Science.gov

Sample records for light-weight fresnel lenses

  1. Laminated Fresnel lenses

    SciTech Connect

    Jebens, R.W.

    1980-04-01

    A fabrication method for making plastic-on-glass laminated Fresnel lenses is discussed. These Fresnel lenses are for application in an RCA solar photovoltaic concentrator array now in the prototype stage of development. This laminated Fresnel lens fabrication method consists of making a Dow Corning J RTV silastic rubber mold of a master lens array. This mold is used to vacuum cast only the lens facets onto a low-iron tempered-glass substrate with an epoxy resin such as Hysol 0S 1000, a bisphenol-A resin with a flexibilizer that is anhydride cured. Cast acrylic Fresnel lens arrays commercialy available have potential cleaning and abrasion problems, have very large thermal expansion, and have dimensional uncertainties in their manufacture. The laminated lens is dimensionally stable with low thermal expansion, has good cleaning characteristics, and is very inexpensive in materials cost. The measured transmission of such a lens on low-iron glass is 80.4% compared with 85.1% for a cast acrylic lens, and the optical quality is good enough for application in the 100X to 200X concentration range. An approach to making large lens arrays (3 by 6 ft) on a commercial scale is explored.

  2. Fresnel's Lighthouse Lenses

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    One of the rewards of walking up the scores of steps winding around the inside of the shaft of a lighthouse is turning inward and examining the glass optical system. This arrangement of prisms, lenses, and reflectors is used to project the light from a relatively small source in a beam that can be seen far at sea.

  3. Design, fabrication, and testing of Fresnel lenses for astrophysics applications

    NASA Astrophysics Data System (ADS)

    Lamb, David John

    1999-10-01

    An optical system consisting of two Fresnel lenses is designed and proposed for use in a space-based giant air shower observatory called the Orbiting Wide-angle Light- collector (OWL). This observatory will attempt to detect more than 100 of the highest energy cosmic rays (E > 101, eV) every year. These cosmic rays are of the utmost importance in contemporary cosmology because existing theories cannot explain how they are created or how they reach the earth from their initial source. Existing hypotheses can only be verified or rejected in the presence of experimental data, and only an optical system which observes the earth's atmosphere from space is capable of providing an aperture large enough to detect a statistically significant number of events in a reasonable amount of time. This dissertation is concerned with the development and analysis of Fresnel lenses for low-resolution applications such as OWL which must search the sky for random events. Extensive computer modeling is performed using a variety of different types of optical design and analysis software in order to investigate the properties of Fresnel lenses. Of particular concern are problems associated with stray light such as facet vignetting and veiling glare. These parameters are completely characterized for various Fresnel lens systems which meet the OWL system specifications. A geometric model which does not require ray tracing is also developed and can provide information about light losses in Fresnel lenses. This model is used to analyze the effects that Fresnel lens surface shape and configuration have on facet vignetting. A basic diffractive analysis of Fresnel lenses is formulated, and it is shown that diffraction effects will not significantly alter the behavior of the OWL-scale system. Two scaled-down prototype OWL systems are designed and fabricated using a diamond turning lathe, and a consistent method for developing the tool paths for constructing complex Fresnel lenses is developed. The

  4. Telecentric large-field lenses using Fresnel optics

    NASA Astrophysics Data System (ADS)

    Schuster, Norbert; Schoenheit, Thomas

    2002-02-01

    The practical application of Fresnel lenses in imaging systems is very much disputed. However, in large field, object side, telecentric lenses, conditions are such that the advantages of lightness, cheap production, and short construction length dominate the disadvantages. These disadvantages concern the reduced image quality. Starting from any paraxial relations, we present analytic equations which are useful in estimating the changes in the aberration balance, when a well compensated glass lens front group is replaced by a Fresnel lens singlet. The comparison of a pair of telecentric lenses with the same basic parameters, built with a glass lens front group and with a Fresnel singlet front group, confirms these equations. The reduced image quality, using a Fresnel singlet as front group in an object side telecentric lens, is caused by noncompensated lateral chromatic aberration, increased distortion values, higher stray light levels and reduced resolving power. For inspection purposes, the distortion is often not so important. If the work pieces are illuminated with monochromatic light, then chromatic aberrations become unimportant. Therefore, for machine vision inspection purposes, the object side telecentric ray path can be straightforwardly achieved using a Fresnel lens front group. This is an alternative to the well known, but expensive, glass front lens solutions.

  5. Optical loss due to diffraction by concentrator Fresnel lenses

    SciTech Connect

    Hornung, Thorsten Nitz, Peter

    2014-09-26

    Fresnel lenses are widely used in concentrating photovoltaic (CPV) systems as a primary optical element. They focus sunlight on small solar cells or on the entrance apertures of secondary optical elements. A Fresnel lens consists of several prism rings and diffraction by these prism rings is unavoidable. Some of the light that would reach a designated target area according to geometric optics will miss it due to diffraction. This diffraction loss may be of relevant magnitude for CPV applications. The results of published analytical calculations are evaluated, discussed, and compared to computer simulations and measurements.

  6. Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation.

    PubMed

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2010-04-20

    Sizing down the dimensions of solar concentrators for photovoltaic applications offers a number of promising advantages. It provides thinner modules and smaller solar cells, which reduces thermal issues. In this work a plane Fresnel lens design is introduced that is first analyzed with geometrical optics. Because of miniaturization, pure ray tracing may no longer be valid to determine the concentration performance. Therefore, a quantitative wave optical analysis of the miniaturization's influence on the obtained concentration performance is presented. This better quantitative understanding of the impact of diffraction in microstructured Fresnel lenses might help to optimize the design of several applications in nonimaging optics. PMID:20411014

  7. Aberrations in Fresnel Lenses and Mirrors

    NASA Technical Reports Server (NTRS)

    Gregory, Don

    1999-01-01

    The NASA/MSFC Shooting Star program revealed a number of technical problems that must be solved before solar thermal propulsion can become a reality. The fundamental problem of interest here is the collection of solar energy. This is the first step in the propulsion process and indeed the most important. Everything else depends on the efficiency and focusing ability of the collection lens or mirror. An initial model of Fresnel lens behavior using a wave optics approach has been completed and the results were encouraging enough to warrant an experimental investigation. This experimental investigation confirmed some of the effects predicted and produced invaluable photographic evidence of coherence based diffraction and aberration.

  8. Solar concentration by curved-base Fresnel lenses

    NASA Technical Reports Server (NTRS)

    Cosby, R. M.

    1977-01-01

    The solar concentration performance of idealized curved base line focusing Fresnel lenses is analyzed. A simple optical model was introduced to study the effects of base curvature and lens f-number. Thin lens ray tracing and the laws of reflection and refraction are used to develop expression for lens transmittance and image plane intensity profiles. The intensity distribution over the solar spectrum, lens dispersion effects, and absorption by the lens material are included in the analysis. Model capabilities include assessment of lens performance in the presence of small transverse tracking errors and the sensitivity of solar image characteristics to focusing.

  9. Nonimaging achromatic shaped Fresnel lenses for ultrahigh solar concentration.

    PubMed

    Languy, Fabian; Habraken, Serge

    2013-05-15

    The maximum concentration ratio achievable with a solar concentrator made of a single refractive primary optics is much more limited by the chromatic aberration than by any other aberration. Therefore achromatic doublets made with poly(methyl methacrylate) and polycarbonate are of great interest to enhance the concentration ratio and to achieve a spectrally uniform flux on the receiver. In this Letter, shaped achromatic Fresnel lenses are investigated. One lossless design is of high interest since it provides spectrally and spatially uniform flux without being affected by soiling problems. With this design an optical concentration ratio of about 8500× can be achieved. PMID:23938926

  10. Fresnel lenses. (Latest citations from the US Patent Bibliographic file with exemplary claims). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations of selected patents concerning the design and implementation of Fresnel lenses. Citations focus on manufacturing methods and designs for specific applications. Fresnel lenses used in overhead projectors, solar concentrators, and infrared motion detectors are also described. (Contains a minimum of 71 citations and includes a subject term index and title list.)

  11. Static Linear Fresnel Lenses as LCPV System in a Greenhouse

    NASA Astrophysics Data System (ADS)

    Sonneveld, P. J.; Swinkels, G. L. A. M.; van Tuijl, B. A. J.; Janssen, H. J. J.; de Zwart, H. F.

    2011-12-01

    A low concentrating PV system with water cooling (LCPVT system) will result in electrical and thermal energy output from the solar energy excess entering a building or greenhouse. All the direct radiation could be converted, which corresponds to 75% of the incoming solar energy. This will significantly reduce the demand of cooling of the building. For an optimal performance it is beneficial to construct asymmetric roof elements with a steep inclination at the north side (the exact angle of course depends on the latitude of the building site). The Fresnel lens structure is oriented in upwards direction. In the current design, two of them are placed between an AR-coated double glass structure to prevent pollution and condensation on the lenses. Compared with a previous system, the number of lenses is reduced from 3 to 2 lenses, which reduces the costs of the system by limiting the number of receivers. By the upward facing of the lens structure, the focus quality is preserved over a much broader range of angles of incidence compared to a lens with downward facing structures. Each PMMA lens with a size of 1.20 m×1.60 m is composed of 12 `tiles' for easy production. The focal distance of the lens is 1,875 m and the concentration factor 50x. In most cases the focus line is thinner than 3 cm and the transmission is above 80%. The performance of these lenses with respect of the shape of the focal area and the position of the focal line has been analyzed with ray tracing techniques. From this analyses it was concluded that tracking of the receiver module is possible with two motors. One motor controls the distance between lens and receiver and one motor controls the translocation of the receivers parallel to the lens. The second conclusion was that the positions of the focal line are within the bounds of the greenhouse construction for almost the whole year. Only in winter, the focal line will be unreachable from time to time. A 480 m2 greenhouse with the LCPVT system

  12. Development of Large-Aperture, Light-Weight Fresnel Lenses for Gossamer Space Telescopes

    SciTech Connect

    Sham, D; Hyde, R; Weisberg, A; Early, J; Rushford, M; Britten, J

    2002-04-29

    In order to examine more distant astronomical objects, with higher resolution, future space telescopes require objectives with significantly larger aperture than presently available. NASA has identified a progression in size from the 2.4m aperture objective currently used in the HUBBLE space telescope[l,2], to 25m and greater in order to observe, e.g., extra-solar planets. Since weight is a crucial factor for any object sent into space, the relative weight of large optics over a given area must be reduced[3]. The areal mass density of the primary mirror for the Hubble space telescope is {approx}200 kg/m{sup 2}. This is expected to be reduced to around 15 kg/m{sup 2} for the successor to Hubble--the next generation space telescope (NGST)[4]. For future very large aperture telescopes needed for extra-solar planet detection, the areal mass density must be reduced even further. For example, the areal mass density goal for the Gossamer space telescopes is < 1 kg/m{sup 2}. The production of lightweight focusing optics at >10m size is also an enabling technology for many other applications such as Earth observation, power beaming, and optical communications.

  13. Technology of Manufacture of the Negative Matrices for Linear Fresnel Lenses

    NASA Astrophysics Data System (ADS)

    Lapshin, V. V.; Zakharevich, E. M.; Grubyy, S. V.

    2016-04-01

    This article describes the main structural features of negative matrices which are intended for the production of positive copies of linear Fresnel lenses. Linear lenses are used in a space solar energy industry as solar concentrators in the photovoltaic modules. The article covers the essential requirements which are placed on the equipment and technology for the production of such matrices.

  14. Micro grooving on single-crystal germanium for infrared Fresnel lenses

    NASA Astrophysics Data System (ADS)

    Yan, Jiwang; Maekawa, Kouki; Tamaki, Jun'ichi; Kuriyagawa, Tsunemoto

    2005-10-01

    Single-crystal germanium is an excellent optical material in the infrared wavelength range. The development of germanium Fresnel lenses not only improves the optical imaging quality but also enables the miniaturization of optical systems. In the present work, we developed a ductile-mode micro grooving process for fabricating Fresnel lenses on germanium. We used a sharply pointed diamond tool to generate the micro Fresnel structures under three-axis ultraprecision numerical control. By adopting a small angle between the cutting edge and the tangent of the objective surface, this method enables the uniform thinning of the undeformed chip thickness to the nanometric range, and thus provides complete ductile regime machining of brittle materials. Under the present conditions, a Fresnel lens which has a form error of 0.5 µm and surface roughness of 20-50 nm Ry (peak-to-valley) was fabricated successfully during a single tool pass.

  15. Collection and concentration of solar energy using Fresnel type lenses

    NASA Technical Reports Server (NTRS)

    Wilson, R. F.

    1975-01-01

    The efficiency of collecting solar energy using a Fresnel type lens was measured for two different collectors. A flow collector utilizes the temperature difference and heat capacity in water measurements to determine the amount of absorbed energy retained from sun rays passing through the Fresnel lens. A static collector is a hollow copper box filled with vegetable heating oil for absorption of focused solar radiation.

  16. Integration of Defocus by Dual Power Fresnel Lenses Inhibits Myopia in the Mammalian Eye

    PubMed Central

    McFadden, Sally A.; Tse, Dennis Y.; Bowrey, Hannah E.; Leotta, Amelia J.; Lam, Carly S.; Wildsoet, Christine F.; To, Chi-Ho

    2014-01-01

    Purpose. Eye growth compensates in opposite directions to single vision (SV) negative and positive lenses. We evaluated the response of the guinea pig eye to Fresnel-type lenses incorporating two different powers. Methods. A total of 114 guinea pigs (10 groups with 9–14 in each) wore a lens over one eye and interocular differences in refractive error and ocular dimensions were measured in each of three experiments. First, the effects of three Fresnel designs with various diopter (D) combinations (−5D/0D; +5D/0D or −5D/+5D dual power) were compared to three SV lenses (−5D, +5D, or 0D). Second, the ratio of −5D and +5D power in a Fresnel lens was varied (50:50 compared with 60:40). Third, myopia was induced by 4 days of exposure to a SV −5D lens, which was then exchanged for a Fresnel lens (−5D/+5D) or one of two SV lenses (+5D or −5D) and ocular parameters tracked for a further 3 weeks. Results. Dual power lenses induced an intermediate response between that to the two constituent powers (lenses +5D, +5D/0D, 0D, −5D/+5D, −5D/0D and −5D induced +2.1 D, +0.7 D, +0.1 D, −0.3 D, −1.6 D and −5.1 D in mean intraocular differences in refractive error, respectively), and changing the ratio of powers induced responses equal to their weighted average. In already myopic animals, continued treatment with SV negative lenses increased their myopia (from −3.3 D to −4.2 D), while switching to SV positive lenses or −5D/+5D Fresnel lenses reduced their myopia (by 2.9 D and 2.3 D, respectively). Conclusions. The mammalian eye integrates competing defocus to guide its refractive development and eye growth. Fresnel lenses, incorporating positive or plano power with negative power, can slow ocular growth, suggesting that such designs may control myopia progression in humans. PMID:24398103

  17. Optical Design and Manufacturing of Fresnel Lenses for The First Korean High Concentration Solar PV System

    NASA Astrophysics Data System (ADS)

    Ryu, Kwangsun; Shin, Goo-Hwan; Cha, Wonho; Kang, Seongwon; Kim, Youngsik; Kang, Gi-Hwan

    2011-12-01

    In this study, we designed and optimized flat Fresnel lens and the light pipe to develop 500X concentrated solar PV system. In the process, we compare the transmission efficiencies according to groove types. We performed rigorous ray tracing simulation of the flat Fresnel lenses. The computer aided simulation showed the `grooves in' case has the better efficiency than that of `grooves out' case. Based on the ray-trace results, we designed and manufactured sample Fresnel lenses. The optical performance were measured and compared with ray-trace results. Finally, the optical efficiency was measured to be above 75%. All the design and manufacturing were performed based on that InGaP/InGaAs/Ge triple junction solar cell is used to convert the photon energy to electrical power. Field test will be made and analyzed in the near future.

  18. Ultra-precision cutting of Fresnel lenses on single crystal germanium and the machining processing analysis

    NASA Astrophysics Data System (ADS)

    Fan, Yufeng; Zhu, Yongjian; Pan, Weiqing

    2010-10-01

    Single crystal germanium is used in infrared spectroscopes and other optical equipment as an excellent infrared optical material. The development of germanium Fresnel lenses not only improves the optical imaging quality but also enables the miniaturization of optical systems. In a previous work, a Fresnel lens with precise curvatures, sharp edges and precise cross-sectional profiles were fabricated. However, sometimes, microcracks will occur to the edge of grooves when the wear of the diamond tool is large in the machining process. In the present work, in order to minimize the effect of the tool tip wear to the groove edge of Fresnel lens, a novel machining process and machining conditions are proposed for fabricating a high-precision Fresnel lens.

  19. Down scaling of micro-structured Fresnel lenses for solar concentration: a quantitative investigation

    NASA Astrophysics Data System (ADS)

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2010-05-01

    Scaling down the dimensions of concentrating photovoltaic systems based on plane Fresnel lenses has several promising advantages. By conserving a designed concentration ratio and reducing the aperture size of the lens, the working distance decreases as well. This provides thinner modules and the dimensions of the used solar cells can be scaled down to the millimeter range. An important benefit of this miniaturization process is the avoidance of technically demanding cooling. In this work the design of a plane Fresnel lens is introduced and the basic limitations concerning the achievable concentration ratio are investigated based on geometrical optics. However, accompanied by the down scaling of the prism dimensions, pure ray tracing based on the geometrical optics approximation may no longer be valid for the determination of the concentration ratio. In terms of micro-structured Fresnel lenses for solar concentration, only a qualitative description of this limit - typically a rule of thumb - is provided in the literature. For this reason a quantitative investigation of the influence of the prisms' down scaling and thus the appearing wave optical effects on the obtained concentration ratio is presented. In a final step the introduced monochromatic investigations are extended to a polychromatic analysis. This allows for the prediction of the influence of miniaturization on the effective concentration ratio for a given spectrum and thus the adequate size of the receiver. A better quantitative understanding of the impact of diffraction in micro-structured Fresnel lenses might help to optimize the design of several applications in nonimaging optics.

  20. Side-pumping Nd:YAG solar laser by six Fresnel lenses

    NASA Astrophysics Data System (ADS)

    Tomás, G.; Liang, D.; Almeida, J.

    2013-11-01

    To obtain a good compromise between collection efficiency and brightness figure of merit of solar-pumped lasers, a new side-pumping scheme is proposed. Firstly the solar radiations are collected and concentrated by six 700 mm diameter Fresnel lenses. The concentrated solar radiations are subsequently reflected by six plane folding mirrors with 95% reflectivity, into a common focal spot. This allows the concentration of 1740 W solar power with about 6.4 W/mm2 peak solar flux. A secondary concentrator is composed of six aspheric fused silica lenses, positioned around a 40 mm radius fused silica sphere, compressing all the concentrated solar radiation from the six Fresnel lenses into an 8 mm diameter by 9 mm length Nd:YAG single-crystal rod. By positioning the spherical concentrator slightly above the aspherical lenses, a more uniform absorption profile is achieved. Mechanical support with a water cooling system ensures an efficient cooling to the laser medium. Optimal laser parameters are found through ZEMAX™ and LASCAD™ numerical analysis software. Only 16% of the solar power is absorbed by Nd:YAG medium. Solar laser power of 42.6 W is numerically calculated, reaching a collection efficiency of 18.5 W/m2. For a 400 mm plane-concave resonance cavity with -5m radius of curvature, M2 x = M2 y = 22 beam quality factors are numerically predicted. A near uniform pump absorption profile can be achieved by increasing the number of Fresnel lens and folding mirrors.

  1. Solar concentration properties of flat fresnel lenses with large F-numbers

    NASA Technical Reports Server (NTRS)

    Cosby, R. M.

    1978-01-01

    The solar concentration performances of flat, line-focusing sun-tracking Fresnel lenses with selected f-numbers between 0.9 and 2.0 were analyzed. Lens transmittance was found to have a weak dependence on f-number, with a 2% increase occuring as the f-number is increased from 0.9 to 2.0. The geometric concentration ratio for perfectly tracking lenses peaked for an f-number near 1.35. Intensity profiles were more uniform over the image extent for large f-number lenses when compared to the f/0.9 lens results. Substantial decreases in geometri concentration ratios were observed for transverse tracking errors equal to or below 1 degree for all f-number lenses. With respect to tracking errors, the solar performance is optimum for f-numbers between 1.25 and 1.5.

  2. Design methodology accounting for fabrication errors in manufactured modified Fresnel lenses for controlled LED illumination.

    PubMed

    Shim, Jongmyeong; Kim, Joongeok; Lee, Jinhyung; Park, Changsu; Cho, Eikhyun; Kang, Shinill

    2015-07-27

    The increasing demand for lightweight, miniaturized electronic devices has prompted the development of small, high-performance optical components for light-emitting diode (LED) illumination. As such, the Fresnel lens is widely used in applications due to its compact configuration. However, the vertical groove angle between the optical axis and the groove inner facets in a conventional Fresnel lens creates an inherent Fresnel loss, which degrades optical performance. Modified Fresnel lenses (MFLs) have been proposed in which the groove angles along the optical paths are carefully controlled; however, in practice, the optical performance of MFLs is inferior to the theoretical performance due to fabrication errors, as conventional design methods do not account for fabrication errors as part of the design process. In this study, the Fresnel loss and the loss area due to microscopic fabrication errors in the MFL were theoretically derived to determine optical performance. Based on this analysis, a design method for the MFL accounting for the fabrication errors was proposed. MFLs were fabricated using an ultraviolet imprinting process and an injection molding process, two representative processes with differing fabrication errors. The MFL fabrication error associated with each process was examined analytically and experimentally to investigate our methodology. PMID:26367631

  3. Optical computed tomography utilizing a rotating mirror and Fresnel lenses: operating principles and preliminary results

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Wuu, Cheng-Shie

    2013-02-01

    The performance of a fast optical computed tomography (CT) scanner based on a point laser source, a small area photodiode detector, and two optical-grade Fresnel lenses is evaluated. The OCTOPUS™-10× optical CT scanner (MGS Research Inc., Madison, CT) is an upgrade of the OCTOPUS™ research scanner with improved design for faster motion of the laser beam and faster data acquisition process. The motion of the laser beam in the new configuration is driven by the rotational motion of a scanning mirror. The center of the scanning mirror and the center of the photodiode detector are adjusted to be on the focal points of two coaxial Fresnel lenses. A glass water tank is placed between the two Fresnel lenses to house gel phantoms and matching liquids. The laser beam scans over the water tank in parallel beam geometry for projection data as the scanning mirror rotates at a frequency faster than 0.1 s per circle. Signal sampling is performed independently of the motion of the scanning mirror, to reduce the processing time for the synchronization of the stepper motors and the data acquisition board. An in-house developed reference image normalization mechanism is added to the image reconstruction program to correct the non-uniform light transmitting property of the Fresnel lenses. Technical issues with regard to the new design of the scanner are addressed, including projection data extraction from raw data samples, non-uniform pixel averaging and reference image normalization. To evaluate the dosimetric accuracy of the scanner, the reconstructed images from a 16 MeV, 6 cm × 6 cm electron field irradiation were compared with those from the Eclipse treatment planning system (Varian Corporation, Palo Alto, CA). The spatial resolution of the scanner is demonstrated to be of sub-millimeter accuracy. The effectiveness of the reference normalization method for correcting the non-uniform light transmitting property of the Fresnel lenses is analyzed. A sub-millimeter accuracy of

  4. Thin Fresnel zone plate lenses for focusing underwater sound

    SciTech Connect

    Calvo, David C. Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N.

    2015-07-06

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.

  5. Optical computed tomography utilizing a rotating mirror and Fresnel lenses: operating principles and preliminary results.

    PubMed

    Xu, Y; Wuu, Cheng-Shie

    2013-02-01

    The performance of a fast optical computed tomography (CT) scanner based on a point laser source, a small area photodiode detector, and two optical-grade Fresnel lenses is evaluated. The OCTOPUS™-10× optical CT scanner (MGS Research Inc., Madison, CT) is an upgrade of the OCTOPUS™ research scanner with improved design for faster motion of the laser beam and faster data acquisition process. The motion of the laser beam in the new configuration is driven by the rotational motion of a scanning mirror. The center of the scanning mirror and the center of the photodiode detector are adjusted to be on the focal points of two coaxial Fresnel lenses. A glass water tank is placed between the two Fresnel lenses to house gel phantoms and matching liquids. The laser beam scans over the water tank in parallel beam geometry for projection data as the scanning mirror rotates at a frequency faster than 0.1 s per circle. Signal sampling is performed independently of the motion of the scanning mirror, to reduce the processing time for the synchronization of the stepper motors and the data acquisition board. An in-house developed reference image normalization mechanism is added to the image reconstruction program to correct the non-uniform light transmitting property of the Fresnel lenses. Technical issues with regard to the new design of the scanner are addressed, including projection data extraction from raw data samples, non-uniform pixel averaging and reference image normalization. To evaluate the dosimetric accuracy of the scanner, the reconstructed images from a 16 MeV, 6 cm × 6 cm electron field irradiation were compared with those from the Eclipse treatment planning system (Varian Corporation, Palo Alto, CA). The spatial resolution of the scanner is demonstrated to be of sub-millimeter accuracy. The effectiveness of the reference normalization method for correcting the non-uniform light transmitting property of the Fresnel lenses is analyzed. A sub

  6. Design and imaging performance of achromatic diffractive-refractive x-ray and gamma-ray Fresnel lenses.

    PubMed

    Skinner, Gerald K

    2004-09-01

    Achromatic combinations of a diffractive phase Fresnel lens and a refractive correcting element have been proposed for x-ray and gamma-ray astronomy and for microlithography, but considerations of absorption often dictate that the refractive component be given a stepped profile, resulting in a double Fresnel lens. The imaging performance of corrected Fresnel lenses, with and without stepping, is investigated, and the trade-off between resolution and useful bandwidth in different circumstances is discussed. Provided that the focal ratio is large, correction lenses made from low atomic number materials can be used with x rays in the range of approximately 10-100 keV without stepping. The use of stepping extends the possibility of correction to higher-aperture systems, to energies as low as a few kilo electron volts, and to gamma rays of mega electron volt energy.

  7. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid

    PubMed Central

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS—Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a ‘solid tank’ (which reduces noise, and the volume of refractively matched fluid from 1ltr to 10cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system. PMID:27019460

  8. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

    PubMed

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.

  9. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

    PubMed

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system. PMID:27019460

  10. An Experimental Study on the Effect of Using Fresnel Lenses on the Performance of Solar Stills

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Tarek I.; Abdel-Mesih, Bahy

    The global water concern is mainly about the scarcity of fresh water resources despite the abundance of saline and brackish water in oceans, seas, and underground. Solar desalination offers a worthy solution to produce fresh water by using solar radiation, which also lessens the energy concern by offering a renewable source of energy to alter the consumption of fossil fuels and other non-renewable resources. One of the solar desalination technologies is the solar still system, which is a portable unit capable of producing distilled water by evaporating brackish or saline water by using solar thermal energy. The steam is then condensed on the inside of the glass cover and collected as fresh water. Solar stills are easy to manufacture and install using local materials and workmanship, which suits underprivileged remote communities that face difficulties in finding clean potable water, while locating near a source of saline water. However, efficiency and productivity of solar stills are still feeble when compared to other traditional desalination techniques. As an attempt to overcome these issues, an upgraded system is proposed and tested experimentally to augment the incoming solar radiation falling on the top glass surface of the still by concentrating extra solar radiation to preheat the flowing feedwater to the solar still system. The results of the experimental study showed that the integration of linear Fresnel lenses has approximately tripled the productivity of distilled water and improved efficiency of a solar still, by about 68.76 %, when compared to a conventional non-concentrating solar still.

  11. Direct comparison of polymethylmetacrylate (PMMA) and silicone-on-glass (SOG) for Fresnel lenses in concentrating photovoltaics (CPV)

    NASA Astrophysics Data System (ADS)

    Annen, Hans Philipp; Fu, Ling; Leutz, Ralf; González, Luis; Mbakop, Jehu

    2011-09-01

    The CPV community is still undecided on one critical issue: what material to use best for Fresnel lens parquets. Reliability and longevity are the most important, but all other properties play roles as well. We have developed and manufactured Fresnel lenses with the two commonly used materials: PMMA (Polymethylmethacrylate) and silicone on glass (SOG). Both lenses are designed for the same optical train for best comparability. This allows for better understanding the pros and cons of the materials and making an informed choice for a specific CPV module. While PMMA lenses are embossed from pre-fab sheets in a hot-cold process, the silicone lenses are cast from a heat-curing silicone rubber at moderate temperatures, reducing the energy consumption. PMMA allows for the inclusion of custom low-profile 3D (2.5D) structures for module assembly and mechanical alignment, a feature not possible in silicone due to its low rigidity. Both lenses suffer from thermal expansion and refractive index change. While PMMA parquets expand isotropically, SOG prisms deform due to the difference of expansion coefficients between the glass and the silicone. SOG lenses are prone to delamination of the silicone film. The adhesive strength of the film to the glass can be measured using a modified blister test that we developed. The results show large difference with different materials and confirm the necessity of controlling this issue closely. While the small thermal expansion of the glass sheets allows for larger parquet sizes, the deformation of the prisms with temperature may cause a performance hit.

  12. The distance temperature map as method to analyze the optical properties of Fresnel lenses and their interaction with multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Hornung, Thorsten; Kiefel, Peter; Nitz, Peter

    2015-09-01

    The optical efficiency of Fresnel lens based solar concentrators varies with the temperature of the Fresnel lens. The dependency of any quantity of interest (e.g. optical efficiency) on Fresnel lens temperature can be visualized by 2d color plots that simultaneously show it as a function of the distance between solar cell and Fresnel lens and as a function of Fresnel lens temperature. This visualization, which is called DTmap, strongly facilitates the analysis of the thermal behavior of a Fresnel lens and the optimization of module height. Based on DTmaps we reveal and discuss serveral details of the thermal behavior of silicone on glass (SOG) Fresnel lenses. In addition, the DTmap is shown for the efficiency of a system consisting of a Fresnel lens and a lattice matched three-junction and a four-junction solar cell. The results demonstrate that the interaction of the concentrator optics and the solar cell is not trivial and may also be studied using DTmaps.

  13. Multi-Fresnel lenses pumping approach for improving high-power Nd:YAG solar laser beam quality.

    PubMed

    Liang, Dawei; Almeida, Joana

    2013-07-20

    To significantly improve the present-day high-power solar laser beam quality, a three-stage multi-Fresnel lenses approach is proposed for side-pumping either a Nd:YAG single-crystal or a core-doped Sm(3+)Nd:YAG ceramic rod. Optimum pumping and laser beam parameters are found through ZEMAX and LASCAD numerical analysis. The proposed scheme offers a uniform absorption profile along the rod. 167 W laser power can be achieved, corresponding to 29.3 W/m(2) collection efficiency. High brightness figure of merit of 8.34 W is expected for the core-doped rod within a convex-concave resonator, which is 1300 times higher than that of the most-recent high-power solar laser.

  14. Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses

    NASA Astrophysics Data System (ADS)

    Hwang, S.-J.; Chen, T.-A.; Lin, K.-R.; Jeng, S.-C.

    2012-04-01

    The surface energy of a conventional homeotropic polyimide (PI) alignment layer was altered via ultraviolet (UV) light irradiation, and the pretilt angle of the PI was changed along with the surface energy. The surface energy can be controlled by either UV exposure time or irradiation intensity. A switchable liquid crystal Fresnel lens (LCFL) was created by the UV-treated alignment layers to form a Fresnel zone-distribution hybrid alignment, vertically aligned and hybrid aligned LC in the odd and even zones, respectively. The LCFL was made polarization-independent by circular buffing, and it had a diffraction efficiency of ˜22% at a low driving voltage of ˜1.2 V.

  15. Comparison of Fresnel lenses and parabolic mirrors as solar energy concentrators.

    PubMed

    Lorenzo, E; Luque, A

    1982-05-15

    This paper compares the gain that can be achieved with a one- or two-stage concentrator, when the first stage is a Fresnel lens or a parabolic mirror, as a function of the luminosity of the concentrator. The results show that the achievable gain using a parabolic mirror is greater than that obtained using a flat or roof lens but is lower than that obtained using a curved lens. PMID:20389950

  16. A CPV System with Static Linear Fresnel Lenses in a Greenhouse

    NASA Astrophysics Data System (ADS)

    Sonneveld, Piet; Zahn, Helmut; Swinkels, Gert-Jan

    2010-10-01

    A new CPV system with a static linear Fresnel lens, silicon PV module suitable for concentrated radiation and an innovative tracking system is integrated in a greenhouse covering. The basic idea of this horticultural application is to develop a greenhouse for pot plants (typical shadow plants) which don't like high direct radiation. Removing all direct radiation will block up to 77% of the solar energy, which will reduce the necessary cooling capacity. The solar energy focused on the Thermal Photovoltaic (PV/T) module generates electric and thermal energy. The PV/T module is tracked in the focal line and requires cooling due to the high heat load of the concentrated radiation (concentration factor of 50 times). All parts are integrated in a greenhouse with a size of about 36 m2. The electrical and thermal yield is determined for Dutch climate circumstances. Some measurements were performed with a PMMA linear Fresnel lens between double glass. Further improvement of the performance of the CPV-system is possible by using a PDMS lens directly laminated on glass and using AR-coated glass. This lens is developed with ZEMAX and the results of the Ray-tracing simulations are presented with the lens structure oriented in an upwards and downwards position. The best performance of the static linear Fresnel lens is achieved with upwards orientation of the lens structures. In practice this is only possible with the Fresnel lens placed between a double glass structure, which will keep the lens clean and free of water.

  17. Optical design and illumination simulation of Fresnel lenses for marine signal lanterns

    NASA Astrophysics Data System (ADS)

    Park, Seung Nam; Park, Chul Woung; Kim, Yong Wan; Cho, Hyun Seok; Jo, Jae Heung; Kim, Jong Tae

    2005-02-01

    Providing marine signal lanterns, Fresnel lens has been adopted to transfer the beam from the lanterns up to 10 nautical miles (18.53 km). The Fresnel lens with diameters of 250 mm was designed by a ray tracing program and optimized by adjusting the groove parameters of the lens. Each optical sag element which is a part of a lens was independently designed by using the analytical method. The angular luminous intensity distributions (ALID) of this lens were calculated by the illumination analysis program considering the ALID of a light bulb. The ALID of a C-8 type bulb (24 W) was measured with a goniophotometer and its luminous flux was measured by an integrating sphere to be 397 lm. At the best alignment of the bulb, the maximum luminous intensity of the lantern was more than 1000 cd for the 250 mm lens. The ALID was investigated as a function of distance from the lens focus to determine the tolerance margin of the alignment. Horizontal deviations of the light bulb from the focus along the optical axis widened the angular FWHM of the vertical ALID. However, vertical deviations caused shifts of the vertical ALID without spreading the angular FWHM. The designed 250 mm aspherical lens of marine signal lantern was made by the injection molding with single peace acryl. We measured the luminous intensity distribution of acryl lens and found that the MLI of the lens was 827 cd. And the full width at half maximum of the diverging angle of the diverging beam was 3.5 deg. Although the measured MLI was 83% of the calculated result, it would be increased with surface polishing of prototype molding pattern.

  18. Performance comparison of four kinds of flat nonimaging Fresnel lenses made of polycarbonates and polymethyl methacrylate for concentrated photovoltaics.

    PubMed

    Languy, Fabian; Habraken, Serge

    2011-07-15

    Solar concentrators made of a single refractive primary optics are limited to a concentration ratio of about 1000× [Opt. Express 19, A280 (2011)], due only to longitudinal chromatic aberration, while mirrors are limited to ∼46,000× by the angular size of the Sun. To reduce the chromatic aberration while keeping cost-effective systems for concentrated photovoltaics, a study of four different kinds of flat Fresnel doublets made of polycarbonates and polymethyl methacrylate is presented. It reveals that Fresnel doublets may have fewer optical losses than non-Fresnel doublets, with a lower lateral chromatic split allowing for even higher concentration ratio.

  19. Performance comparison of four kinds of flat nonimaging Fresnel lenses made of polycarbonates and polymethyl methacrylate for concentrated photovoltaics.

    PubMed

    Languy, Fabian; Habraken, Serge

    2011-07-15

    Solar concentrators made of a single refractive primary optics are limited to a concentration ratio of about 1000× [Opt. Express 19, A280 (2011)], due only to longitudinal chromatic aberration, while mirrors are limited to ∼46,000× by the angular size of the Sun. To reduce the chromatic aberration while keeping cost-effective systems for concentrated photovoltaics, a study of four different kinds of flat Fresnel doublets made of polycarbonates and polymethyl methacrylate is presented. It reveals that Fresnel doublets may have fewer optical losses than non-Fresnel doublets, with a lower lateral chromatic split allowing for even higher concentration ratio. PMID:21765528

  20. Light weight aluminum optics

    NASA Astrophysics Data System (ADS)

    Catura, R. C.; Vieira, J. R.

    1985-09-01

    Light weight mirror blanks were fabricated by dip-brazing a core of low mass aluminum foam material to thin face sheets of solid aluminum. The blanks weigh 40% of an equivalent size solid mirror and were diamond turned to provide reflective surfaces. Optical interferometry was used to assess their dimensional stability over 7 months. No changes in flatness are observed (to the sensitivity of the measurements of a half wavelength of red light).

  1. Light-weight ceramic insulation

    NASA Technical Reports Server (NTRS)

    Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2002-01-01

    Ultra-high temperature, light-weight, ceramic insulation such as ceramic tile is obtained by pyrolyzing a siloxane gel derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes may contain also an effective amount of a mono- or trialkoxy silane to obtain the siloxane gel. The siloxane gel is dried at ambient pressures to form a siloxane ceramic precursor without significant shrinkage. The siloxane ceramic precursor is subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation, can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C. and is particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.

  2. Stretchable Binary Fresnel Lens for Focus Tuning

    PubMed Central

    Li, Xueming; Wei, Lei; Poelma, René H.; Vollebregt, Sten; Wei, Jia; Urbach, Hendrik Paul; Sarro, Pasqualina M.; Zhang, Guo Qi

    2016-01-01

    This paper presents a tuneable binary amplitude Fresnel lens produced by wafer-level microfabrication. The Fresnel lens is fabricated by encapsulating lithographically defined vertically aligned carbon nanotube (CNT) bundles inside a polydimethyl-siloxane (PDMS) layer. The composite lens material combines the excellent optical absorption properties of the CNT with the transparency and stretchability of the PDMS. By stretching the elastomeric composite in radial direction, the lens focal length is tuned. Good focusing response is demonstrated and a large focus change (≥24%) was achieved by stretching lenses up to 11.4%. PMID:27139747

  3. Stretchable Binary Fresnel Lens for Focus Tuning

    NASA Astrophysics Data System (ADS)

    Li, Xueming; Wei, Lei; Poelma, René H.; Vollebregt, Sten; Wei, Jia; Urbach, Hendrik Paul; Sarro, Pasqualina M.; Zhang, Guo Qi

    2016-05-01

    This paper presents a tuneable binary amplitude Fresnel lens produced by wafer-level microfabrication. The Fresnel lens is fabricated by encapsulating lithographically defined vertically aligned carbon nanotube (CNT) bundles inside a polydimethyl-siloxane (PDMS) layer. The composite lens material combines the excellent optical absorption properties of the CNT with the transparency and stretchability of the PDMS. By stretching the elastomeric composite in radial direction, the lens focal length is tuned. Good focusing response is demonstrated and a large focus change (≥24%) was achieved by stretching lenses up to 11.4%.

  4. The Light-Weight Group Library

    2012-07-02

    The Light-Weight Group (LWGRP) bibrary provides data structures and collective routines to define and operate on groups of MPI processes. Groups can be created and freed efficiently in O(log N) time space requiring less overhead that constructing full MPI communicators. This facilitates faster development of applications and libraries that need to rapidly create, use, and destroy process groups.

  5. Light Weight Silicon Mirrors for Space Instrumentation

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T.; Hill, Peter C.; Hagopian, John G.; Strojay, Carl R.; Miller, Timothy

    2012-01-01

    Each mirror is a monolithic structure from a single crystal of silicon. The mirrors are light weighted after the optical surface is ground and polished. Mirrors made during the initial phase of this work were typically 1/50 lambda or better (RMS at 633 n m)

  6. Light-weight analyzer for odor recognition

    DOEpatents

    Vass, Arpad A; Wise, Marcus B

    2014-05-20

    The invention provides a light weight analyzer, e.g., detector, capable of locating clandestine graves. The detector utilizes the very specific and unique chemicals identified in the database of human decompositional odor. This detector, based on specific chemical compounds found relevant to human decomposition, is the next step forward in clandestine grave detection and will take the guess-work out of current methods using canines and ground-penetrating radar, which have historically been unreliable. The detector is self contained, portable and built for field use. Both visual and auditory cues are provided to the operator.

  7. Scaling laws for light weight optics, studies of light weight mirrors mounting and dynamic mirror stress, and light weight mirror and mount designs

    NASA Technical Reports Server (NTRS)

    Vukobratovich, Daniel; Richard, Ralph M.; Valente, Tina M.; Cho, Myung K.

    1990-01-01

    Scaling laws for light-weight optical systems are examined. A cubic relationship between mirror diameter and weight has been suggested and used by many designers of optical systems as the best description for all light-weight mirrors. A survey of existing light-weight systems in the open literature was made to clarify this issue. Fifty existing optical systems were surveyed with all varieties of light-weight mirrors including glass and beryllium structured mirrors, contoured mirrors, and very thin solid mirrors. These mirrors were then categorized and weight to diameter ratio was plotted to find a best curve for each case. A best fitting curve program tests nineteen different equations and ranks a goodness-to-fit for each of these equations. The resulting relationship found for each light-weight mirror category helps to quantify light-weight optical systems and methods of fabrication and provides comparisons between mirror types.

  8. Automated Fresnel lens tester system

    SciTech Connect

    Phipps, G.S.

    1981-07-01

    An automated data collection system controlled by a desktop computer has been developed for testing Fresnel concentrators (lenses) intended for solar energy applications. The system maps the two-dimensional irradiance pattern (image) formed in a plane parallel to the lens, whereas the lens and detector assembly track the sun. A point detector silicon diode (0.5-mm-dia active area) measures the irradiance at each point of an operator-defined rectilinear grid of data positions. Comparison with a second detector measuring solar insolation levels results in solar concentration ratios over the image plane. Summation of image plane energies allows calculation of lens efficiencies for various solar cell sizes. Various graphical plots of concentration ratio data help to visualize energy distribution patterns.

  9. Optical Docking Aid Containing Fresnel Lenses

    NASA Technical Reports Server (NTRS)

    Pierce, Cole J.

    1995-01-01

    Proposed device provides self-contained visual cues to aid in docking. Similar to devices used to guide pilots in landing on aircraft carriers. Positions and directions of beams of light give observer visual cues of position relative to docking target point. Optical assemblies generate directed, diverging beams of light that, together, mark approach path to docking point. Conceived for use in docking spacecraft at Space Station Freedom, device adapted to numerous industrial docking and alignment applications.

  10. Light weight high-stiffness stage platen

    DOEpatents

    Spence, Paul A.

    2001-01-01

    An improved light weight, stiff stage platen for photolithography is provided. The high stiffness of the stage platen is exemplified by a relatively high first resonant vibrational mode as determined, for instance, by finite element modal analysis. The stage platen can be employed to support a chuck that is designed to secure a mask or wafer. The stage platen includes a frame that has interior walls that define an interior region and that has exterior walls wherein the outer surfaces of at least two adjacent walls are reflective mirror surfaces; and a matrix of ribs within the interior region that is connected to the interior walls wherein the stage platen exhibits a first vibrational mode at a frequency of greater than about 1000 Hz.

  11. Thermal deformation impacts on SOG Fresnel lens performance

    NASA Astrophysics Data System (ADS)

    Büyükcoşkun, Murat; Annen, Hans Philipp; González Muñoz, Luis Felipe

    2012-10-01

    Silicone-on-Glass (SOG) Fresnel lenses are flat optical elements used in concentrator photovoltaics (CPV). SOG lens production process broadly involves forming optical silicone prisms attached to glass. Silicone is first compressed onto glass while heat is applied in order to shorten its curing time. During the cooling process, however, difference between thermal expansion coefficient for silicon and glass causes thermal deformation of prisms which results in compromised optical efficiency. In this study, thermal-induced deformation of SOG Fresnel lens prisms is analyzed by Surface Profile Measurement (SPM) and Finite Element Analysis (FEA) methods. In order to better observe patterns of thermal deformation and overall lens performance, lens samples were subjected to an optical efficiency test. Focus quality (FQ) images were also taken and observed in order to further analyze thermally affected lens performance. The study is expected to contribute to knowledge on temperature induced performance determinants of SOG Fresnel lenses.

  12. Bragg-Fresnel optics: New field of applications

    SciTech Connect

    Snigirev, A.

    1997-02-01

    Bragg-Fresnel Optics shows excellent compatibility with the third generation synchrotron radiation sources such as ESRF and is capable of obtaining monochromatic submicron focal spots with 10{sup 8}-10{sup 9} photons/sec in an energy bandwidth of 10{sup -4}-10{sup -6} and in a photon energy range between 2-100 keV. New types of Bragg-Fresnel lenses like modified, ion implanted, bent and acoustically modulated were tested. Microprobe techniques like microdiffraction and microfluorescence based on Bragg-Fresnel optics were realised at the ESRF beamlines. Excellent parameters of the X-ray beam at the ESRF in terms of low emittance and quite small angular source size allow for Bragg-Fresnel optics to occupy new fields of applications such as high resolution diffraction, holography, interferometry and phase contrast imaging.

  13. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  14. Light weight dentures: An innovative technique.

    PubMed

    Gundawar, Sham; Zamad, Aakanksha; Gundawar, Sneha

    2014-01-01

    Retention, stability and support are the basic principles on which the success of a complete denture relies. The severely resorbed maxillary and mandibular edentulous arches that are narrow and constricted with increased interarch space provide decreased support, retention and stability. To decrease the leverage, reduction in the weight of the prosthesis was recommended and also found beneficial. This article describes a simple procedure to reduce the weight of maxillary complete denture by use of an autopolymerizing acrylic resin shell which is incorporated during the packing stage. This method has the advantage of being easy and requires very little additional time. Hollow maxillary complete denture considerably reduces the weight of the prosthesis, which in turn prevents transmission of detrimental forces by reducing leverage action. This results in increased retention and stability and up to some extent it also preserves the existing residual alveolar ridge. The technique uses a clear matrix of trial denture to facilitate shaping of dough spacer to ensure an even thickness of acrylic to resist deformation and prevent seepage of saliva into the cavity making this technique more predictable. An autopolymerizing acrylic resin shell which creates hollow space and also has strength. Technique is simple to execute, easy economical and matching the shade of autopolymerizing acrylic resin with heat cures acrylic resin enhances esthetics. Light weight hollow dentures provide healthy and comfortable living for the geriatric edentulous patient.

  15. Light Weight External Tanks in Final Assembly

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This photograph was taken during the final assembly phase of the Space Shuttle light weight external tanks (LWT) 5, 6, and 7 at the Michoud Assembly Facility in New Orleans, Louisiana. The giant cylinder, higher than a 15-story building, with a length of 154-feet (47-meters) and a diameter of 27.5-feet (8.4-meters), is the largest single piece of the Space Shuttle. During launch, the external tank (ET) acts as a backbone for the orbiter and solid rocket boosters. In separate, internal pressurized tank sections, the ET holds the liquid hydrogen fuel and liquid oxygen oxidizer for the Shuttle's three main engines. During launch, the ET feeds the fuel under pressure through 17-inch (43.2-centimeter) ducts which branch off into smaller lines that feed directly into the main engines. Some 64,000 gallons (242,260 liters) of fuel are consumed by the main engines each minute. Machined from aluminum alloys, the Space Shuttle's ET is the only part of the launch vehicle that currently is not reused. After its 526,000 gallons (1,991,071 liters) of propellants are consumed during the first 8.5 minutes of flight, it is jettisoned from the orbiter and breaks up in the upper atmosphere, its pieces falling into remote ocean waters. The Marshall Space Flight Center was responsible for developing the ET

  16. Light-weight black ceramic insulation

    NASA Technical Reports Server (NTRS)

    Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2003-01-01

    Ultra-high temperature, light-weight, black ceramic insulation having a density ranging from about 0.12 g/cc. to 0.6 g/cc. such as ceramic tile is obtained by pyrolyzing siloxane gels derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes also may contain an effective amount of a mono- or trialkoxy silane to obtain the siloxane gels. The siloxane gels are dried at ambient temperatures and pressures to form siloxane ceramic precursors without significant shrinkage. The siloxane ceramic precursors are subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C., and particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.

  17. Light-weight radioisotope heater impact tests

    SciTech Connect

    Reimus, M.A.H.; Rinehart, G.H.; Herrera, A.

    1998-12-31

    The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

  18. High flexibility, noncollapsing light weight hose

    SciTech Connect

    Williams, D.A.

    1991-02-01

    This invention relates generally to a high-flexibility, light weight, noncollapsing hose and more particularly to such a hose having a large size and particularly useful as equipment draining a radioactively contaminated fluid through a noncontaiminated, isolated and restricted space with high confidence against kinking, collapse, or leaking even with large relative motion between the inlet and outlet ends of the hose. In the operation of nuclear facilities, such as nuclear reactors, processing plants for nuclear fuels and related materials, and chemical processing plants, for example, it is necessary to handle radioactively and/or chemically contaminated fluids which in many instances must be conducted, such as for draining purposes, through a noncontaminated, isolated area. Conduction of such contaminated fluids through uncontaminated environments in practice requires the highest confidence that the hose will not kink, collapse, break, or leak even though the hose may be subject to a large amount of motion relative to the inlet and outlet ends of the hose. Any such breaking, or leaking would result in undesirable contamination of the area through which the hose passes which could result in major damage and/or in the requirement to shut down the operation for cleanup and decontamination processing of the area. Additional problems are also encountered in processing plants for contaminated materials due to the fact that hoses conducting the contaminated liquids or gases pass through inaccessible, restricted spaces requiring extreme flexibility in the hose, but with the assurance that the hose will neither kink nor collapse to close off the flow.

  19. The Fresnel Integrals Revisited

    ERIC Educational Resources Information Center

    Chen, Hongwei

    2009-01-01

    This note presents another elementary method to evaluate the Fresnel integrals. It is interesting to see that this technique is also strong enough to capture a number of pairs of parameter integrals. The main ingredients of the method are the consideration of some related derivatives and linear differential equations.

  20. Fresnel Lens Characterization for Potential Use in an Unpiloted Atmospheric Vehicle DIAL Receiver System

    NASA Technical Reports Server (NTRS)

    Fastig, Shlomo; Deoung, Russell J.

    1998-01-01

    Acrylic plastic Fresnel lenses are very light and can have large diameters. Such lenses could be used in lidar telescope receivers if the focal spot is not too large or distorted. This research effort characterizes the focal spot diameter produced by a Fresnel lens with a diameter of 30.5 cm (12 in.). It was found that the focal spot diameter varied from 1.2 mm at 750 nm to 1.6 mm at 910 nm. The focal spot was irregular and not easily described by a Gaussian profile.

  1. Dynamic deformation analysis of light-weight mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Cao, Xuedong; Kuang, Long; Yang, Wei

    2012-10-01

    In the process of optical dynamic target work, under the effort of the arm of dynamic target, the mirror needs to do circular motion, additional accelerated motion and uniform motion. The maximum acceleration is 10°/s2 and the maximum velocity is 30°/s. In this paper, we mostly analyze the dynamic deformation of a 600 mm honeycomb light-weight mirror of a certain dynamic target. Using the FEA (finite element analysis) method, first of all, we analyze the deformation of the light-weight mirror induced in gravity at different position; later, the dynamic deformation of light-weight mirror is analyzed in detailed. The analysis results indicate that, when the maximum acceleration is 10°/s2 and the maximum velocity is 30°/s, the centripetal force is 5% of the gravity at the equal mass, and the dynamic deformation of the mirror is 6.1% of the deformation induced by gravity.

  2. Reflections From a Fresnel Lens

    ERIC Educational Resources Information Center

    Keeports, David

    2005-01-01

    Reflection of light by a convex Fresnel lens gives rise to two distinct images. A highly convex inverted real reflective image forms on the object side of the lens, while an upright virtual reflective image forms on the opposite side of the lens. I describe here a set of laser experiments performed upon a Fresnel lens. These experiments provide…

  3. Ptychographic Fresnel coherent diffractive imaging

    NASA Astrophysics Data System (ADS)

    Vine, D. J.; Williams, G. J.; Abbey, B.; Pfeifer, M. A.; Clark, J. N.; de Jonge, M. D.; McNulty, I.; Peele, A. G.; Nugent, K. A.

    2009-12-01

    This paper reports improved reconstruction of complex wave fields from extended objects. The combination of ptychography with Fresnel diffractive imaging results in better reconstructions with fewer iterations required to convergence than either method considered separately. The method is applied to retrieve the projected thickness of a gold microstructure and comparative results using ptychography and Fresnel diffractive imaging are presented.

  4. MPWide: Light-weight communication library for distributed computing

    NASA Astrophysics Data System (ADS)

    Groen, Derek; Rieder, Steven; Grosso, Paola; de Laat, Cees; Portegies Zwart, Simon

    2012-12-01

    MPWide is a light-weight communication library for distributed computing. It is specifically developed to allow message passing over long-distance networks using path-specific optimizations. An early version of MPWide was used in the Gravitational Billion Body Project to allow simulations across multiple supercomputers.

  5. Design and development of a laminated glass-plastic Fresnel lens for point focus photovoltaic systems

    SciTech Connect

    Matalon, L. A.

    1982-08-01

    The design and development of a laminated glass-plastic Fresnel lens for point focus photovoltaic systems use is described. The objective of this development was to examine the feasibility of producing lenses with a cost effectiveness superior to that of lenses made by casting of acrylic. The procedure used in executing this development, the method used in cost effectiveness evaluation, results obtained and recommendations for further work are presented.

  6. Deployable Fresnel Rings

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Lin, Gregory Y.

    2014-01-01

    Deployable Fresnel rings (DFRs) significantly enhance the realizable gain of an antenna. This innovation is intended to be used in combination with another antenna element, as the DFR itself acts as a focusing or microwave lens element for a primary antenna. This method is completely passive, and is also completely wireless in that it requires neither a cable, nor a connector from the antenna port of the primary antenna to the DFR. The technology improves upon the previous NASA technology called a Tri-Sector Deployable Array Antenna in at least three critical aspects. In contrast to the previous technology, this innovation requires no connector, cable, or other physical interface to the primary communication radio or sensor device. The achievable improvement in terms of antenna gain is significantly higher than has been achieved with the previous technology. Also, where previous embodiments of the Tri-Sector antenna have been constructed with combinations of conventional (e.g., printed circuit board) and conductive fabric materials, this innovation is realized using only conductive and non-conductive fabric (i.e., "e-textile") materials, with the possible exception of a spring-like deployment ring. Conceptually, a DFR operates by canceling the out-of-phase radiation at a plane by insertion of a conducting ring or rings of a specific size and distance from the source antenna, defined by Fresnel zones. Design of DFRs follow similar procedures to those outlined for conventional Fresnel zone rings. Gain enhancement using a single ring is verified experimentally and through computational simulation. The experimental test setup involves a microstrip patch antenna that is directly behind a single-ring DFR and is radiating towards a second microstrip patch antenna. The first patch antenna and DFR are shown. At 2.42 GHz, the DFR improves the transmit antenna gain by 8.6 dB, as shown in Figure 2, relative to the wireless link without the DFR. A figure illustrates the

  7. Dispersion-compensated Fresnel lens

    DOEpatents

    Johnson, K.C.

    1992-11-03

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4[times]10[sup [minus]5] inch and a profile width of at least 10[sup [minus]3] inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight. 10 figs.

  8. Dispersion-compensated fresnel lens

    DOEpatents

    Johnson, Kenneth C.

    1992-01-01

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4.multidot.10.sup.-5 inch and a profile width of at least 10.sup.-3 inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight.

  9. Studies on the light permeance characteristic of a Fresnel lens group applied in high concentration solar energy

    NASA Astrophysics Data System (ADS)

    Han, Y. M.; Wang, R. Z.; Dai, Y. J.; Xiong, A. H.

    2007-11-01

    A key point to limit wide applications of solar energy is the exploitation cost. With the advantages of compact volume, less weight, small focal length and low cost Fresnel lenses are suitable for solar radiation concentration and system modularization. The optical efficiency of transmitted solar radiation is improved compared to thick ordinary lenses and the solar tracking accuracy required by a Fresnel lens group is lower than for other reflection schemes. In this study, a modular device composed of a two-stage Fresnel lens is presented and its performance is investigated. Based on the analysis of rays passing through the wedge structure of the lens, the optical efficiency is obtained under different incidental angles. Facular point image qualities of a Fresnel lens are compared using simulation results. As for the Fresnel lens 100 mm in diameter, 220 mm in focal length, when the incident angle is kept within 1°, the focal point will not move out of the receiver domain with the dimensions of 10 mm × 10 mm and the relationship between incident angle against receiver dimension is obtained. Optical efficiency measurements have been carried out on a practical Fresnel lens group which includes another Fresnel lens 30 mm in diameter with the small-size secondary lenses integrated into an intermediate panel combined with the first Fresnel lens plane to improve the performance of the integral battery system at high concentration ratio. According to experimental studies, the positions of the focal spot varying with the incident angles of solar radiation are recorded continuously. It has been found that 50-60% of the collected solar radiation can pass through the Fresnel lens group under a condition of over 1000 suns, and the deviation range of the focal spot fundamentally agrees with the result of the simulation.

  10. Light-Weight Parallel Python Tools for Climate Model Workflows

    NASA Astrophysics Data System (ADS)

    Mickelson, S. A.; Paul, K.; Dennis, J.; Strand, G.

    2014-12-01

    It is expected that the data required for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR6) will increase by more than a factor of 10 to an expected 25 terabytes per model. Experiences from the last Coupled Model Intercomparison Project (CMIP5), which assembled the data used for the last IPCC Assessment Report (AR5), concluded that the processing, archiving, and post-run diagnostic operations required on such large model output took almost as long to complete as the model runs themselves! As a result, we have been investigating and developing light-weight Python-based tools to parallelize the time-intensive post-run steps in the climate model workflow. In particular, we have developed a parallel Python tool for converting time-slice model output to time-series format, and we have more recently developed a parallel Python tool to perform fast time-averaging of time-series data, an operation needed for many diagnostic computations. These tools are designed to be light-weight, easy to install, with very few dependencies, and that can be easily inserted into the climate model workflow with negligible disruption. In this work, we present the motivation, approach, and results of the two light-weight parallel Python tools that we have developed, as well as our plans for future research and development.

  11. a Light-Weight Laser Scanner for Uav Applications

    NASA Astrophysics Data System (ADS)

    Tommaselli, A. M. G.; Torres, F. M.

    2016-06-01

    Unmanned Aerial Vehicles (UAV) have been recognized as a tool for geospatial data acquisition due to their flexibility and favourable cost benefit ratio. The practical use of laser scanning devices on-board UAVs is also developing with new experimental and commercial systems. This paper describes a light-weight laser scanning system composed of an IbeoLux scanner, an Inertial Navigation System Span-IGM-S1, from Novatel, a Raspberry PI portable computer, which records data from both systems and an octopter UAV. The performance of this light-weight system was assessed both for accuracy and with respect to point density, using Ground Control Points (GCP) as reference. Two flights were performed with the UAV octopter carrying the equipment. In the first trial, the flight height was 100 m with six strips over a parking area. The second trial was carried out over an urban park with some buildings and artificial targets serving as reference Ground Control Points. In this experiment a flight height of 70 m was chosen to improve target response. Accuracy was assessed based on control points the coordinates of which were measured in the field. Results showed that vertical accuracy with this prototype is around 30 cm, which is acceptable for forest applications but this accuracy can be improved using further refinements in direct georeferencing and in the system calibration.

  12. Overview of Selected Light-Weight Mirror Development Programs at GSFC

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A.; Content, David A.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    This paper discusses selected light-weight mirror development programs at GSFC, including development of light-weight, precision, low scatter imaging mirror for ultraviolet applications, foam core mirrors for visible and IR applications, and light-weight SiC mirrors.

  13. Cylindrically symmetric Fresnel lens for high concentration photovoltaic

    NASA Astrophysics Data System (ADS)

    Hung, Yu-Ting; Su, Guo-Dung

    2009-08-01

    High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAX®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.

  14. High-power, light-weight power conditioning

    NASA Astrophysics Data System (ADS)

    Gilmour, A. S., Jr.

    1991-12-01

    After a review of light-weight transformer efforts in the US, a weight analysis is carried out. From basic transformer relations and geometrical considerations it is shown how transformer specific power should scale with power and frequency. The result compares well with design results for frequency scaling but not for power scaling. After refinements for variations of voltage, cooling technique, power (while voltage is held constant) and current density, an algorithm is presented that agrees well with the results of adiabatic transformer designs and with vapor cooled transformer designs. Transformer specific powers as low as 0.01 kg/kW are predicted at an operating frequency of 20 kHz. Caution is advised in the use of the algorithm because few of the transformers with which the algorithm is compared have actually been considered. The SDI/AF/NASA megawatt converter program is discussed, and results of Phase I are summarized.

  15. Fabrication of light weight radioisotope heater unit hardware components

    NASA Astrophysics Data System (ADS)

    McNeil, Dennis C.

    1996-03-01

    The Light Weight Radioisotope Heater Unit (LWRHU) is planned to be used on the National Aeronautics and Space Administration (NASA) Cassini Mission, to provide localized thermal energy as strategic locations on the spacecraft. These one watt heater units will support the operation of many on-board instruments that require a specific temperature range to function properly. The system incorporates a fuel pellet encapsulated in a vented metallic clad fabricated from platinum-30% rhodium (Pt-30%Rh) tubing, sheet and foil materials. To complete the package, the clad assemblies are placed inside a combination of graphite components. This report describes the techniques employed by Mound related to the fabrication and sub assembly processes of the LWRHU clad hardware components. Included are details concerning configuration control systems, material procurement and certification, hardware fabrication specifics, and special processes that are utilized.

  16. Light weight underground pipe or cable installing device

    SciTech Connect

    Schosek, W. O.

    1985-01-08

    This invention pertains to a light weight underground pipe or cable installing device adapted for use in a narrow and deep operating trench. More particularly this underground pipe installing device employs a pair of laterally movable gates positioned adjacent the bottom of the operating trench where the earth is more solid to securely clamp the device in the operating trench to enable it to withstand the forces exerted as the actuating rod is forced through the earth from the so-called operating trench to the target trench. To accommodate the laterally movable gates positioned adjacent the bottom of the narrow pipe installing device, a pair of top operated double-acting rod clamping jaws, operated by a hydraulic cylinder positioned above the actuating rod are employed.

  17. Progress toward light weight high angular resolution multilayer coated optics

    SciTech Connect

    Ulmer, M.P.; Graham, M.E.; Vaynman, S.; Echt, J.; Farber, M.; Ehlert, S.; Varlese, S.

    2008-11-18

    We have been working on 3 separate projects that together will give us the ability to make 1 arc second, light weight Wolter I optics that work above 40 keV. The three separate tasks are: (a) plasma spraying of metal-coated micro-balloons; (b) coating of the inside of Wolter I mirrors, (c) actuator designs for improving figure quality. We give a progress report on our work on all three areas. In summary, for future space missions it will be desirable for them to be affordable by reducing mass, keeping the focal length manageable, and yet having high figure quality. The avenues we have described above are straight forward paths to achieving this goal, but a great deal of work needs to be done to take us from the concept stage to a functional system.

  18. A Signcryption based Light Weight Key Exchange Protocol

    NASA Astrophysics Data System (ADS)

    Feng, Yong; Wei, Qian; Zhang, Xing

    Traditional cryptography based authenticated Diffie-Hellman key exchange protocols expose the problems of efficiency and privacy since signature-then-encryption is heavy to wireless communication special for flexible dynamic deployment, i.e., wireless mesh networks, wireless sensor networks, mobile ad hoc networks, etc., in computational cost and communicational overhead and traditional digital signature allows anyone to verify its validity using the corresponding public key. In this paper, we propose a signcryption based light weight key exchange protocol named SLWKE which can provide resistance to traditional attacks, i.e., eavesdropping, deducing, replaying, interleaving, forging and repudiating, and unknown key-share attack and save computational cost by three modular calculations, i.e., one modular inversion, one modular addition and one modular multiplicative, included in a signature s and communicational overhead by secure length of IqI in comparison to signcryption based direct key exchange using a time-stamp protocol termed Dkeuts.

  19. Light-Weight Injector Technology for Cryogenic Mars Ascent Engines

    NASA Technical Reports Server (NTRS)

    Trihn, Huu Phuoc; Cramer, John M.

    1998-01-01

    Preliminary mission studies for human exploration of Mars have been performed at Marshall Space Flight Center (MSFC). These studies indicate that for chemical rockets only a cryogenic propulsion system would provide high enough performance to be considered for a Mars ascent vehicle. Although the mission is possible with Earth-supplied propellants for this vehicle, utilization of in-situ propellants is highly attractive. This option would significantly reduce the overall mass of launch vehicles. Consequently, the cost of the mission would be greatly reduced because the number and size of the Earth launch vehicle(s) needed for the mission decrease. NASA/Johnson Space Center has initiated several concept studies of in-situ propellant production plants. Liquid oxygen (LOX) is the primary candidate for an in-situ oxidizer. In-situ fuel candidates include methane (CH4), ethylene (C2H4), and methanol (CH3OH). MSFC initiated a technology development program for a cryogenic propulsion system for the Mars human exploration mission in 1998. One part of this technology program is the effort described here: an evaluation of propellant injection concepts for a LOX/liquid methane Mars Ascent Engine (MAE) with an emphasis on light-weight, high efficiency, reliability, and thermal compatibility. In addition to the main objective, hot-fire tests of the subject injectors will be used to test other key technologies including light-weight combustion chamber materials and advanced ignition concepts. This state-of-the-art technology will then be applied to the development of a cryogenic propulsion system that will meet the requirements of the planned Mars sample return (MSR) mission. The current baseline propulsion system for the MSR mission uses a storable propellant combination [monomethyl hydrazine/mixed oxides of nitrogen-25. However, a mission option that incorporates in-situ propellant production and utilization for the ascent stage is being carefully considered as a subscale

  20. Fresnel Diffraction for CTR Microbunching

    SciTech Connect

    Tikhoplav, R.; Knyazik, A.; Rosenzweig, J. B.; Andonian, G.

    2009-01-22

    Laser beams of high intensities are routinely used for IFEL experiments. Such beams can potentially destroy microbunching diagnostic tools such as coherent transition radiation foils due to their low damage thresholds. Near-field Fresnel diffraction scheme for termination of CO{sub 2} laser beam has been experimentally studied and is presented in this paper. Novel THz camera was utilized for such study.

  1. Design and modeling of a cost-effective achromatic Fresnel lens for concentrating photovoltaics.

    PubMed

    Vallerotto, Guido; Victoria, Marta; Askins, Stephen; Herrero, Rebeca; Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2016-09-01

    This paper presents a novel Fresnel lens capable of significantly reducing chromatic aberration in solar applications. The optical performance of this achromatic lens has been analyzed through ray-tracing simulations, showing a concentration factor three times higher than that attained by a classic silicone on glass (SOG) Fresnel lens while maintaining the same acceptance angle. This should avoid the need for a secondary optical element, reducing the cost associated with its manufacturing and assembly and increasing the module reliability. The achromatic lens is made of inexpensive plastic and elastomer which allows a highly scalable and cost-competitive manufacturing process similar to the one currently used for the fabrication of SOG Fresnel lenses.

  2. Design and modeling of a cost-effective achromatic Fresnel lens for concentrating photovoltaics.

    PubMed

    Vallerotto, Guido; Victoria, Marta; Askins, Stephen; Herrero, Rebeca; Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2016-09-01

    This paper presents a novel Fresnel lens capable of significantly reducing chromatic aberration in solar applications. The optical performance of this achromatic lens has been analyzed through ray-tracing simulations, showing a concentration factor three times higher than that attained by a classic silicone on glass (SOG) Fresnel lens while maintaining the same acceptance angle. This should avoid the need for a secondary optical element, reducing the cost associated with its manufacturing and assembly and increasing the module reliability. The achromatic lens is made of inexpensive plastic and elastomer which allows a highly scalable and cost-competitive manufacturing process similar to the one currently used for the fabrication of SOG Fresnel lenses. PMID:27607727

  3. An analytical and experimental evaluation of the plano-cylindrical Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Allums, S. L.; Cosby, R. M.

    1976-01-01

    Plastic Fresnel lenses for solar concentration are attractive because of potential for low-cost mass production. An analytical and experimental evaluation of line-focusing Fresnel lenses with application potential in the 200 to 370 C range is reported. Analytical techniques were formulated to assess the solar transmission and imaging properties of a grooves-down lens. Experimentation was based primarily on a 56 cm-wide lens with f-number 1.0. A sun-tracking heliostat provided a non-moving solar source. Measured data indicated more spreading at the profile base than analytically predicted. The measured and computed transmittances were 85 and 87% respectively. Preliminary testing with a second lens (1.85 m) indicated that modified manufacturing techniques corrected the profile spreading problem.

  4. Merging Technologies to Develop Light Weight X-ray Optics

    NASA Astrophysics Data System (ADS)

    Romaine, Suzanne

    We have made significant progress in our on-going program to develop higher resolution grazing incidence focusing hard X-ray optics for future missions. This proposal is for continued development of light weight optics for future hard X-ray missions. Our goal is to reduce the mass of the present full shell nickel replicated optics by more than half, while at the same time improving their resolution. The electroformed-nickel-replication process produces full shells of revolution, which are inherently stable with good figure control, offering the potential for good angular resolution. With angular resolution of 10 15 , such a telescope will improve the sensitivity by a factor of 5 over current planned high energy missions, and would lead to compelling new science which is central to NASA s Physics of the Cosmos Program. We have made significant progress over our previous period of performance and have achieved most of our goals including the first replication of a Wolter-1 mandrel using a metal-ceramic coating with an effective density of less than 4gm/cc. Achieving our goals will significantly advance the state-of-the-art for replicated full shell telescopes and will lower the cost for future NASA X-ray astronomy missions of moderate resolution.

  5. Phosphorus sorption characteristics of a light-weight aggregate.

    PubMed

    Zhu, T; Maehlum, T; Jenssen, P D; Krogstad, T

    2003-01-01

    A light-weight aggregate (LWA) made of expanded clay used as a filter media in wastewater treatment, was tested for sorption of phosphorus (P) in laboratory experiments. The objectives were to investigate the different P retention pools and how grain size, time, temperature and changed P concentration influenced the P binding mechanisms in this type of filter. Three different grain sizes (0-2 mm, 2-4 mm and 0-4 mm) were tested in a batch experiment. The isotherm for the P sorbed by the contact medium (including retention and fixation) was obtained under laboratory conditions. Fifty percent of the P sorption occurred in the first 4-8 hours. Temperature did not substantially influence P sorption for 0-2 mm grain size LWA. In the LWA suspension system, P desorption did not occur when the P content in the loading solution decreased. Fractionation analysis indicated that Ca-bound P, loosely-bound P, and Al-bound P were the predominant P retention pools. The loosely-bound P pool was determined primarily by the equilibrated P concentration in the system. Fe-bound P was negligible in the P sorption of LWA. PMID:14621152

  6. Light-weight radioisotope heater unit (LWRHU) impact tests

    NASA Astrophysics Data System (ADS)

    Reimus, M. A. H.; Rinehart, G. H.; Herrera, A.; Lopez, B.; Lynch, C.; Moniz, P.

    1998-01-01

    The light-weight radioisotope heater unit (LWRHU) is a 238PuO2-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed 238PuO2 fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

  7. Light-weight radioisotope heater unit (LWRHU) impact tests

    SciTech Connect

    Reimus, M. A. H.; Rinehart, G. H.; Herrera, A.; Lopez, B.; Lynch, C.; Moniz, P.

    1998-01-15

    The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

  8. Light-Weight Radioisotope Heater Unit (LWRHU) sequential impact tests

    SciTech Connect

    Reimus, M.A.H.; Rinehart, G.H.

    1997-08-01

    The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. A series of sequential impacts tests using simulant-fueled LWRHU capsules was recently conducted to determine a failure threshold. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Although the tests were conducted until the aeroshells were sufficiently distorted to be out of dimensional specification, the simulant-fueled capsules used in these tests were not severely deformed. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s. Postimpact examination revealed that the sequentially impacted capsules were slightly more deformed and were outside of dimensional specifications.

  9. Novel Scanning Lens Instrument for Evaluating Fresnel Lens Performance: Equipment Development and Initial Results (Presentation)

    SciTech Connect

    Herrero, R.; Miller, D. C.; Kurtz, S. R.; Anton, I.; Sala, G.

    2013-07-01

    A system dedicated to the optical transmittance characterization of Fresnel lenses has been developed at NREL, in collaboration with the UPM. The system quantifies the optical efficiency of the lens by generating a performance map. The shape of the focused spot may also be analyzed to understand change in the lens performance. The primary instrument components (lasers and CCD detector) have been characterized to confirm their capability for performing optical transmittance measurements. Measurements performed on SoG and PMMA lenses subject to a variety of indoor conditions (e.g., UV and damp heat) identified differences in the optical efficiency of the evaluated lenses, demonstrating the ability of the Scanning Lens Instrument (SLI) to distinguish between the aged lenses.

  10. Recent development of fabrication of extreme light-weighted ceramic mirrors

    NASA Astrophysics Data System (ADS)

    Krödel, Matthias; Wächter, Daniel; Stahr, Frank; Soose, Claus P.

    2015-09-01

    This paper will present the recent development achievements of a German SME supply chain to manufacture super light-weighted HB-Cesic® mirrors for IR to visible applications. We will present recent design developments for achieving extreme light-weighted mirror substrates with extremely high stiffness and performance and in the second part the newly established German supply chain for the manufacturing of such extreme light-weighted mirror substrates.

  11. Light Weight External Tank at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The first light weight external tank (LWT) for the STS-3 mission was moved to the Vehicle Assembly Building (VAB) at the Kennedy Space Center. In VAB the LWT would be mated with the Space Shuttle orbiter Columbia and solid rocket boosters. The LWT, unpainted external tank (ET) saved 6,000 pounds in the Shuttle liftoff weight. The giant cylinder, higher than a 15-story building, with a length of 154-feet (47-meters) and a diameter of 27.5-feet (8.4-meters), is the largest single piece of the Space Shuttle. During launch, the ET also acts as a backbone for the orbiter and solid rocket boosters. In separate, internal pressurized tank sections, the ET holds the liquid hydrogen fuel and liquid oxygen oxidizer for the Shuttle's three main engines. During launch, the ET feeds the fuel under pressure through 17-inch (43.2-centimeter) ducts that branch off into smaller lines that feed directly into the main engines. Some 64,000 gallons (242,260 liters) of fuel are consumed by the main engines each minute. Machined from aluminum alloys, the Space Shuttle's ET is the only part of the launch vehicle that currently is not reused. After its 526,000 gallons (1,991,071 liters) of propellants are consumed during the first 8.5 minutes of flight, it is jettisoned from the orbiter and breaks up in the upper atmosphere, its pieces falling into remote ocean waters. The Marshall Space Flight Center was responsible for developing the ET.

  12. Software architecture of the light weight kernel, catamount.

    SciTech Connect

    Kelly, Suzanne Marie

    2005-05-01

    Catamount is designed to be a low overhead operating system for a parallel computing environment. Functionality is limited to the minimum set needed to run a scientific computation. The design choices and implementations will be presented. A massively parallel processor (MPP), high performance computing (HPC) system is particularly sensitive to operating system overhead. Traditional, multi-purpose, operating systems are designed to support a wide range of usage models and requirements. To support the range of needs, a large number of system processes are provided and are often interdependent on each other. The overhead of these processes leads to an unpredictable amount of processor time available to a parallel application. Except in the case of the most embarrassingly parallel of applications, an MPP application must share interim results with its peers before it can make further progress. These synchronization events are made at specific points in the application code. If one processor takes longer to reach that point than all the other processors, everyone must wait. The overall finish time is increased. Sandia National Laboratories began addressing this problem more than a decade ago with an architecture based on node specialization. Sets of nodes in an MPP are designated to perform specific tasks, each running an operating system best suited to the specialized function. Sandia chose to not use a multi-purpose operating system for the computational nodes and instead began developing its first light weight operating system, SUNMOS, which ran on the compute nodes on the Intel Paragon system. Based on its viability, the architecture evolved into the PUMA operating system. Intel ported PUMA to the ASCI Red TFLOPS system, thus creating the Cougar operating system. Most recently, Cougar has been ported to Cray's XT3 system and renamed to Catamount. As the references indicate, there are a number of descriptions of the predecessor operating systems. While the majority

  13. Types of Contact Lenses

    MedlinePlus

    ... Consumer Devices Consumer Products Contact Lenses Types of Contact Lenses Share Tweet Linkedin Pin it More sharing ... Orthokeratology (Ortho-K) Decorative (Plano) Contact Lenses Soft Contact Lenses Soft contact lenses are made of soft, ...

  14. Fresnel formulas as Lorentz transformations

    PubMed

    Monzon; Sanchez-Soto

    2000-08-01

    From a matrix formulation of the boundary conditions we obtain the fundamental invariant for an interface and a remarkably simple factorization of the interface matrix, which enables us to express the Fresnel coefficients in a new and compact form. This factorization allows us to recast the action of an interface between transparent media as a hyperbolic rotation. By exploiting the local isomorphism between SL(2, C) and the (3 + 1)-dimensional restricted Lorentz group SO(3, 1), we construct the equivalent Lorentz transformation that describes any interface. PMID:10935876

  15. Liquid crystal Fresnel lens display

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian; Abhishek Kumar, Srivastava; Alwin Tam, Ming-Wai; Zheng, Zhi-Gang; Shen, Dong; Vladimir, Chigrinov G.; Kwok, Hoi-Sing

    2016-09-01

    A novel see-through display with a liquid crystal lens array was proposed. A liquid crystal Fresnel lens display (LCFLD) with a holographic screen was demonstrated. The proposed display system has high efficiency, simple fabrication, and low manufacturing cost due to the absence of a polarizer and color filter. Project supported by Partner State Key Laboratory on Advanced Displays and Optoelectronics Technologies HKUST, China, the National Natural Science Foundation of China (Grant Nos. 61435008 and 61575063), and the Fundamental Research Funds for the Central Universities, China (Grant No. WM1514036).

  16. Liquid crystal Fresnel lens display

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian; Abhishek Kumar, Srivastava; Alwin Tam, Ming-Wai; Zheng, Zhi-Gang; Shen, Dong; Vladimir, Chigrinov G.; Kwok, Hoi-Sing

    2016-09-01

    A novel see-through display with a liquid crystal lens array was proposed. A liquid crystal Fresnel lens display (LCFLD) with a holographic screen was demonstrated. The proposed display system has high efficiency, simple fabrication, and low manufacturing cost due to the absence of a polarizer and color filter. Project supported by Partner State Key Laboratory on Advanced Displays and Optoelectronics Technologies HKUST, China, the National Natural Science Foundation of China (Grant Nos. 61435008 and 61575063), and the Fundamental Research Funds for the Central Universities, China (Grant No. WM1514036).

  17. Advanced lab on Fresnel equations

    NASA Astrophysics Data System (ADS)

    Petrova-Mayor, Anna; Gimbal, Scott

    2015-11-01

    This experimental and theoretical exercise is designed to promote students' understanding of polarization and thin-film coatings for the practical case of a scanning protected-metal coated mirror. We present results obtained with a laboratory scanner and a polarimeter and propose an affordable and student-friendly experimental arrangement for the undergraduate laboratory. This experiment will allow students to apply basic knowledge of the polarization of light and thin-film coatings, develop hands-on skills with the use of phase retarders, apply the Fresnel equations for metallic coating with complex index of refraction, and compute the polarization state of the reflected light.

  18. Design and development of a high-concentration and high-efficiency photovoltaic concentrator using a curved Fresnel lens

    SciTech Connect

    Scharlack, R.S.; Moffat, A.

    1983-08-01

    Thermo Electron has designed a high concentration photovoltaic module that uses a domed, point-focus Fresnel lens. Their design, design optimization process, and results from lens and receiver tests are described in this report. A complete module has not been fabricated and probably will not be fabricated in the future; however, Thermo Electron's optical design, analysis, and testing of both secondary optical units and domed Fresnel lenses have made a significant contribution to our project. Tooling errors prevented the lens from reaching its potential efficiency by the end of the contract, and resolution of these tooling problems is currently being attempted with a follow-on contract, No. 68-9463.

  19. Microfabrication of Fresnel zone plates by laser induced solid ablation

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa R. M.; Thomas, John; Santhosh, Chidangil; Ramachandran, Hema; Mathur, Deepak

    2016-07-01

    A novel and simple single-step method of inscribing optical elements on metal-coated transparent substrates is demonstrated. Laser induced solid ablation (LISA) demands very low laser energies (nJ), as can be amply provided by a femtosecond laser oscillator. Here, LISA is used to write Fresnel zone plates on indium and tungsten coated glass. With up to 100 zones, remarkable agreement is obtained between measured and expected values of the focal length. LISA has enabled attainment of focal spot sizes that are 38% smaller than what would be obtained using conventional lenses of the same numerical aperture. The simplicity with which a high degree of automation can readily be achieved using LISA makes this cost-effective method amenable to a wide variety of applications related to microfabrication of optical elements.

  20. Fabrication of wedged multilayer Laue lenses

    DOE PAGESBeta

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  1. Fabrication of wedged multilayer Laue lenses

    SciTech Connect

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack. This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.

  2. Optical design of the Fresnel lens for LED-driven flashlight.

    PubMed

    Chen, Yi-Cheng; Nian, Shih-Chih; Huang, Ming-Shyan

    2016-02-01

    The Fresnel lens is composed of micrometer-sized v-groove structures that determine the maximum illuminance and brightness uniformity of LED-driven flashlights, which are used in high-quality photography. The fabrication quality of the microstructures and the accuracy of the geometrical curvature of the Fresnel lens affect the optical characteristics of the emitted light traveling through the lens, which in turn determines the maximum illuminance and brightness uniformity. This paper presents a systematic design procedure for fabricating the Fresnel lens and investigates the influence of geometrical design and fabrication process on optical performance. The optical analysis was performed using the commercial software TracePro. The results revealed that a small tip radius of the v-groove microstructure facilitates brightness uniformity. Furthermore, both the simulation and the experimental results revealed that Fresnel lenses fabricated through injection molding or injection compression molding have either errors of microstructure height more than 3%-6% or curvature errors higher than 6%, which would affect the optical performance, especially the brightness uniformity. PMID:26836072

  3. Optical design of the Fresnel lens for LED-driven flashlight.

    PubMed

    Chen, Yi-Cheng; Nian, Shih-Chih; Huang, Ming-Shyan

    2016-02-01

    The Fresnel lens is composed of micrometer-sized v-groove structures that determine the maximum illuminance and brightness uniformity of LED-driven flashlights, which are used in high-quality photography. The fabrication quality of the microstructures and the accuracy of the geometrical curvature of the Fresnel lens affect the optical characteristics of the emitted light traveling through the lens, which in turn determines the maximum illuminance and brightness uniformity. This paper presents a systematic design procedure for fabricating the Fresnel lens and investigates the influence of geometrical design and fabrication process on optical performance. The optical analysis was performed using the commercial software TracePro. The results revealed that a small tip radius of the v-groove microstructure facilitates brightness uniformity. Furthermore, both the simulation and the experimental results revealed that Fresnel lenses fabricated through injection molding or injection compression molding have either errors of microstructure height more than 3%-6% or curvature errors higher than 6%, which would affect the optical performance, especially the brightness uniformity.

  4. A Linear Single-Crystal Bragg-Fresnel Lens With SiO2 Surface Structure

    SciTech Connect

    Kuznetsov, S.; Yunkin, V.; Drakopoulos, M.; Snigireva, I.; Snigirev, A.

    2004-05-12

    Bragg-Fresnel lens (BFL) as thin silicon dioxide strips grown on the surface of perfect silicon crystal was designed, manufactured and experimentally tested. In this case the BFL structure consists of a set of silicon dioxide rectangular shape etched zones arranged by the Fresnel zone law. The stress within coated and uncoated crystal regions is opposite in sign, whether tensile or compressive. The strain in the substrate crystal lattice directly underneath discontinuities in the deposited film give rise to phase difference between waves diffracted from coated and uncoated crystal regions. This phase difference is known to be dependent on the thickness and composition of film and substrate. The focusing properties of Si/SiO2 BFLs with 107 zones and 0.3 micrometer outermost zone width were experimentally studied as a function of the silicon oxide thickness in the range of 100 - 400 nanometers. It was shown that deformation Bragg-Fresnel lenses could effectively focus hard X-rays to a linear focal spot of about 2 microns. The efficiency of focusing was found to be about 16% at energy 10 keV. The developed lens design is a promising approach to extend the angular range of focusing by Bragg-Fresnel optical elements and to avoid some drawbacks of BFL properties related to aspect-ratio dependent etching.

  5. Compact optical data processor employing holographic reflective lenses.

    PubMed

    Mehta, P C; Swami, S; Rampal, V V

    1977-02-01

    A compact optical data processor is described that employs holographic reflective lenses. The processor is inexpensive and requires one-half of the length of the optical bench as that required for using glass lenses. The fabrication of the holographic lenses is described, and the results of optical processing reported. The results show that an inexpensive data processor employing holographic lenses is a feasible project. The processor may find use for onboard optical processing on spacecrafts and satellites. The most distinguishing characteristic of such a processor is its extreme light weight. The angular alignment tolerances for holographic lenses are very low. The processor must, therefore, be made rugged, designed, and mounted to withstand vibrations, shocks, and other environmental problems associated with spacecrafts and satellites.

  6. Twenty-meter space telescope based on diffractive Fresnel lens

    NASA Astrophysics Data System (ADS)

    Early, James T.; Hyde, Roderick; Baron, Richard L.

    2004-02-01

    Diffractive lenses offer two potential advantages for very large aperture space telescopes; very loose surface-figure tolerances and physical implementation as thin, flat optical elements. In order to actually realize these advantages one must be able to build large diffractive lenses with adequate optical precision and also to compactly stow the lens for launch and then fully deploy it in space. We will discuss the recent fabrication and assembly demonstration of a 5m glass diffractive Fresnel lens at LLNL. Optical performance data from smaller full telescopes with diffractive lens and corrective optics show diffraction limited performance with broad bandwidths. A systems design for a 20m space telescope will be presented. The primary optic can be rolled to fit inside of the standard fairings of the Delta IV vehicle. This configuration has a simple deployment and requires no orbital assembly. A twenty meter visible telescope could have a significant impact in conventional astronomy with eight times the resolution of Hubble and over sixty times the light gathering capacity. If the light scattering is made acceptable, this telescope could also be used in the search for terrestrial planets.

  7. Twenty Meter Space Telescope Based on Diffractive Fresnel Lens

    SciTech Connect

    Early, J; Hyde, R; Baron, R

    2003-06-26

    Diffractive lenses offer two potential advantages for very large aperture space telescopes; very loose surface-figure tolerances and physical implementation as thin, flat optical elements. In order to actually realize these advantages one must be able to build large diffractive lenses with adequate optical precision and also to compactly stow the lens for launch and then fully deploy it in space. We will discuss the recent fabrication and assembly demonstration of a 5m glass diffractive Fresnel lens at LLNL. Optical performance data from smaller full telescopes with diffractive lens and corrective optics show diffraction limited performance with broad bandwidths. A systems design for a 20m space telescope will be presented. The primary optic can be rolled to fit inside of the standard fairings of the Delta IV vehicle. This configuration has a simple deployment and requires no orbital assembly. A twenty meter visible telescope could have a significant impact in conventional astronomy with eight times the resolution of Hubble and over sixty times the light gathering capacity. If the light scattering is made acceptable, this telescope could also be used in the search for terrestrial planets.

  8. Ultralightweight Fresnel Lens Solar Concentrators for Space Power

    NASA Technical Reports Server (NTRS)

    ONeill, M. J.; McDanal, A. J.

    2000-01-01

    The first phase of this project was completed in March 2000, and included the successful technology demonstration of a new ultralightweight photovoltaic concentrator array at the fully functional panel level. The new array is called the Stretched Lens Aurora (SLA) array, and uses deployable, flexible, thin-film silicone rubber Fresnel lenses to focus sunlight onto high efficiency multijunction solar cells, which are mounted to a composite radiator surface for waste heat dissipation. A prototype panel was delivered to NASA Marshall in March 2000, and comprised four side-by-side lenses focussing sunlight onto four side-by-side photovoltaic receivers. This prototype panel was tested by NASA Glenn prior to delivery to NASA Marshall. The best of the four lens/receiver modules achieved 27.4% efficiency at room temperature in the NASA Glenn solar simulator tests. This performance equates to 375 W/sq.m. areal power and 378 W/kg specific power at the fully functional panel level. We believe this to be the first space solar array of any kind to simulataneously meet the two long-standing NASA goals of 300 W/sq.m. and 300 W/kg at the functional panel level. Key results for the first phase of the program have been documented by ENTECH in a Draft Final Technical Report, which is presently being reviewed by NASA, and which should be published in the near future.

  9. Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    SciTech Connect

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  10. Light-Weight, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    SciTech Connect

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  11. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    PubMed

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes.

  12. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications

    NASA Astrophysics Data System (ADS)

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I.; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.69), which enables efficient light focusing even inside other media such as water or adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping and fiber probes.

  13. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    PubMed

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes. PMID:27472584

  14. Lensing duct

    DOEpatents

    Beach, Raymond J. , Benett

    1994-01-01

    A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic.

  15. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Technology (Revised) (Presentation)

    SciTech Connect

    Miller, D. C.; Carloni, J. D.; Pankow, J. W.; Gjersing, E. L.; To, B.; Packard, C. E.; Kennedy, C. E.; Kurtz, S. R.

    2012-01-01

    Concentrating photovoltaic (CPV) technology recently gained interest based on its expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems employ Fresnel lenses composed of poly(methyl methacrylate) (PMMA) to obtain a high optical flux density on the cell. The optical and mechanical durability of these lenses, however, is not well established relative to the desired surface life of 30 years. Our research aims to quantify the expected lifetime of PMMA in key market locations (FL, AZ, and CO).

  16. Design and development of a laminated Fresnel lens for point-focus PV systems. Phase II

    SciTech Connect

    Hodge, R.C.

    1982-12-01

    A laminated glass-plastic lens parquet using injection molded point focus Fresnel lenses is described. The second phase of a program aimed at investigating the cost effectiveness of a glass-plastic concentrator lens assembly is reported. The first phase dealt with the development of a first generation lens design, the selection of the preferred glass coverplate and glass-to-lens adhesive and initial injection molding lens molding trials. The second phase has dealt with the development of an improved lens design, a full size parquet lamination process, and a second group of injection molding lens molding trials.

  17. Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy

    SciTech Connect

    Chao, W.; Kim, J.; Rekawa, S.; Fischer, P.; Anderson, E. H.

    2009-06-05

    To extend soft x-ray microscopy to a resolution of order 10 nm or better, we developed a new nanofabrication process for Fresnel zone plate lenses. The new process, based on the double patterning technique, has enabled us to fabricate high quality gold zone plates with 12 nm outer zones. Testing of the zone plate with the full-field transmission x-ray microscope, XM-1, in Berkeley, showed that the lens clearly resolved 12 nm lines and spaces. This result represents a significant step towards 10 nm resolution and beyond.

  18. Gravitational Lensing

    ScienceCinema

    Lincoln, Don

    2016-07-12

    In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.

  19. Gravitational Lensing

    SciTech Connect

    Lincoln, Don

    2015-06-24

    In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.

  20. Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Saha, P.; Murdin, P.

    2000-11-01

    Gravity bends light rays in a way analogous to, but quantitatively different from, the way it bends trajectories of passing particles. If light from some bright object passes close enough to some foreground mass, that object's image will be altered. The effect is more like a piece of bathroom glass in the sky than a precision-ground and well-focused lens, but the terms `gravitational lensing' or ...

  1. Polarization Compensation of Fresnel Aberrations in Telescopes

    NASA Technical Reports Server (NTRS)

    Clark, Natalie; Breckenridge, James B.

    2011-01-01

    Large aperture space telescopes are built with low F# s to accommodate the mechanical constraints of launch vehicles and to reduce resonance frequencies of the on-orbit system. Inherent with these low F# s is Fresnel polarization which affects image quality. We present the design and modeling of a nano-structure consisting of birefringent layers to control polarization and increase contrast. Analysis shows a device that functions across a 400nm bandwidth tunable from 300nm to 1200nm. This Fresnel compensator device has a cross leakage of less than 0.001 retardance.

  2. 21 CFR 886.1390 - Flexible diagnostic Fresnel lens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Flexible diagnostic Fresnel lens. 886.1390 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1390 Flexible diagnostic Fresnel lens. (a) Identification. A flexible diagnostic Fresnel lens is a device that is a very thin lens which...

  3. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  4. 21 CFR 886.1390 - Flexible diagnostic Fresnel lens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Flexible diagnostic Fresnel lens. 886.1390 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1390 Flexible diagnostic Fresnel lens. (a) Identification. A flexible diagnostic Fresnel lens is a device that is a very thin lens which...

  5. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  6. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  7. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  8. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  9. Roll-to-roll embossing of optical linear Fresnel lens polymer film for solar concentration.

    PubMed

    Zhang, XinQuan; Liu, Kui; Shan, Xuechuan; Liu, Yuchan

    2014-12-15

    Roll-to-roll manufacturing has been proven to be a high-throughput and low-cost technology for continuous fabrication of functional optical polymer films. In this paper, we have firstly studied a complete manufacturing cycle of linear Fresnel lens polymer film for solar concentration in the aspects of ultra-precision diamond machining of metal roller mold, roll-to-roll embossing, and measurement on film profile and functionality. A metal roller mold patterned with linear Fresnel lenses is obtained using single point diamond turning technique. The roller mold is installed onto a self-developed roll-to-roll UV embossing system to realize continuous manufacturing of linear Fresnel lens film. Profile measurement of the machined roller mold and the embossed polymer film, which is conducted using a stylus profilometer, shows good agreement between measured facet angles with designed ones. Functionality test is conducted on a solar simulation system with a reference solar cell, and results show that strong light concentration is realized.

  10. Compound Refractive Lenses for Thermal Neutron Applications

    SciTech Connect

    Gary, Charles K.

    2013-11-12

    This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 μm which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.

  11. High strength, light weight Ti-Y composites and method of making same

    DOEpatents

    Verhoeven, J.D.; Ellis, T.W.; Russell, A.M.; Jones, L.L.

    1993-04-06

    A high strength, light weight in-situ'' Ti-Y composite is produced by deformation processing a cast body having Ti and Y phase components distributed therein. The composite comprises elongated, ribbon-shaped Ti and Y phase components aligned along an axis of the deformed body.

  12. High strength, light weight Ti-Y composites and method of making same

    DOEpatents

    Verhoeven, John D.; Ellis, Timothy W.; Russell, Alan M.; Jones, Lawrence L.

    1993-04-06

    A high strength, light weight "in-situ" Ti-Y composite is produced by deformation processing a cast body having Ti and Y phase components distributed therein. The composite comprises elongated, ribbon-shaped Ti and Y phase components aligned along an axis of the deformed body.

  13. Optical Fresnel transformation and quantum tomography

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Yi; Hu, Li-yun

    2009-09-01

    Corresponding to optical Fresnel transformation characteristic of a ray transfer matrix (A,B,C,D),AD-BC=1, there exists Fresnel operator F(A,B,C,D) in quantum optics, we show that under the Fresnel transformation the pure-state position density ∣x>ssFresnel quadrature phase is the tomography (Radon transform of the Wigner function), correspondingly, s=. Similarly, we find F∣p>sp=∫∫-∞∞dp'dx'δp-Ax'-Cp')Δx',p', where ∣p>

  14. Glasses and Contact Lenses

    MedlinePlus

    ... Here's Help White House Lunch Recipes Glasses and Contact Lenses KidsHealth > For Kids > Glasses and Contact Lenses Print A A A Text Size What's ... together the way they should. But eyeglasses or contact lenses, also called corrective lenses, can help most ...

  15. Gravitational lenses

    SciTech Connect

    Turner, E.L.

    1988-07-01

    For several years astronomers have devoted considerable effort to finding and studying a class of celestial phenomena whose very existence depends on rare cosmic accidents. These are gravitational-lens events, which occur when two or more objects at different distances from the earth happen to lie along the same line of sight and so coincide in the sky. The radiation from the more distant object, typically a quasar, is bent by the gravitational field of the foreground object. The bending creates a cosmic mirage: distorted or multiple images of the background object. Such phenomena may reveal many otherwise undetectable features of the image source, of the foreground object and of the space lying between them. Such observations could help to resolve several fundamental questions in cosmology. In the past decade theoretical and observational research on gravitational lenses has grown rapidly and steadily. At this writing at least 17 candidate lens systems have been discussed in the literature. Of the 17 lens candidates reported so far in professional literature, only five are considered to have been reliably established by subsequent observations. Another three are generally regarded as weak or speculative cases with less than 50 percent chance of actually being lens systems. In the remaining nine cases the evidence is mixed or is sparse enough so that the final judgment could swing either way. As might be concluded, little of the scientific promise of gravitational lenses has yet been realized. The work has not yielded a clear value for the proportionality constant or any of the other fundamental cosmological parameter. 7 figs.

  16. Integration of multi-scale biosimulation models via light-weight semantics.

    PubMed

    Gennari, John H; Neal, Maxwell L; Carlson, Brian E; Cook, Daniel L

    2008-01-01

    Currently, biosimulation researchers use a variety of computational environments and languages to model biological processes. Ideally, researchers should be able to semiautomatically merge models to more effectively build larger, multi-scale models. However, current modeling methods do not capture the underlying semantics of these models sufficiently to support this type of model construction. In this paper, we both propose a general approach to solve this problem, and we provide a specific example that demonstrates the benefits of our methodology. In particular, we describe three biosimulation models: (1) a cardio-vascular fluid dynamics model, (2) a model of heart rate regulation via baroreceptor control, and (3) a sub-cellular-level model of the arteriolar smooth muscle. Within a light-weight ontological framework, we leverage reference ontologies to match concepts across models. The light-weight ontology then helps us combine our three models into a merged model that can answer questions beyond the scope of any single model.

  17. Regression Model for Light Weight and Crashworthiness Enhancement Design of Automotive Parts in Frontal CAR Crash

    NASA Astrophysics Data System (ADS)

    Bae, Gihyun; Huh, Hoon; Park, Sungho

    This paper deals with a regression model for light weight and crashworthiness enhancement design of automotive parts in frontal car crash. The ULSAB-AVC model is employed for the crash analysis and effective parts are selected based on the amount of energy absorption during the crash behavior. Finite element analyses are carried out for designated design cases in order to investigate the crashworthiness and weight according to the material and thickness of main energy absorption parts. Based on simulations results, a regression analysis is performed to construct a regression model utilized for light weight and crashworthiness enhancement design of automotive parts. An example for weight reduction of main energy absorption parts demonstrates the validity of a regression model constructed.

  18. GLIDE: a grid-based light-weight infrastructure for data-intensive environments

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris A.; Malek, Sam; Beckman, Nels; Mikic-Rakic, Marija; Medvidovic, Nenad; Chrichton, Daniel J.

    2005-01-01

    The promise of the grid is that it will enable public access and sharing of immense amounts of computational and data resources among dynamic coalitions of individuals and institutions. However, the current grid solutions make several limiting assumptions that curtail their widespread adoption. To address these limitations, we present GLIDE, a prototype light-weight, data-intensive middleware infrastructure that enables access to the robust data and computational power of the grid on DREAM platforms.

  19. A programmable Fresnel transform pulse shaper.

    PubMed

    Mínguez-Vega, G; McKinney, J; Weiner, A

    2005-10-01

    We demonstrate the first reprogrammable Fresnel transform pulse shaper based on a modified direct space-to-time pulse shaping apparatus. In our approach, the pulse shaping lens and mask are implemented by a dual-layer liquid crystal spatial light modulator. The input mask subsequently undergoes a free-space Fresnel transform which causes quadratic dispersion of the output temporal waveform. When used as a spectrometer, we demonstrate that the passband function of the apparatus (determined by the Fourier transform of the input spatial mask) may be chosen to exhibit a user-defined scale. Here we present the theory of operation, as well as experimental verification in both the time- and frequency-domains.

  20. A programmable Fresnel transform pulse shaper

    NASA Astrophysics Data System (ADS)

    Mínguez-Vega, G.; McKinney, J. D.; Weiner, A. M.

    2005-10-01

    We demonstrate the first reprogrammable Fresnel transform pulse shaper based on a modified direct space-to-time pulse shaping apparatus. In our approach, the pulse shaping lens and mask are implemented by a dual-layer liquid crystal spatial light modulator. The input mask subsequently undergoes a free-space Fresnel transform which causes quadratic dispersion of the output temporal waveform. When used as a spectrometer, we demonstrate that the passband function of the apparatus (determined by the Fourier transform of the input spatial mask) may be chosen to exhibit a user-defined scale. Here we present the theory of operation, as well as experimental verification in both the time- and frequency-domains

  1. A programmable Fresnel transform pulse shaper.

    PubMed

    Mínguez-Vega, G; McKinney, J; Weiner, A

    2005-10-01

    We demonstrate the first reprogrammable Fresnel transform pulse shaper based on a modified direct space-to-time pulse shaping apparatus. In our approach, the pulse shaping lens and mask are implemented by a dual-layer liquid crystal spatial light modulator. The input mask subsequently undergoes a free-space Fresnel transform which causes quadratic dispersion of the output temporal waveform. When used as a spectrometer, we demonstrate that the passband function of the apparatus (determined by the Fourier transform of the input spatial mask) may be chosen to exhibit a user-defined scale. Here we present the theory of operation, as well as experimental verification in both the time- and frequency-domains. PMID:19498836

  2. Fresnel phasing of segmented mirror telescopes.

    PubMed

    Chanan, Gary; Troy, Mitchell; Surdej, Isabelle; Gutt, Gary; Roberts, Lewis C

    2011-11-20

    Shack-Hartmann (S-H) phasing of segmented telescopes is based upon a physical optics generalization of the geometrical optics Shack-Hartmann test, in which each S-H lenslet straddles an intersegment edge. For the extremely large segmented telescopes currently in the design stages, one is led naturally to very large pupil demagnifications for the S-H phasing cameras. This in turn implies rather small Fresnel numbers F for the lenslets; the nominal design for the Thirty Meter Telescope calls for F=0.6. For such small Fresnel numbers, it may be possible to eliminate the lenslets entirely, replacing them with a simple mask containing a sparse array of clear subapertures and thereby also eliminating a number of manufacturing problems and experimental complications associated with lenslets. We present laboratory results that demonstrate the validity of this approach.

  3. Elimination of flux loss by optimizing the groove angle in modified Fresnel lens to increase illuminance uniformity, color uniformity and flux efficiency in LED illumination.

    PubMed

    Kim, Byungwook; Choi, Minseok; Kim, Hokwan; Lim, Jiseok; Kang, Shinill

    2009-09-28

    A Fresnel lens is an optical component that can be used to create systems more compact, cost-effective, and lightweight than those using conventional continuous surface optics. However, Fresnel lenses can usually cause a loss of flux efficiency and non-uniform distribution of illuminance due to secondary refraction by surface discontinuities, especially along the groove facet. We therefore proposed to modify a groove angle in the Fresnel lens and analyzed interrelation between the groove angle and multiple optical performances, such as flux efficiency and the uniformity of illuminance and color. The groove angle was optimized to maximize the uniformity and efficiency in the target viewing angle considering various weights of merit functions. Specifically, in our study, when the uniformity of illuminance had a little more weight than the flux efficiency (ratio of 0.6:0.4), final optimum groove angles of 24.7 degrees , 29.4 degrees , and 31.3 degrees were obtained at target viewing angles of 20 degrees , 30 degrees , and 40 degrees , respectively. We also fabricated a modified Fresnel lens with a groove angle of 29.4 degrees using UV-imprinting. The real optical performance of the fabricated Fresnel lens was then compared to that of a spherical lens.

  4. SUB 1-Millimeter Size Fresnel Micro Spectrometer

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Koch, Laura; Song, Kyo D.; Park, Sangloon; King, Glen; Choi, Sang

    2010-01-01

    An ultra-small micro spectrometer with less than 1mm diameter was constructed using Fresnel diffraction. The fabricated spectrometer has a diameter of 750 nmicrometers and a focal length of 2.4 mm at 533nm wavelength. The micro spectrometer was built with a simple negative zone plate that has an opaque center with an ecliptic shadow to remove the zero-order direct beam to the aperture slit. Unlike conventional approaches, the detailed optical calculation indicates that the ideal spectral resolution and resolving power do not depend on the miniaturized size but only on the total number of rings. We calculated 2D and 3D photon distribution around the aperture slit and confirmed that improved micro-spectrometers below 1mm size can be built with Fresnel diffraction. The comparison between mathematical simulation and measured data demonstrates the theoretical resolution, measured performance, misalignment effect, and improvement for the sub-1mm Fresnel micro-spectrometer. We suggest the utilization of an array of micro spectrometers for tunable multi-spectral imaging in the ultra violet range.

  5. Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation.

    PubMed

    Glytsis, E N; Harrigan, M E; Hirayama, K; Gaylord, T K

    1998-01-01

    Practical collimating diffractive cylindrical lenses of 2, 4, 8, and 16 discrete levels are analyzed with a sequential application of the two-region formulation of the rigorous electromagnetic boundary-element method (BEM). A Gaussian beam of TE or TM polarization is incident upon the finite-thickness lens. F/4, F/2, and F/1.4 lenses are analyzed and near-field electric-field patterns are presented. The near-field wave-front quality is quantified by its mean-square deviation from a planar wave front. This deviation is found to be less than 0.05 free-space wavelengths. The far-field intensity patterns are determined and compared with the ones predicted by the approximate Fraunhofer scalar diffraction analysis. The diffraction efficiencies determined with the rigorous BEM are found to be generally lower than those obtained with the scalar approximation. For comparison, the performance characteristics of the corresponding continuous Fresnel (continuous profile within a zone but discontinuous at zone boundaries) and continuous refractive lenses are determined by the use of both the BEM and the scalar approximation. The diffraction efficiency of the continuous Fresnel lens is found to be similar to that of the 16-level diffractive lens but less than that of the continuous refractive lens. It is shown that the validity of the scalar approximation deteriorates as the lens f-number decreases.

  6. Flat liquid crystal diffractive lenses with variable focus and magnification

    NASA Astrophysics Data System (ADS)

    Valley, Pouria

    Non-mechanical variable lenses are important for creating compact imaging devices. Various methods employing dielectrically actuated lenses, membrane lenses, and liquid crystal lenses were previously proposed [1-4]. In This dissertation the design, fabrication, and characterization of innovative flat tunable-focus liquid crystal diffractive lenses (LCDL) are presented. LCDL employ binary Fresnel zone electrodes fabricated on Indium-Tin-Oxide using conventional micro-photolithography. The light phase can be adjusted by varying the effective refractive index of a nematic liquid crystal sandwiched between the electrodes and a reference substrate. Using a proper voltage distribution across various electrodes the focal length can be changed between several discrete values. Electrodes are shunted such that the correct phase retardation step sequence is achieved. If the number of 2pi zone boundaries is increased by a factor of m the focal length is changed from f to f/m based on the digitized Fresnel zone equation: f = rm2/2mlambda, where r m is mth zone radius, and lambda is the wavelength. The chromatic aberration of the diffractive lens is addressed and corrected by adding a variable fluidic lens. These LCDL operate at very low voltage levels (+/-2.5V ac input), exhibit fast switching times (20-150 ms), can have large apertures (>10 mm), and small form factor, and are robust and insensitive to vibrations, gravity, and capillary effects that limit membrane and dielectrically actuated lenses. Several tests were performed on the LCDL including diffraction efficiency measurement, switching dynamics, and hybrid imaging with a refractive lens. Negative focal lengths are achieved by adjusting the voltages across electrodes. Using these lenses in combination, magnification can be changed and zoom lenses can be formed. These characteristics make LCDL a good candidate for a variety of applications including auto-focus and zoom lenses in compact imaging devices such as camera

  7. Light Weight Radioisotope Heater Unit (LWRHU) production for the Galileo mission

    NASA Astrophysics Data System (ADS)

    Rinehart, Gary H.

    The Light Weight Radioisotope Heater Unit (LWRHU) is a (Pu-238)O2-fueled heat source designed to provide a thermal watt of power for space missions. The LWRHU will be used to maintain the temperature of various components on the spacecraft at the required level. The heat source consists of a (Pu-238)O2-fuel pellet, a Pt-30 pct Rh capsule, a pyrolytic graphite insulator, and a woven graphite aeroshell assembly. Los Alamos National Laboratory has fabricated 134 heater units which will be used on the Galileo mission.

  8. MPWide: a light-weight library for efficient message passing over wide area networks

    NASA Astrophysics Data System (ADS)

    Groen, D.; Rieder, S.; Portegies Zwart, S.

    2013-12-01

    We present MPWide, a light weight communication library which allows efficient message passing over a distributed network. MPWide has been designed to connect application running on distributed (super)computing resources, and to maximize the communication performance on wide area networks for those without administrative privileges. It can be used to provide message-passing between application, move files, and make very fast connections in client-server environments. MPWide has already been applied to enable distributed cosmological simulations across up to four supercomputers on two continents, and to couple two different bloodflow simulations to form a multiscale simulation.

  9. Gradient Refractive Index Lenses.

    ERIC Educational Resources Information Center

    Morton, N.

    1984-01-01

    Describes the nature of gradient refractive index (GRIN) lenses, focusing on refraction in these materials, focal length of a thin Wood lens, and on manufacturing of such lenses. Indicates that GRIN lenses of small cross section are in limited production with applications suggested for optical communication and photocopying fields. (JN)

  10. Solar Tracking Error Analysis of Fresnel Reflector

    PubMed Central

    Zheng, Jiantao; Yan, Junjie; Pei, Jie; Liu, Guanjie

    2014-01-01

    Depending on the rotational structure of Fresnel reflector, the rotation angle of the mirror was deduced under the eccentric condition. By analyzing the influence of the sun tracking rotation angle error caused by main factors, the change rule and extent of the influence were revealed. It is concluded that the tracking errors caused by the difference between the rotation axis and true north meridian, at noon, were maximum under certain conditions and reduced at morning and afternoon gradually. The tracking error caused by other deviations such as rotating eccentric, latitude, and solar altitude was positive at morning, negative at afternoon, and zero at a certain moment of noon. PMID:24895664

  11. Recycling of an industrial sludge and marine clay as light-weight aggregates.

    PubMed

    Laursen, K; White, T J; Cresswell, D J F; Wainwright, P J; Barton, J R

    2006-08-01

    The geographical limitations of Singapore, its restricted natural resources and voluminous municipal and industrial waste streams, make environmental management a major challenge for the island state. In an attempt to find ways to reduce importation of raw materials and the waste sent to landfill, light weight aggregates were produced from marine clay and a CaF(2)-rich semiconductor industry sludge. Aggregates were produced in a bench-scale rotary kiln with three clay/sludge loadings (90/10, 70/30 and 50/50%). All three mixtures showed good bloating behavior during firing and the ceramic pellets (1-1.5cm diameter) had densities well below that required for light-weight aggregates. In the initial tests, the pore sizes of the aggregates were in general too large resulting in high water absorption. Comparisons between the composition of the two waste products and the aggregates showed a significant loss of fluorine (40-60%) during processing; a problem which may require flue gas treatment. Leach testing showed that the formed aggregates would not pose a human or environmental hazard in terms of fluorine mobilization.

  12. Stress manipulated coating for figure reshape of light weight X-ray telescope mirrors

    NASA Astrophysics Data System (ADS)

    Yao, Youwei; Wang, Xiaoli; Cao, Jian; Graham, Michael E.; Vaynman, Semyon; Grogans, Shannon E.; Cao, Yifang; Ulmer, Melville P.

    2015-09-01

    We present our idea to correct the surface profile of X-ray telescope mirrors by employing a spatially distributed variable stress coating. Future X-ray telescope missions require light weight optics with an angular resolution ≤. 1" . However, the typical desired thickness of a light weight mirror shell is ≤ 0.4mm, and to date such thin shelled mirrors that have been fabricated cannot meet the required figure accuracy. Therefore most the common approach is to modify the figure of the initially produced mirror shell. In this paper, we describe one such approach. Our approach uses a DC magnetron sputtering process with a variable electrical bias. The end result is a locally variable stress which has the potential to improve the figure of the initially fabricated thin . In this work we report out first results. These include: reproducibility, important technical details of the coating process, and the results of stability tests on several samples monitored. Further, as a proof of concept, we applied a coating with a modulated bias to demonstrate the feasibility to manipulate the surface profile.

  13. A New Way to Evaluate the Probability and Fresnel Integrals

    ERIC Educational Resources Information Center

    Khalili, Parviz

    2007-01-01

    In this article, we show how "Laplace Transform" may be used to evaluate variety of nontrivial improper integrals, including "Probability" and "Fresnel" integrals. The algorithm we have developed here to evaluate "Probability, Fresnel" and other similar integrals seems to be new. This method transforms the evaluation of certain improper integrals…

  14. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  15. Development of a dome Fresnel lens/gallium arsenide photovoltaic concentrator for space applications

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1987-01-01

    A novel photovoltaic concentrator system is currently being developed. Phase I of the program, completed in late 1986, produced a conceptual design for the concentrator system, including an array weight and performance estimates based on optical, electrical, and thermal analyses. Phase II of the program, just underway, concerns the fabrication and testing of prototype concentrator panels of the design. The concentrator system uses dome Fresnel lenses for optical concentration; gallium arsenide concentrator cells for power generation; prismatic cell covers to eliminate gridline obscuration losses; a backplane radiator for heat rejection; and a honeycomb structure for the deployable panel assembly. The conceptual design of the system, its anticipated performance, and its estimated weight are reported.

  16. An analytical and experimental evaluation of a Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Allums, S. A.; Cosby, R. M.

    1976-01-01

    An analytical and experimental evaluation of line focusing Fresnel lenses with application potential in the 200 to 370 C range was studied. Analytical techniques were formulated to assess the solar transmission and imaging properties of a grooves down lens. Experimentation was based on a 56 cm wide, f/1.0 lens. A Sun tracking heliostat provided a nonmoving solar source. Measured data indicated more spreading at the profile base than analytically predicted, resulting in a peak concentration 18 percent lower than the computed peak of 57. The measured and computed transmittances were 85 and 87 percent, respectively. Preliminary testing with a subsequent lens indicated that modified manufacturing techniques corrected the profile spreading problem and should enable improved analytical experimental correlation.

  17. Testing of Large Diameter Fresnel Optics for Space Based Observations of Extensive Air Showers

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark J.; Young, Roy M.

    2011-01-01

    The JEM-EUSO mission will detect extensive air showers produced by extreme energy cosmic rays. It operates from the ISS looking down on Earth's night time atmosphere to detect the nitrogen fluorescence and Cherenkov produce by the charged particles in the EAS. The JEM-EUSO science objectives require a large field of view, sensitivity to energies below 50 EeV, and must fit within available ISS resources. The JEM-EUSO optic module uses three large diameter, thin plastic lenses with Fresnel surfaces to meet the instrument requirements. A bread-board model of the optic has been manufactured and has undergone preliminary tests. We report the results of optical performance tests and evaluate the present capability to manufacture these optical elements.

  18. Focal length measurement based on Fresnel diffraction from a phase plate.

    PubMed

    Dashtdar, Masoomeh; Mohammad-Ali Hosseini-Saber, S

    2016-09-10

    A method based on the Fresnel diffraction of light from the phase step is introduced for measuring effective focal length (EFL) and back focal length (BFL) of optical imaging systems. It is shown that, as a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. Variation of the incident angle in a convergent (or divergent) beam of light causes the periodic intensity along the central fringe of the diffraction pattern. The measurement of the extrema position of the intensity distribution accurately provides the EFL and BFL. The technique is easy to apply and can measure a wide range of both positive and negative focal lengths. The measuring setup can be very compact with low mechanical and optical noises. As examples of this technique, the EFLs of five different lenses are experimentally obtained. The results are quite consistent with the values indicated by the lens manufacturer.

  19. Focal length measurement based on Fresnel diffraction from a phase plate.

    PubMed

    Dashtdar, Masoomeh; Mohammad-Ali Hosseini-Saber, S

    2016-09-10

    A method based on the Fresnel diffraction of light from the phase step is introduced for measuring effective focal length (EFL) and back focal length (BFL) of optical imaging systems. It is shown that, as a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. Variation of the incident angle in a convergent (or divergent) beam of light causes the periodic intensity along the central fringe of the diffraction pattern. The measurement of the extrema position of the intensity distribution accurately provides the EFL and BFL. The technique is easy to apply and can measure a wide range of both positive and negative focal lengths. The measuring setup can be very compact with low mechanical and optical noises. As examples of this technique, the EFLs of five different lenses are experimentally obtained. The results are quite consistent with the values indicated by the lens manufacturer. PMID:27661386

  20. Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.

    2012-01-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  1. Numerical analysis for finite Fresnel transform

    NASA Astrophysics Data System (ADS)

    Aoyagi, Tomohiro; Ohtsubo, Kouichi; Aoyagi, Nobuo

    2016-10-01

    The Fresnel transform is a bounded, linear, additive, and unitary operator in Hilbert space and is applied to many applications. In this study, a sampling theorem for a Fresnel transform pair in polar coordinate systems is derived. According to the sampling theorem, any function in the complex plane can be expressed by taking the products of the values of a function and sampling function systems. Sampling function systems are constituted by Bessel functions and their zeros. By computer simulations, we consider the application of the sampling theorem to the problem of approximating a function to demonstrate its validity. Our approximating function is a circularly symmetric function which is defined in the complex plane. Counting the number of sampling points requires the calculation of the zeros of Bessel functions, which are calculated by an approximation formula and numerical tables. Therefore, our sampling points are nonuniform. The number of sampling points, the normalized mean square error between the original function and its approximation function and phases are calculated and the relationship between them is revealed.

  2. Numerical analysis for finite Fresnel transform

    NASA Astrophysics Data System (ADS)

    Aoyagi, Tomohiro; Ohtsubo, Kouichi; Aoyagi, Nobuo

    2016-08-01

    The Fresnel transform is a bounded, linear, additive, and unitary operator in Hilbert space and is applied to many applications. In this study, a sampling theorem for a Fresnel transform pair in polar coordinate systems is derived. According to the sampling theorem, any function in the complex plane can be expressed by taking the products of the values of a function and sampling function systems. Sampling function systems are constituted by Bessel functions and their zeros. By computer simulations, we consider the application of the sampling theorem to the problem of approximating a function to demonstrate its validity. Our approximating function is a circularly symmetric function which is defined in the complex plane. Counting the number of sampling points requires the calculation of the zeros of Bessel functions, which are calculated by an approximation formula and numerical tables. Therefore, our sampling points are nonuniform. The number of sampling points, the normalized mean square error between the original function and its approximation function and phases are calculated and the relationship between them is revealed.

  3. Modified Fresnel Laws for Optical Microcavities

    NASA Astrophysics Data System (ADS)

    Gagnon, D.; Painchaud-April, G.; Poirier, J.; Dubé, L. J.

    2010-03-01

    The scattering of waves at a planar interface between two dielectric media is governed by Fresnel laws. The associated Fresnel coefficients exhibit a discontinuity at the critical angle of incidence, χc, resulting in total internal reflection for χ>=χc. However modern microresonators are often so small that corrections to the planar approximation become necessary. For instance, a plane wave incident on a curved interface can escape the optically denser medium even for angles larger than χc. In the spirit of Snyder and Love [1], we have derived smooth reflection and transmission coefficients. Interface curvature is accounted for by only modifying the wavefunction describing propagation in the less optically dense medium. The theory is applied to dielectric cavities and our results compared to those of an independent calculation obtained from a sequential-reflection model [2]. The advantages and limitations of our alternative approach will be discussed at the conference.[4pt] [1] A. W. Snyder and J. D. Love, IEEE Trans. Microwave Theory Tech., 23, 134--141, 1975.[0pt] [2] M. Hentschel and H. Schomerus, Phys. Rev. E., 65, 045603(R), 2002.

  4. Light weight, high field, stable, superconducting magnets for advanced transportation systems

    SciTech Connect

    Lubell, M.S.; Dresner, L.; Kenney, W.J.; Lue, J.W.; Luton, J.N.; Schwenterly, S.W.

    1991-01-01

    Although the Guideway may be the most expensive component of a MAGLEV system, the importance of a suitable magnet system should not be underestimated. The reliability of operation of MAGLEV depends on the superconducting magnets performing to their specifications in a reliable manner (i.e., without training or quenching). Besides reliability the magnets should produce high field, be sufficiently stable to withstand reasonable perturbations, be light weight, be protected in the event of a quench, and be economical (although performance should outweigh cost). We propose to develop superconducting magnets that have these features. Our magnet designs are based on internally cooled, cable-in-conduit superconductor with Polymer Matrix Composites (PMC) as the structural reinforcement. Although the initial work is with metallic superconductors such as NbTi, the processes being developed will be applicable to the High Temperature Ceramic Superconductors when they become suitable for magnet applications.

  5. Structural Design and Analysis of a Light-Weight Laminated Composite Heat Sink for Spaceflight PWBs

    NASA Technical Reports Server (NTRS)

    Fan, Mark S.; Niemeyer, W. Lee

    1997-01-01

    In order to reduce the overall weight in spaceborne electronic systems, a conventional metallic heat sink typically used for double-sided printed wiring boards was suggested to be replaced by light-weight and high-strength laminated composite materials. Through technology validation assurance (TVA) approach, it has been successfully demonstrated that using laminated composite heat sink can not only reduce the weight of the heat sink by nearly 50%, but also significantly lower the internal thermally-induced stresses that are largely responsible for potential delamination under cyclic temperature variations. With composite heat sink, both thermal and dynamic performance of the double-sided printed wiring board (PWB) exceeds that of its counterpart with metallic heat sink. Also included in this work is the original contribution to the understanding of creep behavior of the worst-case leadless chip carrier (LCC) surface mount solder joint. This was identified as the interconnection most susceptible to thermal fatigue damage in the PWB assembly.

  6. Safety analysis for the Galileo light-weight radioisotope heater unit

    NASA Astrophysics Data System (ADS)

    Johnson, Ernest W.

    The Light-Weight Radioisotope Heater Unit (LWRHU) will be used on the NASA Galileo Mission to provide thermal energy to the various systems on the orbiter and probe that are adversely affected by the low temperature a spacecraft encounters during a long interplanetary mission. Using these plutonia-fueled sources in 1-W increments permits employment of a single design and provides the spacecraft user the option of how many to use and where to position them to satisfy the proper thermal environment for components requiring such consideration. The use of the radioisotope Pu 238 in these devices necessitates the assessment of postulated radiological risks which might be experienced in case of accidents or malfunctions of the space shuttle or the spacecraft during phases of the mission in the vicinity of the earth. Included are data for the design, mission descriptions, postulated accidents with their consequences, test data, and the derived source terms and personnel exposures for the various events.

  7. Method and technique for installing light-weight, fragile, high-temperature fiber insulation

    NASA Technical Reports Server (NTRS)

    Patel, B. C. (Inventor)

    1983-01-01

    A method of installing fragile, light weight, high temperature fiber insulation, particularly where the insulation is to be used as a seal strip providing a high order of thermal barrier insulation is discussed. The process is based on provision of a strip of the mineral batting cut oversize by a predetermined amount, saturated in a fugitive polymer solution, compressed in a mold, dried and cured to form a rigidized batting material which is machined to required shape. The machine dimensions would normally be at least nominally less than the dimensions of the cavity to be sealed. After insertion in the cavity, which may be a wire-mesh seal enclosure, the apparatus is subjected to baking at a temperature sufficiently high to cause the resin to burn off cleanly, leaving the batting substantially in its original condition and expanded into the cavity or seal enclosure.

  8. A method and technique for installing light-weight fragile, high-temperature fiber insulation

    NASA Technical Reports Server (NTRS)

    Ballantine, T. J. (Inventor)

    1982-01-01

    A method of installing fragile, light-weight, high-temperature fiber insulation, particularly where the insulation is to be used as a seal strip providing a high order of thermal barrier insulation is described. The process is based on provision of a strip of the mineral batting cut oversize by a predetermined amount, saturated in a fugitive polymer solution, compressed in a mold, dried and cured to form a rigidized batting material which may be machined to required shape. The machined dimensions would normally be at least nominally less than the dimensions of the cavity to be sealed. After insertion in the cavity, which may be a wire-mesh seal enclosure, the apparatus is subjected to baking at a temperature sufficiently high to cause the resin to burn off cleanly, leaving the batting substantially in its original condition and expanded into the cavity or seal enclosure.

  9. Optimum mirror shapes and supports for light weight mirrors subjected to self-weight

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Richard, Ralph M.; Vukobratovich, Daniel

    1989-11-01

    A parametric design study of light weight mirror shapes with various support conditions was performed utilizing the finite element program NASTRAN. Improvements in the mirror performance were made based on the following design criteria: (1) minimization of the optical surface wavefront variations, (2) minimization of the self-weight directly related to cost of manufacturing, and (3) optimal location of support points. A preprocessor to automatically generate a finite element model for each mirror geometry was developed in order to obtain the structural deformations systematically. Additionally, a postprocessor, which prepares an input data file for FRINGE (an optical computer code) was developed for generating the optical deflections that lead to the surface wavefront variations. Procedures and modeling techniques to achieve the optimum (the lightest and stiffest mirror shape due to self-weight) are addressed.

  10. Light weight radioisotope heater unit (LWRHU): a technical description of the reference design

    SciTech Connect

    Tate, R.E.

    1982-01-01

    The Light Weight Radioisotope Heater Unit (LWRHU), a new radioisotope heater unit for use in space missions, is a /sup 238/PuO/sub 2/-fueled unit designed to provide a thermal watt in dispersed locations on a spacecraft. The LWRHU is required to maintain the temperature of a component at a level where the component will function reliably in space. Two major constraints are placed on the unit's design; it must be as light as possible and must provide enough protection to immobilize the plutonium fuel to the maximum extent in all phases of the unit's lifetime. The four components are pelletized fuel, platinum-alloy encapsulation, pyrolytic graphite thermal insulation, and high-technology graphite ablation shell. The LWRHU is a cylinder 32 mm (1.26 in.) high and 26 mm (1.02 in.) in diameter. It weighs slightly less than 40 g(.09 lb).

  11. Non-invasive light-weight integration engine for building EHR from autonomous distributed systems.

    PubMed

    Crespo Molina, Pere; Angulo Fernández, Carlos; Maldonado Segura, José A; Moner Cano, David; Robles Viejo, Montserrat

    2006-01-01

    Pangea-LE is a message oriented light-weight integration engine, allowing concurrent access to clinical information from disperse and heterogeneous data sources. The engine extracts the information and serves it to the requester client applications in a flexible XML format. This XML response message can be formatted on demand by the appropriate XSL (Extensible Stylesheet Language) transformation in order to fit client application needs. In this article we present a real use case sample where Pangea-LE collects and generates "on the fly" a structured view of all the patient clinical information available in a healthcare organisation. This information is presented to healthcare professionals in an EHR (Electronic Health Record) viewer Web application with patient search and EHR browsing capabilities. Implantation in a real environment has been a notable success due to the non-invasive method which extremely respects the existing information systems.

  12. Light-weight glass optics for segmented x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Winter, Anita; Breunig, Elias; Capelli, Renzo; Friedrich, Peter; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt; Schmachtel, Tilman; Derst, Gerhard; Neher, Manfred

    2012-09-01

    One of the most challenging tasks for future X-ray observatories is the enhancement of collecting area combined with very good angular resolution. Light-weight mirror materials, such as thin glass sheets, are needed to achieve this aims within the mass limits. We are developing a technology based on indirect hot slumping of thin glass segments. This technique enables us to produce the parabolic and hyperbolic part of the Wolter type I mirrors in one piece. Currently we focus on a combination of a ceramic slumping mould and glass type D263. The experimental set-up in our laboratories as well as the slumping process are described in detail; furthermore we report on the metrology methods used for measuring the glass sheets and moulds. Finally the results of the X-ray tests of several integrated glass sheets are presented.

  13. Light-weight Parallel Python Tools for Earth System Modeling Workflows

    NASA Astrophysics Data System (ADS)

    Mickelson, S. A.; Paul, K.; Xu, H.; Dennis, J.; Brown, D. I.

    2015-12-01

    With the growth in computing power over the last 30 years, earth system modeling codes have become increasingly data-intensive. As an example, it is expected that the data required for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR6) will increase by more than 10x to an expected 25PB per climate model. Faced with this daunting challenge, developers of the Community Earth System Model (CESM) have chosen to change the format of their data for long-term storage from time-slice to time-series, in order to reduce the required download bandwidth needed for later analysis and post-processing by climate scientists. Hence, efficient tools are required to (1) perform the transformation of the data from time-slice to time-series format and to (2) compute climatology statistics, needed for many diagnostic computations, on the resulting time-series data. To address the first of these two challenges, we have developed a parallel Python tool for converting time-slice model output to time-series format. To address the second of these challenges, we have developed a parallel Python tool to perform fast time-averaging of time-series data. These tools are designed to be light-weight, be easy to install, have very few dependencies, and can be easily inserted into the Earth system modeling workflow with negligible disruption. In this work, we present the motivation, approach, and testing results of these two light-weight parallel Python tools, as well as our plans for future research and development.

  14. Micron-Accurate Laser Fresnel-Diffraction Ranging System

    NASA Technical Reports Server (NTRS)

    Lehner, David; Campbell, Jonathan; Smith, Kelly; Sanders, Alvin; Allison, Stephen; Smaley, Larry

    2008-01-01

    Two versions of an optoelectronic system undergoing development are depicted. The system is expected to be capable of measuring a distance between 2 and 10 m with an error of no more than 1 micrometer. The system would be designed to exploit Fresnel diffraction of a laser beam. In particular, it would be designed to take advantage of the fact that a Fresnel diffraction pattern is ultrasensitive to distance. The two versions would differ in the following respects: In version 1, the focus of the telescope would be in the Fresnel region, and the telescope would have a small depth of focus. As a consequence, the Fresnel pattern would be imaged directly onto the photodetector array; in version 2, a multielement lens module would displace the Fresnel region from the vicinity of the pinhole to the vicinity of the optical receiver. As the distance to be measured varied, the location of the receiver relative to the displaced Fresnel-diffraction region would vary, thereby causing the Fresnel diffraction pattern on the focal plane to vary. The multielement lens module would also correct for aberrations. The processing of the digitized Fresnel diffraction pattern in the computer might be accelerated by using only parts of the pattern or even only one small part - the central pixel. As the distance from the pinhole increased, the central pixel would rapidly cycle between maximum and minimum light intensity. This in itself would not be sufficient to uniquely determine the distance. However, by varying the size of the pinhole or the wavelength of the laser, one could obtain a second cycle of variation of intensity that, in conjunction with the first cycle, could enable a unique determination of distance. Alternatively, for a single wavelength and a single pinhole size, it should suffice to consider the data from only two different key pixels in the Fresnel pattern.

  15. Novel optical scanning cryptography using Fresnel telescope imaging.

    PubMed

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren

    2015-07-13

    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results. PMID:26191901

  16. Novel optical scanning cryptography using Fresnel telescope imaging.

    PubMed

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren

    2015-07-13

    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.

  17. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  18. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  19. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization. PMID:20607883

  20. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization. PMID:20588569

  1. Contact Lenses for Vision Correction

    MedlinePlus

    ... Contact Lenses Colored Contact Lenses Contact Lenses for Vision Correction Written by: Kierstan Boyd Reviewed by: Brenda ... on the surface of the eye. They correct vision like eyeglasses do and are safe when used ...

  2. Ergonomic Evaluation of Space Shuttle Light-Weight Seat Lever Position and Operation

    NASA Technical Reports Server (NTRS)

    Maida, J.; Rajulu, Sudhakar L.; Bond, Robert L. (Technical Monitor)

    2000-01-01

    During a Shuttle flight in the early part of 1999, one of the crewmembers was unable to operate the backrest lever for the light-weight seat in microgravity. It is essential that the crewmembers are able to adjust this back-rest lever, which is titled forward 2 degrees from vertical during launch and then moved backwards to 10 degrees aft of vertical upon reaching orbit. This adjustment is needed to cushion the crewmembers during an inadvertent crash landing situation. The original Shuttle seats, which had seat controls located on the front left and right sides of the seat, were replaced recently with the new light-weight seats. The controls for these new, seats were moved to the night side with one control at the front and the other at the back. While it was uncertain whether the problem encountered was unique to that crewmember or not it was clear to the personnel responsible for maintaining the Shuttle seats that not knowing the cause of the problem posed a safety concern for NASA. Hence the Anthropometry and Biomechanics Facility (ABF) of the Johnson Space Center was requested to perform an evaluation of the seat controls and provide NASA with appropriate recommendations on whether the seat lever positions and operations should be modified. The ABF designed an experiment to investigate the amount of pull force exerted by subjects, wearing an unpressurized or pressurized crew launch escape suit, when controls were placed in the front and back (on the right side) of the light-weight seat. Single-axis load cells were attached to the seat levers, which measured the maximum static pull forces that were exerted by the subjects. Twelve subjects, six male and six female, participated in this study. Each subject was asked to perform the pull test at least three times for each combination of lever position and suit pressure conditions. The results from this study showed that as a whole (or in general), the subjects were able to pull on the lever at the back position with

  3. Monitoring agricultural crops using a light-weight hyperspectral mapping system for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kooistra, Lammert; Suomalainen, Juha; Franke, Jappe; Bartholomeus, Harm; Mücher, Sander; Becker, Rolf

    2014-05-01

    Remote sensing has been identified as a key technology to allow near real-time detection and diagnosis of crop status at the field level. Although satellite based remote sensing techniques have already proven to be relevant for many requirements of crop inventory and monitoring, they might lack flexibility to support anomaly detection at specific moments over the growing season. Imagery taken from unmanned aerial vehicles (UAV) are shown to be an effective alternative platform for crop monitoring, given their potential of high spatial and temporal resolution, and their high flexibility in image acquisition programming. In addition, several studies have shown that an increased spectral resolution as available from hyperspectral systems provide the opportunity to estimate biophysical properties like leaf-area-index (LAI), chlorophyll and leaf water content with improved accuracies. To investigate the opportunities of unmanned aerial vehicles (UAV) in operational crop monitoring, we have developed a light-weight hyperspectral mapping system (< 2 kg) suitable to be mounted on small UAVs. Its composed of an octocopter UAV-platform with a pushbroom spectrometer consisting of a spectrograph, an industrial camera functioning as frame grabber, storage device, and computer, a separate INS and finally a photogrammetric camera. The system is able to produce georeferenced and georectified hyperspectral data cubes in the 400-1000 nm spectral range at 10-50 cm resolution. The system is tested in a fertilization experiment for a potato crop on a 12 ha experimental field in the South of the Netherlands. In the experiment UAV-based hyperspectral images were acquired on a weekly basis together with field data on chlorophyll as indicator for the nitrogen situation of the crop and leaf area index (LAI) as indicator for biomass status. Initially, the quality aspects of the developed light-weight hyperspectral mapping system will presented with regard to its radiometric and geometric

  4. Next Generation X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    NASA Astrophysics Data System (ADS)

    Zhang, William; NGXO

    2014-01-01

    X-ray telescopes are essential to the future of x-ray astronomy. In this talk I will describe a comprehensive program to advance the technology for x-ray telescopes well beyond the state of the art represented by the dour missions currently in operations: Chandra, XMM-Newton, Suzaku, and NuSTAR. This program will address the three key issues in making an x-ray telescope: (1) angular resolution, (2) effective area per unit mass, and (3) cost per unit effective area. The objectives of this technology program are (1) in the near term, to enable Explorer-class x-ray missions and an IXO-type mission, and (2) in the long term, to enable a flagship x-ray mission with sub-arcsecond angular resolution and multi-square-meter effective area, at an affordable cost. We pursue two approaches concurrently, emphasizing the first approach in the near term (2-5 years) and the second in the long term (4-10 years). The first approach is precision slumping of borosilicate glass sheets. By design and choice at the outset, this technique makes lightweight and low-cost mirrors. The development program will continue to improve angular resolution, to enable the production of 5-arcsecond x-ray telescopes, to support Explorer-class missions and one or more missions to supersede the original IXO mission. The second approach is precision polishing and light-weighting of single-crystal silicon mirrors. This approach benefits from two recent commercial developments: (1) the inexpensive and abundant availability of large blocks of monocrystalline silicon, and (2) revolutionary advances in deterministic, precision polishing of mirrors. By design and choice at the outset, this technique is capable of producing lightweight mirrors with sub-arcsecond angular resolution. The development program will increase the efficiency and reduce the cost of the polishing and the light-weighting processes, to enable the production of lightweight sub-arcsecond x-ray telescopes. Concurrent with the fabrication of

  5. Atmospheric profiles of Black Carbon at remote locations using light-weight airborne Aethalometers

    NASA Astrophysics Data System (ADS)

    Hansen, A. D.; Močnik, G.; Drinovec, L.; Lenarcic, M.

    2012-12-01

    While measurements of atmospheric aerosols are routinely performed at ground-level around the world, there is far less knowledge of their concentrations at altitude: yet this data is a crucial requirement for our understanding of the dispersion of pollutants of anthropogenic origin, with their associated effects on radiative forcing, cloud condensation, and other adverse phenomena. Black Carbon (BC) is a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. It has no non-combustion sources and is not transformed by atmospheric processes. Recent technical advances have developed light-weight miniaturized instruments which can be operated on light aircraft or carried aboard commercial passenger flights. From January to April 2012, a single-seat ultra-light aircraft flew around the world on a scientific, photographic and environmental-awareness mission. The flight track crossed all seven continents and all major oceans, with altitudes up to 8.9 km ASL. The aircraft carried a custom-developed high-sensitivity dual-wavelength light-weight Aethalometer, operating at 370 and 880 nm with special provision to compensate for the effects of changing pressure, temperature and humidity. The instrument recorded BC concentrations with high temporal resolution and sensitivity better than 5 ng/m3. We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas, analyzing the spectral dependence of absorption to infer the contributions to BC from fossil fuel vs. biomass combustion, and aggregating the data into vertical profiles. The regional and long range transport of BC may be investigated using back-trajectories. We have also operated miniature instruments in the passenger cabins of long-distance commercial aircraft. Since there are no combustion sources within the cabin, any BC in the ventilation air must necessarily have originated from the outside

  6. Signal-enhancement reflective pulse oximeter with Fresnel lens

    NASA Astrophysics Data System (ADS)

    Chung, Shuang-Chao; Sun, Ching-Cherng

    2016-09-01

    In this paper, a new reflective pulse oximeter is proposed and demonstrated with implanting a Fresnel lens, which enhances the reflected signal. An optical simulation model incorporated with human skin characteristics is presented to evaluate the capability of the Fresnel lens. In addition, the distance between the light emitting diode and the photodiode is optimized. Compared with the other reflective oximeters, the reflected signal light detected by the photodiode is enhanced to more than 140%.

  7. Cylindrical diffractive lenses recorded on PVA/AA photopolymers

    NASA Astrophysics Data System (ADS)

    Fernández, R.; Gallego, S.; Márquez, A.; Navarro-Fuster, V.; Francés, J.; Neipp, C.; Beléndez, A.; Pascual, I.

    2016-04-01

    Photopolymers are optical recording materials appealing for many different applications such as holography, data storage, interconnectors, solar concentrations, or wave-guides fabrication. Recently the capacity of photopolymers to record diffractive optical elements (DOE's) has been investigated. Different authors have reported proposes to record DOE like fork gratings, photonics structures, lenses, sinusoidal, blazed or fork gratings. In these experiments there are different experimental set-ups and different photopolymers. In this work due to the improvement in the spatial light modulation technology together with the photopolymer science we propose a recording experimental system of DOE using a Liquid Cristal based on Silicon (LCoS) display as a master to store complex DOE like cylindrical lenses. This technology permits us an accurate control of the phase and the amplitude of the recording beam, with a very small pixel size. The main advantage of this display is that permit us to modify the DOE automatically, we use the software of the LCoS to send the voltage to each pixel In this work we use a photopolymer composed by acrylamide (AA) as polymerizable monomer and polyvinyl alcohol (PVA). We use a coverplated and index matched photopolymer to avoid the influence of the thickness variation on the transmitted light. In order to reproduce the material behaviour during polymerization, we have designed our model to simulate cylindrical lenses and used Fresnel propagation to simulate the light propagation through the DOE and analyze the focal plane and the properties of the recorded lenses.

  8. Cosmology with Doppler lensing

    NASA Astrophysics Data System (ADS)

    Bacon, David J.; Andrianomena, Sambatra; Clarkson, Chris; Bolejko, Krzysztof; Maartens, Roy

    2014-09-01

    Doppler lensing is the apparent change in object size and magnitude due to peculiar velocities. Objects falling into an overdensity appear larger on its near side, and smaller on its far side, than typical objects at the same redshifts. This effect dominates over the usual gravitational lensing magnification at low redshift. Doppler lensing is a promising new probe of cosmology, and we explore in detail how to utilize the effect with forthcoming surveys. We present cosmological simulations of the Doppler and gravitational lensing effects based on the Millennium simulation. We show that Doppler lensing can be detected around stacked voids or unvirialized overdensities. New power spectra and correlation functions are proposed which are designed to be sensitive to Doppler lensing. We consider the impact of gravitational lensing and intrinsic size correlations on these quantities. We compute the correlation functions and forecast the errors for realistic forthcoming surveys, providing predictions for constraints on cosmological parameters. Finally, we demonstrate how we can make 3D potential maps of large volumes of the Universe using Doppler lensing.

  9. Learning through Different Lenses

    ERIC Educational Resources Information Center

    Jeweler, Sue; Barnes-Robinson, Linda

    2015-01-01

    When parents and teachers help gifted kids use the metaphor "learning through different lenses," amazing things happen: Horizons open up. Ideas are focused. Thoughts are magnified and clarified. They see the big picture. Metaphoric thinking offers new and exciting ways to see the world. Viewing the world through different lenses provides…

  10. One Episode, Two Lenses

    ERIC Educational Resources Information Center

    Drijvers, Paul; Godino, Juan D.; Font, Vicenc; Trouche, Luc

    2013-01-01

    A deep understanding of students' learning processes is one of the core challenges of research in mathematics education. To achieve this, different theoretical lenses are available. The question is how these different lenses compare and contrast, and how they can be coordinated and combined to provide a more comprehensive view on the topic of…

  11. A High Resolution, Light-Weight, Synthetic Aperture Radar for UAV Application

    SciTech Connect

    Doerry, A.W.; Hensley, W.H.; Stence, J.; Tsunoda, S.I. Pace, F.; Walker, B,C.; Woodring, M.

    1999-05-27

    (U) Sandia National Laboratories in collaboration with General Atomics (GA) has designed and built a high resolution, light-weight, Ku-band Synthetic Aperture Radar (SAR) known as "Lynx". Although Lynx can be operated on a wide variety of manned and unmanned platforms, its design is optimized for use on medium altitude Unmanned Aerial Vehicles (UAVS). In particular, it can be operated on the Predator, I-GNAT, and Prowler II platforms manufactured by GA. (U) The radar production weight is less than 120 lb and operates within a 3 GHz band from 15.2 GHz to 18.2 GHz with a peak output power of 320 W. Operating range is resolution and mode dependent but can exceed 45 km in adverse weather (4 mm/hr rain). Lynx has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode, over substantial depression angles (5 to 60 deg) and squint angles (broadside ±45 deg). Real-time Motion Compensation is implemented to allow high-quality image formation even during vehicle turns and other maneuvers.

  12. Safety analysis for the Galileo Light-Weight Radioisotope Heater Unit

    SciTech Connect

    Johnson, E.W.

    1990-01-01

    The Light-Weight Radioisotope Heater Unit (LWRHU) will be used on the NASA Galileo Mission to provide thermal energy to the various systems on the orbiter and probe that are adversely affected by the low temperature a spacecraft encounters during a long interplanetary mission. Using these plutonia-fueled sources in 1-W increments permits employment of a single design and provides the spacecraft user the option of how many to use and where to position them to satisfy the proper thermal environment for components requiring such consideration. The use of the radioisotope {sup 238}Pu in these devices necessitates the assessment of postulated radiological risks which might be experienced in case of accidents or malfunctions of the space shuttle or the spacecraft during phases of the mission in the vicinity of the earth. Included are data for the design, mission descriptions, postulated accidents with their consequences, test data, and the derived source terms and personnel exposures for the various events. 4 refs., 4 figs., 1 tab.

  13. Advanced manufacturing technologies for light-weight post- polished snap-together reflective optical system designs

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael N.

    2002-09-01

    Fast, light weight, off-axis, aspheric, reflective optical designs are increasingly being designed and built for space-based remote sensing, fire control systems, aerial reconnaissance, cryovac instrumentation and laser scanning. Diamond point turning (DPT) is the technology of first resort for many of these applications. In many cases the best diamond machining technologies available cannot meet the desired requirements for system wavefront error and scatter. Aluminum, beryllium, AlBeMet and silicon carbide mirrors, layered with thin films of electroless nickel or silicon can be first diamond machined and then post polished to achieve greatly enhanced performance levels for surface scatter, wavefront error (WFE), and alignment registration. By application of post polishing using precise null testing techniques, the objectives of snap-together, or limited compensation alignment of aggressive reflective optical systems can be achieved that are well beyond the performance envelope achievable by diamond machining alone. This paper discusses the tradeoffs among materials and processes selection for post polished reflective systems and illustrates actual applications including telescopes for earth and Mars orbit, and a commercial, high speed, flat field scan engine.

  14. Light Weight Ceramic Ablators for Mars Follow-on Mission Vehicle Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Rasky, Daniel J.; Hsu, Ming-Ta; Turan, Ryan

    1994-01-01

    New Light Weight Ceramic Ablators (LCA) were produced by using ceramic and carbon fibrous substrates, impregnated with silicone and phenolic resins. The special infiltration techniques (patent pending) were developed to control the amount of organic resins in the highly porous fiber matrices so that the final densities of LCA's range from 0.22 to 0.24 g/cc. This paper presents the thermal and ablative performance of the Silicone Impregnated Reusable Ceramic Ablators (SIRCA) in simulated entry conditions for Mars-Pathfinder in the Ames 60 MW Interaction Heating Facility (I HF). Arc jet test results yielded no evidence of char erosion and mass loss at high stagnation pressures to 0.25 atm. Minimal silica melt was detected on surface char at a stagnation pressure of 0.31 atm. Four ceramic substrates were used in the production of SIRCA's to obtain the effective of boron oxide present in substrate so the thermal performance of SIRCA's. A sample of SIRCA was also exposed to the same heating condition for five cycles and no significant mass loss or recession was observed. Tensile testing established that the SIRCA tensile strength is about a factor of two higher than that of the virgin substrates. Thermogravimetric Analysis (TGA) of the char in nitrogen and air showed no evidence of free carbon in the char. Scanning Electron Microscopy of the post test sample showed that the char surface consists of a fibrous structure that was sealed with a thin layer of silicon oxide melt.

  15. Implantable electronics: emerging design issues and an ultra light-weight security solution.

    PubMed

    Narasimhan, Seetharam; Wang, Xinmu; Bhunia, Swarup

    2010-01-01

    Implantable systems that monitor biological signals require increasingly complex digital signal processing (DSP) electronics for real-time in-situ analysis and compression of the recorded signals. While it is well-known that such signal processing hardware needs to be implemented under tight area and power constraints, new design requirements emerge with their increasing complexity. Use of nanoscale technology shows tremendous benefits in implementing these advanced circuits due to dramatic improvement in integration density and power dissipation per operation. However, it also brings in new challenges such as reliability and large idle power (due to higher leakage current). Besides, programmability of the device as well as security of the recorded information are rapidly becoming major design considerations of such systems. In this paper, we analyze the emerging issues associated with the design of the DSP unit in an implantable system. Next, we propose a novel ultra light-weight solution to address the information security issue. Unlike the conventional information security approaches like data encryption, which come at large area and power overhead and hence are not amenable for resource-constrained implantable systems, we propose a multilevel key-based scrambling algorithm, which exploits the nature of the biological signal to effectively obfuscate it. Analysis of the proposed algorithm in the context of neural signal processing and its hardware implementation shows that we can achieve high level of security with ∼ 13X lower power and ∼ 5X lower area overhead than conventional cryptographic solutions.

  16. Environmental safety analysis tests on the Light Weight Radioisotope Heater Unit (LWRHU)

    SciTech Connect

    Tate, R.E.; Land, C.C.

    1985-05-01

    A series of safety tests has been performed on the Light Weight Radioisotope Heater Unit (LWRHU), a /sup 238/PuO/sub 2/-fueled device designed to provide thermal energy at selected locations in a spacecraft. The tests simulate the thermal and mechanical environments postulated for spacecraft accidents on the launch pad and on reentry abort. The tests demonstrate almost complete containment of the fuel, or fuel simulant (depleted UO/sub 2/), in (1) an overpressure environment of 12.76 MPa (1850 psi), (2) on impact by an 18-g aluminum fuel-tank fragment at velocities greater than 750 m/s (2460 ft/s) but less than 900 m/s (2950 ft/s), (3) during a 10.5-min burn of a 0.9 x 0.9 x 0.9 m (3 x 3 x 3 ft) block of solid rocket motor propellant, (4) after impact at 49 m/s (161 ft/s) in four different orientations on a hard surface, and (5) during immersion in seawater for 1.75 years at both sea level pressure and at a pressure equivalent to 6000 m (19,700 ft) of ocean depth.

  17. Optical modeling of Fresnel zoneplate microscopes

    SciTech Connect

    Naulleau, Patrick P.; Mochi, Iacopo; Goldberg, Kenneth A.

    2011-07-10

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.

  18. Optical modeling of Fresnel zoneplate microscopes

    SciTech Connect

    Naulleau, Patrick; Mochi, Iacopo; Goldberg, Kenneth A.

    2011-04-06

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes rou tinely used in the synchrotron community.

  19. Optical modeling of Fresnel zoneplate microscopes.

    PubMed

    Naulleau, Patrick P; Mochi, Iacopo; Goldberg, Kenneth A

    2011-07-10

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.

  20. Development of Light Weight High Strength Carbon Dioxide Monitor for Sub Orbital Space Craft

    NASA Astrophysics Data System (ADS)

    Karavolos, A. P.

    2011-12-01

    Introduction No commercially material is currently available that can satisfy the performance requirements for Suborbital Sampling of Carbon Dioxide in air .Satellite interrogation is not feasible because of the low altitude, and the altitude is too high for satisfactory performance from balloons. A hybrid material in a light weight canister may be the solution to satisfying the above requirements. An example fiber with carbon dioxide capture agent is wound in an equilateral triangle pattern 3 mm in diameter, and heat bonded to a carbon fiber panel. A layer of polypropylene-methyl cellulose 1 mm thick underlies the carbon fiber. The interior contains a metallized organic polymer heat bonded to this surface. Methodology All component materials were purchased through 3M and Sigma Aldrich Chemical Company. The carbon prepreg panel was first placed in a stainless steel mold for non reactivity with container. Polypropylene powder was homogenized with various percentages of methyl cellulose powder and tantalum nano particles. This mixture was then placed in a mold to make panel parts; epoxy bonded to a carbon fiber resin prepreg, and allowed to outgas for 24 hours before materials and chemical testing. Preliminary Results Preliminary finding of the newly tested material are shown in the table below are that the tensile strength is about 74.5 kPa, has maximum CO2 capture efficiency, and regeneration of O2 by weight of total CO2 captured. Conclusions Based on the initial experimentation accomplished, it appears that the proposed hybrid construction of carbon pre preg backing material, coupled with an inner lining of polypropylene-methyl cellulose, satisfies the strength requirements of the habitat building material. In addition, carbon dioxide adsorption and oxygen replenishment requirements also have been met.

  1. Advancement of the Wide-angle JEM-EUSO Optical System with Holographic and Fresnel Lenses

    NASA Technical Reports Server (NTRS)

    Takizawa, Y.; Adams, J.H.

    2007-01-01

    JEM-EUSO is a space mission to observe extremely high-energy cosmic rays, evolved from the previous design studies of EUSO. It is adjusted for the Japan Experiment Module (JEM) of the International Space Station (ISS). JEM-EUSO uses a wide-angle refractive telescope in near-ultraviolet wavelength region to observe from ISS the time-and-space-resolved atmospheric fluorescence images of the extensive air showers. The JEM-EUSO optics is re-designed after the ESA-Phase A studies to upgrade the light-collecting-power by using a new material CYTOP, and its overall light-collecting power is about 1.5 times higher than the ESA-Phase A baseline optics. We describe in this paper an optimized optics design that maximizes the sensitivity of JEM-EUSO, and the results of the optics manufacturing tests.

  2. Space power system utilizing Fresnel lenses for solar power and also thermal energy storage

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1983-01-01

    A solar power plant suitable for earth orbits passing through Van Allen radiation belts is described. The solar-to-electricity conversion efficiency is estimated to be around 9 percent, and the expected power-to-weight ratio is competitive with photovoltaic arrays. The system is designed to be self-contained, to be indifferent to radiation belt exposures, store energy for periods when the orbiting system is in earth shadow (so that power generation is contant), have no moving parts and no working fluids, and be robust against micrometeorite attack. No electrical batteries are required.

  3. An advanced space photovoltaic concentrator array using Fresnel lenses, gallium arsenide cells, and prismatic cell covers

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1988-01-01

    The current status of a space concentrator array which uses refractive optics, gallium arsenide cells, and prismatic cell covers to achieve excellent performance at a very low array mass is documented. The prismatically covered cells have established records for space cell performance (24.2 percent efficient at 100 AM0 suns and 25 C) and terrestrial single-junction cell performance (29.3 percent efficient at 200 AM1.5 suns and 25 C).

  4. 30 kW concentrator photovoltaic system using dome-shaped Fresnel lenses.

    PubMed

    Araki, Kenji; Yano, Taizo; Kuroda, Yoshio

    2010-04-26

    A 30 kW concentrator photovoltaic power plant was constructed and has started operation with the following new technologies: A new Concentrating PhotoVoltaic (CPV) tracker developed for high wind area like Korea and Japan by Daido Steel. (The power consumption of the tracking motors was only 19.6 W, namely 0.07% of the rated power.) With improved optics that reduce the mismatch losses associated with optical aberrations, an efficiency of 25.8% was achieved under standard testing conditions (STC) even in a large 23.8 m2 array size. A rapid installation sequence was developed. It was designed for long-term power supply to a local sewage center. Peak power corresponds to 10% of the demand. As a result, the system performance ratio was 0.87, and the capacity factor was 11.7%. The energy generation per rated power was 1,020 kWh/kWp. While it is true that CPV systems perform better in dry and high irradiance areas, our 30 kW system installed in a cloudy area like Japan, showed satisfactory performance.

  5. 30 kW concentrator photovoltaic system using dome-shaped Fresnel lenses.

    PubMed

    Araki, Kenji; Yano, Taizo; Kuroda, Yoshio

    2010-04-26

    A 30 kW concentrator photovoltaic power plant was constructed and has started operation with the following new technologies: A new Concentrating PhotoVoltaic (CPV) tracker developed for high wind area like Korea and Japan by Daido Steel. (The power consumption of the tracking motors was only 19.6 W, namely 0.07% of the rated power.) With improved optics that reduce the mismatch losses associated with optical aberrations, an efficiency of 25.8% was achieved under standard testing conditions (STC) even in a large 23.8 m(2) array size. A rapid installation sequence was developed. It was designed for long-term power supply to a local sewage center. Peak power corresponds to 10% of the demand. As a result, the system performance ratio was 0.87, and the capacity factor was 11.7%. The energy generation per rated power was 1,020 kWh/kWp. While it is true that CPV systems perform better in dry and high irradiance areas, our 30 kW system installed in a cloudy area like Japan, showed satisfactory performance.

  6. Stress-Detection Lenses

    NASA Technical Reports Server (NTRS)

    1996-01-01

    An Ames Research Center scientist invented an infrared lens used in sunglasses to filter out ultraviolet rays. This product finds its origins in research for military enemy detection. Through a Space Act Agreement, Optical Sales Corporation introduced the Hawkeye Lenses not only as sunglasses but as plant stress detection lenses. The lenses enhance the stressed part of the leaf, which has less chlorophyll than healthy leaves, through dyes that filter out certain wavelengths of light. Plant stress is visible earlier, at a stage when something can be done to save the plants.

  7. Inverting Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Newbury, P. R.; Spiteri, R. J.

    2002-02-01

    Gravitational lensing provides a powerful tool to study a number of fundamental questions in astrophysics. Fortuitously, one can begin to explore some non-trivial issues associated with this phenomenon without a lot of very sophisticated mathematics, making an elementary treatment of this topic tractable even to senior undergraduates. In this paper, we give a relatively self-contained outline of the basic concepts and mathematics behind gravitational lensing as a recent and exciting topic for courses in mathematical modeling or scientific computing. To this end, we have designed and made available some interactive software to aid in the simulation and inversion of gravitational lenses in a classroom setting.

  8. Applications of gravitational lensing

    NASA Astrophysics Data System (ADS)

    Dalal, Neal

    I derive the basic principles of gravitational lensing, and proceed to describe several astrophysical applications. First, invariants in gravitational lensing magnification are derived using techniques of multidimensional residue calculus, and illustrated with example calculations. Then I discuss how these invariant quantities may be useful for measuring the properties of lenses. Next, I discuss the use of astrometric microlensing for studying extrasolar planets. Finally, the use of lensing for the study of substructure in dark matter halos is presented, along with ramifications for the small-scale power spectrum of matter fluctuations. The strongest bounds to date are placed on the mass of the dark matter particle, as well as bounds on the neutrino mass and slope of the primordial power spectrum.

  9. A Light-Weight Inflatable Hypersonic Drag Device for Planetary Entry

    NASA Technical Reports Server (NTRS)

    McRonald, Angus D.

    1995-01-01

    The author has analyzed the use of a light-weight inflatable hypersonic drag device, called a ballute, (balloon + parachute) for flight in planetary atmospheres, for entry, aerocapture, and aerobraking. Studies to date include missions to Mars, Venus, Earth, Saturn, Titan, Neptune and Pluto. Data on a Pluto lander and a Mars orbiter will be presented to illustrate the concept. The main advantage of using a ballute is that aero deceleration and heating in atmospheric entry occurs at much smaller atmospheric density with a ballute than without it. For example, if a ballute has a diameter 10 times as large as the spacecraft, for unchanged total mass, entry speed and entry angle,the atmospheric density at peak convective heating is reduced by a factor of 100, reducing the peak heating by a factor of 10 for the spacecraft, and a factor of about 30 for the ballute. Consequently the entry payload (lander, orbiter, etc) is subject to much less heating, requires a much reduced thermal protection system (possibly only an MLI blanket), and the spacecraft design is therefore relatively unchanged from its vacuum counterpart. The heat flux on the ballute is small enough to be radiated at temperatures below 800 K or so. Also, the heating may be reduced further because the ballute enters at a more shallow angle, even allowing for the increased delivery angle error. Added advantages are a smaller mass ratio of entry system to total entry mass, and freedom from the low-density and transonic instability problems that conventional rigid entry bodies suffer, since the vehicle attitude is determined by the ballute, usually released at continuum conditions (hypersonic for an orbiter, and subsonic for a lander). Also, for a lander the range from entry to touchdown is less, offering a smaller footprint. The ballute derives an entry corridor for aerocapture by entering on a path that would lead to landing, and releasing the ballute adaptively, responding to measured deceleration, at a speed

  10. Assembly and testing of a 1.8 by 3.7 meter Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Robertson, J. E.

    1977-01-01

    A project was initiated to establish a technical data base on line focusing acrylic Fresnel lenses for use in a solar collector system that could generate temperatures in the range of 200 C to 370 C. The effort was originally directed toward electric power generation in the 100 to 10,000 kWe range using a distributed collector approach. However, as the program progressed, it centered on the development of a concentrator/collector subsystem concept that could meet the general requirement of thermal delivery within the 200 C to 370 C range. The expanded list of possible applications includes commercial heating/cooling and industrial process heat as well as electric power generation.

  11. An analytical and experimental investigation of a 1.8 by 3.7 meter Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Allums, S. L.; Jensen, W. S.

    1977-01-01

    Line-focusing acrylic Fresnel lenses with application potential in the 200 to 370 C range are being analytically and experimentally evaluated. Investigations previously conducted with a 56 cm wide lens have been extended by the present study to experimentation/analyses with a 1.8 by 3.7 m lens. A measured peak concentration ratio of 64 with 90 percent of the transmitted energy focused into a 5.0 cm width was achieved. A peak concentration of 61 and a 90 percent target width of 4.5 cm were analytically computed. The experimental and analytical lens transmittance was 81 percent and 86 percent, respectively. The lens also was interfaced with a receiver assembly and operated in the collection mode. The collection efficiency ranged from 42 percent at 100 C to 26 percent at 300 C.

  12. Towards a light-weight query engine for accessing health sensor data in a fall prevention system.

    PubMed

    Kreiner, Karl; Gossy, Christian; Drobics, Mario

    2014-01-01

    Connecting various sensors in sensor networks has become popular during the last decade. An important aspect next to storing and creating data is information access by domain experts, such as researchers, caretakers and physicians. In this work we present the design and prototypic implementation of a light-weight query engine using natural language processing for accessing health-related sensor data in a fall prevention system. PMID:25160350

  13. Vertically-aligned carbon nanotubes on aluminum as a light-weight positive electrode for lithium-polysulfide batteries.

    PubMed

    Liatard, S; Benhamouda, K; Fournier, A; Ramos, R; Barchasz, C; Dijon, J

    2015-05-01

    A light-weight, high specific surface current collector made of vertically-aligned carbon nanotubes grown on an aluminum substrate was fabricated and studied as a positive electrode in a semi-liquid lithium/polysulfide battery. This simple system delivered stable capacities over 1000 mA h gS(-1) and 2 mA h cm(-2) with almost no capacity loss over 50 cycles.

  14. Physical approach to analytic simulation of Fresnel integrals

    NASA Astrophysics Data System (ADS)

    Anokhov, Sergey

    2007-01-01

    Fresnel integrals continue to find new applications in various areas of human activity, including technology and music. However, performing calculations with them is often hindered by a mathematical peculiarity of these integrals, which is the rapidly oscillating functions of the basic variable. This circumstance complicates the numerical calculations when these integrals need additional integral transformation: convolution, Fourier transform, etc. The suggested solution of the problem consists of replacement of the complex Fresnel integral by a single rational function that simulates this integral in the entire area of its existence with an accuracy up to 10-6. The advantages of the suggested approach are confirmed by the concrete example.

  15. Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry.

    PubMed

    Yamada, N; Nishikawa, T

    2010-06-21

    In this study, an evolutionary algorithm (EA), which consists of genetic and immune algorithms, is introduced to design the optical geometry of a nonimaging Fresnel lens; this lens generates the uniform flux concentration required for a photovoltaic cell. Herein, a design procedure that incorporates a ray-tracing technique in the EA is described, and the validity of the design is demonstrated. The results show that the EA automatically generated a unique geometry of the Fresnel lens; the use of this geometry resulted in better uniform flux concentration with high optical efficiency.

  16. Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre

    2012-03-01

    This chapter reviews the data mining methods recently developed to solve standard data problems in weak gravitational lensing. We detail the different steps of the weak lensing data analysis along with the different techniques dedicated to these applications. An overview of the different techniques currently used will be given along with future prospects. Until about 30 years ago, astronomers thought that the Universe was composed almost entirely of ordinary matter: protons, neutrons, electrons, and atoms. The field of weak lensing has been motivated by the observations made in the last decades showing that visible matter represents only about 4-5% of the Universe (see Figure 14.1). Currently, the majority of the Universe is thought to be dark, that is, does not emit electromagnetic radiation. The Universe is thought to be mostly composed of an invisible, pressure less matter - potentially relic from higher energy theories - called "dark matter" (20-21%) and by an even more mysterious term, described in Einstein equations as a vacuum energy density, called "dark energy" (70%). This "dark" Universe is not well described or even understood; its presence is inferred indirectly from its gravitational effects, both on the motions of astronomical objects and on light propagation. So this point could be the next breakthrough in cosmology. Today's cosmology is based on a cosmological model that contains various parameters that need to be determined precisely, such as the matter density parameter Omega_m or the dark energy density parameter Omega_lambda. Weak gravitational lensing is believed to be the most promising tool to understand the nature of dark matter and to constrain the cosmological parameters used to describe the Universe because it provides a method to directly map the distribution of dark matter (see [1,6,60,63,70]). From this dark matter distribution, the nature of dark matter can be better understood and better constraints can be placed on dark energy

  17. CMB Lensing Cross Correlations

    NASA Astrophysics Data System (ADS)

    Bleem, Lindsey

    2014-03-01

    A new generation of experiments designed to conduct high-resolution, low-noise observations of the Cosmic Microwave Background (CMB)--including ACTpol, Planck, POLARBEAR and SPTpol--are producing exquisite measurements of the gravitational lensing of the CMB. Such measurements, covering large fractions of the sky, provide detailed maps of the projected mass distribution extending to the surface of the CMB's last scattering. Concurrently, a large number of deep, wide-area imaging and spectroscopic surveys (e.g., the Dark Energy Survey (DES),WISE all-sky survey, Subaru HyperSuprimeCam Survey, LSST, MS-DESI, BigBoss, etc.) are, or will soon be, providing maps of the distribution of galaxies in the Universe. Correlations of such tracer populations with lensing data allows new probes of where and how galaxies form in the dark matter skeleton of the Universe. Recent correlations of maps of galaxy and quasar densities with lensing convergence maps have produced significant measurements of galaxy bias. The near-term prospect for improvements in such measurements is notable as more precise lensing data from CMB polarization experiments will help to break cosmological and astrophysical parameter degeneracies. Work by the Planck, SPT, and POLARBEAR collaborations has also focused on the correlation of the Cosmic Infrared Background (CIB) with CMB lensing convergence maps. This correlation is particularly strong as the redshifts of the CIB and CMB lensing kernel are well matched. Such correlations probe high-redshift structure, constraining models of star-formation and the characteristic mass scale for halos hosting CIB galaxies and have also been used to demonstrate the first detection of CMB B-mode polarization--an important milestone in CMB observations. Finally, combining galaxy number density, cosmic shear and CMB lensing maps has the potential to provide valuable systematic tests for upcoming cosmological results from large optical surveys such as LSST.

  18. A Light-Weight Inflatable Hypersonic Drag Device for Planetary Entry

    NASA Technical Reports Server (NTRS)

    McRonald, Angus D.

    2000-01-01

    The author has analyzed the use of a light-weight inflatable hypersonic drag device, called a ballute, for flight in planetary atmospheres, for entry, aerocapture, and aerobraking. Studies to date include Mars, Venus, Earth, Saturn, Titan, Neptune and Pluto, and data on a Pluto lander and a Mars orbiter will be presented to illustrate the concept. The main advantage of using a ballute is that aero, deceleration and heating in atmospheric entry occurs at much smaller atmospheric density with a ballute than without it. For example, if a ballute has a diameter 10 times as large as the spacecraft, for unchanged total mass, entry speed and entry angle,the atmospheric density at peak convective heating is reduced by a factor of 100, reducing the heating by a factor of 10 for the spacecraft and a factor of 30 for the ballute. Consequently the entry payload (lander, orbiter, etc) is subject to much less heating, requires a much reduced thermal. protection system (possibly only an MLI blanket), and the spacecraft design is therefore relatively unchanged from its vacuum counterpart. The heat flux on the ballute is small enough to be radiated at temperatures below 800 K or so. Also, the heating may be reduced further because the ballute enters at a more shallow angle, even allowing for the increased delivery angle error. Added advantages are less mass ratio of entry system to total entry mass, and freedom from the low-density and transonic instability problems that conventional rigid entry bodies suffer, since the vehicle attitude is determined by the ballute, usually released at continuum conditions (hypersonic for an orbiter, and subsonic for a lander). Also, for a lander the range from entry to touchdown is less, offering a smaller footprint. The ballute derives an entry corridor for aerocapture by entering on a path that would lead to landing, and releasing the ballute adaptively, responding to measured deceleration, at a speed computed to achieve the desired orbiter exit

  19. Fresnel Diffraction Using a He-Ne Gas Laser

    ERIC Educational Resources Information Center

    Moen, Allen L.; Vander Meulen, David L.

    1970-01-01

    Describes an advanced laboratory experiment of Fresnel diffraction which uses a He-Ne gas laser as the source and a wire as the opaque diffracting strip. A photograph of the diffraction pattern is compared with the intensity diagram predicted by the Cornu spiral method. Agreement is clear and impressive, although minor differences are detectable.…

  20. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  1. Contact Lenses in the Laboratory.

    ERIC Educational Resources Information Center

    Kingston, David W.

    1981-01-01

    Summarizes results of a three-item questionnaire returned by 43 Michigan institutions expressing views on wearing contact lenses in chemical laboratories. Questions focused on eye protection, type of protection, and use of contact lenses. (SK)

  2. Static and Dynamic Analysis of Stretched Membrane Lenses for Lightweight Space Solar Arrays

    NASA Astrophysics Data System (ADS)

    Mockensturm, Eric M.

    2002-12-01

    NASA and ENTECH, Inc. have been developing space photovoltaic arrays using refractive concentrator technology since 1986. These refractive concentrators use Fresnel lenses in a unique arch shape to minimize the effects of shape errors. In 1994, silicone Fresnel lenses where used in the SCARLET(Registered Trademark) solar array developed by ENTECH and AEC-ABLE. In this array the 200-micron-thick lenses were laminated to 75-micron-thick, thermally shaped, ceria-doped glass arches. These glass arches forced the flexible lenses into the optimal arch shape. The arrays constructed using these lenses achieved over 200 W/sq m areal power and 45 W/kg specific power and are currently powering both the spacecraft and the ion engine on the NASA/JPL Deep Space One probe. To further reduce weight and increase areal and specific power, the next generation of solar concentrator arrays will eliminate the glass arch and lens frame. The flexible lenses will be stretched as membranes between optimally shaped, supporting end arches. This patented stretched lens array will also use redesigned composite radiator sheets to reduce the weight of the SCARLET panels by a factor of four. In addition, by eliminating optical losses caused by the glass arches and lens frames, the SLA performance is higher than SCARLET. The SLA is the first solar array panel of any kind to simultaneously achieve over 300 W/sq m areal power and 300 W/kg specific power. While the optical properties of the stretched lenses are excellent, they must be analyzed structurally to ensure that they perform at their optimal levels. Lens parameters such as backing thickness, lens tension, and effective length can be altered to change the structural response of the lens without affecting the optical performance. In particular, the lenses must be designed to maintain the arch shape specified by the end support along the entire length. Because the lenses are flat in their natural state, they resist being bent into the desired

  3. Pinhole diffraction holography for fabrication of high-resolution Fresnel zone plates.

    PubMed

    Sarkar, Sankha S; Solak, Harun H; David, Christian; van der Veen, J Friso

    2014-01-27

    Fresnel zone plates (FZPs) play an essential role in high spatial resolution x-ray imaging and analysis of materials in many fields. These diffractive lenses are commonly made by serial writing techniques such as electron beam or focused ion beam lithography. Here we show that pinhole diffraction holography has potential to generate FZP patterns that are free from aberrations and imperfections that may be present in alternative fabrication techniques. In this presented method, FZPs are fabricated by recording interference pattern of a spherical wave generated by diffraction through a pinhole, illuminated with coherent plane wave at extreme ultraviolet (EUV) wavelength. Fundamental and practical issues involved in formation and recording of the interference pattern are considered. It is found that resolution of the produced FZP is directly related to the diameter of the pinhole used and the pinhole size cannot be made arbitrarily small as the transmission of EUV or x-ray light through small pinholes diminishes due to poor refractive index contrast found between materials in these spectral ranges. We also find that the practical restrictions on exposure time due to the light intensity available from current sources directly imposes a limit on the number of zones that can be printed with this method. Therefore a trade-off between the resolution and the FZP diameter exists. Overall, we find that this method can be used to fabricate aberration free FZPs down to a resolution of about 10 nm. PMID:24515148

  4. Optical multiple-image encryption based on phase encoding algorithm in the Fresnel transform domain

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Ji; Hwang, Hone-Ene; Chen, Chun-Yuan; Chen, Ching-Mu

    2012-10-01

    A novel method of the optical multiple-image encryption based on the modified Gerchberg-Saxton algorithm (MGSA) is presented. This proposed method with an architecture of two adjacent phase only functions (POFs) in the Fresnel transform (FrT) domain that can extremely increase capacity of system for completely avoiding the crosstalk between the decrypted images. Each encrypted target image is separately encoded into a POF by using the MGSA which is with constraining the encrypted target image. Each created POF is then added to a prescribed fixed POF composed of a proposed MGSA-based phase encoding algorithm. Not only the wavelength and multiple-position parameters in the FrT domain as keys to increase system security, the created POFs are also served mutually as the encryption keys to decrypt target image based on cascading two POFs scheme. Compared with prior methods [23,24], the main advantages of this proposed encryption system is that it does not need any transformative lenses and that makes it very efficient and easy to implement optically. Simulation results show that this proposed encryption system can successfully achieve the multiple-image encryption with multiple-position keys, which is more advantageous in security than previous work [24] for its decryption process with only two POFs keys to accomplish this task.

  5. Radiation Blocking Lenses

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Biomedical Optical Company of America's (BOCA) suntiger lenses, similar in principle to natural filters in the eyes of hawks and eagles, bar 99 percent of potentially harmful wavelengths, while allowing visually useful colors of light (red, orange, green) to pass through. They also improve visual acuity, night vision and haze or fog visibility. The lenses evolved from work done by James B. Stephens and Dr. Charles G. Miller of the Jet Propulsion Laboratory. They developed a formula and produced a commercial welding curtain that absorbs, filters, and scatters light. This research led to protective glasses now used by dentists, workers in hazardous environments, CRT operators and skiers.

  6. Obituary--rigid contact lenses.

    PubMed

    Efron, Nathan

    2010-10-01

    Scleral and corneal rigid lenses represented 100 per cent of the contact lens market immediately prior to the invention of soft lenses in the mid-1960s. In the United Kingdom today, rigid lenses comprise 2 per cent of all new lens fits. Low rates of rigid lens fitting are also apparent in 27 other countries which have recently been surveyed. Thus, the 1998 prediction of the author that rigid lenses--also referred to as 'rigid gas permeable' (RGP) lenses or 'gas permeable' (GP) lenses--would be obsolete by the year 2010 has essentially turned out to be correct. In this obituary, the author offers 10 reasons for the demise of rigid lens fitting: initial rigid lens discomfort; intractable rigid lens-induced corneal and lid pathology; extensive soft lens advertising; superior soft lens fitting logistics; lack of rigid lens training opportunities; redundancy of the rigid lens 'problem solver' function; improved soft toric and bifocal/varifocal lenses; limited uptake of orthokeratology; lack of investment in rigid lenses; and the emergence of aberration control soft lenses. Rigid lenses are now being fitted by a minority of practitioners with specialist skills/training. Certainly, rigid lenses can no longer be considered as a mainstream form of contact lens correction. May their dear souls (bulk properties) rest in peace. PMID:20674469

  7. On the possibility of application of kinoform and harmonic diffraction structures in constructions of phakic intraocular lenses

    NASA Astrophysics Data System (ADS)

    Lenkova, G. A.

    2015-04-01

    Chromatic aberrations of the eye that arise upon application of diffraction structures such as Fresnel phase lenses with an ordinary (kinoform) or deep (harmonic) profile and diffraction-refraction (hybrid) structures in constructions of phakic (i.e., without lensectomy) intraocular lenses have been investigated analytically. Investigations have been done based on an eye model. It has been shown that, if kinoform (with a profile depth on the order of one wavelength) or hybrid structures are used, chromatic aberrations do not exceed 1 D (i.e., are comparable with aberrations of the ordinary eye) only in a positive range optical powers, which are restricted by the values of +7 and +15 D, respectively. If a harmonic structure is used (with a profile depth on the order of 20 wavelengths), the chromatic aberrations do not exceed 1 D in the entire interval of optical powers of phakic lenses from -25 to +15 D.

  8. Weak lensing by voids in modified lensing potentials

    SciTech Connect

    Barreira, Alexandre; Cautun, Marius; Li, Baojiu; Baugh, Carlton M.; Pascoli, Silvia E-mail: m.c.cautun@durham.ac.uk E-mail: c.m.baugh@durham.ac.uk

    2015-08-01

    We study lensing by voids in Cubic Galileon and Nonlocal gravity cosmologies, which are examples of theories of gravity that modify the lensing potential. We find voids in the dark matter and halo density fields of N-body simulations and compute their lensing signal analytically from the void density profiles, which we show are well fit by a simple analytical formula. In the Cubic Galileon model, the modifications to gravity inside voids are not screened and they approximately double the size of the lensing effects compared to GR. The difference is largely determined by the direct effects of the fifth force on lensing and less so by the modified density profiles. For this model, we also discuss the subtle impact on the force and lensing calculations caused by the screening effects of haloes that exist in and around voids. In the Nonlocal model, the impact of the modified density profiles and the direct modifications to lensing are comparable, but they boost the lensing signal by only ≈ 10%, compared with that of GR. Overall, our results suggest that lensing by voids is a promising tool to test models of gravity that modify lensing.

  9. Light-Weight Silver Plating Foam and Carbon Nanotube Hybridized Epoxy Composite Foams with Exceptional Conductivity and Electromagnetic Shielding Property.

    PubMed

    Xu, Yu; Li, Ying; Hua, Wei; Zhang, Aiming; Bao, Jianjun

    2016-09-14

    Herein, light-weight and exceptionally conductive epoxy composite foams were innovatively fabricated for electromagnetic interference (EMI) shielding applications using multiwalled carbon nanotubes (MWCNTs) and 3D silver-coated melamine foam (SF) as conductive frameworks. A novel and nontraditional polymer microsphere was used to reduce the material density. The preformed, highly porous, and electrically conductive SF provided channels for fast electron transport. The MWCNTs were used to offset the decrease in conductive pathways due to the crystal defects of the silver layer and the insulating epoxy resin. Consequently, an exceptional conductivity of 253.4 S m(-1), a remarkable EMI shielding effectiveness of above 68 dB at 0.05-18 GHz, and a thermal conductivity of 0.305 W mK(-1) were achieved in these novel foams employing only 2 wt % of MWCNTs and 3.7 wt % of silver due to the synergistic effects that originated in the MWCNT and SF. These parameters are substantially higher than that achieved for the foam containing 2 wt % MWCNTs. Also, the SF exhibited little weakening in the foamability of the epoxy blends and the compression properties of resulting foams. All the results indicated that this effort provided a novel, simple, low-cost, and easily industrialized concept for fabricating light-weight, high-strength epoxy composite foams for high-performance EMI shielding applications.

  10. Observation of the mass and velocity of projectile fragments produced by hypervelocity impact with light-weight ceramic targets

    NASA Astrophysics Data System (ADS)

    Saito, Fumikazu; Kawai, Nobuaki; Tamura, Hideki

    2011-06-01

    In order to characterize dynamic fracture of Al projectiles caused by impact with light-weight ceramic targets, we performed hypervelocity impact experiments of light-weight ceramic targets using spherical Al projectile accelerated by mini two-stage light-gun. As ceramic targets, Mullite, Silicon nitride, and Alumina ceramics with 1 mm thick are chosen. Aluminum-alloy projectiles of 2.1 mm in diameter are accelerated up to 4.8 km/s and impacted onto the targets under normal impact condition. The dynamic fracture of targets and projectiles is observed with flash, soft x-ray radiography and high speed digital framing camera photography, and we propose a new method for calculating the mass of impact fragments by means of flash x-ray and x-ray imaging plate. A witness plate is used to evaluate a protective performance of the targets. In comparison to the results of Silicon nitride and Alumina targets, Mullite target breaks up the projectile into smaller fragments than the other targets, and the scattering angle of the debris generate from Mullite target is larger than that of the other targets. These results suggest that Mullite ceramics will be promising structural member making up debris shield.

  11. Light-Weight Silver Plating Foam and Carbon Nanotube Hybridized Epoxy Composite Foams with Exceptional Conductivity and Electromagnetic Shielding Property.

    PubMed

    Xu, Yu; Li, Ying; Hua, Wei; Zhang, Aiming; Bao, Jianjun

    2016-09-14

    Herein, light-weight and exceptionally conductive epoxy composite foams were innovatively fabricated for electromagnetic interference (EMI) shielding applications using multiwalled carbon nanotubes (MWCNTs) and 3D silver-coated melamine foam (SF) as conductive frameworks. A novel and nontraditional polymer microsphere was used to reduce the material density. The preformed, highly porous, and electrically conductive SF provided channels for fast electron transport. The MWCNTs were used to offset the decrease in conductive pathways due to the crystal defects of the silver layer and the insulating epoxy resin. Consequently, an exceptional conductivity of 253.4 S m(-1), a remarkable EMI shielding effectiveness of above 68 dB at 0.05-18 GHz, and a thermal conductivity of 0.305 W mK(-1) were achieved in these novel foams employing only 2 wt % of MWCNTs and 3.7 wt % of silver due to the synergistic effects that originated in the MWCNT and SF. These parameters are substantially higher than that achieved for the foam containing 2 wt % MWCNTs. Also, the SF exhibited little weakening in the foamability of the epoxy blends and the compression properties of resulting foams. All the results indicated that this effort provided a novel, simple, low-cost, and easily industrialized concept for fabricating light-weight, high-strength epoxy composite foams for high-performance EMI shielding applications. PMID:27553528

  12. Learning unit: Thin lenses

    NASA Astrophysics Data System (ADS)

    Nita, L.-S.

    2012-04-01

    Learning unit: Thin lenses "Why objects seen through lenses are sometimes upright and sometimes reversed" Nita Laura Simona National College of Arts and Crafts "Constantin Brancusi", Craiova, Romania 1. GEOMETRIC OPTICS. 13 hours Introduction (models, axioms, principles, conventions) 1. Thin lenses (Types of lenses. Defining elements. Path of light rays through lenses. Image formation. Required physical quantities. Lens formulas). 2. Lens systems (Non-collated lenses. Focalless systems). 3. Human eye (Functioning as an optical system. Sight defects and their corrections). 4. Optical instruments (Characteristics exemplified by a magnifying glass. Paths of light rays through a simplified photo camera. Path of light rays through a classical microscope) (Physics curriculum for the IXth grade/ 2011). This scenario exposes a learning unit based on experimental sequences (defining specific competencies), as a succession of lessons started by noticing a problem whose solution assumes the setup of an experiment under laboratory conditions. Progressive learning of theme objectives are realised with sequential experimental steps. The central cognitive process is the induction or the generalization (development of new knowledge based on observation of examples or counterexamples of the concept to be learnt). Pupil interest in theme objectives is triggered by problem-situations, for example: "In order to better see small objects I need a magnifying glass. But when using a magnifier, small object images are sometimes seen upright and sometimes seen reversed!" Along the way, pupils' reasoning will converge to the idea: "The image of an object through a lens depends on the relative distances among object, lens, and observer". Associated learning model: EXPERIMENT Specific competencies: derived from the experiment model, in agreement with the following learning unit steps I. Evoking - Anticipation: Size of the problem, formulation of hypotheses and planning of experiment. II

  13. Array illumination of a Fresnel-Dammann zone plate.

    PubMed

    Ma, Yayao; Ye, Chaochao; Ke, Jie; Zhang, Junyong; Zhu, Jianqiang; Ling, Zunqing

    2016-09-10

    The traditional Dammann grating is a phase-only modulation, and its theoretical foundation is based on far-field diffraction. Here we extend the traditional Fresnel zone plate (FZP) into a Fresnel-Dammann zone plate (FDZP), which is, in essence, considered as a FZP with Dammann modulation. Different from the Dammann grating, a single FDZP can generate array illumination from the near field to the far field by means of amplitude-only modulation in the absence of phase modulation. We then give some array illuminations operated in a water window to validate the feasibility and validity. This kind of wave-front modulation technology can be applied to array focusing and imaging from the x-ray to the EUV region. PMID:27661355

  14. Comparative simulations of Fresnel holography methods for atomic waveguides

    NASA Astrophysics Data System (ADS)

    Henderson, V. A.; Griffin, P. F.; Riis, E.; Arnold, A. S.

    2016-02-01

    We have simulated the optical properties of micro-fabricated Fresnel zone plates (FZPs) as an alternative to spatial light modulators for producing non-trivial light potentials to trap atoms within a lensless Fresnel arrangement. We show that binary (1 bit) FZPs with wavelength (1 μm) spatial resolution consistently outperform kinoforms of spatial and phase resolution comparable to commercial SLMs in root mean square error comparisons, with FZP kinoforms demonstrating increasing improvement for complex target intensity distributions. Moreover, as sub-wavelength resolution microfabrication is possible, FZPs provide an exciting possibility for the creation of static cold-atom trapping potentials useful to atomtronics, interferometry, and the study of fundamental physics.

  15. Fresnel diffractive imaging: Experimental study of coherence and curvature

    NASA Astrophysics Data System (ADS)

    Whitehead, L. W.; Williams, G. J.; Quiney, H. M.; Nugent, K. A.; Peele, A. G.; Paterson, D.; de Jonge, M. D.; McNulty, I.

    2008-03-01

    A Fresnel coherent diffractive imaging experiment is performed using a pinhole as a test object. The experimental parameters of the beam curvature and coherence length of the illuminating radiation are varied to investigate their effects on the reconstruction process. It is found that a sufficient amount of curvature across the sample strongly ameliorates the effects of low coherence, even when the sample size exceeds the coherence length.

  16. Control Program and Optical Improvements of Fresnel Microspectrometer

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; King, Glen; Choi, Sang; Elliott, James

    2011-01-01

    A microspectrometer has a circular geometry, and is designed with the Fresnel diffraction equation. This enables a dramatic miniaturization of the optical parts of a spectrometer over 100 times by volume. Therefore, it enables the construction of spectrometer arrays such as 100X100 microspectrometers for tunable multispectral or hyper-spectral imaging. It can be used for a massive, simultaneous spectral scan from multiple optical sources such as 10,000 optical fibers.

  17. Fresnel incoherent correlation holography (FINCH): a review of research

    NASA Astrophysics Data System (ADS)

    Rosen, Joseph; Brooker, Gary

    2012-07-01

    In this review, we describe our method for creating holograms of incoherent objects, dubbed Fresnel incoherent correlation holography (FINCH). FINCH creates holograms by a single-channel on-axis incoherent interferometer process. Like any Fresnel hologram, the object is correlated with quadratic phase functions, but the correlation is carried out without any movement. Generally, in the FINCH system, light is reflected, or emitted, from a three-dimensional (3D) object, propagates through a spatial light modulator (SLM), and is recorded by a digital camera. The SLM is used as a beam-splitter of the single-channel incoherent interferometer, such that each spherical beam originated from each object point is split into two spherical beams with two different curve radiuses. Incoherent summing of the entire interferences between all the couples of the spherical beams creates the Fresnel hologram of the observed 3D object. When this hologram is reconstructed in the computer, the 3D properties of the object are revealed. In this review, we describe various aspects of FINCH which have been described recently, including FINCH of reflected white light, FINCH of fluorescence objects, a FINCH-based holographic fluorescence microscope, a FINCH configuration which capitalizes on the polarization sensitivity of the SLM and finally FINCH is analyzed in view of linear system theory.

  18. Elastic medium equivalent to Fresnel's double-refraction crystal.

    PubMed

    Carcione, José M; Helbig, Klaus

    2008-10-01

    In 1821, Fresnel obtained the wave surface of an optically biaxial crystal, assuming that light waves are vibrations of the ether in which longitudinal vibrations (P waves) do not propagate. An anisotropic elastic medium mathematically analogous to Fresnel's crystal exists. The medium has four elastic constants: a P-wave modulus, associated with a spherical P wave surface, and three elastic constants, c(44), c(55), and c(66), associated with the shear waves, which are mathematically equivalent to the three dielectric permittivity constants epsilon(11), epsilon(22), and epsilon(33) as follows: mu(0)epsilon(11)<==>rho/c(44), mu(0)epsilon(22)<==>rho/c(55), mu(0)epsilon(33)<==>rho/c(66), where mu(0) is the magnetic permeability of vacuum and rho is the mass density. These relations also represent the equivalence between the elastic and electromagnetic wave velocities along the principal axes of the medium. A complete mathematical equivalence can be obtained by setting the P-wave modulus equal to zero, but this yields an unstable elastic medium (the hypothetical ether). To obtain stability the P-wave velocity has to be assumed infinite (incompressibility). Another equivalent Fresnel's wave surface corresponds to a medium with anomalous polarization. This medium is physically unstable even for a nonzero P-wave modulus.

  19. Quasars and gravitational lenses.

    PubMed

    Turner, E L

    1984-03-23

    Despite the expenditure of large amounts of telescope time and other resources, most of the fundamental questions concerning quasi-stellar objects (quasars) remain unanswered. A complex phenomenology of radio, infrared, optical, and x-ray properties has accumulated but has not yielded even a satisfactory classification system. The large red shifts (distances) of quasars make them very valuable tools for studying cosmology and the properties of intervening matter in the Universe through observations of absorption lines and gravitational lenses.

  20. Thermal lensing in optical fibers.

    PubMed

    Dong, Liang

    2016-08-22

    Average powers from fiber lasers have reached the point that a quantitative understanding of thermal lensing and its impact on transverse mode instability is becoming critical. Although thermal lensing is well known qualitatively, there is a general lack of a simple method for quantitative analysis. In this work, we first conduct a study of thermal lensing in optical fibers based on a perturbation technique. The perturbation technique becomes increasingly inaccurate as thermal lensing gets stronger. It, however, provides a basis for determining a normalization factor to use in a more accurate numerical study. A simple thermal lensing threshold condition is developed. The impact of thermal lensing on transverse mode instability is also studied. PMID:27557260

  1. Fresnel zone considerations for reflection and scatter from refractive index irregularities

    NASA Technical Reports Server (NTRS)

    Doviak, R. J.; Zrnic, D. S.

    1983-01-01

    Several different echoing mechanisms are proposed to explain VHF/UHF scatter from clear air; (1) anisotropic scatter; (2) Fresnel reflection, and (3) Fresnel scatter, in order to account for the spatial (angle and range) and temporal dependence of the echoes. The term diffuse reflection describes the echoing mechanism when both scatter and reflection coexist. A unifying formulation is presented incorporating a statistical approach that embraces all mechanisms the above mechanisms and gives conditions under which reflection or scatter dominates. A distinction between Fraunhofer and Fresnel scatter and a criterion is presented under which Fresnel scatter is important.

  2. Fraunhofer computer-generated hologram for diffused 3D scene in Fresnel region.

    PubMed

    Liu, Yuan-Zhi; Dong, Jian-Wen; Pu, Yi-Ying; He, He-Xiang; Chen, Bing-Chu; Wang, He-Zhou; Zheng, Huadong; Yu, Yingjie

    2011-06-01

    A Fraunhofer computer-generated hologram (CGH) is proved to be valid in display for three-dimensional (3D) objects from the Fresnel to the far-field region without a Fourier lens for reconstruction. To quickly compute large and complicated 3D objects that consist of slanted diffused surfaces in the Fresnel region, a Fraunhofer-based analytical approach using a basic-triangle tiling diffuser is developed. Both theoretical and experimental results reveal that Fraunhofer CGH can perform the same effects as Fresnel CGH but require less calculation time. Impressive 3D solid effects are achieved in the Fresnel region.

  3. Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film.

    PubMed

    Jeng, Shie-Chang; Hwang, Shug-June; Horng, Jing-Shyang; Lin, Kuo-Ren

    2010-12-01

    A simple method to make a switchable liquid crystal (LC) Fresnel lens with high diffraction efficiency and a low driving voltage was proposed based on the photo-induced surface modification of the vertical alignment layer. UV illumination alters the pretilt angle of alignment layers, a Fresnel zone-distribution hybrid alignment in the homeotropic LC cell can be straightforwardly achieved through UV exposure, yielding a concentric structure of the Fresnel phase LC lens. A remarkable diffraction efficiency of ~31.4%, close to the measured diffraction efficiency of the used Fresnel-zone-plate mask of 32%, was detected using a linearly polarized incident beam. PMID:21164982

  4. Development and application of a light-weight, wind-turbine rotor-based data acquisition system

    SciTech Connect

    Berg, D.E.; Robertson, P.J.; Ortiz, M.F.

    1998-04-01

    Wind-energy researchers at the National Wind Technology Center (NWTC), representing Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL), are developing a new, light-weight, modular data acquisition unit capable of acquiring long-term, continuous time-series data from small and/or dynamic wind-turbine rotors. The unit utilizes commercial data acquisition hardware, spread-spectrum radio modems, and Global Positioning System receivers, and a custom-built programmable logic device. A prototype of the system is now operational, and initial field deployment is expected this summer. This paper describes the major subsystems comprising the unit, summarizes the current status of the system, and presents the current plans for near-term development of hardware and software.

  5. Structural Verification of the Space Shuttle's External Tank Super LightWeight Design: A Lesson in Innovation

    NASA Technical Reports Server (NTRS)

    Otte, Neil

    1997-01-01

    The Super LightWeight Tank (SLWT) team was tasked with a daunting challenge from the outset: boost the payload capability of the Shuttle System by safely removing 7500 lbs. from the existing 65,400 lb. External Tank (ET). Tools they had to work with included a promising new Aluminum Lithium alloy, the concept of a more efficient structural configuration for the Liquid Hydrogen (LH2) tank, and a highly successful, mature Light Weight Tank (LWT) program. The 44 month schedule which the SLWT team was given for the task was ambitious by any measure. During this time the team had to not only design, build, and verify the new tank, but they also had to move a material from the early stages of development to maturity. The aluminum lithium alloy showed great promise, with an approximately 29% increase in yield strength, 15% increase in ultimate strength, 5 deg/O increase in modulus and 5 deg/O decrease in density when compared to the current 2219 alloy. But processes had to be developed and brought under control, manufacturing techniques perfected, properties characterized, and design allowable generated. Because of the schedule constraint, this material development activity had to occur in parallel with design and manufacturing. Initial design was performed using design allowable believed to be achievable with the Aluminum Lithium alloy system, but based on limited test data. Preliminary structural development tests were performed with material still in the process of iteration. This parallel path approach posed obvious challenges and risks, but also allowed a unique opportunity for interaction between the structures and materials disciplines in the formulation of the material.

  6. Hollow lensing duct

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.

    2000-01-01

    A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.

  7. Galaxies as gravitational lenses.

    PubMed

    Barnothy, J; Barnothy, M F

    1968-10-18

    Of all the galaxies in the visible part of the universe, 500 million are seen through intervening galaxies. In some instances the foreground galaxy will act as a gravitational lens and produce distorted and (in brightness) greatly amplified images of the galaxy behind it; such images may simulate starlike superluminous objects such as quasars (quasi-stellar objects). The number of gravitational lenses is several times greater than the number of quasars yet observed. In other instances the superposition of the image upon a visible foreground galaxy may simulate morphological configurations resembling N-type, dumbbell, spiral, or barred-spiral galaxies. PMID:17836654

  8. RHIC electron lenses upgrades

    SciTech Connect

    Gu, X.; Altinbas, Z.; Bruno, D.; Binello, S.; Costanzo, M.; Drees, A.; Fischer, W.; Gassner, D. M.; Hock, J.; Hock, K.; Harvey, M.; Luo, Y.; Marusic, A.; Mi, C.; Mernick, K.; Minty, M.; Michnoff, R.; Miller, T. A.; Pikin, A. I.; Robert-Demolaize, G.; Samms, T.; Shrey, T. C.; Schoefer, V.; Tan, Y.; Than, R.; Thieberger, P.; White, S. M.

    2015-05-03

    In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.

  9. Full-field vibrometry with digital Fresnel holography

    SciTech Connect

    Leval, Julien; Picart, Pascal; Boileau, Jean Pierre; Pascal, Jean Claude

    2005-09-20

    A setup that permits full-field vibration amplitude and phase retrieval with digital Fresnel holography is presented. Full reconstruction of the vibration is achieved with a three-step stroboscopic holographic recording, and an extraction algorithm is proposed. The finite temporal width of the illuminating light is considered in an investigation of the distortion of the measured amplitude and phase. In particular, a theoretical analysis is proposed and compared with numerical simulations that show good agreement. Experimental results are presented for a loudspeaker under sinusoidal excitation; the mean quadratic velocity extracted from amplitude evaluation under two different measuring conditions is presented. Comparison with time averaging validates the full-field vibrometer.

  10. Digital Model of Fourier and Fresnel Quantized Holograms

    NASA Astrophysics Data System (ADS)

    Boriskevich, Anatoly A.; Erokhovets, Valery K.; Tkachenko, Vadim V.

    Some models schemes of Fourier and Fresnel quantized protective holograms with visual effects are suggested. The condition to arrive at optimum relationship between the quality of reconstructed images, and the coefficient of data reduction about a hologram, and quantity of iterations in the reconstructing hologram process has been estimated through computer model. Higher protection level is achieved by means of greater number both bi-dimensional secret keys (more than 2128) in form of pseudorandom amplitude and phase encoding matrixes, and one-dimensional encoding key parameters for every image of single-layer or superimposed holograms.

  11. Fresnel diffraction and fractal patterns from polygonal apertures.

    PubMed

    Huang, J G; Christian, J M; McDonald, G S

    2006-11-01

    Two compact analytical descriptions of Fresnel diffraction patterns from polygonal apertures under uniform illumination are detailed. In particular, a simple expression for the diffracted field from constituent edges is derived. These results have fundamental importance as well as specific applications, and they promise new physical insights into diffraction-related phenomena. The usefulness of the formulations is illuminated in the context of a virtual source theory that accounts for two transverse dimensions. This application permits calculation of fractal unstable-resonator modes of arbitrary order and unprecedented accuracy. PMID:17047703

  12. Fresnel reflection from a cavity with net roundtrip gain

    SciTech Connect

    Mansuripur, Tobias S.; Mansuripur, Masud

    2014-03-24

    A planewave incident on an active etalon with net roundtrip gain may be expected to diverge in field amplitude, yet applying the Fresnel formalism to Maxwell's equations admits a convergent solution. We describe this solution mathematically and provide additional insight by demonstrating the response of such a cavity to an incident beam of light. Cavities with net roundtrip gain have often been overlooked in the literature, and a clear understanding of their behavior yields insight to negative refraction in nonmagnetic media, a duality between loss and gain, amplified total internal reflection, and the negative-index lens.

  13. Fabrication of Compound Refractive X-ray Lenses Using LIGA Process and Performance Tests

    SciTech Connect

    Lee, Jin Pyoung; Kim, Guk Bae; Kim, Jong Hyun; Chang, Suk Sang; Lee, Sang Joon

    2007-01-19

    Recent advances of X-ray microscopy technology enable the visualization of some micro/nano-scale objects which optical microscopy and electron microscopy cannot be used to observe. The X-ray microscopy can be applied to observe the internal structure of a thicker sample than the electron microscopy can, and its spatial resolution is higher than that of the optical microscopy. Moreover, it has a powerful element specific imaging ability. For further improving the X-ray microscope, it is indispensable to make X-ray optics for focusing X-rays more effectively. Recently, various X-ray lenses such as diffraction lenses of FZP(Fresnel zone plate) and spatter-sliced FZT, total reflection lenses of K-B(Kirkpatrick-Baez) mirror and Wolter mirror, and refractive lens of CRL(compound refractive lens) were introduced. Compared with the other types of lenses, CRL is easy to fabricate and handle. In this study, we designed and fabricated various types of CRLs using LIGA(LIthographie, Galvanoformung, Abformtechnik) process, and used PMMA(Poly(methyl methacrylate)) material as the material of CRL. Their performances are tested with varying parameters such as parabolic/kinoform shape, radius of curvature, wall thickness between adjacent lenses, and width of lenses. The performance tests were carried out by using a simple synchrotron X-ray imaging method. The tests results revealed that hard x-rays could be condensed well by the CRL of PMMA material at the focal point we expect We captured sample images one-dimensionally magnified by CRLs. Furthermore, we found which parameter is more effective for enhancing focus efficiency and which parameter should be considered more carefully in the fabrication process of LIGA.

  14. Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems

    SciTech Connect

    Peters, E.M.; Masso, J.D.

    1995-10-01

    This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.

  15. Light weight phosphate cements

    DOEpatents

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  16. Roulettes: a weak lensing formalism for strong lensing: I. Overview

    NASA Astrophysics Data System (ADS)

    Clarkson, Chris

    2016-08-01

    We present a new perspective on gravitational lensing. We describe a new extension of the weak lensing formalism capable of describing strongly lensed images. By integrating the nonlinear geodesic deviation equation, the amplification matrix of weak lensing is generalised to a sum over independent amplification tensors of increasing rank. We show how an image distorted by a generic lens may be constructed as a sum over ‘roulettes’, which are the natural curves associated with the independent spin modes of the amplification tensors. Highly distorted images can be constructed even for large sources observed near or within the Einstein radius of a lens where the shear and convergence are large. The amplitude of each roulette is formed from a sum over appropriate derivatives of the lensing potential. Consequently, measuring these individual roulettes for images around a lens gives a new way to reconstruct a strong lens mass distribution without requiring a lens model. This formalism generalises the convergence, shear and flexion of weak lensing to arbitrary order, and provides a unified bridge between the strong and weak lensing regimes. This overview paper is accompanied by a much more detailed paper II, arXiv:1603.04652.

  17. LENSED: a code for the forward reconstruction of lenses and sources from strong lensing observations

    NASA Astrophysics Data System (ADS)

    Tessore, Nicolas; Bellagamba, Fabio; Metcalf, R. Benton

    2016-09-01

    Robust modelling of strong lensing systems is fundamental to exploit the information they contain about the distribution of matter in galaxies and clusters. In this work, we present LENSED, a new code which performs forward parametric modelling of strong lenses. LENSED takes advantage of a massively parallel ray-tracing kernel to perform the necessary calculations on a modern graphics processing unit (GPU). This makes the precise rendering of the background lensed sources much faster, and allows the simultaneous optimisation of tens of parameters for the selected model. With a single run, the code is able to obtain the full posterior probability distribution for the lens light, the mass distribution and the background source at the same time. LENSED is first tested on mock images which reproduce realistic space-based observations of lensing systems. In this way, we show that it is able to recover unbiased estimates of the lens parameters, even when the sources do not follow exactly the assumed model. Then, we apply it to a subsample of the SLACS lenses, in order to demonstrate its use on real data. The results generally agree with the literature, and highlight the flexibility and robustness of the algorithm.

  18. Subaru Weak Lensing Measurements of Four Strong Lensing Clusters: Are Lensing Clusters Over-Concentrated?

    SciTech Connect

    Oguri, Masamune; Hennawi, Joseph F.; Gladders, Michael D.; Dahle, Haakon; Natarajan, Priyamvada; Dalal, Neal; Koester, Benjamin P.; Sharon, Keren; Bayliss, Matthew

    2009-01-29

    We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z = 0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the {Lambda}-dominated cold dark matter model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c{sub vir} {approx} 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model of the lensing cluster Abell 1703 with constraints from multiple image families, and find the dark matter inner density profile to be cuspy with the slope consistent with -1, in agreement with expectations.

  19. Results and Comparison from the SAM Linear Fresnel Technology Performance Model: Preprint

    SciTech Connect

    Wagner, M. J.

    2012-04-01

    This paper presents the new Linear Fresnel technology performance model in NREL's System Advisor Model. The model predicts the financial and technical performance of direct-steam-generation Linear Fresnel power plants, and can be used to analyze a range of system configurations. This paper presents a brief discussion of the model formulation and motivation, and provides extensive discussion of the model performance and financial results. The Linear Fresnel technology is also compared to other concentrating solar power technologies in both qualitative and quantitative measures. The Linear Fresnel model - developed in conjunction with the Electric Power Research Institute - provides users with the ability to model a variety of solar field layouts, fossil backup configurations, thermal receiver designs, and steam generation conditions. This flexibility aims to encompass current market solutions for the DSG Linear Fresnel technology, which is seeing increasing exposure in fossil plant augmentation and stand-alone power generation applications.

  20. Application of light-weight filtration media in an anoxic biofilter for nitrate removal from micro-polluted surface water.

    PubMed

    Wang, Zheng; Fei, Xiang; He, Shengbing; Huang, Jungchen; Zhou, Weili

    2016-01-01

    The research investigated nitrate removal from micro-polluted surface water by the single-stage process of anoxic biofilter using light-weight polystyrene beads as filtration media. In this study, sodium acetate was used as an external carbon source and the nitrate removal efficiency under different regimes of hydraulic loading rate (HLR), water temperature, and C/N ratio was studied. In addition, the effect of backwash on denitrification efficiency was investigated. The results show that the biofilter achieved a high nitrate removal efficiency in 2 weeks at water temperatures ranging between 22 and 25 °C at a C/N ratio (COD:NO3(-)-N) of 6:1. Besides, the average removal efficiency of nitrate at HLRs of 5.66, 7.07 and 8.49 m(3) m(-2) h(-1) were 87.5, 87.3 and 87.1%, respectively. The average removal efficiency of nitrate nitrogen was 13.9% at a HLR of 5.66 m(3) m(-2) h(-1) at water temperatures of 12-14 °C, then it increased to 93.7% when the C/N ratio increased to 10. It suggests that the optimal hydraulic retention time is at water temperatures of 8-10 °C. The water consumption rate of backwash was about 0.2-0.3%, and denitrification efficiency returned to the normal level in 12 h after backwash. PMID:27533875

  1. Light-Weight Radioisotope Heater Unit Final Safety Analysis Report (LWRHU FSAR): Volume 3, Nuclear Risk Analysis Document

    SciTech Connect

    Not Available

    1988-11-30

    The Light-Weight Radioisotope Heater Unit (LWRHU) Final Safety Analysis Report (FSAR), Volume 2, Accident Model Document (AMD) describes potential accident scenarios during the Galileo mission and evaluates the response of the LWRHUs to the associated accident environments. Any resulting source terms, consisting of PuO2 (with Pu-238 the dominant radionuclide), are then described in terms of curies released, particle size distribution, release location, and probabilities. This volume (LWRHU-FSAR, Volume 3, Nuclear Risk Analysis Document (NRAD)) contains the radiological analyses which estimate the consequences of the accident scenarios described in the AMD. It also contains the quantification of mission risks resulting from the LWRHUs based on consideration of all accident scenarios and their probabilities. Estimates of source terms and their characteristics derived in the AMD are used as inputs to the analyses in the NRAD. The Failure Abort Sequence Trees (FASTs) presented in the AMD define events for which source terms occur and quantify them. Based on this information, three types of source term cases (most probable, maximum, and expectation) for each mission phase were developed for use in evaluating the radiological consequences and mission risks. 4 refs., 5 figs., 8 tabs.

  2. Cryogenic explosion environment modeling and testing of space shuttle and light-weight radioisotope heater unit interactions

    SciTech Connect

    Johnson, E.W.

    1985-10-01

    In order to assess the risk to the world's populace in the event of a Space Shuttle accident when radioisotope-containing heat sources are on board, testing of that system must be performed to determine release point, environments required, and the size distribution of the released fuel. To evaluate the performance of the Light-Weight Radioisotope Heater Unit (LWRHU) (101 of these 1-W items are placed on the Galileo spacecraft which will be launched from the Space Shuttle), some high-velocity impact and flyer plate testing was carried out. The results showed that a bare urania-fueled LWRHU clad (approximately 1-mm thick platinum-30 wt % rhodium alloy) will withstand 1100 m/s flyer plate (3.5-mm thick aluminum) impacts and 330 m/s impacts upon the Space Shuttle floor (approximately 12-mm thick aluminum) without rupture or fuel release. Velocities in the order of 600 m/s on a steel surface will cause clad failure with fuel release. The fuel breakup patterns were characterized as to quantity in a specific size range. These data were employed in the formal Safety Analysis Report for the LWRHU to support the planned 1986 Galileo launch. 19 figs.

  3. RBioCloud: A Light-Weight Framework for Bioconductor and R-based Jobs on the Cloud.

    PubMed

    Varghese, Blesson; Patel, Ishan; Barker, Adam

    2015-01-01

    Large-scale ad hoc analytics of genomic data is popular using the R-programming language supported by over 700 software packages provided by Bioconductor. More recently, analytical jobs are benefitting from on-demand computing and storage, their scalability and their low maintenance cost, all of which are offered by the cloud. While biologists and bioinformaticists can take an analytical job and execute it on their personal workstations, it remains challenging to seamlessly execute the job on the cloud infrastructure without extensive knowledge of the cloud dashboard. How analytical jobs can not only with minimum effort be executed on the cloud, but also how both the resources and data required by the job can be managed is explored in this paper. An open-source light-weight framework for executing R-scripts using Bioconductor packages, referred to as `RBioCloud', is designed and developed. RBioCloud offers a set of simple command-line tools for managing the cloud resources, the data and the execution of the job. Three biological test cases validate the feasibility of RBioCloud. The framework is available from http://www.rbiocloud.com. PMID:26357328

  4. Light-weight sandwich panel honeycomb core with hybrid carbon-glass fiber composite skin for electric vehicle application

    NASA Astrophysics Data System (ADS)

    Cahyono, Sukmaji Indro; Widodo, Angit; Anwar, Miftahul; Diharjo, Kuncoro; Triyono, Teguh; Hapid, A.; Kaleg, S.

    2016-03-01

    The carbon fiber reinforced plastic (CFRP) composite is relative high cost material in current manufacturing process of electric vehicle body structure. Sandwich panels consisting polypropylene (PP) honeycomb core with hybrid carbon-glass fiber composite skin were investigated. The aim of present paper was evaluate the flexural properties and bending rigidity of various volume fraction carbon-glass fiber composite skins with the honeycomb core. The flexural properties and cost of panels were compared to the reported values of solid hybrid Carbon/Glass FRP used for the frame body structure of electric vehicle. The finite element model of represented sandwich panel was established to characterize the flexural properties of material using homogenization technique. Finally, simplified model was employed to crashworthiness analysis for engine hood of the body electric vehicle structure. The good cost-electiveness of honeycomb core with hybrid carbon-glass fiber skin has the potential to be used as a light-weight alternative material in body electric vehicle fabricated.

  5. Application of light-weight filtration media in an anoxic biofilter for nitrate removal from micro-polluted surface water.

    PubMed

    Wang, Zheng; Fei, Xiang; He, Shengbing; Huang, Jungchen; Zhou, Weili

    2016-01-01

    The research investigated nitrate removal from micro-polluted surface water by the single-stage process of anoxic biofilter using light-weight polystyrene beads as filtration media. In this study, sodium acetate was used as an external carbon source and the nitrate removal efficiency under different regimes of hydraulic loading rate (HLR), water temperature, and C/N ratio was studied. In addition, the effect of backwash on denitrification efficiency was investigated. The results show that the biofilter achieved a high nitrate removal efficiency in 2 weeks at water temperatures ranging between 22 and 25 °C at a C/N ratio (COD:NO3(-)-N) of 6:1. Besides, the average removal efficiency of nitrate at HLRs of 5.66, 7.07 and 8.49 m(3) m(-2) h(-1) were 87.5, 87.3 and 87.1%, respectively. The average removal efficiency of nitrate nitrogen was 13.9% at a HLR of 5.66 m(3) m(-2) h(-1) at water temperatures of 12-14 °C, then it increased to 93.7% when the C/N ratio increased to 10. It suggests that the optimal hydraulic retention time is at water temperatures of 8-10 °C. The water consumption rate of backwash was about 0.2-0.3%, and denitrification efficiency returned to the normal level in 12 h after backwash.

  6. RBioCloud: A Light-Weight Framework for Bioconductor and R-based Jobs on the Cloud.

    PubMed

    Varghese, Blesson; Patel, Ishan; Barker, Adam

    2015-01-01

    Large-scale ad hoc analytics of genomic data is popular using the R-programming language supported by over 700 software packages provided by Bioconductor. More recently, analytical jobs are benefitting from on-demand computing and storage, their scalability and their low maintenance cost, all of which are offered by the cloud. While biologists and bioinformaticists can take an analytical job and execute it on their personal workstations, it remains challenging to seamlessly execute the job on the cloud infrastructure without extensive knowledge of the cloud dashboard. How analytical jobs can not only with minimum effort be executed on the cloud, but also how both the resources and data required by the job can be managed is explored in this paper. An open-source light-weight framework for executing R-scripts using Bioconductor packages, referred to as `RBioCloud', is designed and developed. RBioCloud offers a set of simple command-line tools for managing the cloud resources, the data and the execution of the job. Three biological test cases validate the feasibility of RBioCloud. The framework is available from http://www.rbiocloud.com.

  7. Push or Pull? The light-weight architecture of the Daphnia pulex carapace is adapted to withstand tension, not compression.

    PubMed

    Kruppert, Sebastian; Horstmann, Martin; Weiss, Linda C; Schaber, Clemens F; Gorb, Stanislav N; Tollrian, Ralph

    2016-10-01

    Daphnia (Crustacea, Cladocera) are well known for their ability to form morphological adaptations to defend against predators. In addition to spines and helmets, the carapace itself is a protective structure encapsulating the main body, but not the head. It is formed by a double layer of the integument interconnected by small pillars and hemolymphatic space in between. A second function of the carapace is respiration, which is performed through its proximal integument. The interconnecting pillars were previously described as providing higher mechanical stability against compressive forces. Following this hypothesis, we analyzed the carapace structure of D. pulex using histochemistry in combination with light and electron microscopy. We found the distal integument of the carapace to be significantly thicker than the proximal. The pillars appear fibrous with slim waists and broad, sometimes branched bases where they meet the integument layers. The fibrous structure and the slim-waisted shape of the pillars indicate a high capacity for withstanding tensile rather than compressive forces. In conclusion they are more ligaments than pillars. Therefore, we measured the hemolymphatic gauge pressure in D. longicephala and indeed found the hemocoel to have a pressure above ambient. Our results offer a new mechanistic explanation of the high rigidity of the daphniid carapace, which is probably the result of a light-weight construction consisting of two integuments bound together by ligaments and inflated by a hydrostatic hyper-pressure in the hemocoel. J. Morphol. 277:1320-1328, 2016. © 2016 Wiley Periodicals, Inc. PMID:27418246

  8. Reentry response of the light weight radioisotope heater unit resulting from a Venus-Earth-Earth Gravity Assist maneuver accident

    SciTech Connect

    Hagan, J.C.

    1988-10-01

    Reentry analyses consisting of ablation response, thermal response and thermal stress response have been conducted on the Light Weight Radioisotope Heater Unit for Galileo/VEEGA reentry conditions. Sequential ablation analyses of the LWRHU aeroshell, the fuel clad, and the fuel pellet have been conducted in reentry regimes where the aeroshell has been deemed to fail. The failure criterion for ablation is assumed to be recession corresponding to 50% of the wall thickness (the design criterion recommended in the DOE Overall Safety Manual). Although the analyses have been carried far beyond this limit (as presented and discussed herein), JHU/APL endorses the position that failure may occur at the time that this recession is achieved or at lower altitudes within the heat pulse considering the uncertainties in the aerodynamic, thermodynamic, and thermo-structural analyses and modeling. These uncertainties result mainly because of the high energies involved in the VEEGA reentries compared to orbital decay reentries. Risk evaluations should consider the fact that for shallow flight paths the unit may disassemble at high-altitude as a result of ablation or may remain intact until it impacts with a clad that had been molten. 80 refs., 46 figs., 16 tabs.

  9. Lenses for JWST

    NASA Astrophysics Data System (ADS)

    Ebeling, Harald; Richard, Johan; Kneib, Jean-Paul; Repp, Andrew; Atek, Hakim; Egami, Eiichi; Windhorst, Rogier; Edge, Alastair

    2016-08-01

    JWST will dramatically advance our knowledge and understanding of the first generations of galaxies at z>10, their role in the re-ionization of the Universe, and the evolutionary processes that gave rise to the complexity and diversity of galaxies at the current epoch. As demonstrated by HST legacy projects like CLASH and the Hubble Frontier Fields, gravitational amplification by massive galaxy clusters can significantly extend the depth of the required observations. However, for JWST, reducing any diffuse background light will be just as crucial. We here propose Spitzer/IRAC observations of six massive cluster lenses, specifically selected as candidates for observation with JWST. By (a) quantifying the amount of intra-cluster light and (b) enabling us to improve our current lens models, the data resulting from the requested observations will be instrumental for the final selection of cluster targets that maximize the scientific returns of deep JWST observations.

  10. Gravitational lensing by gravastars

    NASA Astrophysics Data System (ADS)

    Kubo, Tomohiro; Sakai, Nobuyuki

    2016-04-01

    As a possible method to detect gravastars (gravitational-vacuum-star), which was originally proposed by Mazur and Mottola, we study their gravitational lensing effects. Specifically, we adopt a spherical thin-shell model of a gravastar developed by Visser and Wiltshire, which connects interior de Sitter geometry and exterior Schwarzschild geometry, and assume that its surface is optically transparent. We calculate the image of a companion which rotates around the gravastar; we find that some characteristic images appear, depending on whether the gravastar possess unstable circular orbits of photons (Model 1) or not (Model 2). For Model 2, we calculate the total luminosity change, which is called microlensing effects; the maximal luminosity could be considerably larger than the black hole with the same mass.

  11. Pulsar lensing geometry

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Pen, Ue-Li; Macquart, J.-P.; Brisken, Walter; Deller, Adam

    2016-05-01

    We test the inclined sheet pulsar scintillation model (Pen & Levin) against archival very long baseline interferometry (VLBI) data on PSR 0834+06 and show that its scintillation properties can be precisely reproduced by a model in which refraction occurs on two distinct lens planes. These data strongly favour a model in which grazing-incidence refraction instead of diffraction off turbulent structures is the primary source of pulsar scattering. This model can reproduce the parameters of the observed diffractive scintillation with an accuracy at the percent level. Comparison with new VLBI proper motion results in a direct measure of the ionized interstellar medium (ISM) screen transverse velocity. The results are consistent with ISM velocities local to the PSR 0834+06 sight-line (through the Galaxy). The simple 1-D structure of the lenses opens up the possibility of using interstellar lenses as precision probes for pulsar lens mapping, precision transverse motions in the ISM, and new opportunities for removing scattering to improve pulsar timing. We describe the parameters and observables of this double screen system. While relative screen distances can in principle be accurately determined, a global conformal distance degeneracy exists that allows a rescaling of the absolute distance scale. For PSR B0834+06, we present VLBI astrometry results that provide (for the first time) a direct measurement of the distance of the pulsar. For most of the recycled millisecond pulsars that are the targets of precision timing observations, the targets where independent distance measurements are not available. The degeneracy presented in the lens modelling could be broken if the pulsar resides in a binary system.

  12. Overview of the multilayer-Fresnel zone plate and the kinoform lens development at MPI for intelligent systems

    NASA Astrophysics Data System (ADS)

    Tunca Sanli, Umut; Keskinbora, Kahraman; Grévent, Corinne; Schütz, Gisela

    2015-05-01

    The ultimate goal of our research is to develop novel fabrication methods for high efficiency and high resolution X-ray optics. To this end, we have been pursuing the fabrication of several innovative diffractive/refractive optics designs. One such optic is the multilayer type Fresnel zone plate (ML-FZP). Our fabrication process relies on the atomic layer deposition (ALD) of two materials on a smooth glass fiber followed by a focused ion beam (FIB) based slicing and polishing. The ALD process allows much smaller outermost zone widths than the standard electron beam lithography based FZPs, meaning FZPs with potentially higher resolutions. Moreover, by depositing the multilayer on a cm long glass-fiber FZPs with very high optical thicknesses can be fabricated that can efficiently focus harder X-rays as well. A 21 nm half-pitch resolution was achieved using the ML-FZPs. Another optic we have been working on is the kinoform lens, which is a refractive/diffractive optic with a 100 % theoretical focusing efficiency. Their fabrication is usually realized by using approximate models which limit their success. Recently the fabrication of real kinoform lenses has been successfully realized in our lab via gray-scale direct-write ion beam lithography without any approximations. The lenses have been tested in the soft X-ray range achieving up to ~90 % of the calculated efficiency which indicates outstanding replication of the designed profile. Here we give an overview of our research and discuss the future challenges and opportunities for these optics.

  13. Galaxy cluster lensing masses in modified lensing potentials

    DOE PAGESBeta

    Barreira, Alexandre; Li, Baojiu; Jennings, Elise; Merten, Julian; King, Lindsay; Baugh, Carlton M.; Pascoli, Silvia

    2015-10-28

    In this study, we determine the concentration–mass relation of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly modify the lensing potential. We model the clusters as Navarro–Frenk–White haloes and fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing convergence profiles of the clusters. We discuss a number of important issues that need to be taken into account, associated with the use of non-parametric and parametric lensing methods, as well as assumptions about the background cosmology. Our results show that the concentrationmore » and mass estimates in the modified gravity models are, within the error bars, the same as in Λ cold dark matter. This result demonstrates that, for the Nonlocal model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon model, the screening mechanism is very efficient inside the cluster radius. However, at distances ~ [2–20] Mpc/h from the cluster centre, we find that the surrounding force profiles are enhanced by ~ 20–40% in the Cubic Galileon model. This has an impact on dynamical mass estimates, which means that tests of gravity based on comparisons between lensing and dynamical masses can also be applied to the Cubic Galileon model.« less

  14. Galaxy cluster lensing masses in modified lensing potentials

    SciTech Connect

    Barreira, Alexandre; Li, Baojiu; Jennings, Elise; Merten, Julian; King, Lindsay; Baugh, Carlton M.; Pascoli, Silvia

    2015-10-28

    In this study, we determine the concentration–mass relation of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly modify the lensing potential. We model the clusters as Navarro–Frenk–White haloes and fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing convergence profiles of the clusters. We discuss a number of important issues that need to be taken into account, associated with the use of non-parametric and parametric lensing methods, as well as assumptions about the background cosmology. Our results show that the concentration and mass estimates in the modified gravity models are, within the error bars, the same as in Λ cold dark matter. This result demonstrates that, for the Nonlocal model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon model, the screening mechanism is very efficient inside the cluster radius. However, at distances ~ [2–20] Mpc/h from the cluster centre, we find that the surrounding force profiles are enhanced by ~ 20–40% in the Cubic Galileon model. This has an impact on dynamical mass estimates, which means that tests of gravity based on comparisons between lensing and dynamical masses can also be applied to the Cubic Galileon model.

  15. KINOFORM LENSES - TOWARD NANOMETER RESOLUTION.

    SciTech Connect

    STEIN, A.; EVANS-LUTTERODT, K.; TAYLOR, A.

    2004-10-23

    While hard x-rays have wavelengths in the nanometer and sub-nanometer range, the ability to focus them is limited by the quality of sources and optics, and not by the wavelength. A few options, including reflective (mirrors), diffractive (zone plates) and refractive (CRL's) are available, each with their own limitations. Here we present our work with kinoform lenses which are refractive lenses with all material causing redundant 2{pi} phase shifts removed to reduce the absorption problems inherently limiting the resolution of refractive lenses. By stacking kinoform lenses together, the effective numerical aperture, and thus the focusing resolution, can be increased. The present status of kinoform lens fabrication and testing at Brookhaven is presented as well as future plans toward achieving nanometer resolution.

  16. Ophthalmic halo reduced lenses design

    NASA Astrophysics Data System (ADS)

    Limon, Ofer; Zalevsky, Zeev

    2015-05-01

    The halo effect is a very problematic visual artifact occurring in extended depth of focus or multi-focal ophthalmic lenses such as e.g. intra-ocular (after cataract surgery) or contact lenses when used in dark illumination conditions. This artifact is generated due to surface structures added on top of those lenses in order to increase their depth of focus or to realize multiple focal lengths. In this paper we present novel solution that can resolve this major problem of ophthalmic lenses. The proposed solution involves modification to the surface structure that realizes the extended depth of focus. Our solution is fabricated and numerically and experimentally validated also in preliminary in-vivo trials.

  17. Gravitational lenses and particle properties

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.

    1986-01-01

    The potential of observations of gravitational lens systems for the determination of cosmological constants and for tests of the nature and distribution of dark matter is illustrated. The advantages and disadvantages of gravitational lenses as cosmological probes are evaluated.

  18. HIGH-z Lensed Galaxies

    NASA Astrophysics Data System (ADS)

    Pello, R.

    2006-08-01

    This talk reviews the main results recently obtained on the identification and study of very high-z galaxies using lensing clusters as natural gravitational telescopes. We present the last results of a deep near-IR survey of lensing clusters aimed at constraining the abundance of star-forming galaxies at z~6-12. Photometric selection criteria of optical-dropouts were specifically tuned to target star-forming galaxies in this redshift domain. These data were used to constrain the luminosity function of z>6 photometric candidates, and to derive an upper limit for the UV SFR density. The results obtained in lensing fields will be discussed and compared to deep blank-field findings. We also summarize the present state of the spectroscopic follow-up of photometric candidates in lensing clusters using VLT ISAAC and FORS, and the future observations planned with EMIR/GTC.

  19. Wave function formalism in quantum optics and generalized Huygens-Fresnel principle for N-photon states: derivation and applications

    NASA Astrophysics Data System (ADS)

    Brainis, E.; Emplit, Ph.

    2010-06-01

    Few-photon systems are best described by their wave function rather than by the usual quantum field formalism. In this work, we develop a photon wave function (PWF) formalism suitable for analyzing a wide variety of quantum optical problems related to propagation, diffraction and imaging with quantum states of light. We establish a generalized Huygens-Fresnel (GH-F) principle that describes the propagation of any paraxial N-photon state. This tool is very helpful for predicting photo-detection correlations in space and time due to an initial N-particle entanglement, even in complex situation. The effect of lenses, beam splitters, filters ... on the photon paths can be easily taken into account. We apply the PWF formalism and the GH-F principle to three specific problems in quantum optics. First, we revisit the Hong-Ou-Mandel two-photon interference effect and analyze the effect of photon shape mismatch in space, time and polarization using the PWF formalism. Second, we show how to use the GH-F principle to analyze "ghost" imaging and diffraction experiments with entangled photon pairs such as those realized by Strekalov et al. [Phys. Rev. Lett. 74, 3600 (1995)] and Pittman et al. [Phys. Rev. A 52, R3429 (1995)] in the nineties. Finally, we use the GH-F principle to analyze the resolution enhancement in a recent quantum imaging proposal based on N incoherent single-photon sources [Phys. Rev. Lett. 99, 133603 (2007) and Phys. Rev. A 80, 013820 (2009)].

  20. Unstable resonator modes for lasers with circular mirrors and high Fresnel numbers.

    PubMed

    Larson, A R

    1993-10-20

    The design of unstable resonators for large lasers with high Fresnel numbers and circular mirrors requires an ability to calculate their mode structures. Four methods for obtaining mode structure by solving the complex integral equation are analyzed. Included are a numerical method, two hybrid methods, and a virtual-source method. The hybrid methods are basically analytical methods with special numerical integration of analytical solutions (over the feedback mirror) to obtain improved solutions in the output annulus. The hybrid methods are designed for use with high-Fresnel-number resonators. However, their applicability extends into the low-Fresnel-number regime, where a comparison shows one of the hybrid methods agreeing exceptionally well with the numerical method. For analysis at high Fresnel numbers, the hybrid and virtual-source methods are compared with each other. The two hybrid methods are expected to differ from each other in the central core region when the Fresnel number is low, but they are expected to agree with each other when the Fresnel number is high. For the hybrid comparison at a high Fresnel number, the next to lowest loss modes show a similar structure. However, lack of agreement for the lowest loss mode shows that approximations in the development of the second hybrid method cause the selection of the wrong geometrical mode. PMID:20856409

  1. HUBBLE'S TOP TEN GRAVITATIONAL LENSES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA Hubble Space Telescope serendipitous survey of the sky has uncovered exotic patterns, rings, arcs and crosses that are all optical mirages produced by a gravitational lens, nature's equivalent of having giant magnifying glass in space. Shown are the top 10 lens candidates uncovered in the deepest 100 Hubble fields. Hubble's sensitivity and high resolution allow it to see faint and distant lenses that cannot be detected with ground-based telescopes whose images are blurred by Earth's atmosphere. [Top Left] - HST 01248+0351 is a lensed pair on either side of the edge-on disk lensing galaxy. [Top Center] - HST 01247+0352 is another pair of bluer lensed source images around the red spherical elliptical lensing galaxy. Two much fainter images can be seen near the detection limit which might make this a quadruple system. [Top Right] - HST 15433+5352 is a very good lens candidate with a bluer lensed source in the form of an extended arc about the redder elliptical lensing galaxy. [Middle Far Left] - HST 16302+8230 could be an 'Einstein ring' and the most intriguing lens candidate. It has been nicknamed the 'the London Underground' since it resembles that logo. [Middle Near Left] - HST 14176+5226 is the first, and brightest lens system discovered in 1995 with the Hubble telescope. This lens candidate has now been confirmed spectroscopically using large ground-based telescopes. The elliptical lensing galaxy is located 7 billion light-years away, and the lensed quasar is about 11 billion light-years distant. [Middle Near Right] - HST 12531-2914 is the second quadruple lens candidate discovered with Hubble. It is similar to the first, but appears smaller and fainter. [Middle Far Right] - HST 14164+5215 is a pair of bluish lensed images symmetrically placed around a brighter, redder galaxy. [Bottom Left] - HST 16309+8230 is an edge-on disk-like galaxy (blue arc) which has been significantly distorted by the redder lensing elliptical galaxy. [Bottom Center] - HST 12368

  2. The Thirring-Lense Effect

    NASA Astrophysics Data System (ADS)

    Embacher, Franz

    The Thirring-Lense effect is the phenomenon that an observer near a rotating mass, being in a state which is non-rotating with respect to the rest of the universe, experiences extra inertial forces, i.e. becomes dizzy. The first anticipation of the effect goes back to Ernst Mach; its first quantitative prediction on the basis of general relativity was given by Hans Thirring and Joseph Lense. Almost ninety years later, the effect seems to be experimentally verified.

  3. Light-Weight Multispectral Uav Sensors and Their Capabilities for Predicting Grain Yield and Detecting Plant Diseases

    NASA Astrophysics Data System (ADS)

    Nebiker, S.; Lack, N.; Abächerli, M.; Läderach, S.

    2016-06-01

    In this paper we investigate the performance of new light-weight multispectral sensors for micro UAV and their application to selected tasks in agronomical research and agricultural practice. The investigations are based on a series of flight campaigns in 2014 and 2015 covering a number of agronomical test sites with experiments on rape, barley, onion, potato and other crops. In our sensor comparison we included a high-end multispectral multiSPEC 4C camera with bandpass colour filters and reference channel in zenith direction and a low-cost, consumer-grade Canon S110 NIR camera with Bayer pattern colour filters. Ground-based reference measurements were obtained using a terrestrial hyperspectral field spectrometer. The investigations show that measurements with the high-end system consistently match very well with ground-based field spectrometer measurements with a mean deviation of just 0.01-0.04 NDVI values. The low-cost system, while delivering better spatial resolutions, expressed significant biases. The sensors were subsequently used to address selected agronomical questions. These included crop yield estimation in rape and barley and plant disease detection in potato and onion cultivations. High levels of correlation between different vegetation indices and reference yield measurements were obtained for rape and barley. In case of barley, the NDRE index shows an average correlation of 87% with reference yield, when species are taken into account. With high geometric resolutions and respective GSDs of down to 2.5 cm the effects of a thrips infestation in onion could be analysed and potato blight was successfully detected at an early stage of infestation.

  4. Performance limitation and the role of core temperature when wearing light-weight workwear under moderate thermal conditions.

    PubMed

    Kofler, Philipp; Burtscher, Martin; Heinrich, Dieter; Bottoni, Giuliamarta; Caven, Barnaby; Bechtold, Thomas; Teresa Herten, Anne; Hasler, Michael; Faulhaber, Martin; Nachbauer, Werner

    2015-01-01

    The objective of this investigation was to achieve an understanding about the relationship between heat stress and performance limitation when wearing a two-layerfire-resistant light-weight workwear (full-clothed ensemble) compared to an one-layer short sports gear (semi-clothed ensemble) in an exhaustive, stressful situation under moderate thermal condition (25°C). Ten well trained male subjects performed a strenuous walking protocol with both clothing ensembles until exhaustion occurred in a climatic chamber. Wearing workwear reduced the endurance performance by 10% (p=0.007) and the evaporation by 21% (p=0.003), caused a more pronounced rise in core temperature during submaximal walking (0.7±0.3 vs. 1.2±0.4°C; p≤0.001) and from start till exhaustion (1.4±0.3 vs. 1.8±0.5°C; p=0.008), accelerated sweat loss (13±2 vs. 15±3gmin(-1); p=0.007), and led to a significant higher heart rate at the end of cool down (103±6 vs. 111±7bpm; p=0.004). Correlation analysis revealed that core temperature development during submaximal walking and evaporation may play important roles for endurance performance. However, a critical core temperature of 40°C, which is stated to be a crucial factor for central fatigue and performance limitation, was not reached either with the semi-clothed or the full-clothed ensemble (38.3±0.4 vs. 38.4±0.5°C). Additionally, perceived exertion did not increase to a higher extent parallel with the rising core temperature with workwear which would substantiate the critical core temperature theory. In conclusion, increased heat stress led to cardiovascular exercise limitation rather than central fatigue. PMID:25526658

  5. Complex Fresnel hologram display using a single SLM.

    PubMed

    Liu, Jung-Ping; Hsieh, Wang-Yu; Poon, Ting-Chung; Tsang, Peter

    2011-12-01

    We propose a novel optical method to display a complex Fresnel hologram using a single spatial light modulator (SLM). The method consists of a standard coherent image processing system with a sinusoidal grating at the Fourier plane. Two or three position-shifted amplitude holograms displayed at the input plane of the processing system can be coupled via the grating and will be precisely overlapped at the system's output plane. As a result, we can synthesize a complex hologram that is free of the twin image and the zero-order light using a single SLM. Because the twin image is not removed via filtering, the full bandwidth of the SLM can be utilized for displaying on-axis holograms. In addition, the degree of freedom of the synthesized complex hologram display can be extended by involving more than three amplitude holograms.

  6. Layered holographic stereogram based on inverse Fresnel diffraction.

    PubMed

    Zhang, Hao; Zhao, Yan; Cao, Liangcai; Jin, Guofan

    2016-01-20

    We propose an efficient algorithm using layered holographic stereogram for three-dimensional (3D) computer-generated holograms. The hologram is spatially partitioned into multiple holographic elements (hogels) to provide the occlusion effect and motion parallax by use of multiple viewpoint rendering. Each hogel is calculated with inverse Fresnel diffraction by slicing the viewing frustum according to the depth image. The sliced layers can provide accurate depth cues for reconstruction since the geometric information of the 3D scene is faithfully matched. The algorithm is compatible with computer graphics rendering techniques and robust for holograms with different parameters. When the hogel size equals 1 mm, the signal-to-noise ratio of the diffraction calculation is above 39 dB with a propagation distance longer than 10 mm. Numerical simulations and optical experiments have demonstrated that the proposed method can reconstruct quality 3D images with reduced computational load. PMID:26835948

  7. A Fresnel collector process heat experiment at Capitol Concrete Products

    NASA Technical Reports Server (NTRS)

    Hauger, J. S.

    1981-01-01

    An experiment is planned, conducted and evaluated to determine the feasibility of using a Power Kinetics' Fresnel concentrator to provide process heat in an industrial environment. The plant provides process steam at 50 to 60 psig to two autoclaves for curing masonry blocks. When steam is not required, the plant preheats hot water for later use. A second system is installed at the Jet Propulsion Laboratory parabolic dish test site for hardware validation and experiment control. Experiment design allows for the extrapolation of results to varying demands for steam and hot water, and includes a consideration of some socio-technical factors such as the impact on production scheduling of diurnal variations in energy availability.

  8. Fresnel coherent diffractive imaging: treatment and analysis of data

    NASA Astrophysics Data System (ADS)

    Williams, G. J.; Quiney, H. M.; Peele, A. G.; Nugent, K. A.

    2010-03-01

    Fresnel coherent diffractive imaging (FCDI) is a relatively recent addition to the suite of imaging tools available at third generation x-ray sources. It shares the strengths of other coherent diffractive techniques: resolution limits that are independent of focusing optics, single-plane measurement and high dose efficiency. The more challenging experimental geometry and detailed reconstruction algorithms of FCDI provide enhanced numerical stability and convergence properties to the iterative algorithms commonly used. Experimentally, a diverging beam is utilized, which facilitates sample alignment and allows the imaging of extended samples. We describe the underlying physics and assumptions that give rise to the FCDI iterative reconstruction algorithms, as well as their implications for the design of a successful FCDI experiment.

  9. Slope-deviation measurement of Fresnel-shaped mold surfaces.

    PubMed

    Kiefel, Peter; Hornung, Thorsten; Nitz, Peter; Reinecke, Holger

    2016-03-10

    Molds are used to dictate their shape to other materials in embossing or filling processes. In optics fabrication especially, the exact surface slope of the polymer replica is of high relevance. The quality control of molds is challenging: non-invasive, optical metrologies struggle with shiny surfaces that minimize the scattering of light. In addition, the inspection of complex shaped molds with a stepped optical surface can be difficult. In response, the authors show a backward ray-tracing approach combined with fringe-reflection technique to determine the slopes of a Fresnel-shaped mold surface with topography features in the magnitude order of a quarter millimeter. The error is kept small by stitching together several measurements with different sample rotations. PMID:26974807

  10. Introducing CFD in the optical simulation of linear Fresnel collectors

    NASA Astrophysics Data System (ADS)

    Moghimi, M. A.; Rungasamy, A.; Craig, K. J.; Meyer, J. P.

    2016-05-01

    This paper seeks to determine whether the Finite Volume method within a commercially available Computational Fluid Dynamics (CFD) solver (ANSYS Fluent) can model radiation with comparable accuracy to a Monte Carlo ray-tracing software package (SolTrace). A detailed investigation was performed into modeling techniques that can be used to significantly reduce the optical errors traditionally associated with CFD modeling of radiation false scattering and ray effect using a simple optical test case. The strategies formulated in the first part of this paper were used to model a variety of Linear Fresnel Collector Concentrating Solar Power Plants. This paper shows that commercial CFD packages yield accurate results for line focusing concentrating solar applications and simple geometries, validating its use in an integrated environment where both optical and thermal performance of these plants can be simulated and optimized.

  11. Fresnel diffraction in the case of an inclined image plane.

    PubMed

    Modregger, Peter; Lübbert, Daniel; Schäfer, Peter; Köhler, Rolf; Weitkamp, Timm; Hanke, Michael; Baumbach, Tilo

    2008-03-31

    An extension of the theoretical formalism of Fresnel diffraction to the case of an inclined image plane is proposed. The resulting numerical algorithm speeds up computation times by typically three orders of magnitude, thus opening the possibility of utilizing previously inapplicable image analysis algorithms for this special type of a non shift-invariant imaging system. This is exemplified by adapting an iterative phase retrieval algorithm developed for electron microscopy to the case of hard x-ray imaging with asymmetric Bragg reflection (the so-called "Bragg Magnifier"). Numerical simulations demonstrate the convergence and feasibility of the iterative phase retrieval algorithm for the case of x-ray imaging with the Bragg Magnifier.

  12. Fresnel drag of light by a moving nonlinear and nanostructured dielectric medium

    SciTech Connect

    Peiponen, Kai-Erik; Gornov, Evgeny

    2007-12-15

    The Fresnel drag is viewed in the frame of nonlinear and/or nanostructured uniformly moving media. It is shown that in the case of intense light pulse interaction with an optically nonlinear medium the relativistic frequency chirp due to self-phase modulation is smaller than in the rest frame. In the case of light interaction with optically linear or nonlinear nanostructured medium the Fresnel drag depends on the effective refractive index of the medium. While the nanostructures are in a liquid matrix the drag can be controlled by the fill fraction of the inclusions. As an example the Fresnel drag for optically linear Bruggeman liquid is considered.

  13. Lateral shearing with a pair of double Fresnel rhombs for nulling interferometry.

    PubMed

    Baba, Naoshi; Kobayashi, Keita; Kogoma, Yusuke; Murakami, Naoshi

    2011-09-15

    A lateral-shearing interferometer with a pair of double Fresnel rhombs is proposed. Use of Fresnel rhombs enables us to accomplish simultaneously lateral shearing and achromatic nulling. Nulling interferometry with lateral shearing is one of the basic methods for searching directly for extrasolar planets with a segmented-mirror telescope. Here the Thirty-Meter Telescope is considered as a model of a segmented-mirror telescope. Our computer simulations show high extinction for the K-band (2.0-2.4 μm). Optical experiments are conducted to verify the lateral shearing and nulling with a pair of double Fresnel rhombs. PMID:21931407

  14. Micro-optofluidic Lenses: A review

    PubMed Central

    Nguyen, Nam-Trung

    2010-01-01

    This review presents a systematic perspective on the development of micro-optofluidic lenses. The progress on the development of micro-optofluidic lenses are illustrated by example from recent literature. The advantage of micro-optofluidic lenses over solid lens systems is their tunability without the use of large actuators such as servo motors. Depending on the relative orientation of light path and the substrate surface, micro-optofluidic lenses can be categorized as in-plane or out-of-plane lenses. However, this review will focus on the tunability of the lenses and categorizes them according to the concept of tunability. Micro-optofluidic lenses can be either tuned by the liquid in use or by the shape of the lens. Micro-optofluidic lenses with tunable shape are categorized according to the actuation schemes. Typical parameters of micro-optofluidic lenses reported recently are compared and discussed. Finally, perspectives are given for future works in this field. PMID:20714369

  15. Diffraction theory applied to X-ray imaging with clessidra prism array lenses.

    PubMed

    De Caro, Liberato; Jark, Werner

    2008-03-01

    Clessidra (hourglass) lenses, i.e. two large prisms each composed of smaller identical prisms or prism-like objects, can focus X-rays. As these lenses have a periodic structure perpendicular to the incident radiation, they will diffract the beam like a diffraction grating. Refraction in the prisms is responsible for blazing, i.e. for the concentration of the diffracted intensity into only a few diffraction peaks. It is found that the diffraction of coherent radiation in clessidra lenses needs to be treated in the Fresnel, or near-field, regime. Here, diffraction theory is applied appropriately to the clessidra structure in order to show that blazing in a perfect structure with partly curved prisms can indeed concentrate the diffracted intensity into only one peak. When the lens is entirely composed of identical perfect prisms, small secondary peaks are found. Nevertheless, the loss in intensity in the central peak will not lead to any significant widening of this peak. Clessidras with perfect prisms illuminated by full coherent X-ray radiation can then provide spatial resolutions, which are consistent with the increased aperture, and which are far below the height of the single small prisms.

  16. Key results of the mini-dome Fresnel lens concentrator array development program under recently completed NASA and SDIO SBIR projects

    NASA Technical Reports Server (NTRS)

    Oneill, Mark J.; Piszczor, Michael F.; Fraas, Lewis M.

    1991-01-01

    Since 1986, ENTECH and the NASA Lewis Research Center have been developing a new photovoltaic concentrator system for space power applications. The unique refractive system uses small, dome shaped Fresnel lenses to focus sunlight onto high efficiency photovoltaic concentrator cells which use prismatic cell covers to further increase their performance. Highlights of the five-year development include near Air Mass Zero (AM0) Lear Jet flight testing of mini-dome lenses (90 pct. net optical efficiency achieved); tests verifying sun-pointing error tolerance with negligible power loss; simulator testing of prism-covered GaAs concentrator cells (24 pct. AM0 efficiency); testing of prism-covered Boeing GaAs/GaSb tandem cells (31 pct. AM0 efficiency); and fabrication and outdoor testing of a 36-lens/cell element panel. These test results have confirmed previous analytical predictions which indicate substantial performance improvements for this technology over current array systems. Based on program results to date, it appears than an array power density of 300 watts/sq m and a specific power of 100 watts/kg can be achieved in the near term. All components of the array appear to be readily manufacturable from space-durable materials at reasonable cost. A concise review is presented of the key results leading to the current array, and further development plans for the future are briefly discussed.

  17. Graphical Approach to Fresnel's Equations for Reflection and Refraction of Light.

    ERIC Educational Resources Information Center

    Doyle, William T.

    1980-01-01

    Develops a coordinate-free approach to Fresnel's equations for the reflection and refraction of light at a plane interface. Describes a graphical construction for finding the vector amplitudes of the reflected and transmitted waves. (Author/CS)

  18. Avalanche and bit independence characteristics of double random phase encoding in the Fourier and Fresnel domains.

    PubMed

    Moon, Inkyu; Yi, Faliu; Lee, Yeon H; Javidi, Bahram

    2014-05-01

    In this work, we evaluate the avalanche effect and bit independence properties of the double random phase encoding (DRPE) algorithm in the Fourier and Fresnel domains. Experimental results show that DRPE has excellent bit independence characteristics in both the Fourier and Fresnel domains. However, DRPE achieves better avalanche effect results in the Fresnel domain than in the Fourier domain. DRPE gives especially poor avalanche effect results in the Fourier domain when only one bit is changed in the plaintext or in the encryption key. Despite this, DRPE shows satisfactory avalanche effect results in the Fresnel domain when any other number of bits changes in the plaintext or in the encryption key. To the best of our knowledge, this is the first report on the avalanche effect and bit independence behaviors of optical encryption approaches for bit units.

  19. Cosmology with weak lensing surveys.

    PubMed

    Munshi, Dipak; Valageas, Patrick

    2005-12-15

    Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening mass. Since the lensing effects arise from deflections of the light rays due to fluctuations of the gravitational potential, they can be directly related to the underlying density field of the large-scale structures. Weak gravitational surveys are complementary to both galaxy surveys and cosmic microwave background observations as they probe unbiased nonlinear matter power spectra at medium redshift. Ongoing CMBR experiments such as WMAP and a future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period, ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM; e.g. SNAP) or the Large-aperture Synoptic Survey Telescope will play a major role in advancing our understanding of the universe in this direction. In this review article, we describe various aspects of probing the matter power spectrum and the bi-spectrum and other related statistics with weak lensing surveys. This can be used to probe the background dynamics of the universe as well as the nature of dark matter and dark energy.

  20. Cosmology with weak lensing surveys.

    PubMed

    Munshi, Dipak; Valageas, Patrick

    2005-12-15

    Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening mass. Since the lensing effects arise from deflections of the light rays due to fluctuations of the gravitational potential, they can be directly related to the underlying density field of the large-scale structures. Weak gravitational surveys are complementary to both galaxy surveys and cosmic microwave background observations as they probe unbiased nonlinear matter power spectra at medium redshift. Ongoing CMBR experiments such as WMAP and a future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period, ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM; e.g. SNAP) or the Large-aperture Synoptic Survey Telescope will play a major role in advancing our understanding of the universe in this direction. In this review article, we describe various aspects of probing the matter power spectrum and the bi-spectrum and other related statistics with weak lensing surveys. This can be used to probe the background dynamics of the universe as well as the nature of dark matter and dark energy. PMID:16286284

  1. Noise in Strong Lensing Cosmography

    NASA Astrophysics Data System (ADS)

    Dalal, Neal; Hennawi, Joseph F.; Bode, Paul

    2005-03-01

    Giant arcs in strong lensing galaxy clusters can provide a purely geometric determination of cosmological parameters, such as the dark energy density and equation of state. We investigate sources of noise in cosmography with giant arcs, focusing in particular on errors induced by density fluctuations along the line of sight and errors caused by modeling uncertainties. We estimate parameter errors in two independent ways, first by developing a Fisher matrix formalism for strong lensing parameters and next by directly ray-tracing through N-body simulations using a multiplane lensing code. We show that for reasonable power spectra, density fluctuations from large-scale structures produce >100% errors in cosmological parameters derived from any single sight line, precluding the use of individual clusters or ``golden lenses'' to derive accurate cosmological constraints. Modeling uncertainties can similarly lead to large errors, and we show that the use of parameterized mass models in fitting strong lensing clusters can significantly bias the inferred cosmological parameters. We lastly speculate on the means by which these errors may be corrected.

  2. Ultraviolet disinfection of contact lenses.

    PubMed

    Harris, M G; Fluss, L; Lem, A; Leong, H

    1993-10-01

    To evaluate the efficacy of ultraviolet (UV) radiation as a method of disinfecting contact lenses and their storage solutions, we contaminated soft lenses (Bausch & Lomb Optima 38), rigid gas permeable (RGP) lenses (Oxyflow F-30), and their storage solutions with three common bacteria. Escherichia coli (E.c.), Staphylococcus epidermis (S.e.), and Serratia marcescens (S.m.). The storage solutions used were saline solution and RGP conditioning solution. We determined the exposure times to 253.7-nm wavelength UV radiation necessary to disinfect the contact lenses and solutions. The decimal reduction values (D values) found for UV radiation were 10 to 200 hundred times shorter than reported for currently available disinfection systems. For E.c., sterilization was attained after 100 s of exposure. For S.e. and S.m., sterilization occurred after 300 s of exposure. Different contact lens solutions transmit UV radiation to various degrees, with saline solution passing more than 90% of the UV radiation. Thus, our results indicate that UV radiation is an effective and rapid method of disinfecting contact lenses and their storage solutions. PMID:8247487

  3. Ultraviolet disinfection of contact lenses.

    PubMed

    Harris, M G; Fluss, L; Lem, A; Leong, H

    1993-10-01

    To evaluate the efficacy of ultraviolet (UV) radiation as a method of disinfecting contact lenses and their storage solutions, we contaminated soft lenses (Bausch & Lomb Optima 38), rigid gas permeable (RGP) lenses (Oxyflow F-30), and their storage solutions with three common bacteria. Escherichia coli (E.c.), Staphylococcus epidermis (S.e.), and Serratia marcescens (S.m.). The storage solutions used were saline solution and RGP conditioning solution. We determined the exposure times to 253.7-nm wavelength UV radiation necessary to disinfect the contact lenses and solutions. The decimal reduction values (D values) found for UV radiation were 10 to 200 hundred times shorter than reported for currently available disinfection systems. For E.c., sterilization was attained after 100 s of exposure. For S.e. and S.m., sterilization occurred after 300 s of exposure. Different contact lens solutions transmit UV radiation to various degrees, with saline solution passing more than 90% of the UV radiation. Thus, our results indicate that UV radiation is an effective and rapid method of disinfecting contact lenses and their storage solutions.

  4. Surface gravity-wave lensing.

    PubMed

    Elandt, Ryan B; Shakeri, Mostafa; Alam, Mohammad-Reza

    2014-02-01

    Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed features (the so-called Bragg resonance) can be utilized to create the equivalent of lenses and curved mirrors for surface gravity waves. Such gravity wave lenses, which are merely small changes to the seafloor topography and therefore are surface noninvasive, can focus or defocus the energy of incident waves toward or away from any desired focal point. We further show that for a broadband incident wave spectrum (i.e., a wave group composed of a multitude of different-frequency waves), a polychromatic topography (occupying no more than the area required for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave zones (e.g., for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in order to create protected areas (e.g., harbors or areas near important offshore facilities). In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent appearance of very high amplitude waves in certain bodies of water. PMID:25353576

  5. Weak lensing and cosmological investigation

    NASA Astrophysics Data System (ADS)

    Acquaviva, Viviana

    2005-03-01

    In the last few years the scientific community has been dealing with the challenging issue of identifying the dark energy component. We regard weak gravitational lensing as a brand new, and extremely important, tool for cosmological investigation in this field. In fact, the features imprinted on the Cosmic Microwave Background radiation by the lensing from the intervening distribution of matter represent a pretty unbiased estimator, and can thus be used for putting constraints on different dark energy models. This is true in particular for the magnetic-type B-modes of CMB polarization, whose unlensed spectrum at large multipoles (l ~= 1000) is very small even in presence of an amount of gravitational waves as large as currently allowed by the experiments: therefore, on these scales the lensing phenomenon is the only responsible for the observed power, and this signal turns out to be a faithful tracer of the dark energy dynamics. We first recall the formal apparatus of the weak lensing in extended theories of gravity, introducing the physical observables suitable to cast the bridge between lensing and cosmology, and then evaluate the amplitude of the expected effect in the particular case of a Non-Minimally-Coupled model, featuring a quadratic coupling between quintessence and Ricci scalar.

  6. Surface gravity-wave lensing.

    PubMed

    Elandt, Ryan B; Shakeri, Mostafa; Alam, Mohammad-Reza

    2014-02-01

    Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed features (the so-called Bragg resonance) can be utilized to create the equivalent of lenses and curved mirrors for surface gravity waves. Such gravity wave lenses, which are merely small changes to the seafloor topography and therefore are surface noninvasive, can focus or defocus the energy of incident waves toward or away from any desired focal point. We further show that for a broadband incident wave spectrum (i.e., a wave group composed of a multitude of different-frequency waves), a polychromatic topography (occupying no more than the area required for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave zones (e.g., for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in order to create protected areas (e.g., harbors or areas near important offshore facilities). In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent appearance of very high amplitude waves in certain bodies of water.

  7. CMB temperature lensing power reconstruction

    SciTech Connect

    Hanson, Duncan; Efstathiou, George; Challinor, Anthony; Bielewicz, Pawel

    2011-02-15

    We study the reconstruction of the lensing potential power spectrum from CMB temperature data, with an eye to the Planck experiment. We work with the optimal quadratic estimator of Okamoto and Hu, which we characterize thoroughly in an application to the reconstruction of the lensing power spectrum. We find that at multipoles L<250, our current understanding of this estimator is biased at the 15% level by beyond-gradient terms in the Taylor expansion of lensing effects. We present the full lensed trispectrum to fourth order in the lensing potential to explain this effect. We show that the low-L bias, as well as a previously known bias at high L, is relevant to the determination of cosmology and must be corrected for in order to avoid significant parameter errors. We also investigate the covariance of the reconstructed power, finding broad correlations of {approx_equal}0.1%. Finally, we discuss several small improvements which may be made to the optimal estimator to mitigate these problems.

  8. The M31 pixel lensing plan campaign: MACHO lensing and self-lensing signals

    SciTech Connect

    Calchi Novati, S.; Scarpetta, G.; Bozza, V.; Bruni, I.; Gualandi, R.; Dall'Ora, M.; De Paolis, F.; Ingrosso, G.; Nucita, A.; Strafella, F.; Dominik, M.; Jetzer, Ph.; Mancini, L.; Safonova, M.; Subramaniam, A.; Sereno, M.; Gould, A.; Collaboration: PLAN Collaboration

    2014-03-10

    We present the final analysis of the observational campaign carried out by the PLAN (Pixel Lensing Andromeda) collaboration to detect a dark matter signal in form of MACHOs through the microlensing effect. The campaign consists of about 1 month/year observations carried out over 4 years (2007-2010) at the 1.5 m Cassini telescope in Loiano (Astronomical Observatory of BOLOGNA, OAB) plus 10 days of data taken in 2010 at the 2 m Himalayan Chandra Telescope monitoring the central part of M31 (two fields of about 13' × 12.'6). We establish a fully automated pipeline for the search and the characterization of microlensing flux variations. As a result, we detect three microlensing candidates. We evaluate the expected signal through a full Monte Carlo simulation of the experiment completed by an analysis of the detection efficiency of our pipeline. We consider both 'self lensing' and 'MACHO lensing' lens populations, given by M31 stars and dark matter halo MACHOs, in M31 and the Milky Way, respectively. The total number of events is consistent with the expected self-lensing rate. Specifically, we evaluate an expected signal of about two self-lensing events. As for MACHO lensing, for full 0.5(10{sup –2}) M {sub ☉} MACHO halos, our prediction is for about four (seven) events. The comparatively small number of expected MACHO versus self-lensing events, together with the small number statistics at our disposal, do not enable us to put strong constraints on that population. Rather, the hypothesis, suggested by a previous analysis, on the MACHO nature of OAB-07-N2, one of the microlensing candidates, translates into a sizeable lower limit for the halo mass fraction in form of the would-be MACHO population, f, of about 15% for 0.5 M {sub ☉} MACHOs.

  9. Design and simulation of imaging algorithm for Fresnel telescopy imaging system

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-yu; Liu, Li-ren; Yan, Ai-min; Sun, Jian-feng; Dai, En-wen; Li, Bing

    2011-06-01

    Fresnel telescopy (short for Fresnel telescopy full-aperture synthesized imaging ladar) is a new high resolution active laser imaging technique. This technique is a variant of Fourier telescopy and optical scanning holography, which uses Fresnel zone plates to scan target. Compare with synthetic aperture imaging ladar(SAIL), Fresnel telescopy avoids problem of time synchronization and space synchronization, which decreasing technical difficulty. In one-dimensional (1D) scanning operational mode for moving target, after time-to-space transformation, spatial distribution of sampling data is non-uniform because of the relative motion between target and scanning beam. However, as we use fast Fourier transform (FFT) in the following imaging algorithm of matched filtering, distribution of data should be regular and uniform. We use resampling interpolation to transform the data into two-dimensional (2D) uniform distribution, and accuracy of resampling interpolation process mainly affects the reconstruction results. Imaging algorithms with different resampling interpolation algorithms have been analysis and computer simulation are also given. We get good reconstruction results of the target, which proves that the designed imaging algorithm for Fresnel telescopy imaging system is effective. This work is found to have substantial practical value and offers significant benefit for high resolution imaging system of Fresnel telescopy laser imaging ladar.

  10. Lateral wave-field stacking of seismic Fresnel zones for the generalized-offset case

    NASA Astrophysics Data System (ADS)

    Tian, Nan; Fan, Ting-En; Wang, Zong-Jun; Cai, Wen-Tao

    2015-06-01

    To unify different seismic geometries, the concept of generalized offset is defined and the expressions for Fresnel zones of different order on a plane are presented. Based on wave theory, the equation of the lateral wave-field stacking for generalized-offset Fresnel zones is derived. For zero and nonzero offsets, the lateral stacking amplitude of diffraction bins of different sizes is analyzed by referring to the shape of the Fresnel zones of different order. The results suggest the following. First, the contribution of diffraction bins to wave-field stacking is related to the offset, surface relief, interface dip, the depth of the shot point to the reflection interface, the observational geometry, and the size of the interference stacking region. Second, the first-order Fresnel zone is the main constructive interference, and its contribution to the reflection amplitude is slightly smaller than half the contribution of all Fresnel zones. Finally, when the size of the diffraction bin is smaller than the first-order Fresnel zone, the larger the size of the diffraction bin, the larger is the amplitude of the receiver, even in the nonzero offset-case.

  11. Strong Gravitational Lensing with SNAP

    NASA Astrophysics Data System (ADS)

    Blandford, R. D.; Koopmans, L. V. E.

    2001-12-01

    As currently configured, SNAP should cover an area of sky to sufficient depth to observe tens of thousands of strong (ie multiple-imaging) gravitational lenses. This could provide an unprecedented database for performing cosmography, studies of large scale structure and galactic structure.and should complement the weak lensing program which will concentrate on larger scales. The challenge will be to recognize multiple imaging efficiently in an unbiased way and to organize effective follow up so as to obtain spectroscopic redshifts and monitor variable sources, when appropriate. Experience with the CLASS radio survey and the CASTLES program will be invaluable as we transition from the detailed study of a few tens of strong lenses through the ACS ultra-deep, deep and wide surveys (which should yield hundreds of examples of multiple imaging) to the larger samples envisaged from SNAP. New approaches to data analysis will be needed and coordinated planning with other proposed large survey instruments, like SKA, will be essential.

  12. Centration and coverage of hydrogel contact lenses.

    PubMed

    Wake, E; Tienda, J B; Uyekawa, P M; Mandell, R B

    1981-04-01

    Decentration of the AOsoft lenses and Bausch & Lomb Soflens occurs during wear. The extent of the decentration of 14 lenses on 36 eyes of 18 subjects was studied by means of a biomicroscope with a reticle mounted in the ocular. Unexpectedly, for the AOsoft vault IV lens greater decentration occurred than for flatter lenses. Corneal toricity showed no correlation with lens decentration. PMID:7282855

  13. N-body lensed CMB maps: lensing extraction and characterization

    NASA Astrophysics Data System (ADS)

    Antolini, Claudia; Fantaye, Yabebal; Martinelli, Matteo; Carbone, Carmelita; Baccigalupi, Carlo

    2014-02-01

    We reconstruct shear maps and angular power spectra from simulated weakly lensed total intensity (TT) and polarised (EB) maps of the Cosmic Microwave Background (CMB) anisotropies, obtained using Born approximated ray-tracing through the N-body simulated Cold Dark Matter (CDM) structures in the Millennium Simulations (MS). We compare the recovered signal with the ΛCDM prediction, on the whole interval of angular scales which is allowed by the finite box size, extending from the degree scale to the arcminute, by applying a quadratic estimator in the flat sky limit; we consider PRISM-like instrumental specification for future generation CMB satellites, corresponding to arcminute angular resolution of 3.2' and sensitivity of 2.43 μK-arcmin. The noise contribution in the simulations closely follows the estimator prediction, becoming dominated by limits in the angular resolution for the EB signal, at l simeq 1500. The recovered signal shows no visible departure from predictions of the weak lensing power within uncertainties, when considering TT and EB data singularly. In particular, the reconstruction precision reaches the level of a few percent in bins with Δl simeq 100 in the angular multiple interval 1000lesssimllesssim2000 for T, and about 10% for EB. Within the adopted specifications, polarisation data do represent a significant contribution to the lensing shear, which appear to faithfully trace the underlying N-body structure down to the smallest angular scales achievable with the present setup, validating at the same time the latter with respect to semi-analytical predictions from ΛCDM cosmology at the level of CMB lensing statistics. This work demonstrates the feasibility of CMB lensing studies based on large scale simulations of cosmological structure formation in the context of the current and future high resolution and sensitivity CMB experiment.

  14. N-body lensed CMB maps: lensing extraction and characterization

    SciTech Connect

    Antolini, Claudia; Martinelli, Matteo; Baccigalupi, Carlo; Fantaye, Yabebal; Carbone, Carmelita E-mail: y.t.fantaye@astro.uio.no E-mail: carmelita.carbone@brera.inaf.it

    2014-02-01

    We reconstruct shear maps and angular power spectra from simulated weakly lensed total intensity (TT) and polarised (EB) maps of the Cosmic Microwave Background (CMB) anisotropies, obtained using Born approximated ray-tracing through the N-body simulated Cold Dark Matter (CDM) structures in the Millennium Simulations (MS). We compare the recovered signal with the ΛCDM prediction, on the whole interval of angular scales which is allowed by the finite box size, extending from the degree scale to the arcminute, by applying a quadratic estimator in the flat sky limit; we consider PRISM-like instrumental specification for future generation CMB satellites, corresponding to arcminute angular resolution of 3.2' and sensitivity of 2.43 μK-arcmin. The noise contribution in the simulations closely follows the estimator prediction, becoming dominated by limits in the angular resolution for the EB signal, at ℓ ≅ 1500. The recovered signal shows no visible departure from predictions of the weak lensing power within uncertainties, when considering TT and EB data singularly. In particular, the reconstruction precision reaches the level of a few percent in bins with Δℓ ≅ 100 in the angular multiple interval 1000∼<ℓ∼<2000 for T, and about 10% for EB. Within the adopted specifications, polarisation data do represent a significant contribution to the lensing shear, which appear to faithfully trace the underlying N-body structure down to the smallest angular scales achievable with the present setup, validating at the same time the latter with respect to semi-analytical predictions from ΛCDM cosmology at the level of CMB lensing statistics. This work demonstrates the feasibility of CMB lensing studies based on large scale simulations of cosmological structure formation in the context of the current and future high resolution and sensitivity CMB experiment.

  15. Fresnel-Fizeau drag: Invisibility conditions for all inertial observers

    NASA Astrophysics Data System (ADS)

    Halimeh, Jad C.; Thompson, Robert T.

    2016-03-01

    It was recently shown [J. C. Halimeh et al., Phys. Rev. A 93, 013850 (2016), 10.1103/PhysRevA.93.013850] that as a result of the Doppler effect, inherently dispersive single-frequency ideal free-space invisibility cloaks in relative motion to an observer can only cloak light whose frequency in the cloak frame coincides with the operational frequency of the cloak, although an infinite number of such rays exist for any cloak motion. In this article, we show analytically and through ray-tracing simulations that even though this relationship can be relaxed by simplifying the ideal invisibility cloak into a broadband amplitude cloak, Fresnel-Fizeau drag uncloaks the phase of light in the inertial frame of the cloak thereby compromising its amplitude cloaking in all other inertial frames. In other words, only an invisibility device that perfectly cloaks both the amplitude and the phase of light in its own inertial frame will also (perfectly) cloak this light in any other inertial frame. The same conclusion lends itself to invisible objects that are not cloaks, such as the invisible sphere.

  16. A ``Fresnel-transducer'' for prostate hyperthermia treatment

    NASA Astrophysics Data System (ADS)

    Keolian, Robert M.; Al-Bataineh, Osama M.; Smith, Nadine B.; Sparrow, Victor W.; Harpster, Lewis E.

    2003-10-01

    Simulations and construction methods will be described for a novel ``Fresnel-transducer.'' The transducer is designed for transrectal hyperthermia treatment of prostate cancer as an adjuvant to radiotherapy or chemotherapy. Forty nine 6.3 mm diameter 1.5 MHz PZT elements are arranged in a 3 by 7 cm honeycomb-like pattern. They are individually aimed so that their beams partially converge behind the prostate. The increased beam density away from the transducer compensates for the loss of acoustic intensity due to attenuation. The aiming of the beams is additionally biased toward the periphery of the heated region to compensate for cooling from lateral heat conduction. The elements are divided into three interspersed sets, each driven at a slightly different frequency, to minimize stationary Moire interference bands between the beams. The combined effect is to uniformly raise the prostate temperature to 43°C without overheating the rectal wall. [Research supported by the Department of Defense Congressionally Directed Medical Prostate Cancer Research Program.

  17. Stacked Fresnel Zone Plates for High Energy X-rays

    SciTech Connect

    Snigireva, Irina; Snigirev, Anatoly; Vaughan, Gavin; Di Michiel, Marco; Kohn, Viktor; Yunkin, Vyacheslav; Grigoriev, Maxim

    2007-01-19

    A stacking technique was developed in order to increase focusing efficiency of Fresnel zone plates (FZP) at high energies. Two identical Si chips each of which containing 9 FZPs were used for stacking. Alignment of the chips was achieved by on-line observation of the moire pattern. The formation of moire patterns was studied theoretically and experimentally at different experimental conditions. To provide the desired stability Si-chips were bonded together with slow solidification speed epoxy glue. A technique of angular alignment in order to compensate a linear displacement in the process of gluing was proposed. Two sets of stacked FZPs were experimentally tested to focus 15 and 50 keV x rays. The gain in the efficiency by factor 2.5 was demonstrated at 15 keV. The focal spot of 1.8 {mu}m vertically and 14 {mu}m horizontally with 35% efficiency was measured at 50 keV. Forecast for the stacking of nanofocusing FZPs was discussed.

  18. Gravitational Lenses in the Classroom

    ERIC Educational Resources Information Center

    Ros, Rosa M.

    2008-01-01

    It is not common to introduce current astronomy in school lessons. This article presents a set of experiments about gravitational lenses. It is normal to simulate them by means of computers, but it is very simple to simulate similar effects using a drinking glass full of liquid or using only the glass base. These are, of course, cheap and easy…

  19. Contour mapping of spectacle lenses.

    PubMed

    Liu, L

    1994-04-01

    The measurement of spectacle lenses by conventional focimeters and automated focimeters assesses only a small region of the lens, and only the power and related data at that point are indicated. In this paper, two methods based on optical Fourier filtering and optical correlation are suggested for contour-mapping the deviations of a spectacle lens over its whole aperture. The fringe pattern appearing on the lens image depicts vividly the characteristics of the tested lens. All the related data are qualitatively seen at a glance and can be calculated from the fringe distribution. Furthermore, the optical processing of the fringes by defocusing is described; thus, the fringes can be continuously changed by shifting the illuminating point source or mask. The shift indicates the spherical power needed to decrease or increase the lens fringes. In addition, a fringe-reading technique is suggested by counting the number of the fringes within a reticle ring. Therefore, the sphere power, cylinder power, cylinder axis, prism power, and prism orientation can be obtained from the reading of the fringes, the shift position, or their combination with a high accuracy. The methods are suitable not only to sphere, spherocylinder, and prism lenses but also to multifocus and progressive power lenses. The suggestion provides a practical way to measure spectacle lenses over the whole aperture. PMID:8047340

  20. Optics Demonstrations Using Cylindrical Lenses

    ERIC Educational Resources Information Center

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  1. Towards noiseless gravitational lensing simulations

    NASA Astrophysics Data System (ADS)

    Angulo, Raul E.; Chen, Ruizhu; Hilbert, Stefan; Abel, Tom

    2014-11-01

    The microphysical properties of the dark matter (DM) particle can, in principle, be constrained by the properties and abundance of substructures in galaxy clusters, as measured through strong gravitational lensing. Unfortunately, there is a lack of accurate theoretical predictions for the lensing signal of these substructures, mainly because of the discreteness noise inherent to N-body simulations. Here, we present a method, dubbed as Recursive-TCM, that is able to provide lensing predictions with an arbitrarily low discreteness noise. This solution is based on a novel way of interpreting the results of N-body simulations, where particles simply trace the evolution and distortion of Lagrangian phase-space volume elements. We discuss the advantages and limitations of this method compared to the widely used density estimators based on cloud-in-cells and adaptive-kernel smoothing. Applying the new method to a cluster-sized DM halo simulated in warm and cold DM scenarios, we show how the expected differences in their substructure population translate into differences in convergence and magnification maps. We anticipate that our method will provide the high-precision theoretical predictions required to interpret and fully exploit strong gravitational lensing observations.

  2. Gravitational Lensing of Supernova Neutrinos

    SciTech Connect

    Mena, Olga; Mocioiu, Irina; Quigg, Chris; /Fermilab

    2006-10-01

    The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

  3. Irlen Lenses and Reading Difficulties.

    ERIC Educational Resources Information Center

    Hoyt, Creig S.

    1990-01-01

    The article reviews three studies (EC 600 064-066) evaluating the effectiveness of using Irlen tinted lenses with reading-disabled persons. The studies are individually critiqued, and recommendations are offered concerning the methodology of further research. Stressed is the need to determine whether a specific syndrome of scotopic sensitivity…

  4. An Algorithm for Evaluating Fresnel-Zone Textural Roughness for Seismic Facies Interpretation

    NASA Astrophysics Data System (ADS)

    Di, H.; Gao, D.

    2014-12-01

    In reflection seismic interpretation, a 1-D convolutional model is commonly used to interpret amplitude variations based on the geometric ray theory assuming seismic wave to reflect at a reflection point; however, the propagation of seismic waves actually occurs in a finite zone around the geometric ray path and gets reflected from a zone known as Fresnel zone. The collected signal at the surface turns out to be the superposition of reflections from within the Fresnel zone, which is a function of texture. Generally, for a rough texture such as sandstone, the dominant reflection is from the zone margin, while for a smooth texture such as marine shale, the dominant reflection is from the zone center. Based on this concept, Fresnel-zone texture directly affects amplitude variations with offset (AVO), azimuth (AVAZ), and frequency (AVF). Here we develop a computer algorithm for evaluating Fresnel-zone textural roughness. The algorithm starts with dividing the Fresnel zone into a set of micro-zones. It then builds an initial texture model to be convolved with an extracted wavelet. By comparing the synthetic signal from a Fresnel zone to the real seismic signal within an analysis window at a target location, the model is adjusted and updated until both synthetic and real signals match best. The roughness is evaluated as the correlation coefficient between the generated texture model within the Fresnel zone and the ideal model for a rough texture medium. Our new algorithm is applied to a deep-water 3D seismic volume over offshore Angola, west Africa. The results show that a rough texture is associated with channel sands, whereas a smooth texture with marine shale.

  5. 3D printed diffractive terahertz lenses.

    PubMed

    Furlan, Walter D; Ferrando, Vicente; Monsoriu, Juan A; Zagrajek, Przemysław; Czerwińska, Elżbieta; Szustakowski, Mieczysław

    2016-04-15

    A 3D printer was used to realize custom-made diffractive THz lenses. After testing several materials, phase binary lenses with periodic and aperiodic radial profiles were designed and constructed in polyamide material to work at 0.625 THz. The nonconventional focusing properties of such lenses were assessed by computing and measuring their axial point spread function (PSF). Our results demonstrate that inexpensive 3D printed THz diffractive lenses can be reliably used in focusing and imaging THz systems. Diffractive THz lenses with unprecedented features, such as extended depth of focus or bifocalization, have been demonstrated. PMID:27082335

  6. Gravitational lenses, cosmology, and galaxy structure

    NASA Astrophysics Data System (ADS)

    Winn, J.

    2002-05-01

    Gravitational lenses can be used to study dark matter in galaxies and to measure the Hubble constant. The statistics of lensing can be used to measure the cosmological constant. I have been conducting a survey of the southern sky for new lenses at radio wavelengths, which has resulted in 4 confirmed lenses and 3 strong candidates that require further follow-up. I will describe the survey and the scientific results that have been obtained from the new lenses. I will also describe my other life as a science journalist.

  7. EDITORIAL: Focus on Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Jain, Bhuvnesh

    2007-11-01

    Gravitational lensing emerged as an observational field following the 1979 discovery of a doubly imaged quasar lensed by a foreground galaxy. In the 1980s and '90s dozens of other multiply imaged systems were observed, as well as time delay measurements, weak and strong lensing by galaxies and galaxy clusters, and the discovery of microlensing in our galaxy. The rapid pace of advances has continued into the new century. Lensing is currently one of best techniques for finding and mapping dark matter over a wide range of scales, and also addresses broader cosmological questions such as understanding the nature of dark energy. This focus issue of New Journal of Physics presents a snapshot of current research in some of the exciting areas of lensing. It provides an occasion to look back at the advances of the last decade and ahead to the potential of the coming years. Just about a decade ago, microlensing was discovered through the magnification of stars in our galaxy by invisible objects with masses between that of Jupiter and a tenth the mass of the Sun. Thus a new component of the mass of our galaxy, dubbed MACHOs, was established (though a diffuse, cold dark matter-like component is still needed to make up most of the galaxy mass). More recently, microlensing led to another exciting discovery—of extra-solar planets with masses ranging from about five times that of Earth to that of Neptune. We can expect many more planets to be discovered through ongoing surveys. Microlensing is the best technique for finding Earth mass planets, though it is not as productive overall as other methods and does not allow for follow up observations. Beyond planet hunting, microlensing has enabled us to observe previously inaccessible systems, ranging from the surfaces of other stars to the accretion disks around the black holes powering distant quasars. Galaxies and galaxy clusters at cosmological distances can produce dramatic lensing effects: multiple images of background galaxies

  8. Large Space Telescopes Using Fresnel Lens for Power Beaming, Astronomy and Sail Missions

    SciTech Connect

    Early, J T

    2002-10-15

    The concept of using Fresnel optics as part of power beaming, astronomy or sail systems has been suggested by several authors. The primary issues for large Fresnel optics are the difficulties in fabricating these structures and deploying them in space and for astronomy missions the extremely narrow frequency range of these optics. In proposals where the telescope is used to transmit narrow frequency laser power, the narrow bandwidth has not been an issue. In applications where the optic is to be used as part of a telescope, only around 10{sup -5} to limited frequency response of a Fresnel optic is addressed by the use of a corrective optic that will broaden the frequency response of the telescope by three or four orders of magnitude. This broadening will dramatically increase the optical power capabilities of the system and will allow some spectroscopy studies over a limited range. Both the fabrication of Fresnel optics as large as five meters and the use of corrector optics for telescopes have been demonstrated at LLNL. For solar and laser sail missions the use of Fresnel amplitude zone plates made of very thin sail material is also discussed.

  9. Optimizing SNAP for Weak Lensing

    NASA Astrophysics Data System (ADS)

    High, F. W.; Ellis, R. S.; Massey, R. J.; Rhodes, J. D.; Lamoureux, J. I.; SNAP Collaboration

    2004-12-01

    The Supernova/Acceleration Probe (SNAP) satellite proposes to measure weak gravitational lensing in addition to type Ia supernovae. Its pixel scale has been set to 0.10 arcsec per pixel as established by the needs of supernova observations. To find the optimal pixel scale for accurate weak lensing measurements we conduct a tradeoff study in which, via simulations, we fix the suvey size in total pixels and vary the pixel scale. Our preliminary results show that with a smaller scale of about 0.08 arcsec per pixel we can minimize the contribution of intrinsic shear variance to the error on the power spectrum of mass density distortion. Currently we are testing the robustness of this figure as well as determining whether dithering yields analogous results.

  10. Fresnel-region fields and antenna noise-temperature calculations for advanced microwave sounding units

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1982-01-01

    A transition from the antenna noise temperature formulation for extended noise sources in the far-field or Fraunhofer-region of an antenna to one of the intermediate near field or Fresnel-region is discussed. The effort is directed toward microwave antenna simulations and high-speed digital computer analysis of radiometric sounding units used to obtain water vapor and temperature profiles of the atmosphere. Fresnel-region fields are compared at various distances from the aperture. The antenna noise temperature contribution of an annular noise source is computed in the Fresnel-region (D squared/16 lambda) for a 13.2 cm diameter offset-paraboloid aperture at 60 GHz. The time-average Poynting vector is used to effect the computation.

  11. Scattered light in photolithographic lenses

    NASA Astrophysics Data System (ADS)

    Kirk, Joseph P.

    1994-05-01

    Scattered light, flare, is present in the images formed by all photolithography lenses and it reduces lithographic process tolerances. It varies from lens to lens and with time, but is easily measured by observation of images of opaque objects formed in positive photoresist. The scattered light halo of a lens is modeled and the model used to estimate the flare for any reticle used with that lens.

  12. Gravitational lensing in plasmic medium

    SciTech Connect

    Bisnovatyi-Kogan, G. S. Tsupko, O. Yu.

    2015-07-15

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  13. Gravitational lensing in plasmic medium

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.

    2015-07-01

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  14. Gravitational Lensing: Einstein's unfinished symphony

    NASA Astrophysics Data System (ADS)

    Treu, Tommaso; Ellis, Richard S.

    2015-01-01

    Gravitational lensing - the deflection of light rays by gravitating matter - has become a major tool in the armoury of the modern cosmologist. Proposed nearly a hundred years ago as a key feature of Einstein's theory of general relativity, we trace the historical development since its verification at a solar eclipse in 1919. Einstein was apparently cautious about its practical utility and the subject lay dormant observationally for nearly 60 years. Nonetheless there has been rapid progress over the past twenty years. The technique allows astronomers to chart the distribution of dark matter on large and small scales thereby testing predictions of the standard cosmological model which assumes dark matter comprises a massive weakly-interacting particle. By measuring the distances and tracing the growth of dark matter structure over cosmic time, gravitational lensing also holds great promise in determining whether the dark energy, postulated to explain the accelerated cosmic expansion, is a vacuum energy density or a failure of general relativity on large scales. We illustrate the wide range of applications which harness the power of gravitational lensing, from searches for the earliest galaxies magnified by massive clusters to those for extrasolar planets which temporarily brighten a background star. We summarise the future prospects with dedicated ground and space-based facilities designed to exploit this remarkable physical phenomenon.

  15. Multimodal characterization of contact lenses

    NASA Astrophysics Data System (ADS)

    Marcus, Michael A.; Compertore, David; Gibson, Donald S.; Herbrand, Matthew E.; Ignatovich, Filipp V.

    2015-10-01

    A table top instrument has been designed, constructed and tested to characterize all of the primary optical and physical properties of contact lenses. Measured optical properties include base power, cylinder power, cylindrical axis, prism, refractive index and wavefront aberrations. Measured physical properties include center thickness, lens diameter and lens sagittal depth. The instrument combines a Shack-Hartmann wavefront sensor (SHWS), a machine vision sensor, and a low coherence light interferometer (LCI) all coaxially aligned into a single tabletop unit. The unit includes a cuvette, mounted in a translatable sample chamber for holding the contact lens under test, and it can be configured to measure wet or dry contact lenses. During operation, the vision sensor measures the diameter of the lens, and locates the center of the lens. The lens is then aligned for other measurements. The vision sensor can also measure various alignment marks on the lens, as well as identify any alpha numerical features, which can be used to associate the lens orientation with the measured aberrations. The LCI measures the center thickness, sagittal depth and index of refraction of the contact lens. The base radius of curvature is then calculated using these measured parameters. The SHWS measures the lenses prescription power, including spherical, cylinder, prism, and higher order wavefront aberrations. NIST traceable calibration artifacts are used to calibrate the SHWS, machine vision and LCI modalities. Repeatability measurements on a contact lens in a saline solution are presented.

  16. 30 CFR 18.30 - Windows and lenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed...

  17. 30 CFR 18.30 - Windows and lenses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed...

  18. Securing color image by using phase-only encoding in Fresnel domains

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjun; Guo, Cheng; Tan, Jiubin; Liu, Wei; Wu, Jingjing; Wu, Qun; Pan, Liqiang; Liu, Shutian

    2015-05-01

    We propose a novel color image hiding scheme with three channels of cascaded Fresnel domain phase-only filtering. The original color image is encoded into three phase masks by using the Gerchberg-Saxton iterative phase retrieval algorithm with another predefined phase key. The individual phase masks are placed in the inputs of the Fresnel domains of the red-green-blue channels and the phase key in the public channel, during the optical retrieval. The physical parameters in the optical system will be regarded as the additional keys for security enhancement. Numerical simulation is performed to test the validity of our scheme.

  19. Wave propagation and phase retrieval in Fresnel diffraction by a distorted-object approach

    SciTech Connect

    Xiao Xianghui; Shen Qun

    2005-07-15

    An extension of the far-field x-ray diffraction theory is presented by the introduction of a distorted object for calculation of coherent diffraction patterns in the near-field Fresnel regime. It embeds a Fresnel-zone construction on an original object to form a phase-chirped distorted object, which is then Fourier transformed to form a diffraction image. This approach extends the applicability of Fourier-based iterative phasing algorithms into the near-field holographic regime where phase retrieval had been difficult. Simulated numerical examples of this near-field phase retrieval approach indicate its potential applications in high-resolution structural investigations of noncrystalline materials.

  20. Gravitational lenses and dark matter - Theory

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1987-01-01

    Theoretical models are presented for guiding the application of gravitational lenses to probe the characteristics of dark matter in the universe. Analytical techniques are defined for quantifying the mass associated with lensing galaxies (in terms of the image separation), determining the quantity of dark mass of the lensing bodies, and estimating the mass density of the lenses. The possibility that heavy halos are made of low mass stars is considered, along with the swallowing of central images of black holes or cusps in galactic nuclei and the effects produced on a lensed quasar image by nonbaryonic halos. The observable effects of dense groups and clusters and the characteristics of dark matter strings are discussed, and various types of images which are possible due to lensing phenomena and position are described.

  1. [Contact lenses permeable to gas. Literature review].

    PubMed

    Livshiys, V S; Popova, T A; Zaikov, G E; Kuś, H

    1989-01-01

    Some medical-technical requirements concerning ophthalmic contact lenses were formulated. A whole series of scientific descriptions of contact lenses was analysed. A short characterization of lenses was given on the basis of PMMA (polymethacrylate of methyl), silicon rubber, poly-2-methacrylic cellulose and cellulose acetate-butyrate; the properties of contact lenses made of materials achieved through a modification of the above-mentioned ones as well as made of new materials were also examined. The problems of transmission of gases of contact lenses were described and the calculations necessary for a minimum of the gas transmittance were mentioned, starting from partial oxygen to the eye cornea. Some ways of solving the problems concerning the insertion of therapeutic substances into contact lenses are described together with prevention of the accumulation of lacrimation fluid protein on their surfaces. PMID:2682577

  2. Characterization of sand lenses embedded in tills

    NASA Astrophysics Data System (ADS)

    Kessler, T. C.; Klint, K. E. S.; Nilsson, B.; Bjerg, P. L.

    2012-10-01

    Tills dominate large parts of the superficial sediments on the Northern hemisphere. These glacial diamictons are extremely heterogeneous and riddled with fractures and lenses of sand or gravel. The frequency and geometry of sand lenses within tills are strongly linked to glaciodynamic processes occurring in various glacial environments. This study specifically focuses on the appearance and spatial distribution of sand lenses in tills. It introduces a methodology on how to measure and characterize sand lenses in the field with regard to size, shape and degree of deformation. A set of geometric parameters is defined to allow characterization of sand lenses. The proposed classification scheme uses a stringent terminology to distinguish several types of sand lenses based on the geometry. It includes sand layers, sand sheets, sand bodies, sand pockets and sand stringers. The methodology has been applied at the Kallerup field site in the Eastern part of Denmark. The site offers exposures in a number of till types that underwent different levels of glaciotectonic deformation. Sand lenses show high spatial variability and only weak uniformity in terms of extent and shape. Secondly, the genesis of the various types of sand lenses is discussed, primarily in relation to the depositional and glaciotectonic processes they underwent. Detailed characterization of sand lenses facilitates such interpretations. Finally, the observations are linked to a more general overview of the distribution of sand lenses in various glacial environments. Due to the complex and mutable appearance of sand lenses, geometric descriptions can reveal the deformation history and even give indications on the palaeo-glaciological conditions during the deposition of the surrounding tills. This information can support the understanding of till genesis and further inform till classifications. In this regard, structural heterogeneity such as sand lenses can supplement traditional directional element analysis

  3. Instrumental systematics and weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, R.

    2015-05-01

    We present a pedagogical review of the weak gravitational lensing measurement process and its connection to major scientific questions such as dark matter and dark energy. Then we describe common ways of parametrizing systematic errors and understanding how they affect weak lensing measurements. Finally, we discuss several instrumental systematics and how they fit into this context, and conclude with some future perspective on how progress can be made in understanding the impact of instrumental systematics on weak lensing measurements.

  4. Aberrations of sphero-cylindrical ophthalmic lenses.

    PubMed

    Malacara, Z; Malacara, D

    1990-04-01

    The authors have presented in two previous articles the graphic solutions resembling Tscherning ellipses, for spherical as well as for aspherical ophthalmic lenses free of astigmatism or power error. These solutions were exact, inasmuch as they were based on exact ray tracing, and not third-order theory as frequently done. In this paper sphero-cylindrical lenses are now analyzed, also using exact ray tracing. The functional dependence of the astigmatism and the power error for these lenses is described extensively.

  5. Design of spherical symmetric gradient index lenses

    NASA Astrophysics Data System (ADS)

    Miñano, Juan C.; Grabovičkić, Dejan; Benítez, Pablo; González, Juan C.; Santamaría, Asunción

    2012-10-01

    Spherical symmetric refractive index distributions also known as Gradient Index lenses such as the Maxwell-Fish-Eye (MFE), the Luneburg or the Eaton lenses have always played an important role in Optics. The recent development of the technique called Transformation Optics has renewed the interest in these gradient index lenses. For instance, Perfect Imaging within the Wave Optics framework has recently been proved using the MFE distribution. We review here the design problem of these lenses, classify them in two groups (Luneburg moveable-limits and fixed-limits type), and establish a new design techniques for each type of problem.

  6. The Alvarez and Lohmann refractive lenses revisited.

    PubMed

    Barbero, Sergio

    2009-05-25

    Alvarez and Lohmann lenses are variable focus optical devices based on lateral shifts of two lenses with cubic-type surfaces. I analyzed the optical performance of these types of lenses computing the first order optical properties (applying wavefront refraction and propagation) without the restriction of the thin lens approximation, and the spot diagram using a ray tracing algorithm. I proposed an analytic and numerical method to select the most optimum coefficients and the specific configuration of these lenses. The results show that Lohmann composite lens is slightly superior to Alvarez one because the overall thickness and optical aberrations are smaller.

  7. Gravitational lenses and dark matter - Observations

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.

    1987-01-01

    Following a few general comments on gravitational lenses from an observer's perspective, the currently available observations of the six known gravitational lenses are summarized. Attention is called to some regularities and peculiarities of the properties of the known lenses and to how they might be interpreted. The most important conclusions, relevant to the dark matter problem, which can be obtained from current observations are that the distributions of mass and light appear to be quite different in at least some of the lensing objects and that objects with projected mass/brightness values about 10 times larger than those ordinarily associated with galaxies exist and are not too rare.

  8. cluster-lensing: Tools for calculating properties and weak lensing profiles of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Ford, Jes

    2016-05-01

    The cluster-lensing package calculates properties and weak lensing profiles of galaxy clusters. Implemented in Python, it includes cluster mass-richness and mass-concentration scaling relations, and NFW halo profiles for weak lensing shear, the differential surface mass density ΔΣ(r), and for magnification, Σ(r). Optionally the calculation will include the effects of cluster miscentering offsets.

  9. Aerogel detector with a Fresnel lens focalization: a test of the concept

    SciTech Connect

    Sokolov, O.; Paic, G.; Alfaro, R.

    2008-07-02

    We present a threshold aerogel detector that uses only the unscattered light in the aerogel, focused on a photomultiplier using a Fresnel lens. The results with n = 1.03 and 3'' photomultiplier are presented. The possibility to use 1.5'' PMT is discussed.

  10. Huygens-Feynman-Fresnel principle as the basis of applied optics.

    PubMed

    Gitin, Andrey V

    2013-11-01

    The main relationships of wave optics are derived from a combination of the Huygens-Fresnel principle and the Feynman integral over all paths. The stationary-phase approximation of the wave relations gives the correspondent relations from the point of view of geometrical optics.

  11. Scintillations during occultations by planets. 1. An approximate theory. [fresnel region

    NASA Technical Reports Server (NTRS)

    Young, A. T.

    1975-01-01

    Scintillations observed during occultations of both stars and spacecraft by planetary atmospheres are discussed theoretically. The effects of severe flattening of the Fresnel zone or source image by defocusing on occultations are presented, along with temporal power spectra. Other topics discussed include atmospheric turbulence, saturation of scintillation, effects of saturation on occultation curves, and some methods for a more accurate determination of atmospheric structure.

  12. Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture

    PubMed Central

    Kashter, Yuval; Rosen, Joseph

    2014-01-01

    Synthetic aperture methods are commonly-used techniques for providing images with super-resolution qualities. We propose an improved design of the system, coined “synthetic aperture with Fresnel elements”. The super-resolution capabilities of the proposed scheme are analyzed and experimentally demonstrated. PMID:25321260

  13. Slow-flow measurements and fluid dynamics analysis using the Fresnel drag effect.

    PubMed

    de Carvalho, R T; Blake, J

    1994-09-01

    We have employed a Sagnac interferometer to measure small optical phase shifts induced by the Fresnel drag effect on moving media. The system detects volumetric flow rates of water as slow as 43 µL/min while maintaining a small pressure drop across the measuring pipe. Velocity profiles and turbulence measurements of flowing water are also demonstrated and discussed.

  14. Huygens-Feynman-Fresnel principle as the basis of applied optics.

    PubMed

    Gitin, Andrey V

    2013-11-01

    The main relationships of wave optics are derived from a combination of the Huygens-Fresnel principle and the Feynman integral over all paths. The stationary-phase approximation of the wave relations gives the correspondent relations from the point of view of geometrical optics. PMID:24216640

  15. A Modified Version of Young's Interferometer to Study the Fresnel and Arago Interference Laws

    ERIC Educational Resources Information Center

    Kanseri, Bashkar; Bisht, Nandan S.; Rath, Shyama; Kandpal, H. C.

    2009-01-01

    We present a modified version of Young's interferometer to verify experimentally the four interference laws propounded by Fresnel and Arago. Theoretical analysis is given using the complex algebra and the matrix representation for polarizers, rotators and the electromagnetic field. The advantage of the modified interferometer over other spatial…

  16. Gravitational Lensing Extends SETI Range

    NASA Astrophysics Data System (ADS)

    Factor, Richard

    Microwave SETI (The Search for Extraterrestrial Intelligence) focuses on two primary strategies, the "Targeted Search" and the "All-Sky Survey." Although the goal of both strategies is the unequivocal discovery of a signal transmitted by intelligent species outside our solar system, they pursue the strategies in very different manners and have vastly different requirements. This chapter introduces Gravitational Lensing SETI (GL-SETI), a third strategy. Its goal is the unequivocal discovery of an extraterrestrial signal, with equipment and data processing requirements that are substantially different from the commonly-used strategies. This strategy is particularly suitable for use with smaller radio telescopes and has budgetary requirements suitable for individual researchers.

  17. Weak lensing by galaxy troughs

    NASA Astrophysics Data System (ADS)

    Gruen, Daniel

    2016-06-01

    Galaxy troughs, i.e. underdensities in the projected galaxy field, are a weak lensing probe of the low density Universe with high signal-to-noise ratio. I present measurements of the radial distortion of background galaxy images and the de-magnification of the CMB by troughs constructed from Dark Energy Survey and Sloan Digital Sky Survey galaxy catalogs. With high statistical significance and a relatively robust modeling, these probe gravity in regimes of density and scale difficult to access for conventional statistics.

  18. Comparison of spectacle classical progressive and office progressive lenses.

    PubMed

    Kozlík, Marek; Knollová, Libuse Nováková

    2013-04-01

    This paper elaborates on analysis of progressive spectacle lenses, to correct presbyopia, which are nowadays offered at the market. The paper describes different types of progressive lenses, their parameters, length and width of their progressive segments. It also describes degressive spectacles lenses--progressive lenses on middle and near distance. The main part of the paper is a comparison of functional differences among different types of progressive spectacles lenses. The paper also addresses correctness of choice of progressive lenses for different works and professions. Lastly, it elaborates on differences of centration of different types of progressive lenses and parameters for correct choice of glasses frame for progressive spectacles lenses. PMID:23837232

  19. Light-Weight Radioisotope Heater Unit Safety Analysis Report (LWRHU-SAR). Volume I. A. Introduction and executive summary. B. Reference Design Document (RDD)

    SciTech Connect

    Johnson, E.W.

    1985-10-01

    The orbiter and probe portions of the NASA Galileo spacecraft contain components which require auxiliary heat during the mission. To meet these needs, the Department of Energy's (DOE's) Office of Special Nuclear Projects (OSNP) has sponsored the design, fabrication, and testing of a one-watt encapsulated plutonium dioxide-fueled thermal heater named the Light-Weight Radioisotope Heater Unit (LWRHU). This report addresses the radiological risks which might be encountered by people both at the launch area and worldwide should postulate mission failures or malfunctions occur, which would result in the release of the LWRHUs to the environment. Included are data from the design, mission descriptions, postulated accidents with their consequences, test data, and the derived source terms and personnel exposures for the various events.

  20. Light-Weight Radioisotope Heater Unit final safety analysis report (LWRHU-FSAR): Volume 1: A. Introduction and executive summary: B. Reference Design Document (RDD)

    SciTech Connect

    Johnson, E.W.

    1988-10-01

    The orbiter and probe portions of the National Aeronautics and Space Administration (NASA) Galileo spacecraft contain components which require auxiliary heat during the mission. To meet these needs, the Department of Energy's (DOE's) Office of Special Applications (OSA) has sponsored the design, fabrication, and testing of a one-watt encapsulated plutonium dioxide-fueled thermal heater named the Light-Weight Radioisotope Heater Unit (LWRHU). This report, prepared by Monsanto Research Corporation (MRC), addresses the radiological risks which might be encountered by people both at the launch area and worldwide should postulated mission failures or malfunctions occur, resulting in the release of the LWRHUs to the environment. Included are data from the design, mission descriptions, postulated accidents with their consequences, test data, and the derived source terms and personnel exposures for the various events. 11 refs., 44 figs., 11 tabs.

  1. M2Lite: An Open-source, Light-weight, Pluggable and Fast Proteome Discoverer MSF to mzIdentML Tool.

    PubMed

    Aiyetan, Paul; Zhang, Bai; Chen, Lily; Zhang, Zhen; Zhang, Hui

    2014-04-28

    Proteome Discoverer is one of many tools used for protein database search and peptide to spectrum assignment in mass spectrometry-based proteomics. However, the inadequacy of conversion tools makes it challenging to compare and integrate its results to those of other analytical tools. Here we present M2Lite, an open-source, light-weight, easily pluggable and fast conversion tool. M2Lite converts proteome discoverer derived MSF files to the proteomics community defined standard - the mzIdentML file format. M2Lite's source code is available as open-source at https://bitbucket.org/paiyetan/m2lite/src and its compiled binaries and documentation can be freely downloaded at https://bitbucket.org/paiyetan/m2lite/downloads.

  2. Lenses and Perception: Investigations with Light

    ERIC Educational Resources Information Center

    Akcay, Hakan

    2005-01-01

    The main goals of these activities are to help students learn how a convex lens can serve as a magnifying lens and how light travels and creates images. These explorations will introduce middle school students to different types of lenses and how they work. Students will observe and describe how lenses bend light that passes through them and how…

  3. A symplectic framework for multiplane gravitational lensing

    NASA Astrophysics Data System (ADS)

    Izumiya, S.; Janeczko, S.

    2003-05-01

    We construct a new framework for the study of multiplane gravitational lensing from the view point of symplectic geometry. Symplectic relations are used to compose the systems and weaker Lagrangian equivalence is applied for classifying the caustics of multiplane gravitational lensing.

  4. Commercial Development of an Advanced, High-Temperature, Linear-Fresnel Based Concentrating Solar Power Concept

    SciTech Connect

    Viljoen, Nolan; Schuknecht, Nathan

    2012-05-28

    Included herein is SkyFuel’s detailed assessment of the potential for a direct molten salt linear Fresnel collector. Linear Fresnel architecture is of interest because it has features that are well suited for use with molten salt as a heat transfer fluid: the receiver is fixed (only the mirrors track), the receiver diameter is large (reducing risk of freeze events), and the total linear feet of receiver can be reduced due to the large aperture area. Using molten salt as a heat transfer fluid increases the allowable operating temperature of a collector field, and the cost of thermal storage is reduced in proportion to that increase in temperature. At the conclusion of this project, SkyFuel determined that the cost goals set forth in the contract could not be reasonably met. The performance of a Linear Fresnel collector is significantly less than that of a parabolic trough, in particular due to linear Fresnel’s large optical cosine losses. On an annual basis, the performance is 20 to 30% below that of a parabolic trough per unit area. The linear Fresnel collector and balance of system costs resulted in an LCOE of approximately 9.9¢/kWhre. Recent work by SkyFuel has resulted in a large aperture trough design (DSP Trough) with an LCOE value of 8.9 ¢/kWhre calculated with comparative financial terms and balance of plant costs (White 2011). Thus, even though the optimized linear Fresnel collector of our design has a lower unit cost than our optimized trough, it cannot overcome the reduction in annual performance.

  5. Prediction of Impact Shock Vibrations at Tennis Player's Wrist Joint: Comparison between Conventional Weight Racket and Light Weight Racket with Super Large Head Size

    NASA Astrophysics Data System (ADS)

    Kawazoe, Yoshihiko; Takeda, Yukihiro; Nakagawa, Masamichi; Casolo, Federico; Tomosue, Ryoso; Yoshinari, Keiko

    The lightweight racket with handle-light configuration and large head size is recent tendency of high-tech tennis rackets, increasing power or post-impact ball velocity with an increasing racket swing speed. This paper investigated the performance of lightweight tennis racket with super-large head size in terms of feel or comfort. It predicted the effect of the mass and mass distribution of super-large sized rackets on the impact shock vibrations of the racket handle and the player's wrist joint when a player hits a flat forehand drive. The prediction is based on the identification of the racket characteristics, the damping of the racket-arm system, equivalent mass of the player's arm system and the approximate nonlinear impact analysis in tennis. A super-light weight balanced racket (mass: 292 g, the center of gravity LG: 363 mm from the butt end) and a conventional weight and weight balanced racket (349 g, LG: 323 mm) are selected as representatives. They are the super-large sized rackets made of carbon graphite with a head size of 120 square inches and the same geometry. The result showed that the shock vibration of the super-light weight balanced racket with super-large sized head is much larger than that of the conventional weight balanced type racket. It also showed that the sweet area of the former in terms of the shock vibration shifts from the center to the topside on the racket face compared to the latter. This is because the location of the grip on the racket handle is further from the location of the node on the handle of the first mode of super-light racket than that of the conventional weight racket.

  6. Optimization design of hybrid Fresnel-based concentrator for generating uniformity irradiance with the broad solar spectrum

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhenfeng; Yu, Feihong

    2014-08-01

    This paper presents a novel hybrid Fresnel-based concentrator with improved uniformity irradiance distribution on the solar cell without using secondary optical element (SOE) in the concentrator photovoltaic (CPV) system to overcome the Fresnel loss and to increase the solar cell conversion efficiency. The designed hybrid Fresnel-based concentrator is composed of two parts, the inner part and the outer part. The inner part is the conventional Fresnel lens, while the outer part is double total internal reflection (DTIR) lens. According to the simple geometrical relation, the profile of the proposed hybrid Fresnel-based concentrator is calculated as an initial design profile. To obtain good irradiance uniformity on the solar cell, optimal prism displacements are optimized by using a simplex algorithm for collimated incident sunlight based on different prism focus on different position principles. In addition, a Monte-Carlo ray-tracing simulation approach is utilized to verify the optical performance for the hybrid Fresnel-based concentrator. Results indicate that the hybrid Fresnel-based concentrator designed using this method can achieve spatial non-uniformity less than 16.2%, f-number less than 0.59 (focal length to entry aperture diameter ratio), geometrical concentrator ratio 1759.8×, and acceptance angle ±0.23°. Compared to the conventional Fresnel-based lens and the traditional hybrid Fresnel-based lens, the optimized concentrator yields a significant improvement in irradiance uniformity on the solar cell with a wide solar spectrum range. It also has good tolerance to the incident sunlight.

  7. Time delay in Swiss cheese gravitational lensing

    SciTech Connect

    Chen, B.; Kantowski, R.; Dai, X.

    2010-08-15

    We compute time delays for gravitational lensing in a flat {Lambda} dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with {Lambda}) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant's effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach {approx}4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.

  8. Time delay in Swiss cheese gravitational lensing

    NASA Astrophysics Data System (ADS)

    Chen, B.; Kantowski, R.; Dai, X.

    2010-08-01

    We compute time delays for gravitational lensing in a flat Λ dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with Λ) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant’s effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach ˜4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.

  9. Spherical aberration in electrically thin flat lenses.

    PubMed

    Ruphuy, Miguel; Ramahi, Omar M

    2016-08-01

    We analyze the spherical aberration of a new generation of lenses made of flat electrically thin inhomogeneous media. For such lenses, spherical aberration is analyzed quantitatively and qualitatively, and comparison is made to the classical gradient index rod. Both flat thin and thick lenses are made of gradient index materials, but the physical mechanisms and design equations are different. Using full-wave three-dimensional numerical simulation, we evaluate the spherical aberrations using the Maréchal criterion and show that the thin lens gives significantly better performance than the thick lens (rod). Additionally, based on ray tracing formulation, third-order analysis for longitudinal aberration and optical path difference are presented, showing strong overall performance of thin lenses in comparison to classical rod lenses. PMID:27505651

  10. Optical plasticity in fish lenses.

    PubMed

    Kröger, Ronald H H

    2013-05-01

    In a typical fish eye, the crystalline lens is the only refractive element. It is spherical in shape and has high refractive power. Most fish species have elaborate color vision and spectral sensitivity may range from the near-infrared to the near-ultraviolet. Longitudinal chromatic aberration exceeds depth of focus and chromatic blur is compensated for by species-specific multifocality of the lens. The complex optical properties of fish lenses are subject to accurate regulation, including circadian reversible adjustments and irreversible developmental tuning. The mechanisms optimize the transfer of visual information to the retina in diverse and variable environments, and allow for rapid evolutionary changes in color vision. Active optical tuning of the lens is achieved by changes in the refractive index gradient and involves layers of mature, denucleated lens fiber cells. First steps have been taken toward unraveling the signaling systems controlling lens optical plasticity. Multifocal lenses compensating for chromatic blur are common in all major groups of vertebrates, including birds and mammals. Furthermore, the optical quality of a monofocal lens, such as in the human eye, is equally sensitive to the exact shape of the refractive index profile. Optical plasticity in the crystalline lens may thus be present in vertebrates in general.

  11. Ray optics of generalized lenses.

    PubMed

    Chaplain, Gregory J; Macauley, Gavin; Bělín, Jakub; Tyc, Tomáš; Cowie, Euan N; Courtial, Johannes

    2016-05-01

    We study the ray optics of generalized lenses (glenses), which are ideal thin lenses generalized to have different object- and image-sided focal lengths, and the most general light-ray-direction-changing surfaces that stigmatically image any point in object space to a corresponding point in image space. Gabor superlenses [UK patent541,753 (1940); J. Opt. A1, 94 (1999)JOAOF81464-425810.1088/1464-4258/1/1/013] can be seen as pixelated realizations of glenses. Our analysis is centered on the nodal point. Whereas the nodal point of a thin lens always resides in the lens plane, that of a glens can reside anywhere on the optical axis. Utilizing the nodal point, we derive simple equations that describe the mapping between object and image space and the light-ray-direction change. We demonstrate our findings with the help of ray-tracing simulations. Glenses allow novel optical instruments to be realized, at least theoretically, and our results facilitate the design and analysis of such devices. PMID:27140894

  12. Planck 2015 results. XV. Gravitational lensing

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 ≤ L ≤ 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the ΛCDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ8Ω0.25m = 0.591 ± 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10σ, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3σ level, as expected because of dark energy in the concordance ΛCDM model.

  13. Scanning Miniature Microscopes without Lenses

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the

  14. Constraining Source Redshift Distributions with Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Wittman, D.; Dawson, W. A.

    2012-09-01

    We introduce a new method for constraining the redshift distribution of a set of galaxies, using weak gravitational lensing shear. Instead of using observed shears and redshifts to constrain cosmological parameters, we ask how well the shears around clusters can constrain the redshifts, assuming fixed cosmological parameters. This provides a check on photometric redshifts, independent of source spectral energy distribution properties and therefore free of confounding factors such as misidentification of spectral breaks. We find that ~40 massive (σ v = 1200 km s-1) cluster lenses are sufficient to determine the fraction of sources in each of six coarse redshift bins to ~11%, given weak (20%) priors on the masses of the highest-redshift lenses, tight (5%) priors on the masses of the lowest-redshift lenses, and only modest (20%-50%) priors on calibration and evolution effects. Additional massive lenses drive down uncertainties as N_lens^{-{1\\over 2}}, but the improvement slows as one is forced to use lenses further down the mass function. Future large surveys contain enough clusters to reach 1% precision in the bin fractions if the tight lens-mass priors can be maintained for large samples of lenses. In practice this will be difficult to achieve, but the method may be valuable as a complement to other more precise methods because it is based on different physics and therefore has different systematic errors.

  15. Adherence of Pseudomonas aeruginosa to contact lenses

    SciTech Connect

    Miller, M.J.

    1988-01-01

    The purpose of this research was to examined the interactions of P. aeruginosa with hydrogel contact lenses and other substrata, and characterize adherence to lenses under various physiological and physicochemical conditions. Isolates adhered to polystyrene, glass, and hydrogel lenses. With certain lens types, radiolabeled cells showed decreased adherence with increasing water content of the lenses, however, this correlation with not found for all lenses. Adherence to rigid gas permeable lenses was markedly greater than adherence to hydrogels. Best adherence occurred near pH 7 and at a sodium chloride concentration of 50 mM. Passive adhesion of heat-killed cells to hydrogels was lower than the adherence obtained of viable cells. Adherence to hydrogels was enhanced by mucin, lactoferrin, lysozyme, IgA, bovine serum albumin, and a mixture of these macromolecules. Adherence to coated and uncoated lenses was greater with a daily-wear hydrogel when compared with an extended-wear hydrogel of similar polymer composition. Greater adherence was attributed to a higher concentration of adsorbed macromolecules on the 45% water-content lens in comparison to the 55% water-content lens.

  16. Investigations of Galaxy Clusters Using Gravitational Lensing

    SciTech Connect

    Wiesner, Matthew P.

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  17. Strong Gravitational Lensing: Relativity in Action

    NASA Astrophysics Data System (ADS)

    Wambsganss, Joachim

    2009-05-01

    Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a "relativistic eclipse" as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated since: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications -- with both photometric and astrometric signatures of lensing being discussed -- will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.

  18. HST Observations of New Class Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Jackson, Neal

    1995-07-01

    We propose to examine a few of the very best lens candidates from a new gravitational lens survey, the Cosmic Lens All-Sky Survey (CLASS) made with the VLA. We are virtually certain that we have one new lens system (1600+434) and another (1609+655) has a radio configuration which almost invariably indicates gravitational lensing. The other cases are systems which have a high probability of being lenses (statistically we would expect at least 5 of the 10 objects should be lensed, since we have imaged >3000 radio sources and experience shows that 1 in 500 are lensed). All have separations which make them difficult to study from the ground and therefore uniquely suited to the capabilities of the HST. In this investigation we will study 1600+434 and 1609+655 and attempt to image the lensing galaxy. We will image the remainder in an attempt to confirm their lens status (which requires 0.1" resolution imaging typically) and search for lensing galaxies and/or clusters in those found to be lensed systems.

  19. Tevatron Electron Lenses: Design and Operation

    SciTech Connect

    Shiltsev, Vladimir; Bishofberger, Kip; Kamerdzhiev, Vsevolod; Kozub, Sergei; Kufer, Matthew; Kuznetsov, Gennady; Martinez, Alexander; Olson, Marvin; Pfeffer, Howard; Saewert, Greg; Scarpine, Vic; /Fermilab /SLAC /Fermilab /Serpukhov, IHEP /Novosibirsk, IYF /Serpukhov, IHEP /Fermilab

    2008-08-01

    The beam-beam effects have been the dominating sources of beam loss and lifetime limitations in the Tevatron proton-antiproton collider [1]. Electron lenses were originally proposed for compensation of electromagnetic long-range and head-on beam-beam interactions of proton and antiproton beams [2]. Results of successful employment of two electron lenses built and installed in the Tevatron are reported in [3,4,5]. In this paper we present design features of the Tevatron electron lenses (TELs), discuss the generation of electron beams, describe different modes of operation and outline the technical parameters of various subsystems.

  20. Wettability and silicone hydrogel lenses: a review.

    PubMed

    Keir, Nancy; Jones, Lyndon

    2013-01-01

    One of the major breakthroughs in the development of silicone hydrogel contact lenses has related to the ability of manufacturers to overcome the surface hydrophobicity that occurred with silicone elastomer lenses. However, the wettability of silicone hydrogel lenses continues to be of interest as a potential link between in vivo lens performance and contact lens-related comfort. This article will review some of the knowledge we have gained in the area of contact lens wettability over the past decade and will discuss some of the challenges related to its measurement. PMID:23274760

  1. Edge shape and comfort of rigid lenses.

    PubMed

    La Hood, D

    1988-08-01

    One of the main factors determining the comfort of a rigid contact lens is the shape of the edge. The comfort of four different contact lens edge shapes was assessed with four unadapted subjects in a randomized masked trial. Lenses with well rounded anterior edge profiles were found to be significantly more comfortable than lenses with square anterior edges. There was no significant difference in subjective comfort between a rounded and square posterior edge profile. The results suggest that the interaction of the edge with the eyelid is more important in determining comfort than edge effects on the cornea, when lenses are fitted according to a corneal alignment philosophy. PMID:3177585

  2. Twin axial vortices generated by Fibonacci lenses.

    PubMed

    Calatayud, Arnau; Ferrando, Vicente; Remón, Laura; Furlan, Walter D; Monsoriu, Juan A

    2013-04-22

    Optical vortex beams, generated by Diffractive Optical Elements (DOEs), are capable of creating optical traps and other multi-functional micromanipulators for very specific tasks in the microscopic scale. Using the Fibonacci sequence, we have discovered a new family of DOEs that inherently behave as bifocal vortex lenses, and where the ratio of the two focal distances approaches the golden mean. The disctintive optical properties of these Fibonacci vortex lenses are experimentally demonstrated. We believe that the versatility and potential scalability of these lenses may allow for new applications in micro and nanophotonics. PMID:23609732

  3. Optimization of Coherent Lidar Performance Using Graded- Reflectance Transmitter Resonator Optics in the Low Equivalent Fresnel Number Region

    NASA Technical Reports Server (NTRS)

    Tratt, D. M.

    1995-01-01

    Using a diffractive eigenmode treatment to model the laser output, we show that graded-reflectance resonator optics offer significant efficiency benefits over conventional hard-edge coupled unstable resonators in the context of coherent detection lidar applications. Extending previous work pertinent to the high equivalent Fresnel number regime, we have modelled the optimum performance of a notional super-Gaussian coupled cavity as a function of the key resonator parameters in the low equivalent Fresnel number regime.

  4. Generation of phase-only Fresnel hologram based on down-sampling.

    PubMed

    Tsang, P W M; Chow, Y-T; Poon, T-C

    2014-10-20

    We present a novel non-iterative method for generating phase-only Fresnel holograms. The intensity image of the source object scene is first down-sampled with uniform grid-cross lattices. A Fresnel hologram is then generated from the intensity and the depth information of the sampled object points. Subsequently, only the phase component of the hologram is preserved, resulting in a pure phase hologram that we call the sampled-phase-only hologram (SPOH). Experimental evaluation reveals that the numerical, as well as the optical reconstructed images of the proposed phase-only hologram derived with our method are of high visual quality. Moreover, the reconstructed optical image is brighter, and less affected by phase noise contamination on the hologram as compared with those generated with existing error-diffusion approaches.

  5. Novel copyright information hiding method based on random phase matrix of Fresnel diffraction transforms

    NASA Astrophysics Data System (ADS)

    Cao, Chao; Chen, Ru-jun

    2009-10-01

    In this paper, we present a new copyright information hide method for digital images in Moiré fringe formats. The copyright information is embedded into the protected image and the detecting image based on Fresnel phase matrix. Firstly, using Fresnel diffraction transform, the random phase matrix of copyright information is generated. Then, according to Moiré fringe principle, the protected image and the detecting image are modulated respectively based on the random phase matrix, and the copyright information is embedded into them. When the protected image and the detecting image are overlapped, the copyright information can reappear. Experiment results show that our method has good concealment performance, and is a new way for copyright protection.

  6. Single-exposure multiphoton fabrication of polygonized structures by an SLM-modulated Fresnel zone lens

    NASA Astrophysics Data System (ADS)

    Zhang, Chenchu; Hu, Yanlei; Li, Jiawen; Lao, Zhaoxin; Xu, Bing; Ni, Jincheng; Cai, Ze; Wu, Dong; Chu, Jiaru

    2016-03-01

    Recently, annular beams have been developed to rapidly fabricate microscope tubular structures via two-photon polymerization, but the distribution of the light field is limited to a ring pattern. Here a Fresnel lens is designed and applied to modulate the light field into a uniform quadrangle or hexagon shape with controllable diameters. By applying a spatial light modulator to load the phase information of the Fresnel lens, quadrangle and hexagon structures are achieved through single exposure of a femtosecond laser. A 3×6 array of structures is made within 9 s. Comparing with the conventional holographic processing, this method shows higher uniformity, high efficiency, better flexibility, and easy operation. The approach exhibited a promising prospect in rapidly fabricating structures such as tissue engineering scaffolds and variously shaped tubular arrays.

  7. The calculation of electromagnetic fields in the Fresnel and Fraunhofer regions using numerical integration methods

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1971-01-01

    Some results obtained with a digital computer program written at Goddard Space Flight Center to obtain electromagnetic fields scattered by perfectly reflecting surfaces are presented. For purposes of illustration a paraboloidal reflector was illuminated at radio frequencies in the simulation for both receiving and transmitting modes of operation. Fields were computed in the Fresnel and Fraunhofer regions. A dual-reflector system (Cassegrain) was also simulated for the transmitting case, and fields were computed in the Fraunhofer region. Appended results include derivations which show that the vector Kirchhoff-Kottler formulation has an equivalent form requiring only incident magnetic fields as a driving function. Satisfaction of the radiation conditions at infinity by the equivalent form is demonstrated by a conversion from Cartesian to spherical vector operators. A subsequent development presents the formulation by which Fresnel or Fraunhofer patterns are obtainable for dual-reflector systems. A discussion of the time-average Poynting vector is also appended.

  8. A Transmittance-optimized, Point-focus Fresnel Lens Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Oneill, M. J.

    1984-01-01

    The development of a point-focus Fresnel lens solar concentrator for high-temperature solar thermal energy system applications is discussed. The concentrator utilizes a transmittance-optimized, short-focal-length, dome-shaped refractive Fresnel lens as the optical element. This concentrator combines both good optical performance and a large tolerance for manufacturing, deflection, and tracking errors. The conceptual design of an 11-meter diameter concentrator which should provide an overall collector efficiency of about 70% at an 815 C (1500 F) receiver operating temperature and a 1500X geometric concentration ratio (lens aperture area/receiver aperture area) was completed. Results of optical and thermal analyses of the collector, a discussion of manufacturing methods for making the large lens, and an update on the current status and future plans of the development program are included.

  9. Visual effect of a linear Fresnel lens illuminated with a directional backlight.

    PubMed

    Li, Kunyang; Fan, Hang; Wang, Jiahui; Xu, Yuman; Zhou, Jianying; Zhou, Yangui

    2016-06-01

    A linear Fresnel lens illuminated by a directional backlight is studied. The light distribution on the lens surface visualized by a retina is simulated with a Monte Carlo ray-tracing technique, and the visualized display uniformity on the lens surface is found to depend critically on the lens quality as well as on the viewing position away from the light propagation axis. The effect of the light source configuration as well as the deviation of the microstructures of the Fresnel lens from ideal structure are studied. The simulation is verified with an experimental study, and good agreement between numerical and experimental results is obtained. Design guidelines are presented for a backlight-illuminated system to achieve high-quality uniform flat-panel two-dimensional and autostereoscopic displays. PMID:27409444

  10. Image magnification in lensless holographic projection using double-sampling Fresnel diffraction.

    PubMed

    Qu, Weidong; Gu, Huarong; Zhang, Hao; Tan, Qiaofeng

    2015-12-01

    Since the diffraction angle is limited by the spatial resolution of the spatial light modulator (SLM), the size of the optical image of the lensless holographic projection with a SLM is very small. Using a divergent spherical beam to illuminate a SLM is an effective method to physically increase the projection angle; nevertheless, the sampling ranges of the existing Fresnel diffraction algorithms with fast Fourier transform keep unchanged. In this paper, a double-sampling Fresnel diffraction algorithm to enlarge the sampling range is proposed when using a divergent spherical beam to illuminate a SLM, and the magnification of the optical image is realized in lensless holographic projection. The hologram can be easily optimized by the Gerschberg-Saxton algorithm. Simulation and experimental results with enlarged optical image are presented successfully. PMID:26836654

  11. Single-exposure multiphoton fabrication of polygonized structures by an SLM-modulated Fresnel zone lens

    NASA Astrophysics Data System (ADS)

    Zhang, Chenchu; Hu, Yanlei; Li, Jiawen; Lao, Zhaoxin; Xu, Bing; Ni, Jincheng; Cai, Ze; Wu, Dong; Chu, Jiaru

    2016-03-01

    Recently, annular beams have been developed to rapidly fabricate microscope tubular structures via two-photon polymerization, but the distribution of the light field is limited to a ring pattern. Here a Fresnel lens is designed and applied to modulate the light field into a uniform quadrangle or hexagon shape with controllable diameters. By applying a spatial light modulator to load the phase information of the Fresnel lens, quadrangle and hexagon structures are achieved through single exposure of a femtosecond laser. A 3×6 array of structures is made within 9 s. Comparing with the conventional holographic processing, this method shows higher uniformity, high efficiency, better flexibility, and easy operation. The approach exhibited a promising prospect in rapidly fabricating structures such as tissue engineering scaffolds and variously shaped tubular arrays.

  12. Degeneracy between Lensing and Occultation in the Analysis of Self-lensing Phenomena

    NASA Astrophysics Data System (ADS)

    Han, Cheongho

    2016-03-01

    More than 40 years after the first discussion, the detection of a self-lensing phenomenon within a binary system where the brightness of a background star is magnified by its foreground companion was recently reported. It is expected that the number of self-lensing binary detections will be increased by a wealth of data from current and future survey experiments. In this paper, we introduce a degeneracy in the interpretation of self-lensing light curves. The degeneracy is intrinsic to self-lensing binaries for which both magnification by lensing and de-magnification by occultation occur simultaneously and are caused by the difficulty in separating the contribution of the lensing-induced magnification from the observed light curve. We demonstrate the severity of this degeneracy by presenting examples of self-lensing light curves that suffer from it. We also present the relation between the lensing parameters of the degenerate solutions. This degeneracy is an important obstacle in accurately determining self-lensing parameters and thus characterizing binaries.

  13. Phase retrieval in x-ray coherent Fresnel projection-geometry diffraction

    SciTech Connect

    De Caro, Liberato; Giannini, Cinzia; Cedola, Alessia; Pelliccia, Daniele; Lagomarsino, Stefano; Jark, Werner

    2007-01-22

    Coherent x-ray diffraction experiments were performed in Fresnel regime, within a line-projection geometry. A planar x-ray waveguide was used to focus coherent cylindrical waves onto a 7.2 {mu}m Kevlar fiber, which acts as a phase object for hard x rays. The phase was retrieved, by using a Fourier-based iterative phasing algorithm, consistent with measured diffraction data and known constraints in real space, with a submicrometer spatial resolution.

  14. A modified version of Young's interferometer to study the Fresnel and Arago interference laws

    NASA Astrophysics Data System (ADS)

    Kanseri, Bhaskar; Bisht, Nandan S.; Rath, Shyama; Kandpal, H. C.

    2009-07-01

    We present a modified version of Young's interferometer to verify experimentally the four interference laws propounded by Fresnel and Arago. Theoretical analysis is given using the complex algebra and the matrix representation for polarizers, rotators and the electromagnetic field. The advantage of the modified interferometer over other spatial coherence-based interferometers is that it provides ease of use in performing experiments and may assist the understanding of physics in undergraduate laboratories.

  15. Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Komlenok, M. S.; Volodkin, B. O.; Knyazev, B. A.; Kononenko, T. V.; Kononenko, V. V.; Konov, V. I.; Soifer, V. A.; Pavel'ev, V. S.; Tukmakov, K. N.; Choporova, Yu Yu

    2015-10-01

    The possibility of fabricating a silicon diffractive fourlevel THz Fresnel lens by laser ablation is studied. For a microrelief to be formed on the sample surface, use is made of a femtosecond Yb : YAG laser with a high pulse repetition rate (f = 200 kHz). Characteristics of the diffractive optical element are investigated in the beam of a 141-mm free-electron laser. The measured diffraction efficiency of the lens is in good agreement with the theoretical estimate.

  16. Gravitational lensing of active galactic nuclei.

    PubMed Central

    Hewitt, J N

    1995-01-01

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613

  17. Nanofocusing Parabolic Refractive X-Ray Lenses

    SciTech Connect

    Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A. S.; Snigirev, A.; Snigireva, I.

    2004-05-12

    Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100nm range even at short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 330nm by 110nm at 25keV in a distance of 41.8m from the synchrotron radiation source. First microdiffraction and fluorescence microtomography experiments were carried out with these lenses. Using diamond as lens material, microbeams with lateral size down to 20nm and below are conceivable in the energy range from 10 to 100keV.

  18. Contact lenses and the work environment.

    PubMed

    Mäkitie, J

    1984-01-01

    Controversial opinions have been presented about the use of contact lenses in industrial environments. Work environments contain few obstacles to the use of contact lenses, but many occupations are associated with the risk of excessive difficulties, spoilation , irritation, or complications. From the radiant energy the shorter (280 nm) ultraviolet (UV) wavelengths and the longer (1300 nm) infra-red (IR) wavelengths are absorbed by contact lenses, the absorption increases their temperature and may cause corneal complications. Protective glasses, however, absorb more than 99.5% of the UV and IR energy and thus provide sufficient protection for contact lens wearers exposed to UV or IR radiation. The advantages and risks of contact lenses in industrial work are discussed. PMID:6328841

  19. Tear exchange and contact lenses: a review.

    PubMed

    Muntz, Alex; Subbaraman, Lakshman N; Sorbara, Luigina; Jones, Lyndon

    2015-01-01

    Tear exchange beneath a contact lens facilitates ongoing fluid replenishment between the ocular surface and the lens. This exchange is considerably lower during the wear of soft lenses compared with rigid lenses. As a result, the accumulation of tear film debris and metabolic by-products between the cornea and a soft contact lens increases, potentially leading to complications. Lens design innovations have been proposed, but no substantial improvement in soft lens tear exchange has been reported. Researchers have determined post-lens tear exchange using several methods, notably fluorophotometry. However, due to technological limitations, little remains known about tear hydrodynamics around the lens and, to-date, true tear exchange with contact lenses has not been shown. Further knowledge regarding tear exchange could be vital in aiding better contact lens design, with the prospect of alleviating certain adverse ocular responses. This article reviews the literature to-date on the significance, implications and measurement of tear exchange with contact lenses.

  20. Reconstruction of synthetic aperture digital Fresnel hologram by use of the screen division method

    NASA Astrophysics Data System (ADS)

    Jiang, Hongzhen; Zhao, Jianlin; Di, Jianglei

    2014-12-01

    Synthetic aperture digital holography can effectively increase the recording area of digital hologram, which is propitious to extend the range and improve the resolution of the reconstruction image. However, the area of synthetic aperture digital hologram is usually very large, and thus if it is directly reconstructed, the numerical reconstruction process may can't progress in order for the limitation of the disposal capability of computer. Therefore, a screen-division reconstruction method for synthetic aperture digital Fresnel hologram is proposed in the paper. Relatively to the direct reconstruction method, the screen division reconstruction method can effectively reduce the area of the hologram participant in the numerical operation process and thus make it possible to reconstruct the synthetic aperture digital Fresnel hologram which area exceeds the disposal capability of computer. The synthetic aperture digital Fresnel hologram with large area is acquired by the precise control for the removal of CCD array and then reconstructed by the proposed screen division reconstruction method. The experimental results show that, the introduced numerical reconstruction method can well correct the position and phase distribution of the sub-reconstructed-images and obtain accurate synthetic numerical reconstruction image.

  1. Solar Sail - Fresnel Zone Plate Lens for a Large Space Based Telescope

    SciTech Connect

    Early, J T

    2002-02-13

    A Fresnel zone plate lens made with solar sail material could be used as the primary optic for a very large aperture telescope on deep space probes propelled by solar sails. The large aperture telescope capability could enable significant science on fly-by missions to the asteroids, Pluto, Kuiper belt or the tort cloud and could also enable meaningful interstellar fly-by missions for laser propelled sails. This type of lens may also have some potential for laser communications and as a solar concentrator. The techniques for fabrication of meter size and larger Fresnel phase plate optics are under development at LLNL, and we are extending this technology to amplitude zone plates made from sail materials. Corrector optics to greatly extend the bandwidth of these Fresnel optics will be demonstrated in the future. This novel telescope concept will require new understanding of the fabrication, deployment and control of gossamer space structures. It will also require new materials technology for fabricating these optics and understanding their long term stability in a space environment.

  2. Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns

    NASA Astrophysics Data System (ADS)

    Suchwalko, Agnieszka; Buzalewicz, Igor; Podbielska, Halina

    2012-01-01

    In the presented paper the optical system with converging spherical wave illumination for classification of bacteria species, is proposed. It allows for compression of the observation space, observation of Fresnel patterns, diffraction pattern scaling and low level of optical aberrations, which are not possessed by other optical configurations. Obtained experimental results have shown that colonies of specific bacteria species generate unique diffraction signatures. Analysis of Fresnel diffraction patterns of bacteria colonies can be fast and reliable method for classification and recognition of bacteria species. To determine the unique features of bacteria colonies diffraction patterns the image processing analysis was proposed. Classification can be performed by analyzing the spatial structure of diffraction patterns, which can be characterized by set of concentric rings. The characteristics of such rings depends on the bacteria species. In the paper, the influence of basic features and ring partitioning number on the bacteria classification, is analyzed. It is demonstrated that Fresnel patterns can be used for classification of following species: Salmonella enteritidis, Staplyococcus aureus, Proteus mirabilis and Citrobacter freundii. Image processing is performed by free ImageJ software, for which a special macro with human interaction, was written. LDA classification, CV method, ANOVA and PCA visualizations preceded by image data extraction were conducted using the free software R.

  3. Light propagation in local and linear media: Fresnel-Kummer wave surfaces with 16 singular points

    NASA Astrophysics Data System (ADS)

    Favaro, Alberto; Hehl, Friedrich W.

    2016-01-01

    It is known that the Fresnel wave surfaces of transparent biaxial media have four singular points, located on two special directions. We show that, in more general media, the number of singularities can exceed 4. In fact, a highly symmetric linear material is proposed whose Fresnel surface exhibits 16 singular points. Because for every linear material the dispersion equation is quartic, we conclude that 16 is the maximum number of isolated singularities. The identity of Fresnel and Kummer surfaces, which holds true for media with a certain symmetry (zero skewon piece), provides an elegant interpretation of the results. We describe a metamaterial realization for our linear medium with 16 singular points. It is found that an appropriate combination of metal bars, split-ring resonators, and magnetized particles can generate the correct permittivity, permeability, and magnetoelectric moduli. Lastly, we discuss the arrangement of the singularities in terms of Kummer's 166 configuration of points and planes. An investigation parallel to ours, but in linear elasticity, is suggested for future research.

  4. Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption.

    PubMed

    Pang, Quan; Nazar, Linda F

    2016-04-26

    Lithium-sulfur batteries are attractive electrochemical energy storage systems due to their high theoretical energy density and very high natural abundance of sulfur. However, practically, Li-S batteries suffer from short cycling life and low sulfur utilization, particularly in the case of high-sulfur-loaded cathodes. Here, we report on a light-weight nanoporous graphitic carbon nitride (high-surface-area g-C3N4) that enables a sulfur electrode with an ultralow long-term capacity fade rate of 0.04% per cycle over 1500 cycles at a practical C/2 rate. More importantly, it exhibits good high-sulfur-loading areal capacity (up to 3.5 mAh cm(-2)) with stable cell performance. We demonstrate the strong chemical interaction of g-C3N4 with polysulfides using a combination of spectroscopic experimental studies and first-principles calculations. The 53.5% concentration of accessible pyridinic nitrogen polysulfide adsorption sites is shown to be key for the greatly improved cycling performance compared to that of N-doped carbons. PMID:26841116

  5. A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2016-06-01

    Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (˜6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.

  6. Light weight, high-speed, and self-powered wireless fiber optic sensor (WiFOS) structural health monitor system for avionics and aerospace environments

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan

    2014-09-01

    This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.

  7. A design-centered approach in developing Al-Si-based light-weight alloys with enhanced fatigue life and strength

    NASA Astrophysics Data System (ADS)

    Fan, Jinghong; Hao, Su

    2004-01-01

    Material heterogeneities and discontinuities such as porosity, second phase particles, and other defects at meso/micro/nano scales, determine fatigue life, strength, and fracture behavior of aluminum castings. In order to achieve better performance of these alloys, a design-centered computer-aided renovative approach is proposed. Here, the term “design-centered” is used to distinguish the new approach from the traditional trial-and-error design approach by formulating a clear objective, offering a scientific foundation, and developing a computer-aided effective tool for the alloy development. A criterion for tailoring “child” microstructure, obtained by “parent” microstructure through statistical correlation, is proposed for the fatigue design at the initial stage. A dislocations pileup model has been developed. This dislocation model, combined with an optimization analysis, provides an analytical-based solution on a small scale for silicon particles and dendrite cells to enhance both fatigue performance and strength for pore-controlled castings. It can also be used to further tailor microstructures. In addition, a conceptual damage sensitivity map for fatigue life design is proposed. In this map there are critical pore sizes, above which fatigue life is controlled by pores; otherwise it is controlled by other mechanisms such as silicon particles and dendrite cells. In the latter case, the proposed criteria and the dislocation model are the foundations of a guideline in the design-centered approach to maximize both the fatigue life and strength of Al-Si-based light-weight alloy.

  8. A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2016-06-01

    Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (∼6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.

  9. Revised Unfilling Procedure for Solid Lithium Lenses

    SciTech Connect

    Leveling, A.; /Fermilab

    2003-06-03

    A procedure for unfilling used lithium lenses to has been described in Pbar Note 664. To date, the procedure has been used to disassemble lenses 20, 21, 17, 18, and 16. As a result of this work, some parts of the original procedure were found to be time consuming and ineffective. Modifications to the original procedure have been made to streamline the process and are discussed in this note. The revised procedure is included in this note.

  10. Measuring neutrino masses with weak lensing

    SciTech Connect

    Wong, Yvonne Y. Y.

    2006-11-17

    Weak gravitational lensing of distant galaxies by large scale structure (LSS) provides an unbiased way to map the matter distribution in the low redshift universe. This technique, based on the measurement of small distortions in the images of the source galaxies induced by the intervening LSS, is expected to become a key cosmological probe in the future. We discuss how future lensing surveys can probe the sum of the neutrino masses at the 0 05 eV level.

  11. Adherence of Staphylococcus epidermidis to intraocular lenses.

    PubMed Central

    Griffiths, P. G.; Elliot, T. S.; McTaggart, L.

    1989-01-01

    We have demonstrated, with an in vitro model, that Staphylococcus epidermidis is able to colonise intraocular lenses. Adherent organisms were quantitated by light microscopy, scanning electron microscopy, and viable counting. Bacterial adherence was associated with production of a polysaccharide glycocalyx. Organisms which were attached to the lenses were resistant to apparently bactericidal concentrations of antibiotics, as determined by conventional testing. We speculate on the role of colonisation in the pathogenesis of endophthalmitis. Images PMID:2751971

  12. Electron lenses for particle collimation in LHC

    SciTech Connect

    Shiltsev, v.; /Fermilab

    2007-12-01

    Electron Lenses built and installed in Tevatron have proven themselves as safe and very reliable instruments which can be effectively used in hadron collider operation for a number of applications, including compensation of beam-beam effects [1], DC beam removal from abort gaps [2], as a diagnostic tool. In this presentation we - following original proposal [3] - consider in more detail a possibility of using electron lenses with hollow electron beam for ion and proton collimation in LHC.

  13. Partitioned-field uniaxial holographic lenses.

    PubMed

    López, Ana M; Atencia, Jesús; Tornos, José; Quintanilla, Manuel

    2002-04-01

    The efficiency and aberration of partitioned-field uniaxial volume holographic compound lenses are theoretically and experimentally studied. These systems increase the image fields of holographic volume lenses, limited by the angular selectivity that is typical of these elements. At the same time, working with uniaxial systems has led to a decrease in aberration because two recording points (that behave as aberration-free points) are used. The extension of the image field is experimentally proved.

  14. Factors influencing bacterial adhesion to contact lenses

    PubMed Central

    Dutta, Debarun; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria. PMID:22259220

  15. Strong gravitational lensing: relativity in action

    NASA Astrophysics Data System (ADS)

    Wambsganss, Joachim

    2010-01-01

    Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a “relativistic eclipse” as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.

  16. Cosmological test using strong gravitational lensing systems

    NASA Astrophysics Data System (ADS)

    Yuan, C. C.; Wang, F. Y.

    2015-09-01

    As one of the probes of universe, strong gravitational lensing systems allow us to compare different cosmological models and constrain vital cosmological parameters. This purpose can be reached from the dynamic and geometry properties of strong gravitational lensing systems, for instance, time-delay Δτ of images, the velocity dispersion σ of the lensing galaxies and the combination of these two effects, Δτ/σ2. In this paper, in order to carry out one-on-one comparisons between ΛCDM universe and Rh = ct universe, we use a sample containing 36 strong lensing systems with the measurement of velocity dispersion from the Sloan Lens Advanced Camera for Surveys (SLACS) and Lens Structure and Dynamic survey (LSD) survey. Concerning the time-delay effect, 12 two-image lensing systems with Δτ are also used. In addition, Monte Carlo simulations are used to compare the efficiency of the three methods as mentioned above. From simulations, we estimate the number of lenses required to rule out one model at the 99.7 per cent confidence level. Comparing with constraints from Δτ and the velocity dispersion σ, we find that using Δτ/σ2 can improve the discrimination between cosmological models. Despite the independence tests of these methods reveal a correlation between Δτ/σ2 and σ, Δτ/σ2 could be considered as an improved method of σ if more data samples are available.

  17. Statistics of gravitational lenses - The uncertainties

    NASA Technical Reports Server (NTRS)

    Mao, Shude

    1991-01-01

    The assumptions in the analysis of gravitational lensing statistics are examined. Special emphasis is given to the uncertainties in the theoretical predictions. It is shown that a simple redshift cutoff model, which may result from galaxy evolution, can significantly reduce the lensing probability and explain the large mean separation of images in observed gravitational lenses. This effect may affect the constraint on the contribution of the cosmological constant to producing a flat universe from the number counts of the observed lenses. For the Omega(0) = 1 (filled beam) model, the lensing probability of early-type galaxies with finite core radii is reduced roughly by a factor of 2 for high-redshift quasars as compared with the corresponding singular isothermal sphere model. The finite core radius effect is about 20 percent for a lambda-dominated flat universe. It is also shown that the most recent galaxy luminosity function gives lensing probabilities that are smaller than previously estimated roughly by a factor of 3.

  18. Surface Modification of Intraocular Lenses

    PubMed Central

    Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin

    2016-01-01

    Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs. PMID:26830993

  19. cluster-lensing: a new Python package for galaxy clusters & lensing

    NASA Astrophysics Data System (ADS)

    Ford, Jes

    2016-03-01

    Short demo and links to a newly released pure Python package called cluster- lensing. This package contains tools to calculate galaxy cluster halo properties and weak lensing shear and magnification profiles. The model can easily include the effects of possible cluster miscentering offsets, which would otherwise lead to biased mass or concentration estimates.

  20. First measurement of the cross-correlation of CMB lensing and galaxy lensing

    NASA Astrophysics Data System (ADS)

    Hand, Nick; Leauthaud, Alexie; Das, Sudeep; Sherwin, Blake D.; Addison, Graeme E.; Bond, J. Richard; Calabrese, Erminia; Charbonnier, Aldée; Devlin, Mark J.; Dunkley, Joanna; Erben, Thomas; Hajian, Amir; Halpern, Mark; Harnois-Déraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Hincks, Adam D.; Kneib, Jean-Paul; Kosowsky, Arthur; Makler, Martin; Miller, Lance; Moodley, Kavilan; Moraes, Bruno; Niemack, Michael D.; Page, Lyman A.; Partridge, Bruce; Sehgal, Neelima; Shan, Huanyuan; Sievers, Jonathan L.; Spergel, David N.; Staggs, Suzanne T.; Switzer, Eric R.; Taylor, James E.; Van Waerbeke, Ludovic; Welker, Charlotte; Wollack, Edward J.

    2015-03-01

    We measure the cross-correlation of cosmic microwave background (CMB) lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is measured for the first time with a significance of 4.2 σ , which corresponds to a 12% constraint on the amplitude of density fluctuations at redshifts ˜0.9 . With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements.

  1. Design and Development of Thin Plastic Foil, Conical Approximation, High Through-out X-Ray Telescope: Light Weight, Thin Plastic Foil, X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Schnopper, Herbert W.; Barbera, Marco; Silver, Eric; Ingram, Russell; Christensen, Finn E.; Romaine, Suzanne; Cohen, Lester; Collura, Alfonso; Murray, Stephen S.; Brinton, John C. (Technical Monitor)

    2002-01-01

    We present results from a program to develop an X-ray telescope made from thin plastic shells. Our initial results have been obtained from multi-shell cylindrical lenses that are used in a point-to-point configuration to image the small focal spot of a an X-ray tube on a microchannel plate detector. We describe the steps that led up to the present design and present data from the tests that have been used to identify the properties of the plastic material that make it a suitable X-ray reflector. We discuss two applications of our technology to X-ray missions that are designed to address some of the scientific priorities set forth in NASA's long term plans for high energy astrophysics. One mission will observe in the 1 - 10 keV band, the other will extend up to ca. 100 keV.

  2. Availability of Fresnel volume migration to one-component seismic reflection data using tau-P transforms

    NASA Astrophysics Data System (ADS)

    Kawabayashi, T.; Takekawa, J.; Goto, T.; Mikada, H.; Onishi, K.

    2010-12-01

    An elastic wave propagates in the spatial volume depending on its wavelength, which is called the Fresnel volume. In the seismic migration, diffracted waves are propagated back to every secondary seismic source, i.e., diffractors or scatterers that represent detailed underground structures. Fresnel volume migration is based on an idea of restricting the aperture in which a migration operator is applied in space and time. The conventional Fresnel volume migration uses the paraxial ray method for a single component data. Schleicher et al. (1997) addressed an important role of the Fresnel zones in the framework of the theory of pre-stack true-amplitude migration and demigration. Luth et al. (2005) extended the method to the three-components (3C) Kirchhoff prestack depth migration in which the migration operator is applied in the Fresnel volume using the measured polarization direction at a 3C receiver to determine the points of possible reflections. In seismic reflection surveys, recorded P- and S- waves could be decomposed into two wavefields. Mikada et al. (2009) worked about the decomposition of seismic wavefield into compressional (P or scalar) and shear (S or vector) wavefields. This method gives us the incident angles of the two waves to receivers. Therefore, it becomes possible to estimate the incident angles and to use the angles in the Fresnel volume migration. In this study, we consider both Fresnel volume migration and Kirchhoff migration for acquired data in our laboratory’s water tank. The tank size is 3m x 2m x 1.5m. The target structure is a pinball describing reflection point whose size is almost negligible compared to the wavelength of acoustic signals. In the acquired shot gather, there is characteristic difference in S/N ratio. When receivers are located in the left side of the pinball target, received data has comparatively small S/N ratio, while received data has high S/N ratio for receivers on the other side. A method using pre-stack depth

  3. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Modules: Preprint

    SciTech Connect

    Miller, D. C.; Gedvilas, L. M.; To, B.; Kennedy, C. E.; Kurtz, S. R.

    2010-08-01

    Concentrating photovoltaic (CPV) technology has recently gained interest based on their expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems use Fresnel lenses made of poly(methyl methacrylate)(PMMA) to obtain a high optical flux density. The optical and mechanical durability of such components, however, are not well established relative to the desired service life of 30 years. Specific reliability issues may include: reduced optical transmittance, discoloration, hazing, surface erosion, embrittlement, crack growth, physical aging, shape setting (warpage), and soiling. The initial results for contemporary lens- and material-specimens aged cumulatively to 6 months are presented. The study here uses an environmental chamber equipped with a xenon-arc lamp to age specimens at least 8x the nominal field rate. A broad range in the affected characteristics (including optical transmittance, yellowness index, mass loss, and contact angle) has been observed to date, depending on the formulation of PMMA used. The most affected specimens are further examined in terms of their visual appearance, surface roughness (examined via atomic force microscopy), and molecular structure (via Fourier transform infrared spectroscopy).

  4. Pixelation Effects in Weak Lensing

    NASA Astrophysics Data System (ADS)

    High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard

    2007-11-01

    Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, & Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09" for a 0.14" FWHM point-spread function (PSF). The pixel scale could be increased to ~0.16" if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape

  5. Numerical simulation of gravitational lenses

    NASA Astrophysics Data System (ADS)

    Cherniak, Yakov

    Gravitational lens is a massive body or system of bodies with gravitational field that bends directions of light rays propagating nearby. This may cause an observer to see multiple images of a light source, e.g. a star, if there is a gravitational lens between the star and the observer. Light rays that form each individual image may have different distances to travel, which creates time delays between them. In complex gravitational fields generated by the system of stars, analytical calculation of trajectories and light intensities is virtually impossible. Gravitational lens of two massive bodies, one behind another, are able to create four images of a light source. Furthermore, the interaction between the four light beams can form a complicated interference pattern. This article provides a brief theory of light behavior in a gravitational field and describes the algorithm for constructing the trajectories of light rays in a gravitational field, calculating wave fronts and interference pattern of light. If you set gravitational field by any number of transparent and non- transparent objects (stars) and set emitters of radio wave beams, it is possible to calculate the interference pattern in any region of space. The proposed method of calculation can be applied even in the case of the lack of continuity between the position of the emitting stars and position of the resulting image. In this paper we propose methods of optimization, as well as solutions for some problems arising in modeling of gravitational lenses. The simulation of light rays in the sun's gravitational field is taken as an example. Also caustic is constructed for objects with uniform mass distribution.

  6. Mass Determination of QSOs Using Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Surdej, Jean

    1996-07-01

    Only four pairs of quasars with different redshifts and angular separations smaller than 5'' are presently known. We propose to directly image with the WFPC2 planetary camera these interesting quasar associations in order to search for the presence of a secondary lensed image of the background source near the foreground quasar. The detection {or non- detection} of these putative secondary images will enable us to weigh {or significantly improve the upper limit on} the mass of the foreground quasars. These QSO mass estimates will take into account the lensing effects due to the host galaxy of the foreground quasar{s} and/or other intervening galaxies, if detected on the high quality PC images. Furthermore, one of these quasars {Q 1009-0252} has recently been reported to be multiply imaged. The WFPC2 CCD frames will also enable us to search for the lensing object{s} and for additional macro- lensed images of the background quasar, and will thus provide essential constraints on the lensing model.

  7. CMB-lensing beyond the Born approximation

    NASA Astrophysics Data System (ADS)

    Marozzi, Giovanni; Fanizza, Giuseppe; Di Dio, Enea; Durrer, Ruth

    2016-09-01

    We investigate the weak lensing corrections to the cosmic microwave background temperature anisotropies considering effects beyond the Born approximation. To this aim, we use the small deflection angle approximation, to connect the lensed and unlensed power spectra, via expressions for the deflection angles up to third order in the gravitational potential. While the small deflection angle approximation has the drawback to be reliable only for multipoles l lesssim 2500, it allows us to consistently take into account the non-Gaussian nature of cosmological perturbation theory beyond the linear level. The contribution to the lensed temperature power spectrum coming from the non-Gaussian nature of the deflection angle at higher order is a new effect which has not been taken into account in the literature so far. It turns out to be the leading contribution among the post-Born lensing corrections. On the other hand, the effect is smaller than corrections coming from non-linearities in the matter power spectrum, and its imprint on CMB lensing is too small to be seen in present experiments.

  8. Plasma lenses for focusing relativistic electron beams

    SciTech Connect

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-04-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n{sub p} much greater than electron beam density, n{sub b}) or underdense (n{sub p} less than 2 n{sub b}). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated.

  9. Integral volumetric imaging using decentered elemental lenses.

    PubMed

    Sawada, Shimpei; Kakeya, Hideki

    2012-11-01

    This paper proposes a high resolution integral imaging system using a lens array composed of non-uniform decentered elemental lenses. One of the problems of integral imaging is the trade-off relationship between the resolution and the number of views. When the number of views is small, motion parallax becomes strongly discrete to maintain the viewing angle. In order to overcome this trade-off, the proposed method uses the elemental lenses whose size is smaller than that of the elemental images. To keep the images generated by the elemental lenses at constant depth, the lens array is designed so that the optical centers of elemental lenses may be located in the centers of elemental images, not in the centers of elemental lenses. To compensate optical distortion, new image rendering algorithm is developed so that undistorted 3D image may be presented with a non-uniform lens array. The proposed design of lens array can be applied to integral volumetric imaging, where display panels are layered to show volumetric images in the scheme of integral imaging.

  10. Weak lensing in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Troxel, Michael

    2016-03-01

    I will present the current status of weak lensing results from the Dark Energy Survey (DES). DES will survey 5000 square degrees in five photometric bands (grizY), and has already provided a competitive weak lensing catalog from Science Verification data covering just 3% of the final survey footprint. I will summarize the status of shear catalog production using observations from the first year of the survey and discuss recent weak lensing science results from DES. Finally, I will report on the outlook for future cosmological analyses in DES including the two-point cosmic shear correlation function and discuss challenges that DES and future surveys will face in achieving a control of systematics that allows us to take full advantage of the available statistical power of our shear catalogs.

  11. Gravitational lensing statistics of amplified supernovae

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.; Wagoner, Robert V.; Schneider, P.

    1988-01-01

    Amplification statistics of gravitationally lensed supernovae can provide a valuable probe of the lensing matter in the universe. A general probability distribution for amplification by compact objects is derived which allows calculation of the lensed fraction of supernovae at or greater than an amplification A and at or less than an apparent magnitude. Comparison of the computed fractions with future results from ongoing supernova searches can lead to determination of the mass density of compact dark matter components with masses greater than about 0.001 solar mass, while the time-dependent amplification (and polarization) of the expanding supernovae constrain the individual masses. Type II supernovae are found to give the largest fraction for deep surveys, and the optimum flux-limited search is found to be at approximately 23d magnitude, if evolution of the supernova rate is neglected.

  12. Microwave sterilization of hydrophilic contact lenses.

    PubMed

    Rohrer, M D; Terry, M A; Bulard, R A; Graves, D C; Taylor, E M

    1986-01-15

    We used standard 2,450-MHz microwave irradiation to achieve sterilization of hydrophilic contact lenses contaminated with a variety of bacterial, fungal, and viral corneal pathogens. A three-dimensional rotisserie was used to overcome the problem of "cold spots" within the microwave oven. The contact lenses became dehydrated in approximately two minutes. Rehydration with normal saline restored their shape and appearance. The time necessary to prohibit all growth of the bacterial and fungal organisms studied ranged from 45 seconds to eight minutes. All viral contaminants were completely inactivated after four minutes of microwave exposure. Refractive properties were unaffected after 101 exposures to microwaves for ten minutes. Slit-lamp examination and scanning electron microscopy disclosed minute particles on the surface of these contact lenses but no damage to the lens matrix from irradiation. PMID:3942177

  13. Interactions of benzalkonium chloride with soft and hard contact lenses.

    PubMed

    Chapman, J M; Cheeks, L; Green, K

    1990-02-01

    We measured the uptake and washout of benzalkonium chloride, using radioactive tracer, by representative hard and soft contact lenses. Uptake by soft contact lenses after 7 days of continuous exposure is high (30 to 56 micrograms/mg of lens weight), with a low percentage of washout in 24 hours (between 0.2% and 1.5% of total uptake). High-water content lenses absorb greater quantities of benzalkonium than do low-water content lenses. Hard lenses take up a much smaller quantity of benzalkonium but release between 30% and 60% of total uptake during washout for 24 hours. Fluorosilicone-acrylate polymer lenses adsorb and release the most preservative, while polymethylmethacrylate lenses (Paragon Optical Inc, Mesa, Ariz) adsorb and release the least. The released benzalkonium from either soft or hard lenses is of a sufficient concentration to be at or above the upper limits of safety.

  14. Interactions of benzalkonium chloride with soft and hard contact lenses

    SciTech Connect

    Chapman, J.M.; Cheeks, L.; Green, K. )

    1990-02-01

    We measured the uptake and washout of benzalkonium chloride, using radioactive tracer, by representative hard and soft contact lenses. Uptake by soft contact lenses after 7 days of continuous exposure is high (30 to 56 micrograms/mg of lens weight), with a low percentage of washout in 24 hours (between 0.2% and 1.5% of total uptake). High-water content lenses absorb greater quantities of benzalkonium than do low-water content lenses. Hard lenses take up a much smaller quantity of benzalkonium but release between 30% and 60% of total uptake during washout for 24 hours. Fluorosilicone-acrylate polymer lenses adsorb and release the most preservative, while polymethylmethacrylate lenses (Paragon Optical Inc, Mesa, Ariz) adsorb and release the least. The released benzalkonium from either soft or hard lenses is of a sufficient concentration to be at or above the upper limits of safety.

  15. 'Colored' and Decorative Contact Lenses: A Prescription Is a Must

    MedlinePlus

    ... labeling. (See additional information about cleaning solutions with hydrogen peroxide on the FDA website.) See your eye ... For More Information Decorative Contact Lenses Contact Lenses Hydrogen Peroxide Solution Related Consumer Updates Focusing on Contact ...

  16. What To Know If Your Child Wants Contact Lenses

    MedlinePlus

    ... For More Information Decorative Contact Lenses Contact Lenses Hydrogen Peroxide Solution Consumer Updates Focusing on Contact Lens ... Prescription Is A Must Contact Lens Solutions With Hydrogen Peroxide: To Avoid Injury, Follow All Instructions Five ...

  17. Research and analysis on new test lenses for calibration of focimeters used for measuring contact lenses

    NASA Astrophysics Data System (ADS)

    Zhang, Jiyan; Wang, Liru; Ma, Zhenya

    2006-11-01

    A focimeter is one of the basic ophthalmic instruments used in every optometric practice, and verification of the accuracy and calibration of the instrument are of the utmost importance. For many years the International Standardization for Organization requires that calibrations for all kinds of focimeters shall be accomplished by using test lenses described in ISO 9342:1996. These test lenses must be of high quality and of nominal back vertex power that is known with high accuracy. With the development of science and technology, ISO 9342 was revised in 2005. A new part ISO 9342-2 had been drafted for test lenses used to calibrate focimeters with contact lens measurement, and the original ISO 9342 was turned into the current ISO 9342-1, which could only be used to calibrate fociemters with spectacle lens measurement. As one of the standard drafters, the background for the newly published ISO 9342-2 is introduced in this study, and comparison between test lenses of ISO 9342-1 and ISO 9342-2 is made. Further, the influence of tolerance and uncertainty in design and production of standard test lenses of ISO 9342-2 is analyzed. The paraxial approximation is used to relate the lens parameters with back vertex power and to calculate the uncertainty budget. Moreover, one set of test lenses conforming to ISO 9342-2 is manufactured and experiments are done with it. Results show that test lenses described in ISO 9342-2 can correct the measurement errors of focimeters used for measuring contact lenses well, especially for spherical aberration, and the correction is more effective for spherical contact lenses with high back vertex power.

  18. Evaluation of the Quality of Action Cameras with Wide-Angle Lenses in Uav Photogrammetry

    NASA Astrophysics Data System (ADS)

    Hastedt, H.; Ekkel, T.; Luhmann, T.

    2016-06-01

    The application of light-weight cameras in UAV photogrammetry is required due to restrictions in payload. In general, consumer cameras with normal lens type are applied to a UAV system. The availability of action cameras, like the GoPro Hero4 Black, including a wide-angle lens (fish-eye lens) offers new perspectives in UAV projects. With these investigations, different calibration procedures for fish-eye lenses are evaluated in order to quantify their accuracy potential in UAV photogrammetry. Herewith the GoPro Hero4 is evaluated using different acquisition modes. It is investigated to which extent the standard calibration approaches in OpenCV or Agisoft PhotoScan/Lens can be applied to the evaluation processes in UAV photogrammetry. Therefore different calibration setups and processing procedures are assessed and discussed. Additionally a pre-correction of the initial distortion by GoPro Studio and its application to the photogrammetric purposes will be evaluated. An experimental setup with a set of control points and a prospective flight scenario is chosen to evaluate the processing results using Agisoft PhotoScan. Herewith it is analysed to which extent a pre-calibration and pre-correction of a GoPro Hero4 will reinforce the reliability and accuracy of a flight scenario.

  19. Fresnel zone plates for Achromatic Imaging Survey of X-ray sources

    SciTech Connect

    Palit, Sourav; Chakrabarti, S. K.; Debnath, D.; Yadav, Vipin; Nandi, Anuj

    2008-10-08

    A telescope with Fresnel Zone Plates has been contemplated to be an excellent imaging mask in X-rays and gamma-rays for quite some time. With a proper choice of zone plate material, spacing and an appropriate readout system it is possible to achieve any theoretical angular resolution. We provide the results of numerical simulations of how a large number of X-ray sources could be imaged at a high resolution. We believe that such an imager would be an excellent tool for a future survey mission for X-ray and gamma-ray sources which we propose.

  20. Tailored edge-ray concentrators as ideal second stages for Fresnel reflectors.

    PubMed

    Gordon, J M; Ries, H

    1993-05-01

    For both linear and point-focus Fresnel reflectors, we present a new type of ideal nonimaging secondary concentrator, the tailored edge-ray concentrator, that can closely approach the thermodynamic limit of concentration. For large rim-angle heliostat fields, practical-sized secondaries with shapes that should be relatively easy to fabricate can achieve concentrations substantially above those of compound parabolic concentrators. This superiority stems from designing so as to accommodate the particular flux from the heliostat field. The edge-ray principle used for generating the new secondary dictates a heliostat tracking strategy that is different from the conventional one but is equally easy to implement.

  1. Beam propagation modeling of modified volume Fresnel zone plates fabricated by femtosecond laser direct writing.

    PubMed

    Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan

    2009-01-01

    Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propagation method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory and the experimental results. The numerical method allows more comprehensive studies of the VFZP parameters to achieve higher diffraction efficiency.

  2. Fresnel filtering in lasing emission from scarred modes of wave-chaotic optical resonators.

    PubMed

    Rex, N B; Tureci, H E; Schwefel, H G L; Chang, R K; Stone, A Douglas

    2002-03-01

    We study lasing emission from asymmetric resonant cavity GaN microlasers. By comparing far-field intensity patterns with images of the microlaser we find that the lasing modes are concentrated on three-bounce unstable periodic ray orbits; i.e., the modes are scarred. The high-intensity emission directions of these scarred modes are completely different from those predicted by applying Snell's law to the ray orbit. This effect is due to the process of "Fresnel filtering" which occurs when a beam of finite angular spread is incident at the critical angle for total internal reflection. PMID:11864011

  3. Hard x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution.

    SciTech Connect

    Chu, Y. S.; De Carlo, F.; Shen, Q.; Lee, W.K.; Wu, H.J.; Wang, C.L.; Wang, J.Y.; Liu, C.J.; Wang, C.H.; Wu, S.R.; Chien, C.C.; Hwu, Y.; Tkachuk, A.; Yun, W.; Feser, M.; Liang, K.S.; Yang, C.S.; Je, J.H.; Margaritondo, G.; X-Ray Science Division; Academia Sinica; National Tsing Hua Univ.; National Taiwan Ocean Univ.; National Synchrotron Radiation Research Center; Xradia, Inc.; National Health Research Inst.; Ecole Polytechnique Federale de Lausanne; Pohang Univ.

    2008-03-10

    Substantial improvements in the nanofabrication and characteristics of gold Fresnel zone plates yielded unprecedented resolution levels in hard-x-ray microscopy. Tests performed on a variety of specimens with 8-10 keV photons demonstrated a first-order lateral resolution below 40 nm based on the Rayleigh criterion. Combined with the use of a phase contrast technique, this makes it possible to view features in the 30 nm range; good-quality images can be obtained at video rate, down to 50 ms/frame. The important repercussions on materials science, nanotechnology, and the life sciences are discussed.

  4. Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution

    SciTech Connect

    Chu, Y. S.; Yi, J. M.; De Carlo, F.; Shen, Q.; Lee, Wah-Keat; Wu, H. J.; Wang, C. L.; Wang, J. Y.; Liu, C. J.; Wang, C. H.; Wu, S. R.; Chien, C. C.; Hwu, Y.; Tkachuk, A.; Yun, W.; Feser, M.; Liang, K. S.; Yang, C. S.; Je, J. H.; Margaritondo, G.

    2008-03-10

    Substantial improvements in the nanofabrication and characteristics of gold Fresnel zone plates yielded unprecedented resolution levels in hard-x-ray microscopy. Tests performed on a variety of specimens with 8-10 keV photons demonstrated a first-order lateral resolution below 40 nm based on the Rayleigh criterion. Combined with the use of a phase contrast technique, this makes it possible to view features in the 30 nm range; good-quality images can be obtained at video rate, down to 50 ms/frame. The important repercussions on materials science, nanotechnology, and the life sciences are discussed.

  5. Band-limited double-step Fresnel diffraction and its application to computer-generated holograms.

    PubMed

    Okada, Naohisa; Shimobaba, Tomoyoshi; Ichihashi, Yasuyuki; Oi, Ryutaro; Yamamoto, Kenji; Oikawa, Minoru; Kakue, Takashi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2013-04-01

    Double-step Fresnel diffraction (DSF) is an efficient diffraction calculation in terms of the amount of usage memory and calculation time. This paper describes band-limited DSF, which will be useful for large computer-generated holograms (CGHs) and gigapixel digital holography, mitigating the aliasing noise of the DSF. As the application, we demonstrate a CGH generation with nearly 8K × 4K pixels from texture and depth maps of a three-dimensional scene captured by a depth camera. PMID:23572007

  6. A monolithic Fresnel bimirror for hard X-rays and its application for coherence measurements.

    PubMed

    Leitenberger, Wolfram; Pietsch, Ullrich

    2007-03-01

    Experiments using a simple X-ray interferometer to measure the degree of spatial coherence of hard X-rays are reported. A monolithic Fresnel bimirror is used at small incidence angles to investigate synchrotron radiation in the energy interval 5-50 keV with monochromatic and white beam. The experimental set-up was equivalent to a Young's double-slit experiment for hard X-rays with slit dimensions in the micrometre range. From the high-contrast interference pattern the degree of coherence was determined.

  7. SARCS strong-lensing galaxy groups. II. Mass-concentration relation and strong-lensing bias

    NASA Astrophysics Data System (ADS)

    Foëx, G.; Motta, V.; Jullo, E.; Limousin, M.; Verdugo, T.

    2014-12-01

    Aims: Various studies have shown a lensing bias in the mass-concentration relation of cluster-scale structures that is the result of an alignment of the major axis and the line of sight. In this paper, we aim to study this lensing bias through the mass-concentration relation of galaxy groups, thus extending observational constraints to dark matter haloes of mass ~1013-1014 M⊙. Methods: Our work is based on the stacked weak-lensing analysis of a sample of 80 strong-lensing galaxy groups. By combining several lenses, we significantly increase the signal-to-noise ratio of the lensing signal, thus providing constraints on the mass profile that cannot be obtained for individual objects. The resulting shear profiles were fitted with various mass models, among them the Navarro-Frank-White (NFW) profile, which provides an estimate of the total mass and of the concentration of the composite galaxy groups. Results: The main results of our analysis are the following: (i) the lensing signal does not allow us to firmly distinguish between a simple singular isothermal sphere mass distribution and the expected NFW mass profile; (ii) we obtain an average concentration c200 = 8.6-1.3+2.1 that is much higher than the value expected from numerical simulations for the corresponding average mass M200 = 0.73-0.10+0.11 × 1014 M⊙; (iii) the combination of our results with those at larger mass scales gives a mass-concentration relation c(M) of more than two decades in mass, whose slope disagrees with predictions from numerical simulations using unbiased populations of dark matter haloes; (iv) our combined c(M) relation matches results from simulations that only used haloes with a large strong-lensing cross-section, that is, elongated with a major axis close to the line of sight; (v) for the simplest case of prolate haloes, we estimate a lower limit on the minor-to-major axis ratio a/c = 0.5 for the average SARCS galaxy group with a toy model. Conclusions: Our analysis based on galaxy

  8. Prediction of subsurface fracture in mining zone of Papua using passive seismic tomography based on Fresnel zone

    SciTech Connect

    Setiadi, Herlan; Nurhandoko, Bagus Endar B.; Wely, Woen; Riyanto, Erwin

    2015-04-16

    Fracture prediction in a block cave of underground mine is very important to monitor the structure of the fracture that can be harmful to the mining activities. Many methods can be used to obtain such information, such as TDR (Time Domain Relectometry) and open hole. Both of them have limitations in range measurement. Passive seismic tomography is one of the subsurface imaging method. It has advantage in terms of measurements, cost, and rich of rock physical information. This passive seismic tomography studies using Fresnel zone to model the wavepath by using frequency parameter. Fresnel zone was developed by Nurhandoko in 2000. The result of this study is tomography of P and S wave velocity which can predict position of fracture. The study also attempted to use sum of the wavefronts to obtain position and time of seismic event occurence. Fresnel zone tomography and the summation wavefront can predict location of geological structure of mine area as well.

  9. Achromatic Cooling Channel with Li Lenses

    SciTech Connect

    Balbekov, V.

    2002-04-29

    A linear cooling channel with Li lenses, solenoids, and 201 MHz RF cavities is considered. A special lattice design is used to minimize chromatic aberrations by suppression of several betatron resonances. Transverse emittance of muon beam decreases from 2 mm to 0.5 mm at the channel of about 110 m length. Longitudinal heating is modest, therefore transmission of the channel is rather high: 96% without decay and 90% with decay. Minimal beam emittance achievable by similar channel estimated as about 0.25 mm at surface field of Li lenses 10 T.

  10. Zoom camera based on liquid lenses

    NASA Astrophysics Data System (ADS)

    Kuiper, S.; Hendriks, B. H. W.; Suijver, J. F.; Deladi, S.; Helwegen, I.

    2007-01-01

    A 1.7× VGA zoom camera was designed based on two variable-focus liquid lenses and three plastic lenses. The strongly varying curvature of the liquid/liquid interface in the lens makes an achromatic design complicated. Special liquids with a rare combination of refractive index and Abbe number are required to prevent chromatic aberrations for all zoom levels and object positions. A set of acceptable liquids was obtained and used in a prototype that was constructed according to our design. First photos taken with the prototype show a proof of principle.

  11. Cosmic string lensing and closed timelike curves

    NASA Astrophysics Data System (ADS)

    Shlaer, Benjamin; Tye, S.-H. Henry

    2005-08-01

    In an analysis of the gravitational lensing by two relativistic cosmic strings, we argue that the formation of closed timelike curves proposed by Gott is unstable in the presence of particles (e.g. the cosmic microwave background radiation). Because of the attractorlike behavior of the closed timelike curve, we argue that this instability is very generic. A single graviton or photon in the vicinity, no matter how soft, is sufficient to bend the strings and prevent the formation of closed timelike curves. We also show that the gravitational lensing due to a moving cosmic string is enhanced by its motion, not suppressed.

  12. Surface analysis of hydrogel contact lenses by ESCA.

    PubMed

    Hart, D E; DePaolis, M; Ratner, B D; Mateo, N B

    1993-07-01

    We used electron spectroscopy for chemical analysis (ESCA) to examine the surface chemistry of polymacon, tefilcon, and bufilcon hydrogel contact lenses. Worn and unworn water-cleaned and surfactant-cleaned lenses were compared. The surface chemistry of unworn lenses, which were used as controls, consisted of approximately 70% carbon, 25% oxygen, and < 10% other elements (i.e., silicon, sulfur, sodium, nitrogen, and zinc). In general, surfactant cleaning removed silicon contamination, but left a residue containing sulfur and zinc. The increase in the nitrogen/carbon (N/C) ratio for worn bufilcon and polymacon lenses was significantly greater than the N/C ratio for unworn bufilcon and polymacon lenses. As a group the worn ionic lenses (bufilcon) showed a greater N/C ratio than the worn nonionic lenses (polymacon, tefilcon). The nitrogen that appears on all worn lenses probably represents adherent as well as adsorbed surface proteins. The highest N/C ratios were found on a pair of pathologically deposited lenses and on the lens with the longest wearing time (2 years). For the bufilcon and polymacon lenses, the differences observed in the ESCA data for the unworn and worn lenses suggest that contact lenses begin interacting with the tear film within 1 minute (the shortest wearing time in this study). PMID:8375038

  13. Fabrication of large-scale multilevel phase-type Fresnel zone plate arrays by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Yu, Yan-Hao; Tian, Zhen-Nan; Jiang, Tong; Niu, Li-Gang; Gao, Bing-Rong

    2016-03-01

    We report on the fabrication of large-scale eight-level phase-type Fresnel zone plate arrays (FZPAs) by femtosecond-laser direct writing technology. A high-speed galvanometer scanning system was used to fabricate each Fresnel zone plate to realize high fabrication efficiency. To overcome the limited fabrication scale in the case of galvanometer scanning, inter-plate movements were controlled by multi-axis air-bearing precise positioning stages. With the system, FZPAs whose fill-factor was designed to be 100% realized a diffraction efficiency of 89%. The focusing and imaging properties of the FZPAs were also evaluated, and the FZPAs showed high fidelity.

  14. Zone-doubled Fresnel zone plates for high-resolution hard X-ray full-field transmission microscopy

    PubMed Central

    Vila-Comamala, Joan; Pan, Yongsheng; Lombardo, Jeffrey J.; Harris, William M.; Chiu, Wilson K. S.; David, Christian; Wang, Yuxin

    2012-01-01

    Full-field transmission X-ray microscopy is a unique non-destructive technique for three-dimensional imaging of specimens at the nanometer scale. Here, the use of zone-doubled Fresnel zone plates to achieve a spatial resolution better than 20 nm in the hard X-ray regime (8–10 keV) is reported. By obtaining a tomographic reconstruction of a Ni/YSZ solid-oxide fuel cell, the feasibility of performing three-dimensional imaging of scientifically relevant samples using such high-spatial-resolution Fresnel zone plates is demonstrated. PMID:22898949

  15. Optimization of coherent lidar performance with graded-reflectance transmitter resonator optics in the low equivalent Fresnel number regime.

    PubMed

    Tratt, D M; Bowers, M S

    1996-08-20

    Using a diffractive eigenmode treatment to model the laser output we show that graded-reflectance resonator optics offer significant efficiency benefits over conventional hard-edge coupled unstable resonators in the context of coherent detection lidar applications. Extending previous research pertinent to the high equivalent Fresnel number regime, we have modeled the optimum performance of a notional super-Gaussian coupled cavity as a function of the key resonator parameters in the low equivalent Fresnel number (<3) regime. The findings from this study are applicable to the design of coherent lidar transmitters operated within this regime. PMID:21102907

  16. The delta S (delta R)-2 question: The pulse-length dependence of signal power for Fresnel scatter

    NASA Technical Reports Server (NTRS)

    Hocking, W. K.

    1983-01-01

    It is proposed that the enhanced echoes from the atmosphere observed with a vertically pointing radar are due to reflections from horizontally stratified layers. The general case in which there are many closely spaced layers at random heights is called Fresnel scatter. The variation of received power with transmitter pulse length is examined for various models of Fresnel backscatter. It is shown that for the model most often used in previous work, the power is proportional to the pulse length, and not to the pulse length squared. However, for more general models a more complex pulse length dependence is found.

  17. A Simple Design Approach of a Fresnel Lens for Creating Uniform Light-Emitting Diode Light Distribution Patterns

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Tang; Keiser, Gerd; Huang, Yen-Ru; Lee, San-Liang

    2014-09-01

    Devising an efficient method for distributing high-radiance light-emitting diode emissions onto target surfaces is a continuing challenge. Most current design methods are mathematically complex and require intricate optimizations. In this article, a simple and highly accurate geometric optics analysis is described for creating a free-form total internal reflection collimator lens and a Fresnel exit lens, which can be fabricated easily for producing a specific intensity distribution. A powerful application is the ability to create various high-efficiency and uniform illumination patterns from a standard widely used MR16 light bulb by simply attaching a Fresnel exit lens onto the face of the bulb.

  18. Reconstruction of laser-induced cavitation bubble dynamics based on a Fresnel propagation approach.

    PubMed

    Devia-Cruz, Luis Felipe; Camacho-López, Santiago; Cortés, Víctor Ruiz; Ramos-Muñiz, Victoria; Pérez-Gutiérrez, Francisco G; Aguilar, Guillermo

    2015-12-10

    A single laser-induced cavitation bubble in transparent liquids has been studied through a variety of experimental techniques. High-speed video with varying frame rate up to 20×10(7)   fps is the most suitable to study nonsymmetric bubbles. However, it is still expensive for most researchers and more affordable (lower) frame rates are not enough to completely reproduce bubble dynamics. This paper focuses on combining the spatial transmittance modulation (STM) technique, a single shot cavitation bubble and a very simple and inexpensive experimental technique, based on Fresnel approximation propagation theory, to reproduce a laser-induced cavitation spatial dynamics. Our results show that the proposed methodology reproduces a laser-induced cavitation event much more accurately than 75,000 fps video recording. In conclusion, we propose a novel methodology to reproduce laser-induced cavitation events that combine the STM technique with Fresnel propagation approximation theory that properly reproduces a laser-induced cavitation event including a very precise identification of the first, second, and third collapses of the cavitation bubble. PMID:26836867

  19. Fresnel Volume Migration of the ISO89-3D Data Set

    NASA Astrophysics Data System (ADS)

    Hloušek, F.; Buske, S.

    2016-09-01

    This paper demonstrates the capabilities of Fresnel Volume Migration (FVM) for 3D single-component seismic data in a crystalline environment. We show its application to the ISO89-3D data set, which was acquired in 1989 at the German continental deep drilling site (KTB) near Windischeschenbach (South-East Germany). A key point in FVM is the derivation of the emergent angle for the recorded wavefield. This angle is used as the initial condition of the raytracing-algorithm within FVM. In order to limit the migration operator to the physically relevant part of a reflector, it is restricted to the Fresnel-volume around the backpropagated ray. We discuss different possibilities for an adequate choice of the used aperture for a local slant-stack algorithm using the semblance as a measure of the coherency for different emergent angles. Furthermore, we reduce the number of used receivers for this procedure using the Voronoi diagram, thereby leading to a more equal distribution of the receivers within the selected aperture. We demonstrate the performance of these methods for a simple 3D synthetic example and show the results for the ISO89-3D data set. For the latter, our approach yields images of significantly better quality compared to previous investigations and allows for a detailed characterization of the subsurface. Even in migrated single shot gathers, structures are clearly visible due to the focusing achieved by FVM.

  20. Fundamentals of the advanced Fresnel tracer used for two-dimensional in-process micromeasurements

    NASA Astrophysics Data System (ADS)

    Huhnke, Burkhard; Urbschat, Gunnar

    1998-12-01

    The drive to short development times and closed-loop process control has created a demand for new tools to collect the needed dimensional data. Optical technologies in fields such as sensors, signal processing, metrology, and instrumentation offer unique solutions to many areas of monitoring, diagnostics and control. The Advanced Fresnel Tracer (AFT), an innovative instrumentation for in-process micromeasurement consisting of a smart optical sensors and an automatic follow-up system, based on a temperature controlled grated glass scale or interferometer will be presented. This device may readily be integrated into a turning or grinding machine, e.g. for the needs of quality assurance and to enable an on-line automatic compensation of diameter deviations/1/2. The device contains an optical Fresnel diffraction sensor allowing a fast measurement of the surface topography, achieving three goals: 1) improvement of the instantaneous diameter measurement, 2) surface quality inspection, and 3) determination of the edge gradient or the waviness of the workpiece. The new compact, smart, and precise optical multiparamter sensor, the AFT has been developed and tested.

  1. Fresnel Volume Migration of the ISO89-3D data set

    NASA Astrophysics Data System (ADS)

    Hloušek, F.; Buske, S.

    2016-11-01

    This paper demonstrates the capabilities of Fresnel Volume Migration (FVM) for 3-D single-component seismic data in a crystalline environment. We show its application to the ISO89-3D data set, which was acquired in 1989 at the German continental deep drilling site (KTB) near Windischeschenbach (Southeast Germany). A key point in FVM is the derivation of the emergent angle for the recorded wavefield. This angle is used as the initial condition of the ray-tracing-algorithm within FVM. In order to limit the migration operator to the physically relevant part of a reflector, it is restricted to the Fresnel-volume around the backpropagated ray. We discuss different possibilities for an adequate choice of the used aperture for a local slant-stack algorithm using the semblance as a measure of the coherency for different emergent angles. Furthermore, we reduce the number of used receivers for this procedure using the Voronoi diagram, thereby leading to a more equal distribution of the receivers within the selected aperture. We demonstrate the performance of these methods for a simple 3-D synthetic example and show the results for the ISO89-3D data set. For the latter, our approach yields images of significantly better quality compared to previous investigations and allows for a detailed characterization of the subsurface. Even in migrated single shot gathers, structures are clearly visible due to the focusing achieved by FVM.

  2. The linear Fresnel lens - Solar optical analysis of tracking error effects

    NASA Technical Reports Server (NTRS)

    Cosby, R. M.

    1977-01-01

    Real sun-tracking solar concentrators imperfectly follow the solar disk, operationally sustaining both transverse and axial misalignments. This paper describes an analysis of the solar concentration performance of a line-focusing flat-base Fresnel lens in the presence of small transverse tracking errors. Simple optics and ray-tracing techniques are used to evaluate the lens solar transmittance and focal-plane imaging characteristics. Computer-generated example data for an f/1.0 lens indicate that less than a 1% transmittance degradation occurs for transverse errors up to 2.5 deg. In this range, solar-image profiles shift laterally in the focal plane, the peak concentration ratio drops, and profile asymmetry increases with tracking error. With profile shift as the primary factor, the ninety-percent target-intercept width increases rapidly for small misalignments, e.g., almost threefold for a 1-deg error. The analytical model and computational results provide a design base for tracking and absorber systems for the linear-Fresnel-lens solar concentrator.

  3. Lensing effects in an inhomogeneous universe

    NASA Astrophysics Data System (ADS)

    Bergström, L.; Goliath, M.; Goobar, A.; Mörtsell, E.

    2000-06-01

    Recently, Holz & Wald have presented a new method for determining gravitational lensing effects on, e.g., supernova luminosity versus redshift measurements in inhomogeneous universes. In this paper, their method is generalized in several ways: First, the matter content is allowed to consist of several different types of fluids, possibly with non-vanishing pressure. Second, besides lensing by simple point masses and singular isothermal spheres, the more realistic halo dark matter distribution proposed by Navarro, Frenk & White (NFW), based on N-body simulation results, is treated. We discuss various aspects of the accuracy of the method, such as luminosity corrections, and statistics, for multiple images. We find in agreement with other recent work that a large sample of supernovae at large redshift could be used to extract gross features of the mass distribution of the lensing dark matter halos, such as the existence of a large number of point-like objects. The results for the isothermal sphere and the NFW model are, however, very similar if normalized to the observed luminosity distribution of galaxies. We give convenient analytical fitting formulas for our computed lensing probabilites as a function of magnification, for several redshifts.

  4. Improving lensing cluster mass estimate with flexion

    NASA Astrophysics Data System (ADS)

    Cardone, V. F.; Vicinanza, M.; Er, X.; Maoli, R.; Scaramella, R.

    2016-11-01

    Gravitational lensing has long been considered as a valuable tool to determine the total mass of galaxy clusters. The shear profile, as inferred from the statistics of ellipticity of background galaxies, allows us to probe the cluster intermediate and outer regions, thus determining the virial mass estimate. However, the mass sheet degeneracy and the need for a large number of background galaxies motivate the search for alternative tracers which can break the degeneracy among model parameters and hence improve the accuracy of the mass estimate. Lensing flexion, i.e. the third derivative of the lensing potential, has been suggested as a good answer to the above quest since it probes the details of the mass profile. We investigate here whether this is indeed the case considering jointly using weak lensing, magnification and flexion. We use a Fisher matrix analysis to forecast the relative improvement in the mass accuracy for different assumptions on the shear and flexion signal-to- noise (S/N) ratio also varying the cluster mass, redshift, and ellipticity. It turns out that the error on the cluster mass may be reduced up to a factor of ˜2 for reasonable values of the flexion S/N ratio. As a general result, we get that the improvement in mass accuracy is larger for more flattened haloes, but it extracting general trends is difficult because of the many parameters at play. We nevertheless find that flexion is as efficient as magnification to increase the accuracy in both mass and concentration determination.

  5. Software for Fermat's principle and lenses

    NASA Astrophysics Data System (ADS)

    Mihas, Pavlos

    2012-05-01

    Fermat's principle is considered as a unifying concept. It is usually presented erroneously as a 'least time principle'. In this paper we present some software that shows cases of maxima and minima and the application of Fermat's principle to the problem of focusing in lenses.

  6. Software for Fermat's Principle and Lenses

    ERIC Educational Resources Information Center

    Mihas, Pavlos

    2012-01-01

    Fermat's principle is considered as a unifying concept. It is usually presented erroneously as a "least time principle". In this paper we present some software that shows cases of maxima and minima and the application of Fermat's principle to the problem of focusing in lenses. (Contains 12 figures.)

  7. Teaching the Theory of Real Lenses.

    ERIC Educational Resources Information Center

    Walther, A.

    1996-01-01

    Presents an approach to the study of real lenses that would not contradict Fermat's principle. Shows how the rudiments of the correct theory can be incorporated into courses to provide students a clearer notion of what they can expect in laboratory situations. (DDR)

  8. Doubling strong lensing as a cosmological probe

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.

    2016-10-01

    Strong gravitational lensing provides a geometric probe of cosmology in a unique manner through distance ratios involving the source and lens. This is well-known for the time delay distance derived from measured delays between lightcurves of the images of variable sources such as quasars. Recently, double source plane lens systems involving two constant sources lensed by the same foreground lens have been proposed as another probe, involving a different ratio of distances measured from the image positions and fairly insensitive to the lens modeling. Here we demonstrate that these two different sets of strong lensing distance ratios have strong complementarity in cosmological leverage. Unlike other probes, the double source distance ratio is actually more sensitive to the dark energy equation of state parameters w0 and wa than to the matter density Ωm, for low redshift lenses. Adding double source distance ratio measurements can improve the dark energy figure of merit by 40% for a sample of fewer than 100 low redshift systems, or even better for the optimal redshift distribution we derive.

  9. Zoom microscope objective using electrowetting lenses.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-02-01

    We report a zoom microscope objective which can achieve continuous zoom change and correct the aberrations dynamically. The objective consists of three electrowetting liquid lenses and two glass lenses. The magnification is changed by applying voltages on the three electrowetting lenses. Besides, the three electrowetting liquid lenses can play a role to correct the aberrations. A digital microscope based on the proposed objective is demonstrated. We analyzed the properties of the proposed objective. In contrast to the conventional objectives, the proposed objective can be tuned from ~7.8 × to ~13.2 × continuously. For our objective, the working distance is fixed, which means no movement parts are needed to refocus or change its magnification. Moreover, the zoom objective can be dynamically optimized for a wide range of wavelength. Using such an objective, the fabrication tolerance of the optical system is larger than that of a conventional system, which can decrease the fabrication cost. The proposed zoom microscope objective cannot only take place of the conventional objective, but also has potential application in the 3D microscopy. PMID:26906860

  10. Electron Lenses for the Large Hadron Collider

    SciTech Connect

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Salvachua, Belen

    2014-07-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as an option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.

  11. Terahertz lenses made by compression molding of micropowders.

    PubMed

    Scherger, Benedikt; Scheller, Maik; Jansen, Christian; Koch, Martin; Wiesauer, Karin

    2011-05-20

    We present a simple and versatile approach for fabricating terahertz lenses based on compression molding of micropowder polymer materials in a tabletop hydraulic press. To demonstrate the feasibility of this approach, a biconvex lens shape is calculated using a ray-tracing algorithm and lenses based on two different micropowders are fabricated. As the powder materials have different refractive indices, the resulting lenses share the same geometric shape but differ in their respective focal length. The focusing properties of the lenses are evaluated by transversal and sagittal beam profile measurements in a fiber-coupled terahertz time-domain spectroscopy system, confirming the excellent imaging qualities of the compression molded lenses.

  12. Strategies for active alignment of lenses

    NASA Astrophysics Data System (ADS)

    Langehanenberg, Patrik; Heinisch, Josef; Wilde, Chrisitan; Hahne, Felix; Lüerß, Bernd

    2015-10-01

    Today's optical systems require up-to-date assembly and joining technology. The trend of keeping dimensions as small as possible while maintaining or increasing optical imaging performance leaves little to no room for mechanical lens adjustment equipment that may remain in the final product. In this context active alignment of optical elements opens up possibilities for the fast and cost-economic manufacturing of lenses and lens assemblies with highest optical performance. Active alignment for lens manufacturing is the precise alignment of the optical axis of a lens with respect to an optical or mechanical reference axis (e.g. housing) including subsequent fixation by glue. In this contribution we will describe different approaches for active alignment and outline strengths and limitations of the different methods. Using the SmartAlign principle, highest quality cemented lenses can be manufactured without the need for high precision prealignment, while the reduction to a single alignment step greatly reduces the cycle time. The same strategies can also be applied to bonding processes. Lenses and lens groups can be aligned to both mechanical and optical axes to maximize the optical performance of a given assembly. In hybrid assemblies using both mechanical tolerances and active alignment, SmartAlign can be used to align critical lens elements anywhere inside the system for optimized total performance. Since all geometrical parameters are re-measured before each alignment, this process is especially suited for complex and time-consuming production processes where the stability of the reference axis would otherwise be critical. For highest performance, lenses can be actively aligned using up to five degrees of freedom. In this way, SmartAlign enables the production of ultra-precise mounted lenses with an alignment precision below 1 μm.

  13. The conceptual origins of gravitational lensing

    NASA Astrophysics Data System (ADS)

    Valls-Gabaud, David

    2006-11-01

    We critically examine the evidence available of the early ideas on the bending of light due to a gravitational attraction, which led to the concept of gravitational lenses, and attempt to present an undistorted historical perspective. Contrary to a widespread but baseless claim, Newton was not the precursor to the idea, and the first Query in his Opticks is totally unrelated to this phenomenon. We briefly review the roles of Voltaire, Marat, Cavendish, Soldner and Einstein in their attempts to quantify the gravitational deflection of light. The first, but unpublished, calculations of the lensing effect produced by this deflection are found in Einstein's 1912 notebooks, where he derived the lensing equation and the formation of images in a gravitational lens. The brief 1924 paper by Chwolson which presents, without calculations, the formation of double images and rings by a gravitational lens passed mostly unnoticed. The unjustly forgotten and true pioneer of the subject is F. Link, who not only published the first detailed lensing calculations in 1936, nine months prior to Einstein's famous paper in Science, but also extended the theory to include the effects of finite-size sources and lenses, binary sources, and limb darkening that same year. Link correctly predicted that the microlensing effect would be easier to observe in crowded fields or in galaxies, as observations confirmed five decades later. The calculations made by Link are far more detailed than those by Tikhov and Bogorodsky. We discuss briefly some papers of the early 1960s which marked the renaissance of this theoretical subject prior to the first detection of a gravitational lens in 1979, and we conclude with the unpublished chapter of Petrou's 1981 PhD thesis addressing the microlensing of stars in the Magellanic clouds by dark objects in the Galactic halo.

  14. Light-trapping lenses for solar cells

    NASA Astrophysics Data System (ADS)

    Davies, P. A.

    1992-10-01

    A new type of lens is described that, when used as a secondary concentrator together with a primary Fresnel lens to illuminate a silicon solar cell, would tend to return escaping light to the cell and therefore enhance the light trapping caused primarily by internal reflection within the silicon. In the ideal case of a perfect mirror at the back surface of the cell, it is calculated that, with a lens with a refractive index of 1.5, the cell could be reduced in thickness by a factor of 3 and still absorb as much light. Uniformity of illumination would also be improved by the lens. There are no metallic reflectors used; instead the lens traps light by total internal reflection. Its geometry and properties are presented in terms of the refractive index of the lens material.

  15. Optical reconstruction of digital off-axis Fresnel holograms using phase-only LCOS SLM "HoloEye PLUTO VIS"

    NASA Astrophysics Data System (ADS)

    Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Porshneva, L. A.; Starikov, R. S.; Starikov, S. N.

    2014-09-01

    Optical reconstruction of digital holograms using SLM is used for imaging of 3D scenes, interferometry, microscopy, and etc. In this article reconstruction of digital off-axis Fresnel holograms using phase-only LCOS SLM "HoloEye PLUTO VIS" is described. Experimental and numerically simulated results of reconstruction are presented.

  16. Weak Gravitatational Lensing by Illustris-1 Galaxies

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa G.; Koh, Patrick H.

    2016-06-01

    We compute the weak gravitational lensing signal of isolated, central galaxies obtained from the z=0.5 timestep of the ΛCDM Illustris-1 simulation. The galaxies have stellar masses ranging from 9.5 ≤ log10(M*/Msun) ≤ 11.0 and are located outside cluster and rich group environments. Although there is local substructure present in the form of small, luminous satellite galaxies, the central galaxies are the dominant objects within the virial radii (r200), and each central galaxy is at least 5 times brighter than any other luminous galaxy within the friends-of-friends halo. We compute the weak lensing signal within projected radii 0.05 < rp/r200 < 1.5 and investigate the degree to which the weak lensing signal is anisotropic. Since CDM halos are non-spherical, the weak lensing signal is expected to be anisotropic; however, the degree of anisotropy that is observed depends upon the symmetry axes that are used to define the geometry. The anisotropy is expected to be maximized when the major axis of the projected dark matter mass distribution is used to define the geomety. In practice in the observed universe, one must necessarily use the projected distribution of the luminous mass to define the geometry. If mass and light are not well-aligned, this results in a suppression of the weak lensing anistropy. Our initial analysis shows that the ellipticity of the projected dark matter halo is uncorrelated with the ellipticity of the projected stellar mass. That is ɛhalo ≠ f × ɛlight, where f is a constant multiplicative factor. In addition, in projection on the sky, the major axis of the dark matter mass is offset from that of the stellar mass by ˜40o on average. On scales rp ≤ 0.15 r200, the weak lensing anisotropy obtained when using the stellar mass to define the geometry is of order 7% and agrees well with the anisotropy obtained when using the dark matter mass to define the geometry. On scales rp ˜ r200, the anisotropy obtained when using the stellar mass to

  17. Baryons, neutrinos, feedback and weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Harnois-Déraps, Joachim; van Waerbeke, Ludovic; Viola, Massimo; Heymans, Catherine

    2015-06-01

    The effect of baryonic feedback on the dark matter mass distribution is generally considered to be a nuisance to weak gravitational lensing. Measurements of cosmological parameters are affected as feedback alters the cosmic shear signal on angular scales smaller than a few arcminutes. Recent progress on the numerical modelling of baryon physics has shown that this effect could be so large that, rather than being a nuisance, the effect can be constrained with current weak lensing surveys, hence providing an alternative astrophysical insight on one of the most challenging questions of galaxy formation. In order to perform our analysis, we construct an analytic fitting formula that describes the effect of the baryons on the mass power spectrum. This fitting formula is based on three scenarios of the OverWhelmingly Large hydrodynamical simulations. It is specifically calibrated for z < 1.5, where it models the simulations to an accuracy that is better than 2 per cent for scales k < 10 h Mpc-1 and better than 5 per cent for 10 < k < 100 h Mpc-1. Equipped with this precise tool, this paper presents the first constraint on baryonic feedback models using gravitational lensing data, from the Canada France Hawaii Telescope Lensing Survey (CFHTLenS). In this analysis, we show that the effect of neutrino mass on the mass power spectrum is degenerate with the baryonic feedback at small angular scales and cannot be ignored. Assuming a cosmology precision fixed by WMAP9, we find that a universe with massless neutrinos is rejected by the CFHTLenS lensing data with 85-98 per cent confidence, depending on the baryon feedback model. Some combinations of feedback and non-zero neutrino masses are also disfavoured by the data, although it is not yet possible to isolate a unique neutrino mass and feedback model. Our study shows that ongoing weak gravitational lensing surveys (KiDS, HSC and DES) will offer a unique opportunity to probe the physics of baryons at galactic scales, in

  18. Antifouling leaching technique for optical lenses

    USGS Publications Warehouse

    Strahle, William J.; Perez, C. L.; Martini, Marinna A.

    1994-01-01

    The effectiveness of optical lenses deployed in water less than 100 m deep is significantly reduced by biofouling caused by the settlement of macrofauna, such as barnacles, hydroids, and tunicates. However, machineable porous plastic rings can be used to dispense antifoulant into the water in front of the lens to retard macrofaunal growth without obstructing the light path. Unlike coatings which can degrade the optical performance, antifouling rings do not interfere with the instrument optics. The authors have designed plastic, reusable cup-like antifouling rings to slip over the optical lenses of a transmissometer. These rings have been used for several deployments on shallow moorings in Massachusetts Bay, MA and have increased the time before fouling degrades optical characteristics

  19. Tunable lenses using transparent dielectric elastomer actuators.

    PubMed

    Shian, Samuel; Diebold, Roger M; Clarke, David R

    2013-04-01

    Focus tunable, adaptive lenses provide several advantages over traditional lens assemblies in terms of compactness, cost, efficiency, and flexibility. To further improve the simplicity and compact nature of adaptive lenses, we present an elastomer-liquid lens system which makes use of an inline, transparent electroactive polymer actuator. The lens requires only a minimal number of components: a frame, a passive membrane, a dielectric elastomer actuator membrane, and a clear liquid. The focal length variation was recorded to be greater than 100% with this system, responding in less than one second. Through the analysis of membrane deformation within geometrical constraints, it is shown that by selecting appropriate lens dimensions, even larger focusing dynamic ranges can be achieved. PMID:23571956

  20. Astrophysical observations: lensing and eclipsing Einstein's theories.

    PubMed

    Bennett, Charles L

    2005-02-11

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics. PMID:15705841

  1. The geometry of gravitational lensing magnification

    NASA Astrophysics Data System (ADS)

    Aazami, Amir Babak; Werner, Marcus C.

    2016-02-01

    We present a definition of unsigned magnification in gravitational lensing valid on arbitrary convex normal neighborhoods of time oriented Lorentzian manifolds. This definition is a function defined at any two points along a null geodesic that lie in a convex normal neighborhood, and foregoes the usual notions of lens and source planes in gravitational lensing. Rather, it makes essential use of the van Vleck determinant, which we present via the exponential map, and Etherington's definition of luminosity distance for arbitrary spacetimes. We then specialize our definition to spacetimes, like Schwarzschild's, in which the lens is compact and isolated, and show that our magnification function is monotonically increasing along any geodesic contained within a convex normal neighborhood.

  2. Interferometric Plasmonic Lensing with Nanohole Arrays

    SciTech Connect

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-12-18

    Nonlinear photoemission electron microscopy (PEEM) of nanohole arrays in gold films maps propagating surface plasmons (PSPs) launched from lithographically patterned structures. Strong near field photoemission patterns are observed in the PEEM images, recorded following low angle of incidence irradiation of nanohole arrays with sub-15 fs laser pulses centered at 780 nm. The recorded photoemission patterns are attributed to constructive and destructive interferences between PSPs launched from the individual nanoholes which comprise the array. By exploiting the wave nature of PSPs, we demonstrate how varying the array geometry (hole diameter, pitch, and number of rows/columns) ultimately yields intense localized photoemission. Through a combination of PEEM and finite-difference time-domain simulations, we identify the optimal array geometry for efficient light coupling and interferometric plasmonic lensing. We show a preliminary application of inteferometric plasmonic lensing by enhancing the photoemission from the vertex of a gold triangle using nanohole array.

  3. Astrophysical Observations: Lensing and Eclipsing Einstein's Theories

    NASA Astrophysics Data System (ADS)

    Bennett, Charles L.

    2005-02-01

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics.

  4. Stationary SMS lenses for concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Kotsidas, Panagiotis; Chatzi, Eleni; Modi, Vijay

    2010-08-01

    This paper presents a novel approach regarding the design of stationary, non imaging, refractive lenses with high acceptance angles. A lens lies on a stationary aperture and as the sun moves throughout the day, the concentrated focal spot is tracked by a moving solar cell. The purpose of this work is to replace the 2-axis tracking of the sun with internal motion of the miniaturized solar cell inside the module. We show families of linear lenses with wide acceptance angles 60. and 30. achieving moderate concentrations of 10 - 30 suns. The lens is designed with a variation of the simultaneous multiple surface (SMS) technique which is combined with a genetic algorithm to optimize the free variables of the problem.

  5. Temperature effects on dielectric liquid lenses.

    PubMed

    Zhang, Hongxia; Ren, Hongwen; Xu, Su; Wu, Shin-Tson

    2014-01-27

    The thermal stability of dielectric liquid lenses is studied by measuring the focal length at different temperatures. Two types of liquids lenses are investigated: Type-I (SL-5267/glycerol) and Type-II (glycerol/ BK7 matching liquid). A threshold-like behavior is found. Below the threshold temperature, the focal length is temperature insensitive. Above the threshold, the focal length changes exponentially with the temperature. Both refractive index and surface profile are responsible for the focal length change, although the former decreases linearly with the temperature. The threshold temperature of Type-I and Type-II liquid lens are 60°C and 40°C, respectively. Type-I lens shows a good temperature stability in a wide range. Moreover, the lens can recover to its original state even though it is operated at a high temperature.

  6. Binary-phase Fresnel zone plate arrays for high-power laser beam smoothing

    NASA Astrophysics Data System (ADS)

    Pepler, David A.; Danson, Colin N.; Ross, Ian N.; Rivers, S. A.; Edwards, Stanley A.; Bett, Thomas H.; Stevenson, R. M.; Jinks, P. M. R.

    1995-04-01

    Binary-phase optics have been used by a number of high-power laser laboratories in order to achieve relatively smooth focal spots. However, the intensity envelopes have in general been of a sinc form rather than `top-hat.' This paper presents work on the production of uniform `top-hat' intensity focal spot profiles obtained from Fresnel binary phase zone plate (PZP) arrays of various designs. Phase plates are used to generate large area smooth focal spots and both theoretical and experimental focal spots are presented. These demonstrate the flexibility of this technique which provides a simple method of generating both uniform `top-hat' intensity profiles and spatially shaped foci, for use with high-power lasers.

  7. Spatial bandwidth analysis of fast backward Fresnel diffraction for precise computer-generated hologram design.

    PubMed

    Liang, Jinyang; Becker, Michael F

    2014-09-20

    Designing near-field computer-generated holograms (CGHs) for a spatial light modulator (SLM) requires backward diffraction calculations. However, direct implementation of the discrete computational model of the Fresnel diffraction integral often produces inaccurate reconstruction. Finite sizes of the SLM and the target image, as well as aliasing, are major sources of error. Here we present a new design prescription for precise near-field CGHs based on comprehensive analysis of the spatial bandwidth. We demonstrate that, by controlling two free variables related to the target image, the designed hologram is free from aliasing and can have minimum error. To achieve this, we analyze the geometry of the target image, hologram, and Fourier transform plane of the target image to derive conditions for minimizing reconstruction error due to truncation of spatial frequencies lying outside of the hologram. The design prescription is verified by examples showing reconstruction error versus controlled parameters. Finally, it is applied to precise three-dimensional image reconstruction.

  8. Optical cryptosystem based on phase-truncated Fresnel diffraction and transport of intensity equation.

    PubMed

    Zhang, Chenggong; He, Wenqi; Wu, Jiachen; Peng, Xiang

    2015-04-01

    A novel optical cryptosystem based on phase-truncated Fresnel diffraction (PTFD) and transport of intensity equation (TIE) is proposed. By using the phase truncation technique, a phase-encoded plaintext could be encrypted into a real-valued noise-like intensity distribution by employing a random amplitude mask (RAM) and a random phase mask (RPM), which are regarded as two secret keys. For decryption, a generalized amplitude-phase retrieval (GAPR) algorithm combined with the TIE method are proposed to recover the plaintext with the help of two keys. Different from the current phase-truncated-based optical cryptosystems which need record the truncated phase as decryption keys, our scheme do not need the truncated phase because of the introducing of the TIE method. Moreover, the proposed scheme is expected to against existing attacks. A set of numerical simulation results show the feasibility and security of the proposed method. PMID:25968722

  9. Lensless optical data hiding system based on phase encoding algorithm in the Fresnel domain.

    PubMed

    Chen, Yen-Yu; Wang, Jian-Hong; Lin, Cheng-Chung; Hwang, Hone-Ene

    2013-07-20

    A novel and efficient algorithm based on a modified Gerchberg-Saxton algorithm (MGSA) in the Fresnel domain is presented, together with mathematical derivation, and two pure phase-only masks (POMs) are generated. The algorithm's application to data hiding is demonstrated by a simulation procedure, in which a hidden image/logo is encoded into phase forms. A hidden image/logo can be extracted by the proposed high-performance lensless optical data-hiding system. The reconstructed image shows good quality and the errors are close to zero. In addition, the robustness of our data-hiding technique is illustrated by simulation results. The position coordinates of the POMs as well as the wavelength are used as secure keys that can ensure sufficient information security and robustness. The main advantages of this proposed watermarking system are that it uses fewer iterative processes to produce the masks, and the image-hiding scheme is straightforward.

  10. Experimental study of starshade at flight Fresnel numbers in the laboratory

    NASA Astrophysics Data System (ADS)

    Kim, Yunjong; Sirbu, Dan; Galvin, Michael; Kasdin, N. Jeremy; Vanderbei, Robert J.

    2016-07-01

    A starshade or external occulter is a spacecraft flown along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. Because of its large size and scale it is impossible to fully test a starshade system on the ground before launch. Therefore, laboratory verification of starshade designs is necessary to validate the optical models used to design and predict starshade performance. At Princeton, we have designed and built a testbed that allows verification of scaled starshade designs whose suppressed shadow is mathematically identical to that of a comparable space starshade. The starshade testbed uses 77.2 m optical propagation distance to realize the flight-appropriate Fresnel numbers of 14.5. Here we present the integration status of the testbed and simulations predicting the ultimate contrast performance. We will also present our results of wavefront error measurement and its implementation of suppression and contrast.

  11. Optical color-image encryption and synthesis using coherent diffractive imaging in the Fresnel domain.

    PubMed

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2012-02-13

    We propose a new method using coherent diffractive imaging for optical color-image encryption and synthesis in the Fresnel domain. An optical multiple-random-phase-mask encryption system is applied, and a strategy based on lateral translations of a phase-only mask is employed during image encryption. For the decryption, an iterative phase retrieval algorithm is applied to extract high-quality decrypted color images from diffraction intensity maps (i.e., ciphertexts). In addition, optical color-image synthesis is also investigated based on coherent diffractive imaging. Numerical results are presented to demonstrate feasibility and effectiveness of the proposed method. Compared with conventional interference methods, coherent diffractive imaging approach may open up a new research perspective or can provide an effective alternative for optical color-image encryption and synthesis.

  12. Optical color image encryption based on an asymmetric cryptosystem in the Fresnel domain

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2011-08-01

    In recent years, optical color image encryption has attracted much attention in the information security field. Some approaches, such as digital holography, have been proposed to encrypt color images, but the previously proposed methods are developed based on optical symmetric cryptographic strategies. In this paper, we apply an optical asymmetric cryptosystem for the color image encryption instead of conventional symmetric cryptosystems. A phase-truncated strategy is applied in the Fresnel domain, and multiple-wavelength and indexed image methods are further employed. The security of optical asymmetric cryptosystem is also analyzed during the decryption. Numerical results are presented to demonstrate the feasibility and effectiveness of the proposed optical asymmetric cryptosystem for color image encryption.

  13. Whole-cell phase contrast imaging at the nanoscale using Fresnel Coherent Diffractive Imaging Tomography

    NASA Astrophysics Data System (ADS)

    Jones, Michael W. M.; van Riessen, Grant A.; Abbey, Brian; Putkunz, Corey T.; Junker, Mark D.; Balaur, Eugeniu; Vine, David J.; McNulty, Ian; Chen, Bo; Arhatari, Benedicta D.; Frankland, Sarah; Nugent, Keith A.; Tilley, Leann; Peele, Andrew G.

    2013-07-01

    X-ray tomography can provide structural information of whole cells in close to their native state. Radiation-induced damage, however, imposes a practical limit to image resolution, and as such, a choice between damage, image contrast, and image resolution must be made. New coherent diffractive imaging techniques, such Fresnel Coherent Diffractive Imaging (FCDI), allows quantitative phase information with exceptional dose efficiency, high contrast, and nano-scale resolution. Here we present three-dimensional quantitative images of a whole eukaryotic cell by FCDI at a spatial resolution below 70 nm with sufficient phase contrast to distinguish major cellular components. From our data, we estimate that the minimum dose required for a similar resolution is close to that predicted by the Rose criterion, considerably below accepted estimates of the maximum dose a frozen-hydrated cell can tolerate. Based on the dose efficiency, contrast, and resolution achieved, we expect this technique will find immediate applications in tomographic cellular characterisation.

  14. Mode calculations in asymmetrically aberrated laser resonators using the Huygens-Fresnel kernel formulation.

    PubMed

    Morrissey, F X; Chou, H P

    2011-09-26

    A theoretical framework is presented for calculating three-dimensional resonator modes of both stable and unstable laser resonators. The resonant modes of an optical resonator are computed using a kernel formulation of the resonator round-trip Huygens-Fresnel diffraction integral. To substantiate the validity of this method, both stable and unstable resonator mode results are presented. The predicted lowest loss and higher order modes of a semi-confocal stable resonator are in agreement with the analytic formulation. Higher order modes are determined for an asymmetrically aberrated confocal unstable resonator, whose lowest loss unaberrated mode is consistent with published results. The three-dimensional kernel method provides a means to evaluate multi-mode configurations with two-dimensional aberrations that cannot be decomposed into one-dimensional representations. PMID:21996912

  15. Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope

    PubMed Central

    Han, Chao; Lee, Lap Man; Yang, Changhuei

    2013-01-01

    We report the implementation of an on-chip microscope system, termed fluorescence optofluidic microscope (FOFM), which is capable of fluorescence microscopy imaging of samples in fluid media. The FOFM employs an array of Fresnel zone plates (FZP) to generate an array of focused light spots within a microfluidic channel. As a sample flows through the channel and across the array of focused light spots, the fluorescence emissions are collected by a filter-coated CMOS sensor, which serves as the channel's floor. The collected data can then be processed to render fluorescence microscopy images at a resolution determined by the focused light spot size (experimentally measured as 0.65 μm FWHM). In our experiments, our established resolution was 1.0 μm due to Nyquist criterion consideration. As a demonstration, we show that such a system can be used to image the cell nuclei stained by Acridine Orange and cytoplasm labeled by Qtracker®. PMID:21935556

  16. Design of a laboratory testbed for external occulters at flight Fresnel numbers

    NASA Astrophysics Data System (ADS)

    Kim, Yunjong; Galvin, Mike; Kasdin, N. Jeremy; Vanderbei, Robert J.; Ryu, Dongok; Kim, Ki-Won; Kim, Sug-Whan; Sirbu, Dan

    2015-09-01

    One of the main candidates for creating high-contrast for future Exo-Earth detection is an external occulter or sharshade. A starshade blocks the light from the parent star by flying in formation along the line-of-sight from a space telescope. Because of its large size and scale it is impossible to fully test a starshade system on the ground before launch. Instead, we rely on modeling supported by subscale laboratory tests to verify the models. At Princeton, we are designing and building a subscale testbed to verify the suppression and contrast of a starshade at the same Fresnel number as a flight system, and thus mathematically identical to a realistic space mission. Here we present the mechanical design of the testbed and simulations predicting the ultimate contrast performance. We will also present progress in implementation and preliminary results.

  17. Fresnel reflectance in refractive index estimation of light scattering solid particles in immersion liquid

    NASA Astrophysics Data System (ADS)

    Räty, J.; Niskanen, I.; Peiponen, K.-E.

    2010-06-01

    The refractive index of homogenous particle population can be determined by the so-called immersion liquid method. The idea is to find a known liquid whose refractive index matches the index of the particles. We report on a method that simultaneously obtains the refractive index of particles and that of the immersion liquid. It is based on a system using internal light reflection and Fresnel's theory. The method includes a series of straightforward reflection measurements and a fitting procedure. The validity of the method was tested with CaF2 particles. The method has applications within scientific studies of microparticles and nanoparticles or micro-organism in suspensions. It can be also be utilized in industry for the detection of the refractive index of products involving particles for the purpose of improvement of product quality.

  18. Angular spectrum simulation of X-ray focusing by Fresnel zone plates

    PubMed Central

    Vila-Comamala, Joan; Wojcik, Michael; Diaz, Ana; Guizar-Sicairos, Manuel; Kewish, Cameron M.; Wang, Steve; David, Christian

    2013-01-01

    A computing simulation routine to model any type of circularly symmetric diffractive X-ray element has been implemented. The wavefield transmitted beyond the diffractive structures is numerically computed by the angular spectrum propagation method to an arbitrary propagation distance. Cylindrical symmetry is exploited to reduce the computation and memory requirements while preserving the accuracy of the numerical calculation through a quasi-discrete Hankel transform algorithm, an approach described by Guizar-Sicairos & Gutierrez-Vega [J. Opt. Soc. Am. A, (2004 ▶), 21, 53–58]. In particular, the code has been used to investigate the requirements for the stacking of two high-resolution Fresnel zone plates with an outermost zone width of 20 nm. PMID:23592617

  19. Inclined-incidence quasi-Fresnel lens for prefocusing of synchrotron radiation x-ray beams

    NASA Astrophysics Data System (ADS)

    Kagoshima, Yasushi; Takano, Hidekazu; Takeda, Shingo

    2012-10-01

    An inclined-incidence quasi-Fresnel lens made of acrylic resin has been developed for prefocusing in synchrotron radiation x-ray beamlines. By inclining the lens, the grating aspect ratio is large enough for x-ray use. As it operates in transmission mode with negligible beam deflection and offset, little additional equipment is needed to introduce it into existing beamlines. It is fabricated by sheet-press forming, enabling inexpensive mass production. The prototype was able to focus a 730-μm-wide beam to a width of 80 μm with a photon flux density gain of 5.6 at an x-ray energy of 10 keV.

  20. Determination of the topological charge of a twisted beam with a Fresnel bi-prism

    NASA Astrophysics Data System (ADS)

    Emile, Olivier; Emile, Janine; Brousseau, Christian

    2014-12-01

    The self-interference pattern of a Laguerre Gaussian beam using a Fresnel bi-prism is shown to be very different from what could be expected from a usual laser beam. It resembles the interference pattern that could be obtained using a double slit experiment. The interferences are shifted and the topological charge and its sign can be readily determined considering the shift order of the pattern only. However, since there is no diffraction nor absorption losses unlike in a double slit interference, such a set up could be used even for low power twisted beams or beams with high topological charge. Even fractional topological charges could be determined with an absolute precision of 0.05.