoadjuvant chemotherapy (NACT) have a better long-term survival or not. This study was designed to investigate the effect of the clinical response on the disease-free survival (DFS) of cervical cancer patients undergoing NACT. A total of 853 patients from a retrospective study were used to evaluate whether the clinical response was an indicator for the long-term response, and 493 patients from a prospective cohort study were used for further evaluation. The survival difference was detected by log-rank test, univariate and multivariate Cox regression and a pooled analysis. The log-rank test revealed that compared with non-responders, the DFS of responders was significantly higher in the retrospective data (P = 0.007). Univariate Cox regression showed that the clinical response was an indicator of long-term survival in the retrospective study (HR 1.83, 95% CI 1.18-2.85, P = 0.007). In a multivariate Cox model, the clinical response was still retained as an independent significant prognostic factor in the retrospective study (HR 1.59, 95% CI 1.01-2.50, P = 0.046). The result was also validated in the prospective data with similar results. These findings implied that the clinical response can be regarded as an independent predictor of DFS. PMID:27557523

  4. Modeling post-fledging survival of lark buntings in response to ecological and biological factors

    USGS Publications Warehouse

    Yackel Adams, A.A.; Skagen, S.K.; Savidge, J.A.

    2006-01-01

    We evaluated the influences of several ecological, biological, and methodological factors on post-fledging survival of a shortgrass prairie bird, the Lark Bunting (Calamospiza melanocorys). We estimated daily post-fledging survival (n = 206, 82 broods) using radiotelemetry and color bands to track fledglings. Daily survival probabilities were best explained by drought intensity, time in season (quadratic trend), ages a??3 d post-fledging, and rank given drought intensity. Drought intensity had a strong negative effect on survival. Rank was an important predictor of fledgling survival only during the severe drought of 2002 when the smallest fledglings had lower survival. Recently fledged young (ages a??3 d post-fledging) undergoing the transition from nest to surrounding habitat experienced markedly lower survival, demonstrating the vulnerable nature of this time period. Survival was greater in mid and late season than early season, corresponding to our assumptions of food availability. Neither mark type nor sex of attending parent influenced survival. The model-averaged product of the 22-d survival calculated using mean rank and median value of time in season was 0.360 A? 0.08 in 2001 and 0.276 A? 0.08 in 2002. Survival estimates that account for age, condition of young, ecological conditions, and other factors are important for parameterization of realistic population models. Biologists using population growth models to elucidate mechanisms of population declines should attempt to estimate species-specific of post-fledging survival rather than use generalized estimates.

  5. Light-induced self-assembly of active rectification devices.

    PubMed

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E

    2016-04-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics-a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or "rectified") by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured "primordial soup" of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath.

  6. Light induced DEP for immobilizing and orienting Escherichia coli bacteria

    NASA Astrophysics Data System (ADS)

    Miccio, Lisa; Marchesano, Valentina; Mugnano, Martina; Grilli, Simonetta; Ferraro, Pietro

    2016-01-01

    Manipulating bacteria and understanding their behavior when interacting with different substrates are of fundamental importance for patterning, detection, and any other topics related to health-care, food-enterprise, etc. Here, we adopt an innovative dielectrophoretic (DEP) approach based on electrode-free DEP for investigating smart but simple strategies for immobilization and orientation of bacteria. Escherichia coli DH5-alpha strain has been selected as subject of the study. The light induced DEP is achieved through ferroelectric iron-doped lithium niobate crystals used as substrates. Due to the photorefractive (PR) property of such material, suitable light patterns allow writing spatial-charges-distribution inside its volume and the resultant electric fields are able to immobilize E. coli on the surface. The experiments showed that, after laser irradiation, about 80% of bacteria is blocked and oriented along a particular direction on the crystals within an area of few square centimeters. The investigation presented here could open the way for detection or patterning applications based on a new driving mechanism. Future perspectives also include the possibility to actively switch by light the DEP forces, through the writing/erasing characteristic of PR fields, to dynamically control biofilm spatial structure and arrangement.

  7. Light-induced self-assembly of active rectification devices

    PubMed Central

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E.

    2016-01-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics—a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or “rectified”) by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured “primordial soup” of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath. PMID:27051883

  8. Retino-hypothalamic regulation of light-induced murine sleep

    PubMed Central

    Muindi, Fanuel; Zeitzer, Jamie M.; Heller, Horace Craig

    2014-01-01

    The temporal organization of sleep is regulated by an interaction between the circadian clock and homeostatic processes. Light indirectly modulates sleep through its ability to phase shift and entrain the circadian clock. Light can also exert a direct, circadian-independent effect on sleep. For example, acute exposure to light promotes sleep in nocturnal animals and wake in diurnal animals. The mechanisms whereby light directly influences sleep and arousal are not well understood. In this review, we discuss the direct effect of light on sleep at the level of the retina and hypothalamus in rodents. We review murine data from recent publications showing the roles of rod-, cone- and melanopsin-based photoreception on the initiation and maintenance of light-induced sleep. We also present hypotheses about hypothalamic mechanisms that have been advanced to explain the acute control of sleep by light. Specifically, we review recent studies assessing the roles of the ventrolateral preoptic area (VLPO) and the suprachiasmatic nucleus (SCN). We also discuss how light might differentially promote sleep and arousal in nocturnal and diurnal animals respectively. Lastly, we suggest new avenues for research on this topic which is still in its early stages. PMID:25140132

  9. The light-induced carotenoid absorbance changes in Rhodopseudomonas sphaeroides: an analysis and interpretation of the band shifts.

    PubMed

    Symons, M; Swysen, C; Sybesma, C

    1977-12-23

    An analysis has been made of the spectrum of the carotenoid absorption band shift generated by continuous illumination of chromatophores of the GlC-mutant of Rhodopseudomonas sphaeroides at room temperature by means of three computer programs. There appears to be at least two pools of the same carotenoid, only one of which, comprising about 20% of the total carotenoid content, is responsible for the light-induced absorbance changes. The 'remaining' pool absorbs at wavelengths which were about 5 nm lower than those at which the 'changing' pool absorbs. This difference in absorption wavelength could indicate that the two pools are influenced differently by permanent local electric fields. The electrochromic origin of the absorbance changes has been demonstrated directly; the isosbestic points of the absorption difference spectrum move to shorter wavelengths upon lowering of the light-induced electric field. Band shifts up to 1.7 nm were observed. A comparison of the light-induced absorbance changes with a KCl-valinomycin-induced diffusion potential has been used to calibrate the electrochromic shifts. The calibration value appeared to be 137 +/- 6 mV per nm shift.

  10. Comparative analyses of light-induced anthocyanin accumulation and gene expression between the ray florets and leaves in chrysanthemum.

    PubMed

    Hong, Yan; Yang, Li-Wen; Li, Meng-Ling; Dai, Si-Lan

    2016-06-01

    Light is one of the key environmental factors that affect anthocyanin biosynthesis. However, the underlying molecular mechanism remains unclear, and many problems regarding phenotypic change and corresponding gene regulation have not been solved. In the present study, comparative analyses of light-induced anthocyanin accumulation and gene expression between the ray florets and leaves were performed in Chrysanthemum × morifolium 'Purple Reagan'. After contrasting the variations in the flower color phenotype and relative pigment content, as well as expression patterns of structural and regulator genes responsible for anthocyanin biosynthesis and photoreceptor between different plant organs under light and dark conditions, we concluded that (1) both the capitulum and foliage are key organs responding to light for chrysanthemum coloration; (2) compared with flavones, shading makes a greater decrease on the anthocyanins accumulation; (3) most of the structural and regulatory genes in the light-induced anthocyanin pathway specifically express in the ray florets; and (4) CmCHS, CmF3H, CmF3'H, CmANS, CmDFR, Cm3GT, CmMYB5-1, CmMYB6, CmMYB7-1, CmbHLH24, CmCOP1 and CmHY5 are key genes for light-induced anthocyanin biosynthesis in chrysanthemum ray florets, while on the transcriptional level, the expressions of CmPHYA, CmPHYB, CmCRY1a, CmCRY1b and CmCRY2 are insignificantly changed. Moreover, the inferred comprehensive effect of multiple signals on the accumulation of anthocyanins and transmission channel of light signal that exist between the leaves and ray florets were further discussed. These results further our understanding of the relationship between the gene expression and light-induced anthocyanin biosynthesis, and lay foundations for the promotion of the molecular breeding of novel flower colors in chrysanthemums.

  11. Hydrogen peroxide generated by NADPH oxidase is involved in high blue-light-induced chloroplast avoidance movements in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Xing, Da; Zhang, Lingrui

    2009-08-01

    One of the most important functions of blue light is to induce chloroplast movements by reducing the damage to photosynthetic machinery under excess light. Hydrogen peroxide (H2O2), generated by various environmental stimuli, can act as a signaling molecule that regulates a number of developmental processes and environmental responses. To investigate whether H2O2 is involved in high blue light-induced chloroplast avoidance movements, we use luminescence spectrometer to observe H2O2 generation with the assistance of the fluorescence probe dichlorofluorescin diacetate (H2DCF-DA). After treatment with high blue light, a large quantity of H2O2 indicated by the fluorescence intensity of DCF is produced in a dose-dependent manner in leaf strip of Arabidopsis. Enzymatic assay shows that the activity of NADPH oxidase, which is a major site for H2O2 generation, also rapidly increases in treated strips. Exogenously applied H2O2 can promote the high blue light-induced chloroplast movements. Moreover, high blue light-induced H2O2 generation can be abolished completely by addition of exogenous catalase (CAT), and partly by diphenylene iodonium (DPI) and dichlorophenyl dimethylurea (DCMU), which are an NADPH oxidase inhibitor and a blocker of electron transport chain. And subsequent chloroplast movements can be abolished by CAT and DPI, but not by DCMU. These results presented here suggested that high blue light can induce oxidative burst, and NADPH oxidase as a major producer for H2O2 is involved in blue light-induced chloroplast avoidance movements.

  12. Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1

    PubMed Central

    Valdés, Pamela; Mercado, Gabriela; Vidal, Rene L.; Molina, Claudia; Parsons, Geoffrey; Court, Felipe A.; Martinez, Alexis; Galleguillos, Danny; Armentano, Donna; Schneider, Bernard L.; Hetz, Claudio

    2014-01-01

    Parkinson disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta (SNpc). Although growing evidence indicates that endoplasmic reticulum (ER) stress is a hallmark of PD, its exact contribution to the disease process is not well understood. Here we report that developmental ablation of X-Box binding protein 1 (XBP1) in the nervous system, a key regulator of the unfolded protein response (UPR), protects dopaminergic neurons against a PD-inducing neurotoxin. This survival effect was associated with a preconditioning condition that resulted from induction of an adaptive ER stress response in dopaminergic neurons of the SNpc, but not in other brain regions. In contrast, silencing XBP1 in adult animals triggered chronic ER stress and dopaminergic neuron degeneration. Supporting this finding, gene therapy to deliver an active form of XBP1 provided neuroprotection and reduced striatal denervation in animals injected with 6-hydroxydopamine. Our results reveal a physiological role of the UPR in the maintenance of protein homeostasis in dopaminergic neurons that may help explain the differential neuronal vulnerability observed in PD. PMID:24753614

  13. Macrophage-mediated inflammatory response decreases mycobacterial survival in mouse MSCs by augmenting NO production

    PubMed Central

    Yang, Kun; Wu, Yongjian; Xie, Heping; Li, Miao; Ming, Siqi; Li, Liyan; Li, Meiyu; Wu, Minhao; Gong, Sitang; Huang, Xi

    2016-01-01

    Mycobacterium tuberculosis (MTB) is a hard-to-eradicate intracellular microbe, which escapes host immune attack during latent infection. Recent studies reveal that mesenchymal stem cells (MSCs) provide a protective niche for MTB to maintain latency. However, the regulation of mycobacterial residency in MSCs in the infectious microenvironment remains largely unknown. Here, we found that macrophage-mediated inflammatory response during MTB infection facilitated the clearance of bacilli residing in mouse MSCs. Higher inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production were observed in mouse MSCs under macrophage-mediated inflammatory circumstance. Blocking NO production in MSCs increased the survival of intracellular mycobacteria, indicating NO-mediated antimycobacterial activity. Moreover, both nuclear factor κB (NF-κB) and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways were involved in iNOS expression and NO production in inflammatory microenvironment. Furthermore, pro-inflammatory cytokine interleukin-1β could trigger NO production in MSCs and exert anti-mycobacterial activity via NF-κB signaling pathway. Neutralization of interleukin-1β in macrophage-mediated inflammatory microenvironment dampened the ability of mouse MSCs to produce NO. Together, our findings demonstrated that macrophage-mediated inflammatory response during mycobacterial infection promotes the clearance of bacilli in mouse MSCs by increasing NO production, which may provide a better understanding of latent MTB infection. PMID:27251437

  14. Roles of diet and the acid tolerance response in survival of common Salmonella serotypes in feces of finishing pigs.

    PubMed

    Rajtak, Ursula; Boland, Fiona; Leonard, Nola; Bolton, Declan; Fanning, Séamus

    2012-01-01

    The persistence of Salmonella in the environment is an important factor influencing the transmission of infection in pig production. This study evaluated the effects of acid tolerance response (ATR), organic acid supplementation, and physical properties of feed on the survival of a five-strain Salmonella mixture in porcine feces held at 4 and 22°C for 88 days. Acid-adapted or non-acid-adapted nalidixic acid-resistant Salmonella strains were used to inoculate feces of pigs fed four different diets, which consisted of a nonpelleted, finely ground meal feed or a finely ground, pelleted feed that was left unsupplemented or was supplemented with K-diformate. Organic acid supplementation and physical properties of feed markedly influenced Salmonella survival, but the effects were highly dependent on storage temperature; survival was unaffected by ATR. The most pronounced effects were observed at 22°C, a temperature similar to that of finishing pig houses. The supplementation of meal diets with K-diformate significantly reduced the duration of survival (P < 0.1) and increased rates of decline (P < 0.0001) of salmonellae in feces compared to survival in feces of pigs fed unsupplemented meal. The pelleting of feed, compared to feeding meal, significantly reduced (P < 0.1) the duration of survival in feces held at 22°C. Only minor effects of feed form and acid supplementation on survivor numbers were observed at 4°C. Differences in the fecal survival of Salmonella could not be related to diet-induced changes in fecal physiochemical parameters. The predominant survival of S. enterica serovar Typhimurium DT193 and serotype 4,[5],12:i:- in porcine feces demonstrates the superior ability of these serotypes to survive in this environment. Fecal survival and transmission of Salmonella in pig herds may be reduced by dietary approaches, but effects are highly dependent on environmental temperature.

  15. Survival of plains cottonwood (Populus deltoides subsp. monilifera) and saltcedar (Tamarix ramosissima) seedlings in response to flooding

    USGS Publications Warehouse

    Gladwin, D.N.; Roelle, J.E.

    1998-01-01

    We examined the response of first year saltcedar (Tamarix ramosissima) and plains cottonwood (Populus deltoides subsp. monilifera) seedlings to flooding in fall (25 days) and spring (28 days) using potgrown plants (12-18 individuals/26.5-liter pot). Seedlings were initially counted in all pots prior to fall treatment. Survival was calculated as the proportion of seedlings in each pot still alive following spring treatment. Mean survival rates of seedlings flooded in fall (saltcedar = 0.8%, cottonwood = 20.8%, n = 14 pots) were lower compared to the spring flooding treatment (saltcedar = 91.1%, cottonwood = 92.2%, n = 13) and control (saltcedar = 93.9%, cottonwood = 98.7%, n = 14). We used multiple response permutation procedures to detect omnibus distributional differences in survival data (total tests = 9) because assumptions of normality and equal variance were not met. Survival distributions differed between saltcedar and cottonwood fall flooding groups (P 0.07). Smaller size and consequent lack of energy reserves may account for lower survival of saltcedar compared to cottonwood in the fall treatment and for lower survival of both species in the fall treatment compared to the spring treatment. Fall flooding for controlling first year saltcedar seedlings is suggested as a potentially useful technique in riparian habitat restoration and management in the southwestern United States.

  16. Prophylactic neuroprotection by blueberry-enriched diet in a rat model of light-induced retinopathy.

    PubMed

    Tremblay, François; Waterhouse, Jenna; Nason, Janette; Kalt, Wilhelmina

    2013-04-01

    The role of anthocyanins is controversial in vision health. This study investigates the impact of a blueberry-enriched diet as neuroprotectant in a rat model of light-induced retinopathy. Thirty-eight albino Wistar rats and 25 pigmented Brown-Norway rats were fed by gavage with long (7 weeks) and short (2 weeks) intervention with fortified blueberry juice (1 ml; 2.8 mg cyanidin 3-glucoside equivalents) or with a placebo solution (7 weeks) that contained the abundant nonanthocyanin blueberry phenolic, namely, chlorogenic acid, before being submitted to 2 hours of intense light regimen (1.8×10(4) lux). Retinal health was measured by fitting electroretinogram responses with the Naka-Rushton equation. The light-induced retinal damage was severe in the placebo groups, with the maximum amplitude of the electroretinogram being significantly reduced in both Wistar and Brown-Norway rats. The maximum amplitude of the electroretinogram was significantly protected from the light insult in the Wistar rats supplemented with blueberry juice for 7 or 2 weeks, and there was no significant difference between these two groups. The same dietary intervention in the Brown-Norway groups failed to protect the retina. Histological examination of retinal section confirmed the electroretinography results, showing protection of the outer nuclear layer of the retina in the Wistar rats fed with blueberries, while all placebo-fed rats and blueberry-fed Brown-Norway rats showed evidence of retinal damage concentrated in the superior hemiretina. The neuroprotective potential of anthocyanins in this particular model is discussed in terms of interaction with rhodopsin/phototransduction and in terms of antioxidative capacity.

  17. Theory of light-induced deformation of azobenzene elastomers: Influence of network structure

    NASA Astrophysics Data System (ADS)

    Toshchevikov, V. P.; Saphiannikova, M.; Heinrich, G.

    2012-07-01

    Azobenzene elastomers have been extensively explored in the last decade as photo-deformable smart materials which are able to transform light energy into mechanical stress. Presently, there is a great need for theoretical approaches to accurately predict the quantitative response of these materials based on their microscopic structure. Recently, we proposed a theory of light-induced deformation of azobenzene elastomers using a simple regular cubic network model [V. Toshchevikov, M. Saphiannikova, and G. Heinrich, J. Phys. Chem. B 116, 913 (2012), 10.1021/jp206323h]. In the present study, we extend the previous theory using more realistic network models which take into account the random orientation of end-to-end vectors of network strands as well as the molecular weight distribution of the strands. Interaction of the chromophores with the linearly polarized light is described by an effective orientation potential which orients the chromophores perpendicular to the polarization direction. We show that both monodisperse and polydisperse azobenzene elastomers can demonstrate either a uniaxial expansion or contraction along the polarization direction. The sign of deformation (expansion/contraction) depends on the orientation distribution of chromophores with respect to the main chains which is defined by the chemical structure and by the lengths of spacers. The degree of cross-linking and the polydispersity of network strands do not affect the sign of deformation but influence the magnitude of light-induced deformation. We demonstrate that photo-mechanical properties of mono- and poly-disperse azobenzene elastomers with random spatial distribution of network strands can be described in a very good approximation by a regular cubic network model with an appropriately chosen length of the strands.

  18. Numerical study of light-induced phase behavior of smectic solids

    NASA Astrophysics Data System (ADS)

    Chung, Hayoung; Park, Jaesung; Cho, Maenghyo

    2016-10-01

    By the chemical cross-linking of rigid molecules, liquid crystal polymer (LCP) has been envisaged as a novel heterogeneous material due to the fact that various optical and geometric states of the liquid crystalline (LC) phases are projected onto the polymeric constituents. The phase behavior, which refers to the macroscopic shape change of LCP under thermotropic phase change, is a compelling example of such optical-mechanical coupling. In this study, the photomechanical behavior, which broadly refers to the thermal- or light-induced actuation of smectic solids, is investigated using three-dimensional nonlinear finite element analysis (FEA). First, the various phases of LC are considered as well as their relation to polymeric conformation defined by the strain energy of the smectic polymer; a comprehensive constitutive equation that bridges the strong, optomechanical coupling is then derived. Such photomechanical coupling is incorporated in the FEA considering geometric nonlinearity, which is vital to understanding the large-scale light-induced bending behavior of the smectic solid.To demonstrate the simulation capability of the present model, numerous examples of photomechanical deformations are investigated parametrically, either by changing the operating conditions such as stimuli (postsynthesis) or the intrinsic properties (presynthesis). When compared to nematic solids, distinguished behaviors due to smectic substances are found herein and discussed through experiments. The quasisoftness that bidirectionally couples microscopic variables to mechanical behavior is also explained, while considering the effect of nonlinearity. In addition to providing a comprehensive measure that could deepen the knowledge of photomechanical coupling, the use of the proposed finite element framework offers an insight into the design of light-responsive actuating systems made of smectic solids.

  19. Light induced cytosolic drug delivery from liposomes with gold nanoparticles.

    PubMed

    Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena-Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto

    2015-04-10

    Externally triggered drug release at defined targets allows site- and time-controlled drug treatment regimens. We have developed liposomal drug carriers with encapsulated gold nanoparticles for triggered drug release. Light energy is converted to heat in the gold nanoparticles and released to the lipid bilayers. Localized temperature increase renders liposomal bilayers to be leaky and triggers drug release. The aim of this study was to develop a drug releasing system capable of releasing its cargo to cell cytosol upon triggering with visible and near infrared light signals. The liposomes were formulated using either heat-sensitive or heat- and pH-sensitive lipid compositions with star or rod shaped gold nanoparticles. Encapsulated fluorescent probe, calcein, was released from the liposomes after exposure to the light. In addition, the pH-sensitive formulations showed a faster drug release in acidic conditions than in neutral conditions. The liposomes were internalized into human retinal pigment epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVECs) and did not show any cellular toxicity. The light induced cytosolic delivery of calcein from the gold nanoparticle containing liposomes was shown, whereas no cytosolic release was seen without light induction or without gold nanoparticles in the liposomes. The light activated liposome formulations showed a controlled content release to the cellular cytosol at a specific location and time. Triggering with visual and near infrared light allows good tissue penetration and safety, and the pH-sensitive liposomes may enable selective drug release in the intracellular acidic compartments (endosomes, lysosomes). Thus, light activated liposomes with gold nanoparticles are an attractive option for time- and site-specific drug delivery into the target cells.

  20. NAD+ maintenance attenuates light induced photoreceptor degeneration Δ

    PubMed Central

    Bai, Shi; Sheline, Christian T.

    2013-01-01

    Light-induced retinal damage (LD) occurs after surgery or sun exposure. We previously showed that zinc (Zn2+) accumulated in photoreceptors and RPE cells after LD but prior to cell death, and pyruvate or nicotinamide attenuated the resultant death perhaps by restoring nicotinamide adenine dinucleotide (NAD+) levels. We first examined the levels of NAD+ and the efficacy of pyruvate or nicotinamide in oxidative toxicities using primary retinal cultures. We next manipulated NAD+ levels in vivo and tested the affect on LD to photoreceptors and RPE. NAD+ levels cycle with a 24-h rhythm in mammals, which is affected by the feeding schedule. Therefore, we tested the affect of increasing NAD+ levels on LD by giving nicotinamide, inverting the feeding schedule, or using transgenic mice which overexpress cytoplasmic nicotinamide mononucleotide adenyl-transferase-1 (cytNMNAT1), an NAD+ synthetic enzyme. Zn2+ accumulation was also assessed in culture and in retinal sections. Retinas of light damaged animals were examined by OCT and plastic sectioning, and retinal NAD levels were measured. Day fed, or nicotinamide treated rats showed less NAD+ loss, and LD compared to night fed rats or untreated rats without changing the Zn2+ staining pattern. CytNMNAT1 showed less Zn2+ staining, NAD+ loss, and cell death after LD. In conclusion, intense light, Zn2+ and oxidative toxicities caused an increase in Zn2+, NAD+ loss, and cell death which were attenuated by NAD+ restoration. Therefore, NAD+ levels play a protective role in LD-induced death of photoreceptors and RPE cells. PMID:23274583

  1. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  2. Orally administered epigallocatechin gallate attenuates light-induced photoreceptor damage.

    PubMed

    Costa, Belmira Lara da Silveira Andrade da; Fawcett, Rebecca; Li, Guang-Yu; Safa, Rukhsana; Osborne, Neville N

    2008-07-01

    EGCG, a major component of green tea, has a number of properties which includes it being a powerful antioxidant. The purpose of this investigation was to deduce whether inclusion of EGCG in the drinking water of albino rats attenuates the effect of a light insult (2200lx, for 24h) to the retina. TUNEL-positive cells were detected in the outer nuclear layer of the retina, indicating the efficacy of the light insult in inducing photoreceptor degeneration. Moreover, Ret-P1 and the mRNA for rhodopsin located at photoreceptors were also significantly reduced as well as the amplitude of both the a- and b-waves of the electroretinogram was also reduced showing that photoreceptors in particular are affected by light. An increase in protein/mRNA of GFAP located primarily to Müller cells caused by light shows that other retinal components are also influenced by the light insult. However, antigens associated with bipolar (alpha-PKC), ganglion (Thy-1) and amacrine (GABA) cells, in contrast, appeared unaffected. The light insult also caused a change in the content of various proteins (caspase-3, caspase-8, PARP, Bad, and Bcl-2) involved in apoptosis. A number of the changes to the retina caused by a light insult were significantly attenuated when EGCG was in the drinking water. The reduction of the a- and b-waves and photoreceptor specific mRNAs/protein caused by light were significantly less. In addition, EGCG attenuated the changes caused by light to certain apoptotic proteins (especially at after 2 days) but did not appear to significantly influence the light-induced up-regulation of GFAP protein/mRNA. It is concluded that orally administered EGCG blunts the detrimental effect of light to the retina of albino rats where the photoreceptors are primarily affected.

  3. Climate drives adaptive genetic responses associated with survival in big sagebrush (Artemisia tridentata).

    PubMed

    Chaney, Lindsay; Richardson, Bryce A; Germino, Matthew J

    2017-04-01

    A genecological approach was used to explore genetic variation for survival in Artemisia tridentata (big sagebrush). Artemisia tridentata is a widespread and foundational shrub species in western North America. This species has become extremely fragmented, to the detriment of dependent wildlife, and efforts to restore it are now a land management priority. Common-garden experiments were established at three sites with seedlings from 55 source-populations. Populations included each of the three predominant subspecies, and cytotype variations. Survival was monitored for 5 years to assess differences in survival between gardens and populations. We found evidence of adaptive genetic variation for survival. Survival within gardens differed by source-population and a substantial proportion of this variation was explained by seed climate of origin. Plants from areas with the coldest winters had the highest levels of survival, while populations from warmer and drier sites had the lowest levels of survival. Survival was lowest, 36%, in the garden that was prone to the lowest minimum temperatures. These results suggest the importance of climatic driven genetic differences and their effect on survival. Understanding how genetic variation is arrayed across the landscape, and its association with climate can greatly enhance the success of restoration and conservation.

  4. Zinc-finger protein 91 plays a key role in LIGHT-induced activation of non-canonical NF-{kappa}B pathway

    SciTech Connect

    Jin, Hong Ri; Jin, Xuejun; Lee, Jung Joon

    2010-10-01

    Research highlights: {yields} LIGHT induces ZFP91expression and nuclear translocation of p65, p52, and RelB in LT{beta}R signaling. {yields} ZFP91 knock-down abolishes DNA-binding activity of p52 and RelB but not of p65. {yields} ZFP91 regulates LIGHT-induced stabilization and activation of NIK. {yields} ZFP91 is required for the expression of non-canonical NF-{kappa}B target genes. -- Abstract: LIGHT is a member of tumor necrosis factor (TNF) superfamily, and its function is mediated through lymphotoxin-{beta} receptor (LT{beta}R), which is known to play important roles in inflammatory and immune responses through activation of NF-{kappa}B signaling pathways. However, molecular mechanism of LT{beta}R ligation-induced NF-{kappa}B signaling remains incompletely understood. In this report we demonstrate that a novel zinc-finger protein 91 (ZFP91) is a critical regulator in LIGHT-induced activation of non-canonical NF-{kappa}B pathway. ZFP91 appears to be required for NF-{kappa}B2 (p100) processing to p52, nuclear translocation of p52 and RelB, and DNA-binding activity of NF-{kappa}B in LIGHT-induced activation of non-canonical NF-{kappa}B pathway. Furthermore, ZFP91 knock-down by RNA interference blocks the LIGHT-induced accumulation of NIK and p100 processing, as well as the expression of non-canonical NF-{kappa}B target genes. These data clearly indicate that ZFP91 is a key regulator in LIGHT-induced activation of non-canonical NF-{kappa}B pathway in LT{beta}R signaling.

  5. Oosorption in response to poor food: complexity in the trade-off between reproduction and survival

    PubMed Central

    Moore, Patricia J; Attisano, Alfredo

    2011-01-01

    Plasticity in reproductive physiology is one avenue by which environmental signals, such as poor quality food, can be coordinated with adaptive responses. Insects have the ability to resorb oocytes that are not oviposited. Oosorption is proposed to be an adaptive mechanism to optimize fitness in hostile environments, recouping resources that might otherwise be lost, and reinvesting them into future reproductive potential. We tested the hypothesis that oosorption is an evolved mechanism by which females can reallocate resources from current reproductive effort to survival and future reproduction, when conditions for reproduction are poor, by examining the reproductive physiology and life-history outcome under poor quality food in populations of the milkweed bug (Oncopeltus fasciatus) that have adapted to live on sunflower seed. Females fed a diet of pumpkin seeds, known to be a poor host food, had higher levels of ovarian apoptosis (oosorption), lower reproductive output, but no reduction in life span under poor nutrition, as predicted under the oosorption hypothesis. However, the schedule of reproduction was surprising given the “wait to reproduce” assumption of oosorption as early fecundity was unaffected. PMID:22393481

  6. SPHK1 regulates proliferation and survival responses in triple-negative breast cancer.

    PubMed

    Datta, Arpita; Loo, Ser Yue; Huang, Baohua; Wong, Lingkai; Tan, Sheryl S L; Tan, Tuan Zea; Lee, Soo-Chin; Thiery, Jean Paul; Lim, Yaw Chyn; Yong, Wei Peng; Lam, Yulin; Kumar, Alan Prem; Yap, Celestial T

    2014-03-27

    Triple-negative breast cancer (TNBC) is characterized by unique aggressive behavior and lack of targeted therapies. Among the various molecular subtypes of breast cancer, it was observed that TNBCs express elevated levels of sphingosine kinase 1 (SPHK1) compared to other breast tumor subtypes. High levels of SPHK1 gene expression correlated with poor overall and progression- free survival, as well as poor response to Doxorubicin-based treatment. Inhibition of SPHK1 was found to attenuate ERK1/2 and AKT signaling and reduce growth of TNBC cells in vitro and in a xenograft SCID mouse model. Moreover, SPHK1 inhibition by siRNA knockdown or treatment with SKI-5C sensitizes TNBCs to chemotherapeutic drugs. Our findings suggest that SPHK1 inhibition, which effectively counteracts oncogenic signaling through ERK1/2 and AKT pathways, is a potentially important anti-tumor strategy in TNBC. A combination of SPHK1 inhibitors with chemotherapeutic agents may be effective against this aggressive subtype of breast cancer.

  7. SPHK1 regulates proliferation and survival responses in triple-negative breast cancer.

    PubMed

    Datta, Arpita; Loo, Ser Yue; Huang, Baohua; Wong, Lingkai; Tan, Sheryl S L; Tan, Tuan Zea; Lee, Soo-Chin; Thiery, Jean Paul; Lim, Yaw Chyn; Yong, Wei Peng; Lam, Yulin; Kumar, Alan Prem; Yap, Celestial T

    2014-08-15

    Triple-negative breast cancer (TNBC) is characterized by unique aggressive behavior and lack of targeted therapies. Among the various molecular subtypes of breast cancer, it was observed that TNBCs express elevated levels of sphingosine kinase 1 (SPHK1) compared to other breast tumor subtypes. High levels of SPHK1 gene expression correlated with poor overall and progression- free survival, as well as poor response to Doxorubicin-based treatment. Inhibition of SPHK1 was found to attenuate ERK1/2 and AKT signaling and reduce growth of TNBC cells in vitro and in a xenograft SCID mouse model. Moreover, SPHK1 inhibition by siRNA knockdown or treatment with SKI-5C sensitizes TNBCs to chemotherapeutic drugs. Our findings suggest that SPHK1 inhibition, which effectively counteracts oncogenic signaling through ERK1/2 and AKT pathways, is a potentially important anti-tumor strategy in TNBC. A combination of SPHK1 inhibitors with chemotherapeutic agents may be effective against this aggressive subtype of breast cancer.

  8. PiwiRNA-651 as marker of treatment response and survival in classical Hodgkin lymphoma

    PubMed Central

    Cordeiro, Anna; Navarro, Alfons; Gaya, Anna; Díaz-Beyá, Marina; Gonzalez-Farré, Blanca; Castellano, Joan Josep; Fuster, Dolors; Martínez, Carmen; Martínez, Antonio; Monzó, Mariano

    2016-01-01

    PiwiRNAs, small non-coding RNAs processed by Piwi proteins, are involved in maintaining genome stability in germline cells. Recently, piwiRNA expression has been identified in some tumors. We have examined the potential reactivation of the Piwi/piwiRNA pathway in classical Hodgkin lymphoma (cHL). We found that Piwi proteins and three selected piwiRNAs, including piR-651, were expressed in cHL patients and cell lines, indicating that the Piwi/piwiRNA pathway is active in cHL. Interestingly, low levels of piR-651 were associated with lack of complete response to first-line treatment, as well as shorter disease-free and overall survival in a cohort of 94 cHL patients. At diagnosis, piR-651 was underexpressed in cHL serum samples compared to healthy controls, while after complete remission, piR-651 levels increased to levels similar to healthy controls. This is the first evidence that piwiRNAs are active in tumor and serum samples and impact prognosis in cHL. PMID:27329591

  9. CA 19-9 as a Predictor for Response and Survival in Advanced Pancreatic Cancer Patients Treated With Chemoradiotherapy

    SciTech Connect

    Koom, Woong Sub; Seong, Jinsil Kim, Yong Bae; Pyun, Hae Ok; Song, Si Young

    2009-03-15

    Purpose: To investigate the significance of carbohydrate antigen 19-9 (CA 19-9) levels for predicting response and survival in pancreatic cancer (PC) treated with concurrent chemoradiotherapy. Methods and Materials: We retrospectively reviewed data from 69 patients with PC between 1999 and 2005. All patients had elevated CA 19-9 levels before treatment. CA 19-9 levels (pre- and posttreatment CA 19-9) and their decline were analyzed for radiologic response and overall survival. Results: Seventeen patients (25%) had a 50% or greater reduction in tumor size within 3 months of chemoradiotherapy (1 complete response, 16 partial responses). CA 19-9 decline was significantly correlated with radiologic response (p = 0.03). The median survival time (MST) was 12 months (range, 4-48 months), and 1-year survival rate was 44%. Pretreatment CA 19-9 > 1,200 U/mL (MST, 13 vs. 8 months; p = 0.002), posttreatment CA 19-9 >100 U/mL (MST, 17 vs. 10 months; p = 0.0003), and CA 19-9 decline {<=}40% (MST, 13 vs. 10 months; p = 0.005) were the strongest and most unfavorable prognostic factors. In addition, patients with multiple unfavorable CA 19-9 levels had significantly worse outcomes than those without. Conclusions: CA 19-9 decline shows a correlation with radiologic response. The combination of pretreatment CA 19-9 >1,200 U/mL, posttreatment CA 19-9 >100 U/mL, and CA 19-9 decline {<=}40% may possibly serve as a surrogate marker for poor survival in advanced PC receiving chemoradiotherapy.

  10. All or nothing: Survival, reproduction and oxidative balance in Spotted Wing Drosophila (Drosophila suzukii) in response to cold.

    PubMed

    Plantamp, Christophe; Salort, Katleen; Gibert, Patricia; Dumet, Adeline; Mialdea, Gladys; Mondy, Nathalie; Voituron, Yann

    2016-06-01

    Winter severity and overwintering capacity are key ecological factors in successful invasions, especially in ectotherms. The integration of physiological approaches into the study of invasion processes is emerging and promising. Physiological information describes the mechanisms underlying observed survival and reproductive capacities, and it can be used to predict an organism's response to environmental perturbations such as cold temperatures. We investigated the effects of various cold treatments on life history and physiological traits of an invasive pest species, Drosophila suzukii, such as survival, fertility and oxidative balance. This species, a native of temperate Asian areas, is known to survive where cold temperatures are particularly harsh and has been recently introduced into Europe and North America. We found that cold treatments had a strong impact on adult survival but no effect on female's fertility. Although only minor changes were observed after cold treatment on studied physiological traits, a strong sex-based difference was observed in both survival and physiological markers (antioxidant defences and oxidative markers). Females exhibited higher survival, reduced oxidative defences, less damage to nucleic acids, and more damage to lipids. These results suggest that D. suzukii relies on a pathway other than oxidative balance to resist cold injury. Altogether, our results provide information concerning the mechanisms of successful invasion by D. suzukii. These findings may assist in the development of population models that predict the current and future geographic ranges of this species.

  11. CarF Mediates Signaling by Singlet Oxygen, Generated via Photoexcited Protoporphyrin IX, in Myxococcus xanthus Light-Induced Carotenogenesis

    PubMed Central

    Galbis-Martínez, Marisa; Padmanabhan, S.; Murillo, Francisco J.

    2012-01-01

    Blue light triggers carotenogenesis in the nonphototrophic bacterium Myxococcus xanthus by inducing inactivation of an anti-σ factor, CarR, and the consequent liberation of the cognate extracytoplasmic function (ECF) σ factor, CarQ. CarF, the protein implicated earliest in the response to light, does not resemble any known photoreceptor. It interacts physically with CarR and is required for its light-driven inactivation, but the mechanism is unknown. Blue-light sensing in M. xanthus has been attributed to the heme precursor protoporphyrin IX (PPIX), which can generate the highly reactive singlet oxygen species (1O2) by energy transfer to oxygen. However, 1O2 involvement in M. xanthus light-induced carotenogenesis remains to be established. Here, we present genetic evidence of the involvement of PPIX as well as 1O2 in light-induced carotenogenesis in M. xanthus and of how these are linked to CarF in the signal transduction pathway. Response to light was examined in carF-bearing and carF-deficient M. xanthus strains lacking endogenous PPIX due to deletion of hemB or accumulating PPIX due to deletion of hemH (hemB and hemH are early- and late-acting heme biosynthesis genes, respectively). This demonstrated that light induction of the CarQ-dependent promoter, PQRS, correlated directly with cellular PPIX levels. Furthermore, we show that PQRS activation is triggered by 1O2 and is inhibited by exogenously supplied hemin and that CarF is essential for the action of 1O2. Thus, our findings indicate that blue light interaction with PPIX generates 1O2, which must be transmitted via CarF to trigger the transcriptional response underlying light-induced carotenogenesis in M. xanthus. PMID:22267513

  12. Preventing Ultraviolet Light-Induced Damage: The Benefits of Antioxidants

    ERIC Educational Resources Information Center

    Yip, Cheng-Wai

    2007-01-01

    Extracts of fruit peels contain antioxidants that protect the bacterium "Escherichia coli" against damage induced by ultraviolet light. Antioxidants neutralise free radicals, thus preventing oxidative damage to cells and deoxyribonucleic acid. A high survival rate of UV-exposed cells was observed when grapefruit or grape peel extract was…

  13. Delayed ultraviolet light-induced cessation of respiration by inadequate aeration of Escherichia coli.

    PubMed

    Joshi, J G; Swenson, P A; Schenley, R L

    1977-02-01

    Inadequately aerated Escherichia coli B/r cultures did not shut their respiration off 60 min after ultraviolet light (52 M/m2 at 254 nm) as they did when well supplied with oxygen. Since cessation of respiaration is associated with cell death, the result suggested that oxygen toxicity by superoxide radicals generated by cell metabolism might be responsible for cell death. The specific activity of superoxide dismutase, which scavenges O2- radicals, increased twofold after 90 min of adequate aeration, but the specific activity of catalase remained constant. Respiration and viability of irradiated cells were affected not at all by the presence of superoxide dismutase and only slightly by the presence of catalase. Metal ions such as Mn2+ and Fe2+ inducers of superoxide dismutase, had no effect on respiration and viability. When irradiated cells were incubated under N2 for 90 min, the respiration, growth, and viability time-course responses were the same as for the cells not exposed to anareobiosis. We conclude that superoxide anions generated at the time of irradiation play no part in cessation delays the ultraviolet light-induced synthesis of proteins responsible for the irreversible cessation of respiration.

  14. Henslow's sparrow winter-survival estimates and response to prescribed burning

    USGS Publications Warehouse

    Thatcher, B.S.; Krementz, D.G.; Woodrey, M.S.

    2006-01-01

    Wintering Henslow's sparrow (Ammodramus henslowii) populations rely on lands managed with prescribed burning, but the effects of various burn regimes on their overwinter survival are unknown. We studied wintering Henslow's sparrows in coastal pine savannas at the Mississippi Sandhill Crane National Wildlife Refuge, Jackson County, Mississippi, USA, during January and February 2001 and 2002. We used the known-fate modeling procedure in program MARK to evaluate the effects of burn age (1 or 2 growing seasons elapsed), burn season (growing, dormant), and calendar year on the survival rates of 83 radiomarked Henslow's sparrows. We found strong evidence that Henslow's sparrow survival rates differed by burn age (with higher survival in recently burned sites) and by year (with lower survival rates in 2001 likely because of drought conditions). We found some evidence that survival rates also differed by bum season (with higher survival in growing-season sites), although the effects of burn season were only apparent in recently burned sites. Avian predation was the suspected major cause of mortality (causing 6 of 14 deaths) with 1 confirmed loggerhead shrike (Lanius ludovicianus) depredation. Our results indicated that recently burned savannas provide high-quality wintering habitats and suggested that managers can improve conditions for wintering Henslow's sparrows by burning a large percentage of savannas each year.

  15. Galerkin analysis of light-induced patterns in the chlorine dioxide-iodine-malonic acid reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Sen, Shrabani; Riaz, Syed Shahed; Ray, Deb Shankar

    2009-05-01

    The photosensitive chlorine dioxide-iodine-malonic acid reaction-diffusion system has been an experimental paradigm for the study of Turing pattern over the last several years. When subjected to illumination of varied intensity by visible light the patterns undergo changes from spots to stripes, vice versa, and their mixture. We carry out a nonlinear analysis of the underlying model in terms of a Galerkin scheme with finite number of modes to explore the nature of the stability and existence of various modes responsible for the type and crossover of the light-induced patterns.

  16. c-Cbl Inhibition Improves Cardiac function and Survival in Response to Myocardial Ischemia

    PubMed Central

    Rafiq, Khadija; Kolpakov, Mikhail A; Seqqat, Rachid; Guo, Jianfen; Guo, Xinji; Qi, Zhao; Yu, Daohai; Mohapatra, Bhopal; Zutshi, Neha; An, Wei; Band, Hamid; Sanjay, Archana; Houser, Steven R; Sabri, Abdelkarim

    2014-01-01

    Background The proto-oncogene Casitas b-lineage lymphoma (c-Cbl) is an adaptor protein with an intrinsic E3 ubiquitin ligase activity that targets receptor and non-receptor tyrosine kinases, resulting in their ubiquitination and down-regulation. However, the function of c-Cbl in the control of cardiac function is currently unknown. In this study, we examined the role of c-Cbl in myocyte death and cardiac function after myocardial ischemia. Methods and Results We show increased c-Cbl expression in human ischemic and dilated cardiomyopathy hearts and in response to pathological stress stimuli in mice. c-Cbl deficient mice demonstrated a more robust functional recovery after myocardial ischemia reperfusion injury, as well as significantly reduced myocyte apoptosis and improved cardiac function. Ubiquitination and downregulation of key survival c-Cbl targets, epidermal growth factor receptors and focal adhesion kinase, were significantly reduced in c-Cbl knockout mice. Inhibition of c-Cbl expression or its ubiquitin ligase activity in cardiac myocytes offered protection against H2O2 stress. Interestingly, c-Cbl deletion reduced the risk of death and increased cardiac functional recovery after chronic myocardial ischemia. This beneficial effect of c-Cbl deletion was associated with enhanced neoangiogenesis and increased expression of vascular endothelial growth factor (VEGF)-a and VEGF receptor type 2 in the infarcted region. Conclusions c-Cbl activation promotes myocyte apoptosis, inhibits angiogenesis and causes adverse cardiac remodeling after myocardial infarction. These findings point to c-Cbl as a potential therapeutic target for the maintenance of cardiac function and remodeling after myocardial ischemia. PMID:24583314

  17. Autophagy in response to photodynamic therapy: cell survival vs. cell death

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Xue, Liang-yan; Chiu, Song-mao; Joseph, Sheeba

    2009-02-01

    Autophagy (or more properly, macroautophagy) is a pathway whereby damaged organelles or other cell components are encased in a double membrane, the autophagosome, which fuses with lysosomes for digestion by lysosomal hydrolases. This process can promote cell survival by removing damaged organelles, but when damage is extensive, it can also be a mechanism of cell death. Similar to the Kessel and Agostinis laboratories, we have reported the vigorous induction of autophagy by PDT; this was found in human breast cancer MCF-7 cells whether or not they were able to efficiently induce apoptosis. One way to evaluate the role of autophagy in PDT-treated cells is to silence one of the essential genes in the pathway. Kessel and Reiners silenced the Atg7 gene of murine leukemia L1210 cells using inhibitory RNA and found sensitization to PDT-induced cell death at a low dose of PDT, implying that autophagy is protective when PDT damage is modest. We have examined the role of autophagy in an epithelium-derived cancer cell by comparing parental and Atg7-silenced MCF-7 cells to varying doses of PDT with the phthalocyanine photosensitizer Pc 4. In contrast to L1210 cells, autophagy-deficient MCF-7 cells were more resistant to the lethal effects of PDT, as judged by clonogenic assays. A possible explanation for the difference in outcome for L1210 vs. MCF-7 cells is the greatly reduced ability of the latter to undergo apoptosis, a deficiency that may convert autophagy into a cell-death process even at low PDT doses. Experiments to investigate the mechanism(s) responsible are in process.

  18. Ebi, a Drosophila homologue of TBL1, regulates the balance between cellular defense responses and neuronal survival

    PubMed Central

    Lim, Young-Mi; Tsuda, Leo

    2016-01-01

    Transducin β-like 1 (TBL1), a transcriptional co-repressor complex, is a causative factor for late-onset hearing impairments. Transcriptional co-repressor complexes play pivotal roles in gene expression by making a complex with divergent transcription factors. However, it remained to be clarified how co-repressor complex regulates cellular survival. We herein demonstrated that ebi, a Drosophila homologue of TBL1, suppressed photoreceptor cell degeneration in the presence of excessive innate immune signaling. We also showed that the balance between NF-κB and AP-1 is a key component of cellular survival under stress conditions. Given that Ebi plays an important role in innate immune responses by regulating NF-κB activity and inhibition of apoptosis induced by associating with AP-1, it may be involved in the regulation of photoreceptor cell survival by modulating cross-talk between NF-κB and AP-1. PMID:27073743

  19. Comparative Proteomic Analysis of Light-Induced Mycelial Brown Film Formation in Lentinula edodes

    PubMed Central

    Tang, Li Hua; Tan, Qi; Bao, Da Peng; Zhang, Xue Hong; Jian, Hua Hua; Li, Yan; Yang, Rui heng

    2016-01-01

    Light-induced brown film (BF) formation by the vegetative mycelium of Lentinula edodes is important for ensuring the quantity and quality of this edible mushroom. Nevertheless, the molecular mechanism underlying this phenotype is still unclear. In this study, a comparative proteomic analysis of mycelial BF formation in L. edodes was performed. Seventy-three protein spots with at least a twofold difference in abundance on two-dimensional electrophoresis (2DE) maps were observed, and 52 of them were successfully identified by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF/MS). These proteins were classified into the following functional categories: small molecule metabolic processes (39%), response to oxidative stress (5%), and organic substance catabolic processes (5%), followed by oxidation-reduction processes (3%), single-organism catabolic processes (3%), positive regulation of protein complex assembly (3%), and protein metabolic processes (3%). Interestingly, four of the proteins that were upregulated in response to light exposure were nucleoside diphosphate kinases. To our knowledge, this is the first proteomic analysis of the mechanism of BF formation in L. edodes. Our data will provide a foundation for future detailed investigations of the proteins linked to BF formation. PMID:27868065

  20. Light-induced fading of the PSL signal from irradiated herbs and spices

    NASA Astrophysics Data System (ADS)

    Alberti, A.; Corda, U.; Fuochi, P.; Bortolin, E.; Calicchia, A.; Onori, S.

    2007-08-01

    Reliability of the photo-stimulated luminescence (PSL) technique, as screening method for irradiated food identification, has been tested with three kinds of herbs and spices (oregano, red pepper and fennel), prepared in two different ways (granular: i.e. seeds and flakes, or powdered), over a long period of storage with different light exposures. The irradiated samples kept in the dark gave always a positive response (the sample is correctly classified as "irradiated") for the overall examination period. The samples kept under ambient light conditions, in typical commercial glass containers, exhibited a reduction of the PSL signal, more or less pronounced depending on the type of food and packaging. The different PSL response of the irradiated samples is to be related to the quantity and quality of the mineral debris present in the individual food. It was also found that, for the same type of food, the light-induced fading was much stronger for the flaked and seed samples than for the corresponding powder samples, the penetrating capability of light being much more inhibited in powdered than in whole seeds or flaked form samples. The observed light bleaching of the PSL signal in irradiated herbs and spices is of practical relevance since it may lead to false negative classifications.

  1. Red-light-induced positive phototropism in Arabidopsis roots

    NASA Technical Reports Server (NTRS)

    Ruppel, N. J.; Hangarter, R. P.; Kiss, J. Z.

    2001-01-01

    The interaction between light and gravity is critical in determining the final form of a plant. For example, the competing activities of gravitropism and phototropism can determine the final orientation of a stem or root. The results reported here indicate that, in addition to the previously described blue-light-dependent negative phototropic response in roots, roots of Arahidopsis thaliana (L.) Heynh. display a previously unknown red-light-dependent positive phototropic response. Both phototropic responses in roots are considerably weaker than the graviresponse, which often masks phototropic curvature. However, through the use of mutant strains with impaired gravitropism, we were able to identify a red-light-dependent positive phototropic response in Arabidopsis roots. The red-induced positive phototropic response is considerably weaker than the blue-light response and is barely detectable in plants with a normal gravitropic response.

  2. Adipose Tissue-Derived Mesenchymal Stem Cells Increase Skin Allograft Survival and Inhibit Th-17 Immune Response

    PubMed Central

    Larocca, Rafael Assumpção; Moraes-Vieira, Pedro Manoel; Bassi, Ênio José; Semedo, Patrícia; de Almeida, Danilo Candido; da Silva, Marina Burgos; Thornley, Thomas; Pacheco-Silva, Alvaro; Câmara, Niels Olsen Saraiva

    2013-01-01

    Adipose tissue-derived mesenchymal stem cells (ADSC) exhibit immunosuppressive capabilities both in vitro and in vivo. Their use for therapy in the transplant field is attractive as they could render the use of immunosuppressive drugs unnecessary. The aim of this study was to investigate the effect of ADSC therapy on prolonging skin allograft survival. Animals that were treated with a single injection of donor allogeneic ADSC one day after transplantation showed an increase in donor skin graft survival by approximately one week. This improvement was associated with preserved histological morphology, an expansion of CD4+ regulatory T cells (Treg) in draining lymph nodes, as well as heightened IL-10 expression and down-regulated IL-17 expression. In vitro, ADSC inhibit naïve CD4+ T cell proliferation and constrain Th-1 and Th-17 polarization. In summary, infusion of ADSC one day post-transplantation dramatically increases skin allograft survival by inhibiting the Th-17 pathogenic immune response and enhancing the protective Treg immune response. Finally, these data suggest that ADSC therapy will open new opportunities for promoting drug-free allograft survival in clinical transplantation. PMID:24124557

  3. Multi-level Modeling of Light-Induced Stomatal Opening Offers New Insights into Its Regulation by Drought

    PubMed Central

    Sun, Zhongyao; Jin, Xiaofen; Albert, Réka; Assmann, Sarah M.

    2014-01-01

    Plant guard cells gate CO2 uptake and transpirational water loss through stomatal pores. As a result of decades of experimental investigation, there is an abundance of information on the involvement of specific proteins and secondary messengers in the regulation of stomatal movements and on the pairwise relationships between guard cell components. We constructed a multi-level dynamic model of guard cell signal transduction during light-induced stomatal opening and of the effect of the plant hormone abscisic acid (ABA) on this process. The model integrates into a coherent network the direct and indirect biological evidence regarding the regulation of seventy components implicated in stomatal opening. Analysis of this signal transduction network identified robust cross-talk between blue light and ABA, in which [Ca2+]c plays a key role, and indicated an absence of cross-talk between red light and ABA. The dynamic model captured more than 1031 distinct states for the system and yielded outcomes that were in qualitative agreement with a wide variety of previous experimental results. We obtained novel model predictions by simulating single component knockout phenotypes. We found that under white light or blue light, over 60%, and under red light, over 90% of all simulated knockouts had similar opening responses as wild type, showing that the system is robust against single node loss. The model revealed an open question concerning the effect of ABA on red light-induced stomatal opening. We experimentally showed that ABA is able to inhibit red light-induced stomatal opening, and our model offers possible hypotheses for the underlying mechanism, which point to potential future experiments. Our modelling methodology combines simplicity and flexibility with dynamic richness, making it well suited for a wide class of biological regulatory systems. PMID:25393147

  4. Survival responses of cell subpopulations isolated from a heterogeneous human colon tumour after combinations of hyperthermia and X-irradiation.

    PubMed

    Leith, J T; Heyman, P; Dewyngaert, J K; Glicksman, A S; Dexter, D L; Calabresi, P

    1983-03-01

    In summary, this research has investigated the effects of combined modality treatment (i.e., low linear energy transfer ionizing radiation and hyperthermia at 42.5 degrees C) on the survival responses of two tumour subpopulations (designated clones A and D) obtained from a heterogeneous human colon adenocarcinoma. A constant hyperthermic exposure (2 hours at 42.5 degrees C) was given either 3 min before or 3 min after graded exposure to X-rays. An isobologram analysis (Steel and Peckham 1979) of the clonogenic survival responses of the two tumour subpopulations showed that the clone A responses were within the envelope of additivity for either sequence of application. In contrast, the responses of the clone D tumour subpopulation exhibited a supra-additive response to the combined treatments with the sequence of heat followed by X-irradiation being somewhat more effective than the sequence of X-irradiation followed by heat. These data indicate that the responses of tumour subpopulations obtained from heterogeneous solid tumours to combined modality treatments may vary in an, at present, unpredictable manner.

  5. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide

    NASA Astrophysics Data System (ADS)

    Baumann, Hannes; Talmage, Stephanie C.; Gobler, Christopher J.

    2012-01-01

    Absorption of anthropogenic carbon dioxide by the world's oceans is causing mankind's `other CO2 problem', ocean acidification. Although this process will challenge marine organisms that synthesize calcareous exoskeletons or shells, it is unclear how it will affect internally calcifying organisms, such as marine fish. Adult fish tolerate short-term exposures to CO2 levels that exceed those predicted for the next 300 years (~2,000ppm ref. ), but potential effects of increased CO2 on growth and survival during the early life stages of fish remain poorly understood. Here we show that the exposure of early life stages of a common estuarine fish (Menidia beryllina) to CO2 concentrations expected in the world's oceans later this century caused severely reduced survival and growth rates. When compared with present-day CO2 levels (~400ppm), exposure of M. beryllina embryos to ~1,000ppm until one week post-hatch reduced average survival and length by 74% and 18%, respectively. The egg stage was significantly more vulnerable to high CO2-induced mortality than the post-hatch larval stage. These findings challenge the belief that ocean acidification will not affect fish populations, because even small changes in early life survival can generate large fluctuations in adult-fish abundance.

  6. Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome.

    PubMed

    Langenbacher, Thomas; Immeln, Dominik; Dick, Bernhard; Kottke, Tilman

    2009-10-14

    Plant cryptochromes are blue light photoreceptors that regulate key responses in growth and daily rhythm of plants and might be involved in magnetoreception. They show structural homology to the DNA repair enzyme photolyase and bind flavin adenine dinucleotide as chromophore. Blue light absorption initiates the photoreduction from the oxidized dark state of flavin to the flavin neutral radical, which is the signaling state of the sensor. Previous time-resolved studies of the photoreduction process have been limited to observation of the decay of the radical in the millisecond time domain. We monitored faster, light-induced changes in absorption of an algal cryptochrome covering a spectral range of 375-750 nm with a streak camera setup. Electron transfer from tryptophan to flavin is completed before 100 ns under formation of the flavin anion radical. Proton transfer takes place with a time constant of 1.7 micros leading to the flavin neutral radical. Finally, the flavin radical and a tryptophan neutral radical decay with a time constant >200 micros in the millisecond and second time domain. The microsecond proton transfer has not been observed in animal cryptochromes from insects or photolyases. Furthermore, the strict separation in time of electron and proton transfer is novel in the field of flavin-containing photoreceptors. The reaction rate implies that the proton donor is not in hydrogen bonding distance to the flavin N5. Potential candidates for the proton donor and the involvement of the tryptophan triad are discussed.

  7. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    SciTech Connect

    Ha, Tae-Jun

    2014-10-15

    We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (V{sub th}). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger V{sub th} shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  8. Light-Induced Polar pH Changes in Leaves of Elodea canadensis1

    PubMed Central

    Elzenga, J. Theo M.; Prins, Hidde B. A.

    1989-01-01

    Leaves of the submerged aquatic Elodea canadensis Michx. exhibit a light induced polar pH reaction. In this study, the effects of light intensity and dissolved inorganic carbon concentration on this polar reaction were examined. At a light intensity of 100 watts per square meter the leaf showed a polar pH response when the dissolved inorganic carbon concentration was less than about 1 millimolar. The polar reaction was suppressed at a higher dissolved inorganic carbon concentration. This suppression was not due to the buffering capacity of bicarbonate. Because another weak acid, acetate, did not inhibit the polarity, but even had a small stimulatory effect, the effect of bicarbonate is also not due to acidification of the cytoplasm. The suppression of the polar reaction by CO2/HCO3− was relieved when the light intensity was increased. Apparently there is competition for product(s) of the photosynthetic light reactions between processes generating the polar reaction and the carbon fixation reactions. The possibility that the redox state of the cell regulates the generation of the polar reaction is discussed. PMID:16667044

  9. Light-induced morphological plasticity in the scleractinian coral Goniastrea pectinata and its functional significance

    NASA Astrophysics Data System (ADS)

    Ow, Y. X.; Todd, P. A.

    2010-09-01

    Environment-induced i.e., phenotypically plastic, changes in morphology, are potentially an important life-history component of sessile corals. Previous reciprocal transplant experiments have demonstrated depth-related responses in various coral species, but the potential adaptive significance is rarely investigated. To test for small-scale morphological plasticity in the massive coral Goniastrea pectinata Ehrenberg 1834, fragments from five colonies were reciprocally transplanted between two depths at Raffles Lighthouse (Pulau Satumu), Singapore. After 163 days, all fragments were collected, cleared of tissue, and examined. Reaction norms and multivariate analysis of variance describe light-induced changes in corallite architecture and genotype × environment interactions. In fragments transplanted to the shallow station, calices were deeper, and septa were shorter than in fragments transplanted to the deep station. To explore the functional significance of this plasticity, a two-dimensional model of corallite shape was constructed. The induced calice morphology of the shallow-water transplants was efficient at shading, possibly to protect tissue from excess radiation, whereas the calice morphology found in the deep-water transplants was more efficient at capturing light when irradiance was low.

  10. Laser light induced modulations in metabolic activities in human brain cancer

    NASA Astrophysics Data System (ADS)

    Tata, Darrell B.; Waynant, Ronald W.

    2008-03-01

    The role of low visible or near infra-red laser intensity in suppressing metabolic activity of malignant human brain cancer (glioblastoma) cells was investigated through the application of either a continuous wave 633nm HeNe or a pulsed picosecond 1,552nm wavelength laser. Human glioblastomas were exposed in their growth culture medium with serum for several energy doses. For both types of laser exposures the glioblastomas exhibited a maximal decline in the metabolic activity relative to their respective sham control counterparts at 10 J/cm2. The cellular metabolic activities for various treatment doses were measured through the colorimetric MTS metabolic assay after the laser exposure. Interestingly, addition of (the enzyme) catalase in the growth medium prior to the laser exposure was found to diminish the laser induced metabolic suppression for all fluence treatment conditions, thus suggesting a functional role of H IIO II in the metabolic suppression. Taken together, our findings reveal that visible or near infra-red low level light exposures could potentially be a viable tool in reducing the metabolic activity of cancers; evidence at hand implicates a role of light induced H IIO II in bringing about in part, suppression in the metabolic activity. Due to the cellular "biphasic" response to the laser exposure, further research needs to be undertaken to determine exposure parameters which would optimize metabolic and cellular growth suppression in-vivo.

  11. 17β-estradiol ameliorates light-induced retinal damage in Sprague-Dawley rats by reducing oxidative stress.

    PubMed

    Wang, Shaolan; Wang, Baoying; Feng, Yan; Mo, Mingshu; Du, Fangying; Li, Hongbo; Yu, Xiaorui

    2015-01-01

    Oxidative stress is considered as a major cause of light-induced retinal neurodegeneration. The protective role of 17β-estradiol (βE2) in neurodegenerative disorders is well known, but its underlying mechanism remains unclear. Here, we utilized a light-induced retinal damage model to explore the mechanism by which βE2 exerts its neuroprotective effect. Adult male and female ovariectomized (OVX) rats were exposed to 8,000 lx white light for 12 h to induce retinal light damage. Electroretinogram (ERG) assays and hematoxylin and eosin (H&E) staining revealed that exposure to light for 12 h resulted in functional damage to the rat retina, histological changes, and retinal neuron loss. However, intravitreal injection (IVI) of βE2 significantly rescued this impaired retinal function in both female and male rats. Based on the level of malondialdehyde (MDA) production (a biomarker of oxidative stress), an increase in retinal oxidative stress followed light exposure, and βE2 administration reduced this light-induced oxidative stress. Quantitative reverse-transcriptase (qRT)-PCR indicated that the messenger RNA (mRNA) levels of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (Gpx) were downregulated in female OVX rats but were upregulated in male rats after light exposure, suggesting a gender difference in the regulation of these antioxidant enzyme genes in response to light. However, βE2 administration restored or enhanced the SOD and Gpx expression levels following light exposure. Although the catalase (CAT) expression level was insensitive to light stimulation, βE2 also increased the CAT gene expression level in both female OVX and male rats. Further examination indicated that the antioxidant proteins thioredoxin (Trx) and nuclear factor erythroid 2-related factor 2 (Nrf2) are also involved in βE2-mediated antioxidation and that the cytoprotective protein heme oxygenase-1 (HO-1) plays a key role in the endogenous defense mechanism

  12. Dissecting the proteome dynamics of the early heat stress response leading to plant survival or death in Arabidopsis.

    PubMed

    Echevarría-Zomeño, Sira; Fernández-Calvino, Lourdes; Castro-Sanz, Ana B; López, Juan Antonio; Vázquez, Jesús; Castellano, M Mar

    2016-06-01

    In many plant species, an exposure to a sublethal temperature triggers an adaptative response called acclimation. This response involves an extensive molecular reprogramming that allows the plant to further survive to an otherwise lethal increase of temperature. A related response is also launched under an abrupt and lethal heat stress that, in this case, is unable to successfully promote thermotolerance and therefore ends up in plant death. Although these molecular programmes are expected to have common players, the overlapping degree and the specific regulators of each process are currently unknown. We have carried out a high-throughput comparative proteomics analysis during acclimation and during the early stages of the plant response to a severe heat stress that lead Arabidopsis seedlings either to survival or death. This analysis dissects these responses, unravels the common players and identifies the specific proteins associated with these different fates. Thermotolerance assays of mutants in genes with an uncharacterized role in heat stress demonstrate the relevance of this study to uncover both positive and negative heat regulators and pinpoint a pivotal role of JR1 and BAG6 in heat tolerance.

  13. Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant.

    PubMed

    Plesofsky, Nora; Higgins, LeeAnn; Markowski, Todd; Brambl, Robert

    2016-01-01

    A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies.

  14. Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant

    PubMed Central

    Higgins, LeeAnn; Markowski, Todd; Brambl, Robert

    2016-01-01

    A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies. PMID:27870869

  15. Genetic Variants in MicroRNA Biosynthesis Pathways and Binding Sites Modify Ovarian Cancer Risk, Survival, and Treatment Response

    PubMed Central

    Liang, Dong; Meyer, Larissa; Chang, David W.; Lin, Jie; Pu, Xia; Ye, Yuanqing; Gu, Jian; Wu, Xifeng; Lu, Karen

    2017-01-01

    MicroRNAs (miRNA) play important roles in tumorigenesis. Genetic variations in miRNA processing genes and miRNA binding sites may affect the biogenesis of miRNA and the regulatory effect of miRNAs to their target genes, hence promoting tumorigenesis. This study analyzed 226 single nucleotide polymorphisms (SNP) in miRNA processing genes and miRNA binding sites in 339 ovarian cancer cases and 349 healthy controls to assess association with cancer risk, overall survival, and treatment response. Thirteen polymorphisms were found to have significant association with risk. The most significant were 2 linked SNPs (r2 = 0.99), rs2740351 and rs7813 in GEMIN4 [odds ratio (OR) = 0.71; 95% confidence interval (CI), 0.57–0.87 and OR = 0.71; 95% CI, 0.57–0.88, respectively]. Unfavorable genotype analysis showed the cumulative effect of these 13 SNPs on risk (P for trend < 0.0001). Potential higher order gene–gene interactions were identified, which categorized patients into different risk groups according to their genotypic signatures. In the clinical outcome study, 24 SNPs exhibited significant association with overall survival and 17 SNPs with treatment response. Notably, patients carrying a rare homozygous genotype of rs1425486 in PDGFC had poorer overall survival [hazard ratio (HR) = 2.69; 95% CI, 1.67–4.33] and worse treatment response (OR = 3.38; 95% CI, 1.39–8.19), compared to carriers of common homozygous and heterozygous genotypes. Unfavorable genotype analyses also showed a strong gene-dosage effect with decreased survival and increased risk of treatment nonresponse in patients with greater number of unfavorable genotypes (P for trend < 0.0001). Taken together, miRNA-related genetic polymorphisms may impact ovarian cancer predisposition and clinical outcome both individually and jointly. PMID:21118967

  16. Cell therapy for Parkinson's disease: Functional role of the host immune response on survival and differentiation of dopaminergic neuroblasts.

    PubMed

    Wenker, Shirley D; Leal, María Celeste; Farías, María Isabel; Zeng, Xianmin; Pitossi, Fernando J

    2016-05-01

    Parkinson's disease (PD) is a neurodegenerative disorder, whose cardinal pathology is the loss of dopaminergic neurons in the substantia nigra. Current treatments for PD have side effects in the long term and do not halt disease progression or regenerate dopaminergic cell loss. Attempts to compensate neuronal cell loss by transplantation of dopamine-producing cells started more than 30 years ago, leading to several clinical trials. These trials showed safety and variable efficacy among patients. In addition to variability in efficacy, several patients developed graft-induced dyskinesia. Nevertheless, they have provided a proof of concept that motor symptoms could be improved by cell transplantation. Cell transplantation in the brain presents several immunological challenges. The adaptive immune response should be abolished to avoid graft rejection by the host. In addition, the innate immune response will always be present after transplanting cells into the brain. Remarkably, the innate immune response can have dramatic effects on the survival, differentiation and proliferation of the transplanted cells, but has been hardly investigated. In this review, we analyze data on the functional effects of signals from the innate immune system on dopaminergic differentiation, survival and proliferation. Then, we discussed efforts on cell transplantation in animal models and PD patients, highlighting the immune response and the immunomodulatory treatment strategies performed. The analysis of the available data lead us to conclude that the modulation of the innate immune response after transplantation can increase the success of future clinical trials in PD by enhancing cell differentiation and survival. This article is part of a Special Issue entitled SI: PSC and the brain.

  17. Adaptive capacities from survival to stress responses of two isogenic lines of rainbow trout fed a plant-based diet

    PubMed Central

    Sadoul, B.; Foucard, A.; Valotaire, C.; Labbé, L.; Goardon, L.; LeCalvez, J. M.; Médale, F.; Quillet, E.; Dupont-Nivet, M.; Geurden, I.; Prunet, P.; Colson, V.

    2016-01-01

    The composition of feed for farmed salmonids has strongly evolved during the last decades due to the substitution of fishery-derived fish oil and fishmeal by ingredients of plant origin. Little information is available regarding the effects of this transition on adaptive capacities in fish. Two rainbow trout isogenic lines, known for their divergent ability to grow on a plant-based diet (PBD), were fed for seven months from first feeding either a fully PBD or a control marine-resources diet and were compared for their growing and survival capacities over time and their behavioral and stress responses at similar sizes but different ages. Although fish displayed similar appetitive behaviour, the two lines were highly affected by the PBD translated in decreased growth and apathetic behaviour, but also stronger stress responses displayed by stronger cortisol increases and more stress-related behaviour when isolated. The two lines were found to be similarly sensitive to a PBD for the assessed stress-related parameters, but one line displayed a lower survival during the early rearing period. Overall, these results suggest that a PBD supplied to fish from the alevin stage has strong effects on physiological and behavioural parameters, with possible impairment of fish welfare, but also genome-dependent survival. PMID:27808103

  18. Effects of decabromodiphenyl ether (BDE-209) on the avoidance response, survival, growth and reproduction of earthworms (Eisenia fetida).

    PubMed

    Xie, Xianchuan; Qian, Yan; Wu, Yingxin; Yin, Jun; Zhai, Jianping

    2013-04-01

    The effects of decabromodiphenyl ether (BDE-209) on avoidance response, survival, growth, and reproduction of earthworms (Eisenia fetida) were investigated under laboratory conditions using natural and artificial soils as substrate. Results showed that no significant avoidance response was observed when earthworms were exposed to 0.1-1000 mg/kg of BDE-209 for 48 h. After 28-days exposure, no significant effects on survival and growth of adult earthworms was induced by 0.1-1000 mg/kg of BDE-209 indicating the Lowest Observed Effect Level (LOEL) of BDE-209 on their survival and body weight was more than 1000 mg/kg. Except for a significant decrease in the number of juveniles per hatched cocoon in artificial soils at 1000 mg/kg of BDE-209, no significant effects on reproductive parameters (e.g. cocoon production per earthworms, weight per cocoon and cocoon hatchability) were observed. These results suggest that adult earthworms have a strong tolerance for BDE-209 exposure in soils, but a potential toxicity does exist for earthworm embryos or juveniles.

  19. Adaptive capacities from survival to stress responses of two isogenic lines of rainbow trout fed a plant-based diet.

    PubMed

    Sadoul, B; Foucard, A; Valotaire, C; Labbé, L; Goardon, L; LeCalvez, J M; Médale, F; Quillet, E; Dupont-Nivet, M; Geurden, I; Prunet, P; Colson, V

    2016-11-03

    The composition of feed for farmed salmonids has strongly evolved during the last decades due to the substitution of fishery-derived fish oil and fishmeal by ingredients of plant origin. Little information is available regarding the effects of this transition on adaptive capacities in fish. Two rainbow trout isogenic lines, known for their divergent ability to grow on a plant-based diet (PBD), were fed for seven months from first feeding either a fully PBD or a control marine-resources diet and were compared for their growing and survival capacities over time and their behavioral and stress responses at similar sizes but different ages. Although fish displayed similar appetitive behaviour, the two lines were highly affected by the PBD translated in decreased growth and apathetic behaviour, but also stronger stress responses displayed by stronger cortisol increases and more stress-related behaviour when isolated. The two lines were found to be similarly sensitive to a PBD for the assessed stress-related parameters, but one line displayed a lower survival during the early rearing period. Overall, these results suggest that a PBD supplied to fish from the alevin stage has strong effects on physiological and behavioural parameters, with possible impairment of fish welfare, but also genome-dependent survival.

  20. Differential response in chick survival to diet in least and crested auklets

    USGS Publications Warehouse

    Gall, Adrian E.; Roby, D.D.; Irons, D.B.; Rose, I.C.

    2006-01-01

    Least auklets Aethia pusilla and crested auklets A. cristatella are abundant planktivorous seabirds found throughout the Bering Sea and are inextricably linked to the secondary productivity of this northern marine ecosystem. We assessed the relationship between productivity and diet in least and crested auklets by examining breeding chronology, daily survival rates (DSR) of chicks, and nestling diet composition at 2 mixed colonies on St. Lawrence Island in the northern Bering Sea during the 2000 to 2002 breeding seasons. Nestlings of both least and crested auklets hatched earlier, had higher survival rates, and were fed more of the large, oceanic copepod Neocalanus cristatus in 2002 compared to the 2 yr of lower chick survival. In contrast, during the year of lowest DSR for both auklet species (2001), the small copepod Calanus marshallae was more prevalent in the diet of least auklets and the mid-sized copepod N. flemingeri was more prevalent in the diet of crested auklets compared to the other 2 yr. The prevalence of oceanic copepods in meals fed to chicks explained much of the annual variation in DSR in least auklets. Interannual differences in timing of nest initiation, nest survival, and diet of least and crested auklets may be associated with the strength of the cold, nutrient-rich Anadyr Current, which passes in close proximity to St. Lawrence Island and has important influences on zooplankton productivity and distribution. Auklet productivity and diet composition may serve as key indicators in the overall effort to monitor the impact of climate change on the productivity of the Bering Sea.

  1. Forster's tern chick survival in response to a managed relocation of predatory California gulls

    USGS Publications Warehouse

    Ackerman, Joshua T.; Herzog, Mark P.; Hartman, C. Alex; Herring, Garth

    2014-01-01

    Gull populations can severely limit the productivity of waterbirds. Relocating gull colonies may reduce their effects on nearby breeding waterbirds, but there are few examples of this management strategy. We examined gull predation and survival of Forster's tern (Sterna forsteri) chicks before (2010) and after (2011) the managed relocation of the largest California gull (Larus californicus) colony (24,000 adults) in San Francisco Bay, California. Overall, survival of radio-marked Forster's tern chicks from hatching to fledging was 0.22 ± 0.03 (mean ± SE), and daily survival rates increased with age. Gulls were the predominant predator of tern chicks, potentially causing 54% of chick deaths. Prior to the gull colony relocation, 56% of radio-marked and 20% of banded tern chicks from the nearest tern colony were recovered dead in the gull colony, compared to only 15% of radio-marked and 4% of banded chicks recovered dead from all other tern colonies. The managed relocation of the gull colony substantially increased tern chick survival (by 900%) in the nearby (3.8 km) reference tern colony (0.29 ± 0.10 in 2010 and 0.25 ± 0.09 in 2011). Among 19 tern nesting islands, fledging success was higher when gull abundance was lower at nearby colonies and when gull colonies were farther from the tern colony. Our results indicate that the managed relocation of gull colonies away from preferred nesting areas of sensitive waterbirds can improve local reproductive success, but this conservation strategy may shift gull predation pressure to other areas or species.

  2. Survival and behavioural response to acaricides of the coconut mite predator Neoseiulus baraki.

    PubMed

    Lima, Debora B; Melo, José W S; Guedes, Raul N C; Siqueira, Herbert A A; Pallini, Angelo; Gondim, Manoel G C

    2013-07-01

    The coconut mite, Aceria guerreronis Keifer, is a major pest of coconut palm in the world. The control of this pest species is done through acaricide applications at short time intervals. However, the predators of this pest may also be affected by acaricides. Among the predators of A. guerreronis, Neoseiulus baraki (Athias-Henriot) has potential for biological control. The objective of this study was to assess the effect of acaricides on the survival and behavior of N. baraki. The survivorship of N. baraki was recorded in surface-impregnated arenas. Choice and no-choice behavioral bioassays were carried out using a video tracking system to assess the walking behavior of the predator under acaricide exposure. Although all acaricides negatively affected the survival of N. baraki, chlorfenapyr and azadirachtin caused lower effect than the other acaricides. No significant differences in walking behavior were observed under exposure to fenpyroximate, chlorfenapyr and chlorpyrifos on fully-contaminated arenas. Azadirachtin and chlorpyrifos caused repellence. Irritability was observed for all acaricides, except for abamectin. Chlorfenapyr was the most suitable product for managing the coconut mite because of its low effect on survival and behavior of N. baraki.

  3. Mechanisms of survival, responses and sources of Salmonella in low-moisture environments

    PubMed Central

    Finn, Sarah; Condell, Orla; McClure, Peter; Amézquita, Alejandro; Fanning, Séamus

    2013-01-01

    Some Enterobacteriaceae possess the ability to survive in low-moisture environments for extended periods of time. Many of the reported food-borne outbreaks associated with low-moisture foods involve Salmonella contamination. The control of Salmonella in low-moisture foods and their production environments represents a significant challenge for all food manufacturers. This review summarizes the current state of knowledge with respect to Salmonella survival in intermediate- and low-moisture food matrices and their production environments. The mechanisms utilized by this bacterium to ensure their survival in these dry conditions remain to be fully elucidated, however, in depth transcriptomic data is now beginning to emerge regarding this observation. Earlier research work described the effect(s) that low-moisture can exert on the long-term persistence and heat tolerance of Salmonella, however, data are also now available highlighting the potential cross-tolerance to other stressors including commonly used microbicidal agents. Sources and potential control measures to reduce the risk of contamination will be explored. By extending our understanding of these geno- and phenotypes, we may be able to exploit them to improve food safety and protect public health. PMID:24294212

  4. Survival and physiologic response of Common Amakihi and Japanese White-eyes during simulated translocation

    USGS Publications Warehouse

    Work, T.M.; Massey, J.G.; Johnson, L.; Dougill, S.; Banko, P.C.

    1999-01-01

    We evaluated the effects of three translocation trials on Common Amakihi (Hemignathus virens) and Japanese White-eyes (Zosterops japonicus). Trial 1 involved capturing birds, transporting them on rough roads for 4 hr followed by holding in an aviary for 48 hr without overnight thermal support prior to release. Trial 2 involved capture, then holding in an aviary for 48 hr with overnight thermal support followed by transport for 4 hr prior to release. Trial 3 and 1 were identical except that overnight thermal support was provided during trial 3. We monitored survival, food consumption, weight change, and fecal production during captivity as well as changes in hematocrit, estimated total solids, heterophil to lymphocyte ratios, plasma uric acid, and creatinine phosphokinase (CPK) at capture and release. Survival was significantly lower for Amakihi during trial I (no thermal support). Birds that died lost significantly more weight than those that survived. Regardless of trial, birds responded to translocation by a combination of weight loss, anemia, hypoproteinemia, and elevated heterophil to lymphocyte ratio, uric acid, and CPK levels. The first 24 hr of captivity posed the greatest risk to birds regardless of whether transport or holding occurred first. Food consumption, fecal production, and weight all decreased at night, and overnight thermal support during holding was critical if ambient temperatures dipped to freezing. We recommend that if small passerines are to be held for > 12 hr, they be monitored individually for weight loss, food consumption, and fecal production.

  5. Survival and physiologic response of common Amakihi and Japanese white-eyes during simulated translocation

    USGS Publications Warehouse

    Work, T.M.; Massey, J.G.; Johnson, L.; Dougill, S.; Banko, P.C.

    1999-01-01

    We evaluated the effects of three translocation trials on Common Amakihi (Hemignathus virens) and Japanese White-eyes (Zosterops japonicus). Trial 1 involved capturing birds, transporting them on rough roads for 4 hr followed by holding in an aviary for 48 hr without overnight thermal support prior to release. Trial 2 involved capture, then holding in an aviary for 48 hr with overnight thermal support followed by transport for 4 hr prior to release. Trial 3 and 1 were identical except that overnight thermal support was provided during trial 3. We monitored survival, food consumption, weight change, and fecal production during captivity as well as changes in hematocrit, estimated total solids, heterophil to lymphocyte ratios, plasma uric acid, and creatinine phosphokinase (CPK) at capture and release. Survival was significantly lower for Amakihi during trial 1 (no thermal support). Birds that died lost significantly more weight than those that survived. Regardless of trial, birds responded to translocation by a combination of weight loss, anemia, hypoproteinemia, and elevated heterophil to lymphocyte ratio, uric acid, and CPK levels. The first 24 hr of captivity posed the greatest risk to birds regardless of whether transport or holding occurred first. Food consumption, fecal production, and weight all decreased at night, and overnight thermal support during holding was critical if ambient temperatures dipped to freezing. We recommend that if small passerines are to be held for > 12 hr, they be monitored individually for weight loss, food consumption, and fecal production.

  6. Bacterial survival in response to desiccation and high humidity at above zero and subzero temperatures

    NASA Astrophysics Data System (ADS)

    Yang, Yinjie; Yokobori, Shin-ichi; Yamagishi, Akihiko

    2009-04-01

    Earthly microorganisms might have contaminated Mars for millions of years by intellectual activities or natural transfer. Knowledge on the preservation of microorganisms may help our searching for life on outer planets, particularly Mars-contaminated earthly microorganisms at ancient time. Extreme dryness is one of the current Mars characteristics. However, a humid or watery Mars at earlier time was suggested by evidence accumulated in recent decades. It raises the question that whether water helps preservation of the microorganisms or not, particularly those with high possibility of interplanetary transfer like spores and Deinococci. In this study, we examined the effects of desiccation and high humidity on survival and DNA double strand breaks (DSB) of Escherichia coli, Deinococcus radiodurans and spores of Bacillus pumilus at 25, 4 and -70 °C. They exhibited different survival rates and DSB patterns under desiccation and high humidity. Higher survival and less DSB occurred at lower temperature. We suggest that some Mars-contaminated bacteria might have been viably preserved on cold Mars regions for long periods, regardless of water availability. It is more likely to find ancient spores than ancient Deinococci on Mars. In our search for preserved extraterrestrial life, priority should be given to the Mars Polar Regions.

  7. Effects of RGD immobilization on light-induced cell sheet detachment from TiO2 nanodots films.

    PubMed

    Cheng, Kui; Wang, Tiantian; Yu, Mengliu; Wan, Hongping; Lin, Jun; Weng, Wenjian; Wang, Huiming

    2016-06-01

    Light-induced cell detachment is reported to be a safe and effective cell sheet harvest method. In the present study, the effects of arginine-glycine-aspartic acid (RGD) immobilization on cell growth, cell sheet construction and cell harvest through light illumination are investigated. RGD was first immobilized on TiO2 nanodots films through simple physical adsorption, and then mouse pre-osteoblastic MC3T3-E1 cells were seeded on the films. It was found that RGD immobilization promoted cell adhesion and proliferation. It was also observed that cells cultured on RGD immobilized films showed relatively high level of pan-cadherin. Cells harvested with ultraviolet illumination (365 nm) showed good viability on both RGD immobilized and unmodified TiO2 nanodot films. Single cell detachment assay showed that cells detached more quickly on RGD immobilized TiO2 nanodot films. That could be ascribed to the RGD release after UV365 illumination. The current study demonstrated that RGD immobilization could effectively improve both the cellular responses and light-induced cell harvest.

  8. Triple Receptor–Negative Breast Cancer: The Effect of Race on Response to Primary Systemic Treatment and Survival Outcomes

    PubMed Central

    Dawood, Shaheenah; Broglio, Kristine; Kau, Shu-Wan; Green, Marjorie C.; Giordano, Sharon H.; Meric-Bernstam, Funda; Buchholz, Thomas A.; Albarracin, Constance; Yang, Wei T.; Hennessy, Bryan T.J.; Hortobagyi, Gabriel N.; Gonzalez-Angulo, Ana Maria

    2009-01-01

    Purpose The goal of this study was to describe the effect of race on pathologic complete response (pCR) rates and survival outcomes in women with triple receptor–negative (TN) breast cancers. Patients and Methods Four hundred seventy-one patients with TN breast cancer diagnosed between 1996 and 2005 and treated with primary systemic chemotherapy were included. pCR was defined as no residual invasive cancer in the breast and axillary lymph nodes. Overall survival (OS) and recurrence-free survival (RFS) were estimated using the Kaplan-Meier product-limit method and compared between groups using the log-rank test. Cox proportional hazards models were fitted for each survival outcome to determine the relationship of patient and tumor variables with outcome. Results Median follow-up time was 24.5 months. One hundred patients (21.2%) were black, and 371 patients (78.8%) were white/other race. Seventeen percent of black patients (n = 17) and 25.1% of white/other patients (n = 93) achieved a pCR (P = .091). Three-year RFS rates were 68% (95% CI, 56% to 76%) and 62% (95% CI, 57% to 67%) for black and white/other patients, respectively, with no significant difference observed between the two groups (P = .302). Three-year OS was similar for the two racial groups. After controlling for patient and tumor characteristics, race was not significantly associated with RFS (hazard ratio [HR] = 1.08; 95% CI, 0.69 to 1.68; P = .747) or OS (HR = 1.08; 95% CI, 0.69 to 1.68; P = .735) when white/other patients were compared with black patients. Conclusion Race does not significantly affect pCR rates or survival outcomes in women with TN breast cancer treated in a single institution under the same treatment conditions. PMID:19047281

  9. Light-induced modification of plant plasma membrane ion transport.

    PubMed

    Marten, I; Deeken, R; Hedrich, R; Roelfsema, M R G

    2010-09-01

    Light is not only the driving force for electron and ion transport in the thylakoid membrane, but also regulates ion transport in various other membranes of plant cells. Light-dependent changes in ion transport at the plasma membrane and associated membrane potential changes have been studied intensively over the last century. These studies, with various species and cell types, revealed that apart from regulation by chloroplasts, plasma membrane transport can be controlled by phytochromes, phototropins or channel rhodopsins. In this review, we compare light-dependent plasma membrane responses of unicellular algae (Eremosphaera and Chlamydomonas), with those of a multicellular alga (Chara), liverworts (Conocephalum), mosses (Physcomitrella) and several angiosperm cell types. Light-dependent plasma membrane responses of Eremosphaera and Chara are characterised by the dominant role of K(+) channels during membrane potential changes. In most other species, the Ca(2+)-dependent activation of plasma membrane anion channels represents a general light-triggered event. Cell type-specific responses are likely to have evolved by modification of this general response or through the development of additional light-dependent signalling pathways. Future research to elucidate these light-activated signalling chains is likely to benefit from the recent identification of S-type anion channel genes and proteins capable of regulating these channels.

  10. Impact of fractionation on out-of-field survival and DNA damage responses following exposure to intensity modulated radiation fields

    NASA Astrophysics Data System (ADS)

    Ghita, Mihaela; Coffey, Caroline B.; Butterworth, Karl T.; McMahon, Stephen J.; Schettino, Giuseppe; Prise, Kevin M.

    2016-01-01

    To limit toxicity to normal tissues adjacent to the target tumour volume, radiotherapy is delivered using fractionated regimes whereby the total prescribed dose is given as a series of sequential smaller doses separated by specific time intervals. The impact of fractionation on out-of-field survival and DNA damage responses was determined in AGO-1522 primary human fibroblasts and MCF-7 breast tumour cells using uniform and modulated exposures delivered using a 225 kVp x-ray source. Responses to fractionated schedules (two equal fractions delivered with time intervals from 4 h to 48 h) were compared to those following acute exposures. Cell survival and DNA damage repair measurements indicate that cellular responses to fractionated non-uniform exposures differ from those seen in uniform exposures for the investigated cell lines. Specifically, there is a consistent lack of repair observed in the out-of-field populations during intervals between fractions, confirming the importance of cell signalling to out-of-field responses in a fractionated radiation schedule, and this needs to be confirmed for a wider range of cell lines and conditions.

  11. Survival and behavior of Chinese mystery snails (Bellamya chinensis) in response to simulated water body drawdowns and extended air exposure

    USGS Publications Warehouse

    Unstad, Kody M.; Uden, Daniel R.; Allen, Craig R.; Chaine, Noelle M.; Haak, Danielle M.; Kill, Robert A.; Pope, Kevin L.; Stephen, Bruce J.; Wong, Alec

    2013-01-01

    Nonnative invasive mollusks degrade aquatic ecosystems and induce economic losses worldwide. Extended air exposure through water body drawdown is one management action used for control. In North America, the Chinese mystery snail (Bellamya chinensis) is an invasive aquatic snail with an expanding range, but eradication methods for this species are not well documented. We assessed the ability of B. chinensis to survive different durations of air exposure, and observed behavioral responses prior to, during, and following desiccation events. Individual B. chinensis specimens survived air exposure in a laboratory setting for > 9 weeks, and survivorship was greater among adults than juveniles. Several B. chinensis specimens responded to desiccation by sealing their opercula and/or burrowing in mud substrate. Our results indicate that drawdowns alone may not be an effective means of eliminating B. chinensis. This study lays the groundwork for future management research that may determine the effectiveness of drawdowns when combined with factors such as extreme temperatures, predation, or molluscicides.

  12. Pathologic complete response and disease-free survival are not surrogate endpoints for 5-year survival in rectal cancer: an analysis of 22 randomized trials

    PubMed Central

    Borgonovo, Karen; Cabiddu, Mary; Ghilardi, Mara; Lonati, Veronica; Barni, Sandro

    2017-01-01

    Background We performed a literature-based analysis of randomized clinical trials to assess the pathologic complete response (pCR) (ypT0N0 after neoadjuvant therapy) and 3-year disease-free survival (DFS) as potential surrogate endpoints for 5-year overall survival (OS) in rectal cancer treated with neoadjuvant (chemo)radiotherapy (CT)RT. Methods A systematic literature search of PubMed, EMBASE, the Web of Science, SCOPUS, CINAHL, and the Cochrane Library was performed. Treatment effects on 3-year DFS and 5-year OS were expressed as rates of patients alive (%), and those on pCR as differences in pCR rates (∆pCR%). A weighted regression analysis was performed at individual- and trial-level to test the association between treatment effects on surrogate (∆pCR% and ∆3yDFS) and the main clinical outcome (∆5yOS). Results Twenty-two trials involving 10,050 patients, were included in the analysis. The individual level surrogacy showed that the pCR% and 3-year DFS were poorly correlated with 5-year OS (R=0.52; 95% CI, 0.31–0.91; P=0.002; and R=0.60; 95% CI, 0.36–1; P=0.002). The trial-level surrogacy analysis confirmed that the two treatment effects on surrogates (∆pCR% and ∆3yDFS) are not strong surrogates for treatment effects on 5-year OS % (R=0.2; 95% CI, −0.29–0.78; P=0.5 and R=0.64; 95% CI, 0.29–1; P=0.06). These findings were confirmed in neoadjuvant CTRT studies but not in phase III trials were 3-year DFS could still represent a valid surrogate. Conclusions This analysis does not support the use of pCR and 3-year DFS% as appropriate surrogate endpoints for 5-year OS% in patients with rectal cancer treated with neoadjuvant therapy. PMID:28280607

  13. Compartmental stress responses correlate with cell survival in bystander effects induced by the DNA damage agent, bleomycin.

    PubMed

    Savu, Diana; Petcu, Ileana; Temelie, Mihaela; Mustaciosu, Cosmin; Moisoi, Nicoleta

    2015-01-01

    Physical or chemical stress applied to a cell system trigger a signal cascade that is transmitted to the neighboring cell population in a process known as bystander effect. Despite its wide occurrence in biological systems this phenomenon is mainly documented in cancer treatments. Thus understanding whether the bystander effect acts as an adaptive priming element for the neighboring cells or a sensitization factor is critical in designing treatment strategies. Here we characterize the bystander effects induced by bleomycin, a DNA-damaging agent, and compartmental stress responses associated with this phenomenon. Mouse fibroblasts were treated with increasing concentrations of bleomycin and assessed for DNA damage, cell death and induction of compartmental stress response (endoplasmic reticulum, mitochondrial and cytoplasmic stress). Preconditioned media were used to analyze bystander damage using the same end-points. Bleomycin induced bystander response was reflected primarily in increased DNA damage. This was dependent on the concentration of bleomycin and time of media conditioning. Interestingly, we found that ROS but not NO are involved in the transmission of the bystander effect. Consistent transcriptional down-regulation of the stress response factors tested (i.e. BiP, mtHsp60, Hsp70) occurred in the direct effect indicating that bleomycin might induce an arrest of transcription correlated with decreased survival. We observed the opposite trend in the bystander effect, with specific stress markers appearing increased and correlated with increased survival. These data shed new light on the potential role of stress pathways activation in bystander effects and their putative impact on the pro-survival pro-death balance.

  14. Family Growth and Survival Response to Two Simulated Water Temperature Environments in the Sea Urchin Strongylocentrotus intermedius.

    PubMed

    Chang, Yaqing; Tian, Xiaofei; Zhang, Weijie; Han, Fenjie; Chen, Shun; Zhou, Mi; Pang, Zhenguo; Qi, Shoubing; Feng, Wenping

    2016-08-29

    Heat tolerance is a target trait in the selective breeding of the sea urchin Strongylocentrotus intermedius, as it plays an important role in the survival and growth of cultured S. intermedius during summer. We investigated family growth and survival response to two temperature treatments to evaluate the genotype by temperature interaction (GEI) in the family selection of S. intermedius. Sea urchins from 11 families were exposed to two simulated water temperature environments-high temperature (HE) and control temperature (CE)-for 12 months, with each experiment divided into four periods (P1, stress-free period I; P2, stress-full high period; P3, stress-response period; and P4, stress-free period II) based on the temperature changes and the survival. Test diameter (TD), body weight (BW), and survival rate (SR) in HE and CE were measured monthly. Effects of family, temperature, and family-temperature interaction on TD, BW, SR, and specific growth rate (SGR) for BW were examined. In CE, BW differed significantly between families in P2, P3, and P4, while TD differed significantly between families in P3 and P4 (p < 0.05). In HE, family had significant effects on BW in P4, and on TD in P3 and P4, while temperature had significant effects on SR, TD, and BW in P3 and P4 (p < 0.05). GEI effects were not significant for TD or BW; however, family ranking changes revealed the existence of GEI in SR. The GEI results indicate the necessity of applying family selection in CE and HE for SR, but not for TD or BW. These results may provide a guide for aquaculture and selective breeding of S. intermedius under temperature pressure.

  15. Family Growth and Survival Response to Two Simulated Water Temperature Environments in the Sea Urchin Strongylocentrotus intermedius

    PubMed Central

    Chang, Yaqing; Tian, Xiaofei; Zhang, Weijie; Han, Fenjie; Chen, Shun; Zhou, Mi; Pang, Zhenguo; Qi, Shoubing; Feng, Wenping

    2016-01-01

    Heat tolerance is a target trait in the selective breeding of the sea urchin Strongylocentrotus intermedius, as it plays an important role in the survival and growth of cultured S. intermedius during summer. We investigated family growth and survival response to two temperature treatments to evaluate the genotype by temperature interaction (GEI) in the family selection of S. intermedius. Sea urchins from 11 families were exposed to two simulated water temperature environments—high temperature (HE) and control temperature (CE)—for 12 months, with each experiment divided into four periods (P1, stress-free period I; P2, stress-full high period; P3, stress-response period; and P4, stress-free period II) based on the temperature changes and the survival. Test diameter (TD), body weight (BW), and survival rate (SR) in HE and CE were measured monthly. Effects of family, temperature, and family-temperature interaction on TD, BW, SR, and specific growth rate (SGR) for BW were examined. In CE, BW differed significantly between families in P2, P3, and P4, while TD differed significantly between families in P3 and P4 (p < 0.05). In HE, family had significant effects on BW in P4, and on TD in P3 and P4, while temperature had significant effects on SR, TD, and BW in P3 and P4 (p < 0.05). GEI effects were not significant for TD or BW; however, family ranking changes revealed the existence of GEI in SR. The GEI results indicate the necessity of applying family selection in CE and HE for SR, but not for TD or BW. These results may provide a guide for aquaculture and selective breeding of S. intermedius under temperature pressure. PMID:27589722

  16. Tumor-infiltrating lymphocytes in breast cancer predict the response to chemotherapy and survival outcome: A meta-analysis

    PubMed Central

    Wang, Ke; Xu, Jianjun; Zhang, Tao; Xue, Dan

    2016-01-01

    Tumor-infiltrating lymphocytes (TILs) influence tumor prognosis and the chemotherapeutic response. Here, we quantified the clinical relevance of TILs, including the effect of TILs on lymphocyte subpopulations and assessed their consistency in breast cancer. We searched published literature from January 2000 to January 2016. The main parameters analyzed were pathological complete response (pCR) and survival outcome following chemotherapy in patients with breast cancer. Pooled odds ratio (OR) or relative risk (RR) values with 95% confidence intervals (CIs) were computed using random and fixed-effects models. Subgroup and heterogeneity analyses were also conducted. Twenty-three studies, which included 13,100 patients, met the inclusion criteria. The pooled results showed that TILs were associated with clinicopathological parameters of biologically aggressive phenotypes, such as high tumor grade or estrogen/progesterone receptor negativity, but they were not correlated with human epidermal growth factor receptor-2 expression. Moreover, a high TIL level was associated with a significantly improved pCR rate compared with a low TIL level (OR, 2.81; P < 0.001), particularly in the triple-negative breast cancer subtype (OR, 4.67; P < 0.001). An analysis of lymphocyte subpopulations showed that infiltration by CD8 lymphocytes, but not by CD4 lymphocytes and Foxp3 cells, was associated with a high pCR rate. Furthermore, a high TIL level was associated with significantly longer disease-free survival and overall survival. Our present meta-analysis indicates that an increased number of TILs predicted pCR to chemotherapy and improved survival. A high TIL level, characterized mainly by the infiltration of CD8 lymphocytes, is a strong predictive and prognostic factor. PMID:27329588

  17. Trichinella spiralis infection changes immune response in mice performed abdominal heterotopic cardiac transplantation and prolongs cardiac allograft survival time.

    PubMed

    Deng, Gengguo; Deng, Ronghai; Yao, Jianping; Liao, Bing; Chen, Yinghua; Wu, Zhongdao; Hu, Hongxing; Zhou, Xingwang; Ma, Yi

    2016-01-01

    Allograft rejection has been an obstacle for long-term survival of patients for many years. Current strategies for transplant rejection are not as optimal as we expected, especially for long-term treatments. Trichinella spiralis, a nematode parasitized in mammalian muscle and as an invader, maintains harmonious with host in the long term by evading host immune attack. To determine whether T. spiralis infection impacts on allograft rejection, we performed mice cardiac allograft transplantation model by using BALB/c (H-2(b)) mice as donors and C57BL/6 (H-2(b)) mice orally infected with 300 muscle larvae for 28 days as recipients. Graft survival was monitored by daily palpation of the abdomen; histologic change was observed by H&E stain; and CD4(+), CD8(+), CD4(+)IFN-γ(+), and CD4(+)IL-17(+) T cells and regulatory T cells were examined with the use of flow cytometry. Serum cytokine levels were measured by Luminex. Finally, we found that mean survival time of cardiac allografts in T. spiralis group was 23.40 ± 1.99 days, while the vehicle control group was 10.60 ± 0.75 days. Furthermore, we observed alleviated histological changes in the heart allograft, decreased corresponding CD8(+) T cells, suppressed Th1 and Th17 responses, and increased regulatory T cell frequency in a murine cardiac transplantation model at day 7 post-transplantation in experimental group. These data suggest that T. spiralis infection resulted in prolonged allograft survival following murine cardiac transplantation, with suppressed Th1/Th17 responses and augmented regulatory T cells.

  18. Light-induced vibration in the hearing organ.

    PubMed

    Ren, Tianying; He, Wenxuan; Li, Yizeng; Grosh, Karl; Fridberger, Anders

    2014-08-04

    The exceptional sensitivity of mammalian hearing organs is attributed to an active process, where force produced by sensory cells boost sound-induced vibrations, making soft sounds audible. This process is thought to be local, with each section of the hearing organ capable of amplifying sound-evoked movement, and nearly instantaneous, since amplification can work for sounds at frequencies up to 100 kHz in some species. To test these fundamental precepts, we developed a method for focally stimulating the living hearing organ with light. Light pulses caused intense and highly damped mechanical responses followed by traveling waves that developed with considerable delay. The delayed response was identical to movements evoked by click-like sounds. This shows that the active process is neither local nor instantaneous, but requires mechanical waves traveling from the cochlear base toward its apex. A physiologically-based mathematical model shows that such waves engage the active process, enhancing hearing sensitivity.

  19. Signaling events leading to red-light-induced suppression of photomorphogenesis in wheat (Triticum aestivum).

    PubMed

    Gupta, Varsha; Roy, Ansuman; Tripathy, Baishnab C

    2010-10-01

    Perception of red light (400 μmol photon m²/s) by the shoot bottom turned off the greening process in wheat. To understand the signaling cascade leading to this photomorphogenic response, certain signaling components were probed in seedlings grown in different light regimes. Upon analysis the gene expression of heterotrimeric Gα and Gβ were severely down-regulated in seedlings grown without vermiculite and having their shoot bottom exposed to red light (R/V-) and was similar to that of dark-grown seedlings. Supplementing the red-light-grown V- seedlings with blue light resulted in up-regulation of both Gα and Gβ expression, suggesting that blue light is able to modulate G protein expression. Treatment of cytokinin analog benzyladenine to cytokinin-deficient red-light-grown R/V- seedlings resulted in up-regulation of gene expression of both Gα and Gβ. To probe further, modulators of signal transduction pathway--AlF₃ (G protein activator), LaCl₃ (Ca(2+) channel blocker), NaF (nonspecific phosphatase inhibitor), or calmodulin (CaM) antagonists trifluoperazine (TFP) and N-(6-aminohexyl)-5-chloro-1-nafthalene-sulfonamide (W-7)--were added along with Hoagland solution to the roots of 4-day-old etiolated seedlings, grown on germination paper and transferred to red light. AlF₃, LaCl₃, NaF failed to elicit any photomorphogenic response. However, CaM antagonists TFP and W-7 significantly reversed the red-light-induced suppression of photomorphogenesis. Phosphorylation of proteins assayed in the absence or presence of CaM antagonist TFP revealed respective up-regulation or down-regulation of phosphorylation of several plastidic proteins in R/V- seedlings. These suggest that signal transduction of red light perceived by the shoot bottom to suppress photomorphogenesis is mediated by CaM-dependent protein kinases.

  20. Dietary Supplement Enriched in Antioxidants and Omega-3 Protects from Progressive Light-Induced Retinal Degeneration

    PubMed Central

    Ramchani-Ben Othman, Khaoula; Cercy, Christine; Amri, Mohamed; Doly, Michel; Ranchon-Cole, Isabelle

    2015-01-01

    In the present study, we have evaluated one of the dietary supplements enriched with antioxidants and fish oil used in clinical care for patient with age-related macular degeneration. Rats were orally fed by a gastric canula daily with 0.2 ml of water or dietary supplement until they were sacrificed. After one week of treatment, animals were either sacrificed for lipid analysis in plasma and retina, or used for evaluation of rod-response recovery by electroretinography (ERG) followed by their sacrifice to measure rhodopsin content, or used for progressive light-induced retinal degeneration (PLIRD). For PLIRD, animals were transferred to bright cyclic light for one week. Retinal damage was quantified by ERG, histology and detection of apoptotic nuclei. Animals kept in dim-cyclic-light were processed in parallel. PLIRD induced a thinning of the outer nuclear layer and a reduction of the b-wave amplitude of the ERG in the water group. Retinal structure and function were preserved in supplemented animals. Supplement induced a significant increase in omega-3 fatty acids in plasma by 168% for eicosapentaenoic acid (EPA), 142% for docosapentaenoic acid (DPA) and 19% for docosahexaenoic acid (DHA) and a decrease in the omega-6 fatty acids, DPA by 28%. In the retina, supplement induced significant reduction of linolenic acid by 67% and an increase in EPA and DPA by 80% and 72%, respectively, associated with significant decrease in omega-6 DPA by 42%. Supplement did not affect rhodopsin content or rod-response recovery. The present data indicate that supplement rapidly modified the fatty acid content and induced an accumulation of EPA in the retina without affecting rhodopsin content or recovery. In addition, it protected the retina from oxidative stress induced by light. Therefore, this supplement might be beneficial to slow down progression of certain retinal degeneration. PMID:26042773

  1. Systemic administration of the iron chelator deferiprone protects against light-induced photoreceptor degeneration in the mouse retina

    PubMed Central

    Song, Delu; Song, Ying; Hadziahmetovic, Majda; Zhong, Yong; Dunaief, Joshua L.

    2012-01-01

    Oxidative stress plays a key role in the light damage (LD) model of retinal degeneration as well as in age-related macular degeneration (AMD). Since iron can promote oxidative stress, the iron chelator Deferiprone (DFP) was tested for protection against light-induced retinal degeneration. To accomplish this, A/J mice were treated with or without DFP in drinking water, and then were placed in constant bright white fluorescent light (10,000 lux) for 20 hours. Retinas were evaluated at several time points after light exposure. Photoreceptor apoptosis was assessed using the TUNEL assay. Retinal degeneration was assessed by histology 10 days after exposure to damaging white light. Two genes upregulated by oxidative stress, heme oxygenase 1 (Hmox1) and ceruloplasmin (Cp), as well as complement component 3 (C3) were quantified by RT-qPCR. Cryosections were immunolabeled for oxidative stress marker (nitrotyrosine), a microglial marker (Iba1) as well as both heavy (H) and light (L) ferritin. Light exposure resulted in substantial photoreceptor-specific cell death. Dosing with DFP protected photoreceptors, decreasing the numbers of TUNEL-positive photoreceptors and increasing the number of surviving photoreceptors. The retinal mRNA levels of oxidative stress related genes and C3 were upregulated following light exposure and diminished by DFP treatment. Immunostaining for nitrotyrosine indicated that DFP reduced the nitrative stress caused by light exposure. Robust H/L-ferritin-containing microglial activation and migration to the outer retina occurred after light exposure and DFP treatment reduced microglial invasion. DFP is protective against light-induced retinal degeneration and has the potential to diminish oxidative stress in the retina. PMID:22579919

  2. The innate immune response may be important for surviving plague in wild Gunnison's prairie dogs.

    PubMed

    Busch, Joseph D; Van Andel, Roger; Stone, Nathan E; Cobble, Kacy R; Nottingham, Roxanne; Lee, Judy; VerSteeg, Michael; Corcoran, Jeff; Cordova, Jennifer; Van Pelt, William; Shuey, Megan M; Foster, Jeffrey T; Schupp, James M; Beckstrom-Sternberg, Stephen; Beckstrom-Sternberg, James; Keim, Paul; Smith, Susan; Rodriguez-Ramos, Julia; Williamson, Judy L; Rocke, Tonie E; Wagner, David M

    2013-10-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis, with ≥99% mortality reported from multiple studies of plague epizootics. A colony of Gunnison's prairie dogs (Cynomys gunnisoni) in the Aubrey Valley (AV) of northern Arizona appears to have survived several regional epizootics of plague, whereas nearby colonies have been severely affected by Y. pestis. To examine potential mechanisms accounting for survival in the AV colony, we conducted a laboratory Y. pestis challenge experiment on 60 wild-caught prairie dogs from AV and from a nearby, large colony with frequent past outbreaks of plague, Espee (n = 30 per colony). Test animals were challenged subcutaneously with the fully virulent Y. pestis strain CO92 at three doses: 50, 5,000, and 50,000 colony-forming units (cfu); this range is lethal in black-tailed prairie dogs (Cynomys ludovicianus). Contrary to our expectations, only 40% of the animals died. Although mortality trended higher in the Espee colony (50%) compared with AV (30%), the differences among infectious doses were not statistically significant. Only 39% of the survivors developed moderate to high antibody levels to Y. pestis, indicating that mechanisms other than humoral immunity are important in resistance to plague. The ratio of neutrophils to lymphocytes was not correlated with plague survival in this study. However, several immune proteins with roles in innate immunity (VCAM-1, CXCL-1, and vWF) were upregulated during plague infection and warrant further inquiry into their role for protection against this disease. These results suggest plague resistance exists in wild populations of the Gunnison's prairie dog and provide important directions for future studies.

  3. The innate immune response may be important for surviving plague in wild Gunnison's prairie dogs

    USGS Publications Warehouse

    Busch, Joseph D.; Van Andel, Roger; Stone, Nathan E.; Cobble, Kacy R.; Nottingham, Roxanne; Lee, Judy; VerSteeg, Michael; Corcoran, Jeff; Cordova, Jennifer; Van Pelt, William E.; Shuey, Megan M.; Foster, Jeffrey T.; Schupp, James M.; Beckstrom-Sternberg, Stephen; Beckstrom-Sternberg, James; Keim, Paul; Smith, Susan; Rodriguez-Ramos, Julia; Williamson, Judy L.; Rocke, Tonie E.; Wagner, David M.

    2013-01-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis, with ≥99% mortality reported from multiple studies of plague epizootics. A colony of Gunnison's prairie dogs (Cynomys gunnisoni) in the Aubrey Valley (AV) of northern Arizona appears to have survived several regional epizootics of plague, whereas nearby colonies have been severely affected by Y. pestis. To examine potential mechanisms accounting for survival in the AV colony, we conducted a laboratory Y. pestis challenge experiment on 60 wild-caught prairie dogs from AV and from a nearby, large colony with frequent past outbreaks of plague, Espee (n = 30 per colony). Test animals were challenged subcutaneously with the fully virulent Y. pestis strain CO92 at three doses: 50, 5,000, and 50,000 colony-forming units (cfu); this range is lethal in black-tailed prairie dogs (Cynomys ludovicianus). Contrary to our expectations, only 40% of the animals died. Although mortality trended higher in the Espee colony (50%) compared with AV (30%), the differences among infectious doses were not statistically significant. Only 39% of the survivors developed moderate to high antibody levels to Y. pestis, indicating that mechanisms other than humoral immunity are important in resistance to plague. The ratio of neutrophils to lymphocytes was not correlated with plague survival in this study. However, several immune proteins with roles in innate immunity (VCAM-1, CXCL-1, and vWF) were upregulated during plague infection and warrant further inquiry into their role for protection against this disease. These results suggest plague resistance exists in wild populations of the Gunnison's prairie dog and provide important directions for future studies.

  4. Survival and SOS response induction in ultraviolet B irradiated Escherichia coli cells with defective repair mechanisms.

    PubMed

    Prada Medina, Cesar Augusto; Aristizabal Tessmer, Elke Tatjana; Quintero Ruiz, Nathalia; Serment-Guerrero, Jorge; Fuentes, Jorge Luis

    2016-06-01

    Purpose In this paper, the contribution of different genes involved in DNA repair for both survival and SOS induction in Escherichia coli mutants exposed to ultraviolet B radiation (UVB, [wavelength range 280-315 nm]) was evaluated. Materials and methods E. coli strains defective in uvrA, oxyR, recO, recN, recJ, exoX, recB, recD or xonA genes were used to determine cell survival. All strains also had the genetic sulA::lacZ fusion, which allowed for the quantification of SOS induction through the SOS Chromotest. Results Five gene products were particularly important for survival, as follows: UvrA > RecB > RecO > RecJ > XonA. Strains defective in uvrA and recJ genes showed elevated SOS induction compared with the wild type, which remained stable for up to 240 min after UVB-irradiation. In addition, E. coli strains carrying the recO or recN mutation showed no SOS induction. Conclusions The nucleotide excision and DNA recombination pathways were equally used to repair UVB-induced DNA damage in E. coli cells. The sulA gene was not turned off in strains defective in UvrA and RecJ. RecO protein was essential for processing DNA damage prior to SOS induction. In this study, the roles of DNA repair proteins and their contributions to the mechanisms that induce SOS genes in E. coli are proposed.

  5. Systemic Inflammatory Response and Elevated Tumour Markers Predict Worse Survival in Resectable Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Salmiheimo, Aino; Mustonen, Harri; Stenman, Ulf-Håkan; Puolakkainen, Pauli; Kemppainen, Esko; Seppänen, Hanna; Haglund, Caj

    2016-01-01

    Background Estimation of the prognosis of resectable pancreatic ductal adenocarcinoma (PDAC) currently relies on tumour-related factors such as resection margins and on lymph-node ratio (LNR) both inconveniently available only postoperatively. Our aim was to assess the accuracy of preoperative laboratory data in predicting PDAC prognosis. Methods Collection of laboratory and clinical data was retrospective from 265 consecutive patients undergoing surgery for PDAC at Helsinki University Hospital. Cancer-specific survival assessment utilized Kaplan-Meier analysis, and independent associations between factors were by the Cox regression model. Results During follow-up, 76% of the patients died of PDAC, with a median survival time of 19.6 months. In univariate analysis, CRP, albumin, CEA, and CA19-9 were significantly associated with postoperative cancer-specific survival. In multivariate analysis, taking into account age, gender, LNR, resection margins, tumour status, and adjuvant chemotherapy, the preoperative biomarkers independently associated with adverse prognosis were hypoalbuminemia (< 36 g/L, hazard ratio (HR) 1.56, 95% confidence interval (CI) 1.10–2.19, p = 0.011), elevated CRP (> 5 mg/L, HR 1.44, 95% CI 1.03–2.02, p = 0.036), CEA (> 5 μg/L, HR 1.60, 95% CI 1.07–2.53, p = 0.047), and CA19-9 (≥555 kU/L, HR 1.91, 95% CI 1.18–3.08, p = 0.008). Conclusion For patients with resectable PDAC, preoperative CRP, along with albumin and tumour markers, is useful for predicting prognosis. PMID:27632196

  6. Localized light-induced protein dimerization in living cells using a photocaged dimerizer

    PubMed Central

    Ballister, Edward R.; Aonbangkhen, Chanat; Mayo, Alyssa M.; Lampson, Michael A.; Chenoweth, David M.

    2015-01-01

    Regulated protein localization is critical for many cellular processes. Several techniques have been developed for experimental control over protein localization, including chemically induced and light-induced dimerization, which both provide temporal control. Light-induced dimerization offers the distinct advantage of spatial precision within subcellular length scales. A number of elegant systems have been reported that utilize natural light-sensitive proteins to induce dimerization via direct protein–protein binding interactions, but the application of these systems at cellular locations beyond the plasma membrane has been limited. Here we present a new technique to rapidly and reversibly control protein localization in living cells with subcellular spatial resolution using a cell-permeable, photoactivatable chemical inducer of dimerization. We demonstrate light-induced recruitment of a cytosolic protein to individual centromeres, kinetochores, mitochondria and centrosomes in human cells, indicating that our system is widely applicable to many cellular locations. PMID:25400104

  7. Hexyl glucoside and hexyl maltoside inhibit light-induced oxidation of tryptophan.

    PubMed

    Adem, Yilma T; Molina, Patricia; Liu, Hongbin; Patapoff, Thomas W; Sreedhara, Alavattam; Esue, Osigwe

    2014-02-01

    We investigated the photo-protective effect of sugar-based surfactants--hexyl glucoside and hexyl maltoside--against light-induced oxidation of a monoclonal antibody. Reactive oxygen species are generated in solutions in the presence of light; these reactive species readily oxidize amino acids such as tryptophan. Hexyl glucosides and hexyl maltosides scavenge these reactive species and protect tryptophan residues from light-induced oxidation in a concentration-dependent manner. As a result of the scavenging process, hydrogen peroxide is formed, especially at high (millimolar) concentrations of the alkyl glycoside surfactants. These results suggest that hexyl glucoside and hexyl maltoside have the potential to protect tryptophan residues against light-induced oxidation.

  8. Light-induced thermodiffusion in two-component media

    NASA Astrophysics Data System (ADS)

    Ivanov, V.; Ivanova, G.; Okishev, K.; Khe, V.

    2017-01-01

    We have theoretically studied the optical transmittance response of thin cell with liquid containing absorbing nanoparticles in a Gaussian beam field. The transmittance spatial changing is caused by thermal diffusion phenomenon (Soret effect) which produces the variations of concentration of absorbing nanoparticles. The thickness of optical cell (including windows) is significantly less than the size of the beam. As a result, an exact analytical expression for the one dimensional thermal task is derived, taking into account the Soret feedback that leads to the temperature rising on the axis of a Gaussian beam. We have experimentally studied this phenomenon in carbon nanosuspension.

  9. A retrograde neuronal survival response: target-derived neurotrophins regulate MEF2D and bcl-w.

    PubMed

    Pazyra-Murphy, Maria F; Hans, Aymeric; Courchesne, Stephanie L; Karch, Christoph; Cosker, Katharina E; Heerssen, Heather M; Watson, Fiona L; Kim, Taekyung; Greenberg, Michael E; Segal, Rosalind A

    2009-05-20

    Survival and maturation of dorsal root ganglia sensory neurons during development depend on target-derived neurotrophins. These target-derived signals must be transmitted across long distances to alter gene expression. Here, we address the possibility that long-range retrograde signals initiated by target-derived neurotrophins activate a specialized transcriptional program. The transcription factor MEF2D is expressed in sensory neurons; we show that expression of this factor is induced in response to target-derived neurotrophins that stimulate the distal axons. We demonstrate that MEF2D regulates expression of an anti-apoptotic bcl-2 family member, bcl-w. Expression of mef2d and bcl-w is stimulated in response to activation of a Trk-dependent ERK5/MEF2 pathway, and our data indicate that this pathway promotes sensory neuron survival. We find that mef2d and bcl-w are members of a larger set of retrograde response genes, which are preferentially induced by neurotrophin stimulation of distal axons. Thus, activation of an ERK5/MEF2D transcriptional program establishes and maintains the cellular constituents of functional sensory circuits.

  10. A retrograde neuronal survival response: Target-derived neurotrophins regulate MEF2D and bcl-w

    PubMed Central

    Pazyra-Murphy, Maria F.; Hans, Aymeric; Courchesne, Stephanie L.; Karch, Christoph; Cosker, Katharina E.; Heerssen, Heather M.; Watson, Fiona L.; Kim, Taekyung; Greenberg, Michael E.; Segal, Rosalind A.

    2009-01-01

    SUMMARY Survival and maturation of dorsal root ganglia sensory neurons during development depends on target-derived neurotrophins. These target-derived signals must be transmitted across long distances to alter gene expression. Here we address the possibility that long-range retrograde signals initiated by target-derived neurotrophins activate a specialized transcriptional program. The transcription factor MEF2D is expressed in sensory neurons; we show that expression of this factor is induced in response to target-derived neurotrophins that stimulate the distal axons. We demonstrate that MEF2D regulates expression of an anti-apoptotic bcl-2 family member, bcl-w. Expression of mef2d and bcl-w is stimulated in response to activation of a Trk-dependent ERK5/Mef2 pathway, and our data indicate that this pathway promotes sensory neuron survival. We find that mef2d and bcl-w are members of a larger set of retrograde response genes, which are preferentially induced by neurotrophin stimulation of distal axons. Thus activation of an ERK5/MEF2D transcriptional program establishes and maintains the cellular constituents of functional sensory circuits. PMID:19458239

  11. Improving Pediatric Survival from Resuscitation Events: The Role and Organization of Hospital-based Rapid Response Systems and Code Teams.

    PubMed

    Jagt, Elise Willem van der

    2013-01-01

    During the past 10-15 years it has become evident that in spite of the sophistication of medicine, hospitalized patients frequently experience cardiac arrests from which the majority do not survive. A substantial number of these arrests occur on general inpatient units where patients begin to deteriorate but there is a failure of timely recognition so that appropriate intervention can be instituted before the arrest takes place. Much work has been done to determine how survival from adult in-hospital cardiac arrests can be improved by (1) teaching health care providers about resuscitation management using a team approach and (2) more recently, by developing rapid response systems to recognize deteriorating patients early and intervening to prevent the cardiac arrest. The purpose of this review is to outline what is known about the use and organization of resuscitation teams (code teams) and rapid response systems as they apply to pediatric patients. Effort has been made to include the most current pediatric science available as a basis for encouraging the ongoing implementation of hospital team-based systems which appear to be able to improve the outcomes of pediatric in-hospital cardiac and respiratory arrests. Practical suggestions, implementation strategies, potential barriers, and ways to integrate pediatric code teams and rapid response systems into the quality and safety fabric of the hospital are provided.

  12. Early Response of Protein Quality Control in Gills Is Associated with Survival of Hypertonic Shock in Mozambique tilapia

    PubMed Central

    Tang, Cheng-Hao; Lee, Tsung-Han

    2013-01-01

    The protein quality control (PQC) mechanism is essential for cell function and viability. PQC with proper biological function depends on molecular chaperones and proteases. The hypertonicity-induced protein damage and responses of PQC mechanism in aquatic organisms, however, are poorly understood. In this study, we examine the short-term effects of different hypertonic shocks on the levels of heat shock proteins (HSPs, e.g., HSP70 and HSP90), ubiquitin-conjugated proteins and protein aggregation in gills of the Mozambique tilapia (Oreochromis mossambicus). Following transfer from fresh water (FW) to 20‰ hypertonicity, all examined individuals survived to the end of experiment. Moreover, the levels of branchial HSPs and ubiquitin-conjugated proteins significantly increased at 3 and 24 h post-transfer, respectively. Up-regulation of HSPs and ubiquitin-conjugated proteins was sufficient to prevent the accumulation of aggregated proteins. However, the survival rate of tilapia dramatically declined at 5 h and all fish died within 7 h after direct transfer to 30‰ hypertonicity. We presumed that this result was due to the failed activation of gill PQC system, which resulted in elevating the levels of aggregated proteins at 3 and 4 h. Furthermore, in aggregated protein fractions, the amounts of gill Na+/K+-ATPase (NKA) remained relatively low when fish were transferred to 20‰ hypertonicity, whereas abundant NKA was found at 4 h post-transfer to 30‰ hypertonicity. This study demonstrated that the response of PQC in gills is earlier than observable changes in localization of ion-secreting transport proteins upon hypertonic challenge. To our knowledge, this is the first study to investigate the regulation of PQC mechanism in fish and characterize its important role in euryhaline teleost survival in response to hypertonic stress. PMID:23690986

  13. Hematological Responses, Survival, and Respiratory Exchange in the Olive Flounder, Paralichthys olivaceus, during Starvation

    PubMed Central

    Park, I.-S.; Hur, J. W.; Choi, J. W.

    2012-01-01

    A 12-wk experiment was conducted to examine the hematological changes, survival, and respiratory exchange in the olive flounder, Paralichthys olivaceus, during starvation. The growth, survival and respiratory exchange rates of the starved group were lower than those of the fed group during the experiment. Blood analysis, including hematocrit, hemoglobin, red blood cells, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and mean corpuscular volume, did not differ significantly (p>0.05) between the fed and starved groups at the end of the experiment. There were no significant differences in plasma cortisol, glucose, Na+, Cl−, K+, or aspartate aminotransferase between the fed and starved groups (p>0.05). Alanine aminotransferase levels were higher in the starved group than in the fed group, whereas plasma osmolality was lower in the starved group than in the fed group. It was shown that starved fish had various problems after four weeks, which did not occur in the fed group. Long-term starvation is infrequent in aquaculture farms. However, starvation studies of this kind are very useful for a basic understanding of how physiological changes affect fish health, life expectancy, and growth. PMID:25049691

  14. Cell Surface CD74-MIF Interactions Drive Melanoma Survival in Response to Interferon-γ.

    PubMed

    Tanese, Keiji; Hashimoto, Yuuri; Berkova, Zuzana; Wang, Yuling; Samaniego, Felipe; Lee, Jeffrey E; Ekmekcioglu, Suhendan; Grimm, Elizabeth A

    2015-11-01

    Melanoma is believed to be a highly immunogenic tumor and recent developments in immunotherapies are promising. IFN-γ produced by immune cells has a crucial role in tumor immune surveillance; however, it has also been reported to be pro-tumorigenic. In the current study, we found that IFN-γ enhances the expression of CD74, which interacts with its ligand, macrophage migration inhibitory factor (MIF), and thereby activates the PI3K/AKT pathway in melanoma, promoting tumor survival. IFN-γ increased phosphorylation of AKT Ser473 and upregulated total cell surface expression of CD74 in human melanoma cell lines tested. CD74 was highly expressed in melanoma tissues. Moreover, the expression of CD74 on tumor cells correlated with plasma IFN-γ levels in melanoma patient samples. In our analysis of melanoma cell lines, all produced MIF constitutively. Blockade of CD74-MIF interaction reduced AKT phosphorylation and expression of pro-tumorigenic molecules, including IL-6, IL-8, and BCL-2. Inhibition of CD74-MIF interaction significantly suppressed tumor growth in the presence of IFN-γ in our xenograft mouse model. Thus, we conclude that IFN-γ promotes melanoma cell survival by regulating CD74-MIF signaling, suggesting that targeting the CD74-MIF interaction under IFN-γ-stimulatory conditions would be an effective therapeutic approach for melanoma.

  15. Light-induced basilar membrane vibrations in the sensitive cochlea

    NASA Astrophysics Data System (ADS)

    Grosh, Karl; Ren, Tianying; He, Wenxuan; Fridberger, Anders; Li, Yizeng; Nankali, Amir

    2015-12-01

    The exceptional sensitivity of mammalian hearing organ is attributed to an outer hair cell-mediated active process, where forces produced by sensory cells boost sound-induced vibrations, making soft sounds audible. This process is thought to be local, with each section of the hearing organ capable of amplifying sound-evoked movement, and nearly instantaneous, since amplification can work for sounds at frequencies up to 100 kHz in some species. To test these precepts, we developed a method for focally stimulating the living hearing organ with light. Light pulses caused intense and highly damped mechanical responses followed by traveling waves that developed with considerable delay. The delayed response was identical to movements evoked by click-like sounds. A physiologically based mathematical model shows that such waves engage the active process, enhancing hearing sensitivity. The experiments and the theoretical analysis show that the active process is neither local nor instantaneous, but requires mechanical waves traveling from the cochlear base toward its apex.

  16. Theory of Light-Induced Drift of Electrons in Coupled Quantum Wells

    DTIC Science & Technology

    1992-07-01

    AD-A253 609 OFFICE OF NAVAL RESEARCH Grant N00014-90-J- 1193 TECHNICAL REPORT No. 89 Theory of Light-Induced Drift of Electrons in Coupled Quantum...AGENCY USE ONLY (Lepave &as*) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED I July 1992 IInterim 4. TITLE AND SUBTITLE S. FUNDING NUMNERS Theory of...CODE Approved for public release; distribution unlimited I 13. ABSTRACT (Maximum,,OO woins) A theory of the new effect of light-induced drift (LID) in

  17. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival?

    PubMed Central

    Mirzayans, Razmik; Andrais, Bonnie; Kumar, Piyush; Murray, David

    2016-01-01

    It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and triggers growth arrest (e.g., through premature senescence) in some genetic backgrounds; such growth arrested cells remain viable, secrete growth-promoting factors, and give rise to progeny with stem cell-like properties. In addition, caspase 3, which is best known for its role in the execution phase of apoptosis, has been recently reported to facilitate (rather than suppress) DNA damage-induced genomic instability and carcinogenesis. This observation is consistent with an earlier report demonstrating that caspase 3 mediates secretion of the pro-survival factor prostaglandin E2, which in turn promotes enrichment of tumor repopulating cells. In this article, we review these and related discoveries and point out novel cancer therapeutic strategies. One of our objectives is to demonstrate the growing complexity of the DNA damage response beyond the conventional “repair and survive, or die” hypothesis. PMID:27187358

  18. Nomogram based on systemic inflammatory response markers predicting the survival of patients with resectable gastric cancer after D2 gastrectomy

    PubMed Central

    Chen, Shangxiang; Liu, Xuechao; Kong, Pengfei; Zhou, Zhiwei; Zhan, Youqing; Xu, Dazhi

    2016-01-01

    This study aimed to construct a nomogram to predict survival of patients with resectable gastric cancer (RGC) based on both clinicopathology characteristics and systemic inflammatory response markers (SIRMs). Of 3,452 RGC patients after D2 gastrectomy at the Sun Yat-sen University Cancer Center, 1058 patients who met the inclusion criterion were analyzed. The patients operated on from January 1, 2005 to December 31, 2009 were assigned to the training set (817 patients) to establish a nomogram, and the rest (241 patients) were selected as validation set. Based on the training set, seven independent risk factors were selected in the nomogram. The calibration curves for probability of 1-year, 3-year and 5-year overall survival (OS) showed satisfactory accordance between nomogram prediction and actual observation. When the metastatic lymph node stage (mLNS) is replaced by metastasis lymph node ratio (mLNR) in validation set, the C-index in predicting OS rise from 0.77 to 0.79, higher than that of 7th American Joint Committee on Cancer 7th (AJCC) staging system (0.70; p<0.001). In conclusions, the proposed nomogram which including mLNR and routine detected SIRMs resulted in optimal survival prediction for RGC patients after D2 gastrectomy. PMID:27121054

  19. Light-induced structural phase behaviour of metal nanoparticle materials

    NASA Astrophysics Data System (ADS)

    Plech, A.; Kotaidis, V.; Wulff, M.; Dahmen, C.; von Plessen, G.

    2005-01-01

    We have investigated the structural dynamics of gold nanoparticles induced by femtosecond light excitation. Structure evolution in both embedded particles (glass matrix or liquid water suspension) and quasi-free particles adsorbed on a solid surface is analyzed. By use of stroboscopic laser pump- x-ray probe techniques the structural relaxations have been resolved on the 100 ps time scale at the European Synchrotron Radiation Facility. Several methods including powder scattering, liquid scattering and small angle scattering serve to resolve microscopic and mesoscopic length scales of the composite system. The thermal response includes the heating, lattice melting, explosive solvent evaporation and solvent cooling subsequent to the laser flash excitation. Nonthermal effects are observed with femtosecond excitation. They are attributed to ablation from the particle and particle explosion at strong nonequilibrium conditions. The observations can form a complete picture of the energy dissipation and phase transitions involved in nanoscale composites.

  20. Relationship between 3-Methyl-2,4-nonanedione Concentration and Intensity of Light-induced Off-odor in Soy Bean Oil.

    PubMed

    Sano, Takashi; Iwahashi, Maiko; Imagi, Jun; Sato, Toshiro; Yamashita, Toshiyuki; Fukusaki, Eiichiro; Bamba, Takeshi

    2016-05-01

    A beany and green off-odor is developed in soy bean oil (SBO) under light-induced oxidative conditions. 3-Methyl-2,4-nonanedione (3-MND) was inferred as the compound responsible for the off-odor. In this study, we designed a simple quantification method for 3-MND in SBO, and evaluated the relationship between the 3-MND concentration and the intensity of the off-odor. 3-MND was analyzed by GC/MS with a thermal desorption unit system. By our method, the 3-MND concentration was found to increase with storage days and the SBO content under light exposure, and there was a high correlation between the measured 3-MND concentration and the intensity of the light-induced off-odor in SBO (R = 0.9586).

  1. Factors Predictive of Tumor Recurrence and Survival After Initial Complete Response of Esophageal Squamous Cell Carcinoma to Definitive Chemoradiotherapy

    SciTech Connect

    Ishihara, Ryu; Yamamoto, Sachiko; Iishi, Hiroyasu; Takeuchi, Yoji; Sugimoto, Naotoshi; Higashino, Koji; Uedo, Noriya; Tatsuta, Masaharu; Yano, Masahiko; Imai, Atsushi; Nishiyama, Kinji

    2010-01-15

    Purpose: To assess factors predictive of recurrent disease and survival after achieving initial complete response (CR) to chemoradiotherapy (CRT) for esophageal cancer. Methods and Materials: Patients who had clinical Stage I-IVA esophageal cancer and received definitive CRT between 2001 and 2007 were retrospectively analyzed. Results: Of 269 patients with esophageal cancer, 110 who achieved CR after definitive CRT were included in the analyses. Chemoradiotherapy mainly consisted of 2 cycles of cisplatin and fluorouracil with concurrent radiotherapy of 60 Gy in 30 fractions. We identified 28 recurrences and 28 deaths during follow-up. The cumulative 1- and 3-year recurrence rates were 18% and 32%, respectively. By univariate and multivariate analyses, tumor category (hazard ratio [HR] 6.6; 95% confidence interval [CI] 1.4-30.2; p = 0.015) was an independent risk factor for local recurrence, whereas age (HR 3.9; 95% CI 1.1-14.0; p = 0.034) and primary tumor location (HR 4.5; 95% CI 1.6-12.4; p = 0.004) were independent risk factors for regional lymph node or distant recurrences. The cumulative overall 1- and 3-year survival rates were 91% and 66%, respectively. As expected, recurrence was associated with poor survival (p = 0.019). By univariate and multivariate analyses, primary tumor location (HR 3.8; 95% CI 1.2-12.0; p = 0.024) and interval to recurrence (HR 4.3; 95% CI 1.3-14.4; p = 0.018) were independent factors predictive of survival after recurrence. Conclusion: Risk of recurrence after definitive CRT for esophageal cancer was associated with tumor category, age, and primary tumor location; this information may help in improved prognostication for these patients.

  2. Differential Adaptive Response and Survival of Salmonella enterica Serovar Enteritidis Planktonic and Biofilm Cells Exposed to Benzalkonium Chloride▿

    PubMed Central

    Mangalappalli-Illathu, Anil K.; Vidović, Sinisa; Korber, Darren R.

    2008-01-01

    This study examined the adaptive response and survival of planktonic and biofilm phenotypes of Salmonella enterica serovar Enteritidis adapted to benzalkonium chloride (BC). Planktonic cells and biofilms were continuously exposed to 1 μg ml−1 of BC for 144 h. The proportion of BC-adapted biofilm cells able to survive a lethal BC treatment (30 μg ml−1) was significantly higher (4.6-fold) than that of BC-adapted planktonic cells. Similarly, there were 18.3-fold more survivors among the BC-adapted biofilm cells than among their nonadapted (i.e., without prior BC exposure) cell counterparts at the lethal BC concentration, and this value was significantly higher than the value for BC-adapted planktonic cells versus nonadapted cells (3.2-fold). A significantly higher (P < 0.05) proportion of surviving cells was noticed among BC-adapted biofilm cells relative to BC-adapted planktonic cells following a 10-min heat shock at 55°C. Fatty acid composition was significantly influenced by phenotype (planktonic cells or biofilm) and BC adaptation. Cell surface roughness of biofilm cells was also significantly greater (P < 0.05) than that of planktonic cells. Key proteins upregulated in BC-adapted planktonic and biofilm cells included CspA, TrxA, Tsf, YjgF, and a probable peroxidase, STY0440. Nine and 17 unique proteins were upregulated in BC-adapted planktonic and biofilm cells, respectively. These results suggest that enhanced biofilm-specific upregulation of 17 unique proteins, along with the increased expression of CspA, TrxA, Tsf, YjgF, and a probable peroxidase, phenotype-specific alterations in cell surface roughness, and a shift in fatty acid composition conferred enhanced survival to the BC-adapted biofilm cell population relative to their BC-adapted planktonic cell counterparts. PMID:18663028

  3. A high-throughput screen identifies miRNA inhibitors regulating lung cancer cell survival and response to paclitaxel

    PubMed Central

    Du, Liqin; Borkowski, Robert; Zhao, Zhenze; Ma, Xiuye; Yu, Xiaojie; Xie, Xian-Jin; Pertsemlidis, Alexander

    2013-01-01

    microRNAs (miRNAs) are small RNAs endogenously expressed in multiple organisms that regulate gene expression largely by decreasing levels of target messenger RNAs (mRNAs). Over the past few years, numerous studies have demonstrated critical roles for miRNAs in the pathogenesis of many cancers, including lung cancer. Cellular miRNA levels can be easily manipulated, showing the promise of developing miRNA-targeted oligos as next-generation therapeutic agents. In a comprehensive effort to identify novel miRNA-based therapeutic agents for lung cancer treatment, we combined a high-throughput screening platform with a library of chemically synthesized miRNA inhibitors to systematically identify miRNA inhibitors that reduce lung cancer cell survival and those that sensitize cells to paclitaxel. By screening three lung cancer cell lines with different genetic backgrounds, we identified miRNA inhibitors that potentially have a universal cytotoxic effect on lung cancer cells and miRNA inhibitors that sensitize cells to paclitaxel treatment, suggesting the potential of developing these miRNA inhibitors as therapeutic agents for lung cancer. We then focused on characterizing the inhibitors of three miRNAs (miR-133a/b, miR-361-3p, and miR-346) that have the most potent effect on cell survival. We demonstrated that two of the miRNA inhibitors (miR-133a/b and miR-361-3p) decrease cell survival by activating caspase-3/7-dependent apoptotic pathways and inducing cell cycle arrest in S phase. Future studies are certainly needed to define the mechanisms by which the identified miRNA inhibitors regulate cell survival and drug response, and to explore the potential of translating the current findings into clinical applications. PMID:24157646

  4. Identification and characterization of a NaCl-responsive genetic locus involved in survival during desiccation in Sinorhizobium meliloti.

    PubMed

    Vriezen, Jan A C; de Bruijn, Frans J; Nüsslein, Klaus

    2013-09-01

    The Rhizobiaceae are a bacterial family of enormous agricultural importance due to the ability of its members to fix atmospheric nitrogen in an intimate relationship with plants. Their survival as naturally occurring soil bacteria in agricultural soils as well as popular seed inocula is affected directly by drought and salinity. Survival after desiccation in the presence of NaCl is enabled by underlying genetic mechanisms in the model organism Sinorhizobium meliloti 1021. Since salt stress parallels a loss in water activity, the identification of NaCl-responsive loci may identify loci involved in survival during desiccation. This approach enabled identification of the loci asnO and ngg by their reduced ability to grow on increased NaCl concentrations, likely due to their inability to produce the osmoprotectant N-acetylglutaminylglutamine (NAGGN). In addition, the mutant harboring ngg::Tn5luxAB was affected in its ability to survive desiccation and responded to osmotic stress. The desiccation sensitivity may have been due to secondary functions of Ngg (N-acetylglutaminylglutamine synthetase)-like cell wall metabolism as suggested by the presence of a d-alanine-d-alanine ligase (dAla-dAla) domain and by sensitivity of the mutant to β-lactam antibiotics. asnO::Tn5luxAB is expressed during the stationary phase under normal growth conditions. Amino acid sequence similarity to enzymes producing β-lactam inhibitors and increased resistance to β-lactam antibiotics may indicate that asnO is involved in the production of a β-lactam inhibitor.

  5. Survival, reproductive, and growth responses in fish to creosote exposure in aquatic mesocosms

    SciTech Connect

    Munro, K.A.; Solomon, K.R.; Bestari, K.T.; Robinson, R.D.

    1995-12-31

    Creosote is a coal tar distillate, consisting mainly of a mixture of polyaromatic hydrocarbons (PAHs). Its widespread use as a wood preservative presents a potential risk to aquatic ecosystems. The use of mesocosms (precolonized with zooplankton, phytoplankton, macroinvertebrates, and periphyton) enabled evaluation of the total impact of creosote exposure, resulting from both direct toxic effects and indirect community-level interactions. Two methods of creosote addition were used, resulting in two series of mesocosm exposures: sixteen ponds were dosed with liquid creosote (from 0 to 100 ppm), and eight were dosed using creosote impregnated pilings (0 to 6 pilings per pond). In addition to growth and survival in two species of fish, Carassius auratus and Pimephales promelas, a number of reproductive parameters were measured (reproductive hormones, egg production, hatching success, and weight/frequency distribution of juveniles).

  6. Compartmentalized expression of light-induced clock genes in the suprachiasmatic nucleus of the diurnal grass rat (Arvicanthis niloticus)

    PubMed Central

    Ramanathan, Chidambaram; Campbell, Amy; Tomczak, Ashley; Nunez, Antonio A.; Smale, Laura; Yan, Lily

    2009-01-01

    Photic responses of the circadian system are mediated through light-induced clock gene expression in the suprachiasmatic nucleus (SCN). In nocturnal rodents, depending on the timing of light exposure, Per1 and Per2 gene expression shows distinct compartmentalized patterns that correspond to the behavioral responses. Whether the gene-and region-specific induction patterns are unique to nocturnal animals, or are also present in diurnal species is unknown. We explored this question by examining the light-induced Per1 and Per2 gene expression in functionally distinct SCN sub regions, using diurnal grass rats Arvicanthis niloticus. Light exposure during nighttime induced Per1 and Per2 expression in the SCN, showing unique spatiotemporal profiles depending on the phase of the light exposure. After a phase delaying light pulse (LP) in the early night, strong Per1 induction was observed in the retinorecipient core region of the SCN, while strong Per2 induction was observed throughout the entire SCN. After a phase advancing LP in the late night, Per1 was first induced in the core and then extended into the whole SCN, accompanied by a weak Per2 induction. This compartmentalized expression pattern is very similar to that observed in nocturnal rodents, suggesting that the same molecular and intercellular pathways underlying acute photic responses are present in both diurnal and nocturnal species. However, after a LP in early subjective day, which induces phase advances in diurnal grass rats, but not in nocturnal rodents, we did not observe any Per1 or Per2 induction in the SCN. This result suggests that in spite of remarkable similarities in the SCN of diurnal and nocturnal rodents, unique mechanisms are involved in mediating the phase shifts of diurnal animals during the subjective day. PMID:19393297

  7. Responses of Bacillus subtilis to hypotonic challenges: physiological contributions of mechanosensitive channels to cellular survival.

    PubMed

    Hoffmann, Tamara; Boiangiu, Clara; Moses, Susanne; Bremer, Erhard

    2008-04-01

    Mechanosensitive channels are thought to function as safety valves for the release of cytoplasmic solutes from cells that have to manage a rapid transition from high- to low-osmolarity environments. Subsequent to an osmotic down-shock of cells grown at high osmolarity, Bacillus subtilis rapidly releases the previously accumulated compatible solute glycine betaine in accordance with the degree of the osmotic downshift. Database searches suggest that B. subtilis possesses one copy of a gene for a mechanosensitive channel of large conductance (mscL) and three copies of genes encoding proteins that putatively form mechanosensitive channels of small conductance (yhdY, yfkC, and ykuT). Detailed mutational analysis of all potential channel-forming genes revealed that a quadruple mutant (mscL yhdY yfkC ykuT) has no growth disadvantage in high-osmolarity media in comparison to the wild type. Osmotic down-shock experiments demonstrated that the MscL channel is the principal solute release system of B. subtilis, and strains with a gene disruption in mscL exhibited a severe survival defect upon an osmotic down-shock. We also detected a minor contribution of the SigB-controlled putative MscS-type channel-forming protein YkuT to cellular survival in an mscL mutant. Taken together, our data revealed that mechanosensitive channels of both the MscL and MscS types play pivotal roles in managing the transition of B. subtilis from hyper- to hypo-osmotic environments.

  8. Survival implications of the development of behavioural responsiveness and awareness in different groups of mammalian young.

    PubMed

    Mellor, D J; Lentle, R G

    2015-05-01

    This paper focuses on the development of behaviours that are critical for the survival of newborn and juvenile mammals of veterinary and wider biological interest. It provides an updated, integrated and comparative analysis of how postnatal maturation of sensory, motor and perceptual capacities support and constrain behavioural interactions between mammalian young and the mother, any littermates and the environment. Young that are neurologically exceptionally immature, moderately immature and mature at birth are compared, and include, for example, marsupial joeys, rodent pups and ruminant offspring. Mothers in these three groups exhibit distinctive patterns of birthing and postnatal care behaviours. To secure survival of the young, maternal care must compensate for behavioural inadequacies imposed by the limited sensory capacities the young possess at each stage. These sensory capacities develop in a predictable sequence in most mammals such that before birth the sequence progresses to an extent that parallels the degree of neurological maturity reached at birth. The extent of neurological maturity is likewise reflected in how long it takes after birth for the necessary brain circuit connectivity to develop sufficiently to support cortically based cognitive modulation of behaviour. This takes several months, days-to-weeks or minutes-to-hours in young that are, respectively, neurologically exceptionally immature, moderately immature, or mature at birth. Once achieved, cognitive awareness confers a high degree of behavioural flexibility that allows the young to respond more effectively to the unpredictability of their postnatal environments. It is shown that the onset of this cognitively based flexibility in the young of each group coincides with their first exposure to a variable environment that requires such behavioural flexibility.

  9. Red light-induced suppression of gravitropism in moss protonemata

    NASA Astrophysics Data System (ADS)

    Kern, V. D.; Sack, F. D.

    1999-01-01

    Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of Ceratodon protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral red light. Phototropism is phytochrome-mediated. To determine whether any gravitropism persists during irradiation, cultures were turned at various angles with respect to gravity and illuminated so that the light and gravity vectors acted either in the same or in different directions. Red light for 24h (≥140nmol m-2s-1) caused the protonemata to be oriented directly towards the light. Similarly, protonemata grew directly towards the light regardless of light position with respect to gravity indicating that all growth is oriented strictly by phototropism, not gravitropism. At light intensities ≤100nmol m-2s-1, no phototropism occurs and the mean protonemal tip angle remains above the horizontal, which is the criterion for negative gravitropism. But those protonemata are not as uniformly upright as they would be in the dark indicating that low intensity red light permits gravitropism but also modulates the response. Protonemata of the aphototropic mutant ptr1 that lacks a functional Pfr chromophore, exhibit gravitropism regardless of red light intensity. This indicates that red light acts via Pfr to modulate gravitropism at low intensities and to suppress gravitropism at intensities ≥140nmol m-2s-1.

  10. Modulation of the adrenocortical response to acute stress with respect to brood value, reproductive success and survival in the Eurasian hoopoe.

    PubMed

    Schmid, Baptiste; Tam-Dafond, Laura; Jenni-Eiermann, Susanne; Arlettaz, Raphaël; Schaub, Michael; Jenni, Lukas

    2013-09-01

    Reproducing parents face the difficult challenge of trading-off investment in current reproduction against presumed future survival and reproduction. Glucocorticoids are supposed to mediate this trade-off because the adrenocortical response to stress disrupts normal reproductive behaviour in favour of self-maintenance and own survival. According to the brood-value hypothesis, individuals with a low survival probability until the next reproductive season have to invest in current reproduction, a process driven by a down-regulation of their adrenocortical response. If the adrenocortical response to stress effectively mediates the trade-off between current reproduction versus future survival and reproduction, we expect a negative relationship with reproductive success and a positive correlation of the adrenocortical stress response with survival. We studied the relationship between corticosterone secretion in parents and their current brood value, reproductive success and survival in a short-lived multi-brooded bird, the Eurasian hoopoe Upupa epops. The adrenocortical response to acute handling stress was correlated with the brood value within the individual (first and second broods of the year) and between individuals. Birds breeding late in the season mounted a lower total corticosterone response to acute stress than birds breeding earlier, while females showed lower levels than males. We observed a negative relationship between the adrenocortical stress response and rearing success or fledging success in females, as predicted by the brood-value hypothesis. However, we could not evidence a clear link between the adrenocortical stress response and survival. Future research testing the brood-value hypothesis and trade-offs between current reproduction and future survival should also measure free corticosterone and carefully differentiate between cross-sectional (i.e. between-individual) and individual-based experimental studies.

  11. Salmonella Enteritidis strains from poultry exhibit differential responses to acid stress, oxidative stress, and survival in the egg albumen.

    PubMed

    Shah, Devendra H; Casavant, Carol; Hawley, Quincy; Addwebi, Tarek; Call, Douglas R; Guard, Jean

    2012-03-01

    Salmonella Enteritidis is the major foodborne pathogen that is primarily transmitted by contaminated chicken meat and eggs. We recently demonstrated that Salmonella Enteritidis strains from poultry differ in their ability to invade human intestinal cells and cause disease in orally challenged mice. Here we hypothesized that the differential virulence of Salmonella Enteritidis strains is due to the differential fitness in the adverse environments that may be encountered during infection in the host. The responses of a panel of six Salmonella Enteritidis strains to acid stress, oxidative stress, survival in egg albumen, and the ability to cause infection in chickens were analyzed. This analysis allowed classification of strains into two categories, stress-sensitive and stress-resistant, with the former showing significantly (p<0.05) reduced survival in acidic (gastric phase of infection) and oxidative (intestinal and systemic phase of infection) stress. Stress-sensitive strains also showed impaired intestinal colonization and systemic dissemination in orally inoculated chickens and failed to survive/grow in egg albumen. Comparative genomic hybridization microarray analysis revealed no differences at the discriminatory level of the whole gene content between stress-sensitive and stress-resistant strains. However, sequencing of rpoS, a stress-regulatory gene, revealed that one of the three stress-sensitive strains carried an insertion mutation in the rpoS resulting in truncation of σ(S). Finding that one of the stress-sensitive strains carried an easily identifiable small polymorphism within a stress-response gene suggests that the other strains may also have small polymorphisms elsewhere in the genome, which likely impact regulation of stress or virulence associated genes in some manner.

  12. Light-induced inhibition of laccase in Pycnoporus sanguineus.

    PubMed

    Hernández, Christian A; Perroni, Yareni; Pérez, José Antonio García; Rivera, Beatriz Gutiérrez; Alarcón, Enrique

    2016-03-01

    The aim was to determine which specific regions of the visible light spectrum were responsible for the induction or inhibition of laccase in Pycnoporus sanguineus. Cultures were exposed to various bandwidth lights: blue (460 nm), green (525 nm), white (a combination of 460 and 560 nm), red (660 nm), and darkness. The results indicate that short wavelengths strongly inhibit the production of laccase: green (3.76 ± 1.12 U/L), blue (1.94 ± 0.36 U/L), and white (1.05 ± 0.21 U/L) in proportions of 85.8, 92.6, and 96.0%, respectively; whereas long wavelengths inhibit laccase production only partially i.e., red light (14.05 ± 4.79 U/L) in a proportion of 46.8%. Maximum activity was induced in absence of visible light (30 °C, darkness), i.e., 30.76 ± 4.0 U/L. It is concluded that the production of laccase in P. sanguineus responds to light stimuli [measured as wavelengths and lx] and that it does so inversely. This can be explained as an ecological mechanism of environmental recognition, given that P. sanguineus develops inside lignocellulose structures in conditions of darkness. The presence of short wavelength light (460-510 nm) would indicate that the organism finds itself in an external environment, unprovided of lignin, and that it is therefore unnecessary to secrete laccase. This possible new regulation in the laccase production in P. sanguineus has important biotechnological implications, for it would be possible to control the production of laccase using light stimuli.

  13. Hepatocytes display a compensatory survival response against cadmium toxicity by a mechanism mediated by EGFR and Src.

    PubMed

    Martínez Flores, K; Uribe Marín, B C; Souza Arroyo, V; Bucio Ortiz, L; López Reyes, A; Gómez-Quiroz, L E; Rojas del Castillo, E; Gutiérrez Ruiz, M C

    2013-04-01

    Although the liver is a cadmium-target organ, hepatocyte response involved in its toxicity is not yet elucidated. A link between this heavy metal treatment and Stat3 signaling pathways was examined in primary mouse hepatocytes. We provided evidence of a novel link among NADPH oxidase and Stat3 signaling, mediated by Src, EGFR, and Erk1/2. Cadmium activates NADPH oxidase. ROS produced by this oxidase activates Src, enable that in turn, transactivates EGFR that activates Stat3 in tyrosine, allowing its dimerization. Also, ROS from NADPH oxidase favors ERK1/2 activation that phosphorylates Stat3 in serine, resulting in a compensatory or adaptive survival response such as production of metallothionein-II in short Cd exposure times. However, after 12h CdCl2 treatment, cell viability diminished in 50%, accompanied by a drastic decrease of metallothionein-II production, and an increase in p53 activation and the pro-apoptotic protein Bax.

  14. Survival Rate and Hematological Responses with Temperature Changes of Red Spotted Grouper, Epinephelus akaara in South Korea

    PubMed Central

    Park, Jong Youn; Han, Kyeong Ho; Cho, Jae Kwon; Kim, Kyong Min; Son, Maeng Hyun; Park, Jae Min; Kang, Hee Woong

    2016-01-01

    The effect of sudden changes of water temperature (WT) on the survival rate and physiological responses of the red spotted grouper (Epinephelus akaara) were examined by manipulating WT control system for 9 days. Experimental condition was divided in two different regimes at low (from 10°C to 4°C, decreased 1℃/d) and high (from 28°C to 34°C, increased 1°C/d) WT. Survival rate of experimental fishes were observed, and determined the changes of hematological characteristics by analyzing plasma levels of cortisol, glucose, total protein, and electrolytes (Na+, Cl–, K+). No mortality was observed until low WT 6°C (144 h) and high WT 32°C (96 h), and 100% mortality was observed at low WT 4°C (216 h) and high WT 35°C (171 h). Plasma levels of cortisol and glucose increased rapidly as decreasing WT, and the loss of swimming ability and respiration response was observed at low WT 7°C and high WT 34°C conditions. PMID:27660825

  15. MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis

    SciTech Connect

    Liu Xiangde Nelson, Amy; Wang Xingqi; Kanaji, Nobuhiro; Kim, Miok; Sato, Tadashi; Nakanishi, Masanori; Li Yingji; Sun Jianhong; Michalski, Joel; Patil, Amol; Basma, Hesham; Rennard, Stephen I.

    2009-02-27

    MicroRNA plays an important role in cell differentiation, proliferation and cell death. The current study found that miRNA-146a was up-regulated in human bronchial epithelial cells (HBECs) in response to stimulation by TGF-ss1 plus cytomix (a mixture of IL-1ss, IFN-{gamma} and TNF-{alpha}). TGF-ss1 plus cytomix (TCM) induced apoptosis in HBECs (3.4 {+-} 0.6% of control vs 83.1 {+-} 4.0% of TCM treated cells, p < 0.01), and this was significantly blocked by the miRNA-146a mimic (8.8 {+-} 1.5%, p < 0.01). In contrast, a miRNA-146a inhibitor had only a modest effect on cell survival but appeared to augment the induction of epithelial-mesenchymal transition (EMT) in response to the cytokines. The MicroRNA-146a mimic appears to modulate HBEC survival through a mechanism of up-regulating Bcl-XL and STAT3 phosphorylation, and by this mechanism it could contribute to tissue repair and remodeling.

  16. Complete response and long-term survival (>20 years) of a child with tectal glioma: a case report.

    PubMed

    Burzynski, Stanislaw R; Burzynski, Gregory S; Janicki, Tomasz J; Marszalek, Ania

    2015-01-01

    Tectal glioma is a midbrain tumor. The patient generally presents with symptoms related to increased intracranial pressure and requires treatment for hydrocephalus. No effective pharmacological treatments have yet been introduced. This report discusses a case of a 13-year-old male diagnosed with tectal glioma who obtained a complete response and long-term survival after the treatment with antineoplastons (ANP) in phase II trial. Prior treatment consisted of placement of a ventriculoperitoneal shunt. After 6 years of stabilization there had been an increase in tumor size with signs of malignant transformation. The patient received treatment with ANP A10 and AS2-1 infusions for 20 months, obtained a complete response, and was switched to maintenance with ANP capsules. All treatments were discontinued in December 2003. Adverse events according to CTCAE v3.0 included: hypernatremia (two events of grade 3, one event of grade 2, four events of grade 1), one case of fatigue (grade 2), and one allergic reaction (grade 1). Currently, over 20 years from his diagnosis and over 13 years from treatment start he is symptom-free and leads a normal life. This report indicates that it is possible to obtain long-term survival of a child with tectal glioma with currently available investigational treatment.

  17. Identification of cereblon-binding proteins and relationship with response and survival after IMiDs in multiple myeloma.

    PubMed

    Zhu, Yuan Xiao; Braggio, Esteban; Shi, Chang-Xin; Kortuem, K Martin; Bruins, Laura A; Schmidt, Jessica E; Chang, Xiu-Bao; Langlais, Paul; Luo, Moulun; Jedlowski, Patrick; LaPlant, Betsy; Laumann, Kristina; Fonseca, Rafael; Bergsagel, P Leif; Mikhael, Joseph; Lacy, Martha; Champion, Mia D; Stewart, A Keith

    2014-07-24

    Cereblon (CRBN) mediates immunomodulatory drug (IMiD) action in multiple myeloma (MM). Using 2 different methodologies, we identified 244 CRBN binding proteins and established relevance to MM biology by changes in their abundance after exposure to lenalidomide. Proteins most reproducibly binding CRBN (>fourfold vs controls) included DDB1, CUL4A, IKZF1, KPNA2, LTF, PFKL, PRKAR2A, RANGAP1, and SHMT2. After lenalidomide treatment, the abundance of 46 CRBN binding proteins decreased. We focused attention on 2 of these-IKZF1 and IKZF3. IZKF expression is similar across all MM stages or subtypes; however, IKZF1 is substantially lower in 3 of 5 IMiD-resistant MM cell lines. The cell line (FR4) with the lowest IKZF1 levels also harbors a damaging mutation and a translocation that upregulates IRF4, an IKZF target. Clinical relevance of CRBN-binding proteins was demonstrated in 44 refractory MM patients treated with pomalidomide and dexamethasone therapy in whom low IKZF1 gene expression predicted lack of response (0/11 responses in the lowest expression quartile). CRBN, IKZF1, and KPNA2 levels also correlate with significant differences in overall survival. Our study identifies CRBN-binding proteins and demonstrates that in addition to CRBN, IKZF1, and KPNA2, expression can predict survival outcomes.

  18. Mosquito control pesticides and sea surface temperatures have differential effects on the survival and oxidative stress response of coral larvae.

    PubMed

    Ross, Cliff; Olsen, Kevin; Henry, Michael; Pierce, Richard

    2015-04-01

    The declining health of coral reefs is intensifying worldwide at an alarming rate due to the combined effects of land-based sources of pollution and climate change. Despite the persistent use of mosquito control pesticides in populated coastal areas, studies examining the survival and physiological impacts of early life-history stages of non-targeted marine organisms are limited. In order to better understand the combined effects of mosquito pesticides and rising sea surface temperatures, we exposed larvae from the coral Porites astreoides to selected concentrations of two major mosquito pesticide ingredients, naled and permethrin, and seawater elevated +3.5 °C. Following 18-20 h of exposure, larvae exposed to naled concentrations of 2.96 µg L(-1) or greater had significantly reduced survivorship compared to controls. These effects were not detected in the presence of permethrin or elevated temperature. Furthermore, larval settlement, post-settlement survival and zooxanthellae density were not impacted by any treatment. To evaluate the sub-lethal stress response of larvae, several oxidative stress endpoints were utilized. Biomarker responses to pesticide exposure were variable and contingent upon pesticide type as well as the specific biomarker being employed. In some cases, such as with protein carbonylation and catalase gene expression, the effects of naled exposure and temperature were interactive. In other cases pesticide exposure failed to induce any sub-lethal stress response. Overall, these results demonstrate that P. astreoides larvae have a moderate degree of resistance against short-term exposure to ecologically relevant concentrations of pesticides even in the presence of elevated temperature. In addition, this work highlights the importance of considering the complexity and differential responses encountered when examining the impacts of combined stressors that occur on varying spatial scales.

  19. Light-Induced Alterations in Striatal Neurochemical Profiles

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.

    1997-01-01

    that receives a number of dopaminergic and glutamatergic input and is known to be involved in the modulation of locomotor and behavioral responses.

  20. Tunable diffraction grating using ultraviolet-light-induced spatial phase modulation in dual-frequency liquid crystal

    SciTech Connect

    Lin, P.-T.; Liang Xiao; Ren Hongwen; Wu, S.-T.

    2004-08-16

    An electrically tunable diffraction phase grating using ultraviolet (UV)-light-induced spatial dielectric modulation of a dual-frequency liquid crystal (DFLC) cell is demonstrated. A photomask with transparent and opaque stripes was used for fabricating the grating. In the UV-exposed stripes, the negative dielectric anisotropy ({delta}{epsilon}) tolane compound of the DFLC mixture is partially polymerized resulting in a decreased threshold voltage as compared to that of the unexposed region. Upon applying a constant voltage, the phase difference between the adjacent pixels is produced. The first-order diffraction efficiency reaches {approx}60% which agrees well with the simulation results. Due to the dual-frequency addressing at 30 V{sub rms}, the response time of the DFLC phase grating was measured to be {approx}1 ms at room temperature.

  1. Reply to Comment on Light-induced atomic desorption and diffusion of Rb from porous alumina

    SciTech Connect

    Villalba, S.; Failache, H.; Lezama, A.

    2010-11-15

    We argue that the model used in our paper [Phys. Rev. A 81, 032901 (2010)] for the analysis of the experimental study of light-induced atomic desorption in porous alumina is the simplest consistent approach to a previously unexplored physical system.

  2. Light-induced Effects in Sillenite Crystals with Shallow and Deep Traps

    NASA Astrophysics Data System (ADS)

    Kornienko, Tatiana; Kisteneva, Marina; Shandarov, Stanislav; Tolstik, Alexei

    This paper presents the light-induced effects in bismuth silicon and bismuth titanium oxide crystals associated both with the electron transitions into the conduction band and with the filling of shallow and deep traps, which determine the optical and electroconductive properties of these crystals. The dynamics of photoconductivity and light-induced absorption is analyzed under conditions of pulsed laser illumination at the wavelength of 532 nm. The possibility to describe the relaxation processes of a population for trapping levels with the use of two-exponential function is demonstrated. The photoconductivity dynamics is characterized by two relaxation times on the order of 100 ns and 10 μs, whereas for light-induced absorption the lifetimes about 10 μs and several days for short- and long-lived traps, respectively, have been obtained. Because of this, the relaxation transitions may be occurred both to the shallow trap centers with energy located close to the conduction band and to the deep-lying traps, which should be included into a diversified theoretical model adequately describing the light-induced phenomena in photorefractive sillenite-family crystals.

  3. Biochemical Response to Androgen Deprivation Therapy Before External Beam Radiation Therapy Predicts Long-term Prostate Cancer Survival Outcomes

    SciTech Connect

    Zelefsky, Michael J.; Gomez, Daniel R.; Polkinghorn, William R.; Pei, Xin; Kollmeier, Marisa

    2013-07-01

    Purpose: To determine whether the response to neoadjuvant androgen deprivation therapy (ADT) defined by a decline in prostate-specific antigen (PSA) to nadir values is associated with improved survival outcomes after external beam radiation therapy (EBRT) for prostate cancer. Methods and Materials: One thousand forty-five patients with localized prostate cancer were treated with definitive EBRT in conjunction with neoadjuvant and concurrent ADT. A 6-month course of ADT was used (3 months during the neoadjuvant phase and 2 to 3 months concurrently with EBRT). The median EBRT prescription dose was 81 Gy using a conformal-based technique. The median follow-up time was 8.5 years. Results: The 10-year PSA relapse-free survival outcome among patients with pre-radiation therapy PSA nadirs of ≤0.3 ng/mL was 74.3%, compared with 57.7% for patients with higher PSA nadir values (P<.001). The 10-year distant metastases-free survival outcome among patients with pre-radiation therapy PSA nadirs of ≤0.3 ng/mL was 86.1%, compared with 78.6% for patients with higher PSA nadir values (P=.004). In a competing-risk analysis, prostate cancer-related deaths were also significantly reduced among patients with pre-radiation therapy PSA nadirs of <0.3 ng/mL compared with higher values (7.8% compared with 13.7%; P=.009). Multivariable analysis demonstrated that the pre-EBRT PSA nadir value was a significant predictor of long-term biochemical tumor control, distant metastases-free survival, and cause-specific survival outcomes. Conclusions: Pre-radiation therapy nadir PSA values of ≤0.3 ng/mL after neoadjuvant ADT were associated with improved long-term biochemical tumor control, reduction in distant metastases, and prostate cancer-related death. Patients with higher nadir values may require alternative adjuvant therapies to improve outcomes.

  4. NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival

    PubMed Central

    Nakano, Masayuki; Tamura, Yasuhisa; Yamato, Masanori; Kume, Satoshi; Eguchi, Asami; Takata, Kumi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    NG2-expressing neural progenitor cells (i.e., NG2 glial cells) maintain their proliferative and migratory activities even in the adult mammalian central nervous system (CNS) and produce myelinating oligodendrocytes and astrocytes. Although NG2 glial cells have been observed in close proximity to neuronal cell bodies in order to receive synaptic inputs, substantive non-proliferative roles of NG2 glial cells in the adult CNS remain unclear. In the present study, we generated NG2-HSVtk transgenic rats and selectively ablated NG2 glial cells in the adult CNS. Ablation of NG2 glial cells produced defects in hippocampal neurons due to excessive neuroinflammation via activation of the interleukin-1 beta (IL-1β) pro-inflammatory pathway, resulting in hippocampal atrophy. Furthermore, we revealed that the loss of NG2 glial cell-derived hepatocyte growth factor (HGF) exacerbated these abnormalities. Our findings suggest that NG2 glial cells maintain neuronal function and survival via the control of neuroimmunological function. PMID:28195192

  5. Movements and survival of Bachman's Sparrows in response to prescribed summer burns in South Carolina

    USGS Publications Warehouse

    Seaman, B.D.; Krementz, D.G.

    2000-01-01

    Prescribed winter burning is a common practice in longleaf pine (Pinus palustris) to manage for red-cockaded woodpeckers (Picoides borealis). The effect of these burns on non-target animals is not well studied. Bachman's sparrows (Aimophila aestivalis) were captured in predominantly longleaf pine stands to be burned and not to be burned at Carolina Sandhills National Wildlife Refuge (CSNWR) and the Savannah River Site (SRS), South Carolina. Sparrows were marked with radio-transmitters and monitored daily. Before burning, daily movements did not differ among sites within or among study areas. Additionally, daily movements did not differ by sex or time within the breeding season. After prescribed burning, daily movements were longer for sparrows in burned stands than in unburned stands. All marked sparrows dispersed 1-3 days after a stand was burned and never returned. We found no evidence that dispersing sparrows successfully breed elsewhere. Bachman's sparrow survival rates and reproductive output after burning were lowered. The juxtaposition of seemingly suitable Bachman's sparrow habitat in relation to burned stands influenced both the duration and length of dispersal movements. Managers need to consider the proximity of available habitats when developing burning plans when managing for Bachman's sparrows.

  6. SiO2/TiO2 Nanocomposite Films on Polystyrene for Light-Induced Cell Detachment Application.

    PubMed

    Cheng, Zhiguo; Cheng, Kui; Weng, Wenjian

    2017-01-25

    Light-induced cell detachment shows much potential in in vitro cell culture and calls for high-performance light-responsive films. In this study, a smooth and dense SiO2/TiO2 nanocomposite thin film with thickness of around 250 nm was first fabricated on H2O2 treated polystyrene (PS) substrate via a low-temperature sol-gel method. It was observed that the film could well-adhere on the PS surface and the bonding strength became increasingly high with the increase of SiO2 content. The peeling strength and shear strength reached 3.05 and 30.02 MPa, respectively. It was observed the surface of the film could transform into superhydrophilic upon 20 min illumination of ultraviolet with a wavelength of 365 nm (UV365). In cell culture, cells, i.e., NIH3T3 and MC3T3-E1 cells, cultured on SiO2/TiO2 nanocomposite film were easily detached after 10 min of UV365 illumination; the detachment rates reached 90.8% and 88.6%, respectively. Correspondingly, continuous cell sheets with good viability were also easily obtained through the same way. The present work shows that SiO2/TiO2 nanocomposite thin film could be easily prepared on polymeric surface at low temperature. The corresponding film exhibits excellent biocompatibility, high bonding strength, and good light responses. It could be a good candidate for the surface of cell culture utensils with light-induced cell detachment property.

  7. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth

    PubMed Central

    Wang, Yin; Noguchi, Ko; Ono, Natsuko; Inoue, Shin-ichiro; Terashima, Ichiro; Kinoshita, Toshinori

    2014-01-01

    Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H+-ATPase, and plasma membrane inward-rectifying K+ channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H+-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42–63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36–41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K+ channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H+-ATPase in guard cells is useful for the promotion of plant growth. PMID:24367097

  8. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth.

    PubMed

    Wang, Yin; Noguchi, Ko; Ono, Natsuko; Inoue, Shin-ichiro; Terashima, Ichiro; Kinoshita, Toshinori

    2014-01-07

    Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H(+)-ATPase, and plasma membrane inward-rectifying K(+) channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H(+)-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42-63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36-41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K(+) channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H(+)-ATPase in guard cells is useful for the promotion of plant growth.

  9. MKK5 regulates high light-induced gene expression of Cu/Zn superoxide dismutase 1 and 2 in Arabidopsis.

    PubMed

    Xing, Yu; Cao, Qingqin; Zhang, Qing; Qin, Ling; Jia, Wensuo; Zhang, Jianhua

    2013-07-01

    Superoxide dismutases (SODs) convert the superoxide radical to hydrogen peroxide and molecular oxygen, and play crucial roles in plant tolerance to oxidative stress. Expression of many genes encoding SODs is promoted in response to environmental stresses, but the exact mechanism of such promotion is largely unknown. Here, we report that MKK5, a mitogen-activated protein kinase kinase, mediated the high light-induced expression of genes of two copper/zinc SODs, CSD1 and CSD2, and was involved in the oxidative adaptation to high light stress. In response to high light, wild-type Arabidopsis plants showed much enhanced expression of CSD1 and CSD2 and higher enzyme activity of MKK5. In the MKK5-RNAi (RNA interference) lines, however, the induction of CSD1 and CSD2 as well as the activation of MKK5 activity were completely arrested. In contrast, overexpression of MKK5 promoted the expression of CSD1 and CSD2. MKK5-RNAi gene silencing and CSD1/2-RNAi suppression plants became much more sensitive to high light stress than wild-type plants, and the double mutant mkk5 csd1 exhibited hypersensitivity to the stress. Plants overexpressing MKK5 showed enhanced tolerance to high light stress. Our results demonstrate that MKK5 mediated a signal of the high light-induced expression of the genes CSD1 and CSD2. Manipulating MKK5 and thereby up-regulating the levels of CSD1 and CSD2 transcripts can improve plant tolerance to high light stress.

  10. p70S6 kinase mediates breast cancer cell survival in response to surgical wound fluid stimulation.

    PubMed

    Segatto, Ilenia; Berton, Stefania; Sonego, Maura; Massarut, Samuele; Fabris, Linda; Armenia, Joshua; Mileto, Mario; Colombatti, Alfonso; Vecchione, Andrea; Baldassarre, Gustavo; Belletti, Barbara

    2014-05-01

    In early breast cancer, local relapses represent a determinant and not simply an indicator of risk for distant relapse and death. Notably, 90% of local recurrences occur at or close to the same quadrant of the primary cancer. Relevance of PI3K/mTOR/p70S6K signaling in breast tumorigenesis is very well documented. However, the pathway/s involved in the process of breast cancer local relapse are not well understood. The ribosomal protein p70S6K has been implicated in breast cancer cell response to post-surgical inflammation, supporting the hypothesis that it may be crucial also for breast cancer recurrence. Here, we show that p70S6K activity is required for the survival of breast cancer cells challenged in "hostile" microenvironments. We found that impairment of p70S6K activity in breast cancer cells strongly decreased their tumor take rate in nude mice. In line with this observation, if cells were challenged to grow in anchorage independence or in clonogenic assay, growth of colonies was strongly dependent on an intact p70S6K signaling. This in vitro finding was particularly evident when breast cancer cells were grown in the presence of wound fluids harvested following surgery from breast cancer patients, suggesting that the stimuli present in the post-surgical setting at least partially relied on activity of p70S6K to stimulate breast cancer relapse. From a mechanistic point of view, our results indicated that p70S6K signaling was able to activate Gli1 and up-regulate the anti-apoptotic protein Bcl2, thereby activating a survival response in breast cancer cells challenged in hostile settings. Our work highlights a previously poorly recognized function of p70S6K in preserving breast cancer cell survival, which could eventually be responsible for local relapse and opens the way to the design of new and more specific therapies aiming to restrain the deleterious effects of wound response.

  11. Immune Response of Mormon Crickets that Survived Infection by Beauveria Bassiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beauveria bassiana is an entomopathogenic Ascomycete fungus that serves as a biological control agent of Mormon crickets (Anabrus simplex Haldeman) and other grasshopper pests. To measure the dose dependent response of Mormon crickets to fungal attack, we applied B. bassiana strain GHA topically to...

  12. Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee Megachile rotundata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transcriptional responses of insects to long-term, ecologically relevant temperature stress are poorly understood. Long-term exposure to low temperatures, commonly referred to as chilling, can lead to physiological effects collectively known as chill injury. Periodically increasing temperatures ...

  13. Role of Listeria monocytogenes sigma(B) in survival of lethal acidic conditions and in the acquired acid tolerance response.

    PubMed

    Ferreira, Adriana; Sue, David; O'Byrne, Conor P; Boor, Kathryn J

    2003-05-01

    The food-borne pathogen Listeria monocytogenes can acquire enhanced resistance to lethal acid conditions through multiple mechanisms. We investigated contributions of the stress-responsive alternative sigma factor, sigma(B), which is encoded by sigB, to growth phase-dependent acid resistance (AR) and to the adaptive acid tolerance response in L. monocytogenes. At various points throughout growth, we compared the relative survival of L. monocytogenes wild-type and DeltasigB strains that had been exposed to either brain heart infusion (pH 2.5) or synthetic gastric fluid (pH 2.5) with and without prior acid adaptation. Under these conditions, survival of the DeltasigB strain was consistently lower than that of the wild-type strain throughout all phases of growth, ranging from 4 orders of magnitude less in mid-log phase to 2 orders of magnitude less in stationary phase. Survival of both DeltasigB and wild-type L. monocytogenes strains increased by 6 orders of magnitude upon entry into stationary phase, demonstrating that the L. monocytogenes growth phase-dependent AR mechanism is sigma(B) independent. sigma(B)-mediated contributions to acquired acid tolerance appear to be greatest in early logarithmic growth. Loss of a functional sigma(B) reduced the survival of L. monocytogenes at pH 2.5 to a greater extent in the presence of organic acid (100 mM acetic acid) than in the presence of inorganic acid alone (HCl), suggesting that L. monocytogenes protection against organic and inorganic acid may be mediated through different mechanisms. sigma(B) does not appear to contribute to pH(i) homeostasis through regulation of net proton movement across the cell membrane or by regulation of pH(i) buffering by the GAD system under the conditions examined in this study. In summary, a functional sigma(B) protein is necessary for full resistance of L. monocytogenes to lethal acid treatments.

  14. Diabetic retinopathy alters light-induced clock gene expression and dopamine levels in the mouse retina

    PubMed Central

    Lahouaoui, Hasna; Coutanson, Christine; Cooper, Howard M.; Bennis, Mohamed

    2016-01-01

    Purpose Diabetic retinopathy is one of the most common consequences of diabetes that affects millions of working-age adults worldwide and leads to progressive degeneration of the retina, visual loss, and blindness. Diabetes is associated with circadian disruption of the central and peripheral circadian clocks, but the mechanisms responsible for such alterations are unknown. Using a streptozotocin (STZ)-induced model of diabetes, we investigated whether diabetes alters 1) the circadian regulation of clock genes in the retina and in the central clocks, 2) the light response of clock genes in the retina, and/or 3) light-driven retinal dopamine (DA), a major output marker of the retinal clock. Methods To quantify circadian expression of clock and clock-controlled genes, retinas and suprachiasmatic nucleus (SCN) from the same animals were collected every 4 h in circadian conditions, 12 weeks post-diabetes. Induction of Per1, Per2, and c-fos mRNAs was quantified in the retina after the administration of a pulse of monochromatic light (480 nm, 1.17×1014 photons/cm2/s, 15 min) at circadian time 16. Gene expression was assessed with real-time reverse transcription PCR (RT–PCR). Pooled retinas from the control and STZ-diabetic mice were collected 2 h after light ON and light OFF (Zeitgeber time (ZT)2 and ZT14), and DA and its metabolite were analyzed with high-performance liquid chromatography (HPLC). Results We found variable effects of diabetes on the expression of clock genes in the retina and only slight differences in phase and/or amplitude in the SCN. c-fos and Per1 induction by a 480 nm light pulse was abolished in diabetic animals at 12 weeks post-induction of diabetes in comparison with the control mice, suggesting a deficit in light-induced neuronal activation of the retinal clock. Finally, we quantified a 56% reduction in the total number of tyrosine hydroxylase (TH) immunopositive cells, associated with a decrease in DA levels during the subjective day (ZT2

  15. Survival and feeding responses of Anacanthotermes ochraceus (Hodotermitidae: Isoptera) to local and imported wood.

    PubMed

    Kaakeh, Walid

    2005-12-01

    Forty-six local and imported wood were tested for resistance to feeding damage by the termite Anacanthotermes ochraceus (Burmeister), the most dominant species in the United Arab Emirates and the Arab Gulf region. Wood was used for construction, wall paneling, and furniture. Wood was evaluated in a 4-wk forced feeding bioassay. Each wood block was graded by the amount of termite damage by using a damage rating index (DRI) of 0 to 5 and wood rating index from very resistant to very susceptible wood. Local wood was mostly susceptible to feeding of termites; imported wood varied in resistance to feeding damage. Wood was placed in groups according to the percentages of weight loss (WL), termite survival (TS), and DRI. Wood was classified as very resistant (%WL from 0.0 to 0.3, %TS from 0.01 to 0.5, and DRI of 0.01), resistant (%WL from 1.1 to 4.9, %TS from 0.8 to 4.8, and DRI of 1.0), moderately resistant (%WL from 6.6 to 9.3, %TS from 6.3 to 8.3, and DRI of 2.0-2.3), slightly resistant (%WL from 10.1 to 19.9, %TS from 9.5 to 28.0, and DRI of 2.5-3.5), susceptible (%WL from 21.5 to 48.6, %TS from 37.3 to 64.8, and DRI of 4.0-4.3) and very susceptible (%WL from 50.0 to 59.8, %TS from 72.8 to 79.0, and DRI of 4.5-5.0). The characterization of the extracts of resistant wood may prove of economic value and lead to the development of new chemicals (repellents or antifeedants) for termite control.

  16. 670 nm red light preconditioning supports Müller cell function: evidence from the white light-induced damage model in the rat retina.

    PubMed

    Albarracin, Rizalyn; Valter, Krisztina

    2012-01-01

    Glial cells play an important role in the maintenance of normal structure and function of the neural components of the central nervous system. The Müller cells are one of the macroglial elements in the retina and their wide-ranging roles are responsible for the protection and proper functioning of the photoreceptors. In the present study, we aimed to test the effects of pretreatment with 670 nm red light on Müller cells in the light-induced model of retinal degeneration. Adult Sprague-Dawley albino rats were treated with 670 nm red light, from an LED source prior to exposure to bright (1000 lux) continuous light for 24 h. Müller cell-specific markers were used to assess structural and functional changes in this cell type 1 week after contact with damaging light. Changes in gene (Edn2, LIF, TNF-α) and protein (S100β, Vimentin, LIF, iNOS, GS, Cyclin-D1) levels and localization were evaluated using RT-qPCR, and immunohistochemistry. Our results showed that 670 nm light pretreatment ameliorates the light-induced alterations in the expression of Müller-cell specific markers for structure, stress, metabolism and inflammation. This suggests that 670 nm light preconditioning may promote neuroprotective effects in the retina from light-induced damage, possibly through pathways regulating the roles of Müller cells in maintaining retinal homeostasis.

  17. MGMT promoter methylation is associated with temozolomide response and prolonged progression-free survival in disseminated cutaneous melanoma.

    PubMed

    Tuominen, Rainer; Jewell, Rosalyn; van den Oord, Joost J; Wolter, Pascal; Stierner, Ulrika; Lindholm, Christer; Hertzman Johansson, Carolina; Lindén, Diana; Johansson, Hemming; Frostvik Stolt, Marianne; Walker, Christy; Snowden, Helen; Newton-Bishop, Julia; Hansson, Johan; Egyházi Brage, Suzanne

    2015-06-15

    To investigate the predictive and prognostic value of O(6) -methylguanine DNA methyltransferase (MGMT) inactivation by analyses of promoter methylation in pretreatment tumor biopsies from patients with cutaneous melanoma treated with dacarbazine (DTIC) or temozolomide (TMZ) were performed. The patient cohorts consisted of Belgian and Swedish disseminated melanoma patients. Patients were subdivided into those receiving single-agent treatment with DTIC/TMZ (cohort S, n = 74) and those treated with combination chemotherapy including DTIC/TMZ (cohort C, n = 79). Median follow-up was 248 and 336 days for cohort S and cohort C, respectively. MGMT promoter methylation was assessed by three methods. The methylation-related transcriptional silencing of MGMT mRNA expression was assessed by real-time RT-PCR. Response to chemotherapy and progression-free survival (PFS) and overall survival were correlated to MGMT promoter methylation status. MGMT promoter methylation was detected in tumor biopsies from 21.5 % of the patients. MGMT mRNA was found to be significantly lower in tumors positive for MGMT promoter methylation compared to tumors without methylation in both treatment cohorts (p < 0.005). DTIC/TMZ therapy response rate was found to be significantly associated with MGMT promoter methylation in cohort S (p = 0.0005), but did not reach significance in cohort C (p = 0.16). Significantly longer PFS was observed among patients with MGMT promoter-methylated tumors (p = 0.002). Multivariate Cox regression analysis identified presence of MGMT promoter methylation as an independent variable associated with longer PFS. Together, this implies that MGMT promoter methylation is associated with response to single-agent DTIC/TMZ and longer PFS in disseminated cutaneous melanoma.

  18. Relative biological effectiveness (RBE) and out-of-field cell survival responses to passive scattering and pencil beam scanning proton beam deliveries.

    PubMed

    Butterworth, Karl T; McGarry, Conor K; Clasie, Ben; Carabe-Fernandez, Alejandro; Schuemann, Jan; Depauw, Nicolas; Tang, Shikui; McMahon, Stephen J; Schettino, Giuseppe; O'Sullivan, Joe M; Lu, Hsaio-Ming; Kooy, Hanne; Paganetti, Harald; Hounsell, Alan R; Held, Kathryn D; Prise, Kevin M

    2012-10-21

    The relative biological effectiveness (RBE) of passive scattered (PS) and pencil beam scanned (PBS) proton beam delivery techniques for uniform beam configurations was determined by clonogenic survival. The radiobiological impact of modulated beam configurations on cell survival occurring in- or out-of-field for both delivery techniques was determined with intercellular communication intact or physically inhibited. Cell survival responses were compared to those observed using a 6 MV photon beam produced with a linear accelerator. DU-145 cells showed no significant difference in survival response to proton beams delivered by PS and PBS or 6 MV photons taking into account a RBE of 1.1 for protons at the centre of the spread out Bragg peak. Significant out-of-field effects similar to those observed for 6 MV photons were observed for both PS and PBS proton deliveries with cell survival decreasing to 50-60% survival for scattered doses of 0.05 and 0.03 Gy for passive scattered and pencil beam scanned beams respectively. The observed out-of-field responses were shown to be dependent on intercellular communication between the in- and out-of-field cell populations. These data demonstrate, for the first time, a similar RBE between passive and actively scanned proton beams and confirm that out-of-field effects may be important determinants of cell survival following exposure to modulated photon and proton fields.

  19. Relative biological effectiveness (RBE) and out-of-field cell survival responses to passive scattering and pencil beam scanning proton beam deliveries

    NASA Astrophysics Data System (ADS)

    Butterworth, Karl T.; McGarry, Conor K.; Clasie, Ben; Carabe-Fernandez, Alejandro; Schuemann, Jan; Depauw, Nicolas; Tang, Shikui; McMahon, Stephen J.; Schettino, Giuseppe; O'Sullivan, Joe M.; Lu, Hsaio-Ming; Kooy, Hanne; Paganetti, Harald; Hounsell, Alan R.; Held, Kathryn D.; Prise, Kevin M.

    2012-10-01

    The relative biological effectiveness (RBE) of passive scattered (PS) and pencil beam scanned (PBS) proton beam delivery techniques for uniform beam configurations was determined by clonogenic survival. The radiobiological impact of modulated beam configurations on cell survival occurring in- or out-of-field for both delivery techniques was determined with intercellular communication intact or physically inhibited. Cell survival responses were compared to those observed using a 6 MV photon beam produced with a linear accelerator. DU-145 cells showed no significant difference in survival response to proton beams delivered by PS and PBS or 6 MV photons taking into account a RBE of 1.1 for protons at the centre of the spread out Bragg peak. Significant out-of-field effects similar to those observed for 6 MV photons were observed for both PS and PBS proton deliveries with cell survival decreasing to 50-60% survival for scattered doses of 0.05 and 0.03 Gy for passive scattered and pencil beam scanned beams respectively. The observed out-of-field responses were shown to be dependent on intercellular communication between the in- and out-of-field cell populations. These data demonstrate, for the first time, a similar RBE between passive and actively scanned proton beams and confirm that out-of-field effects may be important determinants of cell survival following exposure to modulated photon and proton fields

  20. TLR9 Activation Dampens the Early Inflammatory Response to Paracoccidioides brasiliensis, Impacting Host Survival

    PubMed Central

    Menino, João Filipe; Saraiva, Margarida; Gomes-Alves, Ana G.; Lobo-Silva, Diogo; Sturme, Mark; Gomes-Rezende, Jéssica; Saraiva, Ana Laura; Goldman, Gustavo H.; Cunha, Cristina; Carvalho, Agostinho; Romani, Luigina; Pedrosa, Jorge; Castro, António Gil; Rodrigues, Fernando

    2013-01-01

    Background Paracoccidioides brasiliensis causes paracoccidioidomycosis, one of the most prevalent systemic mycosis in Latin America. Thus, understanding the characteristics of the protective immune response to P. brasiliensis is of interest, as it may reveal targets for disease control. The initiation of the immune response relies on the activation of pattern recognition receptors, among which are TLRs. Both TLR2 and TLR4 have been implicated in the recognition of P. brasiliensis and regulation of the immune response. However, the role of TLR9 during the infection by this fungus remains unclear. Methodology/Principal findings We used in vitro and in vivo models of infection by P. brasiliensis, comparing wild type and TLR9 deficient (−/−) mice, to assess the contribution of TLR9 on cytokine induction, phagocytosis and outcome of infection. We show that TLR9 recognizes either the yeast form or DNA from P. brasiliensis by stimulating the expression/production of pro-inflammatory cytokines by bone marrow derived macrophages, also increasing their phagocytic ability. We further show that TLR9 plays a protective role early after intravenous infection with P. brasiliensis, as infected TLR9−/− mice died at higher rate during the first 48 hours post infection than wild type mice. Moreover, TLR9−/− mice presented tissue damage and increased expression of several cytokines, such as TNF-α and IL-6. The increased pattern of cytokine expression was also observed during intraperitoneal infection of TLR9−/− mice, with enhanced recruitment of neutrophils. The phenotype of TLR9−/− hosts observed during the early stages of P. brasiliensis infection was reverted upon a transient, 48 hours post-infection, neutrophil depletion. Conclusions/Significance Our results suggest that TLR9 activation plays an early protective role against P. brasiliensis, by avoiding a deregulated type of inflammatory response associated to neutrophils that may lead to tissue damage. Thus

  1. The Staphylococcus aureus Response to Unsaturated Long Chain Free Fatty Acids: Survival Mechanisms and Virulence Implications

    PubMed Central

    Kenny, John G.; Ward, Deborah; Josefsson, Elisabet; Jonsson, Ing-Marie; Hinds, Jason; Rees, Huw H.; Lindsay, Jodi A.; Tarkowski, Andrej; Horsburgh, Malcolm J.

    2009-01-01

    Staphylococcus aureus is an important human commensal and opportunistic pathogen responsible for a wide range of infections. Long chain unsaturated free fatty acids represent a barrier to colonisation and infection by S. aureus and act as an antimicrobial component of the innate immune system where they are found on epithelial surfaces and in abscesses. Despite many contradictory reports, the precise anti-staphylococcal mode of action of free fatty acids remains undetermined. In this study, transcriptional (microarrays and qRT-PCR) and translational (proteomics) analyses were applied to ascertain the response of S. aureus to a range of free fatty acids. An increase in expression of the σB and CtsR stress response regulons was observed. This included increased expression of genes associated with staphyloxanthin synthesis, which has been linked to membrane stabilisation. Similarly, up-regulation of genes involved in capsule formation was recorded as were significant changes in the expression of genes associated with peptidoglycan synthesis and regulation. Overall, alterations were recorded predominantly in pathways involved in cellular energetics. In addition, sensitivity to linoleic acid of a range of defined (sigB, arcA, sasF, sarA, agr, crtM) and transposon-derived mutants (vraE, SAR2632) was determined. Taken together, these data indicate a common mode of action for long chain unsaturated fatty acids that involves disruption of the cell membrane, leading to interference with energy production within the bacterial cell. Contrary to data reported for other strains, the clinically important EMRSA-16 strain MRSA252 used in this study showed an increase in expression of the important virulence regulator RNAIII following all of the treatment conditions tested. An adaptive response by S. aureus of reducing cell surface hydrophobicity was also observed. Two fatty acid sensitive mutants created during this study were also shown to diplay altered pathogenesis as assessed

  2. A study of the dynamics of a light-induced detonation wave using a self-consistent numerical model

    NASA Astrophysics Data System (ADS)

    Bol'Shov, L. A.; Vorob'ev, V. A.; Kanevskii, M. F.; Chernov, S. Iu.

    1991-07-01

    Results of a theoretical and computational study of the dynamics of light-induced detonation waves in focused laser beams are presented. The effect of the radial structure of the emission on the propagation and breakdown of light-induced detonation waves is analyzed. The computer model used in the study is described in detail.

  3. Monitoring changes in circulating tumour cells as a prognostic indicator of overall survival and treatment response in patients with metastatic melanoma

    PubMed Central

    2014-01-01

    Background New effective treatments for metastatic melanoma greatly improve survival in a proportion of patients. However biomarkers to identify patients that are more likely to benefit from a particular treatment are needed. We previously reported on a multimarker approach for the detection of heterogenous melanoma circulating tumour cells (CTCs). Here we evaluated the prognostic value of this multimarker quantification of CTCs and investigated whether changes in CTC levels during therapy can be used as a biomarker of treatment response and survival outcomes. Methods CTCs were captured by targeting the melanoma associated markers MCSP and MCAM as well as the melanoma stem cell markers ABCB5 and CD271. CTCs were quantified in 27 metastatic melanoma patients treated by surgery or with vemurafenib, ipilimumab or dacarbazine. Patients were enrolled prospectively and CTC counts performed at baseline (prior to treatment), during and after treatment. Results Baseline CTC numbers were not found to be prognostic of overall survival nor of progression free survival. However, a low baseline CTC number was associated with a rapid response to vemurafenib therapy. A decrease in CTCs after treatment initiation was associated with response to treatment and prolonged overall survival in vemurafenib treated patients. Conclusions Measuring changes in CTC numbers during treatment is useful for monitoring therapy response in melanoma patients and for providing prognostic information relating to overall survival. Further studies with larger sample sizes are required to confirm the utility of CTC quantification as a companion diagnostic for metastatic melanoma treatment. PMID:24915896

  4. Necdin modulates proliferative cell survival of human cells in response to radiation-induced genotoxic stress

    PubMed Central

    2012-01-01

    Background The finite replicative lifespan of cells, termed cellular senescence, has been proposed as a protective mechanism against the proliferation of oncogenically damaged cells, that fuel cancer. This concept is further supported by the induction of premature senescence, a process which is activated when an oncogene is expressed in normal primary cells as well as following intense genotoxic stresses. Thus, deregulation of genes that control this process, like the tumor suppressor p53, may contribute to promoting cancer by allowing cells to bypass senescence. A better understanding of the genes that contribute to the establishment of senescence is therefore warranted. Necdin interacts with p53 and is also a p53 target gene, although the importance of Necdin in the p53 response is not clearly understood. Methods In this study, we first investigated Necdin protein expression during replicative senescence and premature senescence induced by gamma irradiation and by the overexpression of oncogenic RasV12. Gain and loss of function experiments were used to evaluate the contribution of Necdin during the senescence process. Results Necdin expression declined during replicative aging of IMR90 primary human fibroblasts or following induction of premature senescence. Decrease in Necdin expression seemed to be a consequence of the establishment of senescence since the depletion of Necdin in human cells did not induce a senescence-like growth arrest nor a flat morphology or SA-β-galactosidase activity normally associated with senescence. Similarly, overexpression of Necdin did not affect the life span of IMR90 cells. However, we demonstrate that in normal human cells, Necdin expression mimicked the effect of p53 inactivation by increasing radioresistance. Conclusion This result suggests that Necdin potentially attenuate p53 signaling in response to genotoxic stress in human cells and supports similar results describing an inhibitory function of Necdin over p53-dependent

  5. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    SciTech Connect

    Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  6. Nicotinamide mononucleotide adenylyltransferase promotes hypoxic survival by activating the mitochondrial unfolded protein response

    PubMed Central

    Mao, X R; Kaufman, D M; Crowder, C M

    2016-01-01

    Gain-of-function mutations in the mouse nicotinamide mononucleotide adenylyltransferase type 1 (Nmnat1) produce two remarkable phenotypes: protection against traumatic axonal degeneration and reduced hypoxic brain injury. Despite intensive efforts, the mechanism of Nmnat1 cytoprotection remains elusive. To develop a new model to define this mechanism, we heterologously expressed a mouse Nmnat1 non-nuclear-localized gain-of-function mutant gene (m-nonN-Nmnat1) in the nematode Caenorhabditis elegans and show that it provides protection from both hypoxia-induced animal death and taxol-induced axonal pathology. Additionally, we find that m-nonN-Nmnat1 significantly lengthens C. elegans lifespan. Using the hypoxia-protective phenotype in C. elegans, we performed a candidate screen for genetic suppressors of m-nonN-Nmnat1 cytoprotection. Loss of function in two genes, haf-1 and dve-1, encoding mitochondrial unfolded protein response (mitoUPR) factors were identified as suppressors. M-nonN-Nmnat1 induced a transcriptional reporter of the mitoUPR gene hsp-6 and provided protection from the mitochondrial proteostasis toxin ethidium bromide. M-nonN-Nmnat1 was also protective against axonal degeneration in C. elegans induced by the chemotherapy drug taxol. Taxol markedly reduced basal expression of a mitoUPR reporter; the expression was restored by m-nonN-Nmnat1. Taken together, these data implicate the mitoUPR as a mechanism whereby Nmnat1 protects from hypoxic and axonal injury. PMID:26913604

  7. ERRα is a marker of tamoxifen response and survival in triple-negative breast cancer

    PubMed Central

    Manna, Subrata; Bostner, Josefine; Sun, Yang; Miller, Lance D.; Alayev, Anya; Schwartz, Naomi S.; Lager, Elin; Fornander, Tommy; Nordenskjöld, Bo; Yu, Jane J.; Stål, Olle; Holz, Marina K.

    2016-01-01

    Purpose Estrogen-related receptor alpha (ERRα) signaling has recently been implicated in breast cancer. We investigated the clinical value of ERRα in randomized cohorts of tamoxifen-treated and adjuvant-untreated patients. Experimental design Cox proportional hazards regression was used to evaluate the significance of associations between ERRα gene expression levels and patient DMFS in a previously published microarray dataset representing two thousand breast tumor cases derived from multiple medical centers worldwide. The 912 tumors used for immunostaining were from a tamoxifen-randomized primary breast cancer trial conducted in Stockholm, Sweden, during 1976–1990. Mouse model was used to study the effect of tamoxifen treatment on lung colonization of MDA-MB-231 control cells and MDA-MB-231 cells with stable knockdown of ERRα. The phenotypic effects associated with ERRα modulation were studied using immunoblotting analyses and wound healing assay. Results We found that in ER-negative and triple-negative breast cancer (TNBC) adjuvant-untreated patients, ERRα expression indicated worse prognosis and correlated with poor outcome predictors. However, in tamoxifen-treated patients, an improved outcome was observed with high ERRα gene and protein expression. Reduced ERRα expression was oncogenic in the presence of tamoxifen, measured by in vitro proliferation and migration assays and in vivo metastasis studies. Conclusion Taken together, these data show that ERRα expression predicts response to tamoxifen treatment, and ERRα could be a biomarker of tamoxifen sensitivity and a prognostic factor in TNBC. PMID:26542058

  8. Head and Neck PET/CT: Therapy Response Interpretation Criteria (Hopkins Criteria)—Interreader Reliability, Accuracy, and Survival Outcomes

    PubMed Central

    Marcus, Charles; Ciarallo, Anthony; Tahari, Abdel K.; Mena, Esther; Koch, Wayne; Wahl, Richard L.; Kiess, Ana P.; Kang, Hyunseok; Subramaniam, Rathan M.

    2015-01-01

    There has been no established qualitative system of interpretation for therapy response assessment using PET/CT for head and neck cancers. The objective of this study was to validate the Hopkins interpretation system to assess therapy response and survival outcome in head and neck squamous cell cancer patients (HNSCC). Methods The study included 214 biopsy-proven HNSCC patients who underwent a posttherapy PET/CT study, between 5 and 24 wk after completion of treatment. The median follow-up was 27 mo. PET/CT studies were interpreted by 3 nuclear medicine physicians, independently. The studies were scored using a qualitative 5-point scale, for the primary tumor, for the right and left neck, and for overall assessment. Scores 1, 2, and 3 were considered negative for tumors, and scores 4 and 5 were considered positive for tumors. The Cohen κ coefficient (κ) was calculated to measure interreader agreement. Overall survival (OS) and progression-free survival (PFS) were analyzed by Kaplan–Meier plots with a Mantel–Cox log-rank test and Gehan Breslow Wilcoxon test for comparisons. Results Of the 214 patients, 175 were men and 39 were women. There was 85.98%, 95.33%, 93.46%, and 87.38% agreement between the readers for overall, left neck, right neck, and primary tumor site response scores, respectively. The corresponding κ coefficients for interreader agreement between readers were, 0.69–0.79, 0.68–0.83, 0.69–0.87, and 0.79–0.86 for overall, left neck, right neck, and primary tumor site response, respectively. The sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy of the therapy assessment were 68.1%, 92.2%, 71.1%, 91.1%, and 86.9%, respectively. Cox multivariate regression analysis showed human papillomavirus (HPV) status and PET/CT interpretation were the only factors associated with PFS and OS. Among the HPV-positive patients (n = 123), there was a significant difference in PFS (hazard ratio [HR], 0.14; 95

  9. Light-Induced Movements of Chloroplasts and Nuclei Are Regulated in Both Cp-Actin-Filament-Dependent and -Independent Manners in Arabidopsis thaliana

    PubMed Central

    2016-01-01

    Light-induced chloroplast movement and attachment to the plasma membrane are dependent on actin filaments. In Arabidopsis thaliana, the short actin filaments on the chloroplast envelope, cp-actin filaments, are essential for chloroplast movement and positioning. Furthermore, cp-actin-filament-mediated chloroplast movement is necessary for the strong-light-induced nuclear avoidance response. The proteins CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1), KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT 1 (KAC1) and KAC2 are required for the generation and/or maintenance of cp-actin filaments in Arabidopsis. In land plants, CHUP1 and KAC family proteins play pivotal roles in the proper movement of chloroplasts and their attachment to the plasma membrane. Here, we report similar but distinct phenotypes in chloroplast and nuclear photorelocation movements between chup1 and kac1kac2 mutants. Measurement of chloroplast photorelocation movement indicated that kac1kac2, but not chup1, exhibited a clear strong-light-induced increase in leaf transmittance changes. The chloroplast movement in kac1kac2 depended on phototropin 2, CHUP1 and two other regulators for cp-actin filaments, PLASTID MOVEMENT IMPAIRED 1 and THRUMIN 1. Furthermore, kac1kac2 retained a weak but significant nuclear avoidance response although chup1 displayed a severe defect in the nuclear avoidance response. The kac1kac2chup1 triple mutant was completely defective in both chloroplast and nuclear avoidance responses. These results indicate that CHUP1 and the KACs function somewhat independently, but interdependently mediate both chloroplast and nuclear photorelocation movements. PMID:27310016

  10. Light-Induced Movements of Chloroplasts and Nuclei Are Regulated in Both Cp-Actin-Filament-Dependent and -Independent Manners in Arabidopsis thaliana.

    PubMed

    Suetsugu, Noriyuki; Higa, Takeshi; Gotoh, Eiji; Wada, Masamitsu

    2016-01-01

    Light-induced chloroplast movement and attachment to the plasma membrane are dependent on actin filaments. In Arabidopsis thaliana, the short actin filaments on the chloroplast envelope, cp-actin filaments, are essential for chloroplast movement and positioning. Furthermore, cp-actin-filament-mediated chloroplast movement is necessary for the strong-light-induced nuclear avoidance response. The proteins CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1), KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT 1 (KAC1) and KAC2 are required for the generation and/or maintenance of cp-actin filaments in Arabidopsis. In land plants, CHUP1 and KAC family proteins play pivotal roles in the proper movement of chloroplasts and their attachment to the plasma membrane. Here, we report similar but distinct phenotypes in chloroplast and nuclear photorelocation movements between chup1 and kac1kac2 mutants. Measurement of chloroplast photorelocation movement indicated that kac1kac2, but not chup1, exhibited a clear strong-light-induced increase in leaf transmittance changes. The chloroplast movement in kac1kac2 depended on phototropin 2, CHUP1 and two other regulators for cp-actin filaments, PLASTID MOVEMENT IMPAIRED 1 and THRUMIN 1. Furthermore, kac1kac2 retained a weak but significant nuclear avoidance response although chup1 displayed a severe defect in the nuclear avoidance response. The kac1kac2chup1 triple mutant was completely defective in both chloroplast and nuclear avoidance responses. These results indicate that CHUP1 and the KACs function somewhat independently, but interdependently mediate both chloroplast and nuclear photorelocation movements.

  11. Predictors of Survival in Esophageal Squamous Cell Carcinoma with Pathologic Major Response after Neoadjuvant Chemoradiation Therapy and Surgery: The Impact of Chemotherapy Protocols

    PubMed Central

    Li, Chia-Ying; Huang, Pei-Ming; Chu, Pei-Yi; Chen, Po-Ming; Lin, Mong-Wei; Kuo, Shuenn-Wen

    2016-01-01

    Tumor recurrence is an important problem threatening esophageal cancer patients after surgery, even when they achieve a pathologic major response (pMR) after neoadjuvant concurrent chemoradiation therapy (CCRT). The predictors related to overall survival and disease progression for these patients remain elusive. We aimed to identify factors that predict disease progression and overall survival in esophageal squamous cell carcinoma (SCC) patients who achieve a pMR after neoadjuvant CCRT followed by surgery. We conducted a retrospective study to analyze the factors influencing survival and disease progression after esophagectomy for esophageal cancer patients who had a major response to CCRT, which is defined by complete pathological response or microscopic residual disease without lymph node metastasis. From our study cohort, 285 patients underwent CCRT and subsequent esophagectomy; 171 (60%) of these patients achieved pMR. After excluding patients with lymph node metastases, incomplete clinical data, and adenocarcinomas, we enrolled 117 patients in this study. We found that the CCRT regimen was the only factor that influenced overall survival. The overall survival of the patients receiving taxane-incorporated CCRT was superior to that of patients receiving traditional cisplatin and 5-fluorouracil (PF) (P = 0.011). The CCRT regimen can significantly influence the clinical outcome of esophageal SCC patients who achieve pMR after neoadjuvant CCRT and esophagectomy. Incorporation of taxanes into cisplatin-based CCRT may be associated with prolonged survival. PMID:27777949

  12. Green-Light-Induced Inactivation of Receptor Signaling Using Cobalamin-Binding Domains.

    PubMed

    Kainrath, Stephanie; Stadler, Manuela; Reichhart, Eva; Distel, Martin; Janovjak, Harald

    2017-04-10

    Optogenetics and photopharmacology provide spatiotemporally precise control over protein interactions and protein function in cells and animals. Optogenetic methods that are sensitive to green light and can be used to break protein complexes are not broadly available but would enable multichromatic experiments with previously inaccessible biological targets. Herein, we repurposed cobalamin (vitamin B12) binding domains of bacterial CarH transcription factors for green-light-induced receptor dissociation. In cultured cells, we observed oligomerization-induced cell signaling for the fibroblast growth factor receptor 1 fused to cobalamin-binding domains in the dark that was rapidly eliminated upon illumination. In zebrafish embryos expressing fusion receptors, green light endowed control over aberrant fibroblast growth factor signaling during development. Green-light-induced domain dissociation and light-inactivated receptors will critically expand the optogenetic toolbox for control of biological processes.

  13. Light-Induced Polar pH Changes in Leaves of Elodea canadensis1

    PubMed Central

    Elzenga, J. Theo M.; Prins, Hidde B. A.

    1989-01-01

    The effect of an extracellular electron acceptor, ferricyanide, on the light-induced polar leaf pH changes of the submerged angiosperm Elodea canadensis in light and in darkness was determined. The rate of transmembrane ferricyanide reduction was stimulated by increased light intensity and was inhibited by inorganic carbon, indicating that changes in the redox state of the chloroplast were reflected at the plasma membrane. The addition of ferricyanide inhibited the light-induced polar leaf pH reaction. This effect could be balanced by increasing the light intensity. In the dark, the acidification induced by ferricyanide was not influenced by diethylstilbestrol at concentrations that completely inhibited the polar leaf pH changes. This indicates that the ferricyanide-induced H+ extrusion and the H+ transport during the polar reaction were mediated by different mechanisms. PMID:16667045

  14. Protective effect of taurine on the light-induced disruption of isolated frog rod outer segments

    SciTech Connect

    Pasantes-Morales, H.; Ademe, R.M.; Quesada, O.

    1981-01-01

    Isolated frog rod outer segments (ROS) incubated in a Krebs-bicarbonate medium, and illuminated for 2 h, show a profound alteration in their structure. This is characterized by distention of discs, vesiculation, and a marked swelling. The light-induced ROS disruption requires the presence of bicarbonate and sodium chloride. Replacement of bicarbonate by TRIS or HEPES protects ROS structure. Also, substitution of sodium chloride by sucrose or choline chloride maintains unaltered the ROS structure. Deletion of calcium, magnesium, or phosphate does not modify the effect produced by illumination. An increased accumulation of labeled bicarbonate and tritiated water is observed in illuminated ROS, as compared with controls in the dark. The presence of taurine, GABA, or glycine, at concentrations of 5-25 mM, effectively counteracts the light-induced ROS disruption. Taurine (25 mM) reduces labeled bicarbonate and tritiated water levels to those observed in the dark incubated ROS.

  15. Experimental study on light induced influence model to mice using support vector machine

    NASA Astrophysics Data System (ADS)

    Ji, Lei; Zhao, Zhimin; Yu, Yinshan; Zhu, Xingyue

    2014-08-01

    Previous researchers have made studies on different influences created by light irradiation to animals, including retinal damage, changes of inner index and so on. However, the model of light induced damage to animals using physiological indicators as features in machine learning method is never founded. This study was designed to evaluate the changes in micro vascular diameter, the serum absorption spectrum and the blood flow influenced by light irradiation of different wavelengths, powers and exposure time with support vector machine (SVM). The micro images of the mice auricle were recorded and the vessel diameters were calculated by computer program. The serum absorption spectrums were analyzed. The result shows that training sample rate 20% and 50% have almost the same correct recognition rate. Better performance and accuracy was achieved by third-order polynomial kernel SVM quadratic optimization method and it worked suitably for predicting the light induced damage to organisms.

  16. Kinetics of Light-induced Metastable Defect Creation and Annealing in a-Si:H

    NASA Astrophysics Data System (ADS)

    Kodolbaþ, Alp Osman; Eray, Aynur; Öktü, Özcan

    2002-01-01

    Constant Photocurrent Method (CPM) and steady state photoconductivity measurements are used to investigate the creation of light-induced metastable defects in a-Si:H at room temperature and their annealing. Light-induced metastable defect concentration Nd varies with exposure time teas ter with r=0.34 ± 0.02, as expected from the recombination induced weak bond breaking model [1]. The validity of a stretched exponential model is also studied [2]. From the annealing experiments, the distribution of thermal annealing activation energies is calculated following the method proposed by Hata and Wagner [3]. Defects created at room temperature show a narrow distribution of annealing activation energies peaking at 0.97eV. The relation between photoconductivity and Nd is strongly nonlinear. Defects created at earlier times of illumination degrade photoconductivity more strongly, and these defects anneal out more easily than those created at later times of illumination.

  17. Experimental evidence on removing copper and light-induced degradation from silicon by negative charge

    SciTech Connect

    Boulfrad, Yacine Lindroos, Jeanette; Yli-Koski, Marko; Savin, Hele; Wagner, Matthias; Wolny, Franziska

    2014-11-03

    In addition to boron and oxygen, copper is also known to cause light-induced degradation (LID) in silicon. We have demonstrated previously that LID can be prevented by depositing negative corona charge onto the wafer surfaces. Positively charged interstitial copper ions are proposed to diffuse to the negatively charged surface and consequently empty the bulk of copper. In this study, copper out-diffusion was confirmed by chemical analysis of the near surface region of negatively/positively charged silicon wafer. Furthermore, LID was permanently removed by etching the copper-rich surface layer after negative charge deposition. These results demonstrate that (i) copper can be effectively removed from the bulk by negative charge, (ii) under illumination copper forms a recombination active defect in the bulk of the wafer causing severe light induced degradation.

  18. Dynamics of light-induced NIR-absorption of Nb4 polarons in SBN

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Vikhnin, V.; Kapphan, S.

    The dynamics of light-induced (Kr+-, Ar+-laser) electronic polarons (Nb4+ centers with broad absorption band around 0.8 eV) and light-induced centers of other types were investigated in SrxBa1-xNb2O6: Cr (SBN:Cr) and in SBN: Ce using FTIR absorption measurements at low temperature. A theoretical model involving Cr3+/Cr4+, Ce3+/Ce4+, Nb4+ electronic polarons and trapping X-centers is proposed. The trapping of polarons at Cr4+/Ce4+ centers with subsequent recharging is shown to play an important role in the polaron dynamics. The predictions of the model are in very good agreement with the experimental results.

  19. Experimental evidence on removing copper and light-induced degradation from silicon by negative charge

    NASA Astrophysics Data System (ADS)

    Boulfrad, Yacine; Lindroos, Jeanette; Wagner, Matthias; Wolny, Franziska; Yli-Koski, Marko; Savin, Hele

    2014-11-01

    In addition to boron and oxygen, copper is also known to cause light-induced degradation (LID) in silicon. We have demonstrated previously that LID can be prevented by depositing negative corona charge onto the wafer surfaces. Positively charged interstitial copper ions are proposed to diffuse to the negatively charged surface and consequently empty the bulk of copper. In this study, copper out-diffusion was confirmed by chemical analysis of the near surface region of negatively/positively charged silicon wafer. Furthermore, LID was permanently removed by etching the copper-rich surface layer after negative charge deposition. These results demonstrate that (i) copper can be effectively removed from the bulk by negative charge, (ii) under illumination copper forms a recombination active defect in the bulk of the wafer causing severe light induced degradation.

  20. Absolute Configuration from Different Multifragmentation Pathways in Light-Induced Coulomb Explosion Imaging.

    PubMed

    Pitzer, Martin; Kastirke, Gregor; Kunitski, Maksim; Jahnke, Till; Bauer, Tobias; Goihl, Christoph; Trinter, Florian; Schober, Carl; Henrichs, Kevin; Becht, Jasper; Zeller, Stefan; Gassert, Helena; Waitz, Markus; Kuhlins, Andreas; Sann, Hendrik; Sturm, Felix; Wiegandt, Florian; Wallauer, Robert; Schmidt, Lothar Ph H; Johnson, Allan S; Mazenauer, Manuel; Spenger, Benjamin; Marquardt, Sabrina; Marquardt, Sebastian; Schmidt-Böcking, Horst; Stohner, Jürgen; Dörner, Reinhard; Schöffler, Markus; Berger, Robert

    2016-08-18

    The absolute configuration of individual small molecules in the gas phase can be determined directly by light-induced Coulomb explosion imaging (CEI). Herein, this approach is demonstrated for ionization with a single X-ray photon from a synchrotron light source, leading to enhanced efficiency and faster fragmentation as compared to previous experiments with a femtosecond laser. In addition, it is shown that even incomplete fragmentation pathways of individual molecules from a racemic CHBrClF sample can give access to the absolute configuration in CEI. This leads to a significant increase of the applicability of the method as compared to the previously reported complete break-up into atomic ions and can pave the way for routine stereochemical analysis of larger chiral molecules by light-induced CEI.

  1. Whole-brain radiotherapy with or without efaproxiral for the treatment of brain metastases: Determinants of response and its prognostic value for subsequent survival

    SciTech Connect

    Stea, Baldassarre . E-mail: bstea@azcc.arizona.edu; Suh, John H.; Boyd, Adam P. M.S.; Cagnoni, Pablo J.; Shaw, Edward

    2006-03-15

    Purpose: To determine the prognostic factors for radiographic response and its prognostic value for subsequent survival in patients undergoing whole-brain radiotherapy (WBRT) for brain metastases. Methods and Materials: Five hundred fifteen eligible patients were randomized in a phase III trial evaluating WBRT and supplemental oxygen with or without efaproxiral, an allosteric modifier of hemoglobin that reduces hemoglobin oxygen-binding affinity and enhances tumor oxygenation, potentially increasing tumor radiosensitivity. Brain images were obtained at baseline and at scheduled follow-up visits after WBRT. Landmark analysis was used to assess the ability of response at selected time points to predict subsequent survival. Logistic regression was used to assess determinants of response at 3 months. Results: Treatment arm, Karnofsky Performance Status, presence or absence of liver metastases, and primary site were all determinants of response at the 3-month follow-up visit, with patients in the efaproxiral arm experiencing a 67% greater odds of response at this visit (p = 0.02). Response at 3 and 6 months was a significant prognostic factor for longer subsequent survival. Conclusions: The 3-month scan is a valuable prognostic factor for subsequent survival in patients with brain metastases treated with WBRT. Patients in the efaproxiral arm had a higher response rate at 3 and 6 months than those in the control arm.

  2. Spin Hall effects for cold atoms in a light induced gauge potential

    SciTech Connect

    Zhu, Shi-Liang; Fu, Hao; Wu, C.-J.; Zhang, S.-C.; Duan, L.-M. /Michigan U., MCTP

    2010-03-16

    We propose an experimental scheme to observe spin Hall effects with cold atoms in a light induced gauge potential. Under an appropriate configuration, the cold atoms moving in a spatially varying laser field experience an effective spin-dependent gauge potential. Through numerical simulation, we demonstrate that such a gauge field leads to observable spin Hall currents under realistic conditions. We also discuss the quantum spin Hall state in an optical lattice.

  3. The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening.

    PubMed

    McLachlan, Deirdre H; Lan, Jue; Geilfus, Christoph-Martin; Dodd, Antony N; Larson, Tony; Baker, Alison; Hõrak, Hanna; Kollist, Hannes; He, Zhesi; Graham, Ian; Mickelbart, Michael V; Hetherington, Alistair M

    2016-03-07

    Stomata regulate the uptake of CO2 and the loss of water vapor [1] and contribute to the control of water-use efficiency [2] in plants. Although the guard-cell-signaling pathway coupling blue light perception to ion channel activity is relatively well understood [3], we know less about the sources of ATP required to drive K(+) uptake [3-6]. Here, we show that triacylglycerols (TAGs), present in Arabidopsis guard cells as lipid droplets (LDs), are involved in light-induced stomatal opening. Illumination induces reductions in LD abundance, and this involves the PHOT1 and PHOT2 blue light receptors [3]. Light also induces decreases in specific TAG molecular species. We hypothesized that TAG-derived fatty acids are metabolized by peroxisomal β-oxidation to produce ATP required for stomatal opening. In silico analysis revealed that guard cells express all the genes required for β-oxidation, and we showed that light-induced stomatal opening is delayed in three TAG catabolism mutants (sdp1, pxa1, and cgi-58) and in stomata treated with a TAG breakdown inhibitor. We reasoned that, if ATP supply was delaying light-induced stomatal opening, then the activity of the plasma membrane H(+)-ATPase should be reduced at this time. Monitoring changes in apoplastic pH in the mutants showed that this was the case. Together, our results reveal a new role for TAGs in vegetative tissue and show that PHOT1 and PHOT2 are involved in reductions in LD abundance. Reductions in LD abundance in guard cells of the lycophyte Selaginella suggest that TAG breakdown may represent an evolutionarily conserved mechanism in light-induced stomatal opening.

  4. Mechanism of UV light-induced photorelaxation in isolated rat aorta.

    PubMed

    Kim, J H; Hong, Y; Shim, C S

    2000-12-01

    Isolated rat thoracic aorta which is pharmacologically precontracted by phenylephrine induces photorelaxation when exposed to long wave length UV-light. The aim of the present study was to characterize the mechanism of UV-light induced by photorelaxation in the rat aorta. 1. UV light relaxed both endothelium-intact and -denuded rat aortic rings contracted by phenylephrine. The magnitude of relaxation on UV light was dependent on the exposure time and slightly greatly in endothelium-denuded rings than in endothelium-intact preparations. 2. L-NAME (10 nM-100 uM) but not D-NAME completely inhibited the photorelaxation in a concentration dependent manner. 3. The UV-induced relaxation was inhibited by methylene blue (1 -100 uM), and verapamil (100 nM), and removal of extracellular Ca2+. In contrast, UV-light induced photorelaxation was potentiated by N(w)-nitro-Larginine (L-NOARG) treatment. 4. In immunocytochemical analysis of UV-light induced iNOS and eNOS expression in rat aortas, at which expression levels were increased in a time-dependent manner on UV-irradiation in aortic endothelium and smooth muscle, respectively. These results suggest that UV light-induced photorelaxation may be due to nitric oxide from exogenously administered L-arginine as well as endogenous nitric oxide donors such as amino acid and arginine derivatives. Additional suggestion is that UV light stimulates the expression of nitric oxide synthases, and its activity for nitric oxide generation is dependent on cytosolic Ca2+ originated from extracellular space.

  5. Genetic dissection of light-induced Ca2+ influx into Drosophila photoreceptors

    PubMed Central

    1994-01-01

    Invertebrate photoreceptors use the inositol-lipid signaling cascade for phototransduction. A useful approach to dissect this pathway and its regulation has been provided by the isolation of Drosophila visual mutants. We measured extracellular changes of Ca2+ [delta Ca2+]o in Drosophila retina using Ca(2+)-selective microelectrodes in both the transient receptor potential (trp) mutant, in which the calcium permeability of the light-sensitive channels is greatly diminished and in the inactivation-but-no-afterpotential C (inaC) mutant which lacks photoreceptor-specific protein kinase C (PKC). Illumination induced a decrease in extracellular [Ca2+] with kinetics and magnitude that changed with light intensity. Compared to wild-type, the light-induced decrease in [Ca2+]o (the Ca2+ signal) was diminished in trp but significantly enhanced in inaC. The enhanced Ca2+ signal was diminished in the double mutant inaC;trp indicating that the effect of the trp mutation overrides the enhancement observed in the absence of eye-PKC. We suggest that the decrease in [Ca2+]o reflects light-induced Ca2+ influx into the photoreceptors and that the trp mutation blocks a large fraction of this Ca2+ influx, while the absence of eye specific PKC leads to enhancement of light-induced Ca2+ influx. This suggestion was supported by Ca2+ measurements in isolated ommatidia loaded with the fluorescent Ca2+ indicator, Ca Green-5N, which indicated an approximately threefold larger light-induced increase in cellular Ca2+ in inaC relative to WT. Our observations are consistent with the hypothesis that TRP is a light activated Ca2+ channel and that the increased Ca2+ influx observed in the absence of PKC is mediated mainly via the TRP channel. PMID:7699363

  6. Selective excitation of vibrational states by shaping of light-induced potentials

    PubMed

    Sola; Chang; Santamaria; Malinovsky; Krause

    2000-11-13

    In this Letter we describe a method for population transfer using intense, ultrafast laser pulses. The selectivity is accomplished by careful shaping of light-induced potentials (LIPs). Creation and control of the LIPs is accomplished by choosing pairs of pulses with proper frequency detunings and time delays. As an example, selective population transfer is demonstrated for a three-state model of the sodium dimer.

  7. Light-induced noncentrosymmetry in acceptor-donor-substituted azobenzene solutions

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Si, Jinhai; Wang, Yougui; Ye, Peixian; Fu, Xingfa; Qiu, Ling; Shen, Yuquan

    1995-10-01

    Light-induced noncentrosymmetry was achieved experimentally in acceptor-donor-substituted azobenzene solutions and observed by phase-matched nondegenerate six-wave mixing. The microscopic origin of the induced noncentrosymmetry was found to be orientational hole burning, which was distinguished directly with net orientation of molecules by experimental observations. The decay time of the induced noncentrosymmetry depended on the rotational orientation time of the sample's molecule, which varied linearly with the viscosity of the solvent.

  8. Light-induced melatonin suppression at night after exposure to different wavelength composition of morning light.

    PubMed

    Kozaki, Tomoaki; Kubokawa, Ayaka; Taketomi, Ryunosuke; Hatae, Keisuke

    2016-03-11

    Bright nocturnal light has been shown to suppress melatonin secretion. However, bright light exposure during the day might reduce light-induced melatonin suppression at night. The human circadian system is sensitive to short wavelength light. This study evaluated the preventive effect of different wavelengths of daytime light on light-induced melatonin suppression at night. Twelve male subjects were exposed to various light conditions (dim, white, and bluish white light) between the hours of 09:00 and 10:30 (daytime light conditions). They were then exposed to light (300lx) again between 01:00 and 02:30 (night-time light exposure). Subjects provided saliva samples before (00:55) and after night-time light exposure (02:30). A two-tailed paired t-test yielded significant decrements in melatonin concentrations after night-time light exposure under daytime dim and white light conditions. No significant differences were found in melatonin concentrations between pre- and post-night-time light exposure with bluish-white light. Present findings suggest that daytime blue light exposure has an acute preventive impact on light-induced melatonin suppression in individuals with a general life rhythm (sleep/wake schedule). These findings may be useful for implementing artificial light environments for humans in, for example, hospitals and underground shopping malls to reduce health risks.

  9. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress

    PubMed Central

    Simontacchi, Marcela; Galatro, Andrea; Ramos-Artuso, Facundo; Santa-María, Guillermo E.

    2015-01-01

    Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant’s ontogeny and environmental fluctuations. Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV) radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant’s priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signaling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation. PMID:26617619

  10. Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of Disrupted Ribosome Biogenesis

    PubMed Central

    Boglev, Yeliz; Badrock, Andrew P.; Trotter, Andrew J.; Du, Qian; Richardson, Elsbeth J.; Parslow, Adam C.; Markmiller, Sebastian J.; Hall, Nathan E.; de Jong-Curtain, Tanya A.; Ng, Annie Y.; Verkade, Heather; Ober, Elke A.; Field, Holly A.; Shin, Donghun; Shin, Chong H.; Hannan, Katherine M.; Hannan, Ross D.; Pearson, Richard B.; Kim, Seok-Hyung; Ess, Kevin C.; Lieschke, Graham J.; Stainier, Didier Y. R.; Heath, Joan K.

    2013-01-01

    Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (ttis450), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In ttis450, the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in ttis450 larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in ttis450 larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death. PMID:23408911

  11. Surviving the crisis: Adaptive wisdom, coping mechanisms and local responses to avian influenza threats in Haining, China.

    PubMed

    Zhang, Letian; Pan, Tianshu

    2008-04-01

    Based on ethnographic research conducted in the summer of 2006, this paper examines local responses to the imminent threat of avian flu in Haining County of Zhejiang Province. During our field investigation, we conducted interviews with officials from local medical institutions (including the hospitals, the animal husbandry and veterinary station, and health clinics), to bureaus of public health and agro-economy. We also visited chicken farms, restaurants and farming households. We address the following factors that commonly structured the perceptions and actions of different social actors in the area of study: The changing mode of information-sharing and communication practices in the local communities; the official drive to professionalize the emergency response management system in the county; and the coping mechanisms that helped the villagers and town residents to weather the storm of avian flu. Our field research suggests that collective survival consciousness was translated into a spirit of voluntarism during the crisis. One important practical lesson we have learned from this study is that the adaptive wisdom embedded in local memories demonstrated its operational worth as a resourceful knowledge base for ordinary farmers to deal with food shortage, famine, plague and future pandemics.

  12. Infection of Burkholderia cepacia Induces Homeostatic Responses in the Host for Their Prolonged Survival: The Microarray Perspective

    PubMed Central

    Mariappan, Vanitha; Vellasamy, Kumutha Malar; Thimma, Jaikumar; Hashim, Onn Haji; Vadivelu, Jamuna

    2013-01-01

    Burkholderia cepacia is an opportunistic human pathogen associated with life-threatening pulmonary infections in immunocompromised individuals. Pathogenesis of B. cepacia infection involves adherence, colonisation, invasion, survival and persistence in the host. In addition, B. cepacia are also known to secrete factors, which are associated with virulence in the pathogenesis of the infection. In this study, the host factor that may be the cause of the infection was elucidated in human epithelial cell line, A549, that was exposed to live B. cepacia (mid-log phase) and its secretory proteins (mid-log and early-stationary phases) using the Illumina Human Ref-8 microarray platform. The non-infection A549 cells were used as a control. Expression of the host genes that are related to apoptosis, inflammation and cell cycle as well as metabolic pathways were differentially regulated during the infection. Apoptosis of the host cells and secretion of pro-inflammatory cytokines were found to be inhibited by both live B. cepacia and its secretory proteins. In contrast, the host cell cycle and metabolic processes, particularly glycolysis/glycogenesis and fatty acid metabolism were transcriptionally up-regulated during the infection. Our microarray analysis provided preliminary insights into mechanisms of B. cepacia pathogenesis. The understanding of host response to an infection would provide novel therapeutic targets both for enhancing the host’s defences and repressing detrimental responses induced by the invading pathogen. PMID:24116227

  13. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress.

    PubMed

    Simontacchi, Marcela; Galatro, Andrea; Ramos-Artuso, Facundo; Santa-María, Guillermo E

    2015-01-01

    Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant's ontogeny and environmental fluctuations. Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV) radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant's priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signaling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation.

  14. Gene expression profiling of Corynebacterium glutamicum during Anaerobic nitrate respiration: induction of the SOS response for cell survival.

    PubMed

    Nishimura, Taku; Teramoto, Haruhiko; Inui, Masayuki; Yukawa, Hideaki

    2011-03-01

    The gene expression profile of Corynebacterium glutamicum under anaerobic nitrate respiration revealed marked differences in the expression levels of a number of genes involved in a variety of cellular functions, including carbon metabolism and respiratory electron transport chain, compared to the profile under aerobic conditions using DNA microarrays. Many SOS genes were upregulated by the shift from aerobic to anaerobic nitrate respiration. An elongated cell morphology, similar to that induced by the DivS-mediated suppression of cell division upon cell exposure to the DNA-damaging reagent mitomycin C, was observed in cells subjected to anaerobic nitrate respiration. None of these transcriptional and morphological differences were observed in a recA mutant strain lacking a functional RecA regulator of the SOS response. The recA mutant cells additionally showed significantly reduced viability compared to wild-type cells similarly grown under anaerobic nitrate respiration. These results suggest a role for the RecA-mediated SOS response in the ability of cells to survive any DNA damage that may result from anaerobic nitrate respiration in C. glutamicum.

  15. Prognostic nutritional index serves as a predictive marker of survival and associates with systemic inflammatory response in metastatic intrahepatic cholangiocarcinoma

    PubMed Central

    Zhang, Chenyue; Wang, Haiyong; Ning, Zhouyu; Xu, Litao; Zhuang, Liping; Wang, Peng; Meng, Zhiqiang

    2016-01-01

    Objective The significance of the prognostic nutritional index (PNI) has been widely reported and confirmed in many types of cancers. However, few studies are available indicating its prognostic power in patients with intrahepatic cholangiocarcinoma (ICC). Thus, we investigated its relationship with overall survival (OS) to evaluate its role in predicting survival in patients with ICC. Patients and methods Between October 2011 and October 2015, 173 consecutive patients with pathologically confirmed locally advanced or metastatic ICC were enrolled. First, the correlations between PNI and clinical factors were analyzed among these patients. Next, univariate and multivariate analyses were conducted to evaluate the association between PNI and OS among these patients with ICC. In addition, the relationships between PNI and three typical systemic inflammatory response (SIR) markers – the neutrophil/lymphocyte ratio (NLR), the platelet/lymphocyte ratio (PLR), and the lymphocyte/monocyte ratio (LMR) – were also assessed. Results A lower PNI was linked with a shorter OS in patients with ICC, as reflected obviously in the Kaplan–Meier analyses. The patients with ICC were divided into the locally advanced group and the metastatic group. Further analyses revealed that PNI is not associated with OS in the locally advanced group. However, in the subgroup of patients with metastatic ICC, a lower PNI significantly correlated with a worsened OS. The OS for patients with a low PNI is 5 months, whereas the OS is 10.17 months for patients with a high PNI. Multivariate analyses revealed that PNI is independently correlated with OS. We finally proved that PNI is negatively proportional to NLR and PLR and positively proportional to LMR. Conclusion Our results demonstrate that decreased PNI signifies a poor OS and is associated with SIR in patients with metastatic ICC. Therefore, it may serve as a valuable predictive marker in patients with metastatic ICC. PMID:27799789

  16. Survival of Campylobacter jejuni during Stationary Phase: Evidence for the Absence of a Phenotypic Stationary-Phase Response

    PubMed Central

    Kelly, Alison F.; Park, Simon F.; Bovill, Richard; Mackey, Bernard M.

    2001-01-01

    When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39°C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss of viability was preceded by sublethal injury, which was seen as a loss of the ability to grow on media containing 0.1% sodium deoxycholate or 1% sodium chloride. Resistance of cells to mild heat stress (50°C) or aeration was greatest in exponential phase and declined during early stationary phase. These results show that C. jejuni does not mount the normal phenotypic stationary-phase response which results in enhanced stress resistance. This conclusion is consistent with the absence of rpoS homologues in the recently reported genome sequence of this species and their probable absence from strain NCTC 11351. During prolonged incubation of C. jejuni NCTC 11351 in stationary phase, an unusual pattern of decreasing and increasing heat resistance was observed that coincided with fluctuations in the viable count. During stationary phase of Campylobacter coli UA585, nonmotile variants and those with impaired ability to form coccoid cells were isolated at high frequency. Taken together, these observations suggest that stationary-phase cultures of campylobacters are dynamic populations and that this may be a strategy to promote survival in at least some strains. Investigation of two spontaneously arising variants (NM3 and SC4) of C. coli UA585 showed that a reduced ability to form coccoid cells did not affect survival under nongrowth conditions. PMID:11319108

  17. Photocarrier Radiometry Investigation of Light-Induced Degradation of Boron-Doped Czochralski-Grown Silicon Without Surface Passivation

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Li, Bincheng

    2016-04-01

    Light-induced degradation (LID) effects of boron-doped Cz silicon wafers without surface passivation are investigated in details by photocarrier radiometry (PCR). The resistivity of all samples is in the range of 0.006 Ω {\\cdot } {cm} to 38 Ω {\\cdot } {cm}. It is found that light-induced changes in surface state occupation have a great effect on LID under illumination. With the increasing contribution of light-induced changes in surface state occupation, the generation rate of the defect decreases. The light-induced changes in surface state occupation and light-induced degradation dominate the temporal behaviors of the excess carrier density of high- and low-resistivity Si wafers, respectively. Moreover, the temporal behaviors of PCR signals of these samples under laser illumination with different powers, energy of photons, and multiple illuminations were also analyzed to understand the light-induced change of material properties. Based on the nonlinear dependence of PCR signal on the excitation power, a theoretical model taking into account both light-induced changes in surface state occupation and LID processes was proposed to explain those temporal behaviors.

  18. Study on the visible-light-induced photokilling effect of nitrogen-doped TiO2 nanoparticles on cancer cells

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Mi, Lan; Wang, Pei-Nan; Chen, Ji-Yao

    2011-04-01

    Nitrogen-doped TiO2 (N-TiO2) nanoparticles were prepared by calcining the anatase TiO2 nanoparticles under ammonia atmosphere. The N-TiO2 showed higher absorbance in the visible region than the pure TiO2. The cytotoxicity and visible-light-induced phototoxicity of the pure- and N-TiO2 were examined for three types of cancer cell lines. No significant cytotoxicity was detected. However, the visible-light-induced photokilling effects on cells were observed. The survival fraction of the cells decreased with the increased incubation concentration of the nanoparticles. The cancer cells incubated with N-TiO2 were killed more effectively than that with the pure TiO2. The reactive oxygen species was found to play an important role on the photokilling effect for cells. Furthermore, the intracellular distributions of N-TiO2 nanoparticles were examined by laser scanning confocal microscopy. The co-localization of N-TiO2 nanoparticles with nuclei or Golgi complexes was observed. The aberrant nuclear morphologies such as micronuclei were detected after the N-TiO2-treated cells were irradiated by the visible light.

  19. Plastid movement impaired 2, a new gene involved in normal blue-light-induced chloroplast movements in Arabidopsis.

    PubMed

    Luesse, Darron R; DeBlasio, Stacy L; Hangarter, Roger P

    2006-08-01

    Chloroplasts move in a light-dependent manner that can modulate the photosynthetic potential of plant cells. Identification of genes required for light-induced chloroplast movement is beginning to define the molecular machinery that controls these movements. In this work, we describe plastid movement impaired 2 (pmi2), a mutant in Arabidopsis (Arabidopsis thaliana) that displays attenuated chloroplast movements under intermediate and high light intensities while maintaining a normal movement response under low light intensities. In wild-type plants, fluence rates below 20 micromol m(-2) s(-1) of blue light lead to chloroplast accumulation on the periclinal cell walls, whereas light intensities over 20 micromol m(-2) s(-1) caused chloroplasts to move toward the anticlinal cell walls (avoidance response). However, at light intensities below 75 micromol m(-2) s(-1), chloroplasts in pmi2 leaves move to the periclinal walls; 100 micromol m(-2) s(-1) of blue light is required for chloroplasts in pmi2 to move to the anticlinal cell walls, indicating a shift in the light threshold for the avoidance response in the mutant. The pmi2 mutation has been mapped to a gene that encodes a protein of unknown function with a large coiled-coil domain in the N terminus and a putative P loop. PMI2 shares sequence and structural similarity with PMI15, another unknown protein in Arabidopsis that, when mutated, causes a defect in chloroplast avoidance under high-light intensities.

  20. Seedling survival responses to irradiance are differentially influenced by low-water availability in four tree species of the Iberian cool temperate--Mediterranean ecotone

    NASA Astrophysics Data System (ADS)

    Sánchez-Gómez, David; Zavala, Miguel A.; Valladares, Fernando

    2006-11-01

    Inter-specific differences in seedling survival responses along a sun-shade gradient and the influence of low-water availability were examined for four Iberian tree species (Q uercus robur L., Quercus pyrenaica Willd., Pinus sylvestris L. and Pinus pinaster Ait.) typical of the cool temperate-Mediterranean transition zone. Seedlings were grown under controlled conditions in a factorial experiment with four levels of irradiance (1%, 6%, 20% and 100% of full sunlight) and two levels of water availability. Five censuses (from late spring to autumn) leading to four regular intervals (T 0 → T I; T I → T II; T II → T III; T III → T IV) were established. Statistical models of seedling survival as a function of irradiance were calibrated throughout the whole experiment (T 0 → T IV) and also for each time interval and water availability level. Seedling survival responses among different species diverged both in the type of functional response to irradiance and in their response to water stress. Ranking of species according to shade tolerance ( Q. pyrenaica > Q. robur > P. sylvestris > P. pinaster) contrasted with tolerance of high irradiance and conformed to a hypothetical sun-shade trade-off for survival (i.e. species having higher survival in low irradiance—oaks—had poorer survival at high irradiance and vice-versa). Low-water availability also differentially affected each species, with pines being more drought tolerant than oaks. At an intra-specific level, low-water availability decreased survival of Q. pyrenaica under both high and low irradiance. For Q. robur, however, low-water availability exerted a relatively stronger effect under low irradiance. Consequences of the interplay between irradiance and water availability for explaining segregation and coexistence of forest tree species at the ecotone between cool temperate and Mediterranean forests are discussed.

  1. Active Smoking May Negatively Affect Response Rate, Progression-Free Survival, and Overall Survival of Patients With Metastatic Renal Cell Carcinoma Treated With Sunitinib

    PubMed Central

    Keizman, Daniel; Gottfried, Maya; Ish-Shalom, Maya; Maimon, Natalie; Peer, Avivit; Neumann, Avivit; Hammers, Hans; Eisenberger, Mario A.; Sinibaldi, Victoria; Pili, Roberto; Hayat, Henry; Kovel, Svetlana; Sella, Avishay; Boursi, Ben; Weitzen, Rony; Mermershtain, Wilmosh; Rouvinov, Keren; Berger, Raanan; Carducci, Michael A.

    2014-01-01

    Background. Obesity, smoking, hypertension, and diabetes are risk factors for renal cell carcinoma development. Their presence has been associated with a worse outcome in various cancers. We sought to determine their association with outcome of sunitinib treatment in metastatic renal cell carcinoma (mRCC). Methods. An international multicenter retrospective study of sunitinib-treated mRCC patients was performed. Multivariate analyses were performed to determine the association between outcome and the pretreatment status of smoking, body mass index, hypertension, diabetes, and other known prognostic factors. Results. Between 2004 and 2013, 278 mRCC patients were treated with sunitinib: 59 were active smokers, 67 were obese, 73 were diabetic, and 165 had pretreatment hypertension. Median progression-free survival (PFS) was 9 months, and overall survival (OS) was 22 months. Factors associated with PFS were smoking status (past and active smokers: hazard ratio [HR]: 1.17, p = .39; never smokers: HR: 2.94, p < .0001), non-clear cell histology (HR: 1.62, p = .011), pretreatment neutrophil-to-lymphocyte ratio >3 (HR: 3.51, p < .0001), use of angiotensin system inhibitors (HR: 0.63, p = .01), sunitinib dose reduction or treatment interruption (HR: 0.72, p = .045), and Heng risk (good and intermediate risk: HR: 1.07, p = .77; poor risk: HR: 1.87, p = .046). Factors associated with OS were smoking status (past and active smokers: HR: 1.25, p = .29; never smokers: HR: 2.7, p < .0001), pretreatment neutrophil-to-lymphocyte ratio >3 (HR: 2.95, p < .0001), and sunitinib-induced hypertension (HR: 0.57, p = .002). Conclusion. Active smoking may negatively affect the PFS and OS of sunitinib-treated mRCC. Clinicians should consider advising patients to quit smoking at initiation of sunitinib treatment for mRCC. PMID:24309979

  2. Pretreatment Carbohydrate Antigen 19-9 Level Indicates Tumor Response, Early Distant Metastasis, Overall Survival, and Therapeutic Selection in Localized and Unresectable Pancreatic Cancer

    SciTech Connect

    Yoo, Tae; Lee, Woo Jin; Woo, Sang Myung; Kim, Tae Hyun; Han, Sung-Sik; Park, Sang-Jae; Moon, Sung Ho; Shin, Kyung Hwan; Kim, Sang Soo; Hong, Eun Kyung; Kim, Dae Yong; Park, Joong-Won

    2011-11-15

    Purpose: The use of chemoradiotherapy (CRT) for localized and unresectable pancreatic cancer has been disputed because of high probability of distant metastasis. Thus, we analyzed the effect of clinical parameters on tumor response, early distant metastasis within 3 months (DM{sup 3m}), and overall survival to identify an indicator for selecting patients who would benefit from CRT. Methods and Materials: This study retrospectively analyzed the data from 84 patients with localized and unresectable pancreatic cancer who underwent CRT between August 2002 and October 2009. Sex, age, tumor size, histological differentiation, N classification, pre- and post-treatment carbohydrate antigen (CA) 19-9 level, and CA 19-9 percent decrease were analyzed to identify risk factors associated with tumor response, DM{sup 3m}, and overall survival. Results: For all 84 patients, the median survival time was 12.5 months (range, 2-31.9 months), objective response (complete response or partial response) to CRT was observed in 28 patients (33.3%), and DM{sup 3m} occurred in 24 patients (28.6%). Multivariate analysis showed that pretreatment CA 19-9 level ({<=}400 vs. >400 U/ml) was significantly associated with tumor response (45.1% vs. 15.2%), DM{sup 3m} (19.6% vs. 42.4%), and median overall survival time (15.1 vs. 9.7 months) (p < 0.05 for all three parameters). Conclusion: For patients with localized and unresectable pancreatic cancer, pretreatment CA 19-9 level could be helpful in predicting tumor response, DM{sup 3m}, and overall survival and identifying patients who will benefit from CRT.

  3. Light induced apoptosis is accelerated in transgenic retina overexpressing human EAT/mcl-1, an anti-apoptotic bcl-2 related gene

    PubMed Central

    Shinoda, K.; Nakamura, Y.; Matsushita, K.; Shimoda, K.; Okita, H.; Fukuma, M.; Yamada, T.; Ohde, H.; Oguchi, Y.; Hata, J.; Umezawa, A.

    2001-01-01

    BACKGROUND/AIM—EAT/mcl-1 (EAT), an immediate early gene, functions in a similar way to bcl-2 in neutralising Bax mediated cytotoxicity, suggesting that EAT is a blocker of cell death. The aim of this study was to determine the effect of overexpression of the human EAT gene on light induced retinal cell apoptosis.
METHODS—EAT transgenic mice incorporating the EF-1α promoter were utilised, and expression of human EAT was detected by RT-PCR. Light damage was induced by raising mice under constant illumination. Two groups of animals, EAT transgenic mice (n=14) and littermates (n=13), were examined by ERG testing and histopathology at regular time points up to 20 weeks of constant light stimulation. Electrophysiological and histopathological findings were evaluated by established systems of arbitrary scoring as scores 0-2 and scores 0-3, respectively.
RESULTS—The mean score (SD) of ERG response was significantly lower in EAT transgenic mice (0.79 (0.89)) than in littermates (1.69 (0.48)) (p<0.01). Although the differences between the two survival curves did not reach statistical significance (p=0.1156), the estimated incidence of electrophysiological retinal damage was higher in EAT mice (0.0495/mouse/week; 95% confidence interval (CI) 0.0347-0.0500) than in littermates (0. 0199/mouse/week; 95% CI 0.0035-0.0364). The mean scores (SD) for histopathological retinal degeneration were 2.31 (0.63) in littermates and 1.43 (1.22) in EAT transgenic mice (p=0.065). However, Kaplan-Meier curves for histopathological failure in two groups of mice showed that retinal photoreceptor cells were preserved significantly against constant light in the littermate compared with transgenic mice (p=0.0241). The estimated incidence of histopathological retinal damage was 0.0042/mouse/week in the littermates (95% CI 0-0.0120) and 0.0419/mouse/week in the EAT mice (95% CI 0.0286-0.0500).
CONCLUSION—Retinal photoreceptor cell apoptosis under constant light stimulation is

  4. RS9, a novel Nrf2 activator, attenuates light-induced death of cells of photoreceptor cells and Müller glia cells.

    PubMed

    Inoue, Yuki; Shimazawa, Masamitsu; Noda, Yasuhiro; Nagano, Ryota; Otsuka, Tomohiro; Kuse, Yoshiki; Nakano, Yukimichi; Tsuruma, Kazuhiro; Nakagami, Yasuhiro; Hara, Hideaki

    2017-03-27

    The retina is highly sensitive to oxidative stress because of its high consumption of oxygen associated with the phototransductional processes. Recent findings have suggested that oxidative stress is involved in the pathology of age-related macular degeneration (AMD), a progressive degeneration of the central retina. A well-known environmental risk factor is light exposure, as excessive and continuous light exposure can damage photoreceptors. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that controls antioxidative responses and phase 2 enzymes. Thus, we hypothesized that RS9, a specific activator of Nrf2, decreases light-induced retinal cell death in vivo and in vitro. Nrf2 was detected in the nucleus of the 661w cells exposed to RS9 and also after light exposure, and the Nrf2-antioxidant response element (ARE) binding was increased in 661w cells after exposure to RS9. Consequentially, the expression of the phase 2 enzyme's mRNAs of Ho-1, Nqo-1, and Gclm genes were increased in 661w cells after exposure to RS9. Further, RS9 decreased the light-induced death of 661W cells (2,500 lx, 24 h), and also reduced the functional damages and the histological degeneration of the nuclei in the outer nuclear layer (ONL) or the retina in the in vivo studies (8,000 lx, 3 h). HO-1 was increased after light exposure, and Nrf2 was translocated into the nucleus after light exposure in vivo. Silencing of Ho-1 reduced the protective effects of RS9 against light-induced death of 661w cells. These findings indicate that RS9 has therapeutic potential for retinal diseases that are aggravated by light exposure. This article is protected by copyright. All rights reserved.

  5. Fundus Camera-Delivered Light-Induced Retinal Degeneration in Mice With the RPE65 Leu450Met Variant is Associated With Oxidative Stress and Apoptosis

    PubMed Central

    Zhong, Xin; Aredo, Bogale; Ding, Yi; Zhang, Kaiyan; Zhao, Cynthia X.; Ufret-Vincenty, Rafael L.

    2016-01-01

    Purpose Oxidative stress, partly due to light, has an important role in many retinal diseases, including macular degeneration and retinal dystrophies. The Leu450Met variant of RPE65 is expressed in C57BL/6 and in many genetically modified mice. It confers significant resistance to light induced retinal degeneration (LIRD). Our goal was to develop an effective and efficient method to induce LIRD in resistant mice that would recapitulate mechanisms seen in known models of LIRD. Methods The retinas of C57BL/6J mice were exposed to light using a murine fundus camera. Two protocols (with and without intraperitoneal fluorescein) were used. Optical coherence tomography (OCT) helped determine the location and extent of retinal damage. Histology, TUNEL assay, quantitative (q) PCR, and immunohistochemistry were performed. Results Both protocols consistently generated LIRD in C57BL/6J mice. Optical coherence tomography and histology demonstrated that retinal damage starts at the level of the photoreceptor/outer retina and is more prominent in the superior retina. Fundus camera-delivered light-induced retinal degeneration (FCD-LIRD) is associated with apoptosis, subretinal microglia/macrophages, increased expression of oxidative stress response genes, and C3d deposition. Conclusions We characterize two new models of light-induced retinal degeneration that are effective in C57BL/6J mice, and can be modulated in terms of severity. We expect FCD-LIRD to be useful in exploring mechanisms of LIRD in resistant mice, which will be important in increasing our understanding of the retinal response to light damage and oxidative stress. PMID:27768794

  6. Comparative functional analysis of full-length and N-terminal fragments of phytochrome C, D and E in red light-induced signaling.

    PubMed

    Ádám, Éva; Kircher, Stefan; Liu, Peng; Mérai, Zsuzsanna; González-Schain, Nahuel; Hörner, Maximilian; Viczián, András; Monte, Elena; Sharrock, Robert A; Schäfer, Eberhard; Nagy, Ferenc

    2013-10-01

    Phytochromes (phy) C, D and E are involved in the regulation of red/far-red light-induced photomorphogenesis of Arabidopsis thaliana, but only limited data are available on the mode of action and biological function of these lesser studied phytochrome species. We fused N-terminal fragments or full-length PHYC, D and E to YELLOW FLUORESCENT PROTEIN (YFP), and analyzed the function, stability and intracellular distribution of these fusion proteins in planta. The activity of the constitutively nuclear-localized homodimers of N-terminal fragments was comparable with that of full-length PHYC, D, E-YFP, and resulted in the regulation of various red light-induced photomorphogenic responses in the studied genetic backgrounds. PHYE-YFP was active in the absence of phyB and phyD, and PHYE-YFP controlled responses, as well as accumulation, of the fusion protein in the nuclei, was saturated at low fluence rates of red light and did not require functional FAR-RED ELONGATED HYPOCOTYL1 (FHY-1) and FHY-1-like proteins. Our data suggest that PHYC-YFP, PHYD-YFP and PHYE-YFP fusion proteins, as well as their truncated N-terminal derivatives, are biologically active in the modulation of red light-regulated photomorphogenesis. We propose that PHYE-YFP can function as a homodimer and that low-fluence red light-induced translocation of phyE and phyA into the nuclei is mediated by different molecular mechanisms.

  7. Suprachiasmatic Nucleus and Subparaventricular Zone Lesions Disrupt Circadian Rhythmicity but Not Light-Induced Masking Behavior in Nile Grass Rats.

    PubMed

    Gall, Andrew J; Shuboni, Dorela D; Yan, Lily; Nunez, Antonio A; Smale, Laura

    2016-04-01

    The ventral subparaventricular zone (vSPVZ) receives direct retinal input and influences the daily patterning of activity in rodents, making it a likely candidate for the mediation of acute behavioral responses to light (i.e., masking). We performed chemical lesions aimed at the vSPVZ of diurnal grass rats (Arvicanthis niloticus) using N-methyl-D,L-aspartic acid (NMA), a glutamate agonist. Following NMA lesions, we placed grass rats in various lighting conditions (e.g., 12:12 light-dark, constant dark, constant light); presented a series of light pulses at circadian times (CT) 6, 14, 18, and 22; and placed them in a 7-h ultradian cycle to assess behavioral masking. Extensive bilateral lesions of the vSPVZ disrupted the expression of circadian rhythms of activity and abolished the circadian modulation of masking responses to light, without affecting light-induced masking behavior per se. We also found that in diurnal grass rats, NMA was capable of destroying not only neurons of the vSPVZ but also those of the suprachiasmatic nucleus (SCN), even though excitotoxins have been ineffective at destroying cells within the SCN of nocturnal rodents. The vulnerability of the grass rat's SCN to NMA toxicity raises the possibility of a difference in density of receptors for glutamate between nocturnal and diurnal species. In cases in which damage extended to the SCN, masking responses to light were present and similar to those displayed by animals with damage restricted to the vSPVZ. Thus, extensive bilateral lesions of the SCN and vSPVZ disrupted the expression of circadian rhythms without affecting acute responses to light in a diurnal species. Our present and previous results suggest that retinorecipient brain areas other than the SCN or vSPVZ, such as the intergeniculate leaflet or olivary pretectal nucleus, may be responsible for the mediation of masking responses to light in the diurnal grass rat.

  8. SEL1L SNP rs12435998, a predictor of glioblastoma survival and response to radio-chemotherapy

    PubMed Central

    Storaci, Alessandra Maria; Annovazzi, Laura; Cassoni, Paola; Melcarne, Antonio; De Blasio, Pasquale; Schiffer, Davide; Biunno, Ida

    2015-01-01

    The suppressor of Lin-12-like (C. elegans) (SEL1L) is involved in the endoplasmic reticulum (ER)-associated degradation pathway, malignant transformation and stem cells. In 412 formalin-fixed and paraffin-embedded brain tumors and 39 Glioblastoma multiforme (GBM) cell lines, we determined the frequency of five SEL1L single nucleotide genetic variants with regulatory and coding functions by a SNaPShot™ assay. We tested their possible association with brain tumor risk, prognosis and therapy. We studied the in vitro cytotoxicity of valproic acid (VPA), temozolomide (TMZ), doxorubicin (DOX) and paclitaxel (PTX), alone or in combination, on 11 GBM cell lines, with respect to the SNP rs12435998 genotype. The SNP rs12435998 was prevalent in anaplastic and malignant gliomas, and in meningiomas of all histologic grades, but unrelated to brain tumor risks. In GBM patients, the SNP rs12435998 was associated with prolonged overall survival (OS) and better response to TMZ-based radio-chemotherapy. GBM stem cells with this SNP showed lower levels of SEL1L expression and enhanced sensitivity to VPA. PMID:25948789

  9. Effects of uranium uptake on transcriptional responses, histological structures and survival rate of the crayfish Procambarus clarkii.

    PubMed

    Al Kaddissi, Simone; Legeay, Alexia; Gonzalez, Patrice; Floriani, Magali; Camilleri, Virginie; Gilbin, Rodolphe; Simon, Olivier

    2011-10-01

    This work aims to investigate the accumulation levels and effects (transcriptional responses, histopathology and survival rate) associated with a wide range of dissolved uranium (U) concentrations (0, 0.03, 0.6, 4 and 8 mg/L of U) on adult male crayfish Procambarus clarkii during 4 (T4) and 10 (T10) days of exposure. The follow-up of the crayfish mortality showed that P. clarkii was highly resistant to U. Increasing waterborne U concentrations led to increasing bioaccumulation in key crayfish organs and increasing histological damages. U distribution in tissues was also evaluated using transmission electron microscopy and showed the presence of a detoxified form of U in the gill's epithelium in the shape of flakes. Expression levels of mitochondrial genes (cox1, atp6 and 12S gene) and genes involved in oxidative stress (sod(Mn) and mt) were examined together with the housekeeping gene 18S. atp6 and mt genes of P. clarkii were cloned and sequenced before analysis. Significant correlations were observed between U bioaccumulation and the down-regulation of both cox1 and sod(Mn) genes. This work provides a first U toxicogenomic and histopathological pattern of P. clarkii, identify U biomarkers and associate gene expression endpoints to accumulation levels. It also provides new insights into the mechanisms involved in U stress.

  10. Implication of (Mn)superoxide dismutase of Enterococcus faecalis in oxidative stress responses and survival inside macrophages.

    PubMed

    Verneuil, Nicolas; Mazé, Alain; Sanguinetti, Maurizio; Laplace, Jean-Marie; Benachour, Abdellah; Auffray, Yanick; Giard, Jean-Christophe; Hartke, Axel

    2006-09-01

    The gene encoding the manganese-containing superoxide dismutase (MnSOD) of Enterococcus faecalis was characterized. It is transcribed monocistronically from an upstream promoter identified by rapid amplification of cDNA ends (RACE)-PCR. A sodA mutant was constructed and characterized. Growth of the mutant strain was not significantly different from that of its wild-type counterpart in standing and aerated cultures. However, the mutant was more sensitive towards menadione and hydroperoxide stresses. The response to H(2)O(2) stress was analysed in more detail, and the mode of killing of this oxidant was different under anaerobic and aerobic conditions. Cultures grown and challenged under anaerobic conditions were highly sensitive to treatment with 35 mM H(2)O(2). They were largely protected by the iron chelator deferoxamine, which suggested that killing was mainly due to an enhanced Fenton reaction. In contrast, neither strain was protected by the iron chelators deferoxamine and diethylenetriaminepentaacteic acid when grown and challenged under aerobic conditions, which suggested that inactivation of the cells by H(2)O(2) was due to another killing mode. The sodA mutant was more sensitive under these conditions, showing that MnSOD is also important for protecting the cells from damage under aerobic conditions. Finally, the MnSOD of Ent. faecalis may be considered to be a virulence factor, since survival of the corresponding mutant strain was highly affected inside mouse peritoneal macrophages.

  11. An analysis of light-induced admittance changes in rod outer segments

    PubMed Central

    Falk, G.; Fatt, P.

    1973-01-01

    that component II arises from a light-induced increase in conductance of the disk membranes which obstruct the longitudinal flow of current through the rod interior except at very high frequencies. 8. The disk-membrane conductance increase for rods suspended in a solution having the conductivity of Ringer solution is calculated to be 4·3 × 10-11 mho/rhodpsin molecule bleached, a value which is similar to what has been found for ionic channels operated by membrane potential change in the nerve membrane and by synaptic transmitter in the postjunctional membrane. 9. No component of response has been observed which could be reliably attributed to a surface membrane conductance decrease of the type observed in receptor cells in the retina. PMID:4540195

  12. Serous ovarian carcinoma patients with high alpha-folate receptor had reducing survival and cytotoxic chemo-response.

    PubMed

    Chen, Yu-Li; Chang, Ming-Cheng; Huang, Chia-Yen; Chiang, Ying-Cheng; Lin, Han-Wei; Chen, Chi-An; Hsieh, Chang-Yao; Cheng, Wen-Fang

    2012-06-01

    The alpha-folate receptor (α-FR) is highly-expressed in various non-mucinous tumors of epithelial origin, including ovarian carcinoma. The aim of this study was to investigate the relationship between alpha-folate receptor (α-FR) and the clinico-pathologic features and outcomes of serous ovarian carcinoma patients and the possible mechanism of α-FR to chemo-resistance. Therefore, semi-quantitative reverse-transcription polymerase chain reactions for α-FR expression were performed in the 91 specimens of serous ovarian carcinomas. The expression of α-FR in each ovarian cancer tissue specimen was defined as the ratio of density of α-FR to density of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In vitro apoptotic experiments were tested in the original OVCAR-3 tumor cells and various OVCAR-3 α-FR-transfectants. Patients with an increased α-FR expression level had poorer responses to chemotherapy (per α-FR expression level increase: odds ratio (OR): 8.97 (95% confidence interval (CI): 1.40-57.36), p = 0.021). An increased α-FR expression level was an independently poor prognostic factor for disease free interval (DFI) (per α-FR expression level increase: hazard ratio (HR): 2.45 (95% CI: 1.16-5.18), p = 0.02) and had a negative impact on overall survival (OS) of these serous ovarian cancer patients (per α-FR expression level increase: HR: 3.6 (95% CI: 0.93-13.29), p = 0.03) by multivariate analyses. α-FR inhibited cytotoxic drug-induced apoptosis in our in vitro apoptotic assays. α-FR could induce chemo-resistance via regulating the expression of apoptosis-related molecules, Bcl-2 and Bax. Therefore, α-FR can be a potential biomarker for the prediction of chemotherapeutic responses and clinical prognosis. It also could be the target of ovarian cancer treatment.

  13. Quality of pathologic response and surgery correlate with survival for completely resected bladder cancer following neoadjuvant chemotherapy

    PubMed Central

    Sonpavde, Guru; Goldman, Bryan H.; Speights, V.O.; Lerner, Seth P.; Wood, David P.; Vogelzang, Nicholas J.; Trump, Donald L.; Natale, Ronald B.; Grossman, H. Barton; Crawford, E. David

    2010-01-01

    BACKGROUND In a retrospective study of SWOG-S8710/INT-0080 (radical cystectomy [RC] alone vs 3 cycles of MVAC neoadjuvant chemotherapy [NC] before RC for bladder cancer), factors associated with improved overall survival (OS) included pathologic complete response (pCR) defined as P0, treatment with NC, completion of RC with negative margins and ≥10 pelvic lymph nodes (LNs) removed. METHODS We used stratified Cox regression to retrospectively study the association of quality of pathologic response post-RC with OS in the subset of S8710 patients that received NC and RC with negative margins. RESULTS Of 154 patients who received NC, 68 (44.2%) were

  14. Anuran larval developmental plasticity and survival in response to variable salinity of ecologically relevant timing and magnitude.

    PubMed

    Kearney, Brian D; Pell, Rebecca J; Byrne, Phillip G; Reina, Richard D

    2014-12-01

    Salinity in affected freshwater ecosystems fluctuates with seasonal rainfall, tidal flux, rates of evaporation, chemical runoff and the influence of secondary salinization. Environmental stressors such as salinity can have lasting effects on anuran development, yet little is known about the effects of fluctuating salinity on tadpole ontogeny or the effects of differing magnitudes of salinity exposure, as would occur in natural wetland systems. We examined how salinity fluctuations affected survival, growth and development of Litoria ewingii by exposing tadpoles to a range of salinity concentrations (5.6-10.85 ppt) at three different stages of development (hind limb-bud formation; toe differentiation and forearm development). We also investigated the plasticity of tadpole growth rates in response to non-lethal, transient salinity influxes, specifically examining the capacity for compensatory growth and its relationship to the timing, magnitude or frequency of salinity exposure. Our results show that later-stage tadpoles are more tolerant to elevated salinity than those exposed at a younger age, and that exposure to high salinity later in life suppresses the potential for compensatory growth. Tadpoles exposed to transient low salinity lost less mass during metamorphosis than animals in constant salinity treatments, indicating a possible alternate to compensatory growth. Exposure to near-lethal salinities early in development did not alter tadpole responses to subsequent salinity stress. Our results provide some of the first evidence that both the timing and magnitude of transient environmental stressors can have an effect on anuran development and developmental trade-offs in a stressful environment.

  15. White-Light-Induced Collective Heating of Gold Nanocomposite/Bombyx mori Silk Thin Films with Ultrahigh Broadband Absorbance.

    PubMed

    Tsao, Shao Hsuan; Wan, Dehui; Lai, Yu-Sheng; Chang, Ho-Ming; Yu, Chen-Chieh; Lin, Keng-Te; Chen, Hsuen-Li

    2015-12-22

    This paper describes a systematic investigation of the phenomenon of white-light-induced heating in silk fibroin films embedded with gold nanoparticles (Au NPs). The Au NPs functioned to develop an ultrahigh broadband absorber, allowing white light to be used as a source for photothermal generation. With an increase of the Au content in the composite films, the absorbance was enhanced significantly around the localized surface plasmon resonance (LSPR) wavelength, while non-LSPR wavelengths were also increased dramatically. The greater amount of absorbed light increased the rate of photoheating. The optimized composite film exhibited ultrahigh absorbances of approximately 95% over the spectral range from 350 to 750 nm, with moderate absorbances (>60%) at longer wavelengths (750-1000 nm). As a result, the composite film absorbed almost all of the incident light and, accordingly, converted this optical energy to local heat. Therefore, significant temperature increases (ca. 100 °C) were readily obtained when we irradiated the composite film under a light-emitting diode or halogen lamp. Moreover, such composite films displayed linear light-to-heat responses with respect to the light intensity, as well as great photothermal stability. A broadband absorptive film coated on a simple Al/Si Schottky diode displayed a linear, significant, stable photo-thermo-electronic effect in response to varying the light intensity.

  16. Initial Stage Affects Survival Even After Complete Pathologic Remission is Achieved in Locally Advanced Esophageal Cancer: Analysis of 70 Patients With Pathologic Major Response After Preoperative Chemoradiotherapy

    SciTech Connect

    Kim, Min Kyoung; Cho, Kyung-Ja; Park, Seung-Il; Kim, Yong Hee; Kim, Jong Hoon; Song, Ho-Young; Shin, Ji Hoon; Jung, Hwoon Yong; Lee, Gin Hyug; Choi, Kee Don; Song, Ho June; Ryu, Jin-Sook; Kim, Sung-Bae

    2009-09-01

    Purpose: To analyze outcomes and factors predictive for recurrence and survival in patients with operable esophageal carcinoma who achieved pathologic complete response (PCR) or microscopic residual disease (MRD) after preoperative chemoradiotherapy (CRT). Materials and Methods: Outcomes were assessed in 70 patients with locally advanced esophageal cancer who achieved pathologic major response (53 with PCR and 17 with MRD) after preoperative CRT. Results: At a median follow-up of 38.6 months for surviving patients, 17 of 70 patients (24.3%) experienced disease recurrence and 31 (44.3%) died. Clinical stage (II vs III; p = 0.013) and pathologic response (PCR vs. MRD; p = 0.014) were independent predictors of disease recurrence. Median overall survival (OS) was 99.6 months (95% CI, 44.1-155.1 months) and the 5-year OS rate was 57%. Median recurrence-free survival (RFS) was 71.5 months (95% CI, 39.5-103.6 months) and the 5-year RFS rate was 51.3%. Median OS of patients with Stage II and Stage III disease was 108.8 months and 39.9 months, respectively, and the 5-year OS rates were 68.2% and 27.0%, respectively (p = 0.0003). In a subgroup of patients with PCR, median OS and RFS were also significantly different according to clinical stage. Multivariate analysis showed that clinical stage was an independent predictor of RFS (p = 0.01) and OS (p = 0.008). Conclusions: Even though patients achieved major response after preoperative CRT, pretreatment clinical stage is an important prognostic marker for recurrence and survival. Patients with MRD have an increased recurrence risk but similar survival compared with patients achieved PCR.

  17. Projecting demographic responses to climate change: adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population

    USGS Publications Warehouse

    Dybala, Kristen E.; Eadie, John M.; Gardali, Thomas; Seavy, Nathaniel E.; Herzog, Mark P.

    2013-01-01

    Few studies have quantitatively projected changes in demography in response to climate change, yet doing so can provide important insights into the processes that may lead to population declines and changes in species distributions. Using a long-term mark-recapture data set, we examined the influence of multiple direct and indirect effects of weather on adult and juvenile survival for a population of Song Sparrows (Melospiza melodia) in California. We found evidence for a positive, direct effect of winter temperature on adult survival, and a positive, indirect effect of prior rainy season precipitation on juvenile survival, which was consistent with an effect of precipitation on food availability during the breeding season. We used these relationships, and climate projections of significantly warmer and slightly drier winter weather by the year 2100, to project a significant increase in mean adult survival (12-17%) and a slight decrease in mean juvenile survival (4-6%) under the B1 and A2 climate change scenarios. Together with results from previous studies on seasonal fecundity and postfledging survival in this population, we integrated these results in a population model and projected increases in the population growth rate under both climate change scenarios. Our results underscore the importance of considering multiple, direct, and indirect effects of weather throughout the annual cycle, as well as differences in the responses of each life stage to climate change. Projecting demographic responses to climate change can identify not only how populations will be affected by climate change but also indicate the demographic process(es) and specific mechanisms that may be responsible. This information can, in turn, inform climate change adaptation plans, help prioritize future research, and identify where limited conservation resources will be most effectively and efficiently spent.

  18. Projecting demographic responses to climate change: adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population.

    PubMed

    Dybala, Kristen E; Eadie, John M; Gardali, Thomas; Seavy, Nathaniel E; Herzog, Mark P

    2013-09-01

    Few studies have quantitatively projected changes in demography in response to climate change, yet doing so can provide important insights into the processes that may lead to population declines and changes in species distributions. Using a long-term mark-recapture data set, we examined the influence of multiple direct and indirect effects of weather on adult and juvenile survival for a population of Song Sparrows (Melospiza melodia) in California. We found evidence for a positive, direct effect of winter temperature on adult survival, and a positive, indirect effect of prior rainy season precipitation on juvenile survival, which was consistent with an effect of precipitation on food availability during the breeding season. We used these relationships, and climate projections of significantly warmer and slightly drier winter weather by the year 2100, to project a significant increase in mean adult survival (12-17%) and a slight decrease in mean juvenile survival (4-6%) under the B1 and A2 climate change scenarios. Together with results from previous studies on seasonal fecundity and postfledging survival in this population, we integrated these results in a population model and projected increases in the population growth rate under both climate change scenarios. Our results underscore the importance of considering multiple, direct, and indirect effects of weather throughout the annual cycle, as well as differences in the responses of each life stage to climate change. Projecting demographic responses to climate change can identify not only how populations will be affected by climate change but also indicate the demographic process(es) and specific mechanisms that may be responsible. This information can, in turn, inform climate change adaptation plans, help prioritize future research, and identify where limited conservation resources will be most effectively and efficiently spent.

  19. Light-induced disulfide dimerization of recoverin under ex vivo and in vivo conditions.

    PubMed

    Zernii, Evgeni Yu; Nazipova, Aliya A; Gancharova, Olga S; Kazakov, Alexey S; Serebryakova, Marina V; Zinchenko, Dmitry V; Tikhomirova, Natalya K; Senin, Ivan I; Philippov, Pavel P; Permyakov, Eugene A; Permyakov, Sergei E

    2015-06-01

    Despite vast knowledge of the molecular mechanisms underlying photochemical damage of photoreceptors, linked to progression of age-related macular degeneration, information on specific protein targets of the light-induced oxidative stress is scarce. Here, we demonstrate that prolonged intense illumination (halogen bulb, 1500 lx, 1-5 h) of mammalian eyes under ex vivo (cow) or in vivo (rabbit) conditions induces disulfide dimerization of recoverin, a Ca(2+)-dependent inhibitor of rhodopsin kinase. Western blotting and mass spectrometry analysis of retinal extracts reveals illumination time-dependent accumulation of disulfide homodimers of recoverin and its higher order disulfide cross-linked species, including a minor fraction of mixed disulfides with intracellular proteins (tubulins, etc.). Meanwhile, monomeric bovine recoverin remains mostly reduced. These effects are accompanied by accumulation of disulfide homodimers of visual arrestin. Histological studies demonstrate that the light-induced oxidation of recoverin and arrestin occurs in intact retina (illumination for 2 h), while illumination for 5 h is associated with damage of the photoreceptor layer. A comparison of ex vivo levels of disulfide homodimers of bovine recoverin with redox dependence of its in vitro thiol-disulfide equilibrium (glutathione redox pair) gives the lowest estimate of redox potential in rod outer segments under illumination from -160 to -155 mV. Chemical crosslinking and dynamic light scattering data demonstrate an increased propensity of disulfide dimer of bovine recoverin to multimerization/aggregation. Overall, the oxidative stress caused by the prolonged intense illumination of retina might affect rhodopsin desensitization via concerted disulfide dimerization of recoverin and arrestin. The developed herein models of eye illumination are useful for studies of the light-induced thiol oxidation of visual proteins.

  20. Beneficial protective effect of pramipexole on light-induced retinal damage in mice.

    PubMed

    Shibagaki, Keiichi; Okamoto, Kazuyoshi; Katsuta, Osamu; Nakamura, Masatsugu

    2015-10-01

    We investigated the effects of pramipexole, a potent dopamine receptor D2/D3 agonist, on light-induced retinal damage in mice, H2O2-induced retinal pigment epithelium ARPE-19 cell injury in humans, and hydroxyl radical scavenging activity in a cell-free system. Pramipexole (0.1 and 1 mg/kg body weight) was orally administered to mice 1 h before light exposure (5000 lux, 2 h). Electrophysiological and morphologic studies were performed to evaluate the effects of the pramipexole on light-induced retinal damage in mice. Pramipexole significantly prevented the reduction of the a- and b-wave electroretinogram (ERG) amplitudes caused by light exposure in a dose-dependent manner. In parallel, damage to the inner and outer segments (IS/OS) of the photoreceptors, loss of photoreceptor nuclei, and the number of Tdt-mediated dUTP nick-end labeling (TUNEL)-positive cells in the outer nuclear layer (ONL) caused by light exposure were notably ameliorated by pramipexole. Additionally, pramipexole suppressed H2O2-induced ARPE-19 cell death in vitro in a concentration-dependent manner. The effect of pramipexole was significant at concentrations of 10(-6) M or higher. Pramipexole also significantly prevented H2O2-induced activation of caspases-3/7 and the intracellular accumulation of reactive oxygen species (ROS) in a concentration-dependent manner ranging from 10(-5) to 10(-3) M. Furthermore, pramipexole increased the scavenging activity toward a hydroxyl radical generated from H2O2 in a Fenton reaction. Our results suggest that pramipexole protects against light-induced retinal damage as an antioxidant and that it may be a novel and effective therapy for retinal degenerative disorders, such as dry age-related macular degeneration.

  1. Light-induced gradual activation of photosystem II in dark-grown Norway spruce seedlings.

    PubMed

    Pavlovič, Andrej; Stolárik, Tibor; Nosek, Lukáš; Kouřil, Roman; Ilík, Petr

    2016-06-01

    Gymnosperms, unlike angiosperms, are able to synthesize chlorophyll and form photosystems in complete darkness. Photosystem I (PSI) formed under such conditions is fully active, but photosystem II (PSII) is present in its latent form with inactive oxygen evolving complex (OEC). In this work we have studied light-induced gradual changes in PSII function in dark-grown cotyledons of Norway spruce (Picea abies) via the measurement of chlorophyll a fluorescence rise, absorption changes at 830 nm, thermoluminescence glow curves (TL) and protein analysis. The results indicate that in dark-grown cotyledons, alternative reductants were able to act as electron donors to PSII with inactive OEC. Illumination of cotyledons for 5 min led to partial activation of PSII, which was accompanied by detectable oxygen evolution, but still a substantial number of PSII centers remained in the so called PSII-Q(B)-non-reducing form. Interestingly, even 24 h long illumination was not sufficient for the full activation of PSII centers. This was evidenced by a weak attachment of PsbP protein and the absence of PsbQ protein in PSII particles, the absence of PSII supercomplexes, the suboptimal maximum yield of PSII photochemistry, the presence of C band in TL curve and also the presence of up-shifted Q band in TL in DCMU-treated cotyledons. This slow light-induced activation of PSII in dark-grown cotyledons could contribute to the prevention of PSII overexcitation before the light-induced increase in PSI/PSII ratio allows effective operation of linear electron flow.

  2. Light-induced gaps in semiconductor band-to-band transitions.

    PubMed

    Vu, Q T; Haug, H; Mücke, O D; Tritschler, T; Wegener, M; Khitrova, G; Gibbs, H M

    2004-05-28

    We observe a triplet around the third harmonic of the semiconductor band gap when exciting 50-100 nm thin GaAs films with 5 fs pulses at 3 x 10(12) W/cm(2). The comparison with solutions of the semiconductor Bloch equations allows us to interpret the observed peak structure as being due to a two-band Mollow triplet. This triplet in the optical spectrum is a result of light-induced gaps in the band structure, which arise from coherent band mixing. The theory is formulated for full tight-binding bands and uses no rotating-wave approximation.

  3. Experimental studies of excitations in a BEC in light-induced gauge fields

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Hsun; Blasing, David; Olson, Abraham; Niffenegger, Robert; Chen, Yong P.

    2014-05-01

    We present our experimental studies of various excitation processes in a 87Rb Bose-Einstein condensate (BEC) in the presence of Raman light-induced gauge fields. We have systematically studied controllable inter-band excitations by modulating the strength of the Raman coupling, and probed the resultant decay from the upper dressed bands and heating of the BEC. We also present preliminary results probing the effects of synthetic spin-orbit coupling and gauge fields on collective excitations as well as photoassociation processes in the BEC.

  4. Inversion of polarization by light-induced stabilization in NO2 revisited

    NASA Astrophysics Data System (ADS)

    Weber, H. G.

    2015-07-01

    We show that light-induced coherence between a state | a > of the electronic ground state X2A1 and a state | b > of the excited electronic state A2B2 of a laser-induced transition in NO2 affects the evolution of the molecule in the excited state. The optical coherence couples | b > strongly with | a >. This optical coupling works against a radiationless process, which is driving the molecule away from the metastable state | b > to a final state | c >. The optical field stabilizes the molecule in the state | b > by the coupling to the ground state | a >. This causes the inversion effect in NO2.

  5. Robust Measurement of Thin-Film Photovoltaic Modules Exhibiting Light-Induced Transients: Preprint

    SciTech Connect

    Deceglie, Michael, G.; Silverman, Timothy J.; Marion, Bill; Kurtz, Sarah R.

    2015-09-09

    Light-induced changes to the current-voltage characteristic of thin-film photovoltaic modules (i.e. light-soaking effects) frustrate the repeatable measurement of their operating power. We describe best practices for mitigating, or stabilizing, light-soaking effects for both CdTe and CIGS modules to enable robust, repeatable, and relevant power measurements. We motivate the practices by detailing how modules react to changes in different stabilization methods. We also describe and demonstrate a method for validating alternative stabilization procedures, such as those relying on forward bias in the dark. Reliable measurements of module power are critical for qualification testing, reliability testing, and power rating.

  6. UV light induced photodegradation of organic dye by ZnO nanocatalysts

    NASA Astrophysics Data System (ADS)

    Sumesh, C. K.; Patel, Bhavin; Parekh, Kinnari

    2013-06-01

    Ultraviolet light induced photocatalytic activity of ZnO nanocatalyst prepared using a wet chemical precipitation route and mineralization of the methyl orange (MO) dye has been carried out in a photocatalytic reactor. The degradation of the MO was monitored spectrophotometrically and showed a decolorization efficiency of 92% after nine hours of irradiation in the MO-ZnO/UV light system. The blue shifting of maximum peak position of the MO and the formation of extra peak at 247 nm during irradiation time advances revealed that MO degrades in the form of intermediates during the photocatalytic process.

  7. Nonresonant electronic transitions induced by vibrational motion in light-induced potentials.

    PubMed

    Sampedro, Pablo; Chang, Bo Y; Sola, Ignacio R

    2016-09-14

    We find a new mechanism of electronic population inversion using strong femtosecond pulses, where the transfer is mediated by vibrational motion on a light-induced potential. The process can be achieved with a single pulse tuning its frequency to the red of the Franck-Condon window. We show the determinant role that the gradient of the transition dipole moment can play on the dynamics, and extend the method to multiphoton processes with odd number of pulses. As an example, we show how the scheme can be applied to population inversion in Na2.

  8. Formation kinetics of copper-related light-induced degradation in crystalline silicon

    SciTech Connect

    Lindroos, J. Savin, H.

    2014-12-21

    Light-induced degradation (LID) is a deleterious effect in crystalline silicon, which is considered to originate from recombination-active boron-oxygen complexes and/or copper-related defects. Although LID in both cases appears as a fast initial decay followed by a second slower degradation, we show that the time constant of copper-related degradation increases with increasing boron concentration in contrast to boron-oxygen LID. Temperature-dependent analysis reveals that the defect formation is limited by copper diffusion. Finally, interface defect density measurements confirm that copper-related LID is dominated by recombination in the wafer bulk.

  9. UV light induced photodegradation of organic dye by ZnO nanocatalysts

    SciTech Connect

    Sumesh, C. K.; Patel, Bhavin; Parekh, Kinnari

    2013-06-03

    Ultraviolet light induced photocatalytic activity of ZnO nanocatalyst prepared using a wet chemical precipitation route and mineralization of the methyl orange (MO) dye has been carried out in a photocatalytic reactor. The degradation of the MO was monitored spectrophotometrically and showed a decolorization efficiency of 92% after nine hours of irradiation in the MO-ZnO/UV light system. The blue shifting of maximum peak position of the MO and the formation of extra peak at 247 nm during irradiation time advances revealed that MO degrades in the form of intermediates during the photocatalytic process.

  10. Robust measurement of thin-film photovoltaic modules exhibiting light-induced transients

    NASA Astrophysics Data System (ADS)

    Deceglie, Michael G.; Silverman, Timothy J.; Marion, Bill; Kurtz, Sarah R.

    2015-09-01

    Light-induced changes to the current-voltage characteristic of thin-film photovoltaic modules (i.e. light-soaking effects) frustrate the repeatable measurement of their operating power. We describe best practices for mitigating, or stabilizing, light-soaking effects for both CdTe and CIGS modules to enable robust, repeatable, and relevant power measurements. We motivate the practices by detailing how modules react to changes in different stabilization methods. We also describe and demonstrate a method for validating alternative stabilization procedures, such as those relying on forward bias in the dark. Reliable measurements of module power are critical for qualification testing, reliability testing, and power rating.

  11. Evidence for Light-Induced Hole Polarons in LiNbO3

    NASA Astrophysics Data System (ADS)

    Herth, P.; Granzow, T.; Schaniel, D.; Woike, Th.; Imlau, M.; Krätzig, E.

    2005-08-01

    Transient light-induced absorption in LiNbO3 is observed in the blue-green spectral range after pulsed illumination with 532 nm. Its buildup and decay in Fe-doped LiNbO3 is satisfactorily described by a sum of two stretched exponential functions. For undoped LiNbO3, however, only one stretched exponential decay is observed. These experimental results are explained by the formation of both small Nb4+Li electron polarons and O- hole polarons. The mechanism is discussed on the basis of a proposed band scheme.

  12. Very fast light-induced degradation of a-Si:H/c-Si(100) interfaces

    NASA Astrophysics Data System (ADS)

    de Wolf, Stefaan; Demaurex, Bénédicte; Descoeudres, Antoine; Ballif, Christophe

    2011-06-01

    Light-induced degradation (LID) of crystalline silicon (c-Si) surfaces passivated with hydrogenated amorphous silicon (a-Si:H) is investigated. The initial passivation decays on polished c-Si(100) surfaces on a time scale much faster than usually associated with bulk a-Si:H LID. This phenomenon is absent for the a-Si:H/c-Si(111) interface. We attribute these differences to the allowed reconstructions on the respective surfaces. This may point to a link between the presence of so-called “fast” states and (internal) surface reconstruction in bulk a-Si:H.

  13. Formation kinetics of copper-related light-induced degradation in crystalline silicon

    NASA Astrophysics Data System (ADS)

    Lindroos, J.; Savin, H.

    2014-12-01

    Light-induced degradation (LID) is a deleterious effect in crystalline silicon, which is considered to originate from recombination-active boron-oxygen complexes and/or copper-related defects. Although LID in both cases appears as a fast initial decay followed by a second slower degradation, we show that the time constant of copper-related degradation increases with increasing boron concentration in contrast to boron-oxygen LID. Temperature-dependent analysis reveals that the defect formation is limited by copper diffusion. Finally, interface defect density measurements confirm that copper-related LID is dominated by recombination in the wafer bulk.

  14. Heterogeneous nucleation and growth dynamics in the light-induced phase transition in vanadium dioxide

    DOE PAGES

    Brady, Nathaniel F.; Appavoo, Kannatassen; Seo, Minah; ...

    2016-03-02

    Here we report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Lastly, above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of 40.5 ± 2 ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state.

  15. Light-induced electrical switching of porphyrin-covered silicon nanowire FETs (presentation video)

    NASA Astrophysics Data System (ADS)

    Cuniberti, Gianaurelio

    2014-03-01

    Nanowires represent excellent building blocks for future nanoelectronics, due to their efficient charge transport characteristics. Here we present light-induced switching behaviour of porphyrin-coated silicon nanowire field effect transistors (Si NW FETs) and demonstrate their capabilities for design of hybrid nanodevices - consisting of organic complexes and inorganic nanowires. Switching of Si NW FETs highly reflects the electrical change of porphyrin molecules by light. To demonstrate significant factors of concentration-dependent switching of porphyrin-covered devices, electrical charging mechanism through molecules and nanowires has been understood, that allows the systematic integration of the hybrid devices.

  16. Light-induced director-controlled microassembly of dye molecules from a liquid crystal matrix

    NASA Astrophysics Data System (ADS)

    Voloschenko, D.; Lavrentovich, O. D.

    1999-11-01

    We report on a light-induced phenomenon in dye-doped liquid crystals (LCs) with the distinctive features of molecular transport and assembly at micron scales. Under single-beam laser irradiation, the dye molecules phase separate from the LC host and assemble onto the cell substrate. Although the intensity of incident light is uniform within the irradiated area, the density of the adsorbed dye is modulated in accord with the director modulation of the LC. The dye molecules form a surface imprint that portrays orientational distortions of the LC host.

  17. Light-Induced Changes in Hydrogen, Calcium, Potassium, and Chloride Ion Fluxes and Concentrations from the Mesophyll and Epidermal Tissues of Bean Leaves. Understanding the Ionic Basis of Light-Induced Bioelectrogenesis1

    PubMed Central

    Shabala, Sergey; Newman, Ian

    1999-01-01

    Noninvasive, ion-selective vibrating microelectrodes were used to measure the kinetics of H+, Ca2+, K+, and Cl− fluxes and the changes in their concentrations caused by illumination near the mesophyll and attached epidermis of bean (Vicia faba L.). These flux measurements were related to light-induced changes in the plasma membrane potential. The influx of Ca2+ was the main depolarizing agent in electrical responses to light in the mesophyll. Changes in the net fluxes of H+, K+, and Cl− occurred only after a significant delay of about 2 min, whereas light-stimulated influx of Ca2+ began within the time resolution of our measurements (5 s). In the absence of H+ flux, light caused an initial quick rise of external pH near the mesophyll and epidermal tissues. In the mesophyll this fast alkalinization was followed by slower, oscillatory pH changes (5–15 min); in the epidermis the external pH increased steadily and reached a plateau 3 min later. We explain the initial alkalinization of the medium as a result of CO2 uptake by photosynthesizing tissue, whereas activation of the plasma membrane H+ pump occurred 1.5 to 2 min later. The epidermal layer seems to be a substantial barrier for ion fluxes but not for CO2 diffusion into the leaf. PMID:10069851

  18. Loss of Melanopsin Photoreception and Antagonism of the Histamine H3 Receptor by Ciproxifan Inhibit Light-Induced Sleep in Mice

    PubMed Central

    Muindi, Fanuel; Colas, Damien; Ikeme, Jesse; Ruby, Norman F.; Heller, H. Craig

    2015-01-01

    Light has direct effects on sleep and wakefulness causing arousal in diurnal animals and sleep in nocturnal animals. In the present study, we assessed the modulation of light-induced sleep by melanopsin and the histaminergic system by exposing mice to millisecond light flashes and continuous light respectively. First, we show that the induction of sleep by millisecond light flashes is dose dependent as a function of light flash number. We found that exposure to 60 flashes of light occurring once every 60 seconds for 1-h (120-ms of total light over an hour) induced a similar amount of sleep as a continuous bright light pulse. Secondly, the induction of sleep by millisecond light flashes was attenuated in the absence of melanopsin when animals were presented with flashes occurring every 60 seconds over a 3-h period beginning at ZT13. Lastly, the acute administration of a histamine H3 autoreceptor antagonist, ciproxifan, blocked the induction of sleep by a 1-h continuous light pulse during the dark period. Ciproxifan caused a decrease in NREMS delta power and an increase in theta activity during both sleep and wake periods respectively. The data suggest that some form of temporal integration occurs in response to millisecond light flashes, and that this process requires melanopsin photoreception. Furthermore, the pharmacological data suggest that the increase of histaminergic neurotransmission is sufficient to attenuate the light-induced sleep response during the dark period. PMID:26083020

  19. Effect of Furan Fatty Acids and 3-Methyl-2,4-nonanedione on Light-Induced Off-Odor in Soybean Oil.

    PubMed

    Sano, Takashi; Okabe, Ryo; Iwahashi, Maiko; Imagi, Jun; Sato, Toshiro; Yamashita, Toshiyuki; Fukusaki, Eiichiro; Bamba, Takeshi

    2017-03-15

    Soybean oil is one of the most widely consumed vegetable oils. However, under photooxidative conditions, this oil develops a beany and green off-odor through a mechanism that has not yet been elucidated. Upon photooxidation, 3-methyl-2,4-nonanedione (3-MND) produces a strong aroma. In this study, the effect of furan fatty acids and 3-MND on odor reversion in soybean oil was investigated. Our findings suggest that the observed light-induced off-odor was likely attributable to the furan fatty acids present in the oil through the generation of 3-MND. While 3-MND may not be directly responsible for the development of light-induced off-odor, this compound appears to be involved because off-odor was detected in canola oil samples containing added 3-MND. In addition, in the present work, 3-hydroxy-3-methyl-2,4-nonanedione, which is derived from 3-MND, was identified for the first time in light-exposed soybean oil and shown to be one of the compounds responsible for odor reversion.

  20. Loss of Melanopsin Photoreception and Antagonism of the Histamine H3 Receptor by Ciproxifan Inhibit Light-Induced Sleep in Mice.

    PubMed

    Muindi, Fanuel; Colas, Damien; Ikeme, Jesse; Ruby, Norman F; Heller, H Craig

    2015-01-01

    Light has direct effects on sleep and wakefulness causing arousal in diurnal animals and sleep in nocturnal animals. In the present study, we assessed the modulation of light-induced sleep by melanopsin and the histaminergic system by exposing mice to millisecond light flashes and continuous light respectively. First, we show that the induction of sleep by millisecond light flashes is dose dependent as a function of light flash number. We found that exposure to 60 flashes of light occurring once every 60 seconds for 1-h (120-ms of total light over an hour) induced a similar amount of sleep as a continuous bright light pulse. Secondly, the induction of sleep by millisecond light flashes was attenuated in the absence of melanopsin when animals were presented with flashes occurring every 60 seconds over a 3-h period beginning at ZT13. Lastly, the acute administration of a histamine H3 autoreceptor antagonist, ciproxifan, blocked the induction of sleep by a 1-h continuous light pulse during the dark period. Ciproxifan caused a decrease in NREMS delta power and an increase in theta activity during both sleep and wake periods respectively. The data suggest that some form of temporal integration occurs in response to millisecond light flashes, and that this process requires melanopsin photoreception. Furthermore, the pharmacological data suggest that the increase of histaminergic neurotransmission is sufficient to attenuate the light-induced sleep response during the dark period.

  1. A Hypothesis: Supplementation with Mushroom-Derived Active Compound Modulates Immunity and Increases Survival in Response to Influenza Virus (H1N1) Infection

    PubMed Central

    Chunchao, Han; Guo, Jian-you

    2011-01-01

    We hypothesize that the mushroom-derived active compound may be a potential strategy for increasing survival in response to influenza virus (H1N1) infection through the stimulation of host innate immune response. The validity of the hypothesis can be tested by immune response to influenza infection as seen through survival percentage, virus clearance, weight loss, natural killer cell cytotoxicity, Tumor Necrosis Factor-α (TNF-α) and Interferon-gamma (IFN-γ) levels, lytic efficiency in the spleens of mice and inducible nitric oxide synthase mRNA expressions in RAW 264.7 murine macrophage cells. The hypothesis may improve people's quality of life, reduce the medical cost of our healthcare system and eliminate people's fears of influenza outbreak. PMID:21660092

  2. Reversible low-light induced photoswitching of crowned spiropyran-DO3A complexed with gadolinium(III) ions.

    PubMed

    Kruttwig, Klaus; Yankelevich, Diego R; Brueggemann, Chantal; Tu, Chuqiao; L'etoile, Noelle; Knoesen, André; Louie, Angelique Y

    2012-05-31

    Photoswitchable spiropyran has been conjugated to the crowned ring system DO3A, which improves its solubility in dipolar and polar media and stabilizes the merocyanine isomer. Adding the lanthanide ion gadolinium(III) to the macrocyclic ring system leads to a photoresponsive magnetic resonance imaging contrast agent that displays an increased spin-lattice relaxation time (T₁) upon visible light stimulation. In this work, the photoresponse of this photochromic molecule to weak light illumination using blue and green light emitting diodes was investigated, simulating the emission spectra from bioluminescent enzymes. Photon emission rate of the light emitting diodes was changed, from 1.75 × 10¹⁶ photons·s⁻¹ to 2.37 × 10¹² photons·s⁻¹. We observed a consistent visible light-induced isomerization of the merocyanine to the spiropyran form with photon fluxes as low as 2.37 × 10¹² photons·s⁻¹ resulting in a relaxivity change of the compound. This demonstrates the potential for use of the described imaging probes in low light level applications such as sensing bioluminescence enzyme activity. The isomerization behavior of gadolinium(III)-ion complexed and non-complexed spiropyran-DO3A was analyzed in water and ethanol solution in response to low light illumination and compared to the emitted photon emission rate from over-expressed Gaussia princeps luciferase.

  3. Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: bridging classical electrodynamics and quantum dynamics.

    PubMed

    Hu, Zixuan; Ratner, Mark A; Seideman, Tamar

    2014-12-14

    We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify our approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.

  4. Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: Bridging classical electrodynamics and quantum dynamics

    SciTech Connect

    Hu, Zixuan; Ratner, Mark A.; Seideman, Tamar

    2014-12-14

    We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify our approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.

  5. Three-layered polyplex micelle as a multifunctional nanocarrier platform for light-induced systemic gene transfer

    NASA Astrophysics Data System (ADS)

    Nomoto, Takahiro; Fukushima, Shigeto; Kumagai, Michiaki; Machitani, Kaori; Arnida; Matsumoto, Yu; Oba, Makoto; Miyata, Kanjiro; Osada, Kensuke; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-04-01

    Nanocarriers responding to light have great potential for pinpoint therapy, and recent studies have revealed promising in vivo activity. However, light-selective gene transfer still remains challenging in the systemic application. Here we report systemic light-responsive nanocarriers for gene delivery developed through the sequential self-assembly of ABC-type triblock copolymer/DNA/dendrimeric photosensitizer, forming polyplex micelles with three-layered functional nanocompartments. The DNA-packaged core is covered by the photosensitizer-incorporated intermediate layer, which is encompassed by an outer shielding shell. This three-layered structure permits multistep photosensitizer and DNA delivery into a solid tumour by a systemic route: the shielding layer minimizes unfavourable interactions with blood components, and the photosensitizer is delivered to endo-/lysosomal membranes to facilitate light-selective cytoplasmic translocation of the micelles, accomplishing DNA delivery into the nucleus to exert gene expression. The polyplex micelles display >100-fold photoenhanced gene expression in cultured cells and exhibit light-induced in vivo gene transfer in solid tumours following systemic administration.

  6. Kinetics of light-induced ordering and deformation in LC azobenzene-containing materials.

    PubMed

    Toshchevikov, Vladimir; Petrova, Tatiana; Saphiannikova, Marina

    2017-04-12

    Azobenzene-containing smart materials are able to transform the energy of light into directional mechanical stress. We develop a theory of time-dependent light-induced ordering and deformation in azobenzene materials starting from the kinetic equations of photoisomerization. The liquid crystalline (LC) interactions between rod-like trans-isomers are taken into account. Angular selectivity of the photoisomerization known as an "angular hole burning" or the Weigert effect leads to the light-induced ordering and deformation of the azobenzene materials. The time evolution of ordering and deformation is found as a function of intensity of light depending on the opto-mechanical characteristics of the materials, such as probabilities of the optical excitation of trans- and cis-isomers, angular jump during the single isomerization event, viscosity of the materials, strength of the LC interactions in both the isotropic and LC materials, and the angular distribution of chromophores in polymer chains. Established structural-property relationships are in agreement with a number of experiments and can be used for the construction of light-controllable smart materials for practical applications.

  7. Coupling of light-induced electron transfer to proton uptake in photosynthesis.

    PubMed

    Remy, André; Gerwert, Klaus

    2003-08-01

    Light energy is transformed into chemical energy in photosynthesis by coupling a light-induced electron transfer to proton uptake. The resulting proton gradient drives ATP synthesis. In this study, we monitored the light-induced reactions in a 100-kDa photosynthetic protein from 30 ns to 35 s by FTIR difference spectroscopy. The results provide detailed mechanistic insights into the electron and proton transfer reactions of the QA to QB transition: reduction of QA in picoseconds induces protonation of histidines, probably of His126 and His128 in the H subunit at the entrance of the proton uptake channel, and of Asp210 in the L subunit inside the channel at 12 micros and 150 micros. This seems to be a prerequisite for the reduction of QB, mainly at 150 micros. QA- is reoxidized at 1.1 ms, and a proton is transferred from Asp210 to Glu212 in the L subunit, the proton donor to QB-. Notably, our data indicate that QB is not reduced directly by QA- but presumably through an intermediary electron donor.

  8. Light induced fluorescence evaluation: A novel concept for caries diagnosis and excavation.

    PubMed

    Gugnani, Neeraj; Pandit, Ik; Srivastava, Nikhil; Gupta, Monika; Gugnani, Shalini

    2011-10-01

    In the era of minimal invasive dentistry, every effort should be directed to preserve the maximum tooth structure during cavity preparation. However, while making cavities, clinicians usually get indecisive at what point caries excavation should be stopped, so as to involve only the infected dentin. Apparent lack of valid clinical markers, difficulties with the use of caries detector dyes and chemo mechanical caries removal systems carve out a need for an improved system, which would be helpful to differentiate between the healthy and infected dentin during caries excavation. Light induced fluorescence evaluation is a novel concept implicated for caries detection and for making decisions while cavity preparation. This paper describes a few cases that explain the clinical applicability of this concept, using the SoproLife camera that works on this principle. Autofluorescence masking effect was found to be helpful for caries detection and the red fluorescence in the treatment mode was found helpful in deciding 'when to stop the excavation process.' Light induced fluorescence evaluation - Diagnosis - Treatment concept concept can be used as a guide for caries detection and excavation. It also facilitates decision making for stopping the caries excavation so as to involve infected dentin only.

  9. A light-induced spin crossover actuated single-chain magnet

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zheng, Hui; Kang, Soonchul; Shiota, Yoshihito; Hayami, Shinya; Mito, Masaki; Sato, Osamu; Yoshizawa, Kazunari; Kanegawa, Shinji; Duan, Chunying

    2013-11-01

    Both spin-crossover complexes and molecular nanomagnets display bistable magnetic states, potentially behaving as elementary binary units for information storage. It is a challenge to introduce spin-crossover units into molecular nanomagnets to switch the bistable state of the nanomagnets through external stimuli-tuned spin crossover. Here we report an iron(II) spin-crossover unit and paramagnetic iron(III) ions that are incorporated into a well-isolated double-zigzag chain. The chain exhibits thermally induced reversible spin-crossover and light-induced excited spin-state trapping at the iron(II) sites. Single-chain magnet behaviour is actuated accompanying the synergy between light-induced excited spin-state trapping at the iron(II) sites and ferromagnetic interactions between the photoinduced high-spin iron(II) and low-spin iron(III) ions in the chain. The result provides a strategy to switch the bistable state of molecular nanomagnets using external stimuli such as light and heat, with the potential to erase and write information at a molecular level.

  10. Lipid rafts mediate ultraviolet light-induced Fas aggregation in M624 melanoma cells.

    PubMed

    Elyassaki, Walid; Wu, Shiyong

    2006-01-01

    Ultraviolet light (UV) induces aggregation of Fas-receptor through a Fas-ligand-independent pathway. However, the mechanism of ultraviolet light-induced Fas-receptor aggregation is not known. In this report, we show that lipid rafts mediate ultraviolet light-induced aggregation of Fas. Our data show that UV induces a redistribution of Fas-receptor in a 25-5% Optiprep continuous gradient. The amount of Fas-receptorS is significantly increased in a gradient fraction that contain lipid rafts and is associated with an increase of FADD and caspase-8. Our data also show that the active dimeric form of caspase-8 (p44/p41) is increased in the lipid raft fraction. In addition, our data show that cholesterol, a major component of lipid rafts, is significantly reduced in only the lipid raft fractions after UV-irradiation. However, ceramide, another major lipid raft component, is increased evenly in all gradient fractions after UV-irradiation. These results suggest that UV alters the composition of major lipid raft components, which leads to the recruitment of Fas-receptor and FADD, with subsequent activation of caspase-8. Based on our results, we propose a novel mechanism by which UV induces apoptosis through a membrane lipid raft-mediated signaling pathway.

  11. Resveratrol Prevents Light-Induced Retinal Degeneration via Suppressing Activator Protein-1 Activation

    PubMed Central

    Kubota, Shunsuke; Kurihara, Toshihide; Ebinuma, Mari; Kubota, Miyuki; Yuki, Kenya; Sasaki, Mariko; Noda, Kousuke; Ozawa, Yoko; Oike, Yuichi; Ishida, Susumu; Tsubota, Kazuo

    2010-01-01

    Light damage to the retina accelerates retinal degeneration in human diseases and rodent models. Recently, the polyphenolic phytoalexin resveratrol has been shown to exert various bioactivities in addition to its classical antioxidant property. In the present study, we investigated the effect of resveratrol on light-induced retinal degeneration together with its underlying molecular mechanisms. BALB/c mice with light exposure (5000-lux white light for 3 hours) were orally pretreated with resveratrol at a dose of 50 mg/kg for 5 days. Retinal damage was evaluated by TdT-mediated dUTP nick-end labeling, outer nuclear layer morphometry, and electroretinography. Administration of resveratrol to mice with light exposure led to a significant suppression of light-induced pathological parameters, including TdT-mediated dUTP nick-end labeling-positive retinal cells, outer nuclear layer thinning, and electroretinography changes. To clarify the underlying molecular mechanisms, the nuclear translocation of activator protein−1 subunit c-fos was evaluated by enzyme-linked immunosorbent assay, and the retinal activity of sirtuin 1 was measured by deacetylase fluorometric assay. Retinal activator protein-1 activation, up-regulated following light exposure, was significantly reduced by application of resveratrol. In parallel, retinal sirtuin 1 activity, reduced in animals with light damage, was significantly augmented by resveratrol treatment. Our data suggest the potential use of resveratrol as a therapeutic agent to prevent retinal degeneration related to light damage. PMID:20709795

  12. A repressor-antirepressor pair links two loci controlling light-induced carotenogenesis in Myxococcus xanthus.

    PubMed

    López-Rubio, José Juan; Elías-Arnanz, Montserrat; Padmanabhan, S; Murillo, Francisco José

    2002-03-01

    The light-inducible carB operon encodes all but one of the structural genes for carotenogenesis in Myxococcus xanthus. It is transcriptionally controlled by two proteins expressed from two unlinked genetic loci: CarS from the light-inducible carQRS operon, and CarA from the light-independent carA operon. CarA represses transcription from the carB promoter (P(B)) in the dark, and CarS counteracts this on illumination. The CarA sequence revealed a helix-turn-helix DNA-binding motif of the type found in bacterial MerR transcriptional factors, whereas CarS contains no known DNA-binding motif. Here, we examine the molecular interplay between CarA and CarS. We demonstrate the following. (i) Whereas CarS exhibits no DNA binding in vitro, CarA binds specifically to a region encompassing P(B) to form at least two distinct complexes. (ii) A palindrome located between positions -46 and -63 relative to the transcription start point is essential but not sufficient for the formation of the two CarA-DNA complexes observed. (iii) CarS abrogates the specific DNA binding of CarA. CarA is therefore a repressor and CarS an antirepressor. (iv) CarS physically interacts with CarA; thus, the functional interaction between them is mediated by protein-protein interactions.

  13. Light-induced degradation of storage starch in turions of Spirodela polyrhiza depends on nitrate.

    PubMed

    Appenroth, Klaus-J; Ziegler, Paul

    2008-10-01

    Light induces both the germination of turions of the duckweed Spirodela polyrhiza and the degradation of the reserve starch stored in the turions. The germination photoresponse requires nitrate, and we show here that nitrate is also needed for the light-induced degradation of the turion starch. Ammonium cannot substitute for nitrate in this regard, and nitrate thus acts specifically as signal to promote starch degradation in the turions. Irradiation with continuous red light leads to starch degradation via auto-phosphorylation of starch-associated glucan, water dikinase (GWD), phosphorylation of the turion starch and enhanced binding of alpha-amylase to starch granules. The present study shows that all of these processes require the presence of nitrate, and that nitrate exerts its effect on starch degradation at a point between the absorption of light by phytochrome and the auto-phosphorylation of the GWD. Nitrate acts to coordinate carbon and nitrogen metabolism in germinating turions: starch will only be broken down when sufficient nitrogen is present to ensure appropriate utilization of the released carbohydrate. These data constitute the first report of control over the initiation of reserve starch degradation by nitrate.

  14. Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress.

    PubMed

    Jaiswal, Manish; Haelterman, Nele A; Sandoval, Hector; Xiong, Bo; Donti, Taraka; Kalsotra, Auinash; Yamamoto, Shinya; Cooper, Thomas A; Graham, Brett H; Bellen, Hugo J

    2015-07-01

    Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration--defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.

  15. Indication of transthylakoid proton-fluxes in Aegopodium podagraria L. by light-induced changes of plasmalemma potential, chlorophyll fluorescence and light-scattering.

    PubMed

    Vanselow, K H; Dau, H; Hansen, U P

    1988-12-01

    The time course of the responses of chlorophyll fluorescence in leaves of Aegopodium podagraria to changes in irradiance does not necessarily show the time constant of thylakoid energization at energy fluence rates below 10-25 W·m(-2). In addition, other measures of thylakoid energization, such as lightscattering at 532 nm and the responses to saturating flashes, show that the related component disappears from these signals at low fluence rates, but not necessarily all together at the same fluence rate. However, this time constant still appears in the light-induced responses of the plasmalemma potential. This implies that the effect on the electrogenic proton pump in the plasmalemma is the most sensitive indicator of proton fluxes into the inner thylakoid space. These results are a further indication that energy-quenching is coupled ther indication that energy-quenching is coupled to transthylakoid proton fluxes via an intermediate, which is not active in Aegopodium podagraria at low irradiances.

  16. Individualized Survival and Treatment Response Predictions in Breast Cancer Patients: Involvements of Phospho-EGFR and Phospho-Her2/neu Proteins

    PubMed Central

    Guo, Lan; Abraham, Jame; Flynn, Daniel C.; Castranova, Vincent; Shi, Xianglin; Qian, Yong

    2014-01-01

    Our robust prediction system for individual breast cancer patients combines three well-known machine-learning classifiers to provide stable and accurate clinical outcome prediction (N=269). The average performance of the selected classifiers is used as the evaluation criterion in breast cancer outcome predictions. A profile (incorporating histology, lymph node status, tumor grade, tumor stage, ER, PR, Her2/neu, patient’s age and smoking status) generated over 95% accuracy in individualized disease-free survival and treatment response predictions. Furthermore, our analysis demonstrated that the measurement of phospho-EGFR and phospho-Her2/neu is more powerful in breast cancer survival prediction than that of total EGFR and total Her2/neu (p < 0.05). The incorporation of hormone receptor status, Her2/neu, patient’s age and smoking status into the traditional pathologic markers creates a powerful standard to perform individualized survival and treatment outcome predictions for breast cancer patients. PMID:25558292

  17. Secondary monoclonal gammopathy of undetermined significance is frequently associated with high response rate and superior survival in patients with plasma cell dyscrasias.

    PubMed

    Zou, Dehui; An, Gang; Zhu, Guoqing; Wang, Jinhong; Shi, Lihui; Meng, Hengxing; Xu, Yan; Sui, Weiwei; Deng, Shuhui; Zhan, Fenghuang; Qiu, Lugui

    2014-03-01

    Secondary monoclonal gammopathy of undetermined significance (MGUS) is a special phenomenon that occurs during the treatment of multiple myeloma (MM). The incidence, biological characteristics, and prognostic value of secondary MGUS in patients with MM remain undefined. We proceed with a retrospective systematic review of serum immunofixation electrophoresis studies performed in 438 cases of patients with plasma cell dyscrasias, including 409 cases of newly diagnosed MM and 29 cases of primary plasma cell leukemia. Secondary MGUS was more common in patients with myeloma who had undergone stem cell transplantation than in those who had not (17 [29.8%] of 57 versus 5 [1.4%] of 352, P < .001). The clinical parameters and cytogenetic characteristics in patients with or without secondary MGUS were comparable. The complete response rates in patients with or without secondary MGUS were 81.8% and 21.8% respectively (P < .01). For the cohort as a whole, secondary MGUS was associated with significantly prolonged progression-free survival (median, 52.0 months versus 22.5 months; P = .002) and overall survival (median, not reached versus 35.0 months; P < .001). The presence of secondary MGUS retained independent prognostic value with a moderate impact on overall survival (hazard ratio .128 [95% confidence interval .018 to .922]; P = .041) in the multivariate Cox regression model. However, when analysis was restricted to patients undergoing stem cell transplantation, no statistical differences in progression-free survival and overall survival were found. In conclusion, we observe that secondary MGUS was frequently observed in MM patients after transplantation and conferred a survival prolongation. The favorable survival in patients with secondary MGUS may be explained by beneficial effect from myeloablative therapy.

  18. Biochemical and anatomical responses related to the in vitro survival of the tropical bromeliad Nidularium minutum to low temperatures.

    PubMed

    Carvalho, Camila Pereira; Hayashi, Adriana Hissae; Braga, Marcia Regina; Nievola, Catarina Carvalho

    2013-10-01

    Nidularium minutum is a tropical bromeliad that grows in natural environment with temperatures ranging from 2 to 30 °C. In the present work we cultivated this species in vitro at 5, 10, 15, and 25 °C for 3 and 6 months aiming at assessing biochemical and morphological responses that allow its survival under low temperatures. No survival was observed for plants cultured constantly at 5 °C and the lowest biometric parameters were found for those grown at 10 °C. A thick aquiferous parenchyma, accumulation of reducing sugars, and increased pectin content in the cell walls were observed in plants grown at 10 and 15 °C when compared to those maintained at 25 °C. In plants cultured at 10 °C, leaf bleaching correlated with low chlorophyll content and lower survival rate after 6 months when compared to those grown at 15 °C. The best in vitro culture condition for slow growth and plant acclimatization was found to be at 15 °C. This probably correlated with the immediate availability of carbon to restore growth during acclimatization and also with higher root initiation under this condition. This study brings information about the responses related to functional adaptation to low temperatures in N. minutum cultured in vitro that can also be implicated in its survival under natural conditions. Additionally, it suggests the best temperature to form a minimal growth collection to be used in restocking and conservation programs for endangered tropical bromeliads.

  19. Responses Of Subalpine Conifer Seedling Germination And Survival To Soil Microclimate In The Alpine Treeline Warming Experiment

    NASA Astrophysics Data System (ADS)

    Castanha, C.; Moyes, A. B.; Torn, M. S.; Germino, M. J.; Kueppers, L. M.

    2011-12-01

    At Niwot Ridge, Colorado, we used common gardens and climate manipulations to investigate potential subalpine tree species range shifts due to climate change. In Fall 2009 we harvested seed from local populations of limber pine and Englemann spruce, which we sowed in 3 experimental sites spanning an elevation gradient from lower subalpine forest (3080m asl), to the upper subalpine treeline ecotone (3400m asl), to the alpine tundra (3550m asl). In October we turned on overhead infrared heaters designed to increase growing season surface soil temperature by 4-5°C, and following snowmelt in 2010 we crossed this heating treatment with manual watering, adding 3mm of water each week. Here we report on the species, site, and treatment effects on seedling emergence and survival as mediated by snowmelt date, soil temperature, and soil moisture. Depending on the site and plot, heating accelerated germination by 1 to 4 weeks. Germination degree days (heat accumulation required for seed germination) were greater for pine than for spruce and greater in drier plots. Seedling survival was explained by date of emergence, with older seedlings more likely to survive the season. Survival was also explained by drought degree days -- the number of days below critical soil moisture thresholds compounded by high temperature -- with lower thresholds for spruce than for pine. Our preliminary results indicate that a warmer environment will stimulate germination for both species, but that, survival - especially for spruce - will be critically modulated by summer soil moisture.

  20. Root cap-dependent gravitropic U-turn of maize root requires light-induced auxin biosynthesis via the YUC pathway in the root apex

    PubMed Central

    Suzuki, Hiromi; Yokawa, Ken; Nakano, Sayuri; Yoshida, Yuriko; Fabrissin, Isabelle; Okamoto, Takashi; Baluška, František; Koshiba, Tomokazu

    2016-01-01

    Gravitropism refers to the growth or movement of plants that is influenced by gravity. Roots exhibit positive gravitropism, and the root cap is thought to be the gravity-sensing site. In some plants, the root cap requires light irradiation for positive gravitropic responses. However, the mechanisms regulating this phenomenon are unknown. We herein report that maize roots exposed to white light continuously for ≥1–2h show increased indole-3-acetic acid (IAA) levels in the root tips, especially in the transition zone (1–3mm from the tip). Treatment with IAA biosynthesis inhibitors yucasin and l-kynurenine prevented any increases in IAA content and root curvature under light conditions. Analyses of the incorporation of a stable isotope label from tryptophan into IAA revealed that some of the IAA in roots was synthesized in the root apex. Furthermore, Zmvt2 and Zmyuc gene transcripts were detected in the root apex. One of the Zmyuc genes (ZM2G141383) was up-regulated by light irradiation in the 0–1mm tip region. Our findings suggest that IAA accumulation in the transition zone is due to light-induced activation of Zmyuc gene expression in the 0–1mm root apex region. Light-induced changes in IAA levels and distributions mediate the maize root gravitropic U-turn. PMID:27307546

  1. Rimonabant, a selective cannabinoid1 receptor antagonist, protects against light-induced retinal degeneration in vitro and in vivo.

    PubMed

    Imamura, Tomoyo; Tsuruma, Kazuhiro; Inoue, Yuki; Otsuka, Tomohiro; Ohno, Yuta; Ogami, Shiho; Yamane, Shinsaku; Shimazawa, Masamitsu; Hara, Hideaki

    2017-03-16

    The endocannabinoid system is involved in some neurodegenerative diseases such as Alzheimer's disease. An endogenous constellation of proteins related to cannabinoid1 receptor signaling, including free fatty acids, diacylglycerol lipase, and N-acylethanolamine-hydrolyzing acid amidase, are localized in the murine retina. Moreover, the expression levels of endogenous agonists of cannabinoid receptors are changed in the vitreous fluid. However, the role of the endocannabinoid system in the retina, particularly in the light-induced photoreceptor degeneration, remains unknown. Therefore, we investigated involvement of the cannabinoid1 receptor in light-induced retinal degeneration using in vitro and in vivo models. To evaluate the effect of cannabinoid1 receptors in light irradiation-induced cell death, the mouse retinal cone-cell line (661W) was treated with a cannabinoid1 receptor antagonist, rimonabant. Time-dependent changes of expression and localization of retinal cannabinoid1 receptors were measured using Western blot and immunostaining. Retinal damage was induced in mice by exposure to light, followed by intravitreal injection of rimonabant. Electroretinograms and histologic analyses were performed. Rimonabant suppressed light-induced photoreceptor cell death. Cannabinoid1 receptor expression was upregulated by light exposure. Treatment with rimonabant improved both a- and b-wave amplitudes and the thickness of the outer nuclear layer. These results suggest that the cannabinoid1 receptor is involved in light-induced retinal degeneration and it may represent a therapeutic target in the light-induced photoreceptor degeneration related diseases.

  2. Response of V79 cells to low doses of X-rays and negative pi-mesons: clonogenic survival and DNA strand breaks.

    PubMed

    Marples, B; Adomat, H; Koch, C J; Skov, K A

    1996-10-01

    Mammalian cells are hypersensitive to very low doses of X-rays (< 0.2 Gy), a response which is followed by increased radioresistance up to 1 Gy. Increased radioresistance is postulated to be a response to DNA damage, possibly single-strand breaks, and it appears to be a characteristic of low linear energy transfer (LET) radiation. Here we demonstrate a correspondence between the extent of the increased radioresistance and linear energy transfer of 250 kVp X-rays and plateau and Bragg peak negative pi-mesons. The results support our hypothesis since the size of the increased radioresistant response appears to correspond to the number of radiation induced single-strand breaks. Furthermore, since survival prior to the increased radioresistant response (< 0.2 Gy) was LET-independent, these data support the notion that the increased radioresistant response may dictate the overall survival response to higher doses. However, while these data provide further circumstantial evidence for the involvement of DNA strand breaks in the triggering of increased radioresistance, more direct conclusions cannot be made. The data are not accurate enough to detect structure in the single-strand break profiles, the production of single-strand breaks being apparently linear with dose.

  3. Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors.

    PubMed

    Kim, Kyung-Tai; Song, Mi-Ryoung

    2016-10-28

    Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity.

  4. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation

    PubMed Central

    Vyas, Vijay S.; Haase, Frederik; Stegbauer, Linus; Savasci, Gökcen; Podjaski, Filip; Ochsenfeld, Christian; Lotsch, Bettina V.

    2015-01-01

    Hydrogen evolution from photocatalytic reduction of water holds promise as a sustainable source of carbon-free energy. Covalent organic frameworks (COFs) present an interesting new class of photoactive materials, which combine three key features relevant to the photocatalytic process, namely crystallinity, porosity and tunability. Here we synthesize a series of water- and photostable 2D azine-linked COFs from hydrazine and triphenylarene aldehydes with varying number of nitrogen atoms. The electronic and steric variations in the precursors are transferred to the resulting frameworks, thus leading to a progressively enhanced light-induced hydrogen evolution with increasing nitrogen content in the frameworks. Our results demonstrate that by the rational design of COFs on a molecular level, it is possible to precisely adjust their structural and optoelectronic properties, thus resulting in enhanced photocatalytic activities. This is expected to spur further interest in these photofunctional frameworks where rational supramolecular engineering may lead to new material applications. PMID:26419805

  5. Light-induced fluorescence endoscopy (LIFE) imaging system for early cancer detection

    NASA Astrophysics Data System (ADS)

    Zeng, Haishan; MacAulay, Calum E.; Lam, Stephen; Palcic, Branko

    1999-09-01

    This paper summarizes our experiences on the development of a Light Induced Fluorescence Endoscopy (LIFE) imaging system for early cancer detection in the respiratory and gastrointestinal tract. The system utilizes tissue autofluorescence to provide real time video imaging of the examined organ. No exogenous fluorescent tumor markers are needed. It is used by a physician in adjunct to conventional white-light endoscopy. Suspicious areas are identified in pseudo color to guide biopsy. A multi- center clinical trial has demonstrated that in the lung, the relative sensitivity of white-light imaging + LIFE imaging vs. white-light imaging alone was 6.3 for intraepithelial neoplastic lesion detection and 2.71 when invasive carcinomas were also included. The following issues will be discussed: (1) spectroscopy study design for imaging system development; (2) architecture of the imaging systems; (3) different imaging modalities (white-light imaging, dual channel fluorescence imaging, and combined fluorescence/reflectance imaging); and (4) clinical applications.

  6. Light-Induced Reversible Self-Assembly of Gold Nanoparticles Surface-Immobilized with Coumarin Ligands.

    PubMed

    He, Huibin; Feng, Miao; Chen, Qidi; Zhang, Xinqi; Zhan, Hongbing

    2016-01-18

    A novel light-induced reversible self-assembly (LIRSA) system is based on the reversible photodimerization and photocleavage of coumarin groups on the surface of gold nanoparticles (AuNPs) in THF solution. Facilitated by coumarin groups, light irradiation at 365 nm triggers the stable assembly of monodisperse AuNPs; the resulting self-assembly system can be disassembled back to the disassembled state by a relatively short exposure to benign UV light. The reversible self-assembly cycle can be repeated 4 times. A specific concentration range of coumarin ligand and the THF solvent were identified to be the two predominant factors that contribute to the LIRSA of AuNPs. This is the first successful application of reversible photodimerization based on a coumarin derivative in the field of AuNP LIRSA. This LIRSA system may provide unique opportunities for the photoregulated synthesis of many adjustable nanostructures and devices.

  7. Dynamics of the light-induced atomic desorption at homogeneous illumination

    NASA Astrophysics Data System (ADS)

    Tsvetkov, S.; Taslakov, M.; Gateva, S.

    2017-03-01

    An experimental investigation of Light-Induced Atomic Desorption (LIAD) at homogeneous illumination in uncoated Rb glass cell is reported. The dynamics parameters of LIAD and their dependences on the illumination intensity in uncoated cell are measured and compared with these in paraffin-coated cell and the theoretical dependences for coated cell at homogeneous illumination. The homogeneous illumination not only increases the yield of LIAD, but increases the rates of desorption and adsorption. The results are interesting for the better understanding of the process of LIAD and the atom-surface interaction, for the development of new LIAD-loaded atomic devices, all-optical control of light, optical sensors miniaturization, and new methods for surface and coating diagnostics and nanostructuring.

  8. Visible light induced oxidation of water by rare earth manganites, cobaltites and related oxides

    NASA Astrophysics Data System (ADS)

    Naidu, B. S.; Gupta, Uttam; Maitra, Urmimala; Rao, C. N. R.

    2014-01-01

    A study of the visible light induced oxidation of water by perovskite oxides of the formula LaMO3 (M = transition metal) has revealed the best activity with LaCoO3 which contains Co3+ in the intermediate-spin (IS) with one eg electron. Among the rare earth manganites, only orthorhombic manganites with octahedral Mn3+ ions exhibit good catalytic activity, but hexagonal manganites are poor catalysts. Interestingly, not only the perovskite rare earth cobaltites but also solid solutions of Co3+ in cubic rare earth sesquioxides exhibit catalytic activity comparable to LaCoO3, the Co3+ ion in all these oxides also being in the IS t2g5 e g 1 state.

  9. Combination of light-induced effect and gate bias stress in organic phototransistors

    NASA Astrophysics Data System (ADS)

    Liguori, R.; Sheets, W. C.; Bezzeccheri, E.; Facchetti, A.; Rubino, A.

    2016-05-01

    In this work, the photoresponse of pentacene-based thin film transistors fabricated with a photocurable polymer insulator was investigated under visible and ultraviolet illumination. A simple model was developed to distinguish a photoconductive and a photovoltaic effect, that is, a direct photocurrent and a current enhancement caused by a threshold voltage shift. The direction of the light-induced threshold translation is affected by measurement conditions (e.g. integration time and voltage range) and is related to the nature of the trap states, specifically those located in the pentacene film near the interface with the polymer. In particular, it was shown that, thanks to this phenomenon, the photosensitivity of the fabricated phototransistors could be modulated by the gate bias applied during illumination.

  10. Light-induced atomic desorption and diffusion of Rb from porous alumina

    SciTech Connect

    Villalba, S.; Failache, H.; Lezama, A.

    2010-03-15

    We present a study of light-induced atom desorption (LIAD) of an alkali-metal atom (Rb) in porous alumina. We observe the variation due to LIAD of the rubidium density in a vapor cell as a function of illumination time, intensity, and wavelength. The simple and regular structure of the alumina pores allows a description of the atomic diffusion in the porous medium in which the diffusion constant only depends on the known pore geometry and the atomic sticking time to the pore wall. A simple one-dimensional theoretical model is presented which reproduces the essential features of the observed signals. Fitting of the model to the experimental data gives access to the diffusion constant and consequently the atom-wall sticking time and its dependence on light intensity and wavelength. The nonmonotonic dependence of the LIAD yield on the illumination light frequency is indicative of the existence of Rb clusters in the porous medium.

  11. Experimental studies of collective excitations of a BEC in light-induced gauge fields

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Hsun; Niffenegger, Robert; Blasing, David; Olson, Abraham; Chen, Yong P.

    2015-05-01

    We present our experimental studies of collective modes including spin dipole mode and scissors mode of a 87Rb Bose-Einstein condensate (BEC) in the presence of Raman light-induced gauge fields and synthetic spin-orbit coupling (SOC). By Raman dressing the mf spin states within the F =1 manifold, we engineer atoms' energy-momentum dispersion to create synthetic SOC, and spin dependent synthetic electric and magnetic fields. We have used spin dependent synthetic electric fields to make two BECs with different spins oscillate and collide in the optical trap. We have studied the effects of SOC on both the momentum damping and thermalization behaviors of the BECs when undergoing such spin dipole oscillations. We have also used spatially dependent synthetic electric fields to excite the scissors mode, which has been used as a probe for superfluidity. We have investigated the effects of the synthetic gauge fields and SOC on the measured scissors mode.

  12. Light-induced antibacterial activity of electrospun chitosan-based material containing photosensitizer.

    PubMed

    Severyukhina, A N; Petrova, N V; Yashchenok, A M; Bratashov, D N; Smuda, K; Mamonova, I A; Yurasov, N A; Puchinyan, D M; Georgieva, R; Bäumler, H; Lapanje, A; Gorin, D A

    2017-01-01

    Increasing antimicrobial resistance requires the development of novel materials and approaches for treatment of various infections. Utilization of photodynamic therapy represents an advanced alternative to antibiotics and metal-based agents. Here, we report the fabrication of electrospun material that possesses benefits of both topical antimicrobial and photodynamic therapies. This material combines chitosan, as a biocompatible polymer, and a second generation photosensitizer. The incorporation of photosensitizer doesn't affect the material morphology and its nearly uniform distribution in fibers structure was observed by confocal Raman microscopy. Owing to photosensitizer the prepared material exhibits the light-induced and spatially limited antimicrobial activity that was demonstrated against Staphylococcus aureus, an important etiological infectious agent. Such material can be potentially used in antibacterial therapy of chronic wounds, infections of diabetic ulcers, and burns, as well as rapidly spreading and intractable soft-tissue infections caused by resistant bacteria.

  13. Modeling of coherent ultrafast magneto-optical experiments: Light-induced molecular mean-field model

    SciTech Connect

    Hinschberger, Y.; Hervieux, P.-A.

    2015-12-28

    We present calculations which aim to describe coherent ultrafast magneto-optical effects observed in time-resolved pump-probe experiments. Our approach is based on a nonlinear semi-classical Drude-Voigt model and is used to interpret experiments performed on nickel ferromagnetic thin film. Within this framework, a phenomenological light-induced coherent molecular mean-field depending on the polarizations of the pump and probe pulses is proposed whose microscopic origin is related to a spin-orbit coupling involving the electron spins of the material sample and the electric field of the laser pulses. Theoretical predictions are compared to available experimental data. The model successfully reproduces the observed experimental trends and gives meaningful insight into the understanding of magneto-optical rotation behavior in the ultrafast regime. Theoretical predictions for further experimental studies are also proposed.

  14. Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force

    NASA Astrophysics Data System (ADS)

    Lu, Jinsheng; Yang, Hangbo; Zhou, Lina; Yang, Yuanqing; Luo, Si; Li, Qiang; Qiu, Min

    2017-01-01

    Optical force, coming from momentum exchange during light-matter interactions, has been widely utilized to manipulate microscopic objects, though mostly in vacuum or in liquids. By contrast, due to the light-induced thermal effect, photophoretic force provides an alternative and effective way to transport light-absorbing particles in ambient gases. However, in most cases these forces work independently. Here, by employing the synergy of optical force and photophoretic force, we propose and experimentally demonstrate a configuration which can drive a micron-size metallic plate moving back and forth on a tapered fiber with supercontinuum light in ambient air. Optical pulling and oscillation of the metallic plate are experimentally realized. The results might open exhilarating possibilities in applications of optical driving and energy conversion.

  15. Light-induced effects-impacts to module performance measurements and reliability testing: An overview

    NASA Technical Reports Server (NTRS)

    Wronski, C. R.

    1985-01-01

    The stability of solar cells is a key factor in determining the reliability of photovoltaic modules and is of great interest in the case of solar cells having a new technology which has not yet been fully developed. In particular this question arises with hydrogenated amorphous silicon (a-Si) solar cells because a-Si exhibits reversible light induced changes in its electronic properties, commonly referred to as the Staebler-Wronski effect (SWE). Continuous progress is being made in the peak conversion efficiencies of a-Si solar cells and efficiencies in excess of 11% have been achieved. However, stability is still a problem. ARCO Solar reports results on solar cells which, after over a year's exposure to sunlight, under open circuit conditions, still have about 7% conversion efficiency. Other results show a region of fast degradation for about a month, after which the degradation diminishes rapidly.

  16. Light-induced changes in bottled white wine and underlying photochemical mechanisms.

    PubMed

    Grant-Preece, Paris; Barril, Celia; Schmidtke, Leigh M; Scollary, Geoffrey R; Clark, Andrew C

    2017-03-04

    Bottled white wine may be exposed to UV-visible light for considerable periods of time before it is consumed. Light exposure may induce an off-flavor known as "sunlight" flavor, bleach the color of the wine, and/or increase browning and deplete sulfur dioxide. The changes that occur in bottled white wine exposed to light depend on the wine composition, the irradiation conditions, and the light exposure time. The light-induced changes in the aroma, volatile composition, color, and concentrations of oxygen and sulfur dioxide in bottled white wine are reviewed. In addition, the photochemical reactions thought to have a role in these changes are described. These include the riboflavin-sensitized oxidation of methionine, resulting in the formation of methanethiol and dimethyl disulfide, and the photodegradation of iron(III) tartrate, which gives rise to glyoxylic acid, an aldehyde known to react with flavan-3-ols to form yellow xanthylium cation pigments.

  17. Light induced chemical vapour deposition of titanium oxide thin films at room temperature

    NASA Astrophysics Data System (ADS)

    Halary, E.; Benvenuti, G.; Wagner, F.; Hoffmann, P.

    2000-02-01

    High resolution patterned deposition of titania is achieved by light induced chemical vapour deposition (LICVD), by imaging a mask onto a glass substrate. A long pulse XeCl Excimer laser (308 nm) provides, by perpendicular irradiation, the energy to convert titanium tetraisopropoxide (TTIP) vapour into titanium dioxide films, in an oxygen atmosphere, on unheated glass substrates. The amorphous titania deposits contain about 6% carbon contamination according to X-ray photoelectron spectroscopy (XPS) measurements. The deposition rate increases with increasing laser fluence until a maximum value is reached, then remains constant over a wide range, and finally decreases with further fluence increase due to titania ablation or thermal effects. The film thickness increases linearly with the number of pulses after a nucleation period. The strong influence of the laser pulse repetition rate on the growth rate and the thickness profile are reported.

  18. Theory of light-induced effective magnetic field in Rashba ferromagnets

    NASA Astrophysics Data System (ADS)

    Qaiumzadeh, Alireza; Titov, Mikhail

    2016-07-01

    Motivated by recent experiments on all-optical magnetization reversal in conductive ferromagnetic thin films we use nonequilibrium formalism to calculate the effective magnetic field induced in a Rashba ferromagnet by a short laser pulse. The main contribution to the effect originates in the direct optical transitions between spin-split subbands. The resulting effective magnetic field is inversely proportional to the impurity scattering rate and can reach the amplitude of a few Tesla in the systems like Co/Pt bilayers. We show that the total light-induced effective magnetic field in ferromagnetic systems is the sum of two contributions: a helicity dependent term, which is an even function of magnetization, and a helicity independent term, which is an odd function of magnetization. The primary role of the spin-orbit interaction is to widen the frequency range for direct optical transitions.

  19. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation

    NASA Astrophysics Data System (ADS)

    Vyas, Vijay S.; Haase, Frederik; Stegbauer, Linus; Savasci, Gökcen; Podjaski, Filip; Ochsenfeld, Christian; Lotsch, Bettina V.

    2015-09-01

    Hydrogen evolution from photocatalytic reduction of water holds promise as a sustainable source of carbon-free energy. Covalent organic frameworks (COFs) present an interesting new class of photoactive materials, which combine three key features relevant to the photocatalytic process, namely crystallinity, porosity and tunability. Here we synthesize a series of water- and photostable 2D azine-linked COFs from hydrazine and triphenylarene aldehydes with varying number of nitrogen atoms. The electronic and steric variations in the precursors are transferred to the resulting frameworks, thus leading to a progressively enhanced light-induced hydrogen evolution with increasing nitrogen content in the frameworks. Our results demonstrate that by the rational design of COFs on a molecular level, it is possible to precisely adjust their structural and optoelectronic properties, thus resulting in enhanced photocatalytic activities. This is expected to spur further interest in these photofunctional frameworks where rational supramolecular engineering may lead to new material applications.

  20. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation.

    PubMed

    Vyas, Vijay S; Haase, Frederik; Stegbauer, Linus; Savasci, Gökcen; Podjaski, Filip; Ochsenfeld, Christian; Lotsch, Bettina V

    2015-09-30

    Hydrogen evolution from photocatalytic reduction of water holds promise as a sustainable source of carbon-free energy. Covalent organic frameworks (COFs) present an interesting new class of photoactive materials, which combine three key features relevant to the photocatalytic process, namely crystallinity, porosity and tunability. Here we synthesize a series of water- and photostable 2D azine-linked COFs from hydrazine and triphenylarene aldehydes with varying number of nitrogen atoms. The electronic and steric variations in the precursors are transferred to the resulting frameworks, thus leading to a progressively enhanced light-induced hydrogen evolution with increasing nitrogen content in the frameworks. Our results demonstrate that by the rational design of COFs on a molecular level, it is possible to precisely adjust their structural and optoelectronic properties, thus resulting in enhanced photocatalytic activities. This is expected to spur further interest in these photofunctional frameworks where rational supramolecular engineering may lead to new material applications.

  1. Orthogonal light-induced self-assembly of nanoparticles using differently substituted azobenzenes.

    PubMed

    Manna, Debasish; Udayabhaskararao, Thumu; Zhao, Hui; Klajn, Rafal

    2015-10-12

    Precise control of the self-assembly of selected components within complex mixtures is a challenging goal whose realization is important for fabricating novel nanomaterials. Herein we show that by decorating the surfaces of metallic nanoparticles with differently substituted azobenzenes, it is possible to modulate the wavelength of light at which the self-assembly of these nanoparticles is induced. Exposing a mixture of two types of nanoparticles, each functionalized with a different azobenzene, to UV or blue light induces the selective self-assembly of only one type of nanoparticles. Irradiation with the other wavelength triggers the disassembly of the aggregates, and the simultaneous self-assembly of nanoparticles of the other type. By placing both types of azobenzenes on the same nanoparticles, we created unique materials ("frustrated" nanoparticles) whose self-assembly is induced irrespective of the wavelength of the incident light.

  2. Immobilization of the nematode Caenorhabditis elegans with addressable light-induced heat knockdown (ALINK).

    PubMed

    Chuang, Han-Sheng; Chen, Hsiang-Yu; Chen, Chang-Shi; Chiu, Wen-Tai

    2013-08-07

    Caenorhabditis (C.) elegans is a model animal used in genetics, neuroscience, and developmental biology. Researchers often immobilize squirming worms to obtain high-quality images for analysis. However, current methods usually require physical contact or anesthetics. This can cause injuries to worm bodies or neuron disturbances. This study presents an alternative technique, called addressable light-induced heat knockdown (ALINK), to effectively immobilize worms by using light-induced sublethal heat. A microchip composed of an indium-tin-oxide (ITO) glass plate and an ITO glass plate coated with a photoconductive layer (a-Si:H) was produced. Worms to be immobilized were immersed in a liquid medium and sandwiched between the two plates. When the worms were irradiated with a focused laser beam in the presence of electric fields (referred to as an optoelectric treatment), the optoelectric effect heated the liquid medium. The neural functions of the worms shut down temporarily when a critical temperature (>31 °C) was reached. Their neural functions resumed after the heat source was removed. A temperature above 37 °C killed all worms. Using short-wavelength light reduced the worms' recovery time. An equivalent circuit was modeled to predict the operating modes, and an optoelectric treatment with a high-concentration medium enhanced rapid heating. A safe operating range (20 Vpp (peak-to-peak voltage), 100 kHz to 10 MHz, 31 to 37 °C) to induce heat knockdown (KD) was also investigated. The results show that the heat KD was well controlled, autonomous, and reversible. This technique can be used for worm immobilization.

  3. Origin of Light-Induced Spin-Correlated Radical Pairs in Cryptochrome

    PubMed Central

    Weber, Stefan; Biskup, Till; Okafuji, Asako; Marino, Anthony R.; Berthold, Thomas; Link, Gerhard; Hitomi, Kenichi; Getzoff, Elizabeth D.; Schleicher, Erik; Norris, James R.

    2012-01-01

    Blue-light excitation of cryptochromes and homologs uniformly triggers electron transfer (ET) from the protein surface to the flavin-adenine dinucleotide (FAD) cofactor. A cascade of three conserved tryptophan residues has been considered to be critically involved in this photoreaction. If the FAD is initially in its fully oxidized (diamagnetic) redox state, light-induced ET via the tryptophan triad generates a series of short-lived spin-correlated radical pairs comprising an FAD radical and a tryptophan radical. Coupled doublet-pair species of this type have been proposed as the basis, e.g., of a biological magnetic compass in migratory birds, and were found critical for some cryptochrome functions in vivo. In this contribution, a cryptochrome-like protein (CRYD) derived from Xenopus laevis has been examined as a representative system. The terminal radical-pair state FAD•⋯W324• of X. laevis CRYD has been characterized in detail by time-resolved electron-paramagnetic resonance (TREPR) at X-band microwave frequency (9.68 GHz) and magnetic fields around 345 mT, and at Q-band (34.08 GHz) at around 1215 mT. Different precursor states – singlet versus triplet – of radical-pair formation have been considered in spectral simulations of the experimental electron-spin polarized TREPR signals. Conclusively, we present evidence for a singlet-state precursor of FAD•⋯W324• radical-pair generation because at both magnetic fields, where radical pairs were studied by TREPR, net-zero electron-spin polarization has been detected. Neither a spin-polarized triplet precursor nor a triplet at thermal equilibrium can explain such an electron-spin polarization. It turns out that a two-microwave-frequency TREPR approach is essential to draw conclusions on the nature of the precursor electronic states in light-induced spin-correlated radical pair formations. PMID:20684534

  4. Temporal profile of inflammatory response to fracture and hemorrhagic shock: Proposal of a novel long-term survival murine multiple trauma model.

    PubMed

    Kleber, Christian; Becker, Christopher A; Malysch, Tom; Reinhold, Jens M; Tsitsilonis, Serafeim; Duda, Georg N; Schmidt-Bleek, Katharina; Schaser, Klaus D

    2015-07-01

    Hemorrhagic shock (hS) interacts with the posttraumatic immune response and fracture healing in multiple trauma. Due to the lack of a long-term survival multiple trauma animal models, no standardized analysis of fracture healing referring the impact of multiple trauma on fracture healing was performed. We propose a new long-term survival (21 days) murine multiple trauma model combining hS (microsurgical cannulation of carotid artery, withdrawl of blood and continuously blood pressure measurement), femoral (osteotomy/external fixation) and tibial fracture (3-point bending technique/antegrade nail). The posttraumatic immune response was measured via IL-6, sIL-6R ELISA. The hS was investigated via macrohemodynamics, blood gas analysis, wet-dry lung ration and histologic analysis of the shock organs. We proposed a new murine long-term survival (21 days) multiple trauma model mimicking clinical relevant injury patterns and previously published human posttraumatic immune response. Based on blood gas analysis and histologic analysis of shock organs we characterized and standardized our murine multiple trauma model. Furthermore, we revealed hemorrhagic shock as a causative factor that triggers sIL-6R formation underscoring the fundamental pathophysiologic role of the transsignaling mechanism in multiple trauma.

  5. HER-2/Neu overexpression does not predict response to neoadjuvant chemotherapy or prognosticate survival in patients with locally advanced breast cancer.

    PubMed

    Tulbah, Asma M; Ibrahim, Ezzeldin M; Ezzat, Adnan A; Ajarim, Dahish S; Rahal, Mohammed M; El Weshi, Amr N; Sorbris, Ralph

    2002-01-01

    Data about the prognostic and predictive value of HER-2/neu overexpression in patients with locally advanced breast cancer (LABC) treated with primary chemotherapy is limited. Therefore, this retrospective study was performed to examine this issue. Fifty-four consecutive patients with LABC were prospectively managed using a uniform multimodality approach. Response to neoadjuvant chemotherapy and survival were examined against HER-2/neu overexpression as determined by an immunohistochemistry method on formalin-fixed, paraffin-embedded samples of breast cancer using the commercially available, United States Food and Drug Administration-approved kit HercepTest (Dako Corp, Carpinteria, CA). The number of patients in each HercepTest immunostaining group were as follows; 0 in 12 patients (22%), 1+ in 8 (15%), 2+ in 12 (22%), and 3+ in 22 (41%). None of the clinical variables was significantly associated with HER-2/neu expression. After primary therapy, 22% of patients attained clinical complete response and an additional 70% achieved clinical partial response with an overall response rate of 92% (95% confidence interval: 100% to 79%). There was no significant correlation between clinical response and HercepTest positivity (p = 0.85). Of 52 patients with complete pathological data, there was no significant difference in HercepTest status between those who attained complete pathological response (46%) and those who did not (38%) (p = 0.74). Moreover, there was no significant difference in disease-free survival (75% vs 84%, [p = 0.26]) or overall survival (81% vs 84% [p = 0.31]) between those who overexpressed HER-2/neu and those with negative HercepTest, respectively. In patients with LABC, HER-2/neu overexpression determined using HercepTest assay and according to the manufacturer's approved guidelines failed to demonstrate a predictive or a prognostic role.

  6. Humoral immune responses to EGFR-derived peptides predict progression-free and overall survival of non-small cell lung cancer patients receiving gefitinib.

    PubMed

    Azuma, Koichi; Komatsu, Nobukazu; Hattori, Satoshi; Matsueda, Satoko; Kawahara, Akihiko; Sasada, Tetsuro; Itoh, Kyogo; Hoshino, Tomoaki

    2014-01-01

    Somatic mutations in the epidermal growth factor receptor (EGFR) gene are associated with clinical response to EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib, in patients with non-small cell lung cancer (NSCLC). However, humoral immune responses to EGFR in NSCLC patients have not been well studied. In this study, we investigated the clinical significance of immunoglobulin G (IgG) responses to EGFR-derived peptides in NSCLC patients receiving gefitinib. Plasma IgG titers to each of 60 different EGFR-derived 20-mer peptides were measured by the Luminex system in 42 NSCLC patients receiving gefitinib therapy. The relationships between the peptide-specific IgG titers and presence of EGFR mutations or patient survival were evaluated statistically. IgG titers against the egfr_481-500, egfr_721-740, and egfr_741-760 peptides were significantly higher in patients with exon 21 mutation than in those without it. On the other hand, IgG titers against the egfr_841-860 and egfr_1001-1020 peptides were significantly lower and higher, respectively, in patients with deletion in exon 19. Multivariate Cox regression analysis showed that IgG responses to egfr_41_ 60, egfr_61_80 and egfr_481_500 were significantly prognostic for progression-free survival independent of other clinicopathological characteristics, whereas those to the egfr_41_60 and egfr_481_500 peptides were significantly prognostic for overall survival. Detection of IgG responses to EGFR-derived peptides may be a promising method for prognostication of NSCLC patients receiving gefitinib. Our results may provide new insight for better understanding of humoral responses to EGFR in NSCLC patients.

  7. NOR-1/NR4A3 regulates the cellular inhibitor of apoptosis 2 (cIAP2) in vascular cells: role in the survival response to hypoxic stress

    PubMed Central

    Alonso, Judith; Galán, María; Martí-Pàmies, Ingrid; Romero, José María; Camacho, Mercedes; Rodríguez, Cristina; Martínez-González, José

    2016-01-01

    Vascular cell survival is compromised under pathological conditions such as abdominal aortic aneurysm (AAA). We have previously shown that the nuclear receptor NOR-1 is involved in the survival response of vascular cells to hypoxia. Here, we identify the anti-apoptotic protein cIAP2 as a downstream effector of NOR-1. NOR-1 and cIAP2 were up-regulated in human AAA samples, colocalizing in vascular smooth muscle cells (VSMC). While NOR-1 silencing reduced cIAP2 expression in vascular cells, lentiviral over-expression of this receptor increased cIAP2 mRNA and protein levels. The transcriptional regulation of the human cIAP2 promoter was analyzed in cells over-expressing NOR-1 by luciferase reporter assays, electrophoretic mobility shift analysis and chromatin immunoprecipitation, identifying a NGFI-B site (NBRE-358/-351) essential for NOR-1 responsiveness. NOR-1 and cIAP2 were up-regulated by hypoxia and by a hypoxia mimetic showing a similar time-dependent pattern. Deletion and site-directed mutagenesis studies show that NOR-1 mediates the hypoxia-induced cIAP2 expression. While NOR-1 over-expression up-regulated cIAP2 and limited VSMC apoptosis induced by hypoxic stress, cIAP2 silencing partially prevented this NOR-1 pro-survival effect. These results indicate that cIAP2 is a target of NOR-1, and suggest that this anti-apoptotic protein is involved in the survival response to hypoxic stress mediated by NOR-1 in vascular cells. PMID:27654514

  8. NOR-1/NR4A3 regulates the cellular inhibitor of apoptosis 2 (cIAP2) in vascular cells: role in the survival response to hypoxic stress.

    PubMed

    Alonso, Judith; Galán, María; Martí-Pàmies, Ingrid; Romero, José María; Camacho, Mercedes; Rodríguez, Cristina; Martínez-González, José

    2016-09-22

    Vascular cell survival is compromised under pathological conditions such as abdominal aortic aneurysm (AAA). We have previously shown that the nuclear receptor NOR-1 is involved in the survival response of vascular cells to hypoxia. Here, we identify the anti-apoptotic protein cIAP2 as a downstream effector of NOR-1. NOR-1 and cIAP2 were up-regulated in human AAA samples, colocalizing in vascular smooth muscle cells (VSMC). While NOR-1 silencing reduced cIAP2 expression in vascular cells, lentiviral over-expression of this receptor increased cIAP2 mRNA and protein levels. The transcriptional regulation of the human cIAP2 promoter was analyzed in cells over-expressing NOR-1 by luciferase reporter assays, electrophoretic mobility shift analysis and chromatin immunoprecipitation, identifying a NGFI-B site (NBRE-358/-351) essential for NOR-1 responsiveness. NOR-1 and cIAP2 were up-regulated by hypoxia and by a hypoxia mimetic showing a similar time-dependent pattern. Deletion and site-directed mutagenesis studies show that NOR-1 mediates the hypoxia-induced cIAP2 expression. While NOR-1 over-expression up-regulated cIAP2 and limited VSMC apoptosis induced by hypoxic stress, cIAP2 silencing partially prevented this NOR-1 pro-survival effect. These results indicate that cIAP2 is a target of NOR-1, and suggest that this anti-apoptotic protein is involved in the survival response to hypoxic stress mediated by NOR-1 in vascular cells.

  9. Bone Marrow Minimal Residual Disease Was an Early Response Marker and a Consistent Independent Predictor of Survival After Anti-GD2 Immunotherapy

    PubMed Central

    Cheung, Nai-Kong V.; Ostrovnaya, Irina; Kuk, Deborah; Cheung, Irene Y.

    2015-01-01

    Purpose Immunotherapy is a standard of care for children with high-risk neuroblastoma, where bone marrow (BM) is the predominant metastatic site. Early response markers of minimal residual disease (MRD) in the BM that are also predictive of survival could help individualize patient therapies. Patients and Methods After achieving first remission (n = 163), primary refractory disease (n = 102), or second remission (n = 95), children with stage 4 neuroblastoma received anti-GD2 3F8 antibody immunotherapy. BM MRD before 3F8 treatment and after cycle 2 (postMRD) was measured using a four-marker panel (B4GALNT1, PHOX2B, CCND1, and ISL1) by quantitative reverse transcription polymerase chain reaction. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan-Meier method. Prognostic variables were tested in both univariable and multivariable analyses, and MRD markers were further assessed individually and in combination as binary composite (postMRD: 0 and 1) and as equal sum (postMRDSum: 0 to 4) using the Cox regression models, and their predictive accuracy was determined by the concordance index. Results When BM was evaluated after cycle 2, individual markers were highly predictive of PFS and OS. The prediction accuracy improved when they were combined in postMRDSum. A multivariable model taking into account all the variables significant in the univariable analyses identified postMRDSum to be independently predictive of PFS and OS. When the model for OS also included missing killer immunoglobulin-like receptor ligand, human antimouse antibody response, and the enrollment disease status, the concordance index was 0.704. Conclusion BM MRD after two cycles of immunotherapy was confirmed as an early response marker and a consistent independent predictor of survival. PMID:25559819

  10. Females increase reproductive investment in response to helper-mediated improvements in allo-feeding, nest survival, nestling provisioning and post-fledging survival in the Karoo scrub-robin Cercotrichas coryphaeus

    USGS Publications Warehouse

    Lloyd, P.; Andrew, Taylor W.; Du Plessis, M.A.; Martin, T.E.

    2009-01-01

    In many cooperatively-breeding species, the presence of one or more helpers improves the reproductive performance of the breeding pair receiving help. Helper contributions can take many different forms, including allo-feeding, offspring provisioning, and offspring guarding or defence. Yet, most studies have focussed on single forms of helper contribution, particularly offspring provisioning, and few have evaluated the relative importance of a broader range of helper contributions to group reproductive performance. We examined helper contributions to multiple components of breeding performance in the Karoo scrub-robin Cercotrichas coryphaeus, a facultative cooperative breeder. We also tested a prediction of increased female investment in reproduction when helpers improve conditions for rearing young. Helpers assisted the breeding male in allo-feeding the incubating female, increasing allo-feeding rates. Greater allo-feeding correlated with greater female nest attentiveness during incubation. Nest predation was substantially lower among pairs breeding with a helper, resulting in a 74% increase in the probability of nest survival. Helper contributions to offspring provisioning increased nestling feeding rates, resulting in a reduced incidence of nestling starvation and increased nestling mass. Nestling mass had a strong, positive effect on post-fledging survival. Controlling for female age and habitat effects, annual production of fledged young was 130% greater among pairs breeding with a helper, and was influenced most strongly by helper correlates with nest survival, despite important helper effects on offspring provisioning. Females breeding with a helper increased clutch size, supporting the prediction of increased female investment in reproduction in response to helper benefits. ?? 2009 J. Avian Biol.

  11. SGEF is Regulated via TWEAK/Fn14/NF-κB Signaling and Promotes Survival by Modulation of the DNA Repair Response to Temozolomide

    PubMed Central

    Fortin Ensign, Shannon P.; Roos, Alison; Mathews, Ian T.; Dhruv, Harshil D.; Tuncali, Serdar; Sarkaria, Jann N.; Symons, Marc H.; Loftus, Joseph C.; Berens, Michael E.; Tran, Nhan L.

    2015-01-01

    Glioblastoma (GB) is the highest grade and most common form of primary adult brain tumors. Despite surgical removal followed by concomitant radiation and chemotherapy with the alkylating agent temozolomide (TMZ), GB tumors develop treatment resistance and ultimately recur. Impaired response to treatment occurs rapidly, conferring a median survival of just fifteen months. Thus, it is necessary to identify the genetic and signaling mechanisms that promote tumor resistance in order to develop targeted therapies to combat this refractory disease. Previous observations indicated that SGEF (ARHGEF26), a RhoG specific guanine nucleotide exchange factor (GEF), is overexpressed in GB tumors and plays a role in promoting TWEAK-Fn14 mediated glioma invasion. Here, further investigation revealed an important role for SGEF in glioma cell survival. SGEF expression is up-regulated by TWEAK-Fn14 signaling via NF-κB activity while shRNA-mediated reduction of SGEF expression sensitizes glioma cells to TMZ-induced apoptosis and suppresses colony formation following TMZ treatment. Nuclear SGEF is activated following TMZ exposure and complexes with the DNA damage repair (DDR) protein BRCA1. Moreover, BRCA1 phosphorylation in response to TMZ treatment is hindered by SGEF knockdown. The role of SGEF in promoting chemotherapeutic resistance highlights a heretofore unappreciated driver, and suggests its candidacy for development of novel targeted therapeutics for TMZ refractory, invasive GB cells. Implication SGEF, as a dual process modulator of cell survival and invasion, represents a novel target for treatment refractory glioblastoma. PMID:26764186

  12. Effect of silver nanoparticles on the metabolic rate, hematological response, and survival of juvenile white shrimp Litopenaeus vannamei.

    PubMed

    Juarez-Moreno, Karla; Mejía-Ruiz, Claudio Humberto; Díaz, Fernando; Reyna-Verdugo, Horacio; Re, Ana Denisse; Vazquez-Felix, Edgar F; Sánchez-Castrejón, Edna; Mota-Morales, Josué D; Pestryakov, Alexey; Bogdanchikova, Nina

    2017-02-01

    White spot syndrome virus (WSSV) is highly lethal and contagious in shrimps; its outbreaks causes an economic crisis for aquaculture. Several attempts have been made to treat this disease; however, to date, there is no effective cure. Because of their antimicrobial activities, silver nanoparticles (AgNPs) are the most studied nanomaterial. Although the antiviral properties of AgNPs have been studied, their antiviral effect against viral infection in aquaculture has not been reported. The AgNPs tested herein are coated with polyvinylpyrrolidone (PVP) and possess multiple international certifications for their use in veterinary and human applications. The aim of this work was to evaluate the survival rate of juvenile white shrimps (Litopenaeus vannamei) after the intramuscular administration of AgNPs. For this, different concentrations of metallic AgNPs and PVP alone were injected into the organisms. After 96 h of administration, shrimp survival was more than 90% for all treatments. The oxygen consumption routine rate and total hemocyte count remained unaltered after AgNP injection, reflecting no stress caused. We evaluated whether AgNPs had an antiviral effect in shrimps infected with WSSV. The results revealed that the survival rate of WSSV-infected shrimps after AgNP administration was 80%, whereas the survival rate of untreated organisms was only 10% 96 h after infection. These results open up the possibility to explore the potential use of AgNPs as antiviral agents for the treatment of diseases in aquaculture organisms, particularly the WSSV in shrimp culture.

  13. Phylogenetic analysis and seasonal cold acclimation-associated expression of early light-induced protein genes of Rhododendron catawbiense.

    PubMed

    Peng, Yanhui; Lin, Wuling; Wei, Hui; Krebs, Stephen L; Arora, Rajeev

    2008-01-01

    The early light-induced proteins (ELIPs) are nuclear-encoded, light stress-induced proteins located in thylakoid membranes and related to light-harvesting Chl a/b-binding proteins. Recent evidence from physiological and genetic (mutant) studies supports a photoprotective function for ELIPs, particularly when green tissues are exposed to high light intensities at suboptimal temperatures. Broad-leaved evergreens belonging to genus Rhododendron are often exposed to a combination of low temperatures and high light in their natural habitat as the understory plants in deciduous forests and, therefore, are expected to employ photoprotective strategies during overwintering phase. Here we report analysis and characterization of previously identified ELIP expressed sequence tags (ESTs) from winter-collected Rhododendron catawbiense leaves. 5' or 3' rapid amplification of complementary DNA ends (RACEs) coupled with bioinformatic analyses were used to identify seven unique ELIPs from the 40 ESTs and were designated as RcELIP1-RcELIP7. Phylogenetic analysis revealed separate clustering of ELIP homologs from lower plants, monocots and eudicots (including RcELIPs) and further indicated an evolutionary divergence of ELIPs among angiosperms and gymnosperms. To gain insights into the cold acclimation (CA) physiology of rhododendrons, relative and absolute quantitative expression of RcELIPs was examined during seasonal CA of R. catawbiense leaves using real time reverse transcriptase-polymerase chain reaction. All seven RcELIPs were distinctly upregulated during the CA. It is postulated that RcELIPs expression constitutes an adaptive response to cold and high light in winter-adapted rhododendron leaves and perhaps plays a key role in the protection of photosynthetic apparatus from these stresses.

  14. A non-hydrolyzable ATP derivative generates a stable complex in a light-inducible two-component system.

    PubMed

    Sharda, Shivani; Koay, Melissa S T; Kim, Young-Jun; Engelhard, Martin; Gärtner, Wolfgang

    2009-12-04

    Isothermal calorimetry (ITC) measurements yielded the binding constants during complex formation of light-inducible histidine kinases (HK) and their cognate CheY-type response regulators (RR). HK-RR interactions represent the core function of the bacterial two-component system, which is also present in many bacterial phytochromes. Here, we have studied the recombinant forms of phytochromes CphA and CphB from the cyanobacterium Tolypothrix PCC7601 and their cognate RRs RcpA and RcpB. The interaction between the two reaction partners (HK and RR) was studied in the presence and absence of ATP. A complex formation was observable in the presence of ATP, but specific interactions were only found when a non-hydrolyzable ATP derivative was added to the mixture. Also, the incubation of the HK domain alone (expressed as a recombinant protein) with the RR did not yield specific interactions, indicating that the HK domain is only active as a component of the full-length phytochrome. Considering also previous studies on the same proteins (Hübschmann, T., Jorissen, H. J. M. M., Börner, T., Gärtner, W., and de Marsac, N. (2001) Eur. J. Biochem. 268, 3383-3389) we now conclude that the HK domains of these phytochromes are active only when the chromophore domain is in its Pr form. The formerly documented phosphate transfer between the HK domain and the RR takes place via a transiently formed protein-protein complex, which becomes detectable by ITC in the presence of a non-hydrolyzable ATP derivative. This finding is of interest also in relation to the function of some (blue light-sensitive) photoreceptors that carry the HK domain and the RR fused together in one single protein.

  15. Simulations of light induced processes in water based on ab initio path integrals molecular dynamics. II. Photoionization

    NASA Astrophysics Data System (ADS)

    Svoboda, Ondřej; Ončák, Milan; Slavíček, Petr

    2011-10-01

    We have applied ab initio based reflection principle to simulate photoelectron spectra of small water clusters, ranging from monomer to octamer. The role of quantum and thermal effects on the structure of the water photoelectron spectra is discussed within the ab initio path integral molecular dynamics (PIMD) framework. We have used the PIMD method with up to 40 beads to sample the ground state quantum distribution at temperature T = 180 K. We have thoroughly tested the performance of various density functionals (B3LYP, BHandHLYP, M06HF, BNL, LC-ωPBE, and CAM-B3LYP) for the ionization process description. The benchmarking based on a comparison of simulated photoelectron spectra to experimental data and high level equation-of-motion ionization potential coupled clusters with singles and doubles calculations has singled out the BHandHLYP and LC-ωPBE functionals as the most reliable ones for simulations of light induced processes in water. The good performance of the density functional theory functionals to model the water photoelectron spectra also reflects their ability to reliably describe open shell excited states. The width of the photoelectron spectrum converges quickly with the cluster size as it is controlled by specific interactions of local character. The peak position is, on the other hand, defined by long-range non-specific solvent effects; it therefore only slowly converges to the corresponding bulk value. We are able to reproduce the experimental valence photoelectron spectrum of liquid water within the combined model of the water octamer embedded in a polarizable dielectric continuum. We demonstrate that including the long-range polarization and the state-specific treatment of the solvent response are needed for a reliable liquid water ionization description.

  16. A new plateau in the dose-survival-time response of the golden hamster (Mesocricetus auratus) from whole body irradiation.

    PubMed

    Tsubouchi, S; Matsuzawa, T

    1981-07-01

    The survival time of golden hamsters (Mesocricetus auratus) after whole-body 60Co-gamma-irradiation in the range of 600 to 200 000 rad was investigated. The two plateaus of the dose-survival curve which correspond to bone marrow and gastrointestinal death are similar to those of other species such as mice, rats and mongolian gerbils. A new plateau occurring 40-57 hours after doses of 30 000 to 60 000 rad, where there is a little reduction in survival time, has been found. It is in addition to the well recognized central nevous system (CNS) syndrome. This plateau is observed only in golden hamsters, presumably because of their relatively high resistence to CNS syndrome. Experiments involved partial body irradiation of the animals indicate that the target is in the cephalic one-third of abdomen. The new segment may well indicate a new type of acute somatic radiation injury different from the well known bone marrow, gastrointestinal and CNS syndromes.

  17. The natural killer cell response and tumor debulking are associated with prolonged survival in recurrent glioblastoma patients receiving dendritic cells loaded with autologous tumor lysates

    PubMed Central

    Pellegatta, Serena; Eoli, Marica; Frigerio, Simona; Antozzi, Carlo; Bruzzone, Maria Grazia; Cantini, Gabriele; Nava, Sara; Anghileri, Elena; Cuppini, Lucia; Cuccarini, Valeria; Ciusani, Emilio; Dossena, Marta; Pollo, Bianca; Mantegazza, Renato; Parati, Eugenio A.; Finocchiaro, Gaetano

    2013-01-01

    Recurrent glioblastomas (GBs) are highly aggressive tumors associated with a 6–8 mo survival rate. In this study, we evaluated the possible benefits of an immunotherapeutic strategy based on mature dendritic cells (DCs) loaded with autologous tumor-cell lysates in 15 patients affected by recurrent GB. The median progression-free survival (PFS) of this patient cohort was 4.4 mo, and the median overall survival (OS) was 8.0 mo. Patients with small tumors at the time of the first vaccination (< 20 cm3; n = 8) had significantly longer PFS and OS than the other patients (6.0 vs. 3.0 mo, p = 0.01; and 16.5 vs. 7.0 mo, p = 0.003, respectively). CD8+ T cells, CD56+ natural killer (NK) cells and other immune parameters, such as the levels of transforming growth factor β, vascular endothelial growth factor, interleukin-12 and interferon γ (IFNγ), were measured in the peripheral blood and serum of patients before and after immunization, which enabled us to obtain a vaccination/baseline ratio (V/B ratio). An increased V/B ratio for NK cells, but not CD8+ T cells, was significantly associated with prolonged PFS and OS. Patients exhibiting NK-cell responses were characterized by high levels of circulating IFNγ and E4BP4, an NK-cell transcription factor. Furthermore, the NK cell V/B ratio was inversely correlated with the TGFβ2 and VEGF V/B ratios. These results suggest that tumor-loaded DCs may increase the survival rate of patients with recurrent GB after effective tumor debulking, and emphasize the role of the NK-cell response in this therapeutic setting. PMID:23802079

  18. Areca nut is associated with younger age of diagnosis, poor chemoradiotherapy response, and shorter overall survival in esophageal squamous cell carcinoma

    PubMed Central

    Chen, Chang-Han; Lu, Hung-I; Wang, Yu-Ming; Chen, Yen-Hao; Lo, Chien-Ming; Huang, Wan-Ting; Li, Shau-Hsuan

    2017-01-01

    Objective Areca nut chewing is carcinogenic to humans. However, little is known about the impact of areca nut chewing on esophageal squamous cell carcinoma (ESCC). Methods We retrospectively reviewed 286 ESCC patients who received surgery or preoperative chemoradiotherapy followed by surgery at our institution. Background characteristics including areca nut chewing history were analyzed. The 4-nitroquinoline 1-oxide (4-NQO)-induced murine ESCC model was used to test the impact of arecoline, a main constituent of areca nut, on ESCC. Results Compared to patients without areca nut chewing history, patients with areca nut chewing history had overall a younger age of onset (Mean age: 56.75 versus 52.68 yrs, P<0.001) and significantly worse overall survival than those without areca nut chewing history (P = 0.026). Among patients who received surgery, the overall survival rates were not significantly different between those with or without areca nut chewing history. Among patients who received preoperative chemoradiotherapy followed by surgery, those with areca nut chewing history had a significantly lower pathologic complete response rate (P = 0.002) and lower overall survival rate (P = 0.002) than those without. In the murine ESCC model, the incidence of esophageal invasive squamous cell carcinoma was 40% in mice exposed to concomitant 4-NQO and arecoline treatment for 8 weeks and 6% in mice exposed to 4-NQO only for 8 weeks (P = 0.037). Conclusions Our results indicate that areca nut chewing history is significantly associated with younger age of onset, poor response to chemoradiotherapy, and shorter overall survival in ESCC patients. Arecoline, a main constituent of areca nut, accelerates esophageal tumorigenesis in the 4-NQO-induced murine ESCC model. PMID:28245263

  19. Mechanism of light induced water splitting in Photosystem II of oxygen evolving photosynthetic organisms.

    PubMed

    Renger, Gernot

    2012-08-01

    The reactions of light induced oxidative water splitting were analyzed within the framework of the empirical rate constant-distance relationship of non-adiabatic electron transfer in biological systems (C. C. Page, C. C. Moser, X. Chen , P. L. Dutton, Nature 402 (1999) 47-52) on the basis of structure information on Photosystem II (PS II) (A. Guskov, A. Gabdulkhakov, M. Broser, C. Glöckner, J. Hellmich, J. Kern, J. Frank, W. Saenger, A. Zouni, Chem. Phys. Chem. 11 (2010) 1160-1171, Y. Umena, K. Kawakami, J-R Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 47 (2011) 55-60). Comparison of these results with experimental data leads to the following conclusions: 1) The oxidation of tyrosine Y(z) by the cation radical P680(+·) in systems with an intact water oxidizing complex (WOC) is kinetically limited by the non-adiabatic electron transfer step and the extent of this reaction is thermodynamically determined by relaxation processes in the environment including rearrangements of hydrogen bond network(s). In marked contrast, all Y(z)(ox) induced oxidation steps in the WOC up to redox state S(3) are kinetically limited by trigger reactions which are slower by orders of magnitude than the rates calculated for non-adiabatic electron transfer. 3) The overall rate of the triggered reaction sequence of Y(z)(ox) reduction by the WOC in redox state S(3) eventually leading to formation and release of O(2) is kinetically limited by an uphill electron transfer step. Alternative models are discussed for this reaction. The protein matrix of the WOC and bound water molecules provide an optimized dynamic landscape of hydrogen bonded protons for catalyzing oxidative water splitting energetically driven by light induced formation of the cation radical P680(+·). In this way the PS II core acts as a molecular machine formed during a long evolutionary process. This article is part of a Special Issue entitled: Photosynthesis Research

  20. LIGHT SCATTERING: Observation of multiple scattering of laser radiation from a light-induced jet of microparticles in suspension

    NASA Astrophysics Data System (ADS)

    Kondrat'ev, Andrei V.

    2004-06-01

    Variation in the correlation function of light multiply scattered by a random medium was observed with increasing the incident beam power. The light-induced motion of microparticles in suspension, caused by a high-power laser radiation, serves as an additional factor in the decorrelation of the scattered light. The experimental data are in good agreement with the results of theoretical analysis.

  1. The Effects of TiO2 Nanodot Films with RGD Immobilization on Light-Induced Cell Sheet Technology

    PubMed Central

    Yu, Meng-Liu; Yu, Meng-Fei; Zhu, Li-Qin; Wang, Tian-Tian; Zhou, Yi; Wang, Hui-Ming

    2015-01-01

    Cell sheet technology is a new strategy in tissue engineering which could be possible to implant into the body without a scaffold. In order to get an integrated cell sheet, a light-induced method via UV365 is used for cell sheet detachment from culture dishes. In this study, we investigated the possibility of cell detachment and growth efficiency on TiO2 nanodot films with RGD immobilization on light-induced cell sheet technology. Mouse calvaria-derived, preosteoblastic (MC3T3-E1) cells were cultured on TiO2 nanodot films with (TR) or without (TN) RGD immobilization. After cells were cultured with or without 5.5 mW/cm2 UV365 illumination, cell morphology, cell viability, osteogenesis related RNA and protein expression, and cell detachment ability were compared, respectively. Light-induced cell detachment was possible when cells were cultured on TR samples. Also, cells cultured on TR samples showed better cell viability, alongside higher protein and RNA expression than on TN samples. This study provides a new biomaterial for light-induced cell/cell sheet harvesting. PMID:26417596

  2. Hard-Mask-Through UV-Light-Induced Damage to Low-k Film during Plasma Process for Dual Damascene

    NASA Astrophysics Data System (ADS)

    Noriaki Matsunaga,; Hirokatsu Okumura,; Butsurin Jinnai,; Seiji Samukawa,

    2010-04-01

    Plasma irradiation impact on a SiO2-hardmask/SiOCH low-k film stacked structure was investigated in detail. The plasma irradiation induces damage to the low-k film although it is covered by a hard mask. The hard-mask-through UV-light-induced damage showed plasma source gas dependence. The damage is determined by the UV light wavelength and photon energy. It was also found that a high substrate temperature accelerates the hard-mask-through UV-light-induced damage. The hard-mask-through UV-light-induced damage was hardly seen for the hard masks thicker than 115 nm in the O2-irradiation experiment. Conversely, an actual SiO2 film deposition process by plasma-enhanced chemical vapor deposition (PE-CVD) induces damage during deposition. The PE-CVD process induces heavier damage to the low-k film than the O2-plasma experiment. Higher process temperature accelerates the hard-mask-through UV-light-induced damage in the hard mask SiO2 deposition process.

  3. Bioclimatic thresholds, thermal constants and survival of mealybug, Phenacoccus solenopsis (hemiptera: pseudococcidae) in response to constant temperatures on hibiscus.

    PubMed

    Sreedevi, Gudapati; Prasad, Yenumula Gerard; Prabhakar, Mathyam; Rao, Gubbala Ramachandra; Vennila, Sengottaiyan; Venkateswarlu, Bandi

    2013-01-01

    Temperature-driven development and survival rates of the mealybug, Phenacoccussolenopsis Tinsley (Hemiptera: Pseudococcidae) were examined at nine constant temperatures (15, 20, 25, 27, 30, 32, 35 and 40°C) on hibiscus (Hibiscusrosa -sinensis L.). Crawlers successfully completed development to adult stage between 15 and 35°C, although their survival was affected at low temperatures. Two linear and four nonlinear models were fitted to describe developmental rates of P. solenopsis as a function of temperature, and for estimating thermal constants and bioclimatic thresholds (lower, optimum and upper temperature thresholds for development: Tmin, Topt and Tmax, respectively). Estimated thresholds between the two linear models were statistically similar. Ikemoto and Takai's linear model permitted testing the equivalence of lower developmental thresholds for life stages of P. solenopsis reared on two hosts, hibiscus and cotton. Thermal constants required for completion of cumulative development of female and male nymphs and for the whole generation were significantly lower on hibiscus (222.2, 237.0, 308.6 degree-days, respectively) compared to cotton. Three nonlinear models performed better in describing the developmental rate for immature instars and cumulative life stages of female and male and for generation based on goodness-of-fit criteria. The simplified β type distribution function estimated Topt values closer to the observed maximum rates. Thermodynamic SSI model indicated no significant differences in the intrinsic optimum temperature estimates for different geographical populations of P. solenopsis. The estimated bioclimatic thresholds and the observed survival rates of P. solenopsis indicate the species to be high-temperature adaptive, and explained the field abundance of P. solenopsis on its host plants.

  4. Bioclimatic Thresholds, Thermal Constants and Survival of Mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae) in Response to Constant Temperatures on Hibiscus

    PubMed Central

    Sreedevi, Gudapati; Prasad, Yenumula Gerard; Prabhakar, Mathyam; Rao, Gubbala Ramachandra; Vennila, Sengottaiyan; Venkateswarlu, Bandi

    2013-01-01

    Temperature-driven development and survival rates of the mealybug, Phenacoccussolenopsis Tinsley (Hemiptera: Pseudococcidae) were examined at nine constant temperatures (15, 20, 25, 27, 30, 32, 35 and 40°C) on hibiscus (Hibiscusrosa-sinensis L.). Crawlers successfully completed development to adult stage between 15 and 35°C, although their survival was affected at low temperatures. Two linear and four nonlinear models were fitted to describe developmental rates of P. solenopsis as a function of temperature, and for estimating thermal constants and bioclimatic thresholds (lower, optimum and upper temperature thresholds for development: Tmin, Topt and Tmax, respectively). Estimated thresholds between the two linear models were statistically similar. Ikemoto and Takai’s linear model permitted testing the equivalence of lower developmental thresholds for life stages of P. solenopsis reared on two hosts, hibiscus and cotton. Thermal constants required for completion of cumulative development of female and male nymphs and for the whole generation were significantly lower on hibiscus (222.2, 237.0, 308.6 degree-days, respectively) compared to cotton. Three nonlinear models performed better in describing the developmental rate for immature instars and cumulative life stages of female and male and for generation based on goodness-of-fit criteria. The simplified β type distribution function estimated Topt values closer to the observed maximum rates. Thermodynamic SSI model indicated no significant differences in the intrinsic optimum temperature estimates for different geographical populations of P. solenopsis. The estimated bioclimatic thresholds and the observed survival rates of P. solenopsis indicate the species to be high-temperature adaptive, and explained the field abundance of P. solenopsis on its host plants. PMID:24086597

  5. The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light

    PubMed Central

    Ben-Moshe, Zohar; Alon, Shahar; Mracek, Philipp; Faigenbloom, Lior; Tovin, Adi; Vatine, Gad D.; Eisenberg, Eli; Foulkes, Nicholas S.; Gothilf, Yoav

    2014-01-01

    Light constitutes a primary signal whereby endogenous circadian clocks are synchronized (‘entrained’) with the day/night cycle. The molecular mechanisms underlying this vital process are known to require gene activation, yet are incompletely understood. Here, the light-induced transcriptome in the zebrafish central clock organ, the pineal gland, was characterized by messenger RNA (mRNA) sequencing (mRNA-seq) and microarray analyses, resulting in the identification of multiple light-induced mRNAs. Interestingly, a considerable portion of the molecular clock (14 genes) is light-induced in the pineal gland. Four of these genes, encoding the transcription factors dec1, reverbb1, e4bp4-5 and e4bp4-6, differentially affected clock- and light-regulated promoter activation, suggesting that light-input is conveyed to the core clock machinery via diverse mechanisms. Moreover, we show that dec1, as well as the core clock gene per2, is essential for light-entrainment of rhythmic locomotor activity in zebrafish larvae. Additionally, we used microRNA (miRNA) sequencing (miR-seq) and identified pineal-enhanced and light-induced miRNAs. One such miRNA, miR-183, is shown to downregulate e4bp4-6 mRNA through a 3′UTR target site, and importantly, to regulate the rhythmic mRNA levels of aanat2, the key enzyme in melatonin synthesis. Together, this genome-wide approach and functional characterization of light-induced factors indicate a multi-level regulation of the circadian clockwork by light. PMID:24423866

  6. The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light.

    PubMed

    Ben-Moshe, Zohar; Alon, Shahar; Mracek, Philipp; Faigenbloom, Lior; Tovin, Adi; Vatine, Gad D; Eisenberg, Eli; Foulkes, Nicholas S; Gothilf, Yoav

    2014-04-01

    Light constitutes a primary signal whereby endogenous circadian clocks are synchronized ('entrained') with the day/night cycle. The molecular mechanisms underlying this vital process are known to require gene activation, yet are incompletely understood. Here, the light-induced transcriptome in the zebrafish central clock organ, the pineal gland, was characterized by messenger RNA (mRNA) sequencing (mRNA-seq) and microarray analyses, resulting in the identification of multiple light-induced mRNAs. Interestingly, a considerable portion of the molecular clock (14 genes) is light-induced in the pineal gland. Four of these genes, encoding the transcription factors dec1, reverbb1, e4bp4-5 and e4bp4-6, differentially affected clock- and light-regulated promoter activation, suggesting that light-input is conveyed to the core clock machinery via diverse mechanisms. Moreover, we show that dec1, as well as the core clock gene per2, is essential for light-entrainment of rhythmic locomotor activity in zebrafish larvae. Additionally, we used microRNA (miRNA) sequencing (miR-seq) and identified pineal-enhanced and light-induced miRNAs. One such miRNA, miR-183, is shown to downregulate e4bp4-6 mRNA through a 3'UTR target site, and importantly, to regulate the rhythmic mRNA levels of aanat2, the key enzyme in melatonin synthesis. Together, this genome-wide approach and functional characterization of light-induced factors indicate a multi-level regulation of the circadian clockwork by light.

  7. Tumor-reactive CD8+ T-cell responses after vaccination with NY-ESO-1 peptide, CpG 7909 and Montanide ISA-51: association with survival.

    PubMed

    Karbach, Julia; Gnjatic, Sacha; Bender, Armin; Neumann, Antje; Weidmann, Eckhart; Yuan, Jianda; Ferrara, Cathy A; Hoffmann, Eric; Old, Lloyd J; Altorki, Nasser K; Jäger, Elke

    2010-02-15

    Peptide-based vaccines have led to the induction of antigen-specific CD8(+) T-cell responses in patients with NY-ESO-1 positive cancers. However, vaccine-induced T-cell responses did not generally correlate with improved survival. Therefore, we tested whether a synthetic CpG 7909 ODN (deoxycytidyl-deoxyguanosin oligodeoxy-nucleotides) mixed with NY-ESO-1 peptide p157-165 and incomplete Freund's adjuvants (Montanide(R) ISA-51) led to enhanced NY-ESO-1 antigen-specific CD8(+) immune responses in patients with NY-ESO-1 or LAGE-1 expressing tumors. Of 14 HLA-A2+ patients enrolled in the study, 5 patients withdrew prematurely because of progressive disease and 9 patients completed 1 cycle of immunization. Nine of 14 patients developed measurable and sustained antigen-specific CD8(+) T-cell responses: Four had detectable CD8+ T-cells against NY-ESO-1 after only 2 vaccinations, whereas 5 patients showed a late-onset but durable induction of NY-ESO-1 p157-165 specific T-cell response during continued vaccination after 4 months. In 6 patients, vaccine-induced antigen-specific T-cells became detectable ex vivo and reached frequencies of up to 0.16 % of all circulating CD8(+) T-cells. Postvaccine T-cell clones were shown to recognize and lyse NY-ESO-1 expressing tumor cell lines in vitro. In 6 of 9 patients developing NY-ESO-1-specific immune responses, a favorable clinical outcome with overall survival times of 43+, 42+, 42+, 39+, 36+ and 27+ months, respectively, was observed.

  8. The lymphocyte–monocyte ratio predicts tumor response and survival in patients with locally advanced esophageal cancer who received definitive chemoradiotherapy

    PubMed Central

    Liu, Xuemei; Li, Minghuan; Zhao, Fen; Zhu, Yingming; Luo, Yijun; Kong, Li; Zhu, Hui; Zhang, Yan; Shi, Fang; Yu, Jinming

    2017-01-01

    Background The lymphocyte–monocyte ratio (LMR), a simple biomarker that can reflect the antitumor immune response of the host, has been associated with patient prognosis in several solid tumors. The aim of this study was to evaluate whether LMR can predict clinical tumor response and prognosis in patients with locally advanced esophageal squamous cell carcinoma (ESCC) who received definitive chemoradiotherapy (CRT). Patients and methods A total of 162 advanced ESCC patients treated at our institution between January 2012 and December 2013 were retrospectively recruited for analysis. Patients were treated with a platinum-based bimodal cytotoxic drug chemotherapy and concurrent radiation therapy. The LMR was calculated from blood counts in samples collected prior to treatment initiation. The predictive value of LMR for clinical tumor response and prognosis was examined. Results The LMR before CRT was significantly higher in 48 patients who achieved clinical complete response (CR) compared to that in patients who did not achieve clinical CR (4.89±1.17 vs 3.87±1.29, P<0.001). Compared to their matched counterparts, patients in the high LMR group (LMR >4.02) showed a good clinical tumor response (P<0.05). A significant independent association between a high pretreatment LMR and better outcomes was identified in a multivariate analysis for progression-free survival (PFS; hazard ratio [HR]=2.17; P<0.001) and overall survival (OS; HR=2.02; P=0.002). Conclusion In ESCC patients, a high LMR before treatment, which indicates a robust host immune system, is associated with both a good clinical tumor response after definitive CRT and favorable prognosis. PMID:28243122

  9. Assessing the Association between Oral Hygiene and Preterm Birth by Quantitative Light-Induced Fluorescence

    PubMed Central

    Hope, Christopher K.; Wang, Qian; Adeyemi, Adejumoke A.; Quenby, Siobhan; Smith, Philip W.; Higham, Susan M.; Whitworth, Melissa

    2014-01-01

    The aim of this study was to investigate the purported link between oral hygiene and preterm birth by using image analysis tools to quantify dental plaque biofilm. Volunteers (n = 91) attending an antenatal clinic were identified as those considered to be “at high risk” of preterm delivery (i.e., a previous history of idiopathic preterm delivery, case group) or those who were not considered to be at risk (control group). The women had images of their anterior teeth captured using quantitative light-induced fluorescence (QLF). These images were analysed to calculate the amount of red fluorescent plaque (ΔR%) and percentage of plaque coverage. QLF showed little difference in ΔR% between the two groups, 65.00% case versus 68.70% control, whereas there was 19.29% difference with regard to the mean plaque coverage, 25.50% case versus 20.58% control. A logistic regression model showed a significant association between plaque coverage and case/control status (P = 0.031), controlling for other potential predictor variables, namely, smoking status, maternal age, and body mass index (BMI). PMID:24511282

  10. Iterative experiment design guides the characterization of a light-inducible gene expression circuit.

    PubMed

    Ruess, Jakob; Parise, Francesca; Milias-Argeitis, Andreas; Khammash, Mustafa; Lygeros, John

    2015-06-30

    Systems biology rests on the idea that biological complexity can be better unraveled through the interplay of modeling and experimentation. However, the success of this approach depends critically on the informativeness of the chosen experiments, which is usually unknown a priori. Here, we propose a systematic scheme based on iterations of optimal experiment design, flow cytometry experiments, and Bayesian parameter inference to guide the discovery process in the case of stochastic biochemical reaction networks. To illustrate the benefit of our methodology, we apply it to the characterization of an engineered light-inducible gene expression circuit in yeast and compare the performance of the resulting model with models identified from nonoptimal experiments. In particular, we compare the parameter posterior distributions and the precision to which the outcome of future experiments can be predicted. Moreover, we illustrate how the identified stochastic model can be used to determine light induction patterns that make either the average amount of protein or the variability in a population of cells follow a desired profile. Our results show that optimal experiment design allows one to derive models that are accurate enough to precisely predict and regulate the protein expression in heterogeneous cell populations over extended periods of time.

  11. Light induced fluorescence for predicting API content in tablets: sampling and error.

    PubMed

    Domike, Reuben; Ngai, Samuel; Cooney, Charles L

    2010-05-31

    The use of a light induced fluorescence (LIF) instrument to estimate the total content of fluorescent active pharmaceutical ingredient in a tablet from surface sampling was demonstrated. Different LIF sampling strategies were compared to a total tablet ultraviolet (UV) absorbance test for each tablet. Testing was completed on tablets with triamterene as the active ingredient and on tablets with caffeine as the active ingredient, each with a range of concentrations. The LIF instrument accurately estimated the active ingredient within 10% of total tablet test greater than 95% of the time. The largest error amongst all of the tablets tested was 13%. The RMSEP between the techniques was in the range of 4.4-7.9%. Theory of the error associated with the surface sampling was developed and found to accurately predict the experimental error. This theory uses one empirically determined parameter: the deviation of estimations at different locations on the tablet surface. As this empirical parameter can be found rapidly, correct use of this prediction of error may reduce the effort required for calibration and validation studies of non-destructive surface measurement techniques, and thereby rapidly determine appropriate analytical techniques for estimating content uniformity in tablets.

  12. Quantified light-induced fluorescence, review of a diagnostic tool in prevention of oral disease

    NASA Astrophysics Data System (ADS)

    de Josselin de Jong, Elbert; Higham, Susan M.; Smith, Philip W.; van Daelen, Catherina J.; van der Veen, Monique H.

    2009-05-01

    Diagnostic methods for the use in preventive dentistry are being developed continuously. Few of these find their way into general practice. Although the general trend in medicine is to focus on disease prevention and early diagnostics, in dentistry this is still not the case. Nevertheless, in dental research some of these methods seem to be promising for near future use by the general dental professional. In this paper an overview is given of a method called quantitative light-induced fluorescence or (QLF) in which visible and harmless light excites the teeth in the patient's mouth to produce fluorescent images, which can be stored on disk and computer analyzed. White spots (early dental caries) are detected and quantified as well as bacterial metabolites on and in the teeth. An overview of research to validate the technique and modeling to further the understanding of the technique by Monte Carlo simulation is given and it is shown that the fluorescence phenomena can be described by the simulation model in a qualitative way. A model describing the visibility of red fluorescence from within the dental tissue is added, as this was still lacking in current literature. An overview is given of the clinical images made with the system and of the extensive research which has been done. The QLF™ technology has been shown to be of importance when used in clinical trials with respect to the testing of toothpastes and preventive treatments. It is expected that the QLF™ technology will soon find its way into the general dental practice.

  13. Theory of light-induced resonances with collective Higgs and Leggett modes in multiband superconductors

    NASA Astrophysics Data System (ADS)

    Murotani, Yuta; Tsuji, Naoto; Aoki, Hideo

    2017-03-01

    We theoretically investigate coherent optical excitations of collective modes in two-band BCS superconductors, which accommodate two Higgs modes and one Leggett mode corresponding, respectively, to the amplitude and relative-phase oscillations of the superconducting order parameters associated with the two bands. We find, based on a mean-field analysis, that each collective mode can be resonantly excited through a nonlinear light-matter coupling when the doubled frequency of the driving field coincides with the frequency of the corresponding mode. Among the two Higgs modes, the higher-energy one exhibits a sharp resonance with light, while the lower-energy mode has a broadened resonance width. The Leggett mode is found to be resonantly induced by a homogeneous ac electric field because the leading nonlinear effect generates a potential offset between the two bands that couples to the relative phase of the order parameters. The resonance for the Leggett mode becomes sharper with increasing temperature. All of these light-induced collective modes along with density fluctuations contribute to the third-harmonic generation. We also predict an experimental possibility of optical detection of the Leggett mode.

  14. A 5-HT(1B) receptor agonist inhibits light-induced suppression of pineal melatonin production.

    PubMed

    Rea, M A; Pickard, G E

    2000-03-10

    Serotonin (5-HT) modulates the phase adjusting effects of light on the mammalian circadian clock through the activation of presynaptic 5-HT(1B) receptors located on retinal terminals in the suprachiasmatic nucleus (SCN). The current study was conducted to determine whether activation of 5-HT(1B) receptors also alters photic regulation of nocturnal pineal melatonin production. Systemic administration of the 5-HT(1B) receptor agonist TFMPP attenuated the inhibitory effect of light on pineal melatonin synthesis in a dose-related manner with an apparent ED(50) value of 0.9 mg/kg. The effect of TFMPP on light-induced melatonin suppression was blocked by the 5-HT(1) receptor antagonist, methiothepin, but not by the 5-HT(1A) antagonist, WAY 100,635, consistent with the involvement of 5-HT(1B) receptors. The results are consistent with the interpretation that activation of presynaptic 5-HT(1B) receptors on retinal terminals in the SCN attenuates the effect of light on pineal melatonin production, as well as on circadian phase.

  15. Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence.

    PubMed

    Du, Eun Jo; Ahn, Tae Jung; Wen, Xianlan; Seo, Dae-Won; Na, Duk L; Kwon, Jae Young; Choi, Myunghwan; Kim, Hyung-Wook; Cho, Hana; Kang, KyeongJin

    2016-09-22

    Solar irradiation including ultraviolet (UV) light causes tissue damage by generating reactive free radicals that can be electrophilic or nucleophilic due to unpaired electrons. Little is known about how free radicals induced by natural sunlight are rapidly detected and avoided by animals. We discover that Drosophila Transient Receptor Potential Ankyrin 1 (TRPA1), previously known only as an electrophile receptor, sensitively detects photochemically active sunlight through nucleophile sensitivity. Rapid light-dependent feeding deterrence in Drosophila was mediated only by the TRPA1(A) isoform, despite the TRPA1(A) and TRPA1(B) isoforms having similar electrophile sensitivities. Such isoform dependence re-emerges in the detection of structurally varied nucleophilic compounds and nucleophilicity-accompanying hydrogen peroxide (H2O2). Furthermore, these isoform-dependent mechanisms require a common set of TRPA1(A)-specific residues dispensable for electrophile detection. Collectively, TRPA1(A) rapidly responds to natural sunlight intensities through its nucleophile sensitivity as a receptor of photochemically generated radicals, leading to an acute light-induced behavioral shift in Drosophila.

  16. Fluorescent light induces neurodegeneration in the rodent nigrostriatal system but near infrared LED light does not.

    PubMed

    Romeo, Stefania; Vitale, Flora; Viaggi, Cristina; di Marco, Stefano; Aloisi, Gabriella; Fasciani, Irene; Pardini, Carla; Pietrantoni, Ilaria; Di Paolo, Mattia; Riccitelli, Serena; Maccarone, Rita; Mattei, Claudia; Capannolo, Marta; Rossi, Mario; Capozzo, Annamaria; Corsini, Giovanni U; Scarnati, Eugenio; Lozzi, Luca; Vaglini, Francesca; Maggio, Roberto

    2017-03-02

    We investigated the effects of continuous artificial light exposure on the mouse substantia nigra (SN). A three month exposure of C57Bl/6J mice to white fluorescent light induced a 30% reduction in dopamine (DA) neurons in SN compared to controls, accompanied by a decrease of DA and its metabolites in the striatum. After six months of exposure, neurodegeneration progressed slightly, but the level of DA returned to the basal level, while the metabolites increased with respect to the control. Three month exposure to near infrared LED light (∼710 nm) did not alter DA neurons in SN, nor did it decrease DA and its metabolites in the striatum. Furthermore mesencephalic cell viability, as tested by [(3)H]DA uptake, did not change. Finally, we observed that 710 nm LED light, locally conveyed in the rat SN, could modulate the firing activity of extracellular-recorded DA neurons. These data suggest that light can be detrimental or beneficial to DA neurons in SN, depending on the source and wavelength.

  17. Light induced suppression of sulfur in a cesium sputter ion source

    PubMed Central

    Martschini, Martin; Rohlén, Johan; Andersson, Pontus; Golser, Robin; Hanstorp, Dag; Lindahl, Anton O.; Priller, Alfred; Steier, Peter; Forstner, Oliver

    2012-01-01

    New techniques for suppression of atomic isobars in negative ion beams are of great interest for accelerator mass spectrometry (AMS). Especially small and medium-sized facilities can significantly extend their measurement capabilities to new interesting isotopes with a technique independent of terminal voltage. In a new approach, the effect of continuous wave laser light directed towards the cathode surface in a cesium sputter ion source of the Middleton type was studied. The laser light induced a significant change in oxygen, sulfur and chlorine negative ion production from a AgCl target. Approximately 100 mW of laser light reduced the sulfur to chlorine ratio by one order of magnitude. The effect was found to depend on laser power and ion source parameters but not on the laser wavelength. The time constant of the effect varied from a few seconds up to several minutes. Experiments were first performed at the ion beam facility GUNILLA at University of Gothenburg with macroscopic amounts of sulfur. The results were then reproduced at the VERA AMS facility with chemically cleaned AgCl targets containing ∼1 ppm sulfur. The physical explanation behind the effect is still unclear. Nevertheless, the technique has been successfully applied during a regular AMS measurement of 36Cl. PMID:23576897

  18. Light-induced degradation in compensated p- and n-type Czochralski silicon wafers

    NASA Astrophysics Data System (ADS)

    Geilker, Juliane; Kwapil, Wolfram; Rein, Stefan

    2011-03-01

    Light-induced degradation (LID) due to boron-oxygen complex formation seriously diminishes the minority carrier lifetime of p-type Czochralski-grown (Cz) wafers. Depending linearly on the boron concentration NA in uncompensated silicon, the boron-oxygen defect density was suggested to depend on the net doping concentration p0 = NA - ND in compensated p-type samples, containing similar amounts of boron and phosphorus [D. Macdonald, F. Rougieux, A. Cuevas, et al., Journal of Applied Physics 105, 093704 (2009)]. However, this dependency contradicts observations of LID in compensated n-type silicon wafers [T. Schutz-Kuchly, J. Veirman, S. Dubois, et al., Applied Physics Letters 96, 1 (2010)], which are confirmed in this study by investigating the boron-oxygen complex formation on a large variety of compensated p- and n-type samples. In spite of their high boron content, compensated n-type samples may show a less pronounced LID than p-type samples containing less boron. Our experiments indicate that in compensated silicon, the defect concentration is only a function of the compensation ratio RC = (NA + ND)/(NA - ND).

  19. Light-induced negative differential resistance in graphene/Si-quantum-dot tunneling diodes

    NASA Astrophysics Data System (ADS)

    Lee, Kyeong Won; Jang, Chan Wook; Shin, Dong Hee; Kim, Jong Min; Kang, Soo Seok; Lee, Dae Hun; Kim, Sung; Choi, Suk-Ho; Hwang, Euyheon

    2016-07-01

    One of the interesing tunneling phenomena is negative differential resistance (NDR), the basic principle of resonant-tunneling diodes. NDR has been utilized in various semiconductor devices such as frequency multipliers, oscillators, relfection amplifiers, logic switches, and memories. The NDR in graphene has been also reported theoretically as well as experimentally, but should be further studied to fully understand its mechanism, useful for practical device applications. Especially, there has been no observation about light-induced NDR (LNDR) in graphene-related structures despite very few reports on the LNDR in GaAs-based heterostructures. Here, we report first observation of LNDR in graphene/Si quantum dots-embedded SiO2 (SQDs:SiO2) multilayers (MLs) tunneling diodes. The LNDR strongly depends on temperature (T) as well as on SQD size, and the T dependence is consistent with photocurrent (PC)-decay behaviors. With increasing light power, the PC-voltage curves are more structured with peak-to-valley ratios over 2 at room temperature. The physical mechanism of the LNDR, governed by resonant tunneling of charge carriers through the minibands formed across the graphene/SQDs:SiO2 MLs and by their nonresonant phonon-assisted tunneling, is discussed based on theoretical considerations.

  20. Fast and efficient synthesis of microporous polymer nanomembranes via light-induced click reaction

    PubMed Central

    An, Qi; Hassan, Youssef; Yan, Xiaotong; Krolla-Sidenstein, Peter; Mohammed, Tawheed; Lang, Mathias; Bräse, Stefan

    2017-01-01

    Conjugated microporous polymers (CMPs) are materials of low density and high intrinsic porosity. This is due to the use of rigid building blocks consisting only of lightweight elements. These materials are usually stable up to temperatures of 400 °C and are chemically inert, since the networks are highly crosslinked via strong covalent bonds, making them ideal candidates for demanding applications in hostile environments. However, the high stability and chemical inertness pose problems in the processing of the CMP materials and their integration in functional devices. Especially the application of these materials for membrane separation has been limited due to their insoluble nature when synthesized as bulk material. To make full use of the beneficial properties of CMPs for membrane applications, their synthesis and functionalization on surfaces become increasingly important. In this respect, we recently introduced the solid liquid interfacial layer-by-layer (LbL) synthesis of CMP-nanomembranes via Cu catalyzed azide–alkyne cycloaddition (CuAAC). However, this process featured very long reaction times and limited scalability. Herein we present the synthesis of surface grown CMP thin films and nanomembranes via light induced thiol–yne click reaction. Using this reaction, we could greatly enhance the CMP nanomembrane synthesis and further broaden the variability of the LbL approach.

  1. Light-induced genetic toxicity of thimerosal and benzalkonium chloride in commercial contact lens solutions.

    PubMed

    Lovely, T J; Levin, D E; Klekowski, E

    1982-03-01

    Several commercial solutions used for daily care of contact lenses were tested for mutagenicity in 4 strains of Salmonella and for their ability to induce repairable DNA damage in the E. coli DNA polymerase A- assay. 5 of the 13 solutions tested were positive in the polymerase A- assay. These products demonstrated an increased level of genetic toxicity when the assay was conducted under conditions of illumination with visible light. Investigation of the genetic toxicity of some of their components, specifically the preservatives, indicated that thimerosal and benzalkonium chloride were capable of causing repairable DNA damage. Thimerosal was active only when the plates were incubated under conditions of illumination, and thus was light-induced. Benzalkonium chloride was active under conditions of dark incubation, and its genetic toxicity was enhanced when the plates were irradiated with visible light. These results were confirmed in a parallel experiment, in which cells were treated with the test agent and irradiated for a short period in liquid culture and viable cells then determined. None of the commercial products and none of the components tested, were mutagenic in the Salmonella assay.

  2. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits.

    PubMed

    Kadomura-Ishikawa, Yasuko; Miyawaki, Katsuyuki; Noji, Sumihare; Takahashi, Akira

    2013-11-01

    Anthocyanins are widespread, essential secondary metabolites in higher plants during color development in certain flowers and fruits. In strawberries, anthocyanins are also key contributors to fruit antioxidant capacity and nutritional value. However, the effects of different light qualities on anthocyanin accumulation in strawberry (Fragaria x ananassa, cv. Sachinoka) fruits remain elusive. In the present study, we showed the most efficient increase in anthocyanin content occurred by blue light irradiation. Light sensing at the molecular level was investigated by isolation of two phototropin (FaPHOT1 and FaPHOT2), two cryptochrome (FaCRY1 and FaCRY2), and two phytochrome (FaPHYA and FaPHYB) homologs. Expression analysis revealed only FaPHOT2 transcripts markedly increased depending on fruit developmental stage, and a corresponding increase in anthocyanin content was detected. FaPHOT2 knockdown resulted in decreased anthocyanin content; however, overexpression increased anthocyanin content. These findings suggested blue light induced anthocyanin accumulation, and FaPHOT2 may play a role in sensing blue light, and mediating anthocyanin biosynthesis in strawberry fruits. This is the first report to find a relationship between visible light sensing, and color development in strawberry fruits.

  3. Light-induced negative differential resistance in graphene/Si-quantum-dot tunneling diodes

    PubMed Central

    Lee, Kyeong Won; Jang, Chan Wook; Shin, Dong Hee; Kim, Jong Min; Kang, Soo Seok; Lee, Dae Hun; Kim, Sung; Choi, Suk-Ho; Hwang, Euyheon

    2016-01-01

    One of the interesing tunneling phenomena is negative differential resistance (NDR), the basic principle of resonant-tunneling diodes. NDR has been utilized in various semiconductor devices such as frequency multipliers, oscillators, relfection amplifiers, logic switches, and memories. The NDR in graphene has been also reported theoretically as well as experimentally, but should be further studied to fully understand its mechanism, useful for practical device applications. Especially, there has been no observation about light-induced NDR (LNDR) in graphene-related structures despite very few reports on the LNDR in GaAs-based heterostructures. Here, we report first observation of LNDR in graphene/Si quantum dots-embedded SiO2 (SQDs:SiO2) multilayers (MLs) tunneling diodes. The LNDR strongly depends on temperature (T) as well as on SQD size, and the T dependence is consistent with photocurrent (PC)-decay behaviors. With increasing light power, the PC-voltage curves are more structured with peak-to-valley ratios over 2 at room temperature. The physical mechanism of the LNDR, governed by resonant tunneling of charge carriers through the minibands formed across the graphene/SQDs:SiO2 MLs and by their nonresonant phonon-assisted tunneling, is discussed based on theoretical considerations. PMID:27465107

  4. Light-induced depigmentation in planarians models the pathophysiology of acute porphyrias

    PubMed Central

    Stubenhaus, Bradford M; Dustin, John P; Neverett, Emily R; Beaudry, Megan S; Nadeau, Leanna E; Burk-McCoy, Ethan; He, Xinwen; Pearson, Bret J; Pellettieri, Jason

    2016-01-01

    Porphyrias are disorders of heme metabolism frequently characterized by extreme photosensitivity. This symptom results from accumulation of porphyrins, tetrapyrrole intermediates in heme biosynthesis that generate reactive oxygen species when exposed to light, in the skin of affected individuals. Here we report that in addition to producing an ommochrome body pigment, the planarian flatworm Schmidtea mediterranea generates porphyrins in its subepithelial pigment cells under physiological conditions, and that this leads to pigment cell loss when animals are exposed to intense visible light. Remarkably, porphyrin biosynthesis and light-induced depigmentation are enhanced by starvation, recapitulating a common feature of some porphyrias – decreased nutrient intake precipitates an acute manifestation of the disease. Our results establish planarians as an experimentally tractable animal model for research into the pathophysiology of acute porphyrias, and potentially for the identification of novel pharmacological interventions capable of alleviating porphyrin-mediated photosensitivity or decoupling dieting and fasting from disease pathogenesis. DOI: http://dx.doi.org/10.7554/eLife.14175.001 PMID:27240733

  5. A remotely driven and controlled micro-gripper fabricated from light-induced deformation smart material

    NASA Astrophysics Data System (ADS)

    Huang, Chaolei; Lv, Jiu-an; Tian, Xiaojun; Wang, Yuechao; Liu, Jie; Yu, Yanlei

    2016-09-01

    Micro-gripper is an important tool to manipulate and assemble micro-scale objects. Generally, as micro-gripper is too small to be directly driven by general motors, it always needs special driving devices and suitable structure design. In this paper, two-finger micro-grippers are designed and fabricated, which utilize light-induced deformation smart material to make one of the two fingers. As the smart material is directly driven and controlled by remote lights instead of lines and motors, this light-driven mode simplifies the design of the two-finger micro-gripper and avoids special drivers and complex mechanical structure. In addition, a micro-manipulation experiment system is set up which is based on the light-driven micro-gripper. Experimental results show that this remotely light-driven micro-gripper has ability to manipulate and assemble micro-scale objects both in air and water. Furthermore, two micro-grippers can also work together for cooperation which can further enhance the assembly ability. On the other hand, this kind of remotely controllable micro-gripper that does not require on-board energy storage, can be used in mobile micro-robot as a manipulation hand.

  6. Improved expression of halorhodopsin for light-induced silencing of neuronal activity.

    PubMed

    Zhao, Shengli; Cunha, Catarina; Zhang, Feng; Liu, Qun; Gloss, Bernd; Deisseroth, Karl; Augustine, George J; Feng, Guoping

    2008-08-01

    The ability to control and manipulate neuronal activity within an intact mammalian brain is of key importance for mapping functional connectivity and for dissecting the neural circuitry underlying behaviors. We have previously generated transgenic mice that express channelrhodopsin-2 for light-induced activation of neurons and mapping of neural circuits. Here we describe transgenic mice that express halorhodopsin (NpHR), a light-driven chloride pump that can be used to silence neuronal activity via light. Using the Thy-1 promoter to target NpHR expression to neurons, we found that neurons in these mice expressed high levels of NpHR-YFP and that illumination of cortical pyramidal neurons expressing NpHR-YFP led to rapid, reversible photoinhibition of action potential firing in these cells. However, NpHR-YFP expression led to the formation of numerous intracellular blebs, which may disrupt neuronal function. Labeling of various subcellular markers indicated that the blebs arise from retention of NpHR-YFP in the endoplasmic reticulum. By improving the signal peptide sequence and adding an ER export signal to NpHR-YFP, we eliminated the formation of blebs and dramatically increased the membrane expression of NpHR-YFP. Thus, the improved version of NpHR should serve as an excellent tool for neuronal silencing in vitro and in vivo.

  7. Wave propagation and optical properties in slabs with light-induced free charge carriers.

    PubMed

    Lencina, Alberto; Vaveliuk, Pablo; Ruiz, Beatriz; Tebaldi, Myrian; Bolognini, Néstor

    2006-11-01

    A theoretical analysis on wave propagation and optical properties of slabs with light-induced free charge carriers within a Fabry-Pérot framework is presented. The key of the analysis is to attack the wave propagation problem in terms of the time-averaged Poynting vector modulus within the medium through an alternative approach. This fact allows coupling the microscopic (free charge rate) and macroscopic (electromagnetic field evolution) equations self-consistently by means of the nonlinear permittivity and conductivity, which, in turn, depend on the time-averaged Poynting vector modulus. Thereby, the transmittance, reflectance, and absorptive power are derived as functions of the pump intensity and medium thickness. Bistable behavior is found at relatively high excitation intensity for positive values of the nonlinear permittivity coefficient. The bistability enhances for increasing values of such coefficient and weakens for increasing values of nonlinear photoconductivity coefficient. On the contrary, for negative nonlinear permittivity coefficient, bistability does not appear possessing these media mirrorlike behavior. Some possible applications are suggested.

  8. Intracellular light-induced release of signaling molecules from gold-coated liposomes

    NASA Astrophysics Data System (ADS)

    Orsinger, Gabriel V.; Williams, Joshua D.; Romanowski, Marek

    2014-03-01

    The combination of laser light and composite nanovesicles enables unique opportunities for precise delivery to, and ondemand release of molecular compounds within, single cells at high spatiotemporal resolution. Here, we demonstrate precise delivery and intracellular release of molecules from gold-coated liposomes via near infrared (NIR) light. The plasmon resonant gold shell provides a light-sensitive trigger for on-demand content release from thermosensitive liposomes. Two demonstrations of intracellular delivery and release from gold-coated liposomes are presented here. The first example uses microinjection to preload gold-coated liposomes into a single cell, followed by exposure to onresonant NIR laser light to trigger release of a fluorescent nuclear dye intracellularly. In the second delivery and release demonstration, gold-coated liposomes encapsulating inositol trisphosphate (IP3), a ubiquitous secondary messenger in cell signaling cascades, passively accumulate within cells via endocytosis. Exposure to on-resonant NIR laser wavelength of light induces rapid release of IP3 from the intracellular liposomes and subsequent activation of Ca2+ signaling at a single cell, monitored by changes in fluorescence intensity of a Ca 2+-sensitive dye.

  9. Submillimetre Network Formation by Light-induced Hybridization of Zeptomole-level DNA

    NASA Astrophysics Data System (ADS)

    Iida, Takuya; Nishimura, Yushi; Tamura, Mamoru; Nishida, Keisuke; Ito, Syoji; Tokonami, Shiho

    2016-12-01

    Macroscopic unique self-assembled structures are produced via double-stranded DNA formation (hybridization) as a specific binding essential in biological systems. However, a large amount of complementary DNA molecules are usually required to form an optically observable structure via natural hybridization, and the detection of small amounts of DNA less than femtomole requires complex and time-consuming procedures. Here, we demonstrate the laser-induced acceleration of hybridization between zeptomole-level DNA and DNA-modified nanoparticles (NPs), resulting in the assembly of a submillimetre network-like structure at the desired position with a dramatic spectral modulation within several minutes. The gradual enhancement of light-induced force and convection facilitated the two-dimensional network growth near the air-liquid interface with optical and fluidic symmetry breakdown. The simultaneous microscope observation and local spectroscopy revealed that the assembling process and spectral change are sensitive to the DNA sequence. Our findings establish innovative guiding principles for facile bottom-up production via various biomolecular recognition events.

  10. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination.

    PubMed

    Ambrosio, Antonio; Marrucci, Lorenzo; Borbone, Fabio; Roviello, Antonio; Maddalena, Pasqualino

    2012-01-01

    When an azobenzene-containing polymer film is exposed to non-uniform illumination, a light-induced mass migration process may be induced, leading to the formation of relief patterns on the polymer-free surface. Despite many years of research effort, several aspects of this phenomenon remain poorly understood. Here we report the appearance of spiral-shaped relief patterns on the polymer film under the illumination of focused Laguerre-Gauss beams with helical wavefronts and an optical vortex at their axis. The induced spiral reliefs are sensitive to the vortex topological charge and to the wavefront handedness. These findings are unexpected because the doughnut-shaped intensity profile of Laguerre-Gauss beams contains no information about the wavefront handedness. We propose a model that explains the main features of this phenomenon through the surface-mediated interference of the longitudinal and transverse components of the optical field. These results may find applications in optical nanolithography and optical-field nanoimaging.

  11. In vitro quantitative light-induced fluorescence to measure changes in enamel mineralization.

    PubMed

    Gmür, Rudolf; Giertsen, Elin; van der Veen, Monique H; de Josselin de Jong, Elbert; ten Cate, Jacob M; Guggenheim, Bernhard

    2006-09-01

    A sensitive, quantitative method for investigating changes in enamel mineralization of specimens subjected to in vitro or in situ experimentation is presented. The fluorescence-detecting instrument integrates a Xenon arc light source and an object positioning stage, which makes it particularly suitable for the nondestructive assessment of demineralized or remineralized enamel. We demonstrate the ability of in vitro quantitative light-induced fluorescence (QLF) to quantify changes in mineralization of bovine enamel discs that had been exposed in vitro to a demineralizing gel (n=36) or biofilm-mediated demineralization challenges (n=10), or were carried in situ by three volunteers during a 10-day experiment (n=12). Further experiments show the technique's value for monitoring the extent of remineralization in 36 specimens exposed in vitro to oral multispecies biofilms and document the repeatability of in vitro QLF measurements (n=10) under standardized assay conditions. The validity of the method is illustrated by comparison with transversal microradiography (TMR), the invasive current gold standard for assessing experimental changes in enamel mineralization. Ten discs with 22 measurement areas for comparison demonstrated a positive correlation between TMR and QLF (r=0.82). Filling a technological gap, this QLF system is a promising tool to assay in vitro nondestructively localized changes in mineralization of enamel specimens.

  12. Light induced suppression of sulfur in a cesium sputter ion source.

    PubMed

    Martschini, Martin; Rohlén, Johan; Andersson, Pontus; Golser, Robin; Hanstorp, Dag; Lindahl, Anton O; Priller, Alfred; Steier, Peter; Forstner, Oliver

    2012-04-01

    New techniques for suppression of atomic isobars in negative ion beams are of great interest for accelerator mass spectrometry (AMS). Especially small and medium-sized facilities can significantly extend their measurement capabilities to new interesting isotopes with a technique independent of terminal voltage. In a new approach, the effect of continuous wave laser light directed towards the cathode surface in a cesium sputter ion source of the Middleton type was studied. The laser light induced a significant change in oxygen, sulfur and chlorine negative ion production from a AgCl target. Approximately 100 mW of laser light reduced the sulfur to chlorine ratio by one order of magnitude. The effect was found to depend on laser power and ion source parameters but not on the laser wavelength. The time constant of the effect varied from a few seconds up to several minutes. Experiments were first performed at the ion beam facility GUNILLA at University of Gothenburg with macroscopic amounts of sulfur. The results were then reproduced at the VERA AMS facility with chemically cleaned AgCl targets containing ∼1 ppm sulfur. The physical explanation behind the effect is still unclear. Nevertheless, the technique has been successfully applied during a regular AMS measurement of (36)Cl.

  13. Light-induced hetero-Diels-Alder cycloaddition: a facile and selective photoclick reaction.

    PubMed

    Arumugam, Selvanathan; Popik, Vladimir V

    2011-04-13

    2-Napthoquinone-3-methides (oNQMs) generated by efficient photodehydration (Φ=0.2) of 3-(hydroxymethyl)-2-naphthol undergo facile hetero-Diels-Alder addition (k(D-A)∼ 4×10(4) M(-1) s(-1)) to electron-rich polarized olefins in an aqueous solution. The resulting photostable benzo[g]chromans are produced in high to quantitative yield. The unreacted oNQM is rapidly hydrated (k(H2O) ∼145 s(-1)) to regenerate the starting diol. This competition between hydration and cycloaddition makes oNQMs highly selective, since only vinyl ethers and enamines are reactive enough to form the Diels-Alder adduct in an aqueous solution; no cycloaddition was observed with other types of alkenes. To achieve photolabeling or photoligation of two substrates, one is derivatized with a vinyl ether moiety, while 3-(hydroxymethyl)-2-naphthol is attached to the other via an appropriate linker. The light-induced Diels-Alder "click" strategy permits the formation of either a permanent or hydrolytically labile linkage. Rapid kinetics of this photoclick reaction (k=4×10(4) M(-1) s(-1)) is useful for time-resolved applications. The short lifetime (τ ∼7 ms in H(2)O) of the active form of the photoclick reagent prevents its migration from the site of irradiation, thus, allowing for spatial control of the ligation or labeling.

  14. Biomimetic Water-Collecting Fabric with Light-Induced Superhydrophilic Bumps.

    PubMed

    Wang, Yuanfeng; Wang, Xiaowen; Lai, Chuilin; Hu, Huawen; Kong, Yeeyee; Fei, Bin; Xin, John H

    2016-02-10

    To develop an efficient water-collecting surface that integrates both fast water-capturing and easy drainage properties is of high current interest for addressing global water issues. In this work, a superhydrophobic surface was fabricated on cotton fabric via manipulation of both the surface roughness and surface energy. This was followed by a subsequent spray coating of TiO2 nanosol that created light-induced superhydrophilic bumps with a unique raised structure as a result of the interfacial tension of the TiO2 nanosol sprayed on the superhydrophobic fiber surface. These raised TiO2 bumps induce both a wettability gradient and a shape gradient, synergistically accelerating water coalescence and water collection. The in-depth study revealed that the quantity and the distribution of the TiO2 had a significant impact on the final water collection efficiency. This inexpensive and facilely fabricated fabric biomimicks the desert beetle's back and spider silk, which are capable of fog harvesting without additional energy consumption.

  15. Light-Induced SO2 Photochemistry at the Mineral Dust Surface

    NASA Astrophysics Data System (ADS)

    Styler, S. A.; Doussin, J.; Formenti, P.; Donaldson, D.

    2013-12-01

    The uptake of SO2 by mineral dust is believed to proceed first by formation of surface-bound sulfite, which can subsequently be oxidized to sulfate not only by co-sorbed O3 and NO2 but also by photooxidants such as Fe and Ti present within the dust itself. In the first phase of this study, we investigated the effect of light upon SO2 uptake by Fe2O3, TiO2, illite, feldspar, and mineral dust samples obtained from Niger, Tunisia, and China. We determined the initial uptake coefficient of SO2 at the surface of dust samples under both light and dark conditions using a photochemical Knudsen cell, and then measured the relative quantities of sulfite and sulfate formed at the surface of these films using ion chromatography. In the second phase of this study, which was performed in the CESAM atmospheric chamber, we explored the possibility that light-induced production of surface-sorbed sulfate might result in enhanced dust hygroscopicity by measuring changes in dust particle size distribution as a function of exposure to SO2 and light under a range of relative humidity conditions.

  16. Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence

    PubMed Central

    Du, Eun Jo; Ahn, Tae Jung; Wen, Xianlan; Seo, Dae-Won; Na, Duk L; Kwon, Jae Young; Choi, Myunghwan; Kim, Hyung-Wook; Cho, Hana; Kang, KyeongJin

    2016-01-01

    Solar irradiation including ultraviolet (UV) light causes tissue damage by generating reactive free radicals that can be electrophilic or nucleophilic due to unpaired electrons. Little is known about how free radicals induced by natural sunlight are rapidly detected and avoided by animals. We discover that Drosophila Transient Receptor Potential Ankyrin 1 (TRPA1), previously known only as an electrophile receptor, sensitively detects photochemically active sunlight through nucleophile sensitivity. Rapid light-dependent feeding deterrence in Drosophila was mediated only by the TRPA1(A) isoform, despite the TRPA1(A) and TRPA1(B) isoforms having similar electrophile sensitivities. Such isoform dependence re-emerges in the detection of structurally varied nucleophilic compounds and nucleophilicity-accompanying hydrogen peroxide (H2O2). Furthermore, these isoform-dependent mechanisms require a common set of TRPA1(A)-specific residues dispensable for electrophile detection. Collectively, TRPA1(A) rapidly responds to natural sunlight intensities through its nucleophile sensitivity as a receptor of photochemically generated radicals, leading to an acute light-induced behavioral shift in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.18425.001 PMID:27656903

  17. Submillimetre Network Formation by Light-induced Hybridization of Zeptomole-level DNA

    PubMed Central

    Iida, Takuya; Nishimura, Yushi; Tamura, Mamoru; Nishida, Keisuke; Ito, Syoji; Tokonami, Shiho

    2016-01-01

    Macroscopic unique self-assembled structures are produced via double-stranded DNA formation (hybridization) as a specific binding essential in biological systems. However, a large amount of complementary DNA molecules are usually required to form an optically observable structure via natural hybridization, and the detection of small amounts of DNA less than femtomole requires complex and time-consuming procedures. Here, we demonstrate the laser-induced acceleration of hybridization between zeptomole-level DNA and DNA-modified nanoparticles (NPs), resulting in the assembly of a submillimetre network-like structure at the desired position with a dramatic spectral modulation within several minutes. The gradual enhancement of light-induced force and convection facilitated the two-dimensional network growth near the air-liquid interface with optical and fluidic symmetry breakdown. The simultaneous microscope observation and local spectroscopy revealed that the assembling process and spectral change are sensitive to the DNA sequence. Our findings establish innovative guiding principles for facile bottom-up production via various biomolecular recognition events. PMID:27917861

  18. Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells

    NASA Astrophysics Data System (ADS)

    Abdelmageed, Ghada; Jewell, Leila; Hellier, Kaitlin; Seymour, Lydia; Luo, Binbin; Bridges, Frank; Zhang, Jin Z.; Carter, Sue

    2016-12-01

    Organometal halide perovskites are highly promising materials for photovoltaic applications, yet their rapid degradation remains a significant challenge. Here, the light-induced structural degradation mechanism of methylammonium lead iodide (MAPbI3) perovskite films and devices is studied in low humidity environment using X-Ray Diffraction, Ultraviolet-Visible (UV-Vis) absorption spectroscopy, Extended X-ray Absorption Fine Structure spectroscopy, Fourier Transform Infrared spectroscopy, and device measurements. Under dry conditions, the perovskite film degrades only in the presence of both light and oxygen, which together induce the formation of halide anions through donation of electrons to the surrounding oxygen. The halide anions generate free radicals that deprotonate the methylammonium cation and form the highly volatile CH3NH2 molecules that escape and leave pure PbI2 behind. The device findings show that changes in the local structure at the TiO2 mesoporous layer occur with light, even in the absence of oxygen, and yet such changes can be prevented by the application of UV blocking layer on the cells. Our results indicate that the stability of mp-TiO2-MAPbI3 photovoltaics can be dramatically improved with effective encapsulation that protects the device from UV light, oxygen, and moisture.

  19. Light-induced degradation in a-Si alloy solar cells at intense illumination

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Guha, S.; Pawlikiewicz, A.; Wolf, D.; Yang, J.

    1991-08-01

    Light-induced degradation has been investigated in a-Si alloy p-i-n solar cell structures as a function of cell deposition temperature and light intensity. Cells are deposited at temperatures ranging between 200°C to 300°C; degradation has been carried out at intensities up to 50 times AM1.5 illumination at 35°C. The cell charcteristics have been measured under AM1.5, blue and red illuminations. The degradation is found to have a power law dependence on the product of square of generation rate and light-soaking time. Most cells show saturation in degradation under 50 times AM1.5 illumination beyond 1000 sec, which is equivalent to approximately 800 hours under AM1.5 intensity. However, somes cells showed continued degradation at the high intensity up to 6×104 sec without any saturation; the cell properties could be restored to their original values after annealing. Computer simulation studies have been carried out to analyze the results on the basis of existing theories.

  20. Numerical study of light-induced drift of Na in noble gases

    NASA Astrophysics Data System (ADS)

    Haverkort, J. E. M.; Werij, H. G. C.; Woerdman, J. P.

    1988-10-01

    We present a model for light-induced drift (LID) in the Na-noble-gas system which should enable direct comparison with experiment. In contrast to previous theories of LID based on a two-level description of the optical absorbers and on a simplified collision treatment, the present model is based on a realistic description of laser-driven Na atoms immersed in a buffer gas. Starting from the generalized Bloch equations, we introduce a rate-equation model for the velocity distributions in the four important Na levels. The velocity-changing and fine-structure-changing collisions are described using composite Keilson-Storer collision kernels in which all adjustable parameters have been eliminated by using available literature data. We apply the model in numerical calculations of LID as a function of all experimentally accessible parameters. It is found that the ground-state hyperfine splitting can have large effects on LID, whereas the excited-state fine-structure splitting has not. The paper establishes criteria for optimum LID effects; when using a single-frequency laser the maximum attainable drift velocity is predicted to be 13.8 m/s. Using a proper set of boundary conditions, we find a pressure dependence of LID qualitatively different from the predictions based on previous work. Finally, the influence of the collision model is investigated. We find that LID is independent of the shape of the collision kernel, indicating that a strong-collision model is always valid.

  1. Understanding Light-Induced Degradation of c-Si Solar Cells: Preprint

    SciTech Connect

    Sopori, B.; Basnyat, P.; Devayajanam, S.; Shet, S.; Mehta, V.; Binns, J.; Appel, J.

    2012-06-01

    We discuss results of our investigations toward understanding bulk and surface components of light-induced degradation (LID) in low-Fe c-Si solar cells. The bulk effects, arising from boron-oxygen defects, are determined by comparing degradation of cell parameters and their thermal recovery, with that of the minority-carrier lifetime (964;) in sister wafers. We found that the recovery of 964; in wafers takes a much longer annealing time compared to that of the cell. We also show that cells having SiN:H coating experience a surface degradation (ascribed to surface recombination). The surface LID is seen as an increase in the q/2kT component of the dark saturation current (J02). The surface LID does not recover fully upon annealing and is attributed to degradation of the SiN:H-Si interface. This behavior is also exhibited by mc-Si cells that have very low oxygen content and do not show any bulk degradation.

  2. Spectral anomalies of light-induced drift of rubidium and lithium under monochromatic excitation

    NASA Astrophysics Data System (ADS)

    Gel'mukhanov, F. Kh; Parkhomenko, A. I.; Privalov, T. I.; Shalagin, A. M.

    1997-04-01

    The anomalous light-induced drift (LID) of atoms caused by a velocity dependence of collision frequencies has been investigated in the frame of the theory without adjustable parameters. Our results open the possibility of experimental probing of models of interatomic potentials. The extension of the strong-collision model to the case of velocity-dependent collision rates, is the basis of our approach. The obtained model describes the anomalous LID both in the case of arbitrary mass ratio of absorbing- and buffer-gas particles and in the case of arbitrary ratio of the homogeneous and Doppler widths. In particular, we applied our model to describe the anomalous LID in alkali - noble-gas mixtures (Rb - Kr and Li - Ne systems). Qualitatively another anomaly of the LID velocity was also found in the low-pressure region. As pointed out, the optical pumping effect and the hyperfine structure of the ground electronic state, but not the velocity dependence of the collision rates, are the sources of this new anomaly.

  3. Light-induced drift of Na using a frequency-modulated laser

    NASA Astrophysics Data System (ADS)

    de Lignie, M. C.; Bloemink, H. I.; de Boer, A. H.; Eliel, E. R.

    1990-08-01

    The influence of the bandwidth of the radiation source on light-induced drift (LID) of Na is studied experimentally. Broadband radiation can be used to eliminate optical hyperfine pumping on the one hand, and to provide more efficient excitation due to an increased velocity coverage, on the other hand. These aspects are highlighted in two separate experiments. An increase of the drift velocity of Na by a factor of 4 compared to monochromatic excitation has been measured. A frequency-modulated (FM) ring dye laser is used as a broadband radiation source, having a bandwidth continuously variable from single mode to multimode with a bandwidth of 10 GHz. Contrary to passive multimode lasers, the spectrum of such a laser is well defined and stable. Various modulation frequencies are used to study the dependence of the drift velocity on the mode spacing of the multimode laser. Only small differences are found. All experimental results are compared with results of a four-level rate-equation model for LID of Na, in which the excited-state hyperfine structure of Na and the detailed shape of the FM spectrum are taken into account. Good agreement between the model and the experimental data is found. The model is also used to show that the FM spectrum yields almost the same values for the drift velocity as a rectangular spectrum, which so far has been considered optimal for LID.

  4. Manifestation of the light-induced drift effect in chemically peculiar stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. I.; Shalagin, A. M.

    2013-02-01

    We have calculated the factor ( ν g - ν e )/ ν g in the temperature range T = 300-20 000 K for the ions Be+, Mg+, Ca+, C+ in atomic hydrogen and for the ions Mg+ in atomic argon using the known interaction potentials. Here ν e and ν g are the transport collision frequencies for excited- and ground-state particles respectively. Calculations have shown that at T = 10 000-20 000 K, typical temperatures of the atmospheres of chemically peculiar (CP) stars, the values | ν g - ν e |/ ν g ≈ 0.1-0.2 can be reached for ions. This causes the light-induced drift (LID) velocity of ions up to ˜0.1 cm/s in the atmospheres of CP stars with temperatures T < 10 000 K. Therefore the separation of chemical elements due to the LID of ions under the conditions of the atmospheres of such CP stars can be an order of magnitude more efficient in comparison with the separation caused by the radiation pressure. In the atmosphere of more hot stars (20 000 K > T > 10 000 K) it is possible to expect approximately identical magnitude of the LID effect and that of radiation pressure. In the very hot stars ( T >20 000 K) the LID effect is manifested very weakly.

  5. MWCNT/WO3 nanocomposite photoanode for visible light induced water splitting

    NASA Astrophysics Data System (ADS)

    Yousefzadeh, Samira; Reyhani, Ali; Naseri, Naimeh; Moshfegh, Alireza Z.

    2013-08-01

    The Multi-walled carbon nanotube (MWCNT)/WO3 nanocomposite thin films with different MWCNT’s weight percentages were prepared by sol-gel method as visible light induced photoanode in water splitting reaction. Weight percentage of MWCNT in the all nanocomposite thin films was confirmed by TGA/DSC analysis. According to XPS analysis, oxygenated groups at the surface of the MWCNT and stoichiometric formation of WO3 thin films were determined, while the crystalline structure of the nanocomposite samples was studied by XRD indicating (0 0 2) peak of MWCNT in the monoclinic phase of WO3. The influence of different weight percentage (wt%) of MWCNT on WO3 photoactivity showed that the electron conductivity, charge transfer and electron life time had improved as compared with the pure WO3. Based on linear sweep voltammetry and chronoamperometry measurements, the (1 wt%) MWCNT/WO3 nanocomposite thin films photoanode has a maximum photocurrent density of ~4.5 A/m2 and electron life time of about 57 s.

  6. Use of quantitative light-induced fluorescence to monitor tooth whitening

    NASA Astrophysics Data System (ADS)

    Amaechi, Bennett T.; Higham, Susan M.

    2001-04-