ACHP | News | ACHP Issues Program Comment for GSA on Select Repairs and
to windows, lighting, roofing, and heating, ventilating, and air-conditioning (HVAC) systems within Upgrades Windows Lighting Roofing Heating, Ventilation, and Air Conditioning (HVAC) Systems Updated March
Thomachot, L; Viviand, X; Arnaud, S; Boisson, C; Martin, C D
1998-11-01
Many heat and moisture exchangers with filter (HMEF) have been developed. In-house data from companies provide some information about their performances; unfortunately, to our knowledge, no comparative evaluation in clinical conditions has been undertaken of these newer products. The aim of this study was to compare the efficiency of two HMEFs, one hydrophobic and one hygroscopic, on humidifying capacity and the rate of bronchial colonization and ventilator-associated pneumonia in ICU patients. Prospective, randomized study. ICU of a university hospital. All patients who required mechanical ventilation for > or = 24 h during the study period. On admission to the ICU, patients were randomly assigned to one of two groups. In one group, the patients were ventilated with a hygroscopic device (Humid-Vent Filter Light HMEF; Gibeck; Upplands Vaesby, Sweden). The condensation surface was made of paper (Microwell) impregnated with CaCl2. The filter membrane was made of polypropylene. In the other group, the patients were ventilated with a hydrophobic device (Pall BB100 HMEF). The condensation surface was made of a hydrophobic resin with a hydrophylic layer. The filter membrane was made of ceramic fibers. In both groups, HMEFs were changed daily. Both groups of patients were similar for the tested characteristics, including parameters of mechanical ventilation. Sixty-six patients were ventilated for 11.7+/-11 days with the Humid-Vent Filter Light HMEF and 70 patients for 12.2+/-12 days with the Pall BB 100. Patients ventilated with the Humid-Vent Filter Light underwent 6.0+/-3.0 tracheal aspirations and 1.7+/-2.0 instillations per day, and those with the Pall BB 100, 6.0+/-3.0 and 1.6+/-2.0 per day, respectively (not significant [NS]). Abundance of tracheal secretions, presence of blood, and viscosity, evaluated by semiquantitative scales, were similar in both groups. No difference in the rate of atelectasis was observed between the two groups (7.5% and 7.1%, NS). One episode of tracheal tube occlusion was observed with the Humid-Vent Filter Light HMEF, and one with the other HMEF (NS). One patient in each group (NS) was switched to an active heated humidifier because of very tenacious bronchial secretions despite repeated instillations. Tracheal colonization was observed at a rate of 67% with the Humid-Vent Filter Light and 58% with the Pall BB 100 (NS). A small, but NS difference was observed in the rate of ventilator-associated pneumonia: Humid-Vent Filter Light, 32% (27.1 per 1000 ventilator days); and Pall BB 100, 37% (30.4 per 1000 ventilator days). Bacteria responsible for tracheal colonization and pneumonia were similar in both groups. Three patients in each group died from their nosocomial pneumonia. Despite differences in their components, the two HMEFs tested achieved similar performances in terms of humidification and heating of inspired gases. Only one episode of endotracheal tube occlusion was detected and very few patients (one in each group) had to be switched to an active heated humidifier. No difference was observed either in the rate of tracheal colonization or of ventilator-associated pneumonia. These data show that the hygroscopic HME (Humid-Vent Filter Light) and the hydrophobic HME (Pall BB 100) are suited for use in ICU patients.
Thomachot, L; Vialet, R; Arnaud, S; Barberon, B; Michel-Nguyen, A; Martin, C
1999-05-01
To compare the efficiency of two heat and moisture exchange filters (HMEFs) of different compositions of the humidifying capacity and the rate of bronchial colonization and ventilator-associated pneumonia in patients in the intensive care unit (ICU). Prospective, randomized study. ICU of a university hospital. All patients who required mechanical ventilation for 24 hrs or more during the study period. At admission to the ICU, patients were randomly assigned to one of two groups. In one group, the patients were ventilated with Humid-Vent Filter Light HMEF. The condensation surface was made of paper impregnated with CaCl2. The filter membrane was made of polypropylene. In the other group, the patients were ventilated with the Clear ThermAl HMEF (Intersurgical, France). The condensation surface was made of plastic foam impregnated with AlCl2. The filter membrane was made of two polymer fibers (modacrylic and polypropylene). In both groups, HMEFs were changed daily. Seventy-seven patients were ventilated for 19+/-7 days with the Humid-Vent Filter Light HMEF and 63 patients for 17+/-6 days with the Clear ThermAl HMEF. Patients ventilated with the Humid-Vent Filter Light underwent 8.7+/-3.7 tracheal aspirations and 1.2+/-2.0 instillations per day and those with the Clear ThermAl, 8.2+/-3.9 and 1.5+/-2.4 per day, respectively (NS). The abundance of tracheal secretions and the presence of blood and viscosity, as evaluated by semiquantitative scales, were similar in both groups. One episode of tracheal tube occlusion was observed with the Humid-Vent Filter Light HMEF and none with the other HMEF (NS). Tracheal colonization was observed at a rate of 91% with the Humid-Vent Filter Light and 97% with the Clear ThermAl (NS). The rate of ventilator-associated pneumonia was similar in both groups (35%). Bacteria responsible for tracheal colonization and pneumonia were similar in both groups. Despite differences in their components, the two HMEFs that were tested achieved similar performances in terms of humidification and heating of inspired gases. Only one episode of endotracheal tube occlusion was detected, and very few patients (three in each group) had to be switched to an active heated humidifier. No difference was observed either in the rate of tracheal colonization or of ventilator-associated pneumonia. These data show that the Humid-Vent Filter Light and the Clear ThermAl HMEFs are suited for use with ICU patients.
Design New Buildings To Save Energy -- and Money
ERIC Educational Resources Information Center
Rittelmann, Richard
1974-01-01
Buildings should be designed so that energy systems function with maximum efficiency. Re-evaluation of standards for ventilation and lighting is recommended. Heat recovery techniques and topography can reduce heating loads. (MF)
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11) Plumbing systems. (12) Ventilating systems and air conditioning systems. (13) Power plants. (14) Electric wiring. (15) Lighting fixtures (or replacement). (16) Sprinkler systems. (f) Settling or subsidence. (g...
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11) Plumbing systems. (12) Ventilating systems and air conditioning systems. (13) Power plants. (14) Electric wiring. (15) Lighting fixtures (or replacement). (16) Sprinkler systems. (f) Settling or subsidence. (g...
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11) Plumbing systems. (12) Ventilating systems and air conditioning systems. (13) Power plants. (14) Electric wiring. (15) Lighting fixtures (or replacement). (16) Sprinkler systems. (f) Settling or subsidence. (g...
ERIC Educational Resources Information Center
Strickland, Gary
2001-01-01
Explains how changes in school design in the last 10 years have caused heating, ventilation, and cooling system (HVAC) designers to reexamine their choice of classroom unit ventilators (UV). The influence of indoor lighting systems, insulation, indoor air quality, energy code compliance, and HVAC system design on UV decision making are also…
Saving Energy. Managing School Facilities, Guide 3.
ERIC Educational Resources Information Center
Department for Education and Employment, London (England). Architects and Building Branch.
This guide offers information on how schools can implement an energy saving action plan to reduce their energy costs. Various low-cost energy-saving measures are recommended covering heating levels and heating systems, electricity demand reduction and lighting, ventilation, hot water usage, and swimming pool energy management. Additional…
A Guide to Energy Savings - For the Dairy Farmers.
ERIC Educational Resources Information Center
Frank, Gary G.
This booklet gives a brief overview of energy use patterns in a dairy farm and gives tips on cutting costs of water heating, ventilation and supplemental heat, milk cooling, vacuum pumps, electric motors, tractors, trucks, engines, and lighting. Finally, energy use recordkeeping is discussed. (BB)
Energy Control Systems: Energy Savings.
ERIC Educational Resources Information Center
School Business Affairs, 1980
1980-01-01
The installation of proper control systems is estimated as saving up to 25 percent of the energy used in schools. Other potential energy-saving areas are transmission (heat loss or gain through walls, especially ceilings); internal load (heat from students, lights, and machinery); ventilation; and equipment maintenance. (Author/MLF)
ERIC Educational Resources Information Center
Shane, Jackie
2012-01-01
This article stresses the importance of building design above technology as a relatively inexpensive way to reduce energy costs for a library. Emphasis is placed on passive solar design for heat and daylighting, but also examines passive ventilation and cooling, green roofs, and building materials. Passive design is weighed against technologies…
Residential and Light Commercial HVAC. Teacher Edition.
ERIC Educational Resources Information Center
Stephenson, David; Fulkerson, Dan, Ed.
This curriculum guide contains 18 units of instruction for a competency-based course in residential and light commercial heating, ventilating, and air conditioning (HVAC). Introductory materials include a competency profile and an instructional/task analysis that correlates job training with related information for this course. Each instructional…
Residential and Light Commercial HVAC. Teacher Edition and Student Edition. Second Edition.
ERIC Educational Resources Information Center
Stephenson, David
This package contains teacher and student editions of a residential and light commercial heating, ventilation, and air conditioning (HVAC) course of study. The teacher edition contains information on the following: using the publication; national competencies; competency profile; related academic and workplace skills list; tools, equipment, and…
The College and the Energy Crisis.
ERIC Educational Resources Information Center
Douglass, Donald D.
Ways in which colleges can conserve energy are discussed. Reduction in the use of heat and light can be accomplished by taking several steps, such as reducing the amount of fresh air introduced into heating systems, turning off ventilating fans at night, cutting temperatures back during vacation periods and breaks, lowering the temperature of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, J. C.
1984-01-31
A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directlymore » into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.« less
Adamson, James C.
1984-01-01
A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.
Energy Savings by Treating Buildings as Systems
NASA Astrophysics Data System (ADS)
Harvey, L. D. Danny
2008-09-01
This paper reviews the opportunities for dramatically reducing energy use in buildings by treating buildings as systems, rather than focusing on device efficiencies. Systems-level considerations are relevant for the operation of heat pumps (where the temperatures at which heat or coldness are distributed are particularly important); the joint or separate provision of heating, cooling, and ventilation; the joint or separate removal of sensible heat and moisture; and in the operation of fluid systems having pumps. Passive heating, cooling, and ventilation, as well as daylighting (use of sunlight for lighting purposes) also require consideration of buildings as systems. In order to achieve the significant (50-75%) energy savings that are possible through a systems approach, the design process itself has to involve a high degree of integration between the architect and various engineering disciplines (structural, mechanical, electrical), and requires the systematic examination and adjustment of alternative designs using computer simulation models.
Russia’s R&D for Low Energy Buildings: Insights for Cooperation with Russia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaaf, Rebecca E.; Evans, Meredydd
Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.
Tsuji, Bun; Honda, Yasushi; Fujii, Naoto; Kondo, Narihiko; Nishiyasu, Takeshi
2012-11-01
Elevation of core temperature leads to increases in ventilation in both resting subjects and those engaged in prolonged exercise. We compared the characteristics of the hyperthermic hyperventilation elicited during passive heating at rest and during prolonged moderate and light exercise. Twelve healthy men performed three trials: a rest trial in which subjects were passively heated using hot-water immersion (41°C) and a water-perfused suit and two exercise trials in which subjects exercised at 25% (light) or 50% (moderate) of peak oxygen uptake in the heat (37°C and 50% relative humidity) after first using water immersion (18°C) to reduce resting esophageal temperature (T(es)). This protocol enabled detection of a T(es) threshold for hyperventilation during the exercise. When minute ventilation (Ve) was expressed as a function of T(es), 9 of the 12 subjects showed T(es) thresholds for hyperventilation in all trials. The T(es) thresholds for increases in Ve during light and moderate exercise (37.1 ± 0.4 and 36.9 ± 0.4°C) were both significantly lower than during rest (38.3 ± 0.6°C), but the T(es) thresholds did not differ between the two exercise intensities. The sensitivity of Ve to increasing T(es) (slope of the T(es)-Ve relation) above the threshold was significantly lower during moderate exercise (8.7 ± 3.5 l · min(-1) · °C(-1)) than during rest (32.5 ± 24.2 l · min(-1) · °C(-1)), but the sensitivity did not differ between light (10.4 ± 13.0 l · min(-1) · °C(-1)) and moderate exercise. These results suggest the core temperature threshold for hyperthermic hyperventilation and the hyperventilatory response to increasing core temperature in passively heated subjects differs from that in exercising subjects, irrespective of whether the exercise is moderate or light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This case study describes a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and triple-pane windows.
Passive solar nursing home for Northern Kentucky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, J.G.; Ward, J.D.
This project is a 32-bed nursing home designed as an addition to an existing facility. Passive solar strategies included direct gain room windows and clerestories which admit light to phase change salt pouches in the ceilings of patient rooms. Corridors are skykighted; and the heating, ventilating, and conditioning system is comprised of water-source heat pumps and a 5000 gallon storage tank in conjunction with an air to air heat recovery wheel.
10 CFR 1022.5 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Minor modification (e.g., upgrading lighting, heating, ventilation, and air conditioning systems....g., activities such as reroofing, plumbing repair, door and window replacement); (2) Site... water and air quality, flora and fauna abundance, and soil properties) in a floodplain or wetland...
10 CFR 1022.5 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Minor modification (e.g., upgrading lighting, heating, ventilation, and air conditioning systems....g., activities such as reroofing, plumbing repair, door and window replacement); (2) Site... water and air quality, flora and fauna abundance, and soil properties) in a floodplain or wetland...
10 CFR 1022.5 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Minor modification (e.g., upgrading lighting, heating, ventilation, and air conditioning systems....g., activities such as reroofing, plumbing repair, door and window replacement); (2) Site... water and air quality, flora and fauna abundance, and soil properties) in a floodplain or wetland...
10 CFR 1022.5 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Minor modification (e.g., upgrading lighting, heating, ventilation, and air conditioning systems....g., activities such as reroofing, plumbing repair, door and window replacement); (2) Site... water and air quality, flora and fauna abundance, and soil properties) in a floodplain or wetland...
Energy efficiency buildings program
NASA Astrophysics Data System (ADS)
1981-05-01
Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.
Energy Efficiency in Libraries.
ERIC Educational Resources Information Center
Lewis, Eleanor J.; And Others
1993-01-01
Shows how libraries can save money and energy with energy-efficient technologies, improving maintenance, and encouraging staff efforts to conserve energy. Specific techniques such as life-cycle cost analysis and energy audits focusing on lighting, heating, ventilation, air conditioning, and water efficiency are described. Funding options and…
Trends in Public Library Buildings.
ERIC Educational Resources Information Center
Holt, Raymond M.
1987-01-01
Review of trends in public library buildings covers cycles in building activity; financial support; site selection; expansion, remodeling, or conversion of existing buildings; size of buildings; and such architectural concerns as flexible space, lighting, power, accommodation of computer systems, heat and ventilation, fire protection, security,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-06-01
The Woods is a 30-home, high- performance, energy efficient sustainable community built by Habitat for Humanity (HFH). With Support from Tacoma Public Utilities, Washington State University (part of the Building America Partnership for Improved Residential Construction) is researching the energy performance of these homes and the ductless heat pumps (DHP) they employ. This project provides Building America with an opportunity to: field test HVAC equipment, ventilation system air flows, building envelope tightness, lighting, appliance, and other input data that are required for preliminary Building Energy Optimization (BEopt™) modeling and ENERGY STAR® field verification; analyze cost data from HFH and othermore » sources related to building-efficiency measures that focus on the DHP/hybrid heating system and heat recovery ventilation system; evaluate the thermal performance and cost benefit of DHP/hybrid heating systems in these homes from the perspective of homeowners; compare the space heating energy consumption of a DHP/electric resistance (ER) hybrid heating system to that of a traditional zonal ER heating system; conduct weekly "flip-flop tests" to compare space heating, temperature, and relative humidity in ER zonal heating mode to DHP/ER mode.« less
The Quiet Room: A Cyber-Free Haven in the Community Library.
ERIC Educational Resources Information Center
Jacob, Bernard; Morphew, Carol
1997-01-01
Because community libraries are becoming centers of suburban and "exurban" activity, quiet study rooms are being constructed for customers intent on concentrated study. Discusses functional (size, location, furniture) and physical (acoustic, heating, ventilation, air conditioning, lighting, electronic support) considerations of quiet…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Eric; Withers, Chuck; McIlvaine, Janet
The well-sealed, highly insulated building enclosures constructed by today's home building industry coupled with efficient lighting and appliances are achieving significantly reduced heating and cooling loads. These low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. Even if fixed-capacity equipment can be properly specified for peak loads, it remains oversized for use during much of the year. During these part-load cooling hours, oversized equipment meets the target dry-bulb temperatures very quickly, often without sufficient opportunity for moisture control. Themore » problem becomes more acute for high-performance houses in humid climates when meeting ASHRAE Standard 62.2 recommendations for wholehouse mechanical ventilation.« less
Effects of ventilation behaviour on indoor heat load based on test reference years.
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
Effects of ventilation behaviour on indoor heat load based on test reference years
NASA Astrophysics Data System (ADS)
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
Designing for Energy Conservation.
ERIC Educational Resources Information Center
Estes, R. C.
This document is a description of the energy efficient designs for new schools in the Alief Independent School District of Houston, Texas. Exhibit A shows how four major school projects differ from conventional designs. Parameters and designs for heating, ventilating, air conditioning, and lighting are given. Twenty year projected energy costs and…
Tour Your Schools with This Energy Checklist in Hand.
ERIC Educational Resources Information Center
Barnett, Mark R.
1991-01-01
Provides a checklist for administrators to use while looking for signs of wasted energy and examining lighting, building construction, heating and ventilation systems, and plumbing and refrigeration. After completing the checklist for a single building or every school in the district, administrators should prioritize physical changes needed for…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-29
... Treatment, Heating Ventilation and Air Conditioning Systems.'' This new standard provides comprehensive test... Criteria for Air Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water-Cooled... NUCLEAR REGULATORY COMMISSION [NRC-2012-0152] Design, Inspection, and Testing Criteria for Air...
A Guide to Energy Savings - For the Livestock Producer.
ERIC Educational Resources Information Center
Van Arsdall, Roy N.
This booklet gives a brief overview of energy use in livestock production and gives examples of cutting costs of field equipment use, grinding and preparing feed, managing range and herd, ventilating and heating, lighting, drying grain, and irrigating with sprinklers. Recordkeeping and estimating energy use is also discussed. (BB)
Energy Use Consequences of Ventilating a Net-Zero Energy House
Ng, Lisa C.; Payne, W. Vance
2016-01-01
A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved compared with ventilation without heat recovery. PMID:26903776
Energy Use Consequences of Ventilating a Net-Zero Energy House.
Ng, Lisa C; Payne, W Vance
2016-03-05
A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved compared with ventilation without heat recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Large areas of south facing glass allow winter sunlight to penetrate the building, while overhangs provide summer shading. High ceilings allow deep penetration of this light for space heating and natural lighting. Massive construction stores solar radiation for evening warmth and provides a buffer from extreme temperature fluctuations. Natural ventilation will provide cooling. The system consists of 720 square feet of roof-mounted, liquid, flat plate solar collectors and three 350 gallon fiberglass storage tanks. The acceptance and performance tests are discussed. Also discusseed are: collector selection, construction contract, costs, and economics.
21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...
21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...
21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...
21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...
Guidelines for Environmental Design in Schools (Revision of Design Note 17). Building Bulletin 87.
ERIC Educational Resources Information Center
Orlowski, Raf; Loe, David; Watson, Newton; Rowlands, Edward; Mansfield, Kevin; Venning, Bob; Seager, Andrew; Minikin, John; Hobday, Richard; Palmer, John
Both existing and new English school premises are required by law to comply with minimum construction standards published by the Department for Education and Employment. This building bulletin provides practical guidance on meeting these standards covering acoustics, lighting, heating and thermal performance, ventilation, water supplies, and…
EEAP lighting survey study at the Red River Army Depot, Texarkana, Texas. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The purpose of the study was to perform a limited site survey of specific buildings at the facility, identify specific Energy Conservation Opportunities (ECOs) that exist, and then evaluate these ECOs for technical and economic feasibility. These ECOs were limited to building interior lighting and it`s effects on the heating, ventilating and air conditioning (HVAC) systems. This survey was conducted with the assistance of many individuals at the facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Heat recovery ventilators (HRVs) differ from other mechanical ventilation devices by their ability to exchange heat between supply and exhaust air streams, which reduces the cost of heating or cooling fresh air. This booklet discusses the need for mechanical ventilation in conventional and energy-efficient homes, an explains the components of a HRV system, how to operate and maintain the system, and how to solve operating problems. A maintenance chart and schedule and a HRV troubleshooting guide are included.
INTERIOR VIEW, WEST WALL OF NORTHWEST ATTIC CHAMBER. THIS SPACIOUS ...
INTERIOR VIEW, WEST WALL OF NORTHWEST ATTIC CHAMBER. THIS SPACIOUS ROOM INCLUDED A ROOF MONITOR FOR LIGHT AND VENTILATION AND A FIREPLACE FOR HEAT. THE WALL OPENING AND DOOR ON EITHER SIDE OF THE FIREPLACE GIVE ONTO A LARGE UNFINISHED SPACE LOCATED OVER THE HOUSES WEST WING - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA
Energy cost reduction in retailing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The handbook was developed to help retail store owners cut the cost of energy in their businesses. It shows how to recognize and act on energy waste in interior and outdoor lighting, space heating, air conditioning and ventilation, general maintenance, warehousing, delivery, and refrigeration. Energy use in retail stores is significant because of the importance of environmental control, the role of lighting in merchandising, and long hours of operation. A 20 to 30% net cost reduction is possible by applying the recommendations in this handbook.
Code of Federal Regulations, 2013 CFR
2013-04-01
... building codes in the Bureau of Indian Affairs “School Facilities Design Handbook,” dated March 30, 2007... any proposal to change which building codes are included in the Bureau of Indian Affairs “School... inspect the Handbook at the Department of the Interior Library, Main Interior Building, 1849 C Street NW...
Code of Federal Regulations, 2014 CFR
2014-04-01
... building codes in the Bureau of Indian Affairs “School Facilities Design Handbook,” dated March 30, 2007... any proposal to change which building codes are included in the Bureau of Indian Affairs “School... inspect the Handbook at the Department of the Interior Library, Main Interior Building, 1849 C Street NW...
Vulnerability Analysis of an All-Electric Warship
2010-06-01
active. Damage Control: Fire fighting, dewatering, lighting, electrical receptacles (for powering damage control equipment such as submersible pumps ...sufficient radar not available. This also requires an increase in chill water capacity by adding pump , compressor, and ASW pump . Remaining ventilation systems...Activate towed-array sonar, if applicable. Increase speed to 25 knots. Non-Vital Loads: All non-vital loads. Examples include galley equipment, heat
Energy conservation in ice skating rinks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietrich, B.K.; McAvoy, T.J.
1980-01-01
An economic and energy analysis of ice rinks was made to examine the areas in which energy could be profitably conserved. The areas where new equipment could make a major reduction in energy use are: the use of waste heat for space heating, the installation of a low emissivity false ceiling to reduce radiant heat, the use of a load cycling controller to reduce refrigeration costs, and the installation of more efficient lighting systems. Changes in rink operating procedure that could cut energy use are: higher refrigerant temperatures, thinner ice, the use of colder resurfacing water, turning the compressors andmore » pumps off at night, and reducing ventilation.« less
24 CFR 3280.103 - Light and ventilation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Light and ventilation. 3280.103... Light and ventilation. (a) Lighting. Each habitable room shall be provided with exterior windows and/or..., bathrooms, toilet compartments, laundry areas, and utility rooms may be provided with artificial light in...
24 CFR 3280.103 - Light and ventilation.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Light and ventilation. 3280.103... Light and ventilation. (a) Lighting. Each habitable room shall be provided with exterior windows and/or..., bathrooms, toilet compartments, laundry areas, and utility rooms may be provided with artificial light in...
24 CFR 3280.103 - Light and ventilation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Light and ventilation. 3280.103... Light and ventilation. (a) Lighting. Each habitable room shall be provided with exterior windows and/or..., bathrooms, toilet compartments, laundry areas, and utility rooms may be provided with artificial light in...
24 CFR 3280.103 - Light and ventilation.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Light and ventilation. 3280.103... Light and ventilation. (a) Lighting. Each habitable room shall be provided with exterior windows and/or..., bathrooms, toilet compartments, laundry areas, and utility rooms may be provided with artificial light in...
24 CFR 3280.103 - Light and ventilation.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Light and ventilation. 3280.103... Light and ventilation. (a) Lighting. Each habitable room shall be provided with exterior windows and/or..., bathrooms, toilet compartments, laundry areas, and utility rooms may be provided with artificial light in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William A; Railkar, Sudhir; Shiao, Ming C
Field studies in a hot, humid climate were conducted to investigate the thermal and hygrothermal performance of ventilated attics and non-ventilated semi-conditioned attics sealed with open-cell and with closed-cell spray polyurethane foam insulation. Moisture pin measurements made in the sheathing and absolute humidity sensor data from inside the foam and from the attic air show that moisture is being stored in the foam. The moisture in the foam diffuses to and from the sheathing dependent on the pressure gradient at the foam-sheathing interface which is driven by the irradiance and night-sky radiation. Ventilated attics in the same hot, humid climatemore » showed less moisture movement in the sheathing than those sealed with either open- or closed-cell spray foam. In the ventilated attics the relative humidity drops as the attic air warms; however, the opposite was observed in the sealed attics. Peaks in measured relative humidity in excess of 80 90% and occasionally near saturation (i.e., 100%) were observed from solar noon till about 8 PM on hot, humid days. The conditioned space of the test facility is heated and cooled by an air-to-air heat pump. Therefore the partial pressure of the indoor air during peak irradiance is almost always less than that observed in the sealed attics. Field data will be presented to bring to light the critical humidity control issues in sealed attics exposed to hot, humid climates.« less
Kollef, M H; Shapiro, S D; Boyd, V; Silver, P; Von Harz, B; Trovillion, E; Prentice, D
1998-03-01
To determine the safety and cost-effectiveness of mechanical ventilation with an extended-use hygroscopic condenser humidifier (Duration; Nellcor Puritan-Bennett; Eden Prairie, Minn) compared with mechanical ventilation with heated-water humidification. Prospective randomized clinical trial. Medical and surgical ICUs of Barnes-Jewish Hospital, St. Louis, a university-affiliated teaching hospital. Three hundred ten consecutive qualified patients undergoing mechanical ventilation. Patients requiring mechanical ventilation were randomly assigned to receive humidification with either an extended-use hygroscopic condenser humidifier (for up to the first 7 days of mechanical ventilation) or heated-water humidification. Occurrence of ventilator-associated pneumonia, endotracheal tube occlusion, duration of mechanical ventilation, lengths of intensive care and hospitalization, acquired multiorgan dysfunction, and hospital mortality. One hundred sixty-three patients were randomly assigned to receive humidification with an extended-use hygroscopic condenser humidifier, and 147 patients were randomly assigned to receive heated-water humidification. The two groups were similar at the time of randomization with regard to demographic characteristics, ICU admission diagnoses, and severity of illness. Risk factors for the development of ventilator-associated pneumonia were also similar during the study period for both treatment groups. Ventilator-associated pneumonia was seen in 15 (9.2%) patients receiving humidification with an extended-use hygroscopic condenser humidifier and in 15 (10.2%) patients receiving heated-water humidification (relative risk, 0.90; 95% confidence interval=0.46 to 1.78; p=0.766). No statistically significant differences for hospital mortality, duration of mechanical ventilation, lengths of stay in the hospital ICU, or acquired organ system derangements were found between the two treatment groups. No episode of endotracheal tube occlusion occurred during the study period in either treatment group. The total cost of providing humidification was $2,605 for patients receiving a hygroscopic condenser humidifier compared with $5,625 for patients receiving heated-water humidification. Our findings suggest that the initial application of an extended-use hygroscopic condenser humidifier is a safe and more cost-effective method of providing humidification to patients requiring mechanical ventilation compared with heated-water humidification.
Pre-Packaged Commercial PACE Financing Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallander, Michael
The objective of this project was to demonstrate a more streamlined method for facilitating commercial property assessed clean energy (PACE) retrofits. The Recipient aimed to prove that energy efficiency performance of simple, pre-packaged technologies (e.g., lighting and heating, ventilation and air conditioning (HVAC)) can be accurately estimated without the need for a detailed energy audit. A successful project would inspire consumer confidence in undertaking cost-effective retrofits.
Comparison of freezing control strategies for residential air-to-air heat recovery ventilators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, E.G.; Bradley, L.C.; Chant, R.E.
1989-01-01
A comparison of the energy performance of defrost and frost control strategies for residential air-to-air heat recovery ventilators (HRV) has been carried out by using computer simulations for various climatic conditions. This paper discusses the results and conclusions from the comparisons and their implications for the heat recovery ventilator manufacturers and system designers.
Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues
NASA Technical Reports Server (NTRS)
1979-01-01
Results of studies leading to the preliminary design of a hybrid passenger vehicle which is projected to have the maximum potential for reducing petroleum consumption in the near term are presented. Heat engine/electric hybrid vehicle tradeoffs, assessment of battery power source, and weight and cost analysis of key components are among the topics covered. Performance of auxiliary equipment, such as power steering, power brakes, air conditioning, lighting and electrical accessories, heating and ventilation is discussed along with the selection of preferred passenger compartment heating procedure for the hybrid vehicle. Waste heat from the engine, thermal energy storage, and an auxiliary burner are among the approaches considered.
9 CFR 354.226 - Lighting and ventilation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Lighting and ventilation. 354.226 Section 354.226 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Facilities § 354.226 Lighting and ventilation. There shall be ample light, either natural or artificial or...
Lellouche, François; Qader, Siham; Taillé, Solenne; Lyazidi, Aissam; Brochard, Laurent
2014-05-01
During invasive mechanical ventilation, inspired gases must be humidified. We previously showed that high ambient temperature greatly impaired the hygrometric performance of heated wire-heated humidifiers. The aim of this bench and clinical study was to assess the humidification performance of passive and active heat and moisture exchangers (HMEs) and the impact of ambient temperature and ventilator settings. We first tested on the bench a device with passive and active humidification properties (Humid-Heat, Teleflex), and 2 passive hydrophobic/hygroscopic HMEs (Hygrobac and Hygrobac S, Tyco Healthcare). The devices were tested at 3 different ambient temperatures (from 22 to 30 °C), and at 2 minute ventilation settings (10 and 20 L/min). Inspired gas hygrometry was measured at the Y-piece with the psychrometric method. In addition to the bench study, we measured the hygrometry of inspired gases in 2 different clinical studies. In 15 mechanically ventilated patients, we evaluated Humid-Heat at different settings. Additionally, we evaluated Humid-Heat and compared it with Hygrobac in a crossover study in 10 patients. On the bench, with the Hygrobac and Hygrobac S the inspired absolute humidity was ∼ 30 mg H2O/L, and with the Humid-Heat, slightly < 35 mg H2O/L. Ambient temperature and minute ventilation did not have a clinically important difference on the performance of the tested devices. During the clinical evaluation, Humid-Heat provided inspired humidity in a range from 28.5 to 42.0 mg H2O/L, depending on settings, and was only weakly influenced by the patient's body temperature. In this study both passive and active HMEs had stable humidification performance with negligible influence of ambient temperature and minute ventilation. This contrasts with previous findings with heated wire-heated humidifiers. Although there are no clear data demonstrating that higher humidification impacts outcomes, it is worth noting that humidity was significantly higher with the active HME.
The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.
Chikata, Yusuke; Imanaka, Hideaki; Onishi, Yoshiaki; Ueta, Masahiko; Nishimura, Masaji
2009-08-01
High-frequency oscillation ventilation (HFOV) is an accepted ventilatory mode for acute respiratory failure in neonates. As conventional mechanical ventilation, inspiratory gas humidification is essential. However, humidification during HFOV has not been clarified. In this bench study, we evaluated humidification during HFOV in the open circumstance of ICU. Our hypothesis is that humidification during HFOV is affected by circuit design and ventilatory settings. We connected a ventilator with HFOV mode to a neonatal lung model that was placed in an infant incubator set at 37 degrees C. We set a heated humidifier (Fisher & Paykel) to obtain 37 degrees C at the chamber outlet and 40 degrees C at the distal temperature probe. We measured absolute humidity and temperature at the Y-piece using a rapid-response hygrometer. We evaluated two types of ventilator circuit: a circuit with inner heating wire and another with embedded heating element. In addition, we evaluated three lengths of the inspiratory limb, three stroke volumes, three frequencies, and three mean airway pressures. The circuit with embedded heating element provided significantly higher absolute humidity and temperature than one with inner heating wire. As an extended tube lacking a heating wire was shorter, absolute humidity and temperature became higher. In the circuit with inner heating wire, absolute humidity and temperature increased as stroke volume increased. Humidification during HFOV is affected by circuit design and ventilatory settings.
Sustainability Actions in Higher Education
DOE Office of Scientific and Technical Information (OSTI.GOV)
This brochure details common sustainability actions taken by universities to reduce their energy consumption. Some of the most common actions include energy efficiency (existing building commissioning; lighting; heating, ventilation, and air conditioning upgrades; plug loads) and renewable energy (RE) (on-site or off-site solar deployment, RE procurement). We focus on the costs and benefits of energy efficiency measures and RE through the brochure while highlighting resources where readers can find more information.
1991-05-01
Building Component Maintenance and Repair Data Base: Heating, Ventilating, and Air Conditioning (HVAC) Systems by Edgar S. Neely Robert D. Neathammer...Repair Data Base: Heating, Ventilating, and Air Conditioning (HVAC) Systems RDTE dated 1980EIMB 1984 - 1989 6. AUTHOR(S) Edgar S. Neely, Robert D...Laboratory (USACERL). The Principal Investigators were Dr. Edgar Neely and Mr. Robert Neathammer (USACERL-FS). The primary contractor for much of the
USDA-ARS?s Scientific Manuscript database
Increasing broiler house size and ventilation capacity have resulted in increased light ingress through ventilation system component apertures. The effective photoperiod for broilers may create local increases in light intensity, which may also impact broiler’ body homeostasis. The objective of this...
Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.
ERIC Educational Resources Information Center
Corbett, Robert J.; Miller, Barbara
The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…
Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development
NASA Technical Reports Server (NTRS)
Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Lacomini, Christie; Paul, Heather L.
2009-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2-selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (L CO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas represents a significant source of potential energy for the warming of the adsorbent bed as it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously.
NASA Technical Reports Server (NTRS)
Dinh, Khanh
1994-01-01
Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.
Change-over natural and mechanical ventilation system energy consumption in single-family buildings
NASA Astrophysics Data System (ADS)
Kostka, Maria; Szulgowska-Zgrzywa, Małgorzata
2017-11-01
The parameters of the outside air in Poland cause that in winter it is reasonable to use a mechanical ventilation equipped with a heat recovery exchanger. The time of spring, autumn, summer evenings and nights are often characterized by the parameters of the air, which allow for a natural ventilation and reduce the electricity consumption. The article presents the possibilities of energy consumption reduction for three energy standards of buildings located in Poland, ventilated by a change-over hybrid system. The analysis was prepared on the assumption that the air-to-water heat pump is the heat source for the buildings.
[Heat transfer analysis of liquid cooling garment used for extravehicular activity].
Qiu, Y F; Yuan, X G; Mei, Z G; Jia, S G; Ouyang, H; Ren, Z S
2001-10-01
Brief description was given about the construction and function of the LCG (liquid cooling garment) used for EVA (extravehicular activity). The heat convection was analyzed between ventilating gas and LCG, the heat and mass transfer process was analyzed too, then a heat and mass transfer mathematical model of LCG was developed. Thermal physiological experimental study with human body wearing LVCG (liquid cooling and ventilation garment) used for EVA was carried out to verify this mathematical model. This study provided a basis for the design of liquid-cooling and ventilation system for the space suit.
Pelosi, P; Solca, M; Ravagnan, I; Tubiolo, D; Ferrario, L; Gattinoni, L
1996-07-01
To evaluate the effect of two commonly used heat and moisture exchangers on respiratory function and gas exchange in patients with acute respiratory failure during pressure-support ventilation. Prospective, randomized trial. Intensive care unit of a university hospital. Fourteen patients with moderate acute respiratory failure, receiving pressure-support ventilation. Patients were assigned randomly to two treatment groups, in which two different heat and moisture exchangers were used: Hygroster (DAR S.p.A., Mirandola, Italy) with higher deadspace and lower resistance (group 1, n = 7), and Hygrobac-S (DAR S.p.A.) with lower deadspace and higher resistance (group 2, n = 7). Patients were assessed at three pressure-support levels: a) baseline (10.3 +/- 2.4 cm H2O for group 1, 9.3 +/- 1.3 cm H2O for group 2); b) 5 cm H2O above baseline; and c) 5 cm H2O below baseline. Measurements obtained with the heat and moisture exchangers were compared with those values obtained using the standard heated hot water humidifier. At baseline pressure-support ventilation, the insertion of both heat and moisture exchangers induced in all patients a significant increase in the following parameters: minute ventilation (12.4 +/- 3.2 to 15.0 +/- 2.6 L/min for group 1, and 11.8 +/- 3.6 to 14.2 +/- 3.5 L/min for group 2); static intrinsic positive end-expiratory pressure (2.9 +/- 2.0 to 5.1 +/- 3.2 cm H2O for group 1, and 2.9 +/- 1.7 to 5.5 +/- 3.0 cm H2O for group 2); ventilatory drive, expressed as P41 (2.7 +/- 2.0 to 5.2 +/- 4.0 cm H2O for group 1, and 3.3 +/- 2.0 to 5.3 +/- 3.0 cm H2O for group 2); and work of breathing, expressed as either power (8.8 +/- 9.4 to 14.5 +/- 10.3 joule/ min for group 1, and 10.5 +/- 7.4 to 16.6 +/- 11.0 joule/min for group 2) or work per liter of ventilation (0.6 +/- 0.6 to 1.0 +/- 0.7 joule/L for group 1, and 0.8 +/- 0.4 to 1.1 +/- 0.5 joule/L. for group 2). These increases also occurred when pressure-support ventilation was both above and below the baseline level, although at high pressure support the increase in work of breathing with heat and moisture exchangers was less evident. Gas exchange was unaffected by heat and moisture exchangers, as minute ventilation increased to compensate for the higher deadspace produced in the circuit by the insertion of heat and moisture exchangers. The tested heat and moisture exchangers should be used carefully in patients with acute respiratory failure during pressure-support ventilation, since these devices substantially increase minute ventilation, ventilatory drive, and work of breathing. However, an increase in pressure-support ventilation (5 to 10 cm H2O) may compensate for the increased work of breathing.
Gonzalez, Isabel; Jimenez, Pilar; Valdivia, Jorge; Esquinas, Antonio
2017-08-01
The two most commonly used types of humidifiers are heated humidifiers and heat and moisture exchange humidifiers. Heated humidifiers provide adequate temperature and humidity without affecting the respiratory pattern, but overdose can cause high temperatures and humidity resulting in condensation, which increases the risk of bacteria in the circuit. These devices are expensive. Heat and moisture exchanger filter is a new concept of humidification, increasing the moisture content in inspired gases. This study aims to determine the effectiveness of the heat and moisture exchanger (HME)-Booster system to humidify inspired air in patients under mechanical ventilation. We evaluated the humidification provided by 10 HME-Booster for tracheostomized patients under mechanical ventilation using Servo I respirators, belonging to the Maquet company and Evita 4. There was an increase in the inspired air humidity after 1 h with the humidifier. The HME-Booster combines the advantages of heat and moisture exchange minimizing the negatives. It increases the amount of moisture in inspired gas in mechanically ventilated tracheostomized patients. It is easy and safe to use. The type of ventilator used has no influence on the result.
Zhang, L-Z; Zhang, X-R; Miao, Q-Z; Pei, L-X
2012-08-01
Fresh air ventilation is central to indoor environmental control. Total heat exchangers can be key equipment for energy conservation in ventilation. Membranes have been used for total heat exchangers for more than a decade. Much effort has been spent to achieve water vapor permeability of various membranes; however, relatively little attention has been paid to the selectivity of moisture compared with volatile organic compounds (VOCs) through such membranes. In this investigation, the most commonly used membranes, both hydrophilic and hydrophobic ones, are tested for their permeability for moisture and five VOCs (acetic acid, formaldehyde, acetaldehyde, toluene, and ethane). The selectivity of moisture vs. VOCs in these membranes is then evaluated. With a solution-diffusion model, the solubility and diffusivity of moisture and VOCs in these membranes are calculated. The resulting data could provide some reference for future material selection. Total heat exchangers are important equipment for fresh air ventilation with energy conservation. However, their implications for indoor air quality in terms of volatile organic compound permeation have not been known. The data in this article help us to clarify the impacts on indoor VOC levels of membrane-based heat exchangers. Guidelines for material selection can be obtained for future use total heat exchangers for building ventilation. © 2011 John Wiley & Sons A/S.
Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development
NASA Technical Reports Server (NTRS)
Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Iacomini, Christie; Paul, Heather, L.
2008-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (LCO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas is a significant heat transfer mechanism for the warming of the adsorbent bed because it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously. A NASA Small Business Innovative Research (SBIR) Phase 1 contract was performed to investigate condensing and icing as applied to MTSA to enable higher fidelity modeling and assess the impact of geometry variables on CIHX performance for future CIHX design optimization. Specifically, a design tool was created using analytical relations to explore the complex, interdependent design space of a condensing ice heat exchanger. Numerous variables were identified as having nontrivial contributions to performance such as hydraulic diameter, heat exchanger effectiveness, ventilation gas mass flow rate and surface roughness. Using this tool, four test articles were designed and manufactured to map to a full MTSA subassembly (the adsorbent bed, the sublimation heat exchanger for cooling and the condensing ice heat exchanger for warming). The design mapping considered impacts due to CIHX geometry as well as subassembly impacts such as thermal mass and thermal resistance through the adsorbent bed. The test articles were tested at simulated PLSS ventilation loop temperature, moisture content and subambient pressure. Ice accumulation and melting were observed. Data and test observations were analyzed to identify drivers of the condensing ice heat exchanger performance. This paper will discuss the analytical models, the test article designs, and testing procedures. Testing issues will be discussed to better describe data and share lessons learned. Data analysis and subsequent conclusions will be presented.
9 CFR 354.226 - Lighting and ventilation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... INSPECTION AND CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Buildings and Plant Facilities § 354.226 Lighting and ventilation. There shall be ample light, either natural or artificial or...
ERIC Educational Resources Information Center
Messer, John D.
This course of study on air conditioning, heating, and ventilating is part of a construction, supervision, and inspection series, which provides instructional materials for community or junior college technical courses in the inspection program. Material covered pertains to: piping and piping systems; air movers; boilers; heat exchangers; cooling…
Detail of heating coil for Machine Shop (Bldg. 163) ventilation ...
Detail of heating coil for Machine Shop (Bldg. 163) ventilation system Note portion of fan visible behind coil - Atchison, Topeka, Santa Fe Railroad, Albuquerque Shops, Machine Shop, 908 Second Street, Southwest, Albuquerque, Bernalillo County, NM
Chan, Ka Hung; Lam, Kin Bong Hubert; Kurmi, Om P; Guo, Yu; Bennett, Derrick; Bian, Zheng; Sherliker, Paul; Chen, Junshi; Li, Liming; Chen, Zhengming
2017-11-01
Disease burden estimates related to household air pollution (HAP) relied on cross-sectional data on cooking fuel, overlooking other important sources (e.g. heating) and temporal-regional variations of exposure in geographically diverse settings. We aimed to examine the trends and variations of for cooking and heating fuel use and ventilation in 500,000 adults recruited from 10 diverse localities of China. At baseline (2004-08) and two subsequent resurveys (2008-14), participants of China Kadoorie Biobank, aged 30-79, reported their past and current fuel use for cooking and heating and the availability of cookstove ventilation. These were compared across regions, time periods, birth cohorts, and socio-demographic factors. During 1968-2014, the proportion of self-reported solid fuel use for cooking or heating decreased by two-thirds (from 84% to 27%), whereas those having complete kitchen ventilation tripled (from 19% to 66%). By 2014, despite a continuing downward trend, many in rural areas still used solid fuels for cooking (48%) and heating (72%), often without adequate ventilation (51%), in contrast to urban residents (all <5%). The large urban-rural inequalities in solid fuel use persisted across multiple generations and also varied by socioeconomic status, especially in rural areas. Despite marked progress in fuel modernization in the last 50 years, substantial rural-urban inequalities remain in the study population, especially those who were older or of lower socioeconomic status. Uptake of cleaner heating fuel and ventilation has been slow. More proactive and targeted strategies are needed to expedite universal access to clean energy for both cooking and heating. Copyright © 2017. Published by Elsevier GmbH.
Effectiveness of Humidification with Heat and Moisture Exchanger-booster in Tracheostomized Patients
Gonzalez, Isabel; Jimenez, Pilar; Valdivia, Jorge; Esquinas, Antonio
2017-01-01
Background: The two most commonly used types of humidifiers are heated humidifiers and heat and moisture exchange humidifiers. Heated humidifiers provide adequate temperature and humidity without affecting the respiratory pattern, but overdose can cause high temperatures and humidity resulting in condensation, which increases the risk of bacteria in the circuit. These devices are expensive. Heat and moisture exchanger filter is a new concept of humidification, increasing the moisture content in inspired gases. Aims: This study aims to determine the effectiveness of the heat and moisture exchanger (HME)-Booster system to humidify inspired air in patients under mechanical ventilation. Materials and Methods: We evaluated the humidification provided by 10 HME-Booster for tracheostomized patients under mechanical ventilation using Servo I respirators, belonging to the Maquet company and Evita 4. Results: There was an increase in the inspired air humidity after 1 h with the humidifier. Conclusion: The HME-Booster combines the advantages of heat and moisture exchange minimizing the negatives. It increases the amount of moisture in inspired gas in mechanically ventilated tracheostomized patients. It is easy and safe to use. The type of ventilator used has no influence on the result. PMID:28904484
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing
2011-01-01
This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OAmore » ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.« less
Humidification and secretion volume in mechanically ventilated patients.
Solomita, Mario; Palmer, Lucy B; Daroowalla, Feroza; Liu, Jeffrey; Miller, Dori; LeBlanc, Deniese S; Smaldone, Gerald C
2009-10-01
To determine potential effects of humidification on the volume of airway secretions in mechanically ventilated patients. Water vapor delivery from devices providing non-heated-wire humidification, heated-wire humidification, and heat and moisture exchanger (HME) were quantified on the bench. Then, patients requiring 24-hour mechanical ventilation were exposed sequentially to each of these humidification devices, and secretions were removed and measured by suctioning every hour during the last 4 hours of the 24-hour study period. In vitro water vapor delivery was greater using non-heated-wire humidification, compared to heated-wire humidification and HME. In vivo, a total of 9 patients were studied. Secretion volume following humidification by non-heated-wire humidification was significantly greater than for heated-wire humidification and HME (P=.004). The volume of secretions appeared to be linked to humidification, as greater water vapor delivery measured in vitro was associated with greater secretion volume in vivo.
Van tells residential conservation story. [Potomac Edison Co. of Allegheny Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-01-15
Potomac Edison Co. is taking its residential energy-conservation story to the public via a mobile van that will be on display at schools, service clubs, shopping centers, fairs, and exhibits. The van is equiped with exhibits featuring the latest in energy-saving equipment and techniques in insulation, ventilation, hot water, solar energy, load control, fireplace heat control, utility billing, appliances, appliance efficiency, lighting, heat pump, and furnace heat recovery. The exhibits are not limited to electrical applications. One shows the effect that an orifice installed in a shower head has on the amount of hot water used. The device cuts themore » amounts of both water and energy use to about one-half. Each display item is readily available from local sources. (MCW)« less
This letter is to brings attention several concerns that the Agency has regarding the use of sanitizer and/or disinfectant products, and other types of antimicrobial products, to treat the surfaces of heating, ventilation
NASA Astrophysics Data System (ADS)
Chitaru, George; Berville, Charles; Dogeanu, Angel
2018-02-01
This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case.
Validating Savings Claims of Cold Climate Zero Energy Ready Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, J.; Puttagunta, S.
This report details the validation methods used to analyze consumption at each of these homes. It includes a detailed end-use examination of consumptions from the following categories: 1) Heating, 2) Cooling, 3) Lights, Appliances, and Miscellaneous Electric Loads (LAMELS) along with Domestic Hot Water Use, 4) Ventilation, and 5) PV generation. A utility bill disaggregation method, which allows a crude estimation of space conditioning loads based on outdoor air temperature, was also performed and the results compared to the actual measured data.
Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-04-01
Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use inmore » retail spaces are poorly understood.« less
NASA Astrophysics Data System (ADS)
Aoki, Hirooki; Ichimura, Shiro; Fujiwara, Toyoki; Kiyooka, Satoru; Koshiji, Kohji; Tsuzuki, Keishi; Nakamura, Hidetoshi; Fujimoto, Hideo
We proposed a calculation method of the ventilation threshold using the non-contact respiration measurement with dot-matrix pattern light projection under pedaling exercise. The validity and effectiveness of our proposed method is examined by simultaneous measurement with the expiration gas analyzer. The experimental result showed that the correlation existed between the quasi ventilation thresholds calculated by our proposed method and the ventilation thresholds calculated by the expiration gas analyzer. This result indicates the possibility of the non-contact measurement of the ventilation threshold by the proposed method.
Lucato, Jeanette Janaina Jaber; Cunha, Thiago Marraccini Nogueira da; Reis, Aline Mela Dos; Picanço, Patricia Salerno de Almeida; Barbosa, Renata Cléia Claudino; Liberali, Joyce; Righetti, Renato Fraga
2017-01-01
To evaluate the possible changes in tidal volume, minute volume and respiratory rate caused by the use of a heat and moisture exchanger in patients receiving pressure support mechanical ventilation and to quantify the variation in pressure support required to compensate for the effect caused by the heat and moisture exchanger. Patients under invasive mechanical ventilation in pressure support mode were evaluated using heated humidifiers and heat and moisture exchangers. If the volume found using the heat and moisture exchangers was lower than that found with the heated humidifier, an increase in pressure support was initiated during the use of the heat and moisture exchanger until a pressure support value was obtained that enabled the patient to generate a value close to the initial tidal volume obtained with the heated humidifier. The analysis was performed by means of the paired t test, and incremental values were expressed as percentages of increase required. A total of 26 patients were evaluated. The use of heat and moisture exchangers increased the respiratory rate and reduced the tidal and minute volumes compared with the use of the heated humidifier. Patients required a 38.13% increase in pressure support to maintain previous volumes when using the heat and moisture exchanger. The heat and moisture exchanger changed the tidal and minute volumes and respiratory rate parameters. Pressure support was increased to compensate for these changes.
Lucato, Jeanette Janaina Jaber; da Cunha, Thiago Marraccini Nogueira; dos Reis, Aline Mela; Picanço, Patricia Salerno de Almeida; Barbosa, Renata Cléia Claudino; Liberali, Joyce; Righetti, Renato Fraga
2017-01-01
Objective To evaluate the possible changes in tidal volume, minute volume and respiratory rate caused by the use of a heat and moisture exchanger in patients receiving pressure support mechanical ventilation and to quantify the variation in pressure support required to compensate for the effect caused by the heat and moisture exchanger. Methods Patients under invasive mechanical ventilation in pressure support mode were evaluated using heated humidifiers and heat and moisture exchangers. If the volume found using the heat and moisture exchangers was lower than that found with the heated humidifier, an increase in pressure support was initiated during the use of the heat and moisture exchanger until a pressure support value was obtained that enabled the patient to generate a value close to the initial tidal volume obtained with the heated humidifier. The analysis was performed by means of the paired t test, and incremental values were expressed as percentages of increase required. Results A total of 26 patients were evaluated. The use of heat and moisture exchangers increased the respiratory rate and reduced the tidal and minute volumes compared with the use of the heated humidifier. Patients required a 38.13% increase in pressure support to maintain previous volumes when using the heat and moisture exchanger. Conclusion The heat and moisture exchanger changed the tidal and minute volumes and respiratory rate parameters. Pressure support was increased to compensate for these changes. PMID:28977257
Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Eric; Fenaughty, Karen; Parker, Danny
Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies among regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.
Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Eric; Fenaughty, Karen; Parker, Danny
Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies amongst regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.
ERIC Educational Resources Information Center
Army Engineer School, Fort Belvoir, VA.
This second course in a four-course series on heating and ventilating for the secondary/postsecondary level is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The five lessons in the course cover these topics: (1) Principles of Heating,…
ERIC Educational Resources Information Center
Army Engineer School, Fort Belvoir, VA.
This third course in a four-course series on heating and ventilating for the secondary/postsecondary level is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The three lessons in the course cover these topics: (1) Warm-Air Heating, (2)…
Convective heat transfer from circular cylinders located within perforated cylindrical shrouds
NASA Technical Reports Server (NTRS)
Daryabeigi, K.; Ash, R. L.
1986-01-01
The influence of perforated cylindrical shrouds on the convective heat transfer to circular cylinders in transverse flow has been studied experimentally. Geometries studied were similar to those used in industrial platinum resistance thermometers. The influence of Reynolds number, ventilation factor (ratio of the open area to the total surface area of shroud), radius ratio (ratio of shroud's inside radius to bare cylinder's radius), and shroud orientation with respect to flow were studied. The experiments showed that perforated shrouds with ventilation factors in the range 0.1 to 0.4 and radius ratios in the range 1.1 to 2.1 could enhance the convective heat transfer to bare cylinders up to 50%. The maximum enhancement occurred for a radius ratio of 1.4 and ventilation factors between 0.2 and 0.3. It was found that shroud orientation influenced the heat transfer, with maximum heat transfer generally occurring when the shroud's holes were centered on either side of the stagnation line. However, the hole orientation effect is of second order compared to the influence of ventilation factor and radius ratio.
Animal biocalorimeter and waste management system
NASA Technical Reports Server (NTRS)
Poppendiek, Heinz F. (Inventor); Trimailo, William R. (Inventor)
1995-01-01
A biocalorimeter and waste management system is provided for making metabolic heat release measurements of animals or humans in a calorimeter (enclosure) using ambient air as a low velocity source of ventilating air through the enclosure. A shroud forces ventilating air to pass over the enclosure from an end open to ambient air at the end of the enclosure opposite its ventilating air inlet end and closed around the inlet end of the enclosure in order to obviate the need for regulating ambient air temperature. Psychrometers for measuring dry- and wet-bulb temperature of ventilating air make it possible to account for the sensible and latent heat additions to the ventilating air. A waste removal system momentarily recirculates high velocity air in a closed circuit through the calorimeter wherein a sudden rise in moisture is detected in the ventilating air from the outlet.
LPT. Low power test (TAN641) interior. Heating and ventilating pneumatic ...
LPT. Low power test (TAN-641) interior. Heating and ventilating pneumatic and electrical control panel. Contract nearly complete. Photographer: Jack L. Anderson. Date: December 19, 1957. INEEL negative no. 57-6198 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Huang, Kuo-Tsang
2013-04-01
Natural ventilation (NV) is considered one of the passive building strategies used for reducing cooling energy demand. The utilization of nature wind for cooling down indoor thermal environment to reach thermal comfort requires knowledge of adequately positioning the building fenestrations, designing inlet-outlet related opening ratios, planning unobstructed cross ventilation paths, and, the most important, assessing the utilization feasibility base on local climatic variables. Furthermore, factors that influence the indoor thermal condition include building envelope heat gain, indoor air velocity, indoor heat gain (e.g. heat discharges from occupant's body, lighting fixture, electrical appliances), and outdoor climate. Among the above, the indoor thermal performance of NV building is significantly dependent to outdoor climate conditions. In hot and humid Taiwan, under college school classrooms are usually operated in natural ventilation mode and are more vulnerable to climate change in regard to maintain indoor thermal comfort. As climate changes in progress, NV classrooms would expect to encounter more events of overheating in the near future, which result in more severe heat stress, and would risk the utilization of natural ventilation. To evaluate the overheating risk under the influence of recent climate change, an actual top floor elementary school classroom with 30 students located at north Taiwan was modeled. Long-term local hourly meteorological data were gathered and further constructed into EnergyPlus Weather Files (EPWs) format for building thermal dynamic simulation to discuss the indoor thermal environmental variation during the period of 1998 to 2012 by retrospective simulation. As indoor thermal environment is an overall condition resulting from a series combination of various factors, sub-hourly building simulation tool, EnergyPlus, coupled with the above fifteen years' EPWs was adopted to predict hourly indoor parameters of mean radiant temperature, air velocity, dry-bulb temperature and relative humidity. These physical quantities are crucial for calculating the thermal indices such as Physiological Equivalent Temperature (PET), New Standard Effective Temperature (SET*), and operative temperature (OT), which were subsequently being used for assessing thermal discomfort. Occurrences and the severity of overheating were assessed by observing the number of hours that surmount the upper limit of the adaptive thermal model proposed by ASHRAE Standard 55 (American Society of Heating, Refrigerating and Air-conditioning Engineers Standard) base on ISO 7730 method to characterize long term indoor thermal discomfort. Preliminary result show that although the degree of increase in overheating risk of NV classrooms was mild, there is a trend revealing that both the occurrences and the severity of thermal discomfort were gradually rising. The study also proposed several building renovation strategies for adapting the climate change to alleviate overheating situation. Efficiencies of these recommended strategies were also analyzed by simulating with the hottest year in comparison with the coldest year.
On the Uses of Full-Scale Schlieren Flow Visualization
NASA Astrophysics Data System (ADS)
Settles, G. S.; Miller, J. D.; Dodson-Dreibelbis, L. J.
2000-11-01
A lens-and-grid-type schlieren system using a very large grid as a light source was described at earlier APS/DFD meetings. With a field-of-view of 2.3x2.9 m (7.5x9.5 feet), it is the largest indoor schlieren system in the world. Still and video examples of several full-scale airflows and heat-transfer problems visualized thus far will be shown. These include: heating and ventilation airflows, flows due to appliances and equipment, the thermal plumes of people, the aerodynamics of an explosive trace detection portal, gas leak detection, shock wave motion associated with aviation security problems, and heat transfer from live crops. Planned future projects include visualizing fume-hood and grocery display freezer airflows and studying the dispersion of insect repellent plumes at full scale.
Heat Losses from a Breathing System with a Heated-water Humidifier
Lunn, J. N.; Mapleson, W. W.; Hillard, E. K.
1971-01-01
Air was “breathed” in the laboratory through a heated-water humidifier and a breathing tube. Several different humidifiers and tubes were used. The temperature rise of the air on passing through the humidifier and the temperature drop on passing through the tube were measured. Both were dependent on ventilation. Insulating the tube and humidifier together with the insertion of baffles in the latter reduced the rise and fall and their dependence on ventilation. With suitable design the dependence on ventilation and the need to use high water temperatures could be greatly reduced. In addition, a thermostat with a reduced dead zone is needed. PMID:5289685
Assessment of ventilation and indoor air pollutants in nursery and elementary schools in France.
Canha, N; Mandin, C; Ramalho, O; Wyart, G; Ribéron, J; Dassonville, C; Hänninen, O; Almeida, S M; Derbez, M
2016-06-01
The aim of this study was to characterize the relationship between Indoor Air Quality (IAQ) and ventilation in French classrooms. Various parameters were measured over one school week, including volatile organic compounds, aldehydes, particulate matter (PM2.5 mass concentration and number concentration), carbon dioxide (CO2 ), air temperature, and relative humidity in 51 classrooms at 17 schools. The ventilation was characterized by several indicators, such as the air exchange rate, ventilation rate (VR), and air stuffiness index (ICONE), that are linked to indoor CO2 concentration. The influences of the season (heating or non-heating), type of school (nursery or elementary), and ventilation on the IAQ were studied. Based on the minimum value of 4.2 l/s per person required by the French legislation for mechanically ventilated classrooms, 91% of the classrooms had insufficient ventilation. The VR was significantly higher in mechanically ventilated classrooms compared with naturally ventilated rooms. The correlations between IAQ and ventilation vary according to the location of the primary source of each pollutant (outdoor vs. indoor), and for an indoor source, whether it is associated with occupant activity or continuous emission. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Heating, Ventilation, Air-conditioning, and Refrigeration. Ohio's Competency Analysis Profile.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Vocational Instructional Materials Lab.
Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for heating, ventilation, air conditioning, and refrigeration occupations. The list contains units (with and without…
Schiffmann, H; Singer, S; Singer, D; von Richthofen, E; Rathgeber, J; Züchner, K
1999-09-01
Thus far only few data are available on airway humidification during high-frequency oscillatory ventilation (HFOV). Therefore, we studied the performance and efficiency of a heated humidifier (HH) and a heat and moisture exchanger (HME) in HFOV using an artificial lung model. Experiments were performed with a pediatric high-frequency oscillatory ventilator. The artificial lung contained a sponge saturated with water to simulate evaporation and was placed in an incubator heated to 37 degrees C to prevent condensation. The airway humidity was measured using a capacitive humidity sensor. The water loss of the lung model was determined gravimetrically. The water loss of the lung model varied between 2.14 and 3.1 g/h during active humidification; it was 2.85 g/h with passive humidification and 7.56 g/h without humidification. The humidity at the tube connector varied between 34. 2 and 42.5 mg/l, depending on the temperature of the HH and the ventilator setting during active humidification, and between 37 and 39.9 mg/l with passive humidification. In general, HH and HME are suitable devices for airway humidification in HFOV. The performance of the ventilator was not significantly influenced by the mode of humidification. However, the adequacy of humidification and safety of the HME remains to be demonstrated in clinical practice.
Carbon Dioxide Detection and Indoor Air Quality Control.
Bonino, Steve
2016-04-01
When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.
21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Ventilation, air filtration, air heating and cooling. 211.46 Section 211.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS...
Heating, Ventilation, and Air Conditioning Series. Duty Task List.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This task list is intended for use in planning and/or evaluating a competency-based course in heating, ventilation, and air conditioning. The guide outlines the tasks entailed in eight different duties typically required of employees in the following occupations: residential installer, domestic refrigeration technician, air conditioning and…
Small scale power generation from biomass-technical potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepori, W.A.; Cardenas, M.M.; Carney, O.B.
1983-12-01
System and nursery pig performance data for the Winter of 1983 were collected for a 96-pig capacity modified-open-front (MOF) naturally ventilated and a 96-pig capacity mechanically ventilated swine nurseries. Both nurseries utilized active solar collectors to provide in-floor heating at the rear of each pen along with hovers. The mechanically ventilated nursery utilized solar preheated ventilation air. The naturally ventilated nursery had double glazed solar windows to passively heat the interior space. The relative humidity in the naturally ventilated (NV) nursery averaged 20 percentage points higher than the mechanically ventilated (MV) nursery with no significant differences in air temperature. Themore » MV nursery used 50% more energy than the NV nursery and the NV nursery required 1.9 kWh/pig marketed less than that needed for the MV nursery. Pig performance figure were not significantly different between the two buildings. The feed to gain ration were 2.0 + or - 0.35 and 1.96 + or 0.38 for the MV and NV nurseries respectively.« less
Fujii, Naoto; Tsuji, Bun; Honda, Yasushi; Kondo, Narihiko; Nishiyasu, Takeshi
2015-09-01
Hyperthermia induces hyperventilation and cerebral hypoperfusion in resting humans. We tested the hypothesis that short-term exercise-heat acclimation would alleviate those effects. Twenty healthy male subjects were divided into two groups that performed exercise training in the heat (TR-HEAT, n = 10) or cold (TR-COLD, n = 10). Before and after the training, the subjects in both groups participated in passive-heat tests at rest. Training was performed at 37°C (TR-HEAT) or 10°C (TR-COLD) and entailed four 20-min bouts of cycling at 50% peak oxygen uptake separated by 10-min recoveries daily for 6 consecutive days. After TR-HEAT, esophageal temperature was lowered when measured before and during passive heating, as was the esophageal temperature threshold for cutaneous active vasodilation, whereas plasma volume was increased (all P < 0.05). These traditional indices of successful heat acclimation were not all induced by TR-COLD (all P > 0.05). TR-HEAT had no significant effect on passive heating-induced increases in minute ventilation, even when evaluated as the esophageal temperature threshold for increases in minute ventilation and the slope relating minute ventilation to esophageal temperature (all P > 0.05). By contrast, TR-HEAT attenuated the passive heating-induced reduction in the cerebral vascular conductance index (middle cerebral artery mean blood velocity/mean arterial pressure) (all P < 0.05). TR-COLD did not attenuate the increase in minute ventilation or the decrease in the cerebral vascular conductance index observed during passive heating (all P > 0.05). These data suggest that in resting heated humans, short-term heat acclimation achieved through moderate-intensity exercise training (i.e., 50% peak oxygen uptake) in the heat does not influence hyperthermia-induced hyperventilation, but it does potentially attenuate cerebral hypoperfusion. Copyright © 2015 the American Physiological Society.
Glitz, K J; Seibel, U; Rohde, U; Gorges, W; Witzki, A; Piekarski, C; Leyk, D
2015-01-01
Heat stress caused by protective clothing limits work time. Performance improvement of a microclimate cooling method that enhances evaporative and to a minor extent convective heat loss was tested. Ten male volunteers in protective overalls completed a work-rest schedule (130 min; treadmill: 3 × 30 min, 3 km/h, 5% incline) with or without an additional air-diffusing garment (climatic chamber: 25°C, 50% RH, 0.2 m/s wind). Heat loss was supported by ventilating the garment with dry air (600 l/min, ≪5% RH, 25°C). Ventilation leads (M ± SD, n = 10, ventilated vs. non-ventilated) to substantial strain reduction (max. HR: 123 ± 12 b/min vs. 149 ± 24 b/min) by thermal relief (max. core temperature: 37.8 ± 0.3°C vs. 38.4 ± 0.4°C, max. mean skin temperature: 34.7 ± 0.8°C vs. 37.1 ± 0.3°C) and offers essential extensions in performance and work time under thermal insulation. Heat stress caused by protective clothing limits work time. Performance can be improved by a microclimate cooling method that supports evaporative and to a minor extent convective heat loss. Sweat evaporation is the most effective thermoregulatory mechanism for heat dissipation and can be enhanced by insufflating dry air into clothing.
Auxiliadora-Martins, M; Menegueti, M G; Nicolini, E A; Alkmim-Teixeira, G C; Bellissimo-Rodrigues, F; Martins-Filho, O A; Basile-Filho, A
2012-12-01
Ventilator-associated pneumonia (VAP) remains one of the major causes of infection in the intensive care unit (ICU) and is associated with the length of hospital stay, duration of mechanical ventilation, and use of broad-spectrum antibiotics. We compared the frequency of VAP 10 months prior to (pre-intervention group) and 13 months after (post-intervention group) initiation of the use of a heat and moisture exchanger (HME) filter. This is a study with prospective before-and-after design performed in the ICU in a tertiary university hospital. Three hundred and fourteen patients were admitted to the ICU under mechanical ventilation, 168 of whom were included in group HH (heated humidifier) and 146 in group HME. The frequency of VAP per 1000 ventilator-days was similar for both the HH and HME groups (18.7 vs 17.4, respectively; P = 0.97). Duration of mechanical ventilation (11 vs 12 days, respectively; P = 0.48) and length of ICU stay (11 vs 12 days, respectively; P = 0.39) did not differ between the HH and HME groups. The chance of developing VAP was higher in patients with a longer ICU stay and longer duration of mechanical ventilation. This finding was similar when adjusted for the use of HME. The use of HME in intensive care did not reduce the incidence of VAP, the duration of mechanical ventilation, or the length of stay in the ICU in the study population.
Auxiliadora-Martins, M.; Menegueti, M.G.; Nicolini, E.A.; Alkmim-Teixeira, G.C.; Bellissimo-Rodrigues, F.; Martins-Filho, O.A.; Basile-Filho, A.
2012-01-01
Ventilator-associated pneumonia (VAP) remains one of the major causes of infection in the intensive care unit (ICU) and is associated with the length of hospital stay, duration of mechanical ventilation, and use of broad-spectrum antibiotics. We compared the frequency of VAP 10 months prior to (pre-intervention group) and 13 months after (post-intervention group) initiation of the use of a heat and moisture exchanger (HME) filter. This is a study with prospective before-and-after design performed in the ICU in a tertiary university hospital. Three hundred and fourteen patients were admitted to the ICU under mechanical ventilation, 168 of whom were included in group HH (heated humidifier) and 146 in group HME. The frequency of VAP per 1000 ventilator-days was similar for both the HH and HME groups (18.7 vs 17.4, respectively; P = 0.97). Duration of mechanical ventilation (11 vs 12 days, respectively; P = 0.48) and length of ICU stay (11 vs 12 days, respectively; P = 0.39) did not differ between the HH and HME groups. The chance of developing VAP was higher in patients with a longer ICU stay and longer duration of mechanical ventilation. This finding was similar when adjusted for the use of HME. The use of HME in intensive care did not reduce the incidence of VAP, the duration of mechanical ventilation, or the length of stay in the ICU in the study population. PMID:23044627
Natural ventilation of buildings: opposing wind and buoyancy
NASA Astrophysics Data System (ADS)
Linden, Paul; Hunt, Gary
1998-11-01
The use of natural ventilation in buildings is an attractive way to reduce energy usage thereby reducing costs and CO2 emissions. Generally, it is necessary to remove excess heat from a building and the designer can use the buoyancy forces associated with the above ambient temperatures within the building to drive a flow - 'stack' ventilation. The most efficient mode is displacement ventilation where warm air accumulates near the top of the building and flows out through upper level vents and cooler air flows in at lower levels. Ventilation will also be driven between these lower and upper openings by the wind. We report on laboratory modeling and theory which investigates the effects of an opposing wind on stack ventilation driven by a constant source of heat within a space under displacement ventilation. We show that there is a critical wind speed, expressed in dimensionless terms as a critical Froude number, above which displacement ventilation is replaced by (less efficient) mixing ventilation with reversed flow. Below this critical speed, displacement ventilation, in which the interior has a two-layer stratification, is maintained. The criterion for the change in ventilation mode is derived from general considerations of mixing efficiencies in stratified flows. We conclude that even when wind effects might appear to be dominant, the inhibition of mixing by the stable stratification within the space ensures that stack ventilation can operate over a wide range of apparently adverse conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pieper, C.A.; Luckett, T.
This energy conservation study was performed by Huitt-Zollars Inc, for the U.S. Army Engineer District (USAED), Fort Worth, under contract number DACAC63-94-D-00l5. The study was conducted at Red River Army Depot (RRAD) in Texarkana, Texas, between October 17, 1994 and April 14, 1995. The site survey and data collection were performed by C.A. Pieper, P.E. and Tom Luckett, Lighting Designer. The purpose of the study was to perform a limited site survey of specific buildings at the facility, identify Conservation Opportunities (ECOs) that exist, and then evaluate these ECOs for technical and economic feasibility. These ECOs were limited to buildingmore » interior lighting and it`s effects on the heating, ventilating and air conditioning (HVAC) systems.« less
Technology evaluation of heating, ventilation, and air conditioning for MIUS application
NASA Technical Reports Server (NTRS)
Gill, W. L.; Keough, M. B.; Rippey, J. O.
1974-01-01
Potential ways of providing heating, ventilation, and air conditioning for a building complex serviced by a modular integrated utility system (MIUS) are examined. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.
Heating, Ventilating, and Air Conditioning. Energy Technology Series.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This course in heating, ventilating, and air conditioning is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…
STUDY PROGRAM FOR TURBO-COOLER FOR PRODUCING ENGINE COOLING AIR.
VANES , STAGNATION POINT, DECELERATION, ACCELERATION, SUPERSONIC DIFFUSERS, TURBINE BLADES , EVAPOTRANSPIRATION, LIQUID COOLED, HEAT TRANSFER, GAS BEARINGS, SEALS...HYPERSONIC AIRCRAFT , COOLING + VENTILATING EQUIPMENT), (*GAS TURBINES , COOLING + VENTILATING EQUIPMENT), HYPERSONIC FLOW, AIR COOLED, AIRCRAFT ... ENGINES , FEASIBILITY STUDIES, PRESSURE, SUPERSONIC CHARACTERISTICS, DESIGN, HEAT EXCHANGERS, COOLING (U) AXIAL FLOW TURBINES , DUCT INLETS, INLET GUIDE
State Skill Standards: Heating, Ventilation, Air Conditioning, and Refrigeration
ERIC Educational Resources Information Center
Ball, Larry; Soukup, Dennis
2006-01-01
The Department of Education has undertaken an ambitious effort to develop statewide career and technical education skill standards. The standards in this document are for Heating, Ventilation, Air Conditioning and Refrigeration (HVAC&R) programs and are designed to clearly state what the student should know and be able to do upon completion of…
Heating, Ventilation, Air Conditioning. Resource Manual for Custodial Training Course #3.
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee. School Plant Management Section.
Intended as a manual to provide school custodians with some understanding of basic functions of heating, ventilating, and air conditioning equipment for safe, efficient operation. Contains general rules and specifications for providing custodians with a more complete awareness of their equipment and the field of "Climate Control" within the…
VENTILATION RESEARCH: A REVIEW OF RECENT INDOOR AIR QUALITY LITERATURE
The report gives results of a literature review, conducted to survey and summarize recent and ongoing engineering research into building ventilation, air exchange rate, pollutant distribution and dispersion, and other effects of heating, ventilation, and air-conditioning (HVAC) s...
Development and fabrication of heat-sterilizable inhalation therapy equipment
NASA Technical Reports Server (NTRS)
Irons, A. S.
1974-01-01
The development of a completely heat sterilizable intermittent positive pressure breathing (IPPB) ventilator in an effort to reduce the number of hospital acquired infections is reported. After appropriate changes in materials and design were made, six prototype units were fabricated and were successfully field tested in local hospitals. Most components of the modified ventilators are compatible with existing machines. In all but a few instances, such as installation of bacteria-retentive filters and a modified venturi, the change over from non-heat-sterilizable to sterilizable units was accomplished by replacement of heat labile materials with heat stable materials.
Nosehouse: heat-conserving ventilators based on nasal counterflow exchangers.
Vogel, Steven
2009-12-01
Small birds and mammals commonly minimize respiratory heat loss with reciprocating counterflow exchangers in their nasal passageways. These animals extract heat from the air in an exhalation to warm those passageways and then use that heat to warm the subsequent inhalation. Although the near-constant volume of buildings precludes direct application of the device, a pair of such exchangers located remotely from each other circumvents that problem. A very simple and crudely constructed small-scale physical model of the device worked well enough as a heat conserver to suggest utility as a ventilator for buildings.
Performance of heated humidifiers with a heated wire according to ventilatory settings.
Nishida, T; Nishimura, M; Fujino, Y; Mashimo, T
2001-01-01
Delivering warm, humidified gas to patients is important during mechanical ventilation. Heated humidifiers are effective and popular. The humidifying efficiency is influenced not only by performance and settings of the devices but the settings of ventilator. We compared the efficiency of humidifying devices with a heated wire and servo-controlled function under a variety of ventilator settings. A bench study was done with a TTL model lung. The study took place in the laboratory of the University Hospital, Osaka, Japan. Four devices (MR290 with MR730, MR310 with MR730; both Fisher & Paykel, ConchaTherm IV; Hudson RCI, and HummaxII; METRAN) were tested. Hummax II has been developed recently, and it consists of a heated wire and polyethylene microporous hollow fiber. Both wire and fiber were put inside of an inspiratory circuit, and water vapor is delivered throughout the circuit. The Servo 300 was connected to the TTL with a standard ventilator circuit. The ventilator settings were as follows; minute ventilation (V(E)) 5, 10, and 15 L/min, a respiratory rate of 10 breaths/min, I:E ratio 1:1, 1:2, and 1:4, and no applied PEEP. Humidifying devices were set to maintain the temperature of airway opening at 32 degrees C and 37 degrees C. The greater V(E) the lower the humidity with all devices except Hummax II. Hummax II delivered 100% relative humidity at all ventilator and humidifier settings. When airway temperature control of the devices was set at 32 degrees C, the ConchaTherm IV did not deliver 30 mg/L of vapor, which is the value recommended by American National Standards at all V(E) settings. At 10 and 15 L/min of V(E) settings MR310 with MR730 did not deliver recommended vapor, either. In conclusion, airway temperature setting of the humidifying devices influenced the humidity of inspiratory gas greatly. Ventilatory settings also influenced the humidity of inspiratory gas. The Hummax II delivered sufficient water vapor under a variety of minute ventilation.
Comparison of two humidification systems for long-term noninvasive mechanical ventilation.
Nava, S; Cirio, S; Fanfulla, F; Carlucci, A; Navarra, A; Negri, A; Ceriana, P
2008-08-01
There is no consensus concerning the best system of humidification during long-term noninvasive mechanical ventilation (NIMV). In a technical pilot randomised crossover 12-month study, 16 patients with stable chronic hypercapnic respiratory failure received either heated humidification or heat and moisture exchanger. Compliance with long-term NIMV, airway symptoms, side-effects and number of severe acute pulmonary exacerbations requiring hospitalisation were recorded. Two patients died. Intention-to-treat statistical analysis was performed on 14 patients. No significant differences were observed in compliance with long-term NIMV, but 10 out of 14 patients decided to continue long-term NIMV with heated humidification at the end of the trial. The incidence of side-effects, except for dry throat (significantly more often present using heat and moisture exchanger), hospitalisations and pneumonia were not significantly different. In the present pilot study, the use heated humidification and heat and moisture exchanger showed similar tolerance and side-effects, but a higher number of patients decided to continue long-term noninvasive mechanical ventilation with heated humidification. Further larger studies are required in order to confirm these findings.
Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?
Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J
2015-01-01
The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use. PMID:26312102
Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?
Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J
2015-01-01
The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use.
Transient natural ventilation of a room with a distributed heat source
NASA Astrophysics Data System (ADS)
Fitzgerald, Shaun D.; Woods, Andrew W.
We report on an experimental and theoretical study of the transient flows which develop as a naturally ventilated room adjusts from one temperature to another. We focus on a room heated from below by a uniform heat source, with both high- and low-level ventilation openings. Depending on the initial temperature of the room relative to (i) the final equilibrium temperature and (ii) the exterior temperature, three different modes of ventilation may develop. First, if the room temperature lies between the exterior and the equilibrium temperature, the interior remains well-mixed and gradually heats up to the equilibrium temperature. Secondly, if the room is initially warmer than the equilibrium temperature, then a thermal stratification develops in which the upper layer of originally hot air is displaced upwards by a lower layer of relatively cool inflowing air. At the interface, some mixing occurs owing to the effects of penetrative convection. Thirdly, if the room is initially cooler than the exterior, then on opening the vents, the original air is displaced downwards and a layer of ambient air deepens from above. As this lower layer drains, it is eventually heated to the ambient temperature, and is then able to mix into the overlying layer of external air, and the room becomes well-mixed. For each case, we present new laboratory experiments and compare these with some new quantitative models of the transient flows. We conclude by considering the implications of our work for natural ventilation of large auditoria.
Cooperation of Horizontal Ground Heat Exchanger with the Ventilation Unit During Summer - Case Study
NASA Astrophysics Data System (ADS)
Romańska-Zapała, Anna; Furtak, Marcin; Dechnik, Mirosław
2017-10-01
Renewable energy sources are used in the modern energy-efficient buildings to improve their energy balance. One of them is used in the mechanical ventilation system ground air heat exchanger (earth-air heat exchanger - EAHX). This solution, right after heat recovery from exhaust air (recuperation), allows the reduction in the energy needed to obtain the desired temperature of supply air. The article presents the results of "in situ" measurements of pipe ground air heat exchanger cooperating with the air handling unit, supporting cooling the building in the summer season, in Polish climatic conditions. The laboratory consists of a ventilation unit intake - exhaust with rotor for which the source of fresh air is the air intake wall and two air intakes field cooperating with the tube with ground air heat exchangers. Selection of the source of fresh air is performed using sprocket with actuators. This system is part of the ventilation system of the Malopolska Laboratory of Energy-Efficient Building (MLBE) building of Cracow University of Technology. The measuring system are, among others, the sensors of parameters of air inlets and outlets of the heat exchanger channels EAHX and weather station that senses the local weather conditions. The measurement data are recorded and archived by the integrated process control system in the building of MLBE. During the study measurements of operating parameters of the ventilation unit cooperating with the selected source of fresh air were performed. Two cases of operation of the system: using EAHX heat exchanger and without it, were analyzed. Potentially the use of ground air heat exchanger in the mechanical ventilation system can reduce the energy demand for heating or cooling rooms by the pre-adjustment of the supply air temperature. Considering the results can be concluded that the continuous use of these exchangers is not optimal. This relationship is appropriate not only on an annual basis for the transitional periods (spring and autumn), but also in individual days in the potentially most favorable periods of work exchanger (summer and winter). Inappropriate operation of the heat exchanger, will lead to a temporary increase in energy consumption for the preparation of the desired air temperature, relative to the fresh air unit which is non-pretreated. For optimal energy system operation: exchanger EAHX - air handling unit, to preserve the most favourable parameters of inlet air to handling unit, there is a need to dynamically adjust the source of fresh air, depending on changing external conditions and the required outlet temperature of central unit (temperature of air forced to the rooms).
Temperature of gas delivered from ventilators.
Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji
2013-01-01
Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This instructor's guide contains the materials required to teach a competency-based introductory course in heating, ventilating, and air conditioning (HVAC) to students who have chosen to explore careers in construction. It contains three units: HVAC materials, HVAC tools, and applied skills. Each instructional unit includes some or all of the…
A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.
Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé
2006-01-01
Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.
NATURAL BASEMENT VENTILATION AS A RADON MITIGATION TECHNIQUE
The report documents a study of natural basement ventilation in two research houses during both the summer cooling season and the winter heating season. NOTE: Natural basement ventilation has always been recommended as a way to reduce radon levels in houses. However, its efficacy...
Zuo, Wangda; Wetter, Michael; Tian, Wei; ...
2015-07-13
Here, this paper describes a coupled dynamic simulation of an indoor environment with heating, ventilation, and air conditioning (HVAC) systems, controls and building envelope heat transfer. The coupled simulation can be used for the design and control of ventilation systems with stratified air distributions. Those systems are commonly used to reduce building energy consumption while improving the indoor environment quality. The indoor environment was simulated using the fast fluid dynamics (FFD) simulation programme. The building fabric heat transfer, HVAC and control system were modelled using the Modelica Buildings library. After presenting the concept, the mathematical algorithm and the implementation ofmore » the coupled simulation were introduced. The coupled FFD–Modelica simulation was then evaluated using three examples of room ventilation with complex flow distributions with and without feedback control. Lastly, further research and development needs were also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Wangda; Wetter, Michael; Tian, Wei
Here, this paper describes a coupled dynamic simulation of an indoor environment with heating, ventilation, and air conditioning (HVAC) systems, controls and building envelope heat transfer. The coupled simulation can be used for the design and control of ventilation systems with stratified air distributions. Those systems are commonly used to reduce building energy consumption while improving the indoor environment quality. The indoor environment was simulated using the fast fluid dynamics (FFD) simulation programme. The building fabric heat transfer, HVAC and control system were modelled using the Modelica Buildings library. After presenting the concept, the mathematical algorithm and the implementation ofmore » the coupled simulation were introduced. The coupled FFD–Modelica simulation was then evaluated using three examples of room ventilation with complex flow distributions with and without feedback control. Lastly, further research and development needs were also discussed.« less
Dorizas, Paraskevi Vivian; Assimakopoulos, Margarita-Niki; Santamouris, Mattheos
2015-05-01
The perception of the indoor environmental quality (IEQ) through questionnaires in conjunction with in-field measurements related to the indoor air quality (IAQ), the thermal comfort and the lighting environment were studied in nine naturally ventilated schools of Athens, Greece. Cluster analysis was carried out in order to determine the ranges of indoor air pollutants, temperature (T), relative humidity (RH), and ventilation rates at which the students were satisfied with the indoor environment. It was found that increased levels of particulate matter did not have a negative effect on students' perception while students seemed to link the degradation of IAQ with temperature variations. Statistically significant correlations were further found between measurement results and students' perception of the IEQ. Students' sick building syndrome (SBS) symptoms and performance of schoolwork were also investigated as a function of the levels of indoor air pollutants and ventilation, and there were found significant positive correlations between particulate matter (PM) and certain health symptoms. Students' learning performance seemed to be affected by the ventilation rates and carbon dioxide (CO₂) concentrations while certain health effects positively correlated to the levels of PM and CO₂. The energy consumption of schools was rather low compared to other national findings, and both the electricity and oil consumption for heating positively correlated to the levels of indoor air pollutants.
Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basementmore » with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments« less
Creating high performance buildings: Lower energy, better comfort
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brager, Gail; Arens, Edward
2015-03-30
Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. Inmore » contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.« less
ERIC Educational Resources Information Center
Associated General Contractors of America, Washington, DC.
This module on introductory heating, ventilating, and air conditioning (HVAC) is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. The module contains four instructional units that cover the following topics: (1) HVAC materials; (2) HVAC tools; (3) HVAC layout; and (4) HVAC basic skills.…
ERIC Educational Resources Information Center
Army Engineer School, Fort Belvoir, VA.
This fourth course in a four-course series on heating and ventilating for the secondary/postsecondary level is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The four lessons in the course cover these topics: (1) Feed-Water, Condensate,…
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Public Instruction, Harrisburg.
A GUIDE COVERING ARCHITECTURAL DESIGN REQUIREMENTS, ELECTRIC, HEATING AND VENTILATING, AND PLUMBING STANDARDS AS APPROVED BY THE STATE BOARD OF EDUCATION IN 1966. THE FOLLOWING MINIMUM STANDARD FOR NEW BUILDING, ALTERATIONS, AND ADDITIONS ARE OUTLINED--(1) SPATIAL ENVIRONMENTAL FACTORS, SUCH AS CEILING HEIGHTS, INTERIOR SANITARY FACILITIES, ROOMS…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... the installation of a heating, ventilation, and air conditioning (HVAC) system at the City of La Ca... EE0000905, for the installation of a heating, ventilation, and air conditioning (HVAC) system at the at the... efforts and MEP's scouting process, it was determined that if the described HVAC system was manufactured...
Bio-Defense Now: 56 Suggestions for Immediate Improvements
2005-05-01
Air Education and Training Command HVAC Heating, Ventilation and Air Conditioning ICAM Improved Chemical Agent Monitor ICD-9-CM Internal...conditioning ( HVAC ) system capabilities, making a big difference in removal of many BW agents. High Efficiency Particulate Air (HEPA) filters are also...agents. This program has developed biological sensor-activated heating, ventilation, and air conditioning ( HVAC ) control sys- tems, high efficiency
Impact of measurable physical phenomena on contact thermal comfort
NASA Astrophysics Data System (ADS)
Fojtlín, Miloš; Pokorný, Jan; Fišer, Jan; Toma, Róbert; Tuhovčák, Ján
Cabin HVAC (Heating Ventilation and Air-conditioning) systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.
Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J
2009-01-01
To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers' humidifying performance. Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37 degrees C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers.
41 CFR 102-74.195 - What ventilation policy must Federal agencies follow?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What ventilation policy...-FACILITY MANAGEMENT Facility Management Energy Conservation § 102-74.195 What ventilation policy must Federal agencies follow? During working hours in periods of heating and cooling, Federal agencies must...
NASA Astrophysics Data System (ADS)
Kharkov, N. S.
2017-11-01
Results of numerical modeling of the coupled nonstationary heat and mass transfer problem under conditions of a convective flow in facade system of a three-layer concrete panel for two different constructions (with ventilation channels and without) are presented. The positive effect of ventilation channels on the energy and humidity regime over a period of 12 months is shown. Used new method of replacement a solid zone (requiring specification of porosity and material structure, what complicates process of convergence of the solution) on quasi-solid in form of a multicomponent mixture (with restrictions on convection and mass fractions).
Urban ventilation corridors mapping using surface morphology data based GIS analysis
NASA Astrophysics Data System (ADS)
Wicht, Marzena; Wicht, Andreas; Osińska-Skotak, Katarzyna
2017-04-01
This paper describes deriving the most appropriate method for mapping urban ventilation corridors, which, if properly designed, reduce heat stress, air pollution and increase air quality, as well as increase the horizontal wind speed. Urban areas are - in terms of surface texture - recognized as one of the roughest surfaces, which results in wind obstruction and decreased ventilation of densely built up areas. As urban heat islands, private household and traffic emissions or large scale industries occur frequently in many cities, both in temperate and tropical regions. A proper ventilation system has been suggested as an appropriate mitigation mean [1] . Two concepts of morphometric analyses of the urban environment are used on the example of Warsaw, representing a dense, urban environment, located in the temperate zone. The utilized methods include firstly a roughness mapping calculation [2] , which analyses zero plane displacement height (zd) and roughness length (z0) and their distribution for the eight (inter-)cardinal wind directions and secondly a grid-based frontal area index mapping approach [3] , which uses least cost path analysis. Utilizing the advantages and minimizing the disadvantages of those two concepts, we propose a hybrid approach. All concepts are based on a 3D building database obtained from satellite imagery, aided by a cadastral building database. Derived areas (ventilation corridors), that facilitate the ventilation system, should be considered by the local authorities as worth preserving, if not expanding, in order to improve the air quality in the city. The results also include designation of the problematic areas, which greatly obscure the ventilation and might be investigated as to reshape or rebuilt to introduce the air flow in particularly dense areas like city centers. Keywords: roughness mapping; GIS; ventilation corridors; frontal area index Rizwan, A. M., Dennis, L. Y., & Chunho, L. I. U. (2008). A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 20(1), 120-128. Gál, T., & Unger, J. (2009). Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Building and Environment, 44(1), 198-206. Wong, M. S., Nichol, J. E., To, P. H., & Wang, J. (2010). A simple method for designation of urban ventilation corridors and its application to urban heat island analysis. Building and Environment, 45(8), 1880-1889.
Heat Exchange, Additive Manufacturing, and Neutron Imaging
Geoghegan, Patrick
2018-01-16
Researchers at the Oak Ridge National Laboratory have captured undistorted snapshots of refrigerants flowing through small heat exchangers, helping them to better understand heat transfer in heating, cooling and ventilation systems.
Design and Evaluation of a Ventilated Garment for Use in Temperatures up to 200°C
Crockford, G. W.; Hellon, R. F.
1964-01-01
The protection of personnel against high air and radiant temperatures is a problem that has been confronting industry for many years now, and for many industrial situations it still has not been solved. The experiments reported here were intended to determine the most suitable form of insulation for a hot entry suit for use primarily in furnace wrecking where mean radiant temperatures of 200°C. are met and where heat-reflecting garments are unsuitable due to the rapid deterioration of the reflecting surface. From a preliminary consideration of the problem it was concluded that a ventilated garment was required and that conventional ventilated garments in which air is induced to flow parallel to the body surfaces (axial ventilation) are basically unsound in design as the air is not utilized for the transfer of heat in the most efficient manner. A new form of ventilation was therefore developed in which air flows out through a permeable suit (radial ventilation). This form of ventilation produces what is called dynamic insulation, and this method of insulation, when compared with two alternative methods on a physical model, was found to be very effective. The model experiments were confirmed by comparative trials of three ventilated suits each using one of three different forms of insulation thought to be suitable for use in heat-protective clothing. Physiological measurements made on the subjects and physical measurement made on the suits confirmed that dynamic insulation is the most suitable insulation for a hot entry suit for furnace wrecking. With the air flows used in these experiments, dynamic insulation had a thermal conductance one-fifth that of conventional static insulation, and sweat losses and oral temperature rises were reduced by one-third and one-half respectively. PMID:14180476
Dolz, Noé; Babot, Daniel; Álvarez-Rodríguez, Javier; Forcada, Fernando
2015-12-01
This study aimed at evaluating the use of polypropylene fabrics in weaned pig facilities (5-10 weeks of age) during the winter period to improve thermal environment and energy saving for heating. Two experiments were conducted to validate the effects of fabrics (F) compared to control (C) in three 2-week periods using natural ventilation (assay 1, 2013) and forced ventilation (assay 2, 2014). Air temperature was greater in F than in C compartments in both years, particularly during the first 2-week periods (2 °C of mean difference). Natural ventilation was not enough to maintain relative humidity levels below 70 % at the end of the postweaning period (9-10 weeks of age) in both groups (F and C), whereas forced ventilation allowed controlling daily mean relative humidity levels <60 %. About 12-26 % of the radiant heat was transmitted through the fabrics cover, depending on the wavelength. There were no differences on growth performance of piglets in the two compartments in both years. The use of polypropylene fabrics was associated with a significant electric energy saving for heating during the first (data available only in 2014) and second 2-week period in both years. In conclusion, polypropylene fabrics may be an interesting tool to provide optimal environmental conditions for weaned piglets in winter, especially during the two first weeks after weaning. Their transmittance properties allow trapping infrared emission produced by the piglets and heating, avoiding heat losses through the roof, and therefore saving heating energy.
Patient warming excess heat: the effects on orthopedic operating room ventilation performance.
Belani, Kumar G; Albrecht, Mark; McGovern, Paul D; Reed, Mike; Nachtsheim, Christopher
2013-08-01
Patient warming has become a standard of care for the prevention of unintentional hypothermia based on benefits established in general surgery. However, these benefits may not fully translate to contamination-sensitive surgery (i.e., implants), because patient warming devices release excess heat that may disrupt the intended ceiling-to-floor ventilation airflows and expose the surgical site to added contamination. Therefore, we studied the effects of 2 popular patient warming technologies, forced air and conductive fabric, versus control conditions on ventilation performance in an orthopedic operating room with a mannequin draped for total knee replacement. Ventilation performance was assessed by releasing neutrally buoyant detergent bubbles ("bubbles") into the nonsterile region under the head-side of the anesthesia drape. We then tracked whether the excess heat from upper body patient warming mobilized the "bubbles" into the surgical site. Formally, a randomized replicated design assessed the effect of device (forced air, conductive fabric, control) and anesthesia drape height (low-drape, high-drape) on the number of bubbles photographed over the surgical site. The direct mass-flow exhaust from forced air warming generated hot air convection currents that mobilized bubbles over the anesthesia drape and into the surgical site, resulting in a significant increase in bubble counts for the factor of patient warming device (P < 0.001). Forced air had an average count of 132.5 versus 0.48 for conductive fabric (P = 0.003) and 0.01 for control conditions (P = 0.008) across both drape heights. Differences in average bubble counts across both drape heights were insignificant between conductive fabric and control conditions (P = 0.87). The factor of drape height had no significant effect (P = 0.94) on bubble counts. Excess heat from forced air warming resulted in the disruption of ventilation airflows over the surgical site, whereas conductive patient warming devices had no noticeable effect on ventilation airflows. These findings warrant future research into the effects of forced air warming excess heat on clinical outcomes during contamination-sensitive surgery.
NASA Technical Reports Server (NTRS)
Stewart, L. J.; Murphy, E. D.; Mitchell, C. M.
1982-01-01
A human factors analysis addressed three related yet distinct issues within the area of workstation design for the Earth Radiation Budget Satellite (ERBS) mission operation room (MOR). The first issue, physical layout of the MOR, received the most intensive effort. It involved the positioning of clusters of equipment within the physical dimensions of the ERBS MOR. The second issue for analysis was comprised of several environmental concerns, such as lighting, furniture, and heating and ventilation systems. The third issue was component arrangement, involving the physical arrangement of individual components within clusters of consoles, e.g., a communications panel.
Wu, Wei; Skye, Harrison M; Domanski, Piotr A
2018-02-15
HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.
ERIC Educational Resources Information Center
Sandage, Mary J.; Rahn, Keith A.; Smith, Audrey G.
2017-01-01
Purpose: The purpose of this study was to examine the influence of the heating, ventilation, and air-conditioning method on voice function following a voicing task using ecologically valid offices, one with radiant HVAC and one with forced air. Method: A total of 12 consented participants (6 women, 6 men) narrated a video in each of 4…
Gerritsen, W. B.; Buschmann, C. H.
1960-01-01
Two cases resembling poisoning by phosgene following the use of a paint remover containing methylene chloride in ill-ventilated rooms heated by an oil stove are described. Experiments carried out under similar conditions demonstrated the production of phosgene in toxic concentrations. The potential hazards from non-inflammable solvents are discussed. PMID:13827592
ERIC Educational Resources Information Center
Wheeler, Arthur E.
To help maintain good indoor air quality (IAQ) in schools, guidance for the development and implementation of an effective program for maintenance and operation of heating, ventilating, and air-conditioning (HVAC) systems are discussed. Frequently, a building's occupants will complain about IAQ when the temperature or humidity are at uncomfortable…
Healthcare Energy Efficiency Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Douglas R.; Lai, Judy; Lanzisera, Steven M
2011-01-31
Hospitals are known to be among the most energy intensive commercial buildings in California. Estimates of energy end-uses (e.g. for heating, cooling, lighting, etc.) in hospitals are uncertain for lack of information about hospital-specific mechanical system operations and process loads. Lawrence Berkeley National Laboratory developed and demonstrated a benchmarking system designed specifically for hospitals. Version 1.0 featured metrics to assess energy performance for the broad variety of ventilation and thermal systems that are present in California hospitals. It required moderate to extensive sub-metering or supplemental monitoring. In this new project, we developed a companion handbook with detailed equations that canmore » be used toconvert data from energy and other sensors that may be added to or already part of hospital heating, ventilation and cooling systems into metrics described in the benchmarking document.This report additionally includes a case study and guidance on including metering into designs for new hospitals, renovations and retrofits. Despite widespread concern that this end-use is large and growing, there is limited reliable information about energy use by distributed medical equipment and other miscellaneouselectrical loads in hospitals. This report proposes a framework for quantifying aggregate energy use of medical equipment and miscellaneous loads. Novel approaches are suggested and tried in an attempt to obtain data to support this framework.« less
Lorente, Leonardo; Lecuona, María; Jiménez, Alejandro; Mora, María L; Sierra, Antonio
2006-01-01
Some guidelines to prevent ventilator-associated pneumonia (VAP) do not establish a recommendation for the preferential use of either heat and moisture exchangers (HMEs) or heated humidifiers (HHs), while other guidelines clearly advocate the use of HMEs. The aim of this study was to determine the incidence of VAP associated with HHs or HMEs. A randomized study was conducted in the intensive care unit of a university hospital involving patients expected to require mechanical ventilation for >5 days. Patients were assigned to two groups; one group received HH and the other group received HME. Tracheal aspirate samples were obtained on endotracheal intubation, then twice a week, and finally on extubation, in order to diagnose VAP. Throat swabs were taken on admission to the intensive care unit, then twice a week, and finally at discharge from the intensive care unit in order to classify VAP as primary endogenous, secondary endogenous, or exogenous. A total of 120 patients were assigned to HMEs (60 patients) and HHs (60 patients); 16 patients received mechanical ventilation for less than five days and were excluded from the analysis. Data analysis of the remaining 104 patients (53 HMEs and 51 HHs) showed no significant differences between groups regarding sex, age, Acute Physiology and Chronic Health Evaluation II score, pre-VAP use of antibiotics, days on mechanical ventilation, and diagnosis group. VAP was found in eight of 51 (15.69%) patients in the HH group and in 21 of 53 (39.62%) patients in the HME group (P = 0.006). The median time free of VAP was 20 days (95% confidence interval, 13.34-26.66) for the HH group and was 42 days (95% confidence interval, 35.62-48.37) for the HME group (P <0.001). Cox regression analysis showed the HME as a risk factor for VAP (hazard rate, 16.2; 95% confidence interval, 4.54-58.04; P < 0.001). The patients mechanically ventilated during more than 5 days developed a lower incidence of VAP with a heated humidifier than heat and moisture exchanger.
Heat transfer variations of bicycle helmets.
Brühwiler, P A; Buyan, M; Huber, R; Bogerd, C P; Sznitman, J; Graf, S F; Rösgen, T
2006-09-01
Bicycle helmets exhibit complex structures so as to combine impact protection with ventilation. A quantitative experimental measure of the state of the art and variations therein is a first step towards establishing principles of bicycle helmet ventilation. A thermal headform mounted in a climate-regulated wind tunnel was used to study the ventilation efficiency of 24 bicycle helmets at two wind speeds. Flow visualization in a water tunnel with a second headform demonstrated the flow patterns involved. The influence of design details such as channel length and vent placement was studied, as well as the impact of hair. Differences in heat transfer among the helmets of up to 30% (scalp) and 10% (face) were observed, with the nude headform showing the highest values. On occasion, a negative role of some vents for forced convection was demonstrated. A weak correlation was found between the projected vent cross-section and heat transfer variations when changing the head tilt angle. A simple analytical model is introduced that facilitates the understanding of forced convection phenomena. A weak correlation between exposed scalp area and heat transfer was deduced. Adding a wig reduces the heat transfer by approximately a factor of 8 in the scalp region and up to one-third for the rest of the head for a selection of the best ventilated helmets. The results suggest that there is significant optimization potential within the basic helmet structure represented in modern bicycle helmets.
Wilms, C T; Schober, P; Kalb, R; Loer, S A
2006-01-01
During partial liquid ventilation perfluorocarbons are instilled into the airways from where they subsequently evaporate via the bronchial system. This process is influenced by multiple factors, such as the vapour pressure of the perfluorocarbons, the instilled volume, intrapulmonary perfluorocarbon distribution, postural positioning and ventilatory settings. In our study we compared the effects of open and closed breathing systems, a heat-and-moisture-exchanger and a sodalime absorber on perfluorocarbon evaporation during partial liquid ventilation. Isolated rat lungs were suspended from a force transducer. After intratracheal perfluorocarbon instillation (10 mL kg(-1)) the lungs were either ventilated with an open breathing system (n = 6), a closed breathing system (n = 6), an open breathing system with an integrated heat-and-moisture-exchanger (n = 6), an open breathing system with an integrated sodalime absorber (n = 6), or a closed breathing system with an integrated heat-and-moisture-exchanger and a sodalime absorber (n = 6). Evaporative perfluorocarbon elimination was determined gravimetrically. When compared to the elimination half-life in an open breathing system (1.2 +/- 0.07 h), elimination half-life was longer with a closed system (6.4 +/- 0.9 h, P 0.05) when compared to a closed system. Evaporative perfluorocarbon loss can be reduced effectively with closed breathing systems, followed by the use of sodalime absorbers and heat-and-moisture-exchangers.
Spatial analysis of climate factors used to determine suitability of greenhouse production in Turkey
NASA Astrophysics Data System (ADS)
Cemek, Bilal; Güler, Mustafa; Arslan, Hakan
2017-04-01
This study aimed to identify the most suitable growing periods for greenhouse production in Turkey in order to make valuable contribution to economic viability. Data collected from the meteorological databases of 81 provinces was used to determine periodic climatological requirements of greenhouses in terms of cooling, heating, natural ventilation, and lighting. Spatial distributions of mean daily outside temperatures and greenhouse heating requirements were derived using ordinary co-kriging (OCK) supported by Geographical Information System (GIS). Mean monthly temperatures throughout the country were found to decrease below 12 °C in January, February, March, and December, indicating heating requirements, whereas temperatures in 94.46 % of the country rose above 22 °C in July, indicating cooling requirements. Artificial lighting is not a requirement in Turkey except for November, December, and January. The Mediterranean, Aegean, Marmara, and Black Sea Regions are more advantageous than the Central, East, and Southeast Anatolia Regions in terms of greenhouse production because the Mediterranean and Aegean Regions are more advantageous in terms of heating, and the Black Sea Region is more advantageous in terms of cooling. Results of our study indicated that greenhouse cultivation of winter vegetables is possible in certain areas in the north of the country. Moreover, greenhouses could alternatively be used for drying fruits and vegetables during the summer period which requires uneconomical cooling systems due to high temperatures in the Mediterranean and Southeastern Anatolian Regions.
46 CFR 92.20-50 - Heating and cooling.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) under normal operating conditions without curtailing ventilation. (c) Radiators and other heating... the occupants. Pipes leading to radiators or heating apparatus must be insulated where those pipes...
[Air quality control systems: heating, ventilating, and air conditioning (HVAC)].
Bellucci Sessa, R; Riccio, G
2004-01-01
After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.
Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J
2009-01-01
OBJECTIVES: To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. INTRODUCTION: Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers’ humidifying performance. METHODS: Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37°C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. RESULTS: Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. CONCLUSIONS: Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers. PMID:19578664
NASA Astrophysics Data System (ADS)
Palme, Massimo; Carrasco, Claudio; Ángel Gálvez, Miguel; Inostroza, Luis
2017-10-01
Urban heat island effect often produces an increase of overheating sensation inside of buildings. To evacuate this heat, the current use of air conditioning increases the energy consumption of buildings. As a good alternative, natural ventilation is one of the best strategies to obtain indoor comfort conditions, even in summer season, if buildings and urban designs are appropriated. In this work, the overheating risk of a small house is evaluated in four South American cities: Guayaquil, Lima, Antofagasta and Valparaíso, with and without considering the UHI effect. Then, natural ventilation is assessed in order to understand the capability of this passive strategy to assure comfort inside the house. Results show that an important portion of the indoor heat can be evacuated, however the temperature rising (especially during the night) due to UHI can generate a saturation effect if appropriate technical solutions, like the increase in the air speed that can be obtained with good urban design, are not considered.
Effect of residential air-to-air heat and moisture exchangers on indoor humidity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barringer, C.G.; McGugan, C.A.
1989-01-01
A project was undertaken to develop guidelines for the selection of residential heat and moisture recovery ventilation systems (HRVs) in order to maintain an acceptable indoor humidity for various climatic conditions. These guidelines were developed from reviews on ventilation requirements, HRV performance specifications, and from computer modeling. Space conditions within three house/occupancy models for several types of HRV were simulated for three climatic conditions (Lake Charles, LA; Seattle, WA; and Winnipeg, MB) in order to determine the impact of the HRVs on indoor relative humidity and space-conditioning loads. Results show that when reduction of cooling cost is the main consideration,more » exchangers with moisture recovery are preferable to sensible HRVs. For reduction of heating costs, moisture recovery should be done for ventilation rates greater than about 15 L/s and average winter temperatures less than about (minus) 10{degrees}C if internal moisture generation rates are low. For houses with higher ventilation rates and colder average winter temperatures, exchangers with moisture recovery should be used.« less
Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control
NASA Astrophysics Data System (ADS)
Jin, Tea-Hwan; Shin, Ki-Yeol; Yoon, Si-Won; Im, Yong-Hoon; Chang, Ki-Chang
2017-11-01
A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.
-3167 Chuck joined NREL in 2010. His research is focused on heat transfer modeling, heating, ventilating background is in experimental heat transfer and fluid mechanics. Education Ph.D. Mechanical Engineering
46 CFR 32.40-50 - Heating and cooling-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) under normal operating conditions without curtailing ventilation. (c) Radiators and other heating... the occupants. Pipes leading to radiators or heating apparatus must be insulated where those pipes...
Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings.
MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph
2015-11-18
Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption-Economic and environmental costs. We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies.
Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings
MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph
2015-01-01
Introduction: Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption—Economic and environmental costs. Methods: We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Results: Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. Conclusions: The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies. PMID:26593933
Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues
Under-humidification and over-humidification during moderate induced hypothermia with usual devices.
Lellouche, François; Qader, Siham; Taille, Solenne; Lyazidi, Aissam; Brochard, Laurent
2006-07-01
In mechanically ventilated patients with induced hypothermia, the efficacy of heat and moisture exchangers and heated humidifiers to adequately humidify the airway is poorly known. The aim of the study was to assess the efficacy of different humidification devices during moderate hypothermia. Prospective, cross-over randomized study. Medical Intensive Care Unit in a University Hospital. Nine adult patients hospitalized after cardiac arrest in whom moderate hypothermia was induced (33 degrees C for 24[Symbol: see text]h). Patients were ventilated at admission (period designated "normothermia") with a heat and moisture exchanger, and were randomly ventilated during hypothermia with a heat and moisture exchanger, a heated humidifier, and an active heat and moisture exchanger. Core temperature, inspired and expired gas absolute and relative humidity were measured. Each system demonstrated limitations in its ability to humidify gases in the specific situation of hypothermia. Performances of heat and moisture exchangers were closely correlated to core temperature (r (2)[Symbol: see text]=[Symbol: see text]0.84). During hypothermia, heat and moisture exchangers led to major under-humidification, with absolute humidity below 25[Symbol: see text]mgH(2)O/l. The active heat and moisture exchanger slightly improved humidification. Heated humidifiers were mostly adequate but led to over-humidification in some patients, with inspiratory absolute humidity higher than maximal water content at 33 degrees C with a positive balance between inspiratory and expiratory water content. These results suggest that in the case of moderate hypothermia, heat and moisture exchangers should be used cautiously and that heated humidifiers may lead to over-humidification with the currently recommended settings.
Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozubal, E.; Herrmann, L.; Deru, M.
2014-09-01
Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorptionmore » to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.« less
46 CFR 72.20-50 - Heating and cooling.
Code of Federal Regulations, 2010 CFR
2010-10-01
... operating conditions without curtailing ventilation. (c) Radiators and other heating apparatus must be so... leading to radiators or heating apparatus must be insulated where those pipes create a hazard to persons...
Nadir Oziş, Türkan; Ozcan Kanat, Derya; Oğuzülgen, Ipek Kivilcim; Aydoğdu, Müge; Hizel, Kenan; Gürsel, Gül
2009-01-01
Ventilator associated pneumonia (VAP) is the most frequent nosocomial infection in intensive care units that is associated with prolonged mechanical ventilation, hospitalization and increased health-care costs. Various humidifiers can be used for humidification during mechanical ventilation. Many studies were conducted to identify the effects of two different humidifiers, i.e. heated humidifiers and heat and moisture exchanger filters (HME), on VAP development; and HME filters were found to decrease the VAP frequency. In this study we aimed to compare the efficacy and safety of heated humidifiers and HME-Booster. Heated humidifier with conventional microbiologic filter (CMF-HH) or HME-Booster were used in randomization to 41 mechanically ventilated patients of our intensive care unit, and patients were divided into two groups as group 1 receiving CMF-HH (20 patients) and group 2 (21 patients) receiving HME-Booster. Daily secretion scores, endotracheal tube occlusion due to secretions, VAP development rate for the assessment of microbiological safety of humidifiers and differences in PETCO(2) and PaCO(2) values for the assessment of their effect on arterial blood gas were recorded prospectively. The measurement of PETCO(2) and PaCO(2) values were performed with the presence of humidifiers and after removing them in both groups. In both groups with the removal of CMF-HH and HME-Booster, a decrease in PETCO(2) value was identified, but the decrease in group 2 was statistically significant (p= 0.016). The decrease in PaCO(2) after removal of humidifiers was greater in group 2 than in group 1, but the difference was not significant (p> 0.05).The rate of VAP and endotracheal tube occlusion was not significantly different between the groups. The mean secretion score was lower in group 1 (p= 0.041). In conclusion, although both humidifiers have similar microbiological effects, heated humidifiers could be preferred particularly for the patients with an underlying chronic lung disease due to its positive effects on PETCO(2) values and secretion scores.
14 CFR 27.859 - Heating systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...
14 CFR 27.859 - Heating systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...
14 CFR 27.859 - Heating systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...
14 CFR 27.859 - Heating systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...
Gentile, Michael A; Siobal, Mark S
2010-02-01
Ventilator-associated pneumonia (VAP) is a common and serious complication of mechanical ventilation via an artificial airway. As with all nosocomial infections, VAP increases costs, morbidity, and mortality in the intensive care unit (ICU). VAP prevention is a multifaceted priority of the intensive care team, and can include the use of specialized artificial airways and heat-and-moisture exchangers (HME). Substantial evidence supports the use of endotracheal tubes (ETTs) that allow subglottic suctioning; silver-coated and antiseptic-impregnated ETTs; ETTs with thin-walled polyurethane cuffs; and HMEs, but these devices also can have adverse effects. Controversy still exists regarding the evidence, cost-effectiveness, and disadvantages and risks of these devices.
A ventilation cooling shirt worn during office work in a hot climate: cool or not?
Zhao, Mengmeng; Kuklane, Kalev; Lundgren, Karin; Gao, Chuansi; Wang, Faming
2015-01-01
The aim of the study was to identify whether a ventilation cooling shirt was effective in reducing heat strain in a hot climate. Eight female volunteers were exposed to heat (38 °C, 45% relative humidity) for 2 h with simulated office work. In the first hour they were in normal summer clothes (total thermal insulation 0.8 clo); in the second hour a ventilation cooling shirt was worn on top. After the shirt was introduced for 1 h, the skin temperatures at the scapula and the chest were significantly reduced (p < 0.05). The mean skin and core temperatures were not reduced. The subjects felt cooler and more comfortable by wearing the shirt, but the cooling effect was most conspicuous only during the initial 10 min. The cooling efficiency of the ventilation shirt was not very effective under the low physical activity in this hot climate.
NASA Astrophysics Data System (ADS)
Ezzaraa, K.; Bahlaoui, A.; Arroub, I.; Raji, A.; Hasnaoui, M.; Naïmi, M.
2018-05-01
In this work, we investigated numerically heat transfer by mixed convection coupled to thermal radiation in a vented rectangular enclosure uniformly heated from below with a constant heat flux. The fresh fluid is admitted into the cavity by injection or suction, by means of two openings located on the lower part of both right and left vertical sides. Another opening is placed on the middle of the top wall to ensure the ventilation. Air, a radiatively transparent medium, is considered to be the cooling fluid. The inner surfaces, in contact with the fluid, are assumed to be gray, diffuse emitters and reflectors of radiation with identical emissivities. The effects of some pertinent parameters such as the Reynolds number, 300 ≤ Re ≤ 5000, and the emissivity of the walls, 0 ≤ ɛ ≤ 0.85, on flow and temperature patterns as well as on the heat transfer rate within the enclosure are presented for the two ventilation modes (injection and suction). The results indicate that the flow and thermal structures are affected by the thermal radiation for the two modes of imposed flow. However, the suction mode is found to be more favorable to the heat transfer in comparison with the injection one.
A new device for 100 per cent humidification of inspired air
Larsson, Anders; Gustafsson, Ann; Svanborg, Lennart
2000-01-01
Introduction: Devices for active humidification of the inspired air in mechanically ventilated patients cause water condensation in the ventilator tubing, which may become contaminated or interfere with the function of the ventilator. The present study describes and tests the performance of a new humidifier, which is designed to eliminate water condensation. Objectives: To test the performance of the new humidifier at different ventilator settings in a lung model, and to compare this new humidifier with a conventional active humidifier in ventilator-treated critically ill patients. Materials and methods: The humidifier (Humid-Heat; Louis Gibeck AB, Upplands Väsby, Sweden) consists of a supply unit with a microprocessor and a water pump, and a humidification device, which is placed between the Y-piece and the endotracheal tube. The humidification device is based on a hygroscopic heat-moisture exchanger (HME), which absorbs the expired heat and moisture and releases it into the inspired gas. External heat and water are then added to the patient side of the HME, so the inspired gas should reach 100% humidity at 37°C (44 mg H2O/l air). The external water is delivered to the humidification device via a pump onto a wick and then evaporated into the inspired air by an electrical heater. The microprocessor controls the water pump and the heater by an algorithm using the minute ventilation (which is fed into the microprocessor) and the airway temperature measured by a sensor mounted in the flex-tube on the patient side of the humidification device. The performance characteristics were tested in a lung model ventilated with a constant flow (inspiratory:expiratory ratio 1:2, rate 12–20 breaths/min and a minute ventilation of 3–25 l/min) or with a decelerating flow (inspiratory:expiratory ratio 1:2, rate 12–15 breaths/min and a minute ventilation of 4.7–16.4 l/min). The device was also tested prospectively and in a randomized order compared with a conventional active humidifier (Fisher & Paykel MR730, Auckland, New Zealand) in eight mechanically ventilated, endotracheally intubated patients in the intensive care unit. The test period with each device was 24 h. The amount of fluid consumed and the amount of water in the water traps were measured. The number of times that the water traps were emptied, changes of machine filters, the suctions and quality of secretions, nebulizations, and the amount of saline instillations and endotracheal tube obstruction were recorded. In order to evaluate increased expiratory resistance due to the device, the airway pressure was measured at the end of a prolonged end-expiratory pause at 1 h of use and at the end of the test, and was compared with the corresponding pressure before the experiment. The body temperature of the patient was measured before and after the test of each device. Results: Both with constant flow and decelerating flow, the Humid-Heat gave an absolute humidity of 41–44 mgH2O/l at 37°C, with the lower level at the highest ventilation. In the patients, both Humid-Heat and the conventional active humidifier (MR730) maintained temperatures, indicating that they provided the intended heat and moisture to the inspired air. With both devices, the body temperature was maintained during the test period. There was no difference in the amount of secretions, the quality of the secretions and the frequency of suctions, saline instillations or nebulizations between the test periods with the two devices. There was no endotracheal tube obstruction, and after 1 h of use and at the end of the test no increased airway resistance was found with either device. When the MR730 was used, however, the water traps needed to be emptied six to 14 (mean eight) times (total amount of fluid in the traps was 100–300 ml) and the machine filters were changed two to six (mean four) times due to an excessive amount of condensed water with flow obstruction. No condensation of water was found in the tubing with the Humid-Heat. The water consumption was 23–65 ml/h (mean 30 ml/h) with the MR730 and 4–8 ml/h (mean 6 ml/h) with the Humid-Heat (P < 0.0008). The same relations were found when the water consumption was corrected for differences in minute ventilation. Discussion: The new humidifier, the Humid-Heat, gave an absolute humidity of 41–44 mg/l at 37°C in the bench tests. The tests in ventilated patients showed that the device was well tolerated and that condensation in the tubing was eliminated. There was no need to empty water traps. The test period was too short to evaluate whether the new device had any other advantages or disadvantages compared with conventional humidifiers. PMID:11056746
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W.; Tiessen, Alex
Retrocommissioning (RCx) is a systematic process for optimizing energy performance in existing buildings. It specifically focuses on improving the control of energy-using equipment (e.g., heating, ventilation, and air conditioning [HVAC] equipment and lighting) and typically does not involve equipment replacement. Field results have shown proper RCx can achieve energy savings ranging from 5 percent to 20 percent, with a typical payback of two years or less (Thorne 2003). The method presented in this protocol provides direction regarding: (1) how to account for each measure's specific characteristics and (2) how to choose the most appropriate savings verification approach.
Giloh, M; Shinder, D; Yahav, S
2012-01-01
Extreme thermal conditions may dramatically affect the performance of broilers and other domestic animals, thereby impairing animal welfare and causing economic losses. Although body core temperature is the parameter that best reflects a bird's thermal status, practical and physiological obstacles make it irrelevant as a source of information on the thermal status of commercial flocks. Advances in the technology of infrared thermal imaging have enabled highly accurate, noncontact, and noninvasive measurements of skin surface temperature. Providing that skin surface temperature correlates with body temperature, this technology could enable acquisition of reliable information on the thermal status of animals, thereby improving diagnoses of environmental stress in a flock. This study of broiler chickens found a strong positive correlation between body core temperature and facial surface temperature, as recorded by infrared thermal imaging. The correlation was equally strong at all ages from 8 to 36 d during exposure to acute heat stress with or without proper ventilation and after acclimation to chronic heat exposure. A similar correlation was found by measurements in commercial flocks of broilers. Measurements of blood plasma concentrations of corticosterone, thyroid hormones, and arginine vasotocin confirmed that metabolic activity was low after acclimation to chronic exposure to heat, whereas ventilation was at least as efficient as acclimation in reducing thermal stress but did not impair metabolism. In light of these novel results, commercial benefits of infrared thermal imaging technology are suggested, especially in climate control for commercial poultry flocks. The application of this technique to other domestic animals should be investigated in future experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betts, Daniel; Ally, Moonis Raza; Mudiraj, Shyam
Be Power Tech is commercializing BeCool, the first integrated electricity-producing heating, ventilation, and air conditioning (HVAC) system using a non-vapor compression cycle (VCC), packaged rooftop HVAC unit that also produces base-load electricity, heating, ventilation, and air conditioning. BeCool is a distributed energy resource with energy storage that eliminates the tremendous peak electricity demand associated with commonly used electricity-powered vapor compression air conditioning systems.
Cheng, Y; Lin, Z
2016-04-01
Room occupants' comfort and health are affected by the airflow. Nevertheless, they themselves also play an important role in indoor air distribution. This study investigated the interaction between the human body and room airflow under stratum ventilation. Simplified thermal manikin was employed to effectively resemble the human body as a flow obstacle and/or free convective heat source. Unheated and heated manikins were designed to fully evaluate the impact of the manikin at various airflow rates. Additionally, subjective human tests were conducted to evaluate thermal comfort for the occupants in two rows. The findings show that the manikin formed a local blockage effect, but the supply airflow could flow over it. With the body heat from the manikin, the air jet penetrated farther compared with that for the unheated manikin. The temperature downstream of the manikin was also higher because of the convective effect. Elevating the supply airflow rate from 7 to 15 air changes per hour varied the downstream airflow pattern dramatically, from an uprising flow induced by body heat to a jet-dominated flow. Subjective assessments indicated that stratum ventilation provided thermal comfort for the occupants in both rows. Therefore, stratum ventilation could be applied in rooms with occupants in multiple rows. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
AIR CLEANING FOR ACCEPTABLE INDOOR AIR QUALITY
The paper discusses air cleaning for acceptable indoor air quality. ir cleaning has performed an important role in heating, ventilation, and air-conditioning systems for many years. raditionally, general ventilation air-filtration equipment has been used to protect cooling coils ...
Method for calculating internal radiation and ventilation with the ADINAT heat-flow code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butkovich, T.R.; Montan, D.N.
1980-04-01
One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation andmore » ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation.« less
On buoyancy-driven natural ventilation of a room with a heated floor
NASA Astrophysics Data System (ADS)
Gladstone, Charlotte; Woods, Andrew W.
2001-08-01
The natural ventilation of a room, both with a heated floor and connected to a cold exterior through two openings, is investigated by combining quantitative models with analogue laboratory experiments. The heated floor generates an areal source of buoyancy while the openings allow displacement ventilation to operate. When combined, these produce a steady state in which the air in the room is well-mixed, and the heat provided by the floor equals the heat lost by displacement. We develop a quantitative model describing this process, in which the advective heat transfer through the openings is balanced with the heat flux supplied at the floor. This model is successfully tested with observations from small-scale analogue laboratory experiments. We compare our results with the steady-state flow associated with a point source of buoyancy: for a given applied heat flux, an areal source produces heated air of lower temperature but a greater volume flux of air circulates through the room. We generalize the model to account for the effects of (i) a cooled roof as well as a heated floor, and (ii) an external wind or temperature gradient. In the former case, the direction of the flow through the openings depends on the temperature of the exterior air relative to an averaged roof and floor temperature. In the latter case, the flow is either buoyancy dominated or wind dominated depending on the strength of the pressure associated with the wind. Furthermore, there is an intermediate multiple-solution regime in which either flow regime may develop.
Randomized clinical trial of extended use of a hydrophobic condenser humidifier: 1 vs. 7 days.
Thomachot, Laurent; Leone, Marc; Razzouk, Karim; Antonini, François; Vialet, Renaud; Martin, Claude
2002-01-01
To determine whether extended use (7 days) would affect the efficiency on heat and water preservation of a hydrophobic condenser humidifier as well as the rate of ventilation-acquired pneumonia, compared with 1 day of use. Prospective, controlled, randomized, not blinded, clinical study. Twelve-bed intensive care unit of a university hospital. One hundred and fifty-five consecutive patients undergoing mechanical ventilation for > or = 48 hrs. After randomization, patients were allocated to one of the two following groups: a) heat and moisture exchangers (HMEs) changed every 24 hrs; b) HMEs changed only once a week. Devices in both groups could be changed at the discretion of the staff when signs of occlusion or increased resistance were identified. Efficient airway humidification and heating were assessed by clinical variables (numbers of tracheal suctionings and instillations required, peak and mean airway pressures). The frequency rates of bronchial colonization and ventilation-acquired pneumonia were evaluated by using clinical and microbiological criteria. Endotracheal tube occlusion, ventilatory support variables, duration of mechanical ventilation, length of intensive care, acquired multiorgan dysfunction, and mortality rates also were recorded. The two groups were similar at the time of randomization. Endotracheal tube occlusion never occurred. In the targeted population (patients ventilated for > or = 7 days), the frequency rate of ventilation-acquired pneumonia was 24% in the HME 1-day group and 17% in the HME 7-day group (p > .05, not significant). Ventilation-acquired pneumonia rates per 1000 ventilatory support days were 16.4/1000 in the HME 1-day group and 12.4/1000 in the HME 7-day group (p > .05, not significant). No statistically significant differences were found between the two groups for duration of mechanical ventilation, intensive care unit length of stay, acquired organ system derangements, and mortality rate. There was indirect evidence of very little, if any, change in HME resistance. Changing the studied hydrophobic HME after 7 days did not affect efficiency, increase resistance, or altered bacterial colonization. The frequency rate of ventilation-acquired pneumonia was also unchanged. Use of HMEs for > 24 hrs and up to 7 days is safe.
Concentrated solar power in the built environment
NASA Astrophysics Data System (ADS)
Montenon, Alaric C.; Fylaktos, Nestor; Montagnino, Fabio; Paredes, Filippo; Papanicolas, Costas N.
2017-06-01
Solar concentration systems are usually deployed in large open spaces for electricity generation; they are rarely used to address the pressing energy needs of the built environment sector. Fresnel technology offers interesting and challenging CSP energy pathways suitable for the built environment, due to its relatively light weight (<30 kg.m-2) and low windage. The Cyprus Institute (CyI) and Consorzio ARCA are cooperating in such a research program; we report here the construction and integration of a 71kW Fresnel CSP system into the HVAC (Heating, Ventilation, and Air Conditioning) system of a recently constructed office & laboratory building, the Novel Technologies Laboratory (NTL). The multi-generative system will support cooling, heating and hot water production feeding the system of the NTL building, as a demonstration project, part of the STS-MED program (Small Scale Thermal Solar District Units for Mediterranean Communities) financed by the European Commission under the European Neighbourhood and Partnership Instrument (ENPI), CBCMED program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This appendix summarizes building characteristics used to determine heating and cooling loads for each of the five building types in each of the four regions. For the selected five buildings, the following data are attached: new and existing construction characteristics; new and existing construction thermal resistance; floor plan and elevation; people load schedule; lighting load schedule; appliance load schedule; ventilation schedule; and hot water use schedule. For the five building types (single family, apartment buildings, commercial buildings, office buildings, and schools), data are compiled in 10 appendices. These are Building Characteristics; Alternate Energy Sources and Energy Conservation Techniques Description, Costs,more » Fuel Price Scenarios; Life Cycle Cost Model; Simulation Models; Solar Heating/Cooling System; Condensed Weather; Single and Multi-Family Dwelling Characteristics and Energy Conservation Techniques; Mixed Strategies for Energy Conservation and Alternative Energy Utilization in Buildings. An extensive bibliography is given in the final appendix. (MCW)« less
Sharpe, Richard A; Thornton, Christopher R; Nikolaou, Vasilis; Osborne, Nicholas J
2015-06-01
Fuel poverty affects 2.4 million UK homes leading to poor hygrothermal conditions and risk of mould and house dust mite contaminations, which in turn increases risk of asthma exacerbation. For the first time we assess how fuel poverty, occupants' risk perception and use of mechanical ventilation mediate the risk of mould contamination in social housing. Postal questionnaires were sent to 3867 social housing properties to collect adult risk perception, and demographic and environmental information on occupants. Participant details were linked to data pertaining to the individual properties. Multiple logistic regression was used to calculate odds ratios and confidence intervals while allowing for clustering of individuals coming from the same housing estate. We used Structured Equation Modelling and Goodness of Fit analysis in mediation analyses to examine the role of fuel poverty, risk perception, use of ventilation and energy efficiency. Eighteen percent of our target social housing populations (671 households) were included into our study. High risk perception (score of 8-10) was associated with reduced risk of mould contamination in the bedrooms of children (OR 0.5 95% CI; 0.3-0.9) and adults (OR 0.4 95% CI; 0.3-0.7). High risk perception of living with inadequate heating and ventilation reduced the risk of mould contamination (OR 0.5 95% CI; 0.3-0.8 and OR 0.5 95% CI; 0.3-0.7, respectively). Participants living with inadequate heating and not heating due to the cost of fuel had an increased risk of mould contamination (OR 3.4 95% CI; 2.0-5.8 and OR 2.2 95% CI; 1.5-3.2, respectively). Increased risk perception and use of extractor fans did not mediate the association between fuel poverty behaviours and increased risk of mould contamination. Fuel poverty behaviours increased the risk of mould contamination, which corresponds with existing literature. For the first time we used mediation analysis to assess how this association maybe modified by occupant behaviours. Increased risk perception and use of extractor fans did not modify the association between fuel poverty and mould contamination. This suggests that fuel poor populations may not benefit from energy efficiency interventions due to ineffective heating and ventilation practices of those occupants residing participating households. Our findings may be modified by a complex interaction between occupant behaviours and the built environment. We found that participant age, occupancy, SES, pets, drying washing indoors, geographic location, architectural design/age of the property, levels of insulation and type of heating regulated risk of mould contamination. Fuel poverty behaviours affected around a third of participating households and represent a risk factor for increased exposures to damp and mouldy conditions, regardless of adult risk perception, heating and ventilation practices. This requires multidisciplinary approach to assess the complex interaction between occupant behaviours, risk perception, the built environment and the effective use of heating and ventilation practices. Our findings have implications for housing policies and future housing interventions. Effective communication strategies focusing on awareness and perception of risk may help address indoor air quality issues. This must be supported by improved household energy efficiency with the provision of more effective heating and ventilation strategies, specifically to help alleviate those suffering from fuel poverty. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Garibay, Pat
2007-01-01
Educators and administrators are looking for new ways to boost student performance and eliminate barriers to learning. When working to improve the classroom environment, facility managers typically target the physical structure, temperature controls, humidity levels and ventilation. Many heating, ventilating and air conditioning (HVAC) consultants…
Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption
NASA Technical Reports Server (NTRS)
Lacomini, Christine S.; Powers, Aaron; Lewis, Matthew; Linrud, Christopher; Waguespack, Glenn; Conger, Bruce; Paul, Heather L.
2008-01-01
Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. In addition, thermal models of the adsorbent during regeneration were modified and calibrated with test data to capture the effect of the CO2 heat of desorption. Finally, MTSA impact on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA s Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.
Control systems for heating, ventilating, and air conditioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, R.W.
1977-01-01
Hundreds of ideas for designing and controlling sophisticated heating, ventilating and air conditioning (HVAC) systems are presented. Information is included on enthalpy control, energy conservation in HVAC systems, on solar heating, cooling and refrigeration systems, and on a self-draining water collector and heater. Computerized control systems and the economics of supervisory systems are discussed. Information is presented on computer system components, software, relevant terminology, and computerized security and fire reporting systems. Benefits of computer systems are explained, along with optimization techniques, data management, maintenance schedules, and energy consumption. A bibliography, glossaries of HVAC terminology, abbreviations, symbols, and a subject indexmore » are provided. (LCL)« less
Heated humidification versus heat and moisture exchangers for ventilated adults and children.
Kelly, Margaret; Gillies, Donna; Todd, David A; Lockwood, Catherine
2010-04-14
Humidification by artificial means must be provided when the upper airway is bypassed during mechanical ventilation. Heated humidification (HH) and heat and moisture exchangers (HME) are the most commonly used types of artificial humidification in this situation. To determine whether HHs or HMEs are more effective in preventing mortality and other complications in people who are mechanically ventilated. We searched the Cochrane Central Register of Controlled Trials (The Cochrane Library 2010, Issue 4) and MEDLINE, EMBASE and CINAHL (January, 2010) to identify relevant randomized controlled trials (RCTs). We included RCTs comparing heat and moisture exchangers (HMEs) to heated humidifiers (HHs) in mechanically ventilated adults and children. We included randomized crossover studies. We assessed the quality of each study and extracted the relevant data. Where appropriate, results from relevant studies were meta-analysed for individual outcomes. We included 33 trials with 2833 participants, 25 studies were parallel group design (n = 2710) and eight crossover design (n = 123). Only three included studies reported data for infants or children. There was no overall effect on artificial airway occlusion, mortality, pneumonia, or respiratory complications; however, the PaCO(2) and minute ventilation were increased when HMEs were compared to HHs and body temperature was lower. The cost of HMEs was lower in all studies that reported this outcome. There was some evidence that hydrophobic HMEs may reduce the risk of pneumonia and that blockages of artificial airways may be increased with the use of HMEs in certain subgroups of patients. There is little evidence of an overall difference between HMEs and HHs. However, hydrophobic HMEs may reduce the risk of pneumonia and the use of an HME may increase artificial airway occlusion in certain subgroups of patients. Therefore, HMEs may not be suitable for patients with limited respiratory reserve or prone to airway blockage. Further research is needed relating to hydrophobic versus hygroscopic HMEs and the use of HMEs in the paediatric and neonatal populations. As the design of HMEs evolves, evaluation of new generation HMEs will also need to be undertaken.
Houses need to breathe--right?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, Max H.
2004-10-01
Houses need to breathe, but we can no longer leave the important functions associated with ventilation to be met accidentally. A designed ventilation system must be considered as much a part of a home as its heating system. Windows are a key part of that system because they allow a quick increase in ventilation for unusual events, but neither they nor a leaky building shell can be counted on to provide minimum levels.
Under EPA's Environmental Technology Verification Program, Research Triangle Institute (RTI) will operate the Air Pollution Control Technology Center to verify the filtration efficiency and bioaerosol inactivation efficiency of heating, ventilation and air conditioning air cleane...
A simple model of the effect of ocean ventilation on ocean heat uptake
NASA Astrophysics Data System (ADS)
Nadiga, Balu; Urban, Nathan
2017-11-01
Transport of water from the surface mixed layer into the ocean interior is achieved, in large part, by the process of ventilation-a process associated with outcropping isopycnals. Starting from such a configuration of outcropping isopycnals, we derive a simple model of the effect of ventilation on ocean uptake of anomalous radiative forcing. This model can be seen as an improvement of the popular anomaly-diffusing class of energy balance models (AD-EBM) that are routinely employed to analyze and emulate the warming response of both observed and simulated Earth system. We demonstrate that neither multi-layer, nor continuous-diffusion AD-EBM variants can properly represent both surface-warming and the vertical distribution of ocean heat uptake. The new model overcomes this deficiency. The simplicity of the models notwithstanding, the analysis presented and the necessity of the modification is indicative of the role played by processes related to the down-welling branch of global ocean circulation in shaping the vertical distribution of ocean heat uptake.
NASA Astrophysics Data System (ADS)
Sheremet, M. A.; Shishkin, N. I.
2012-07-01
Mathematical simulation of the nonstationary regimes of heat-and-mass transfer in a ventilated rectangular cavity with heat-conducting walls of finite thickness in the presence of a heat-generating element of constant temperature has been carried out with account for the radiative heat transfer in the Rosseland approximation. As mechanisms of energy transfer in this cavity, the combined convection and the thermal radiation in the gas space of the cavity and the heat conduction in the elements of its fencing solid shell were considered. The mathematical model formulated in the dimensionless stream function-vorticity vector-temperature-concentration variables was realized numerically with the use of the finite-difference method. The streamline, temperature-field, and concentration distributions reflecting the influence of the Rayleigh number (Ra = 104, 105, 106), the nonstationarity (0 < τ ≤ 1000), and the optical thickness of the medium (τλ = 50, 100, 200) on the regimes of the gas flow and the heat-and-mass transfer in the cavity have been obtained.
Pretest Predictions for Ventilation Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. Sun; H. Yang; H.N. Kalia
The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, concrete pipe walls, and insulation that will be developed during the ventilation tests involving various test conditions. The results will be used as input to the following three areas: (1) Decisions regarding testing set-up and performance. (2) Assessing how best to scale the test phenomena measured. (3) Validating numerical approach for modeling continuous ventilation. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the ventilation tests, and develop and describe numerical methods that canmore » be used to calculate the effects of continuous ventilation. Sensitivity studies to assess the impact of variation of linear power densities (linear heat loads) and ventilation air flow rates are included. The calculation is limited to thermal effect only.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... menhaden and similar species of fish; § 1917.152 Welding, cutting, and heating (hot work); and § 1917.153... least thirty (30) days. (c) Testing during ventilation. When mechanical ventilation is used to maintain...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traynor, G.W.; Talbott, J.M.; Moses, D.O.
Building ventilation consumes about 5.8 exajoules of energy each year in the US The annual cost of this energy, used for commercial building fans (1.6 exajoules) and the heating and cooling of outside air (4.2 exajoules), is about $US 33 billion per year. Energy conservation measures that reduce heating and cooling season ventilation rates 15 to 35% in commercial and residential buildings can result in a national savings of about 0.6 to 1.5 exajoules ($US 3-8 billion) per year assuming no reduction of commercial building fan energy use. The most significant adverse environmental impact of reduced ventilation and infiltration ismore » the potential degradation of the buildings indoor air quality. Potential benefits to the US from the implementation of sound indoor air quality and building ventilation reduction policies include reduced building-sector energy consumption; reduced indoor, outdoor, and global air pollution; reduced product costs; reduced worker absenteeism; reduced health care costs; reduced litigation; increased worker well-being and productivity; and increased product quality and competitiveness.« less
The Air Pollution Control Technology Verification Center has selected general ventilation air cleaners as a technology area. The Generic Verification Protocol for Biological and Aerosol Testing of General Ventilation Air Cleaners is on the Environmental Technology Verification we...
NASA Astrophysics Data System (ADS)
Shalaginova, Z. I.
2016-03-01
The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data-processing complex. An example of the multilevel calculation of the heat-hydraulic modes of main heat networks and those connected to them through central heat point distribution networks in Petropavlovsk-Kamchatskii is examined.
Humidification of inspired gases during mechanical ventilation.
Gross, J L; Park, G R
2012-04-01
Humidification of inspired gas is mandatory for all mechanically ventilated patients to prevent secretion retention, tracheal tube blockage and adverse changes occurring to the respiratory tract epithelium. However, the debate over "ideal" humidification continues. Several devices are available that include active and passive heat and moisture exchangers and hot water humidifiers Each have their advantages and disadvantages in mechanically ventilated patients. This review explores each device in turn and defines their role in clinical practice.
Termite mounds harness diurnal temperature oscillations for ventilation
King, Hunter; Ocko, Samuel; Mahadevan, L.
2015-01-01
Many species of millimetric fungus-harvesting termites collectively build uninhabited, massive mound structures enclosing a network of broad tunnels that protrude from the ground meters above their subterranean nests. It is widely accepted that the purpose of these mounds is to give the colony a controlled microclimate in which to raise fungus and brood by managing heat, humidity, and respiratory gas exchange. Although different hypotheses such as steady and fluctuating external wind and internal metabolic heating have been proposed for ventilating the mound, the absence of direct in situ measurement of internal air flows has precluded a definitive mechanism for this critical physiological function. By measuring diurnal variations in flow through the surface conduits of the mounds of the species Odontotermes obesus, we show that a simple combination of geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient temperature oscillations for ventilation. In particular, the thin outer flutelike conduits heat up rapidly during the day relative to the deeper chimneys, pushing air up the flutes and down the chimney in a closed convection cell, with the converse situation at night. These cyclic flows in the mound flush out CO2 from the nest and ventilate the colony, in an unusual example of deriving useful work from thermal oscillations. PMID:26316023
Termite mounds harness diurnal temperature oscillations for ventilation.
King, Hunter; Ocko, Samuel; Mahadevan, L
2015-09-15
Many species of millimetric fungus-harvesting termites collectively build uninhabited, massive mound structures enclosing a network of broad tunnels that protrude from the ground meters above their subterranean nests. It is widely accepted that the purpose of these mounds is to give the colony a controlled microclimate in which to raise fungus and brood by managing heat, humidity, and respiratory gas exchange. Although different hypotheses such as steady and fluctuating external wind and internal metabolic heating have been proposed for ventilating the mound, the absence of direct in situ measurement of internal air flows has precluded a definitive mechanism for this critical physiological function. By measuring diurnal variations in flow through the surface conduits of the mounds of the species Odontotermes obesus, we show that a simple combination of geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient temperature oscillations for ventilation. In particular, the thin outer flutelike conduits heat up rapidly during the day relative to the deeper chimneys, pushing air up the flutes and down the chimney in a closed convection cell, with the converse situation at night. These cyclic flows in the mound flush out CO2 from the nest and ventilate the colony, in an unusual example of deriving useful work from thermal oscillations.
NASA Astrophysics Data System (ADS)
Sallée, J.-B.; Shuckburgh, E.; Bruneau, N.; Meijers, A. J. S.; Bracegirdle, T. J.; Wang, Z.; Roy, T.
2013-04-01
The ability of the models contributing to the fifth Coupled Models Intercomparison Project (CMIP5) to represent the Southern Ocean hydrological properties and its overturning is investigated in a water mass framework. Models have a consistent warm and light bias spread over the entire water column. The greatest bias occurs in the ventilated layers, which are volumetrically dominated by mode and intermediate layers. The ventilated layers have been observed to have a strong fingerprint of climate change and to impact climate by sequestrating a significant amount of heat and carbon dioxide. The mode water layer is poorly represented in the models and both mode and intermediate water have a significant fresh bias. Under increased radiative forcing, models simulate a warming and lightening of the entire water column, which is again greatest in the ventilated layers, highlighting the importance of these layers for propagating the climate signal into the deep ocean. While the intensity of the water mass overturning is relatively consistent between models, when compared to observation-based reconstructions, they exhibit a slightly larger rate of overturning at shallow to intermediate depths, and a slower rate of overturning deeper in the water column. Under increased radiative forcing, atmospheric fluxes increase the rate of simulated upper cell overturning, but this increase is counterbalanced by diapycnal fluxes, including mixed-layer horizontal mixing, and mostly vanishes.
Boyer, Alexandre; Vargas, Frederic; Hilbert, Gilles; Gruson, Didier; Mousset-Hovaere, Maud; Castaing, Yves; Dreyfuss, Didier; Ricard, Jean Damien
2010-08-01
Adverse respiratory and gasometrical effects have been described in patients with acute respiratory failure (ARF) undergoing noninvasive ventilation (NIV) with standard heat and moisture exchangers (HME). We decided to evaluate respiratory parameters and arterial blood gases (ABG) of patients during NIV with small dead space HME compared with heated humidifier (HH). Prospective randomized crossover study. A 16-bed medical intensive care unit (ICU). Fifty patients receiving NIV for ARF. The effects of HME and HH on respiratory rate, minute ventilation, EtCO(2), oxygen saturation, airway occlusion pressure at 0.1 s, ABG, and comfort perception were compared during two randomly determined NIV periods of 30 min. The relative impact of HME and HH on these parameters was successively compared with or without addition of a flex tube (40 and 10 patients, respectively). No difference was observed between HME and HH regarding any of the studied parameters, whether or not a flex tube was added. If one decides to humidify patients' airways during NIV, one may do so with small dead space HME or HH without altering respiratory parameters.
Thermoregulation and ventilation of termite mounds.
Korb, Judith
2003-05-01
Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO(2) concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.
Thermoregulation and ventilation of termite mounds
NASA Astrophysics Data System (ADS)
Korb, Judith
2003-05-01
Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO2 concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.
Particulate matter in animal rooms housing mice in microisolation caging.
Langham, Gregory L; Hoyt, Robert F; Johnson, Thomas E
2006-11-01
Reactions to allergens created by laboratory animals are among the most frequently encountered occupational illnesses associated with research animals. Personnel are exposed to these allergens through airborne particulate matter. Although the use of microisolation caging systems can reduce particulate matter concentrations in rooms housing mice, the operating parameters of ventilated caging systems vary extensively. We compared room air in mouse rooms containing 5 different types of caging: 1) individually ventilated caging under positive pressure with filtered intake air and exhaust air returned to the room (VCR+), 2) individually ventilated caging under negative pressure with exhaust air returned to the room (VCR-), 3) individually ventilated caging under positive pressure with exhaust air returned to the heating, ventilation, and air-conditioning (HVAC) system, 4) individually ventilated caging under negative pressure with exhaust air returned to the HVAC system, and 5) static microisolation cages. We found that rooms under VCR conditions had fewer large particles than did those under other conditions, but the numbers of 0.3 microm particles did not differ significantly among systems. Static, positive or negative pressure applied to caging units as well as route of air exhaust were found to have little influence on the total number of particles in the atmosphere. Therefore, considering the heat load, odor, and overall particulate concentration in the room, placing individually ventilated caging under negative pressure with exhaust air returned to the HVAC system appears to be the optimal overall choice when using microisolation housing for rodents.
[MICROCLIMATE CONDITION IN SUBWAY CARS IN THE SUMMER PERIOD OF THE YEAR].
Leksin, A G; Evlampieva, M N; Timoshenkova, E V; Morgunov, A V; Kaptsov, V A
2015-01-01
There are presented the results of the work, which aims to identify the relationship between the temperature of air in the salons of subway cars from the heat output of passengers in different people occupancy of cars during "peak hours", and to determine the efficacy offorced air handling regular ventilation or air conditioning system to remove the elevated heat load on passengers. In the work there was used the method of calculating the amount of heat output of 215 passengers (nominal fullness of the chamber) and the simulation method of heat and moisture output of the same number of passengers. The operating system of ventilation has been shown to fail to decline the average temperature of the air in the passenger compartment to the optimum values and most efficient approach for the reducing the heat load on the passengers is the use of air conditioning systems.
NASA Astrophysics Data System (ADS)
Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.
2015-11-01
This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.
A study of energy use for ventilation and air-conditioning systems in Hong Kong
NASA Astrophysics Data System (ADS)
Yu, Chung Hoi Philip
Most of the local modern buildings are high-rise with enclosed structure. Mechanical ventilation and air conditioning (MVAC) systems are installed for thermal comfort. Various types of MVAC systems found in Hong Kong were critically reviewed with comments on their characteristics in energy efficiency as well as application. The major design considerations were also discussed. Besides MVAC, other energy-consuming components in commercial buildings were also identified, such as lighting, lifts and escalators, office equipment, information technology facilities, etc. A practical approach has been adopted throughout this study in order that the end results will have pragmatic value to the heating, ventilating and air-conditioning (HVAC) industry in Hong Kong. Indoor Air Quality (IAQ) has become a major issue in commercial buildings worldwide including Hong Kong. Ventilation rate is no doubt a critical element in the design of HVAC systems, which can be realized more obviously in railway train compartments where the carbon dioxide level will be built up quickly when the compartments are crowded during rush hours. A study was carried out based on a simplified model using a train compartment that is equipped with an MVAC system. Overall Thermal Transfer Value (OTTV) is a single-value parameter for controlling building energy use and is relatively simple to implement legislatively. The local government has taken a first step in reacting to the worldwide concern of energy conservation and environmental protection since 1995. Different methods of OTTV calculation were studied and the computation results were compared. It gives a clear picture of the advantages and limitations for each method to the building designers. However, due to the limitations of using OTTV as the only parameter for building energy control, some new approaches to a total control of building energy use were discussed and they might be considered for future revision of the building energy codes in Hong Kong. A sample database of 20 existing commercial buildings was established for further analysis of building energy use. Heat gains through building envelopes were reviewed with reference to fundamental theory behind as well as the heat transfer equations presented in the literature. The prevailing methodologies of cooling load estimation and energy calculation were studied. Building energy auditing methods were discussed with reference to the local practice as well as international standards and guides. The common procedures of building energy auditing with three stages were outlined: historical data collection/analysis, preliminary site survey, and detailed energy consumption investigation. A typical commercial building was selected for detailed study of energy use by MVAC systems. (Abstract shortened by UMI.)
Solar Thermal Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biesinger, K; Cuppett, D; Dyer, D
2012-01-30
HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With themore » use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with Kalwall building panels. An added feature of the Kalwall system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.« less
Efficacy of heat treatment for disinfestation of concrete grain silos
USDA-ARS?s Scientific Manuscript database
Field experiments were conducted in 2007 and 2008 to evaluate heat treatment for disinfestations of empty concrete elevator silos. A Mobile Heat Treatment Unit was used to introduce heat into silos to attain target conditions of 50°C for at least 6 h. Ventilated plastic containers with a capacity of...
Analysis on ventilation pressure of fire area in longitudinal ventilation of underground tunnel
NASA Astrophysics Data System (ADS)
Li, Jiaxin; Li, Yanfeng; Feng, Xiao; Li, Junmei
2018-03-01
In order to solve the problem of ventilation pressure loss in the fire area under the fire condition, the wind pressure loss model of the fire area is established based on the thermodynamic equilibrium relation. The semi-empirical calculation formula is obtained by using the model experiment and CFD simulation. The validity of the formula is verified. The results show that the ventilation pressure loss in the fire zone is proportional to the convective heat release rate at the critical velocity, which is inversely proportional to the upstream ventilation velocity and the tunnel cross-sectional area. The proposed formula is consistent with the law of the tunnel fire test fitting formula that results are close, in contrast, the advantage lies in a clear theoretical basis and ventilation velocity values. The resistance of road tunnel ventilation system is calculated accurately and reliably, and then an effective emergency ventilation operation program is developed. It is necessary to consider the fire zone ventilation pressure loss. The proposed ventilation pressure loss formula can be used for design calculation after thorough verification.
The ventilation problem in schools: literature review
Fisk, W. J.
2017-07-06
Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less
The ventilation problem in schools: literature review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, W. J.
Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less
Lorente, Leonardo; Lecuona, María; Jiménez, Alejandro; Mora, María L; Sierra, Antonio
2006-01-01
Introduction Some guidelines to prevent ventilator-associated pneumonia (VAP) do not establish a recommendation for the preferential use of either heat and moisture exchangers (HMEs) or heated humidifiers (HHs), while other guidelines clearly advocate the use of HMEs. The aim of this study was to determine the incidence of VAP associated with HHs or HMEs. Methods A randomized study was conducted in the intensive care unit of a university hospital involving patients expected to require mechanical ventilation for >5 days. Patients were assigned to two groups; one group received HH and the other group received HME. Tracheal aspirate samples were obtained on endotracheal intubation, then twice a week, and finally on extubation, in order to diagnose VAP. Throat swabs were taken on admission to the intensive care unit, then twice a week, and finally at discharge from the intensive care unit in order to classify VAP as primary endogenous, secondary endogenous, or exogenous. Results A total of 120 patients were assigned to HMEs (60 patients) and HHs (60 patients); 16 patients received mechanical ventilation for less than five days and were excluded from the analysis. Data analysis of the remaining 104 patients (53 HMEs and 51 HHs) showed no significant differences between groups regarding sex, age, Acute Physiology and Chronic Health Evaluation II score, pre-VAP use of antibiotics, days on mechanical ventilation, and diagnosis group. VAP was found in eight of 51 (15.69%) patients in the HH group and in 21 of 53 (39.62%) patients in the HME group (P = 0.006). The median time free of VAP was 20 days (95% confidence interval, 13.34–26.66) for the HH group and was 42 days (95% confidence interval, 35.62–48.37) for the HME group (P <0.001). Cox regression analysis showed the HME as a risk factor for VAP (hazard rate, 16.2; 95% confidence interval, 4.54–58.04; P < 0.001). Conclusion The patients mechanically ventilated for more than five days developed a lower incidence of VAP with a HH than with a HME. PMID:16884530
Water supply rates for recirculating evaporative cooling systems in poultry housing
USDA-ARS?s Scientific Manuscript database
Evaporative cooling (EC) is an important tool to reduce heat stress in animal housing systems. Expansion of ventilation capacity in tunnel ventilated poultry facilities has resulted in increased water demand for EC systems. As water resources become more limited and costly, proper planning and des...
Computational Fluid Dynamics (CFD) investigation onto passenger car disk brake design
NASA Astrophysics Data System (ADS)
Munisamy, Kannan M.; Kanasan Moorthy, Shangkari K.
2013-06-01
The aim of this study is to investigate the flow and heat transfer in ventilated disc brakes using Computational Fluid Dynamics (CFD). NACA Series blade is designed for ventilated disc brake and the cooling characteristic is compared to the baseline design. The ventilated disc brakes are simulated using commercial CFD software FLUENTTM using simulation configuration that was obtained from experiment data. The NACA Series blade design shows improvements in Nusselt number compared to baseline design.
19. Heat Pump, view to the southwest. This system provides ...
19. Heat Pump, view to the southwest. This system provides ventilation air heating and cooling throughout the powerhouse. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT
10 CFR 431.171 - Purpose and scope. [Reserved
Code of Federal Regulations, 2011 CFR
2011-01-01
... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Provisions for Commercial Heating, Ventilating, Air-Conditioning and Water Heating Products § 431.171 Purpose and scope. [Reserved] ...
Water content of delivered gases during non-invasive ventilation in healthy subjects.
Lellouche, François; Maggiore, Salvatore Maurizio; Lyazidi, Aissam; Deye, Nicolas; Taillé, Solenne; Brochard, Laurent
2009-06-01
No clear recommendation exists concerning humidification during non-invasive ventilation (NIV) and high flow CPAP, and few hygrometric data are available. We measured hygrometry during NIV delivered to healthy subjects with different humidification strategies: heated humidifier (HH), heat and moisture exchanger, (HME) or no humidification (NoH). For each strategy, a turbine and an ICU ventilator were used with different FiO(2) settings, with and without leaks. During CPAP, two different HH and NoH were tested. Inspired gases hygrometry was measured, and comfort was assessed. On a bench, we also assessed the impact of ambient air temperature, ventilator temperature and minute ventilation on HH performances (with NIV settings). During NIV, with NoH, gas humidity was very low when an ICU ventilator was used (5 mgH(2)O/l), but equivalent to ambient air hygrometry with a turbine ventilator at minimal FiO(2) (13 mgH(2)O/l). HME and HH had comparable performances (25-30 mgH(2)O/l), but HME's effectiveness was reduced with leaks (15 mgH(2)O/l). HH performances were reduced by elevated ambient air and ventilator output temperatures. During CPAP, dry gases (5 mgH(2)O/l) were less tolerated than humidified gases. Gases humidified at 15 or 30 mgH(2)O/l were equally tolerated. This study provides data on the level of humidity delivered with different humidification strategies during NIV and CPAP. HH and HME provide gas with the highest water content. Comfort data suggest that levels above 15 mgH(2)O/l are well tolerated. In favorable conditions, HH and HMEs are capable of providing such values, even in the presence of leaks.
Summer Thermal Performance of Ventilated Roofs with Tiled Coverings
NASA Astrophysics Data System (ADS)
Bortoloni, M.; Bottarelli, M.; Piva, S.
2017-01-01
The thermal performance of a ventilated pitched roof with tiled coverings is analysed and compared with unventilated roofs. The analysis is carried out by means of a finite element numerical code, by solving both the fluid and thermal problems in steady-state. A whole one-floor building with a pitched roof is schematized as a 2D computational domain including the air-permeability of tiled covering. Realistic data sets for wind, temperature and solar radiation are used to simulate summer conditions at different times of the day. The results demonstrate that the batten space in pitched roofs is an effective solution for reducing the solar heat gain in summer and thus for achieving better indoor comfort conditions. The efficiency of the ventilation is strictly linked to the external wind conditions and to buoyancy forces occurring due to the heating of the tiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutton, Spencer M.; Fisk, William J.
For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% asmore » the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.« less
Jaber, Samir; Chanques, Gérald; Matecki, Stefan; Ramonatxo, Michèle; Souche, Bruno; Perrigault, Pierre-François; Eledjam, Jean-Jacques
2002-11-01
To compare the short-term effects of a heat and moisture exchanger (HME) and a heated humidifier (HH) during non-invasive ventilation (NIV). Prospective, clinical investigation. Intensive care unit of a university hospital. Twenty-four patients with acute respiratory failure (ARF). Each patient was studied with a HME and a HH in a random order during two consecutive 20min periods of NIV. Respiratory rate (RR), expiratory tidal volume (VTe) and expiratory minute ventilation (VE) were measured during the last 5 min of each period and blood gases were measured. Mean pressure support and positive end-expiratory pressure levels were, respectively, 15+/-4 and 6+/-2 cmH(2)O. VE was significantly greater with HME than with HH (14.8+/-4.8 vs 13.2+/-4.3 l/min; p<0.001). This increase in VE was the result of a greater RR for HME than for HH (26.5+/-10.6 vs 24.1+/-9.8 breaths/min; p=0.002), whereas the VT for HME was similar to that for HH (674+/-156 vs 643+/-148 ml; p=0.09). Arterial partial pressure of carbon dioxide (PaCO(2)) was significantly higher with a HME than with a HH (43.4+/-8.9 vs 40.8+/-8.2 mmHg; p<0.005), without significantly changing oxygenation. During NIV the increased dead space of a HME can negatively affect ventilatory function and gas exchange. The effect of HME dead space may decrease efficiency of NIV in patients with ARF.
Li, Ya-Chi; Lin, Hui-Ling; Liao, Fang-Chun; Wang, Sing-Siang; Chang, Hsiu-Chu; Hsu, Hung-Fu; Chen, Sue-Hsien; Wan, Gwo-Hwa
2018-01-01
Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. ClinicalTrials.gov PRS / NCT03359148.
NASA Astrophysics Data System (ADS)
Statsenko, Elena; Ostrovaia, Anastasia; Pigurin, Andrey
2018-03-01
This article considers the influence of the building's tallness and the presence of mounting grooved lines on the parameters of heat transfer in the gap of a hinged ventilated facade. A numerical description of the processes occurring in a heat-gravitational flow is given. The average velocity and temperature of the heat-gravitational flow of a structure with open and sealed rusts are determined with unchanged geometric parameters of the gap. The dependence of the parameters influencing the thermomechanical characteristics of the enclosing structure is derived depending on the internal parameters of the system. Physical modeling of real multistory structures is performed by projecting actual parameters onto a reduced laboratory model (scaling).
Gas pre-warming for improving performances of heated humidifiers in neonatal ventilation.
Schena, E; De Paolis, E; Silvestri, S
2011-01-01
Adequate temperature and humidification of gas delivered must be performed during long term neonatal ventilation to avoid potential adverse health effects. Literature shows that performances of heated humidifiers are, at least in some cases, quite poor. In this study, a novel approach to gas conditioning, consisting of gas warming upstream the humidification chamber, is presented. Gas pre-warming, in combination with a control strategy based on a mathematical model taking into account a number of parameters, allows to significantly improve the heated humidifier performances. The theoretical model has been validated and experimental trials have been carried out in the whole volumetric flow-rate (Q) range of neonatal ventilation (lower than 10 L · min(-1)). Experimental results (temperature values ranging from 36 °C to 38 °C and relative humidity values from 90 % to 98 % in the whole range of Q) show values very close to the ideal thermo-hygrometric conditions. The proposed solution allows to avoid vapor condensation at low flow rates and decrease of relative humidity at high flow rates.
Janssens, K; Van Brecht, A; Zerihun Desta, T; Boonen, C; Berckmans, D
2004-06-01
The present paper outlines a modeling approach, which has been developed to model the internal dynamics of heat and moisture transfer in an imperfectly mixed ventilated airspace. The modeling approach, which combines the classical heat and moisture balance differential equations with the use of experimental time-series data, provides a physically meaningful description of the process and is very useful for model-based control purposes. The paper illustrates how the modeling approach has been applied to a ventilated laboratory test room with internal heat and moisture production. The results are evaluated and some valuable suggestions for future research are forwarded. The modeling approach outlined in this study provides an ideal form for advanced model-based control system design. The relatively low number of parameters makes it well suited for model-based control purposes, as a limited number of identification experiments is sufficient to determine these parameters. The model concept provides information about the air quality and airflow pattern in an arbitrary building. By using this model as a simulation tool, the indoor air quality and airflow pattern can be optimized.
NASA Technical Reports Server (NTRS)
Karimi, Amir
1990-01-01
METMAN is a 41-node transient metabolic computer code developed in 1970 and revised in 1989 by Lockheed Engineering and Sciences, Inc. This program relies on a mathematical model to predict the transient temperature distribution in a body influenced by metabolic heat generation and thermal interaction with the environment. A more complex 315-node model is also available that not only simulates the thermal response of a body exposed to a warm environment, but is also capable of describing the thermal response resulting from exposure to a cold environment. It is important to compare the two models for the prediction of the body's thermal response to metabolic heat generation and exposure to various environmental conditions. Discrepancies between the twi models may warrant an investigation of METMAN to ensure its validity for describing the body's thermal response in space environment. The Liquid Cooling and Ventilation Garment is a subsystem of the Extravehicular Mobility Unit (EMU). This garment, worn under the pressure suit, contains the liquid cooling tubing and gas ventilation manifolds; its purpose is to alleviate or reduce thermal stress resulting from metabolic heat generation. There is renewed interest in modifying this garment through identification of the locus of maximum heat transfer at body-liquid cooled tubing interface. The sublimator is a vital component of the Primary Life Support System (PLSS) in the EMU. It acts as a heat sink to remove heat and humidity from the gas ventilating circuit and the liquid cooling loop of the LCVG. The deficiency of the sublimator is that the ice, used as the heat sink, sublimates into space. There is an effort to minimize water losses in the feedwater circuit of the EMU. This requires developing new concepts to design an alternative heat sink system. Efforts are directed to review and verify the heat transfer formulation of the analytical model employed by METMAN. A conceptual investigation of regenerative non-venting heat-sink subsystem for the EMU is recommended.
Potential of HVAC and solar technologies for hospital retrofit to reduce heating energy consumption
NASA Astrophysics Data System (ADS)
Pop, Octavian G.; Abrudan, Ancuta C.; Adace, Dan S.; Pocola, Adrian G.; Balan, Mugur C.
2018-02-01
The study presents a combination of several energy efficient technologies together with their potential to reduce the energy consumption and to increase the comfort through the retrofit of a hospital building. The existing situation is characterized by an old and inefficient heating system, by the complete missing of any ventilation and by no cooling. The retrofit proposal includes thermal insulation and a distributed HVAC system consisting of several units that includes air to air heat exchangers and air to air heat pumps. A condensing boiler was also considered for heating. A solar thermal system for preparing domestic hot water and a solar photovoltaic system to assist the HVAC units are also proposed. Heat transfer principles are used for modelling the thermal response of the building to the environmental parameters and thermodynamic principles are used for modelling the behaviour of HVAC, solar thermal system and photovoltaic system. All the components of the heating loads were determined for one year period. The study reveals the capacity of the proposed systems to provide ventilation and thermal comfort with a global reduction of energy consumption of 71.6 %.
29 CFR 1915.51 - Ventilation and protection in welding, cutting and heating.
Code of Federal Regulations, 2010 CFR
2010-07-01
... from the exposed arc, and surfaces prepared with chlorinated solvents shall be thoroughly dry before... heating shall be protected by suitable eye protective equipment in accordance with the requirements of...
Energy efficiency evaluation of hospital building office
NASA Astrophysics Data System (ADS)
Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.
2017-01-01
One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.
Reducing Building HVAC Costs with Site-Recovery Energy
ERIC Educational Resources Information Center
Pargeter, Stephen J.
2012-01-01
Building owners are caught between two powerful forces--the need to lower energy costs and the need to meet or exceed outdoor air ventilation regulations for occupant health and comfort. Large amounts of energy are wasted each day from commercial, institutional, and government building sites as heating, ventilation, and air conditioning (HVAC)…
Numerical analysis of natural ventilation system in a studio apartment in Bangladesh
NASA Astrophysics Data System (ADS)
Kabir, K. M. Ariful; Hasan, Md. Rakibul; Khan, Md. Abdul Hakim
2017-07-01
The study of temperature and air flow for natural ventilation system has been investigated numerically. A finite element model for studio apartment was developed with the aim of achieving detail energy allocation in the real buildings during the transient process in the walls and internal air. A tool of computational fluid dynamics (CFD) is employed to assist the process. In the tropical regions most of the energy is consumed by the heating, cooling and ventilation appliances. Therefore, the optimize ventilation system will be a suitable and valid option for the saving of energy from the household sector to increase cooling performance and ensuring thermal comfort as well. A mathematical exploration is carried out on full scale dwelling and small scale model and indication is given on the relevance of such a comparison. Calculations are carried out with household heat sources for calm and windy period, but without any human. As expected, for windy periods, the wind is the main driving force behind the internal air flow. However, in calm periods for unsteady flow the internal airflow looks like more complexes through observation.
Solar Heated Space Systems. A Unit of Instruction.
ERIC Educational Resources Information Center
Hutchinson, John; Weber, Robert D.
Designed for use in vocational education programs, this unit on solar space heating contains information and suggestions for teaching at the secondary school level. It focuses on heating, ventilating, and air conditioning programs. Educational objectives and educational objectives with instructional strategies are provided for each of the eight…
NASA Technical Reports Server (NTRS)
Iacomini, Christine; Powers, Aaron; Bower, Chad; Straub-Lopez, Kathrine; Anderson, Grant; MacCallum, Taber; Paul, Heather L.
2007-01-01
Two of the fundamental problems facing the development of a Portable Life Support System (PLSS) for use on Mars, are (i) heat rejection (because traditional technologies use sublimation of water, which wastes a scarce resource and contaminates the premises), and (ii) rejection of carbon dioxide (CO2) in an environment with a CO2 partial pressure (ppCO2) of 0.4-0.9 kPa. Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed to address both these challenges. The technology utilizes an adsorbent that when cooled with liquid CO2 to near sublimation temperatures (195K) removes metabolically-produced CO2 in the ventilation loop. Once fully loaded, the adsorbent is then warmed externally by the ventilation loop (300K), rejecting the captured CO2 to Mars ambient. Two beds are used to provide a continuous cycle of CO2 removal/rejection as well as facilitate heat exchange out of the ventilation loop. Any cryogenic fluid can be used in the application; however, since CO2 is readily available on Mars and can be easily produced and stored on the Martian surface, the solution is rather elegant and less complicated when employing liquid CO2. As some metabolic heat will need to be rejected anyway, finding a practical use for metabolic heat is also an overall benefit to the PLSS. To investigate the feasibility of the technology, a series of experiments were conducted which lead to the selection and partial characterization of an appropriate adsorbent. The Molsiv Adsorbents 13X 8x12 (also known as NaX zeolite) successfully removed CO2 from a simulated ventilation loop at the prescribed temperature swing anticipated during PLSS operating conditions on Mars using a cryogenic fluid. Thermal conductivity of the adsorbent was also measured to eventually aid in a demonstrator design of the technology. These results provide no show stoppers to the development of MTSA technology and allow its development to focus on other design challenges as listed in the conclusions section of this paper.
Ventilation loss and pressurization in the NASA launch/entry suit: Potential for heat stress
NASA Technical Reports Server (NTRS)
Kaufman, Jonathan W.; Dejneka, Katherine Y.; Askew, Gregory K.
1989-01-01
The potential of the NASA Launch/Entry Suit (LES) for producing heat stress in a simulated Space Shuttle cabin environment was studied. The testing was designed to identify potential heat stress hazards if the LES were pressurized or if ventilation were lost. Conditions were designed to simulate an extreme pre-launch situation with chamber temperatures maintained at dry bulb temperature = 27.2 +/- 0.1 C, globe temperature = 27.3 +/- 0.1 C, and wet bulb temperature = 21.1 +/- 0.3 C. Two females and two males, 23 to 34 years of age, were employed in this study, with two subjects having exposures in all 3 conditions. Test durations in the ventilated (V) and unventilated (UV) conditions were designed for 480 minutes, which all subjects achieved. Pressurized runs (Pr) were designed for 45 minutes, which all subjects also achieved. While some significant differences related to experimental conditions were noted in rectal and mean skin temperatures, evaporation rates, sweat rates, and heart rate, these differences were not thought to be physiologically significant. The results indicate that the LES garment, in either the Pr or UV state, poses no danger of inducing unacceptable heat stress under the conditions expected within the Space Shuttle cabin during launch or reentry.
Modeling water vapor and heat transfer in the normal and the intubated airways.
Tawhai, Merryn H; Hunter, Peter J
2004-04-01
Intubation of the artificially ventilated patient with an endotracheal tube bypasses the usual conditioning regions of the nose and mouth. In this situation any deficit in heat or moisture in the air is compensated for by evaporation and thermal transfer from the pulmonary airway walls. To study the dynamics of heat and water transport in the intubated airway, a coupled system of nonlinear equations is solved in airway models with symmetric geometry and anatomically based geometry. Radial distribution of heat, water vapor, and velocity in the airway are described by power-law equations. Solution of the time-dependent system of equations yields dynamic airstream and mucosal temperatures and air humidity. Comparison of model results with two independent experimental studies in the normal and intubated airway shows a close correlation over a wide range of minute ventilation. Using the anatomically based model a range of spatially distributed temperature paths is demonstrated, which highlights the model's ability to predict thermal behavior in airway regions currently inaccessible to measurement. Accurate representation of conducting airway geometry is shown to be necessary for simulating mouth-breathing at rates between 15 and 100 l x min(-1), but symmetric geometry is adequate for the low minute ventilation and warm inspired air conditions that are generally supplied to the intubated patient.
49 CFR 175.310 - Transportation of flammable liquid fuel; aircraft only means of transportation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ventilation. (4) Each area or compartment in which the fuel is loaded is suitably ventilated to prevent the... the ground. (6) Before each flight, the pilot-in-command: (i) Prohibits smoking, lighting matches, the...
A ventilation intervention study in classrooms to improve indoor air quality: the FRESH study.
Rosbach, Jeannette T M; Vonk, Machiel; Duijm, Frans; van Ginkel, Jan T; Gehring, Ulrike; Brunekreef, Bert
2013-12-17
Classroom ventilation rates often do not meet building standards, although it is considered to be important to improve indoor air quality. Poor indoor air quality is thought to influence both children's health and performance. Poor ventilation in The Netherlands most often occurs in the heating season. To improve classroom ventilation a tailor made mechanical ventilation device was developed to improve outdoor air supply. This paper studies the effect of this intervention. The FRESH study (Forced-ventilation Related Environmental School Health) was designed to investigate the effect of a CO2 controlled mechanical ventilation intervention on classroom CO2 levels using a longitudinal cross-over design. Target CO2 concentrations were 800 and 1200 parts per million (ppm), respectively. The study included 18 classrooms from 17 schools from the north-eastern part of The Netherlands, 12 experimental classrooms and 6 control classrooms. Data on indoor levels of CO2, temperature and relative humidity were collected during three consecutive weeks per school during the heating seasons of 2010-2012. Associations between the intervention and weekly average indoor CO2 levels, classroom temperature and relative humidity were assessed by means of mixed models with random school-effects. At baseline, mean CO2 concentration for all schools was 1335 ppm (range: 763-2000 ppm). The intervention was able to significantly decrease CO2 levels in the intervention classrooms (F (2,10) = 17.59, p < 0.001), with a mean decrease of 491 ppm. With the target set at 800 ppm, mean CO2 was 841 ppm (range: 743-925 ppm); with the target set at 1200 ppm, mean CO2 was 975 ppm (range: 887-1077 ppm). Although the device was not capable of precisely achieving the two predefined levels of CO2, our study showed that classroom CO2 levels can be reduced by intervening on classroom ventilation using a CO2 controlled mechanical ventilation system.
Impact of Room Ventilation Rates on Mouse Cage Ventilation and Microenvironment.
Reeb, Carolyn K.; Jones, Robert B.; Bearg, David W.; Bedigian, Hendrick; Paigen, Beverly
1997-01-01
To assess the impact of room ventilation on animal cage microenvironment, intracage ventilation rate, temperature, humidity, and concentrations of carbon dioxide and ammonia were monitored in nonpressurized, bonnet-topped mouse cages. Cages on the top, middle, and bottom rows of a mouse rack were monitored at room ventilation rates of 0, 5, 10, and 20 air changes/h (ACH). Ventilation inside the animal cage increased somewhat from 12.8 to 18.9 ACH as room ventilation rate in- creased from 0 to 20 ACH, but the differences were not statistically significant, and most of the increase occurred in cages in the top row nearest to the fresh air supply. Cages containing mice had ventilation rate between 10 and 15 ACH even when room ventilation was reduced to 0 ACH; this ventilation is a result of the thermal heat load of the mice. After 6 days of soiled bedding, intracage ammonia concentration was c 3 ppm at all room ventilation rates and was not affected by increasing room ventilation. Temperature inside cages did not change with increasing ventilation. Humidity inside cages significantly decreased with increasing ventilation, from 55% relative humidity at 5 ACH to 36% relative humidity at 20 ACH. Carbon dioxide concentration decreased from 2,500 ppm to 1,900 ppm when ventilation rate increased from 5 ACH to 10 ACH, but no further significant decrease was observed at 20 ACH. In conclusion, increasing the room ventilation rate higher than 5 ACH did not result in significant improvements in the cage microenvironment.
Solar Energy to Help Heat Major Commercial Facility
feet of transpired solar collectors developed at NREL that will pre-heat incoming ventilation air collector was recognized by Popular Science and Research and Development magazines in 1994 as one of the
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo
2009-01-01
As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Conger, Bruce; Sompyrac, Robert; Chamberlain, Mateo
2008-01-01
As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.
Dormitory renovation project reduces energy use by 69%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokayko, M.J.
1997-06-01
Baldwin Hall is a three-story, 46,000 ft{sup 2} (4,273 m{sup 1}) dormitory on the campus of Allegheny College in Meadville, Pa. The building was originally built in the 1950s; an additional wing was added in the 1970s so that it has about 37,000 ft{sup 2} (3,437 m{sup 2}). The building contains approximately 100 double-occupancy student rooms; three common bathroom groups per floor; central study, lounge, and computer areas; and a laundry. Design for the renovation started in the winter of 1993; construction took place in the summer of 1994. The major goals of the renovation were: (1) to replace themore » entire building heating system (central boiler plant, distribution piping, and room heating terminals); (2) add a ventilation system within the building; (3) upgrade the building electrical system; (4) provide computer data cabling and cable TV wiring to each room; and, (5) improve room and hallway lighting and finishes.« less
Today's Leaders for a Sustainable Tomorrow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Bryan
2013-02-27
Today's Leaders for a Sustainable Tomorrow is a collaboration of five residential environmental learning centers (Audubon Center of the North Woods, Deep Portage Learning Center, Laurentian Environmental Center, Long Lake Conservation Center and Wolf Ridge Environmental Learning Center) that together increased energy efficiency, energy conservation and renewable energy technologies through a number of different means appropriate for each unique center. For energy efficiency upgrades the centers installed envelope improvements to seal air barriers through better insulation in walls, ceilings, windows, doors as well as the installation of more energy efficient windows, doors, lighting and air ventilation systems. Through energy sub-metermore » monitoring the centers are able to accurately chart the usage of energy at each of their campuses and eliminate unnecessary energy usage. Facilities reduced their dependence on fossil fuel energy sources through the installation of renewable energy technologies including wood gasification, solar domestic hot water, solar photovoltaic, solar air heat, geothermal heating and wind power. Centers also installed energy education displays on the specific renewable energy technologies used at the center.« less
Li, Ya-Chi; Lin, Hui-Ling; Liao, Fang-Chun; Wang, Sing-Siang; Chang, Hsiu-Chu; Hsu, Hung-Fu; Chen, Sue-Hsien
2018-01-01
Background Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. Methods The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. Results The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. Conclusions Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. Trial registration ClinicalTrials.gov PRS / NCT03359148 PMID:29547638
Humidification during high-frequency oscillatory ventilation for adults: a bench study.
Chikata, Yusuke; Imanaka, Hideaki; Ueta, Masahiko; Nishimura, Masaji
2010-12-01
High-frequency oscillatory ventilation (HFOV) has recently been applied to acute respiratory distress syndrome patients. However, the issue of humidification during HFOV has not been investigated. In a bench study, we evaluated humidification during HFOV for adults to test if adequate humidification was achieved in 2 different HFOV systems. We tested 2 brands of adult HFOV ventilators, the R100 (Metran, Japan) and the 3100B (SensorMedics, CA), under identical bias flow. A heated humidifier consisting of porous hollow fiber (Hummax II, Metran) was set for the R100, and a passover-type heated humidifier (MR850, Fisher & Paykel) was set for the 3100B, while inspiratory heating wire was applied to both systems. Each ventilator was connected to a lung model in an incubator. Absolute humidity, relative humidity and temperature at the airway opening were measured using a hygrometer under a variety of ventilatory settings: 3 stroke volumes/amplitudes, 3 frequencies, and 2 mean airway pressures. The R100 ventilator showed higher absolute humidity, higher relative humidity, and lower temperature than the 3100B. In the R100, as stroke volume and frequency increased, absolute humidity and temperature increased. In the 3100B, amplitude, frequency, and mean airway pressure minimally affected absolute humidity and temperature. Relative humidity was almost 100% in the R100, while it was 80.5±2.3% in the 3100B. Humidification during HFOV for adults was affected by stroke volume and frequency in the R100, but was not in the 3100B. Absolute humidity was above 33 mgH_2 O/L in these 2 systems under a range of settings.
Supply Ventilation and Prevention of Carbon Monoxide (II) Ingress into Building Premises
NASA Astrophysics Data System (ADS)
Litvinova, N. A.
2017-11-01
The article contains the relationships of carbon monoxide (II) concentration versus height-above-ground near buildings derived based on results of studies. The results of studies are crucial in preventing external pollutants ingress into a ventilation system. Being generated by external emission sources, such as motor vehicles and city heating plants, carbon monoxide (II) enters the premises during operation of a supply ventilation system. Fresh air nomographic charts were drawn to select the height of a fresh air intake into the ventilation system. Nomographic charts take into account external sources. The selected emission sources are located at various levels above ground relative to the building. The recommendations allow designing supply ventilation taking into account the quality of ambient air through the whole building height.
NASA Technical Reports Server (NTRS)
Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory
2013-01-01
NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2014 CFR
2014-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2013 CFR
2013-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2012 CFR
2012-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2011 CFR
2011-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
NREL Solar Researcher Honored with ASES Abbot Award | News | NREL
desiccant cooling test laboratory, producing NREL's solar industrial process heat design handbook , developing stretched-membrane parabolic dish solar concentrators, inventing a high-performance heat exchanger the sun's heat to warm the building ventilation air. Kutscher has a B.S. degree in physics from the
De Sousa, Justin; Cheatham, Christopher; Wittbrodt, Matthew
2014-11-01
This study investigated the effects that a form fitted, moisture-wicking fabric shirt, promoted to have improved evaporative and ventilation properties, has on the physiological and perceptual responses during exercise in the heat. Ten healthy male participants completed two heat stress tests consisting of 45 min of exercise (50% VO2peak) in a hot environment (33 °C, 60% RH). One heat stress test was conducted with the participant wearing a 100% cotton short sleeved t-shirt and the other heat stress test was conducted with the participant wearing a short sleeved synthetic shirt (81% polyester and 19% elastane). Rectal temperature was significantly lower (P < 0.05) in the synthetic condition during the last 15 min of exercise. Furthermore, the synthetic polyester shirt retained less sweat (P < 0.05). As exercise duration increases, the ventilation and evaporation properties of the synthetic garment may prove beneficial in the preservation of body temperature during exercise in the heat. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Key considerations on nebulization of antimicrobial agents to mechanically ventilated patients.
Rello, J; Rouby, J J; Sole-Lleonart, C; Chastre, J; Blot, S; Luyt, C E; Riera, J; Vos, M C; Monsel, A; Dhanani, J; Roberts, J A
2017-09-01
Nebulized antibiotics have an established role in patients with cystic fibrosis or bronchiectasis. Their potential benefit to treat respiratory infections in mechanically ventilated patients is receiving increasing interest. In this consensus statement of the European Society of Clinical Microbiology and Infectious Diseases, the body of evidence of the therapeutic utility of aerosolized antibiotics in mechanically ventilated patients was reviewed and resulted in the following recommendations: Vibrating-mesh nebulizers should be preferred to jet or ultrasonic nebulizers. To decrease turbulence and limit circuit and tracheobronchial deposition, we recommend: (a) the use of specifically designed respiratory circuits avoiding sharp angles and characterized by smooth inner surfaces, (b) the use of specific ventilator settings during nebulization including use of a volume controlled mode using constant inspiratory flow, tidal volume 8 mL/kg, respiratory frequency 12 to 15 bpm, inspiratory:expiratory ratio 50%, inspiratory pause 20% and positive end-expiratory pressure 5 to 10 cm H 2 O and (c) the administration of a short-acting sedative agent if coordination between the patient and the ventilator is not obtained, to avoid patient's flow triggering and episodes of peak decelerating inspiratory flow. A filter should be inserted on the expiratory limb to protect the ventilator flow device and changed between each nebulization to avoid expiratory flow obstruction. A heat and moisture exchanger and/or conventional heated humidifier should be stopped during the nebulization period to avoid a massive loss of aerosolized particles through trapping and condensation. If these technical requirements are not followed, there is a high risk of treatment failure and adverse events in mechanically ventilated patients receiving nebulized antibiotics for pneumonia. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Buildings operations and ETS exposure.
Spengler, J D
1999-01-01
Mechanical systems are used in buildings to provide conditioned air, dissipate thermal loads, dilute contaminants, and maintain pressure differences. The characteristics of these systems and their operations h implications for the exposures of workers to environmental tobacco smoke (ETS) and for the control of these exposures. This review describes the general features of building ventilation systems and the efficacy of ventilation for controlling contaminant concentrations. Ventilation can reduce the concentration of ETS through dilution, but central heating, ventilating, and air conditioning (HVAC) can also move air throughout a building that has been contaminated by ETS. An understanding of HVAC systems is needed to develop models for exposures of workers to ETS. Images Figure 1 Figure 2 Figure 3 PMID:10375293
Anatomy-driven design of a prototype video laryngoscope for extremely low birth weight infants
NASA Astrophysics Data System (ADS)
Baker, Katherine; Tremblay, Eric; Karp, Jason; Ford, Joseph; Finer, Neil; Rich, Wade
2010-11-01
Extremely low birth weight (ELBW) infants frequently require endotracheal intubation for assisted ventilation or as a route for administration of drugs or exogenous surfactant. In adults and less premature infants, the risks of this intubation can be greatly reduced using video laryngoscopy, but current products are too large and incorrectly shaped to visualize an ELBW infant's airway anatomy. We design and prototype a video laryngoscope using a miniature camera set in a curved acrylic blade with a 3×6-mm cross section at the tip. The blade provides a mechanical structure for stabilizing the tongue and acts as a light guide for an LED light source, located remotely to avoid excessive local heating at the tip. The prototype is tested on an infant manikin and found to provide sufficient image quality and mechanical properties to facilitate intubation. Finally, we show a design for a neonate laryngoscope incorporating a wafer-level microcamera that further reduces the tip cross section and offers the potential for low cost manufacture.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Provisions for Commercial Heating, Ventilating, Air-Conditioning and Water Heating Products § 431.172... conservation standard for that product. Basic model means, with respect to a commercial HVAC & WH product, all...
Code of Federal Regulations, 2010 CFR
2010-07-01
... utility systems, such as heating and air conditioning systems or building features, such as roof... Americans with Disabilities Act; building systems and utilities (e.g., electrical; heating, ventilation, and air conditioning (HVAC); boiler; medical gasses; roof; elevators); clinical-support facilities (e.g...
Code of Federal Regulations, 2011 CFR
2011-07-01
... utility systems, such as heating and air conditioning systems or building features, such as roof... Americans with Disabilities Act; building systems and utilities (e.g., electrical; heating, ventilation, and air conditioning (HVAC); boiler; medical gasses; roof; elevators); clinical-support facilities (e.g...
A Guide to the Librarian's Responsibility in Achieving Quality in Lighting and Ventilation.
ERIC Educational Resources Information Center
Mason, Ellsworth
1967-01-01
Quality, not intensity, is the keystone to good library lighting. The single most important problem in lighting is glare caused by extremely intense centers of light. Multiple interfiling of light rays is a factor required in library lighting. A fixture that diffuses light well is basic when light emerges from the fixture. It scatters widely,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrend, Dirk; Imfeld, Hans L.; /SLAC
2005-08-17
The Alignment Engineering Group (AEG) makes use of GPS technology for fulfilling part of its above ground surveying tasks at SLAC since early 2002. A base station (SLAC M40) has been set up at a central location of the SLAC campus serving both as master station for real-time kinematic (RTK) operations and as datum point for local GPS campaigns. The Leica RS500 system is running continuously and the GPS data are collected both externally (logging PC) and internally (receiver flashcard). The external logging is facilitated by a serial to Ethernet converter and an Ethernet connection at the station. Internal loggingmore » (ring buffer) is done for data security purposes. The weatherproof boxes for the instrumentation are excellent shelters against rain and wind, but do heat up considerably in sun light. Whereas the GPS receiver showed no problems, the Pacific Crest PDL 35 radio shut down several times due to overheating disrupting the RTK operations. In order to prevent heat-induced shutdowns, a protection against direct sun exposure (shading) and a constant air circulation system (ventilation) were installed. As no further shutdowns have occurred so far, it appears that the two measures successfully mended the heat problem.« less
Expert System For Heat Exchanger
NASA Technical Reports Server (NTRS)
Bagby, D. Gordon; Cormier, Reginald A.
1991-01-01
Diagnosis simplified for non-engineers. Developmental expert-system computer program assists operator in controlling, monitoring operation, diagnosing malfunctions, and ordering repairs of heat-exchanger system dissipating heat generated by 20-kW radio transmitter. System includes not only heat exchanger but also pumps, fans, sensors, valves, reservoir, and associated plumbing. Program conceived to assist operator while avoiding cost of keeping engineer in full-time attendance. Similar programs developed for heating, ventilating, and air-conditioning systems.
Luo, Yi; Lu, Xiaohong; Bi, Wu; Liu, Fan; Gao, Weiwei
2016-01-01
A new Talaromyces species, T. rubrifaciens, was isolated from supply air outlets of heating, ventilation and air conditioning (HVAC) systems in three kinds of public building in Beijing and Nanjing, China. Morphologically it exhibits many characters of section Trachyspermi but is distinguished from other species of this section by restricted growth and broad and strictly biverticillate conidiophores. Phylogenetic analyses based on the internal transcribed spacer rDNA (ITS), β-tubulin (BenA), calmodulin (CaM) and RNA polymerase second largest subunit (RPB2) genes reveal that T. rubrifaciens is a distinct species in section Trachyspermi. © 2016 by The Mycological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2011-09-01
This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, J.L.
1993-11-01
This article discusses various aspects of skylights. Designers, builders, and homeowners who understand the energy aspects of skylights can best select them for comfort as well as appearance. Topics covered include heat loss problems (convection, radiation); the sun and the sun angles; ventilation; skylight ratings for efficiency; pointers about what to look for; comparison of skylight and window U-Factors; ventilation. 3 figs., 1 tab.
Building Assessment Survey and Evaluation Study Summarized Data - HVAC Characteristics
In the Building Assessment Survey and Evaluation (BASE) Study Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues was acquired by examining the building plans, conducting a building walk-through, and speaking with the building owner, manager, and/or operator.
Effect of heat and moisture exchanger (HME) positioning on inspiratory gas humidification.
Inui, Daisuke; Oto, Jun; Nishimura, Masaji
2006-08-08
In mechanically ventilated patients, we investigated how positioning the heat and moisture exchanger (HME) at different places on the ventilator circuit affected inspiratory gas humidification. Absolute humidity (AH) and temperature (TEMP) at the proximal end of endotracheal tube (ETT) were measured in ten mechanically ventilated patients. The HME was connected either directly proximal to the ETT (Site 1) or at before the circuit Y-piece (Site 2: distance from proximal end of ETT and Site 2 was about 19 cm) (Figure. 1). Two devices, Hygrobac S (Mallinckrodt Dar, Mirandola, Italy) and Thermovent HEPA (Smiths Medical International Ltd., Kent, UK) were tested. AH and TEMP were measured with a hygrometer (Moiscope, MERA Co., Ltd., Tokyo, Japan). Hygrobac S provided significantly higher AH and TEMP at both sites than Thermovent HEPA. Both Hygrobac S and with Thermovent HEPA provided significantly higher AH and TEMP when placed proximally to the ETT. Although placement proximal to the ETT improved both AH and TEMP in both HMEs tested, one HME performed better in the distal position than the other HME in the proximal position. We conclude the both the type and placement of HME can make a significant difference in maintaining AH and TEMP during adult ventilation.
Pacific Regional Solar Heating Handbook. Second Edition.
ERIC Educational Resources Information Center
Writers' Development Trust, Toronto (Ontario).
This handbook is intended as a guide for engineers, architects, and individuals familiar with heating and ventilating applications who wish to design a solar heating system for a residential or small commercial building in the Pacific Coast Region. The climate of the region is discussed by selected cities in terms of the effect of climate on solar…
Proceedings from the Workshop on Nanoscience for the Soldier
2001-02-09
Affordable, Durable, Flexible Enabled by Active Devices Miniature Ventilation, Cooling & Heating Multi-Functional, Hybrid Power Embedded Micro-Sensors...functional element • Rifle protection, back support & comfort, load bearing stability & interfaces with family of back packs & cooling/ heating system...Integrated physiological & medical sensors – Conductive or Fiber Optic fibers for Data & Power Distribution – Carbon Fiber Heating at wrists
A Global Assessment of Oceanic Heat Loss: Conductive Cooling and Hydrothermal Redistribution of Heat
NASA Astrophysics Data System (ADS)
Hasterok, D. P.; Chapman, D. S.; Davis, E. E.
2011-12-01
A new dataset of ~15000 oceanic heat flow measurements is analyzed to determine the conductive heat loss through the seafloor. Many heat flow values in seafloor younger than 60 Ma are lower than predicted by models of conductively cooled lithosphere. This heat flow deficit is caused by ventilated hydrothermal circulation discharging at crustal outcrops or through thin sedimentary cover. Globally filtering of heat flow data to retain sites with sediment cover >400 m thick and located >60 km from the nearest seamount minimizes the effect of hydrothermal ventilation. Filtered heat flow exhibit a much higher correlation coefficient with seafloor age (up to 0.95 for filtered data in contrast to 0.5 for unfiltered data) and lower variability (reduction by 30%) within an age bin. A small heat flow deficit still persists at ages <25 Ma, possibly as a result of global filtering limitations and incomplete thermal rebound following sediment burial. Detailed heat flow surveys co-located with seismic data can identify environments favoring conductive heat flow; heat flow collected in these environments is higher than that determined by the global dataset, and is more consistent with conductive cooling of the lithosphere. The new filtered data analysis and a growing number of site specific surveys both support estimates of global heat loss in the range 40-47 TW. The estimated hydrothermal deficit is consistent with estimates from geochemical studies ~7 TW, but is a few TW lower than previous estimates derived from heat flow determinations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... defined in § 431.12; commercial heating, ventilating, and air conditioning, and water heating product... distributor of the covered equipment being evaluated. ISO means International Organization for Standardization... territory or possession of the United States. State regulation means a law or regulation of a State or...
Career Directions: HVACR Technician
ERIC Educational Resources Information Center
Moore, Pam
2005-01-01
Heating/ventilation/air conditioning/refrigeration (HVACR) technicians (also known as "heating and cooling technicians") are the people who install, maintain, test and repair the machines that control temperature, circulation, moisture and purity of air in residential, commercial and industrial buildings. These systems consist of a variety of…
Code of Federal Regulations, 2012 CFR
2012-07-01
... priority group does not include applications for the addition or replacement of building utility systems, such as heating and air conditioning systems or building features, such as roof replacements. Projects... Americans with Disabilities Act; building systems and utilities (e.g., electrical; heating, ventilation, and...
Ventilation of an hydrofoil wake
NASA Astrophysics Data System (ADS)
Arndt, Roger; Lee, Seung Jae; Monson, Garrett
2013-11-01
Ventilation physics plays a role in a variety of important engineering applications. For example, hydroturbine ventilation is used for control of vibration and cavitation erosion and more recently for improving the dissolved oxygen content of the flow through the turbine. The latter technology has been the focus of an ongoing study involving the ventilation of an hydrofoil wake to determine the velocity and size distribution of bubbles in a bubbly wake. This was carried out by utilizing particle shadow velocimetry (PSV). This technique is a non-scattering approach that relies on direct in-line volume illumination by a pulsed source such as a light-emitting diode (LED). The data are compared with previous studies of ventilated flow. The theoretical results of Hinze suggest that a scaling relationship is possible that can lead to developing appropriate design parameters for a ventilation system. Sponsored by ONR and DOE.
Menegueti, Mayra Gonçalves; Auxiliadora-Martins, Maria; Nunes, Altacílio Aparecido
2014-01-01
Patients may acquire ventilator-associated pneumonia (VAP) by aspirating the condensate that originates in the ventilator circuit upon use of a conventional humidifier. The bacteria that colonize the patients themselves can proliferate in the condensate and then return to the airways and lungs when the patient aspirates this contaminated material. Therefore, the use of HME might contribute to preventing pneumonia and lowering the VAP incidence. The aim of this study was to evaluate how the use of HME impacts the probability of VAP occurrence in critically ill patients. On the basis of the acronym "PICO" (Patient, Intervention, Comparison, Outcome), the question that guided this review was "Do critically ill patients under invasive mechanical ventilation present lower VAP incidence when they use HME as compared with HH?". Two of the authors of this review searched the databases PUBMED/Medline, The Cochrane Library, and Latin-American and Caribbean Literature in Health Sciences, LILACS independently; they used the following keywords: "heat and moisture exchanger", AND "heated humidifier", AND "ventilator-associated pneumonia prevention". This review included papers in the English language published from January 1990 to December 2012. This review included ten studies. Comparison between the use of HME and HH did not reveal any differences in terms of VAP occurrence (OR = 0.998; 95% CI: 0.778-1.281). Together, the ten studies corresponded to a total sample of 1077 and 953 patients in the HME and HH groups, respectively; heterogeneity among the investigations was low (I(2) < 50%). Information about the outcome mortality was available in only eight of the ten studies. The use of HME and HH did not afford different results in terms of mortality (OR = 1.09; 95% CI: 0.864-1.376). The total sample size was 884 and 762 patients, respectively. Heterogeneity among the studies was low (I(2) = 0.0%). Current meta-analysis was not sufficient to definitely exclude an associate between heat and moisture exchangers and VAP. Despite the methodological limitations found in selected clinical trials, the current meta-analysis suggests that HME does not decrease VAP incidence or mortality in critically ill patients.
Heated humidification versus heat and moisture exchangers for ventilated adults and children.
Kelly, Margaret; Gillies, Donna; Todd, David A; Lockwood, Catherine
2010-10-01
Humidification by artificial means must be provided when the upper airway is bypassed during mechanical ventilation. Heated humidification (HH) and heat and moisture exchangers (HMEs) are the most commonly used types of artificial humidification in this situation. To determine whether HHs or HMES are more effective in preventing mortality and other complications in people who are mechanically ventilated. We searched the Cochrane Central Register of Controlled Trials (The Cochrane Library 2010, Issue 4) and MEDLINE, EMBASE and CINAHL (January, 2010) to identify relevant randomized controlled trials. We included randomized controlled trials comparing HMEs to HHs in mechanically ventilated adults and children. We included randomized crossover studies. We assessed the quality of each study and extracted the relevant data. Where appropriate, results from relevant studies were meta-analyzed for individual outcomes. We included 33 trials with 2833 participants; 25 studies were parallel group design (n = 2710) and 8 crossover design (n = 123). Only 3 included studies reported data for infants or children. There was no overall effect on artificial airway occlusion, mortality, pneumonia, or respiratory complications; however, the PaCO(2) and minute ventilation were increased when HMEs were compared to HHs and body temperature was lower. The cost of HMEs was lower in all studies that reported this outcome. There was some evidence that hydrophobic HMEs may reduce the risk of pneumonia and that blockages of artificial airways may be increased with the use of HMEs in certain subgroups of patients. There is little evidence of an overall difference between HMEs and HHs. However, hydrophobic HMEs may reduce the risk of pneumonia and the use of an HMEs may increase artificial airway occlusion in certain subgroups of patients. Therefore, HMEs may not be suitable for patients with limited respiratory reserve or prone to airway blockage. Further research is needed relating to hydrophobic versus hygroscopic HMEs and the use of HMEs in the pediatric and neonatal populations. As the design of HMEs evolves, evaluation of new generation HMEs will also need to be undertaken.
Algorithm to illustrate context using dynamic lighting effects
NASA Astrophysics Data System (ADS)
John, Roshy M.; Balasubramanian, T.
2007-09-01
With the invention of Ultra-Bright LED, solid state lighting has come to something which is much more efficient and energy saving when compared to conventional incandescent or fluorescent lighting. With the use of proper driver electronics now a days it is possible to install solid state lighting systems with the cost same as that of any other lighting technology. This paper is a part of the research project we are doing in our lab, which deals with using ultra bright LEDs of different colors for lighting applications. The driver electronics are made in such a way that, the color and brightness of the lights will change according to context. For instance, if one of the users is reading a story or listening to music in a Personal Computer or in a hand held device such as a PDA, the lighting systems and the HVAC (Heating Ventilation Air-conditioning) systems will change dramatically according to the content of the story or the music. The vulnerability of solid-state lighting helps to accomplish such an effect. Such a type of system will help the reader to feel the story mentally and physically as well. We developed complete driver electronics for the system using multiple microcomputers and a full software suite which uses complex algorithms to decode the context from text or music and synchronize it to lighting and HVAC information. The paper also presents some case-study statistics which shows the advantage of using the system to teach kindergarten children, deaf and dumb children and for language learning classes.
Heat stress protects against mechanical ventilation-induced diaphragmatic atrophy.
Ichinoseki-Sekine, Noriko; Yoshihara, Toshinori; Kakigi, Ryo; Sugiura, Takao; Powers, Scott K; Naito, Hisashi
2014-09-01
Mechanical ventilation (MV) is a life-saving intervention in patients who are incapable of maintaining adequate pulmonary gas exchange due to respiratory failure or other disorders. However, prolonged MV is associated with the development of respiratory muscle weakness. We hypothesized that a single exposure to whole body heat stress would increase diaphragm expression of heat shock protein 72 (HSP72) and that this treatment would protect against MV-induced diaphragmatic atrophy. Adult male Wistar rats (n = 38) were randomly assigned to one of four groups: an acutely anesthetized control group (CON) with no MV; 12-h controlled MV group (CMV); 1-h whole body heat stress (HS); or 1-h whole body heat stress 24 h prior to 12-h controlled MV (HSMV). Compared with CON animals, diaphragmatic HSP72 expression increased significantly in the HS and HSMV groups (P < 0.05). Prolonged MV resulted in significant atrophy of type I, type IIa, and type IIx fibers in the costal diaphragm (P < 0.05). Whole body heat stress attenuated this effect. In contrast, heat stress did not protect against MV-induced diaphragm contractile dysfunction. The mechanisms responsible for this heat stress-induced protection remain unclear but may be linked to increased expression of HSP72 in the diaphragm. Copyright © 2014 the American Physiological Society.
Wind Extraction for Natural Ventilation
NASA Astrophysics Data System (ADS)
Fagundes, Tadeu; Yaghoobian, Neda; Kumar, Rajan; Ordonez, Juan
2017-11-01
Due to the depletion of energy resources and the environmental impact of pollution and unsustainable energy resources, energy consumption has become one of the main concerns in our rapidly growing world. Natural ventilation, a traditional method to remove anthropogenic and solar heat gains, proved to be a cost-effective, alternative method to mechanical ventilation. However, while natural ventilation is simple in theory, its detailed design can be a challenge, particularly for wind-driven ventilation, which its performance highly involves the buildings' form, surrounding topography, turbulent flow characteristics, and climate. One of the main challenges with wind-driven natural ventilation schemes is due to the turbulent and unpredictable nature of the wind around the building that impose complex pressure loads on the structure. In practice, these challenges have resulted in founding the natural ventilation mainly on buoyancy (rather than the wind), as the primary force. This study is the initial step for investigating the physical principals of wind extraction over building walls and investigating strategies to reduce the dependence of the wind extraction on the incoming flow characteristics and the target building form.
Characterizing the chaotic nature of ocean ventilation
NASA Astrophysics Data System (ADS)
MacGilchrist, Graeme A.; Marshall, David P.; Johnson, Helen L.; Lique, Camille; Thomas, Matthew
2017-09-01
Ventilation of the upper ocean plays an important role in climate variability on interannual to decadal timescales by influencing the exchange of heat and carbon dioxide between the atmosphere and ocean. The turbulent nature of ocean circulation, manifest in a vigorous mesoscale eddy field, means that pathways of ventilation, once thought to be quasi-laminar, are in fact highly chaotic. We characterize the chaotic nature of ventilation pathways according to a nondimensional "filamentation number," which estimates the reduction in filament width of a ventilated fluid parcel due to mesoscale strain. In the subtropical North Atlantic of an eddy-permitting ocean model, the filamentation number is large everywhere across three upper ocean density surfaces—implying highly chaotic ventilation pathways—and increases with depth. By mapping surface ocean properties onto these density surfaces, we directly resolve the highly filamented structure and confirm that the filamentation number captures its spatial variability. These results have implications for the spreading of atmospherically-derived tracers into the ocean interior.
1999-10-01
measurement was made a heat and moisture exchanger was added to the experimental group. Three more measurements were recorded at 10, 30 and 60 minutes after...system was insufficient, but the addition of a heat and moisture exchanger provided adequate humidification of the inspired gases. In the experimental ...of these patients had a heat and moisture exchanger incorporated in the ventilator Heat and Moisture Exchangers 16 circuit (the experimental group
Effect of ventilation rate on air cleanliness and energy consumption in operation rooms at rest.
Lee, Shih-Tseng; Liang, Ching-Chieh; Chien, Tsung-Yi; Wu, Feng-Jen; Fan, Kuang-Chung; Wan, Gwo-Hwa
2018-02-27
The interrelationships between ventilation rate, indoor air quality, and energy consumption in operation rooms at rest are yet to be understood. We investigate the effect of ventilation rate on indoor air quality indices and energy consumption in ORs at rest. The study investigates the air temperature, relative humidity, concentrations of carbon dioxide, particulate matter (PM), and airborne bacteria at different ventilation rates in operation rooms at rest of a medical center. The energy consumption and cost analysis of the heating, ventilating, and air conditioning (HVAC) system in the operation rooms at rest were also evaluated for all ventilation rates. No air-conditioned operation rooms had very highest PM and airborne bacterial concentrations in the operation areas. The bacterial concentration in the operation areas with 6-30 air changes per hour (ACH) was below the suggested level set by the United Kingdom (UK) for an empty operation room. A 70% of reduction in annual energy cost by reducing the ventilation rate from 30 to 6 ACH was found in the operation rooms at rest. Maintenance of operation rooms at ventilation rate of 6 ACH could save considerable amounts of energy and achieve the goal of air cleanliness.
Mine fire experiments and simulation with MFIRE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laage, L.W.; Yang, Hang
1995-12-31
A major concern of mine fires is the heat generated ventilation disturbances which can move products of combustion (POC) through unexpected passageways. Fire emergency planning requires simulation of the interaction of the fire and ventilation system to predict the state of the ventilation system and the subsequent distribution of temperatures and POC. Several computer models were developed by the U.S. Bureau of Mines (USBM) to perform this simulation. The most recent, MFIRE, simulates a mine`s ventilation system and its response to altered ventilation parameters such as the development of new mine workings or changes in ventilation control structures, external influencemore » such as varying outside temperatures, and internal influences such as fires. Extensive output allows quantitative analysis of the effects of the proposed alteration to die ventilation system. This paper describes recent USBM research to validate MFIRE`s calculation of temperature distribution in an airway due to a mine fire, as temperatures are the most significant source of ventilation disturbances. Fire tests were conducted at the Waldo Mine near Magdalena, NM. From these experiments, temperature profiles were developed as functions of time and distance from the fire and compared with simulations from MFIRE.« less
On the Use of Windcatchers in Schools: Climate Change, Occupancy Patterns, and Adaptation Strategies
Mumovic, D.
2009-01-01
Advanced naturally ventilated systems based on integration of basic natural ventilation strategies such as cross-ventilation and stack effect have been considered to be a key element of sustainable design. In this respect, there is a pressing need to explore the potential of such systems to achieve the recommended occupant comfort targets throughout their lifetime without relying on mechanical means. This study focuses on use of a windcatcher system in typical classrooms which are usually characterized by high and intermittent internal heat gains. The aims of this paper are 3-fold. First, to describe a series of field measurements that investigated the ventilation rates, indoor air quality, and thermal comfort in a newly constructed school located at an urban site in London. Secondly, to investigate the effect of changing climate and occupancy patterns on thermal comfort in selected classrooms, while taking into account adaptive potential of this specific ventilation strategy. Thirdly, to assess performance of the ventilation system using the newly introduced performance-based ventilation standards for school buildings. The results suggest that satisfactory occupant comfort levels could be achieved until the 2050s by a combination of advanced ventilation control settings and informed occupant behavior. PMID:27110216
A ventilation intervention study in classrooms to improve indoor air quality: the FRESH study
2013-01-01
Background Classroom ventilation rates often do not meet building standards, although it is considered to be important to improve indoor air quality. Poor indoor air quality is thought to influence both children’s health and performance. Poor ventilation in The Netherlands most often occurs in the heating season. To improve classroom ventilation a tailor made mechanical ventilation device was developed to improve outdoor air supply. This paper studies the effect of this intervention. Methods The FRESH study (Forced-ventilation Related Environmental School Health) was designed to investigate the effect of a CO2 controlled mechanical ventilation intervention on classroom CO2 levels using a longitudinal cross-over design. Target CO2 concentrations were 800 and 1200 parts per million (ppm), respectively. The study included 18 classrooms from 17 schools from the north-eastern part of The Netherlands, 12 experimental classrooms and 6 control classrooms. Data on indoor levels of CO2, temperature and relative humidity were collected during three consecutive weeks per school during the heating seasons of 2010–2012. Associations between the intervention and weekly average indoor CO2 levels, classroom temperature and relative humidity were assessed by means of mixed models with random school-effects. Results At baseline, mean CO2 concentration for all schools was 1335 ppm (range: 763–2000 ppm). The intervention was able to significantly decrease CO2 levels in the intervention classrooms (F (2,10) = 17.59, p < 0.001), with a mean decrease of 491 ppm. With the target set at 800 ppm, mean CO2 was 841 ppm (range: 743–925 ppm); with the target set at 1200 ppm, mean CO2 was 975 ppm (range: 887–1077 ppm). Conclusions Although the device was not capable of precisely achieving the two predefined levels of CO2, our study showed that classroom CO2 levels can be reduced by intervening on classroom ventilation using a CO2 controlled mechanical ventilation system. PMID:24345039
30 CFR 75.333 - Ventilation controls.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Radiant Heat Energy Source.” This publication is incorporated by reference and may be inspected at any... partitions, permanent stoppings, and regulators include concrete, concrete block, brick, cinder block, tile..., “Standard Test Method for Surface Flammability of Materials Using A Radiant Heat Energy Source.” This...
30 CFR 75.333 - Ventilation controls.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Radiant Heat Energy Source.” This publication is incorporated by reference and may be inspected at any... partitions, permanent stoppings, and regulators include concrete, concrete block, brick, cinder block, tile..., “Standard Test Method for Surface Flammability of Materials Using A Radiant Heat Energy Source.” This...
9 CFR 3.126 - Facilities, indoor.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., vents, fans, or air-conditioning and shall be ventilated so as to minimize drafts, odors, and moisture condensation. (c) Lighting. Indoor housing facilities shall have ample lighting, by natural or artificial means...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Danny S.; Cummings, Jamie E.; Vieira, Robin K.
Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.
Validity of thermally-driven small-scale ventilated filling box models
NASA Astrophysics Data System (ADS)
Partridge, Jamie L.; Linden, P. F.
2013-11-01
The majority of previous work studying building ventilation flows at laboratory scale have used saline plumes in water. The production of buoyancy forces using salinity variations in water allows dynamic similarity between the small-scale models and the full-scale flows. However, in some situations, such as including the effects of non-adiabatic boundaries, the use of a thermal plume is desirable. The efficacy of using temperature differences to produce buoyancy-driven flows representing natural ventilation of a building in a small-scale model is examined here, with comparison between previous theoretical and new, heat-based, experiments.
NASA Astrophysics Data System (ADS)
Li, Zhou; Tang, Haoying; Yuan, Weiwei; Song, Wei; Niu, Yongshan; Yan, Ling; Yu, Min; Dai, Ming; Feng, Siyu; Wang, Menghang; Liu, Tengjiao; Jiang, Peng; Fan, Yubo; Wang, Zhong Lin
2014-04-01
A new approach for fabrication of a long-term and recoverable antimicrobial nanostructure/textile hybrid without increasing the antimicrobial resistance is demonstrated. Using in situ synthesized Ag nanoparticles (NPs) anchored on ZnO nanowires (NWs) grown on textiles by a ‘dip-in and light-irradiation’ green chemical method, we obtained ZnONW@AgNP nanocomposites with small-size and uniform Ag NPs, which have shown superior performance for antibacterial applications. These new Ag/ZnO/textile antimicrobial composites can be used for wound dressings and medical textiles for topical and prophylactic antibacterial treatments, point-of-use water treatment to improve the cleanliness of water and antimicrobial air filters to prevent bioaerosols accumulating in ventilation, heating, and air-conditioning systems.
Pilot Testing of Commercial Refrigeration-Based Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, Adam; Clark, Jordan; Deru, Michael
Supermarkets potentially offer a substantial demand response (DR) resource because of their high energy intensity and use patterns. This report describes a pilot project conducted to better estimate supermarket DR potential. Previous work has analyzed supermarket DR using heating, ventilating, and air conditioning (HVAC), lighting, and anti-condensate heaters. This project was concerned with evaluating DR using the refrigeration system and quantifying the DR potential inherent in supermarket refrigeration systems. Ancillary aims of the project were to identify practical barriers to the implementation of DR programs in supermarkets and to determine which high-level control strategies were most appropriate for achieving certainmore » DR objectives. The scope of this project does not include detailed control strategy development for DR or development of a strategy for regional implementation of DR in supermarkets.« less
NASA Astrophysics Data System (ADS)
Priarone, A.; Fossa, M.; Paietta, E.; Rolando, D.
2017-01-01
This research has been devoted to the selection of the most favourable plant solutions for ventilation, heating and cooling, thermo-hygrometric control of a greenhouse, in the framework of the energy saving and the environmental protection. The identified plant solutions include shading of glazing surfaces, natural ventilation by means of controlled opening windows, forced convection of external air and forced convection of air treated by the HVAC system for both heating and cooling. The selected solution combines HVAC system to a Ground Coupled Heat Pump (GCHP), which is an innovative renewable technology applied to greenhouse buildings. The energy demand and thermal loads of the greenhouse to fulfil the requested internal design conditions have been evaluated through an hourly numerical simulation, using the Energy Plus (E-plus) software. The overall heat balance of the greenhouse also includes the latent heat exchange due to crop evapotranspiration, accounted through an original iterative calculation procedure that combines the E-plus dynamic simulations and the FAO Penman-Monteith method. The obtained hourly thermal loads have been used to size the borehole field for the geothermal heat pump by using a dedicated GCHP hourly simulation tool.
Newman, Amy E M; Foerster, Melody; Shoemaker, Kelly L; Robertson, R Meldrum
2003-11-01
Ventilation is a crucial motor activity that provides organisms with an adequate circulation of respiratory gases. For animals that exist in harsh environments, an important goal is to protect ventilation under extreme conditions. Heat shock, anoxia, and cold shock are environmental stresses that have previously been shown to trigger protective responses. We used the locust to examine stress-induced thermotolerance by monitoring the ability of the central nervous system to generate ventilatory motor patterns during a subsequent heat exposure. Preparations from pre-stressed animals had an increased incidence of motor pattern recovery following heat-induced failure, however, prior stress did not alter the characteristics of the ventilatory motor pattern. During constant heat exposure at sub-lethal temperatures, we observed a protective effect of heat shock pre-treatment. Serotonin application had similar effects on motor patterns when compared to prior heat shock. These studies are consistent with previous studies that indicate prior exposure to extreme temperatures and hypoxia can protect neural operation against high temperature stress. They further suggest that the protective mechanism is a time-dependent process best revealed during prolonged exposure to extreme temperatures and is mediated by a neuromodulator such as serotonin.
Columbia County Habitat for Humanity Passive Townhomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Alaigh, Kunal; Dadia, Devanshi
2016-03-18
Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18% of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-04-01
Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18 percent of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less
Interim report on nuclear waste depository thermal analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altenbach, T.J.
1978-07-25
A thermal analysis of a deep geologic depository for spent nuclear fuel is being conducted. The TRUMP finite difference heat transfer code is used to analyze a 3-dimensional model of the depository. The model uses a unit cell consisting of one spent fuel canister buried in salt beneath a ventilated room in the depository. A base case was studied along with several parametric variations. It is concluded that this method is appropriate for analyzing the thermal response of the system, and that the most important parameter in determining the maximum temperatures is the canister heat generation rate. The effects ofmore » room ventilation and different depository media are secondary.« less
9 CFR 3.26 - Facilities, indoor.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Pigs and Hamsters Facilities and Operating Standards § 3.26 Facilities, indoor. (a) Heating. Indoor housing facilities for guinea pigs or hamsters shall be sufficiently heated when necessary to protect the... pigs or hamsters shall be adequately ventilated to provide for the health and comfort of the animals at...
HPAC Info-dex 2: Locating a product
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This is the 1995/1996 listing of products for heating, ventilation, air conditioning and refrigeration systems published by Heating, Piping, and Air Conditioning magazine. The manufacturers are listed alphabetically along with their abbreviated address and telephone and FAX numbers. Some product information is included for certain manufacturers.
9 CFR 3.26 - Facilities, indoor.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Pigs and Hamsters Facilities and Operating Standards § 3.26 Facilities, indoor. (a) Heating. Indoor housing facilities for guinea pigs or hamsters shall be sufficiently heated when necessary to protect the... pigs or hamsters shall be adequately ventilated to provide for the health and comfort of the animals at...
9 CFR 3.26 - Facilities, indoor.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Pigs and Hamsters Facilities and Operating Standards § 3.26 Facilities, indoor. (a) Heating. Indoor housing facilities for guinea pigs or hamsters shall be sufficiently heated when necessary to protect the... pigs or hamsters shall be adequately ventilated to provide for the health and comfort of the animals at...
9 CFR 3.26 - Facilities, indoor.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Pigs and Hamsters Facilities and Operating Standards § 3.26 Facilities, indoor. (a) Heating. Indoor housing facilities for guinea pigs or hamsters shall be sufficiently heated when necessary to protect the... pigs or hamsters shall be adequately ventilated to provide for the health and comfort of the animals at...
1999-10-01
was added to the experimental group. Three more measurements were recorded at 10, 30 and 60 minutes after the insertion of the heat and moisture...heat and moisture exchanger provided adequate humidification of the inspired gases. In the experimental group, there was no difference in...exchanger incorporated in the ventilator Heat and Moisture Exchangers 16 circuit (the experimental group) and 10 did not (the control group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Kaushik; Miller, William A; Childs, Phillip W
2011-01-01
Three test attics were constructed to evaluate a new sustainable method of re-roofing utilizing photo-voltaic (PV) laminates, metal roofing panels, and PCM heat sink in the Envelope Systems Research Apparatus (ESRA) facility in the ORNL campus. Figure 1 is a picture of the three attic roofs located adjacent to each other. The leftmost roof is the conventional shingle roof, followed by the metal panel roof incorporating the cool-roof coating, and third from left is the roof with the PCM. On the PCM roof, the PV panels are seen as well; they're labelled from left-to-right as panels 5, 6 and 7.more » The metal panel roof consists of three metal panels with the cool-roof coating; in further discussion this is referred to as the infrared reflective (IRR) metal roof. The IRR metal panels reflect the incoming solar radiation and then quickly re-emit the remaining absorbed portion, thereby reducing the solar heat gain of the attic. Surface reflectance of the panels were measured using a Solar Spectrum Reflectometer. In the 0.35-2.0 {mu}m wavelength interval, which accounts for more than 94% of the solar energy, the IRR panels have an average reflectance of 0.303. In the infrared portion of the spectrum, the IRR panel reflectance is 0.633. The PCM roof consists of a layer of macro-encapsulated bio-based PCM at the bottom, followed by a 2-cm thick layer of dense fiberglass insulation with a reflective surface on top, and metal panels with pre-installed PV laminates on top. The PCM has a melting point of 29 C (84.2 F) and total enthalpy between 180 and 190 J/g. The PCM was macro-packaged in between two layers of heavy-duty plastic foil forming arrays of PCM cells. Two air cavities, between PCM cells and above the fiberglass insulation, helped the over-the-deck natural air ventilation. It is anticipated that during summer, this extra ventilation will help in reducing the attic-generated cooling loads. The extra ventilation, in conjunction with the PCM heat sink, are used to minimize thermal stresses due to the PV laminates on sunny days. In PV laminates sunlight is converted into electricity and heat simultaneous. In case of building integrated applications, a relatively high solar absorption of amorphous silicon laminates can be utilized during the winter for solar heating purposes with PCM providing necessary heat storage capacity. However, PV laminates may also generate increased building cooling loads during the summer months. Therefore, in this project, the PCM heat sink was to minimize summer heat gains as well. The PCM-fibreglass-PV assembly and the IRR metal panels are capable of being installed directly on top of existing shingle roofs during re-roofing, precluding the need for recycling or disposal of waste materials. The PV laminates installed on the PCM attic are PVL-144 models from Uni-Solar. Each laminate contains 22 triple junction amorphous silicon solar cells connected in series. The silicon cells are of dimensions 356 mm x 239 mm (14-in. x 9.4-in.). The PVL-144 laminate is encapsulated in durable ETFE (poly-ethylene-co-tetrafluoroethylene) high light-transmissive polymer. Table 1 lists the power, voltage and current ratings of the PVL-144 panel.« less
Reproductive Performance of Mice in Disposable and Standard Individually Ventilated Cages
Ferguson, Danielle R; Bailey, Michele M
2013-01-01
This study assessed the reproductive performance of mice housed in 2 types of individually ventilated caging systems. Breeding pairs from 48 female and 24 male mice of 3 established transgenic mouse breeding colonies were placed in either a standard or disposable ventilated caging system. For 3 breeding cycles, the number of pups born, pup survival rate to weaning, time interval between litters, and pup weights were monitored for each breeding pair. Disposable and standard cages were maintained in the same location during breeding. Environmental parameters included intracage temperature, humidity, and ammonia and carbon dioxide levels and room light intensity and sound. Overall, 776 offspring were produced. Breeding performance did not differ significantly between the 2 cage types. By 11 wk of age, the weights of pups from both cage types were equivalent. The intracage temperature was 1.1 °F warmer and light intensity at the site of the nest was 34 lx dimmer in disposable cages than in standard caging. The difference in lighting likely was due to nest location; the nests in the disposable cages were at the back of the cages and away from the anterior air supply, whereas in standard caging, nests were at the front of the cages, with the air supply at the rear. Under these husbandry conditions, mice housed in disposable caging systems have comparable breeding performance to those housed in standard individually ventilated cages. PMID:23849403
Dawson, T J; Munn, A J; Blaney, C E; Krockenberger, A; Maloney, S K
2000-01-01
We studied ventilation in kangaroos from mesic and arid environments, the eastern grey kangaroo (Macropus giganteus) and the red kangaroo (Macropus rufus), respectively, within the range of ambient temperatures (T(a)) from -5 degrees to 45 degrees C. At thermoneutral temperatures (Ta=25 degrees C), there were no differences between the species in respiratory frequency, tidal volume, total ventilation, or oxygen extraction. The ventilatory patterns of the kangaroos were markedly different from those predicted from the allometric equation derived for placentals. The kangaroos had low respiratory frequencies and higher tidal volumes, even when adjustment was made for their lower basal metabolism. At Ta>25 degrees C, ventilation was increased in the kangaroos to facilitate respiratory water loss, with percent oxygen extraction being markedly lowered. Ventilation was via the nares; the mouth was closed. Differences in ventilation between the two species occurred at higher temperatures, and at 45 degrees C were associated with differences in respiratory evaporative heat loss, with that of M. giganteus being higher. Panting in kangaroos occurred as a graded increase in respiratory frequency, during which tidal volume was lowered. When panting, the desert red kangaroo had larger tidal volumes and lower respiratory frequencies at equivalent T(a) than the eastern grey kangaroo, which generally inhabits mesic forests. The inference made from this pattern is that the red kangaroo has the potential to increase respiratory evaporative heat loss to a greater level.
Effect of mechanical ventilation on regional variation of pleural liquid thickness in rabbits.
Wang, P M; Lai-Fook, S J
1997-01-01
We studied the effect of ventilation on the regional distribution of pleural liquid thickness in anesthetized rabbits. Three transparent pleural windows were made between the second and eight intercostal space along the midaxillary line of the right chest. Fluorescein isothiocyanate-labeled dextran (1 ml) was injected into the pleural space through a rib capsule and allowed to mix with the pleural liquid. The light emitted from the pleural space beneath the windows was measured by fluorescence videomicroscopy at a constant tidal volume (20 ml) and two ventilation frequencies (20 and 40 breaths/min). Pleural liquid thickness was determined from the light measurements after in vitro calibration of pleural liquid collected postmortem. At 20 breaths/min, pleural liquid thickness increased with a cranial-caudal distance from 5 microns at the second to third intercostal space to 30 microns at the sixth through eighth intercostal space. At 40 breaths/min, pleural space thickness was unchanged at the second to third intercostal space but increased to 46 microns at the sixth through eighth intercostal space. To determine this effect on pleural liquid shear stress, we measured relative lung velocity from videomicroscopic images of the lung surface through the windows. Lung velocity amplitude increased with cranial-caudal distance and with ventilation frequency. Calculated shear stress amplitude was constant with cranial-caudal distance but increased with ventilation frequency. Thus, pleural liquid thickness is matched to the relative lung motion so as to maintain a spatially uniform shear stress amplitude in pleural liquid during mechanical ventilation.
Ryan, R M; Wilding, G E; Wynn, R J; Welliver, R C; Holm, B A; Leach, C L
2011-09-01
The objective of this study was to test the hypothesis that enhanced ultraviolet germicidal irradiation (eUVGI) installed in our neonatal intensive care unit (NICU) heating ventilation and air conditioning system (HVAC) would decrease HVAC and NICU environment microbes, tracheal colonization and ventilator-associated pneumonia (VAP). The study was designed as a prospective interventional pre- and post-single-center study. University-affiliated Regional Perinatal Center NICU. Intubated patients in the NICU were evaluated for colonization, and a high-risk sub-population of infants <30 weeks gestation ventilated for ≥ 14 days was studied for VAP. eUVGI was installed in the NICU's remote HVACs. The HVACs, NICU environment and intubated patients' tracheas were cultured pre- and post-eUVGI for 12 months. The high-risk patients were studied for VAP (positive bacterial tracheal culture, increased ventilator support, worsening chest radiograph and ≥ 7 days of antibiotics). Pseudomonas, Klebsiella, Serratia, Acinetobacter, Staphylococcus aureus and Coagulase-negative Staphylococcus species were cultured from all sites. eUVGI significantly decreased HVAC organisms (baseline 500,000 CFU cm(-2); P=0.015) and NICU environmental microbes (P<0.0001). Tracheal microbial loads decreased 45% (P=0.004), and fewer patients became colonized. VAP in the high-risk cohort fell from 74% (n=31) to 39% (n=18), P=0.04. VAP episodes per patient decreased (Control: 1.2 to eUVGI: 0.4; P=0.004), and antibiotic usage was 62% less (P=0.013). eUVGI decreased HVAC microbial colonization and was associated with reduced NICU environment and tracheal microbial colonization. Significant reductions in VAP and antibiotic use were also associated with eUVGI in this single-center study. Large randomized multicenter trials are needed.
Moustafa, Islam O F; Ali, Mohammed R A-A; Al Hallag, Moataz; Rabea, Hoda; Fink, James B; Dailey, Patricia; Abdelrahim, Mohamed E A
During mechanical ventilation medical aerosol delivery has been reported to be upto two fold greater with dry inhaled gas than with heated humidity. Urine levels at 0.5 h post dose (URSAL0.5%) has been confirmed as an index of lung deposition and 24 h (URSAL24%) as index of systemic absorption. Our aim was to determine the effect of humidification and aerosol device type on drug delivery to ventilated patients using urine levels. In a randomized crossover design, 36 (18female) mechanically ventilated patients were assigned to one of three groups. Groups 1 and 2 received 5000 μg salbutamol using vibrating mesh (VM) and jet nebulizers (JN), respectively, while group 3 received 1600 μg (16 puffs) of salbutamol via metered dose inhaler with AeroChamber Vent (MDI-AV). All devices were placed in the inspiratory limb of ventilator downstream from the humidifier. Each subject received aerosol with and without humidity at >24 h intervals with >12 h washout periods between salbutamol doses. Patients voided urine 15 min before each study dose and urine samples were collected at 0.5 h post dosing and pooled for the next 24 h. The MDI-AV and VM resulted in a higher percentage of urinary salbutamol levels compared to the JN (p < 0.05). Urine levels were similar between humidity and dry conditions. Our findings suggest that in-vitro reports overestimate the impact of dry vs. heated humidified conditions on the delivery of aerosol during invasive mechanical ventilation. Copyright © 2017 Elsevier Inc. All rights reserved.
Gillies, Donna; Todd, David A; Foster, Jann P; Batuwitage, Bisanth T
2017-09-14
Invasive ventilation is used to assist or replace breathing when a person is unable to breathe adequately on their own. Because the upper airway is bypassed during mechanical ventilation, the respiratory system is no longer able to warm and moisten inhaled gases, potentially causing additional breathing problems in people who already require assisted breathing. To prevent these problems, gases are artificially warmed and humidified. There are two main forms of humidification, heat and moisture exchangers (HME) or heated humidifiers (HH). Both are associated with potential benefits and advantages but it is unclear whether HME or HH are more effective in preventing some of the negative outcomes associated with mechanical ventilation. This review was originally published in 2010 and updated in 2017. To assess whether heat and moisture exchangers or heated humidifiers are more effective in preventing complications in people receiving invasive mechanical ventilation and to identify whether the age group of participants, length of humidification, type of HME, and ventilation delivered through a tracheostomy had an effect on these findings. We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Embase and CINAHL up to May 2017 to identify randomized controlled trials (RCTs) and reference lists of included studies and relevant reviews. There were no language limitations. We included RCTs comparing HMEs to HHs in adults and children receiving invasive ventilation. We included randomized cross-over studies. We assessed the quality of each study and extracted the relevant data. Where possible, we analysed data through meta-analysis. For dichotomous outcomes, we calculated the risk ratio (RR) and 95% confidence interval (95% CI). For continuous outcomes, we calculated the mean difference (MD) and 95% CI or standardized mean difference (SMD) and 95% CI for parallel studies. For cross-over trials, we calculated the MD and 95% CI using correlation estimates to correct for paired analyses. We aimed to conduct subgroup analyses based on the age group of participants, how long they received humidification, type of HME and whether ventilation was delivered through a tracheostomy. We also conducted sensitivity analysis to identify whether the quality of trials had an effect on meta-analytic findings. We included 34 trials with 2848 participants; 26 studies were parallel-group design (2725 participants) and eight used a cross-over design (123 participants). Only three included studies reported data for infants or children. Two further studies (76 participants) are awaiting classification.There was no overall statistical difference in artificial airway occlusion (RR 1.59, 95% CI 0.60 to 4.19; participants = 2171; studies = 15; I 2 = 54%), mortality (RR 1.03, 95% CI 0.89 to 1.20; participants = 1951; studies = 12; I 2 = 0%) or pneumonia (RR 0.93, 95% CI 0.73 to 1.19; participants = 2251; studies = 13; I 2 = 27%). There was some evidence that hydrophobic HMEs may reduce the risk of pneumonia compared to HHs (RR 0.48, 95% CI 0.28 to 0.82; participants = 469; studies = 3; I 2 = 0%)..The overall GRADE quality of evidence was low. Although the overall methodological risk of bias was generally unclear for selection and detection bias and low risk for follow-up, the selection of study participants who were considered suitable for HME and in some studies removing participants from the HME group made the findings of this review difficult to generalize. The available evidence suggests no difference between HMEs and HHs on the primary outcomes of airway blockages, pneumonia and mortality. However, the overall low quality of this evidence makes it difficult to be confident about these findings. Further research is needed to compare HMEs to HHs, particularly in paediatric and neonatal populations, but research is also needed to more effectively compare different types of HME to each other as well as different types of HH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Malhotra, Mini; Xiong, Zeyu
High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a distributed GSHP system for providing all the space conditioning, outdoor air ventilation, and 100% domestic hot water tomore » the Wilders Grove Solid Waste Service Center of City of Raleigh, North Carolina. This case study is based on the analysis of measured performance data, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning and outdoor air ventilation as the demonstrated GSHP system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GSHP system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation and improving the operational efficiency of the demonstrated GSHP system.« less
10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... seasonal energy efficiency ratio (SEER in British thermal units per Watt-hour (Btu/Wh)), the heating...) Package terminal air conditioners: The energy efficiency ratio (EER in British thermal units per Watt-hour... package vertical air conditioner: The energy efficiency ratio (EER in British thermal units per Watt-hour...
10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... seasonal energy efficiency ratio (SEER in British thermal units per Watt-hour (Btu/Wh)), the heating...) Package terminal air conditioners: The energy efficiency ratio (EER in British thermal units per Watt-hour... package vertical air conditioner: The energy efficiency ratio (EER in British thermal units per Watt-hour...
HPAC Info-dex 1: Locating a manufacturer
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This is the 1995/1996 listing of manufacturers of products for heating, ventilation, air conditioning and refrigeration systems published by Heating, Piping, and Air Conditioning magazine. The manufacturers are listed alphabetically along with their complete addresses and telephone and FAX numbers. Some product information is included for certain manufacturers.
9 CFR 3.51 - Facilities, indoor.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Facilities, indoor. 3.51 Section 3.51... Facilities and Operating Standards § 3.51 Facilities, indoor. (a) Heating. Indoor housing facilities for rabbits need not be heated. (b) Ventilation. Indoor housing facilities for rabbits shall be adequately...
Code of Federal Regulations, 2011 CFR
2011-01-01
... CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Provisions for Commercial Heating, Ventilating, Air-Conditioning and Water Heating Products § 431.174 Additional... commercial HVAC and WH product, as described in § 431.176, and that complies with all requirements imposed by...
Code of Federal Regulations, 2011 CFR
2011-01-01
... CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Provisions for Commercial Heating, Ventilating, Air-Conditioning and Water Heating Products § 431.175 Additional... manufacturer that is not a VICP participant with respect to a particular type of commercial HVAC and WH product...
Improving commercial broiler attic inlet ventilation thorugh CFD analysis
USDA-ARS?s Scientific Manuscript database
The use of solar heated attic air is an area of increasing interest in commercial poultry production. Attic inlets satisfy the demand for alternative heating while being simple to implement in an existing poultry house. A number of demonstration projects have suggested that attic inlets may decrease...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kull, K.
1988-09-01
This article describes and compares ventilation systems for the control of indoor air pollution in residential housing. These include: local exhaust fans, whole-house fans, central exhaust with wall ports, and heat-recovery central ventilation (HRV). HRV's have a higher initial cost than the other systems but they are the only ones that save energy. Homeowners are given guidelines for choosing the system best suited for their homes in terms of efficiency and payback period.
Effect of heat and moisture exchanger (HME) positioning on inspiratory gas humidification
Inui, Daisuke; Oto, Jun; Nishimura, Masaji
2006-01-01
Background In mechanically ventilated patients, we investigated how positioning the heat and moisture exchanger (HME) at different places on the ventilator circuit affected inspiratory gas humidification. Methods Absolute humidity (AH) and temperature (TEMP) at the proximal end of endotracheal tube (ETT) were measured in ten mechanically ventilated patients. The HME was connected either directly proximal to the ETT (Site 1) or at before the circuit Y-piece (Site 2: distance from proximal end of ETT and Site 2 was about 19 cm) (Figure. 1). Two devices, Hygrobac S (Mallinckrodt Dar, Mirandola, Italy) and Thermovent HEPA (Smiths Medical International Ltd., Kent, UK) were tested. AH and TEMP were measured with a hygrometer (Moiscope, MERA Co., Ltd., Tokyo, Japan). Results Hygrobac S provided significantly higher AH and TEMP at both sites than Thermovent HEPA. Both Hygrobac S and with Thermovent HEPA provided significantly higher AH and TEMP when placed proximally to the ETT. Conclusion Although placement proximal to the ETT improved both AH and TEMP in both HMEs tested, one HME performed better in the distal position than the other HME in the proximal position. We conclude the both the type and placement of HME can make a significant difference in maintaining AH and TEMP during adult ventilation. PMID:16895607
Natural convective heat transfer from square cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novomestský, Marcel, E-mail: marcel.novomestsky@fstroj.uniza.sk; Smatanová, Helena, E-mail: helena.smatanova@fstroj.uniza.sk; Kapjor, Andrej, E-mail: andrej.kapjor@fstroj.uniza.sk
This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.
A thesis investigating the impact of energy related environmental factors on domestic window design
NASA Astrophysics Data System (ADS)
McEvoy, Michael Edward
In recent years the extent of glazing in houses has been tightly controlled by the Building Regulations in order to save energy. In addition guidelines derived from passive solar principles prescribe the distribution of domestic windows between elevations according to their orientation. This thesis studies the impact of these energy-related environmental factors on domestic window design. The first of these investigations determined the degree to which limitations on the area and arrangement of windows are significant in terms of daylighting. The experiments measured the effect that passive solar requirements and detailed aspects of window design have on the quality of daylighting in houses. The volume of background ventilation required for domestic accommodation has recently been increased. As a result, in a well-sealed construction, heat loss due to background ventilation becomes a larger part of the total heat loss and larger air movements become a potential cause of draughts. The ventilation experiment sought to establish the impact of these more onerous requirements on comfort within rooms. The third experiment combines these factors and asks the question: Could windows be actively involved in overcoming some of these difficulties by being used to preheat ventilation air in order to diminish the extent of heat loss and to alleviate the problem of cold draughts? Also by designing the window to reclaim heat from the room might it be possible to offset the window's thermal inadequacy? Through analysis of responses to a questionnaire and the use of optimisation techniques, scenarios were suggested for the future modification of windows in relation to energy and health expectations. The conclusions form a commentary on recent and future revisions to the Building Regulations and determine whether or not the Regulations facilitate the environmental engineering of windows as an active component of a building's whole environmental system.
Mo, Min; Liu, Song-qiao; Yang, Yi
2011-09-01
To demonstrate the effects of heat and moisture exchangers (HME) and heated humidifiers(HH) in preventing ventilator-associated pneumonia (VAP). PubMed and Cochrane databases were searched by computer retrieval and manual retrieval to identify relevant randomized controlled trials (RCTs) using HMEs and HHs in preventing VAP from January 1st 1990 to September 1st 2010. Meta-analysis of HME and HH in preventing VAP was conducted using the methods recommended by the Cochrane Collaboration. Eleven RCTs were included. 1 121 in HME group and 1 101 in HH group. In total, the rate of VAP in HME group and HH group was 14.2% (159/1 121) and 15.9% (175/1 101) respectively, the total relative risk (RR) was 0.88, and 95% confidence interval (95%CI) 0.72-1.07, P=0.21. Compared with HH group, there was not a reduction in the risk ratio of VAP in the HME group. Even in mechanical ventilation(MV) with a duration of at least 7 days for subgroup analysis (8 RCTs, sample size: 834 in HME group and 859 in HH group), the rate of VAP in HME group and HH group was 15.2% (127/834) and 17.5% (150/859) respectively, the total RR was 0.84, 95%CI 0. 58-1.23, P=0.37, suggesting that in MV with a duration at least 7 days, there was also no reduction in the risk ratio of VAP in the HME group. This study suggests there is not a significant reduction in the incidence of VAP in patients humidified with HMEs during MV, even in patients ventilated for 7 days or longer. This finding is limited by lack of enough RCTs and blinding. Further large sample of high quality RCTs is necessary to examine the wider applicability of HMEs and their extended use.
Menegueti, Mayra Goncalves; Auxiliadora-Martins, Maria; Nunes, Altacilio Aparecido
2016-08-01
Moisturizing, heating and filtering gases inspired via the mechanical ventilation (MV) circuits help to reduce the adverse effects of MV. However, there is still no consensus regarding whether these measures improve patient prognosis, shorten MV duration, decrease airway secretion and lower the incidence of ventilator associated pneumonia (VAP) and other complications. The aim of this study was to study the incremental cost-effectiveness ratio associated with the use of heat and moisture exchangers (HME) filter to prevent VAP compared with the heated humidifiers (HH) presently adopted by intensive care unit (ICU) services within the Brazilian Healthcare Unified System. This study was a cost-effectiveness analysis (CEA) comparing HME and HH in preventing VAP (outcome) in mechanically ventilated adult patients admitted to an ICU of a public university hospital. The analysis considered a period of 12 months; MV duration of 11 and 12 days for patients in HH and HME groups, respectively and a daily cost of R$ 16.46 and R$ 13.42 for HH and HME, respectively. HME was more attractive; costs ranged from R$ 21,000.00 to R$ 22,000.00 and effectiveness was close to 0.71, compared with a cost of R$ 30,000.00 and effectiveness between 0.69 and 0.70 for HH. HME and HH differed significantly for incremental effectiveness. Even after an effectiveness gain of 1.5% in favor of HH, and despite the wide variation in the VAP rate, the HME effectiveness remained stable. The mean HME cost-effectiveness was lower than the mean HH cost-effectiveness, being the HME value close to R$ 44,000.00. Our findings revealed that HH and HME differ very little regarding effectiveness, which makes interpretation of the results in the context of clinical practice difficult. Nonetheless, there is no doubt that HME is advantageous. This technology incurs lower direct cost.
Kirton, O C; DeHaven, B; Morgan, J; Morejon, O; Civetta, J
1997-10-01
To compare the performance of an in-line heat moisture exchanging filter (HMEF) (Pall BB-100; Pall Corporation; East Hills, NY) to a conventional heated wire humidifier (H-wH) (Marquest Medical Products Inc., Englewood, Colo) in the mechanical ventilator circuit on the incidence of ventilator-associated pneumonia (VAP) and the rate of endotracheal tube occlusion. This report describes a prospective, randomized trial of 280 consecutive trauma patients in a 20-bed trauma ICU (TICU). All intubated patients not ventilated elsewhere in the medical center prior to their TICU admission were randomized to either an in-line HMEF or a H-wH in the breathing circuit. Ventilator circuits were changed routinely every 7 days, and closed system suction catheters were changed every 3 days. HMEFs were changed every 24 h, or more frequently if necessary. A specific endotracheal tube suction and lavage protocol was not employed. Patients were dropped from the HMEF group if the filter was changed more than three times a day or the patient was placed on a regimen of ultra high-frequency ventilation. The Centers for Disease Control and Prevention (CDC) criteria for diagnosis of pneumonia were used; early-onset, community-acquired pneumonia was defined if CDC criteria were met in < or =3 days, and late-onset, hospital-acquired pneumonia was defined if criteria were met in >3 days. Laboratory and chest radiograph interpretation were blinded. The patient ages ranged from 15 to 95 years in the HMEF group and 16 to 87 years in the H-wH group (p=not significant), with a mean age of 46 years and 48 years, respectively. The male to female ratio ranged between 78 to 82%/22 to 18%, respectively, and 55% of all admissions were related to blunt trauma, 40% secondary to penetrating trauma, and 5% to major burns. There was no difference in Injury Severity Score (ISS) between the two groups. Moreover, there was no significant difference in mean ISS among those who did not develop pneumonia and those patients who developed either early-onset, community-acquired or late-onset, hospital-acquired pneumonia. The HMEF nosocomial VAP rate was 6% compared to 16% for the H-wH group (p<0.05), and total ventilator circuit costs (per group) were reduced. There were no differences in duration of ventilation (mean+/-SD) if the patient did not develop pneumonia or if the patient developed an early-onset, community-acquired or a late-onset, hospital-acquired pneumonia. Moreover, total TICU days were reduced in the HMEF group. In addition, the incidence of partial endotracheal tube occlusion was not significantly different between the H-wH and the HMEF groups. The HMEF used in this study reduced the incidence of late-onset, hospital-acquired VAP, but not early-onset, community-acquired VAP, compared to the conventional H-wH circuit. This was associated with a significant reduction in total ICU stay. Disposable ventilator circuit costs in the HMEF group were reduced compared to the H-wH group in whom circuit changes occurred at 7-day intervals. The use of the HMEF is a cost-effective clinical practice associated with fewer late-onset, hospital-acquired VAPs, and should result in improved resource allocation and utilization.
Baxter, Van D.; Munk, Jeffrey D.
2017-11-08
By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D.; Munk, Jeffrey D.
By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.
Rathgeber, J; Züchner, K; Kietzmann, D; Weyland, W
1995-04-01
Heat and moisture exchangers (HME) are used as artificial noses for intubated patients to prevent tracheo-bronchial or pulmonary damage resulting from dry and cold inspired gases. HME are mounted directly on the tracheal tube, where they collect a large fraction of the heat and moisture of the expired air, adding this to the subsequent inspired breath. The effective performance depends on the water-retention capacity of the HME: the amount of water added to the inspired gas cannot exceed the stored water uptake of the previous breath. This study evaluates the efficiency of four different HME under laboratory and clinical conditions using a new moisture-measuring device. METHODS. In a first step, the absolute efficiency of four different HME (DAR Hygrobac, Gibeck Humid-Vent 2P, Pall BB 22-15 T, and Pall BB 100) was evaluated using a lung model simulating physiological heat and humidity conditions of the upper airways. The model was ventilated with tidal volumes of 500, 1,000, and 1,500 ml and different flow rates. The water content of the ventilated air was determined between tracheal tube and HME using a new high-resolution humidity meter and compared with the absolute water loss of the exhaled air at the gas outlet of a Siemens Servo C ventilator measured with a dew-point hygrometer. Secondly, the moisturizing efficiency was evaluated under clinical conditions in an intensive care unit with 25 intubated patients. Maintaining the ventilatory conditions for each patient, the HME were randomly changed. The humidity data were determined as described above and compared with the laboratory findings. RESULTS AND DISCUSSION. The water content at the respirator outlet is inversely equivalent to the humidity of the inspired gases and represents the water loss from the respiratory tract if the patient is ventilated with dry gases. Moisture retention and heating capacity decreased with higher volumes and higher flow rates. These data are simple to obtain without affecting the patient and can easily be interpreted. It was demonstrated that, compared to physiological conditions, the DAR Hygrobac and Gibeck Humid Vent 2P-HME coated with hygroscopic salts-were able to maintain sufficient inspiratory humidity and heat. The Pall-HME, solely a condensation humidifier, did not meet the physiological requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, A.
This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).
The effect of added fullness and ventilation holes in T-shirt design on thermal comfort.
Ho, Chupo; Fan, Jintu; Newton, Edward; Au, Raymond
2011-04-01
This paper reports on an experimental investigation on the effect of added fullness and ventilation holes in T-shirt design on clothing comfort measured in terms of thermal insulation and moisture vapour resistance. Four T-shirts in four different sizes (S, M, L, XL) were cut under the traditional sizing method while another (F-1) was cut with specially added fullness to create a 'flared' drape. A thermal manikin 'Walter' was used to measure the thermal insulation and moisture vapour resistance of the T-shirts in a chamber with controlled temperature, relative humidity and air velocity. The tests included four conditions: manikin standing still in the no-wind and windy conditions and walking in the no-wind and windy condition. It was found that adding fullness in the T-shirt design (F-1) to create the 'flared' drape can significantly reduce the T-shirt's thermal insulation and moisture vapour resistance under walking or windy conditions. Heat and moisture transmission through the T-shirt can be further enhanced by creating small apertures on the front and back of the T-shirt with specially added fullness. STATEMENT OF RELEVANCE: The thermal comfort of the human body is one of the key issues in the study of ergonomics. When doing exercise, a human body will generate heat, which will eventually result in sweating. If heat and moisture are not released effectively from the body, heat stress may occur and the person's performance will be negatively affected. Therefore, contemporary athletic T-shirts are designed to improve the heat and moisture transfer from the wearer. Through special cutting, such athletic T-shirts can be designed to improve the ventilation of the wearer.
Ventilation during cardiopulmonary bypass: impact on heat shock protein release.
Beer, L; Szerafin, T; Mitterbauer, A; Kasiri, M M; Debreceni T Palotás, L; Dworschak, M; Roth, G A; Ankersmit, H J
2014-12-01
Cardiopulmonary bypass (CPB), utilized in on-pump coronary artery bypass graft procedures (CABG) induces generalized immune suppression, release of heat shock proteins (HSP), inflammatory markers and apoptosis-specific proteins. We hypothesized that continued mechanical ventilation during cardiopulmonary bypass attenuates immune response and HSP liberation. Thirty patients undergoing conventional coronary artery bypass graft (CABG) operation were randomized into a ventilated on CPB (VG; N.=15) and a non-ventilated CPB group (NVG; N.=15). Blood samples were drawn at the beginning and end of surgery, as well as on the five consecutive postoperative days (POD). Molecular markers were measured by ELISA. Data are given as mean ± (SD). Mann-Whitney-U-test was used for statistical analysis. Serum concentrations of HSP70 were significantly lower in VG compared to NVG on POD-1 (VG: 1629±608 vs. NVG: 5203±2128.6 pg/mL, P<0.001). HSP27 and HSP60 depicted a minor increase in both study groups at the end of surgery without any intergroup differences (HSP27: VG 6207.9±1252.5 vs. NVG 7424.1±2632.5; HSP60: VG 1046.2±478.8 vs. NVG 1223.5±510.1). IL-8 and CK-18 M30 evidenced the highest serum concentrations at the end of surgery (IL-8: VG 119.5±77.9 vs. NVG 148.0±184.55; CK-18 M30: VG 62.1±39.2 vs. NVG 67.5±33.9) with no differences between groups. Decreased ICAM-1 serum concentrations were detected postoperatively, however ICAM-1 concentrations on POD-1 to POD-5 showed slightly elevated concentrations in both study groups with no intergroup differences. Significantly less HSP70 was detectable in patients receiving uninterrupted mechanical lung ventilation on CPB, indicating either different inflammatory response, cellular stress or cell damage between the ventilated and non-ventilated group. These data suggest that continued mechanical ventilation has a modulatory effect on the immune response in patients after CABG surgery.
Yu, Kuo-Pin; Lee, Grace Whei-May; Huang, Wei-Ming; Wu, Chih-Cheng; Lou, Chia-ling; Yang, Shinhao
2006-05-01
Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.
Hood River Passive House, Hood River, Oregon (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2014-02-01
The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift Housemore » and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.« less
Evaluation of a High-Performance Solar Home in Loveland, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendron, R.; Eastment, M.; Hancock, E.
2006-01-01
Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR? appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 75 cfm (35 l/s), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark [1]. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less
New Whole-House Solutions Case Study: Hood River Passive House
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-02-01
The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift Housemore » and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.« less
Evaluation of a High-Performance Solar Home in Loveland, Colorado: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendron, R.; Eastment, M.; Hancock, E.
Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 35 l/s (75 cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less
An expert system for the design of heating, ventilating, and air-conditioning systems
NASA Astrophysics Data System (ADS)
Camejo, Pedro Jose
1989-12-01
Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are needed and have been developed to join the separate knowledge bases into one simple-to-use program unit.
1986-10-01
opeational test and evaluation (OT&R). The OT&B Is comprised of Initial operational test and evaluation ( IOT &R) and follow-on test and evaluation (FOT&R). OT&I...BP HYL FVAC beating, ventilation and air conditioning am. ICBM Intercntinental ballistic missile an. IOT &R Initial operational test and *valuation so...and maintenance vehicles (stop- B pod, engine idle-exterior), facility equipment utility rooms, heating, ventilation and air conditioning ( HVAC
10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... conditioners: The energy efficiency ratio (EER in British thermal units per Watt-hour (Btu/Wh)), the cooling...) Package terminal heat pumps: The energy efficiency ratio (EER in British thermal units per Watt-hour (Btu...: The energy efficiency ratio (EER in British thermal units per Watt-hour (Btu/Wh)) and the cooling...
Code of Federal Regulations, 2014 CFR
2014-01-01
... conservation standard, or water conservation standard (in the case of commercial prerinse spray valves or... other than electric motors and commercial heating, ventilating, air-conditioning and water heating products. 431.408 Section 431.408 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM...
HPAC Info-dex 3: Locating a trade name
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This is the 1995/1996 listing of trade names of manufacturers of products for heating, ventilation, air conditioning and refrigeration systems published by Heating, Piping, and Air Conditioning magazine. The manufacturers are listed alphabetically along with their complete addresses and telephone and FAX numbers. Some product information is included for certain manufacturers.
Installation-Wide Energy Conservation Demonstration at Fort McClellan, Alabama
1988-11-01
Inefficient Electrical Motors 12 Dispensary Chiller Installation 12 Combustion Optimization of Gas-fired Heating Equipment 12 Infiltration Study of Family... Chiller Installation 34 5 FAMILY HOUSING .................................................... 37 Combustion Optimization of Gas-fired Heating...in Outdoor Air Ventilation 59 Replacement of Inefficient Electric Motors 59 Dispensary Chiller Installation 60 Combustion Optimization of Gas-fired
E-education in Refrigeration Technologies for Students and Technicians in the Workplace
ERIC Educational Resources Information Center
Lenaerts, Marnik; Schreurs, Marc; Reulens, Walter
2011-01-01
The demand for broadly educated engineers, installers and service technicians is growing because of the strong growth in refrigeration, air conditioning and heating. The rapid technological evolution makes it impossible for a school or training centre to invest in all HVAC (heating ventilation and air conditioning) and refrigeration fields. It is…
Heat and moisture production of growing-finishing gilts as affected by environmental temperature
USDA-ARS?s Scientific Manuscript database
Heat and moisture production (HMP) values are used to size ventilation fans in animal housing. The HMP values that are currently published in the ASABE (American Society of Agricultural and Biological Engineers) standards were from data collected in the early 1950. This study is one of a series of...
This paper employs Computational Fluid Dynamic (CFD) simulations to investigate the influence of ground heating intensities and viaduct configurations on gaseous and particle dispersion within two-dimensional idealized street canyons (typical aspect ratio H/W=1) and their transpo...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-18
...). Replacement of heating, ventilation and air conditioning (HVAC) equipment with Energy Star qualified heating, HVAC equipment. (3 points). Replacement of windows and doors with Energy Star qualified windows and... the third-party program's rating and verification systems. (2 points). Dated: August 11, 2011. Robert...
Airflow reduction during cold weather operation of residential heat recovery ventilators
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGugan, C.A.; Edwards, P.F.; Riley, M.A.
1987-06-01
Laboratory measurements of the performance of residential heat recovery ventilators have been carried out for the R-2000 Energy Efficient Home Program. This work was based on a preliminary test procedure developed by the Canadian Standards Association, part of which calls for testing the HRV under cold weather conditions. An environmental chamber was used to simulate outdoor conditions. Initial tests were carried out with an outdoor temperature of -20/sup 0/C; subsequent tests were carried out at a temperature of -25/sup 0/C. During the tests, airflows, temperatures, and relative humidities of airstreams entering and leaving the HRV, along with electric power inputs,more » were monitored. Frost buildup in the heat exchangers and defrost mechanisms, such as fan shutoff or recirculation, led to reductions in airflows. The magnitude of the reductions is dependent on the design of the heat exchanger and the defrost mechanism used. This paper presents the results of tests performed on a number of HRVs commercially available in Canada at the time of the testing. The flow reductions for the various defrost mechanisms are discussed.« less
Analysis of hybrid interface cooling system using air ventilation and nanofluid
NASA Astrophysics Data System (ADS)
Rani, M. F. H.; Razlan, Z. M.; Bakar, S. A.; Desa, H.; Wan, W. K.; Ibrahim, I.; Kamarrudin, N. S.; Bin-Abdun, Nazih A.
2017-09-01
The hybrid interface cooling system needs to be designed for maintaining the electric vehicle's battery cell temperature at 25°C. The hybrid interface cooling system is a combination of two individual systems, where the primary cooling system (R-134a) and the secondary cooling system (CuO + Water) will be used to absorb the heat generated by the battery cells. The ventilation system is designed using air as the medium to transfer the heat from the batteries to the refrigeration system (R-134a). Research will focus on determining the suitable compressor displacement, the heat exchanger volume and the expansion valve resistance value. The analysis for the secondary cooling system is focused on the cooling coil where low temperature nanofluid is passing through each interval of the battery cells. For analysing purposes, the thermal properties of the mixture of 50 grams, Copper (II) Oxide and the base fluid have been determined. The hybrid interface cooling system are able to achieve 57.82% increments in term of rate of heat transfer as compared to the individual refrigeration system.
Innovative ventilation system for animal anatomy laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacey, D.R.; Smith, D.C.
1997-04-01
A unique ventilation system was designed and built to reduce formaldehyde fumes in the large animal anatomy lab at the Vet Medical Center at Cornell University. The laboratory includes four rooms totaling 5,500 ft{sup 2}. The main room has 2,300 ft{sup 2} and houses the laboratory where up to 60 students dissect as many as 12 horses at a time. Other rooms are a cold storage locker, an animal preparation room and a smaller lab for specialized instruction. The large animal anatomy laboratory has a history of air quality complaints despite a fairly high ventilation rate of over 10 airmore » changes/hour. The horses are embalmed, creating a voluminous source of formaldehyde and phenol vapors. Budget constraints and increasingly stringent exposure limits for formaldehyde presented a great challenge to design a ventilation system that yields acceptable air quality. The design solution included two innovative elements: air-to-air heat recovery, and focused ventilation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deru, Michael; Field-Macumber, Kristin
This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code (IRC) enacted in Section 1331 of the 2005 Energy Policy Act (EPAct) of 2005, noted in Internal Revenue Service (IRS) Notices 2006-52 (IRS 2006), 2008-40 (IRS 2008) and 2012-26 (IRS 2012), and updated by the Protecting Americans from Tax Hikes (PATH) Act of 2015. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning (HVAC); andmore » service hot water (SHW) systems. This document applies to buildings placed in service on or after January 1, 2016.« less
Reimagining Building Sensing and Control (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polese, L.
2014-06-01
Buildings are responsible for 40% of US energy consumption, and sensing and control technologies are an important element in creating a truly sustainable built environment. Motion-based occupancy sensors are often part of these control systems, but are usually altered or disabled in response to occupants' complaints, at the expense of energy savings. Can we leverage commodity hardware developed for other sectors and embedded software to produce more capable sensors for robust building controls? The National Renewable Energy Laboratory's (NREL) 'Image Processing Occupancy Sensor (IPOS)' is one example of leveraging embedded systems to create smarter, more reliable, multi-function sensors that openmore » the door to new control strategies for building heating, cooling, ventilation, and lighting control. In this keynote, we will discuss how cost-effective embedded systems are changing the state-of-the-art of building sensing and control.« less
NASA Technical Reports Server (NTRS)
Jennings, Mallory; Quinn, Gregory; Strange, Jeremy
2012-01-01
NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system's liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems, but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.6 lb. The water side and gas side pressure drops were 0.8 psid and 0.5 inches of water, respectively. Performance of the heat exchanger at the nominal pressure of 4.1 psia was measured at 94%, while a gas inlet pressure of 25 psia resulted in an effectiveness of 84%. These results compared well with the model, which was scaled for the small size. Modeling of certain phenomena that affect performance, such as flow distribution in the headers was particularly difficult due to the small size of the heat exchanger. Data from the tests has confirmed the correction factors that were used in these parts of the model.
Whole-body heat loss during exercise in the heat is not impaired in type 1 diabetes.
Stapleton, Jill M; Yardley, Jane E; Boulay, Pierre; Sigal, Ronald J; Kenny, Glen P
2013-09-01
The objective of this study is to determine whether individuals with type 1 diabetes exhibit impairments in local and whole-body heat loss responses that could affect core temperature regulation during exercise in the heat compared with matched, nondiabetic individuals. Twelve otherwise healthy individuals with type 1 diabetes (HbA1c = 7.7% ± 0.3%) and 12 controls matched for age, sex, body surface area, and physical fitness cycled continuously for 60 min at a set rate of metabolic heat production (approximately 400 W) in a whole-body direct calorimeter (35°C and 20% relative humidity). Local sweat rate (ventilated capsule) was measured on the back and skin blood flow (laser Doppler velocimetry) on the forearm. Core (rectal and esophageal) and mean skin temperatures and heart rate were measured continuously. Whole-body heat exchange and change in body heat content were measured using simultaneous direct whole-body and indirect calorimetry. The change (mean ± SE) in body heat content was similar between groups during exercise (diabetes, 409 ± 27 kJ; control, 386 ± 33 kJ; P = 0.584) and recovery (diabetes, -115 ± 16 kJ; control, -93 ± 24 kJ; P = 0.457). Local heat loss responses of sweating (P = 0.783) and skin blood flow (P = 0.078) as well as rectal temperature (diabetes, 37.87°C ± 0.10°C; control, 37.85°C; ± 0.13°C; P = 0.977) and heart rate (diabetes, 130 ± 9 beats·min, vs control, 126 ± 8 beats·min, P = 0.326) were comparable at the end of the exercise period. During light-to-moderate-intensity exercise performed under conditions permitting full sweat evaporation, otherwise healthy type 1 diabetic individuals did not show impaired heat loss responses during heat exposure when compared with matched individuals without diabetes.
NASA Astrophysics Data System (ADS)
Holtz, Ronald; Matic, Peter; Mott, David
2013-03-01
Warfighter performance can be adversely affected by heat load and weight of equipment. Current tactical vest designs are good insulators and lack ventilation, thus do not provide effective management of metabolic heat generated. NRL has undertaken a systematic study of tactical vest thermal management, leading to physics-based strategies that provide improved cooling without undesirable consequences such as added weight, added electrical power requirements, or compromised protection. The approach is based on evaporative cooling of sweat produced by the wearer of the vest, in an air flow provided by ambient wind or ambulatory motion of the wearer. Using an approach including thermodynamic analysis, computational fluid dynamics modeling, air flow measurements of model ventilated vest architectures, and studies of the influence of fabric aerodynamic drag characteristics, materials and geometry were identified that optimize passive cooling of tactical vests. Specific architectural features of the vest design allow for optimal ventilation patterns, and selection of fabrics for vest construction optimize evaporation rates while reducing air flow resistance. Cooling rates consistent with the theoretical and modeling predictions were verified experimentally for 3D mockups.
NASA Astrophysics Data System (ADS)
Yozgatligil, Ahmet; Shafee, Sina
2016-11-01
Fire accidents in recent decades have drawn attention to safety issues associated with the design, construction and maintenance of tunnels. A reduced scale tunnel model constructed based on Froude scaling technique is used in the current work. Mixtures of n-heptane and ethanol are burned with ethanol volumetric fraction up to 30 percent and the longitudinal ventilation velocity varying from 0.5 to 2.5 m/s. The burning rates of the pool fires are measured using a precision load cell. The heat release rates of the fires are calculated according to oxygen calorimetry method and the temperature distributions inside the tunnel are also measured. Results of the experiments show that the ventilation velocity variation has a significant effect on the pool fire burning rate, smoke temperature and the critical ventilation velocity. With increased oxygen depletion in case of increased ethanol content of blended pool fires, the quasi-steady heat release rate values tend to increase as well as the ceiling temperatures while the combustion duration decreases.
ERIC Educational Resources Information Center
Greim, Clifton W.; D'Angelo, David
1999-01-01
Explains how commissioning can help to ensure that all components in a new heating, ventilation, and air conditioning system will work together as designed. Bowdoin College's experience with commissioning is highlighted. (GR)
Heat dissipation in controlled environment enclosures through the application of water screens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warrington, I.J.; Halligan, E.A.; Ruby, L.C.
1994-12-31
The use of plate glass-water thermal barriers in controlled environment facilities effectively reduces the thermal load within the plant growth chamber. This allows high PPFs to be provided for plant growth and development studies, adequate simulation of daily light integrals, and simulation of peak PPFs. Further, substantial amounts of incandescent lamp supplementation can be used to achieve simulation of daylight R:FR ratios which are needed to ensure adequate stem development in some species. While the focus in this paper has been on the use of entire thermal barriers which separate the lighting enclosure from the plant growth chamber, the samemore » principles apply to the use of water jackets for cooling individual lamps (such as can occur with xenon-arc lamps). In this instance, the barrier separating the lamps from the plant chamber can be much simpler (e.g., plexiglas) as the main function of the barrier is to separate the air ventilation of the lamp enclosure from the air system within the plant growth chamber. The main advantage of water as a thermal barrier is the negligible absorption of radiation in the photosynthetically-active and near infra-red wavebands. Consequently, plate glass-water barriers typically allow transmission of approximately 90% of radiation in these regions. While ventilated double and triple glazing systems appear to be attractive alternative to water barriers from an operating standpoint, their significant absorption in the biologically-important wavebands (7 - 12 %) with each glass layer and longer-wave cut-offs (typically 2500 - 4000 nm) makes them a much less attractive alternative. The data presented demonstrate clearly that measurement of PPF alone is not an adequate representation of the radiation environment being used in a controlled environment study.« less
Wall System Saves Initial HVAC Costs
ERIC Educational Resources Information Center
Modern Schools, 1976
1976-01-01
The superior insulating characteristics of an exterior wall system has enabled a Massachusetts school district to realize a savings on electric heating, ventilating, and air-conditioning systems. (Author/MLF)
Shakoor, Sadia; Mir, Fatima; Zaidi, Anita K. M.; Zafar, Afia
2015-01-01
We have reviewed various strategies involved in containment of measles in healthcare facilities during community outbreaks. The strategies that are more applicable to resource-poor settings, such as natural ventilation, mechanical ventilation with heating and air-conditioning systems allowing unidirectional air-flow, and protection of un-infected patients and healthcare workers (HCWs), have been examined. Ventilation methods need innovative customization for resource-poor settings followed by validation and post-implementation analysis for impact. Mandatory vaccination of all HCWs with two doses of measles-containing vaccine, appropriate post-exposure prophylaxis of immunocompromised inpatients, and stringent admission criteria for measles cases can contribute toward reduction of nosocomial and secondary transmission within facilities. PMID:25882388
Classroom ventilation and indoor air quality-results from the FRESH intervention study.
Rosbach, J; Krop, E; Vonk, M; van Ginkel, J; Meliefste, C; de Wind, S; Gehring, U; Brunekreef, B
2016-08-01
Inadequate ventilation of classrooms may lead to increased concentrations of pollutants generated indoors in schools. The FRESH study, on the effects of increased classroom ventilation on indoor air quality, was performed in 18 naturally ventilated classrooms of 17 primary schools in the Netherlands during the heating seasons of 2010-2012. In 12 classrooms, ventilation was increased to targeted CO2 concentrations of 800 or 1200 ppm, using a temporary CO2 controlled mechanical ventilation system. Six classrooms were included as controls. In each classroom, data on endotoxin, β(1,3)-glucans, and particles with diameters of <10 μm (PM10 ) and <2.5 μm (PM2.5 ) and nitrogen dioxide (NO2 ) were collected during three consecutive weeks. Associations between the intervention and these measured indoor air pollution levels were assessed using mixed models, with random classroom effects. The intervention lowered endotoxin and β(1,3)-glucan levels and PM10 concentrations significantly. PM10 for instance was reduced by 25 μg/m³ (95% confidence interval 13-38 μg/m³) from 54 μg/m³ at maximum ventilation rate. No significant differences were found between the two ventilation settings. Concentrations of PM2.5 and NO2 were not affected by the intervention. Our results provide evidence that increasing classroom ventilation is effective in decreasing the concentrations of some indoor-generated pollutants. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Gusev, Sergey A.; Nikolaev, Vladimir N.
2018-01-01
The method for determination of an aircraft compartment thermal condition, based on a mathematical model of a compartment thermal condition was developed. Development of solution techniques for solving heat exchange direct and inverse problems and for determining confidence intervals of parametric identification estimations was carried out. The required performance of air-conditioning, ventilation systems and heat insulation depth of crew and passenger cabins were received.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozeman, Jeffrey; Chen, Kuo-Huey
2014-12-09
On November 3, 2009, General Motors (GM) accepted U.S. Department of Energy (DOE) Cooperative Agreement award number DE-EE0000014 from the National Energy Technology Laboratory (NETL). GM was selected to execute a three-year cost shared research and development project on Solid State Energy Conversion for Vehicular Heating, Ventilation & Air Conditioning (HVAC) and for Waste Heat Recovery.
Sharpe, Tim; Farren, Paul; Howieson, Stirling; Tuohy, Paul; McQuillan, Jonathan
2015-07-21
The need to reduce carbon emissions and fuel poverty has led to increased building envelope air tightness, intended to reduce uncontrolled ventilation heat losses. Ventilation strategies in dwellings still allow the use of trickle ventilators in window frames for background ventilation. The extent to which this results in "healthy" Indoor Air Quality (IAQ) in recently constructed dwellings was a concern of regulators in Scotland. This paper describes research to explore this. First a review of literature was conducted, then data on occupant interactions with ventilation provisions (windows, doors, trickle vents) gathered through an interview-based survey of 200 recently constructed dwellings, and measurements made on a sample of 40 of these. The main measured parameter discussed here is CO2 concentration. It was concluded after the literature review that 1000 ppm absolute was a reasonable threshold to use for "adequate" ventilation. The occupant survey found that there was very little occupant interaction with the trickle ventilators e.g., in bedrooms 63% were always closed, 28% always open, and in only 9% of cases occupants intervened to make occasional adjustments. In the measured dwellings average bedroom CO2 levels of 1520 ppm during occupied (night time) hours were observed. Where windows were open the average bedroom CO2 levels were 972 ppm. With windows closed, the combination of "trickle ventilators open plus doors open" gave an average of 1021 ppm. "Trickle ventilators open" gave an average of 1571 ppm. All other combinations gave averages of 1550 to 2000 ppm. Ventilation rates and air change rates were estimated from measured CO2 levels, for all dwellings calculated ventilation rate was less than 8 L/s/p, in 42% of cases calculated air change rate was less than 0.5 ach. It was concluded that trickle ventilation as installed and used is ineffective in meeting desired ventilation rates, evidenced by high CO2 levels reported across the sampled dwellings. Potential implications of the results are discussed.
Characteristics of rain penetration through a gravity ventilator used for natural ventilation.
Kim, Taehyeung; Lee, Dong Ho; Ahn, Kwangseog; Ha, Hyunchul; Park, Heechang; Piao, Cheng Xu; Li, Xiaoyu; Seo, Jeoungyoon
2008-01-01
Gravity ventilators rely simply on air buoyancy to extract air and are widely used to exhaust air contaminants and heat from workplaces using minimal energy. They are designed to maximize the exhaust flow rate, but the rain penetration sometimes causes malfunctioning. In this study, the characteristics of rain penetration through a ventilator were examined as a preliminary study to develop a ventilator with the maximum exhaust capacity while minimizing rain penetration. A model ventilator was built and exposed to artificial rain and wind. The paths, intensities and amounts of penetration through the ventilator were observed and measured in qualitative and quantitative fashions. In the first phase, the pathways and intensities of rain penetration were visually observed. In the second phase, the amounts of rain penetration were quantitatively measured under the different configurations of ventilator components that were installed based on the information obtained in the first-phase experiment. The effects of wind speed, grill direction, rain drainage width, outer wall height, neck height and leaning angle of the outer wall from the vertical position were analyzed. Wind speed significantly affected rain penetration. Under the low crosswind conditions, the rain penetration intensities were under the limit of detection. Under the high crosswind conditions, grill direction and neck height were the most significant factors in reducing rain penetration. The installation of rain drainage was also important in reducing rain penetration. The experimental results suggest that, with proper configurations of its components, a gravity ventilator can be used for natural ventilation without significant rain penetration problems.
Fujii, Naoto; Ichinose, Masashi; Honda, Yasushi; Tsuji, Bun; Watanabe, Kazuhito; Kondo, Narihiko; Nishiyasu, Takeshi
2013-01-01
The arterial blood pressure and ventilatory responses to severe passive heating at rest varies greatly among individuals. We tested the hypothesis that the increase in ventilation seen during severe passive heating of resting humans is associated with a decrease in arterial blood pressure. Passive heating was performed on 18 healthy males using hot water immersion to the level of the iliac crest and a water-perfused suit. We then divided the subjects into two groups: MAP(NOTINC) (n = 8), whose mean arterial blood pressure (MAP) at the end of heating had increased by ≤3 mmHg, and MAP(INC) (n = 10), whose MAP increased by >3 mmHg. Increases in esophageal temperature (T (es)) elicited by the heating were similar in the two groups (+2.3 ± 0.3 vs. +2.4 ± 0.4 °C). Early during heating (increase in T (es) was <1.5 °C), MAP, minute ventilation ([Formula: see text]), and end-tidal CO(2) pressure ([Formula: see text]) were similar between the groups. However, during the latter part of heating (increase in T (es) was ≥1.5 °C), the increase in [Formula: see text] and decrease in [Formula: see text] were significantly greater or tended to be greater, while the increase in MAP was significantly smaller in MAP(NOTINC) than MAP(INC). Among all subjects, heating-induced changes in [Formula: see text] significantly and negatively correlated with heating-induced changes in MAP during the latter part of heating (r = -0.52 to -0.74, P < 0.05). These results suggest that, in resting humans, 25-50 % of the variation in the magnitude of the arterial blood pressure response to severe passive heating can be explained by the magnitude of hyperthermia-induced hyperventilation.
Design Concepts for Optimum Energy Use in HVAC Systems.
ERIC Educational Resources Information Center
Electric Energy Association, New York, NY.
Much of the innovative work in the design and application of heating, ventilating, and air conditioning (HVAC) systems is concentrated on improving the cost effectiveness of such systems through optimizing energy use. One approach to the problem is to reduce a building's HVAC energy demands by designing it for lower heat gains and losses in the…
Hollow Fiber Ground Evaporator Unit Testing
NASA Technical Reports Server (NTRS)
Bue, Grant; Trevino, Luis; Tsioulos, Gus
2010-01-01
A candidate technology for 1-atmosphere suited heat rejection was developed and tested at NASA Johnson Space Center. The concept is to use a collection of microporous hydrophobic tubes potted between inlet and outlet headers with water as coolant. A pump provides flow between headers through the tubes which are subjected to fan driven cross flow of relatively dry air. The forced ventilation would sweep out the water vapor from the evaporation of the coolant rejecting heat from the coolant stream. The hollow fibers are obtained commercially (X50-215 Celgard) which are arranged in a sheet containing 5 fibers per linear inch. Two engineering development units were produced that vary the fold direction of the fiber sheets relative to the ventilation. These units were tested at inlet water temperatures ranging from 20 deg C to 30 deg C, coolant flow rates ranging from 10 to 90 kg/hr, and at three fan speeds. These results were used to size a system that could reject heat at a rate of 340 W.
System for controlling child safety seat environment
NASA Technical Reports Server (NTRS)
Elrod, Susan V. (Inventor); Dabney, Richard W. (Inventor)
2008-01-01
A system is provided to control the environment experienced by a child in a child safety seat. Each of a plurality of thermoelectric elements is individually controllable to be one of heated and cooled relative to an ambient temperature. A first portion of the thermoelectric elements are positioned on the child safety seat such that a child sitting therein is positioned thereover. A ventilator coupled to the child safety seat moves air past a second portion of the thermoelectric elements and filters the air moved therepast. One or more jets coupled to the ventilator receive the filtered air. Each jet is coupled to the child safety seat and can be positioned to direct the heated/cooled filtered air to the vicinity of the head of the child sitting in the child safety seat.
Expert system for the design of heating, ventilating, and air-conditioning systems. Master's thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camejo, P.J.
1989-12-01
Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are neededmore » and have been developed to join the separate knowledge bases into one simple-to-use program unit.« less
Hydronic rooftop cooling systems
Bourne, Richard C [Davis, CA; Lee, Brian Eric [Monterey, CA; Berman, Mark J [Davis, CA
2008-01-29
A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.
Humidification during mechanical ventilation in the adult patient.
Al Ashry, Haitham S; Modrykamien, Ariel M
2014-01-01
Humidification of inhaled gases has been standard of care in mechanical ventilation for a long period of time. More than a century ago, a variety of reports described important airway damage by applying dry gases during artificial ventilation. Consequently, respiratory care providers have been utilizing external humidifiers to compensate for the lack of natural humidification mechanisms when the upper airway is bypassed. Particularly, active and passive humidification devices have rapidly evolved. Sophisticated systems composed of reservoirs, wires, heating devices, and other elements have become part of our usual armamentarium in the intensive care unit. Therefore, basic knowledge of the mechanisms of action of each of these devices, as well as their advantages and disadvantages, becomes a necessity for the respiratory care and intensive care practitioner. In this paper, we review current methods of airway humidification during invasive mechanical ventilation of adult patients. We describe a variety of devices and describe the eventual applications according to specific clinical conditions.
Comparison of the Intensity of Ventilation at Windows Exchange in the Room - Case Study
NASA Astrophysics Data System (ADS)
Kapalo, Peter; Voznyak, Orest
2017-06-01
Doing the replacement of old wooden windows in a new plastic windows, in the old buildings, we get the great reducing of the building heat loss. Simpler maintenance and attendance of window is the next advantage. New windows are characterized by better tightness. The aim of the article is determination due to the performed experimental measurements, how much more are reduce the uncontrolled ventilation that is caused of the infiltration windows. In the article there is presented the experimental measurement of indoor air quality in the room in two phases. In the first phase there is the room installed by 55 year old wood window. In the second phase there is the same room installed by new plastic window. Due to the experimental measurement of indoor air quality it is calculated intensity of ventilation - infiltration. These results of ventilation intensity are reciprocally compared.
Using spacecraft trace contaminant control systems to cure sick building syndrome
NASA Technical Reports Server (NTRS)
Graf, John C.
1994-01-01
Many residential and commercial buildings with centralized, recirculating, heating ventilation and air conditioning systems suffer from 'Sick Building Syndrome.' Ventilation rates are reduced to save energy costs, synthetic building materials off-gas contaminants, and unsafe levels of volatile organic compounds (VOC's) accumulate. These unsafe levels of contaminants can cause irritation of eyes and throat, fatigue and dizziness to building occupants. Increased ventilation, the primary method of treating Sick Building Syndrome is expensive (due to increased energy costs) and recently, the effectiveness of increased ventilation has been questioned. On spacecraft venting is not allowed, so the primary methods of air quality control are; source control, active filtering, and destruction of VOC's. Four non-venting contaminant removal technologies; strict material selection to provide source control, ambient temperature catalytic oxidation, photocatalytic oxidation, and uptake by higher plants, may have potential application for indoor air quality control.
In vitro and in vivo evaluation of a new active heat moisture exchanger
Chiumello, Davide; Pelosi, Paolo; Park, Gilbert; Candiani, Andrea; Bottino, Nicola; Storelli, Ezio; Severgnini, Paolo; D'Onofrio, Dunia; Gattinoni, Luciano; Chiaranda, Massimo
2004-01-01
Introduction In order to improve the efficiency of heat moisture exchangers (HMEs), new hybrid humidifiers (active HMEs) that add water and heat to HMEs have been developed. In this study we evaluated the efficiency, both in vitro and in vivo, of a new active HME (the Performer; StarMed, Mirandola, Italy) as compared with that of existing HMEs (Hygroster and Hygrobac; Mallinckrodt, Mirandola, Italy). Methods We tested the efficiency by measuring the temperature and absolute humidity (AH) in vitro using a test lung ventilated at three levels of minute ventilation (5, 10 and 15 l/min) and at two tidal volumes (0.5 and 1 l), and in vivo in 42 patients with acute lung injury (arterial oxygen tension/fractional inspired oxygen ratio 283 ± 72 mmHg). We also evaluated the efficiency in vivo after 12 hours. Results In vitro, passive Performer and Hygrobac had higher airway temperature and AH (29.2 ± 0.7°C and 29.2 ± 0.5°C, [P < 0.05]; AH: 28.9 ± 1.6 mgH2O/l and 28.1 ± 0.8 mgH2O/l, [P < 0.05]) than did Hygroster (airway temperature: 28.1 ± 0.3°C [P < 0.05]; AH: 27 ± 1.2 mgH2O/l [P < 0.05]). Both devices suffered a loss of efficiency at the highest minute ventilation and tidal volume, and at the lowest minute ventilation. Active Performer had higher airway temperature and AH (31.9 ± 0.3°C and 34.3 ± 0.6 mgH2O/l; [P < 0.05]) than did Hygrobac and Hygroster, and was not influenced by minute ventilation or tidal volume. In vivo, the efficiency of passive Performer was similar to that of Hygrobac but better than Hygroster, whereas Active Performer was better than both. The active Performer exhibited good efficiency when used for up to 12 hours in vivo. Conclusion This study showed that active Performer may provide adequate conditioning of inspired gases, both as a passive and as an active device. PMID:15469569
In vitro and in vivo evaluation of a new active heat moisture exchanger.
Chiumello, Davide; Pelosi, Paolo; Park, Gilbert; Candiani, Andrea; Bottino, Nicola; Storelli, Ezio; Severgnini, Paolo; D'Onofrio, Dunia; Gattinoni, Luciano; Chiaranda, Massimo
2004-10-01
In order to improve the efficiency of heat moisture exchangers (HMEs), new hybrid humidifiers (active HMEs) that add water and heat to HMEs have been developed. In this study we evaluated the efficiency, both in vitro and in vivo, of a new active HME (the Performer; StarMed, Mirandola, Italy) as compared with that of existing HMEs (Hygroster and Hygrobac; Mallinckrodt, Mirandola, Italy). We tested the efficiency by measuring the temperature and absolute humidity (AH) in vitro using a test lung ventilated at three levels of minute ventilation (5, 10 and 15 l/min) and at two tidal volumes (0.5 and 1 l), and in vivo in 42 patients with acute lung injury (arterial oxygen tension/fractional inspired oxygen ratio 283 +/- 72 mmHg). We also evaluated the efficiency in vivo after 12 hours. In vitro, passive Performer and Hygrobac had higher airway temperature and AH (29.2 +/- 0.7 degrees C and 29.2 +/- 0.5 degrees C, [P < 0.05]; AH: 28.9 +/- 1.6 mgH2O/l and 28.1 +/- 0.8 mgH2O/l, [P < 0.05]) than did Hygroster (airway temperature: 28.1 +/- 0.3 degrees C [P < 0.05]; AH: 27 +/- 1.2 mgH2O/l [P < 0.05]). Both devices suffered a loss of efficiency at the highest minute ventilation and tidal volume, and at the lowest minute ventilation. Active Performer had higher airway temperature and AH (31.9 +/- 0.3 degrees C and 34.3 +/- 0.6 mgH2O/l; [P < 0.05]) than did Hygrobac and Hygroster, and was not influenced by minute ventilation or tidal volume. In vivo, the efficiency of passive Performer was similar to that of Hygrobac but better than Hygroster, whereas Active Performer was better than both. The active Performer exhibited good efficiency when used for up to 12 hours in vivo. This study showed that active Performer may provide adequate conditioning of inspired gases, both as a passive and as an active device.
Clinical Practice Guideline of Acute Respiratory Distress Syndrome
Cho, Young-Jae; Moon, Jae Young; Shin, Ein-Soon; Kim, Je Hyeong; Jung, Hoon; Park, So Young; Kim, Ho Cheol; Sim, Yun Su; Rhee, Chin Kook; Lim, Jaemin; Lee, Seok Jeong; Lee, Won-Yeon; Lee, Hyun Jeong; Kwak, Sang Hyun; Kang, Eun Kyeong; Chung, Kyung Soo
2016-01-01
There is no well-stated practical guideline for mechanically ventilated patients with or without acute respiratory distress syndrome (ARDS). We generate strong (1) and weak (2) grade of recommendations based on high (A), moderate (B) and low (C) grade in the quality of evidence. In patients with ARDS, we recommend low tidal volume ventilation (1A) and prone position if it is not contraindicated (1B) to reduce their mortality. However, we did not support high-frequency oscillatory ventilation (1B) and inhaled nitric oxide (1A) as a standard treatment. We also suggest high positive end-expiratory pressure (2B), extracorporeal membrane oxygenation as a rescue therapy (2C), and neuromuscular blockage for 48 hours after starting mechanical ventilation (2B). The application of recruitment maneuver may reduce mortality (2B), however, the use of systemic steroids cannot reduce mortality (2B). In mechanically ventilated patients, we recommend light sedation (1B) and low tidal volume even without ARDS (1B) and suggest lung protective ventilation strategy during the operation to lower the incidence of lung complications including ARDS (2B). Early tracheostomy in mechanically ventilated patients can be performed only in limited patients (2A). In conclusion, of 12 recommendations, nine were in the management of ARDS, and three for mechanically ventilated patients. PMID:27790273
Uchiyama, Akinori; Yoshida, Takeshi; Yamanaka, Hidenori; Fujino, Yuji
2013-07-01
The resistance of the endotracheal tube (ETT), the heat and moisture exchanger (HME), and the ventilator may affect the patient's respiratory status. Although previous studies examined the inspiratory work of breathing (WOB), investigation of WOB in the expiratory phase is rare. We estimated tracheal pressure at the tip of the ETT (Ptrach) and calculated expiratory WOB imposed by the ETT, the HME, and the expiratory valve. We examined imposed expiratory WOB in patients under a continuous mandatory ventilation (CMV) mode and during spontaneous breathing trials (SBTs). We hypothesized that imposed expiratory WOB would increase with heightened ventilatory demand. We measured airway pressure (Paw) and respiratory flow (V). We estimated Ptrach using the equation Ptrach = Paw - K1 × V(K2) - 2.70 × V(L/s)(1.42). K1 and K2 were determined by the inner diameter (ID) of the ETT. Imposed expiratory WOB was calculated from the area of Ptrach above PEEP versus lung volume. We examined imposed expiratory WOB and imposed expiratory resistance in relation to mean expiratory flow. We examined 28 patients under CMV mode, and 29 during SBT. During both CMV and SBT, as mean expiratory flow increased, imposed expiratory WOB increased. The regression curves between mean expiratory flow (x) (L/s) and imposed expiratory WOB (y) (J/L) were y = 1.35x(0.83) (R(2) = 0.79) for 7 mm ID ETT under CMV, y = 1.12x(0.82) (R(2) = 0.73) for 8 mm ID ETT under CMV, y = 1.07x(1.04) (R(2) = 0.85) for 7 mm ID ETT during SBT, and y = 0.84x(0.93) (R(2) = 0.75) for 8 mm ID ETT during SBT. Levels of imposed expiratory WOB were affected by ETT diameter and ventilator mode. The reason for increasing imposed expiratory WOB was an increase in expiratory resistance imposed by the ETT and HME. Under mechanical ventilation, imposed expiratory WOB should be considered in patients with higher minute ventilation.
Tonnelier, Alexandre; Lellouche, François; Bouchard, Pierre Alexandre; L'Her, Erwan
2013-08-01
Different filtering devices are used during mechanical ventilation to avoid dysfunction of flow and pressure transducers or for airborne microorganisms containment. Water condensates, resulting from the use of humidifiers, but also residual nebulization particles may have a major influence on expiratory limb resistance. To evaluate the influence of nebulization and active humidification on the resistance of expiratory filters. A respiratory system analog was constructed using a test lung, an ICU ventilator, heated humidifiers, and a piezoelectric nebulizer. Humidifiers were connected to different types of circuits (unheated, mono-heated, new-generation and old-generation bi-heated). Five filter types were evaluated: electrostatic, heat-and-moisture exchanger, standard, specific, and internal heated high-efficiency particulate air [HEPA] filter. Baseline characteristics were obtained from each dry filter. Differential pressure measurements were carried out after 24 hours of continuous in vitro use for each condition, and after 24 hours of use with an old-generation bi-heated circuit without nebulization. While using unheated circuits, measurements had to be interrupted before 24 hours for all the filtering devices except the internal heated HEPA filter. The heat-and-moisture exchangers occluded before 24 hours with the unheated and mono-heated circuits. The circuit type, nebulization practice, and duration of use did not influence the internal heated HEPA filter resistance. Expiratory limb filtration is likely to induce several major adverse events. Expiratory filter resistance increase is due mainly to the humidification circuit type, rather than to nebulization. If filtration is mandatory while using an unheated circuit, a dedicated filter should be used for ≤ 24 hours, or a heated HEPA for a longer duration.
Gorjinezhad, Soudabeh; Kerimray, Aiymgul; Amouei Torkmahalleh, Mehdi; Keleş, Melek; Ozturk, Fatma; Hopke, Philip K
2017-04-01
Particulate matter (PM) measurements were conducted during heating corn oil, heating corn oil mixed with the table salt and heating low fat ground beef meat using a PTFE-coated aluminum pan on an electric stove with low ventilation. The main objectives of this study were to measure the size segregated mass concentrations, emission rates, and fluxes of 24 trace elements emitted during heating cooking oil or oil with salt and cooking meat. Health risk assessments were performed based on the resulting exposure to trace elements from such cooking activities. The most abundant elements (significantly different from zero) were Ba (24.4 ug m -3 ) during grilling meat and Ti during heating oil with salt (24.4 ug m -3 ). The health assessment indicates that the cooking with an electric stove with poor ventilation leading to chronic exposures may pose the risk of significant adverse health effects. Carcinogenic risk exceeded the acceptable level (target cancer risk 1 × 10 -6 , US EPA 2015) by four orders of magnitude, while non-carcinogenic risk exceeded the safe level (target HQ = 1, US EPA 2015) by a factor of 5-20. Cr and Co were the primary contributors to the highest carcinogenic and non-carcinogenic risks, respectively.
Night ventilation at courtyard housing estate in warm humid tropic for sustainable environment
NASA Astrophysics Data System (ADS)
Defiana, Ima; Teddy Badai Samodra, FX; Setyawan, Wahyu
2018-03-01
The problem in the night-time for warm humid tropic housing estate is thermal discomfort. Heat gains accumulation from building envelope, internal heat gains and activities of occupants influence indoor thermal comfort. Ventilation is needed for transfer or removes heat gains accumulation to outdoor. This study describes the role of an inner courtyard to promote pressure difference. Pressure difference as a wind driven force to promote wind velocity thereby could transfer indoor heat gains accumulation to outdoor of building. A simulation used as the research method for prediction wind velocity. Purposive sampling used as the method to choose building sample with similar inner courtyards. The field survey was conducted to obtain data of inner courtyard typologies and two housing were used as model simulation. Furthermore, the simulation is running in steady state mode, at 05.00 pm when the occupants usually close window. But the window should be opened in the night-time to transfer indoor heat gain to outdoor. The result shows that the factor influencing physiological cooling as consequences of inner courtyard are height to width ratio, the distance between inner courtyard to windward, window configuration and the inner courtyard design-the proportion between the length, the width, and the height.
Characterization of a mine fire using atmospheric monitoring system sensor data.
Yuan, L; Thomas, R A; Zhou, L
2017-06-01
Atmospheric monitoring systems (AMS) have been widely used in underground coal mines in the United States for the detection of fire in the belt entry and the monitoring of other ventilation-related parameters such as airflow velocity and methane concentration in specific mine locations. In addition to an AMS being able to detect a mine fire, the AMS data have the potential to provide fire characteristic information such as fire growth - in terms of heat release rate - and exact fire location. Such information is critical in making decisions regarding fire-fighting strategies, underground personnel evacuation and optimal escape routes. In this study, a methodology was developed to calculate the fire heat release rate using AMS sensor data for carbon monoxide concentration, carbon dioxide concentration and airflow velocity based on the theory of heat and species transfer in ventilation airflow. Full-scale mine fire experiments were then conducted in the Pittsburgh Mining Research Division's Safety Research Coal Mine using an AMS with different fire sources. Sensor data collected from the experiments were used to calculate the heat release rates of the fires using this methodology. The calculated heat release rate was compared with the value determined from the mass loss rate of the combustible material using a digital load cell. The experimental results show that the heat release rate of a mine fire can be calculated using AMS sensor data with reasonable accuracy.
NASA Astrophysics Data System (ADS)
Sohail, Maha
2017-12-01
A large proportion of the world's population resides in developing countries where there is a lack of rigorous studies in designing energy efficient buildings. This study is a step in designing a naturally ventilated high rise residential building in a tropical climatic context of the developing country, Pakistan. Karachi, the largest city of Pakistan, lies in the subtropical hot desert region with constant high temperature of average 32 °C throughout the summer and no particular winter season. The Design Builder software package is used to design a 25 storey high rise residential building relying primarily on natural ventilation. A final conceptual design is proposed after optimization of massing, geometry, orientation, and improved building envelope design including extensive shading devices in the form of trees. It has been observed that a reduction of 8 °C in indoor ambient temperature is possible to achieve with passive measures and use of night time ventilation. A fully naturally ventilated building can reduce the energy consumption for cooling and heating by 96 % compared to a building using air conditioning systems.
ERIC Educational Resources Information Center
Green, Jacob; LeBatard, Ernest; Wiggington, Donnie; Williams, Bennett
2005-01-01
Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…
Forced-air heating and air conditioning (HAC) systems caused an average and maximum increase in air infiltration rates of 1.8- and 4.3-fold, respectively, during brief whole-house studies of tracer gas decay In 39 occupied houses. An average Increase in air infiltration rate of 0...
NASA Technical Reports Server (NTRS)
Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.
1991-01-01
Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Preemption of State regulations for covered equipment other than electric motors and commercial heating, ventilating, air-conditioning and water heating products. 431.408 Section 431.408 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMEN...
Ventilation Loss in the NASA Space Shuttle Crew Protective Garments: Potential for Heat Stress
NASA Technical Reports Server (NTRS)
Askew, Gregory K.; Kaufman, Jonathan W.
1991-01-01
The potential of the National Aeronautics and Space Administration (NASA) S1035 Launch/Entry suit (LES) for producing heat stress in a simulated Space Shuttle cabin environment has been studied. The testing was designed to determine if the NASA S1035 poses a greater threat of inducing heat stress than the NASA S1032. Conditions were designed to simulate an extreme prelaunch situation, with chamber temperatures maintained at dry bulb temperature 27.2 +/- 0.1 C, globe temperature - 27.3 +/- 0.1 C, and wet bulb temperature 21.1 +/- 0.3 C. Four males, aged 28-48, were employed in this study, with three subjects having exposures in all four conditions and the fourth subject exposed to 3 conditions. Test durations in the ventilated (V) and unventilated (UV) conditions were designed for 480 minutes, which all subjects achieved. No significant differences related to experimental conditions were noted in rectal temperatures, heart rates or sweat rates. The results indicate that the S1032 and S1035 garments, in either the V or UV state, poses no danger of inducing unacceptable heat stress under the conditions expected within the Shuttle cabin during launch or re-entry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Originally developed in 1999, an updated version 8.8.0 with bug fixes was released on September 30th, 2017. EnergyPlus™ is a whole building energy simulation program that engineers, architects, and researchers use to model both energy consumption—for heating, cooling, ventilation, lighting and plug and process loads—and water use in buildings. EnergyPlus is a console-based program that reads input and writes output to text files. It ships with a number of utilities including IDF-Editor for creating input files using a simple spreadsheet-like interface, EP-Launch for managing input and output files and performing batch simulations, and EP-Compare for graphically comparing the results ofmore » two or more simulations. Several comprehensive graphical interfaces for EnergyPlus are also available. DOE does most of its work with EnergyPlus using the OpenStudio® software development kit and suite of applications. DOE releases major updates to EnergyPlus twice annually.« less
Energy conservation and solar retrofit analysis of a large office building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arasteh, D.; Hepner, M.
1981-01-01
During the winter and spring of 1981, a technical energy conservation and solar analysis of the JFK Federal Office Building in Boston was conducted. To reduce the building's energy consumption of a total of nineteen Energy Conservation Measures (ECM's) were analyzed. Among the measures studied were: reduction of ventilation and supply air, central automation controls, programmable lighting, absorption chiller replacement, fenestration modification and heat recovery. The results of the analyse show that implementation of all recommended ECM's would reduce energy consumption by 50% from a raw source Annual Energy Index (AEI) of 33.9 x 10/sup 8/ J/m/sup 2/ (299 MBtu/sf)more » to 17.2 10/sup 8/ j/m/sup 2/ (152 MBtu/sf). This relates to a savings of approximately $950,000 annually at April 1981 energy costs for a total construction cost of three million dollars.« less
A Generalized Formulation of Demand Response under Market Environments
NASA Astrophysics Data System (ADS)
Nguyen, Minh Y.; Nguyen, Duc M.
2015-06-01
This paper presents a generalized formulation of Demand Response (DR) under deregulated electricity markets. The problem is scheduling and controls the consumption of electrical loads according to the market price to minimize the energy cost over a day. Taking into account the modeling of customers' comfort (i.e., preference), the formulation can be applied to various types of loads including what was traditionally classified as critical loads (e.g., air conditioning, lights). The proposed DR scheme is based on Dynamic Programming (DP) framework and solved by DP backward algorithm in which the stochastic optimization is used to treat the uncertainty, if any occurred in the problem. The proposed formulation is examined with the DR problem of different loads, including Heat Ventilation and Air Conditioning (HVAC), Electric Vehicles (EVs) and a newly DR on the water supply systems of commercial buildings. The result of simulation shows significant saving can be achieved in comparison with their traditional (On/Off) scheme.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
...: Heating, ventilating, air-conditioning systems (HVAC), amplifiers, mainboards, gas control modules, hybrid airmeter electronics, hybrid ignition electronics, pressure sensors, transmission control modules, crash...
The Rebirth of a Career and Technical Education Program.
ERIC Educational Resources Information Center
Reese, Susan
2003-01-01
Describes how a Milwaukee high school sustained its career and technical education programs by cultivating business-industry partnerships and developing a successful heating, ventilation, air conditioning, and refrigeration curriculum. (JOW)
Energy Retrofits Can Ease the Budget Squeeze.
ERIC Educational Resources Information Center
Nordeen, Howard
1983-01-01
Computer-based building management systems can cut the energy costs of heating, ventilating, and air conditioning (HVAC) systems in school buildings. Administrators are advised on how to choose the best system. (MLF)
Shendell, D G; Winer, A M; Weker, R; Colome, S D
2004-06-01
The prevalence of prefabricated, portable classrooms (portables) for United States public schools has increased; in California, approximately one of three students learn inside portables. Limited research has been conducted on indoor air and environmental quality in American schools, and almost none in portables. Available reports and conference proceedings suggest problems from insufficient ventilation due to poor design, operation, and/or maintenance of heating, ventilation and air conditioning (HVAC) systems; most portables have one mechanical, wall-mounted HVAC system. A pilot assessment was conducted in Los Angeles County, including measurements of integrated ventilation rates based on a perfluorocarbon tracer gas technique and continuous monitoring of temperature (T) and relative humidity (RH). Measured ventilation rates were low [mean school day integrated average 0.8 per hour (range: 0.1-2.9 per hour)]. Compared with relevant standards, results suggested adequate ventilation and associated conditioning of indoor air for occupant comfort were not always provided to these classrooms. Future school studies should include integrated and continuous measurements of T, RH, and ventilation with appropriate tracer gas methods, and other airflow measures. Adequate ventilation has the potential to mitigate concentrations of chemical pollutants, particles, carbon dioxide, and odors in portable and traditional classrooms, which should lead to a reduction in reported health outcomes, e.g., symptoms of 'sick building syndrome', allergies, asthma. Investigations of school indoor air and environmental quality should include continuous temperature and relative humidity data with inexpensive instrumentation as indicators of thermal comfort, and techniques to measure ventilation rates.
Contaminants in ventilated filling boxes
NASA Astrophysics Data System (ADS)
Bolster, D. T.; Linden, P. F.
While energy efficiency is important, the adoption of energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. Many low-energy systems, such as displacement or natural ventilation, rely on temperature stratification within the interior environment, always extracting the warmest air from the top of the room. Understanding buoyancy-driven convection in a confined ventilated space is key to understanding the flow that develops with many of these modern low-energy ventilation schemes. In this work we study the transport of an initially uniformly distributed passive contaminant in a displacement-ventilated space. Representing a heat source as an ideal sourced of buoyancy, analytical and numerical models are developed that allow us to compare the average efficiency of contaminant removal between traditional mixing and modern low-energy systems. A set of small-scale analogue laboratory experiments was also conducted to further validate our analytical and numerical solutions.We find that on average traditional and low-energy ventilation methods are similar with regard to pollutant flushing efficiency. This is because the concentration being extracted from the system at any given time is approximately the same for both systems. However, very different vertical concentration gradients exist. For the low-energy system, a peak in contaminant concentration occurs at the temperature interface that is established within the space. This interface is typically designed to sit at some intermediate height in the space. Since this peak does not coincide with the extraction point, displacement ventilation does not offer the same benefits for pollutant flushing as it does for buoyancy removal.
Selecting a Control Strategy for Plug and Process Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobato, C.; Sheppy, M.; Brackney, L.
2012-09-01
Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the designmore » and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.« less
Optical intensity scintillation in the simulated atmospherical environment
NASA Astrophysics Data System (ADS)
Hajek, Lukas; Latal, Jan; Vanderka, Ales; Vitasek, Jan; Bojko, Marian; Bednarek, Lukas; Vasinek, Vladimir
2016-09-01
There are several parameters of the atmospheric environment which have an effect on the optical wireless connection. Effects like fog, snow or rain are ones of the effects which appears tendentiously and which are bound by season, geographic location, etc. One of the effects that appear with various intensity for the whole time is airflow. The airflow changes the local refractive index of the air and areas with lower or higher refractive index form. The light going through these areas refracts and due to the optical intensity scintillates on the detector of the receiver. The airflow forms on the basis of two effects in the atmosphere. The first is wind cut and flowing over barriers. The other is thermal flow when warm air rises to the higher layers of the atmosphere. The heart of this article is creation such an environment that will form airflow and the refractive index will scintillate. For the experiment, we used special laboratory box with high-speed ventilators and heating units to simulate atmospheric turbulence. We monitor the impact of ventilator arrangement and air temperature on the scintillation of the gas laser with wavelength 633 nm/15 mW. In the experiment, there is watched the difference in behavior between real measurement and flow simulation with the same peripheral conditions of the airflow in the area of 500 x 500 cm.
9 CFR 3.102 - Facilities, indoor.
Code of Federal Regulations, 2011 CFR
2011-01-01
... be ventilated by natural or artificial means to provide a flow of fresh air for the marine mammals... housing marine mammals, including pools of water. (c) Lighting. Indoor housing facilities for marine mammals shall have ample lighting, by natural or artificial means, or both, of a quality, distribution...
9 CFR 3.102 - Facilities, indoor.
Code of Federal Regulations, 2010 CFR
2010-01-01
... be ventilated by natural or artificial means to provide a flow of fresh air for the marine mammals... housing marine mammals, including pools of water. (c) Lighting. Indoor housing facilities for marine mammals shall have ample lighting, by natural or artificial means, or both, of a quality, distribution...
Yoshidome, Aya; Shinomiya, Ayako; Iwagaki, Tamao; Sano, Haruhiko; Aoyama, Kazuyoshi; Takenaka, Yukari; Takenaka, Ichiro
2015-08-01
A previously healthy 54-year-old woman underwent a resection of the acoustic tumor. Following induction of general anesthesia and tracheal intubation, volume-controlled ventilation was started and the patient was placed in the left park bench position. The heat and moisture exchange filter (HMEF) was placed within the ventilatory circuit and positioned below the patient's head to avoid unintentional extubation. Six hours after the start of surgery, peak inspiratory pressure gradually rose, and 2 hours later ventilation of the patient's lung became increasingly difficult. When the HMEF was replaced, normal breathing was promptly restored. We reproduced this scenario with a similar HMEF under the same ventilator settings by adding 0-8 g of normal saline into the HMEF housing, and measured the inspiratory pressure and tidal volume across the HMEF. When instilling 4 g of saline, an increase in inspiratory pressure occurred. This case shows a potential risk of unexpectedly early occurrence of obstruction of the HMEF due to accumulation of condensed water within the device when the HMEF was positioned below the patient's head. We recommend selection of the appropriate HMEF and suitable mounting to avoid this problem.
Semiparametric Modeling of Daily Ammonia Levels in Naturally Ventilated Caged-Egg Facilities
Gutiérrez-Zapata, Diana María; Galeano-Vasco, Luis Fernando; Cerón-Muñoz, Mario Fernando
2016-01-01
Ammonia concentration (AMC) in poultry facilities varies depending on different environmental conditions and management; however, this is a relatively unexplored subject in Colombia (South America). The objective of this study was to model daily AMC variations in a naturally ventilated caged-egg facility using generalized additive models. Four sensor nodes were used to record AMC, temperature, relative humidity and wind speed on a daily basis, with 10 minute intervals for 12 weeks. The following variables were included in the model: Heat index, Wind, Hour, Location, Height of the sensor to the ground level, and Period of manure accumulation. All effects included in the model were highly significant (p<0.001). The AMC was higher during the night and early morning when the wind was not blowing (0.0 m/s) and the heat index was extreme. The average and maximum AMC were 5.94±3.83 and 31.70 ppm, respectively. Temperatures above 25°C and humidity greater than 80% increased AMC levels. In naturally ventilated caged-egg facilities the daily variations observed in AMC primarily depend on cyclic variations of the environmental conditions and are also affected by litter handling (i.e., removal of the bedding material). PMID:26812150
Solar Powered Liquid Desiccant Air Conditioner for Low-Electricity Humidity Control
2012-07-01
thermal comfort conditions. Liquid-desiccants are solutions that are hygroscopic but are easily able to be pumped and applied within heating, ventilating, and air conditioning (HVAC) equipment as necessary.
ERIC Educational Resources Information Center
Fitzemeyer, Ted
2000-01-01
Discusses how proper maintenance can help schools eliminate sources contributing to poor air quality. Maintaining heating and air conditioning units, investigating bacterial breeding grounds, fixing leaking boilers, and adhering to ventilation codes and standards are discussed. (GR)
Strategy Guideline. Transitioning HVAC Companies to Whole House Performance Contractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, Arlan
2012-05-01
This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... gypsum block walls. (3) Floor joints, roof trusses (including roof boards and roofing), and framing..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11...
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... gypsum block walls. (3) Floor joints, roof trusses (including roof boards and roofing), and framing..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11...
Fassassi, Mikaïla; Michel, Fabrice; Thomachot, Laurent; Nicaise, Claire; Vialet, Renaud; Jammes, Yves; Lagier, Pierre; Martin, Claude
2007-02-01
We set out to evaluate the efficacy of passive inspiratory gas conditioning in mechanically ventilated neonates and compared it with that of a heated humidifier (HH). Prospective, randomized, controlled study. Neonatal and pediatric intensive care unit. Fourteen mechanically ventilated neonates nursed in incubators. The HH was set to deliver a temperature of 37 degrees C and an absolute humidity of 40 mgH(2)O/l at the incubator entrance. Inspired temperature (T degrees ) and absolute humidity (AH) were measured by the psychometric method, transpulmonary pressure (Tpres) by means of a differential pressure transducer. Measurements were performed at 5, 10, and 15 min. The values of T degrees were significantly higher using the HH (34.6+/-1.6 degrees C) than the heat and moisture exchanger (HME) (33.8+/2.3, p<0.001). The values of AH were significantly higher using the HH (36.6+/-2.5 mgH(2)O/l) than the HME (32.4+/-2.8 mgH(2)O/l, p<0.001). No significant changes were observed in transpulmonary pressure. A significant positive correlation was observed between incubator temperature and the temperature delivered by the HH (R(2)=0.61, p<0.001). The use of HMEs in neonates made it possible to achieve an absolute humidity of 28 mgH(2)O/l or more and a temperature of 30 degrees C or more. Higher values are obtained using a HH.
Hart, Diana Elizabeth; Forman, Mark; Veale, Andrew G
2011-09-01
Water condensate in the humidifier tubing can affect bi-level ventilation by narrowing tube diameter and increasing airflow resistance. We investigated room temperature and tubing type as ways to reduce condensate and its effect on bi-level triggering and pressure delivery. In this bench study, the aim was to test the hypothesis that a relationship exists between room temperature and tubing condensate. Using a patient simulator, a Res-med bi-level device was set to 18/8 cm H(2)O and run for 6 h at room temperatures of 16°C, 18°C and 20°C. The built-in humidifier was set to a low, medium or high setting while using unheated or insulated tubing or replaced with a humidifier using heated tubing. Humidifier output, condensate, mask pressure and triggering delay of the bi-level were measured at 1 and 6 h using an infrared hygrometer, metric weights, Honeywell pressure transducer and TSI pneumotach. When humidity output exceeded 17.5 mg H(2)O/L, inspiratory pressure fell by 2-15 cm H(2)O and triggering was delayed by 0.2-0.9 s. Heating the tubing avoided any such ventilatory effect whereas warmer room temperatures or insulating the tubing were of marginal benefit. Users of bi-level ventilators need to be aware of this problem and its solution. Bi-level humidifier tubing may need to be heated to ensure correct humidification, pressure delivery and triggering.
Kilburg-Basnyat, Brita; Metwali, Nervana; Thorne, Peter S
2016-01-01
Electrostatic Dust Collectors (EDCs) are in use for passive sampling of bioaerosols, but particular aspects of their performance have not yet been evaluated. This study investigated the effect of mailing EDCs on endotoxin loading and the effect of EDC deployment in front of, and away from, heated ventilation on endotoxin sampling. Endotoxin sampling efficiency of heated and unheated EDC cloths was also evaluated. Cross-country express mailing of dust-spiked EDCs yielded no significant changes in endotoxin concentrations compared to dust-only samples for both high-spiked EDCs (p = 0.30) and low-spiked EDCs (p = 0.36). EDCs were also deployed in 20 identical apartments with one EDC placed in front of the univent heater in each apartment and contemporaneous EDC placed on the built-in bookshelf in each apartment. The endotoxin concentrations were significantly different (p = 0.049) indicating that the placement of EDC does impact endotoxin sampling. Heated and unheated EDCs were deployed for 7 days in pairs in farm homes. There was a significant difference between endotoxin concentrations (p = 0.027) indicating that heating EDCs may diminish their electrostatic capabilities and impact endotoxin sampling. The last study investigated the electrostatic charge of 12 heated and 12 unheated EDC cloths. There was a significant difference in charge (p = 0.009) which suggests that heating EDC cloths may make them less effective for sampling. In conclusion, EDCs can be mailed to and from deployment sites, EDC placement in relationship to ventilation is crucial, and heating EDCs reduces their electrostatic charge which may diminish their endotoxin sampling capabilities.
The muscular basis of aerial ventilation of the primitive lung of Amia calva.
Deyst, K A; Liem, K F
1985-02-01
Anatomical analysis, electromyography, pressure recordings, high-speed X-ray and light movies of the mechanism of air ventilation in Amia calva reveal that aerial ventilation proceeds by the action of a specialized pulse pump. The interhyoideus muscle is the dominant muscle being active during both the preparatory phase and the final, prolonged compressive phase during which new air is forced into the lung. Amia retains a relatively large residual volume in the lung and does not repeat inhalation. It often expels excess air from the buccal cavity after the lung has been fully reinflated. The pressure, kinematic and air flow patterns during air ventilation in Amia closely resemble those of the air breath in the lungfish Protopterus. We hypothesize that the basically similar electromyographic profiles of homologous muscles so characteristic for the air ventilation mechanism of Protopterus and Amia reflect a homologous anatomical as well as functional neuromuscular pattern, which has had a common and early evolutionary origin among the Teleostomi.
Passivhaus: indoor comfort and energy dynamic analysis.
NASA Astrophysics Data System (ADS)
Guida, Antonella; Pagliuca, Antonello; Cardinale, Nicola; Rospi, Gianluca
2013-04-01
The research aims to verify the energy performance as well as the indoor comfort of an energy class A+ building, built so that the sum of the heat passive contributions of solar radiation, transmitted through the windows, and the heat generated inside the building, are adeguate to compensate for the envelope loss during the cold season. The building, located in Emilia Romagna (Italy), was built using a wooden structure, an envelope realized using a pinewood sandwich panels (transmittance U = 0.250 W/m2K) and, inside, a wool flax insulation layer and thermal window frame with low-emissivity glass (U = 0524 W/m2K). The building design and construction process has followed the guidelines set by "CasaClima". The building has been modeled in the code of dynamic calculation "Energy Plus" by the Design Builder application and divided it into homogenous thermal zones, characterized by winter indoor temperature set at 20 ° (+ / - 1 °) and summer indoor temperature set at 26 ° (+ / - 1 °). It has modeled: the envelope, as described above, the "free" heat contributions, the air conditioning system, the Mechanical Ventilation system as well as home automation solutions. The air conditioning system is an heat pump, able to guarantee an optimization of energy consumption (in fact, it uses the "free" heat offered by the external environment for conditioning indoor environment). As regards the air recirculation system, it has been used a mechanical ventilation system with internal heat cross-flow exchanger, with an efficiency equal to 50%. The domotic solutions, instead, regard a system for the control of windows external screening using reeds, adjustable as a function of incident solar radiation and a lighting management system adjusted automatically using a dimmer. A so realized building meets the requirement imposed from Italian standard UNI/TS 11300 1, UNI/TS 11300 2 and UNI/TS 11300 3. The analysis was performed according to two different configurations: in "spontaneous-state analysis" (that provides the only energy performance of the structure) and considering the "building-equipments" as a system (which provides the overall performance of the "building system"). The first analysis shows as the absence of thermal mass and the envelope super-heating prevent to incoming heat to exit, overheating the indoor environment. The analysis of the overall performance of the "building system" highlights, instead, as the thermal load is much greater during the summer than in winter; this means that, using a low inertia envelopes, the energy saved in the winter can be used to satisfy the thermal performance in the summer. This is further demonstrated by comparing the performance of indoor temperatures and the relative energy consumption of a similar building with greater thermal inertia. Further analysis involved a critical comparison between the "semisteady-state analysis" ("CasaClima" methodology) and the analysis in dynamic conditions (using "Energy Plus" software).
Water Quality and optical properties of Crater Lake, Oregon
Larson, Gary L.; Hoffman, Robert L.; McIntire, C.D.; Buktenica, M.W.; Girdner, Scott
2007-01-01
We examine observations of key limnological properties (primarily temperature, salinity, and dissolved oxygen), measured over a 14-year period in Crater Lake, Oregon, and discuss variability in the hypolimnion on time scales of days to a decade. During some years (e.g., 1994a??1995), higher-than-average wintertime deep convection and ventilation led to the removal of significant amounts of heat and salt from the hypolimnion, while dissolved oxygen concentrations increase. In other years, such as the winter of 1996a??1997, heat and salt concentrations increase throughout the year and dissolved oxygen levels drop, indicating conditions were dominated by the background geothermal inputs and dissolved oxygen consumption by bacteria (i.e., minimal deep convection). Over the entire 14 year period, no statistically significant trend was observed in the annual hypolimnetic heat and salt content. Measurements from several thermistors moored in the hypolimnion provide new insight into the time and space scales of the deep convection events. For some events, cool water intrusions are observed sequentially, from shallower depths to deeper depths, suggesting vertical mixing or advection from above. For other events, the cooling is observed first at the deepest sensors, suggesting a thin, cold water pulse that flows along the bottom and mixes more slowly upwards into the basin. In both cases, the source waters must originate from the epilimnion. Conditions during a strong ventilation year (1994a??1995) and a weak ventilation year (1996a??1997) were compared. The results suggest the major difference between these 2 years was the evolution of the stratification in the epilimnion during the first few weeks of reverse stratification such that thermobaric instabilities were easier to form during 1995 thana?#1997. Thus, the details of surface cooling and wind-driven mixing during the early stages ofa?#reverse stratification may determine the neta?#amount of ventilation possible during a particular year.
Ventilation rates in recently constructed U.S. school classrooms.
Batterman, S; Su, F-C; Wald, A; Watkins, F; Godwin, C; Thun, G
2017-09-01
Low ventilation rates (VRs) in schools have been associated with absenteeism, poorer academic performance, and teacher dissatisfaction. We measured VRs in 37 recently constructed or renovated and mechanically ventilated U.S. schools, including LEED and EnergyStar-certified buildings, using CO 2 and the steady-state, build-up, decay, and transient mass balance methods. The transient mass balance method better matched conditions (specifically, changes in occupancy) and minimized biases seen in the other methods. During the school day, air change rates (ACRs) averaged 2.0±1.3 hour -1 , and only 22% of classrooms met recommended minimum ventilation rates. HVAC systems were shut off at the school day close, and ACRs dropped to 0.21±0.19 hour -1 . VRs did not differ by building type, although cost-cutting and comfort measures resulted in low VRs and potentially impaired IAQ. VRs were lower in schools that used unit ventilators or radiant heating, in smaller schools and in larger classrooms. The steady-state, build-up, and decay methods had significant limitations and biases, showing the need to confirm that these methods are appropriate. Findings highlight the need to increase VRs and to ensure that energy saving and comfort measures do not compromise ventilation and IAQ. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... and balconies, walkways and driveways. iii The roofing, plumbing systems, electrical systems, heating and air conditioning systems; iv. All interiors; and v. All insulation and ventilation systems, as...
Code of Federal Regulations, 2014 CFR
2014-07-01
... a ventilated area and protected from excessive heat; (3) Be secured from falling; and (4) Have shut... pull force of the line over the diver's body. [39 FR 23502, June 27, 1974, as amended at 49 FR 18295...
Code of Federal Regulations, 2011 CFR
2011-07-01
... a ventilated area and protected from excessive heat; (3) Be secured from falling; and (4) Have shut... pull force of the line over the diver's body. [39 FR 23502, June 27, 1974, as amended at 49 FR 18295...
Code of Federal Regulations, 2013 CFR
2013-07-01
... a ventilated area and protected from excessive heat; (3) Be secured from falling; and (4) Have shut... pull force of the line over the diver's body. [39 FR 23502, June 27, 1974, as amended at 49 FR 18295...
Code of Federal Regulations, 2012 CFR
2012-07-01
... a ventilated area and protected from excessive heat; (3) Be secured from falling; and (4) Have shut... pull force of the line over the diver's body. [39 FR 23502, June 27, 1974, as amended at 49 FR 18295...
ERIC Educational Resources Information Center
Schneider, Christian M.
1990-01-01
The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebber, Ian; Deru, Michael; Trenbath, Kim
NREL worked with the Bonneville Power Administration's Technology Innovation Office to demonstrate a turnkey, retrofit technology that combines demand response (DR) and energy efficiency (EE) benefits for HVAC and lighting in retail buildings. As a secondary benefit, we also controlled various plug loads and electric hot water heaters (EHWH). The technology demonstrated was Transformative Wave's eIQ Building Management System (BMS) automatically responding to DR signals. The BMS controlled the HVAC rooftop units (RTU) using the CATALYST retrofit solution also developed by Transformative Wave. The non-HVAC loads were controlled using both hardwired and ZigBee wireless communication. The wireless controllers, manufactured bymore » Autani, were used when the building's electrical layout was too disorganized to leverage less expensive hardwired control. The six demonstration locations are within the Seattle metro area. Based on the assets curtailed by the BMS at each location, we projected the DR resource. We were targeting a 1.7 W/ft2 shed for the summer Day-Ahead events and a 0.7 W/ft2 shed for the winter events. While summarized in Table ES-1, only one summer DR event was conducted at Casino #2.« less
Risk Assessment of Heating, Ventilating, and Air-Conditioning Strategies in Low-Load Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poerschke, Andrew
2016-02-17
"Modern, energy efficient homes conforming to the Zero Energy Ready Home standard face the challenge of meeting high customer expectations for comfort. Traditional heating, ventilation, and air conditioning (HVAC) sizing and control strategies may be insufficient to adequately condition each zone due to unique load patterns in each room caused by a number of factors. These factors include solar heat gains, occupant-related gains, and gains associated with appliances and electronics. Because of shrinking shell loads, these intermittent factors are having an increasingly significant impact on the thermal load in each zone. Consequently, occupant comfort can be compromised. To evaluate themore » impact of climate and house geometry, as well as HVAC system and control strategies on comfort conditions, IBACOS analyzed the results of 99 TRNSYS multiple-zone simulations. The results of this analysis indicate that for simple-geometry and single-story plans, a single zone and thermostat can adequately condition the entire house. Demanding house geometry and houses with multiple stories require the consideration of multiple thermostats and multiple zones.« less
Humidification performance of heat and moisture exchangers for pediatric use.
Chikata, Yusuke; Sumida, Chihiro; Oto, Jun; Imanaka, Hideaki; Nishimura, Masaji
2012-01-01
Background. While heat and moisture exchangers (HMEs) have been increasingly used for humidification during mechanical ventilation, the efficacy of pediatric HMEs has not yet been fully evaluated. Methods. We tested ten pediatric HMEs when mechanically ventilating a model lung at respiratory rates of 20 and 30 breaths/min and pressure control of 10, 15, and 20 cmH(2)O. The expiratory gas passed through a heated humidifier. We created two rates of leakage: 3.2 L/min (small) and 5.1 L/min (large) when pressure was 10 cmH(2)O. We measured absolute humidity (AH) at the Y-piece. Results. Without leakage, eight of ten HMEs maintained AH at more than 30 mg/L. With the small leak, AH decreased below 30 mg/L (26.6 to 29.5 mg/L), decreasing further (19.7 to 27.3 mg/L) with the large leak. Respiratory rate and pressure control level did not affect AH values. Conclusions. Pediatric HMEs provide adequate humidification performance when leakage is absent.
Humidification Performance of Heat and Moisture Exchangers for Pediatric Use
Chikata, Yusuke; Sumida, Chihiro; Oto, Jun; Imanaka, Hideaki; Nishimura, Masaji
2012-01-01
Background. While heat and moisture exchangers (HMEs) have been increasingly used for humidification during mechanical ventilation, the efficacy of pediatric HMEs has not yet been fully evaluated. Methods. We tested ten pediatric HMEs when mechanically ventilating a model lung at respiratory rates of 20 and 30 breaths/min and pressure control of 10, 15, and 20 cmH2O. The expiratory gas passed through a heated humidifier. We created two rates of leakage: 3.2 L/min (small) and 5.1 L/min (large) when pressure was 10 cmH2O. We measured absolute humidity (AH) at the Y-piece. Results. Without leakage, eight of ten HMEs maintained AH at more than 30 mg/L. With the small leak, AH decreased below 30 mg/L (26.6 to 29.5 mg/L), decreasing further (19.7 to 27.3 mg/L) with the large leak. Respiratory rate and pressure control level did not affect AH values. Conclusions. Pediatric HMEs provide adequate humidification performance when leakage is absent. PMID:22312483
Sensor-based demand controlled ventilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Almeida, A.T.; Fisk, W.J.
In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation ratesmore » are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.« less
Resistive pressure of a condenser humidifier in mechanically ventilated patients.
Manthous, C A; Schmidt, G A
1994-11-01
Heat and moisture exchangers (or "nose" humidifiers) are commonly used to aid in the humidification of inspired gases of mechanically ventilated patients. These devices add resistance to the ventilator circuit that has heretofore not been quantified in critically ill patients. Accordingly, we determined the resistive pressures associated with new and old (but < 24 hrs in the circuit) humidifiers in 23 critically ill, mechanically ventilated patients. Prospective study. Adult medical and surgical intensive care units at a university center. Twenty-three critically ill, mechanically ventilated patients using a condenser humidifier between the wye and the endotracheal tube. Peak and plateau airway pressures were determined with the humidifier in place. These measurements were repeated without the humidifier, then after insertion of a fresh humidifier into the circuit. In five patients, measurements were repeated after humidifiers had remained in place for a full 24 hrs. The new humidifiers increased the resistive pressure of the ventilator circuit by 4.8 +/- 2.6 cm H2O compared with no humidifier (p < .01) and had a mean resistance of 4.2 +/- 1.5 cm H2O/L/sec. Old humidifiers increased resistive pressure by 6.3 +/- 3.6 cm H2O compared with no humidifier (p < .01) and had a mean resistance of 5.1 +/- 1.8 cm H2O/L/sec. The resistive pressure doubled from 3.4 +/- 1.2 to 7.0 +/- 1.8 cm H2O (p < .01) in five patients in whom the humidifiers were left in the ventilator circuit for a full 24 hrs. The humidifier adds a significant resistance to the ventilator circuit which may lead to incorrect assessment of respiratory system mechanics, to inappropriate therapy (e.g., bronchodilators), or to difficulty in weaning from mechanical ventilation.
Aliabadi, Amir A.; Rogak, Steven N.; Bartlett, Karen H.; Green, Sheldon I.
2011-01-01
Health care facility ventilation design greatly affects disease transmission by aerosols. The desire to control infection in hospitals and at the same time to reduce their carbon footprint motivates the use of unconventional solutions for building design and associated control measures. This paper considers indoor sources and types of infectious aerosols, and pathogen viability and infectivity behaviors in response to environmental conditions. Aerosol dispersion, heat and mass transfer, deposition in the respiratory tract, and infection mechanisms are discussed, with an emphasis on experimental and modeling approaches. Key building design parameters are described that include types of ventilation systems (mixing, displacement, natural and hybrid), air exchange rate, temperature and relative humidity, air flow distribution structure, occupancy, engineered disinfection of air (filtration and UV radiation), and architectural programming (source and activity management) for health care facilities. The paper describes major findings and suggests future research needs in methods for ventilation design of health care facilities to prevent airborne infection risk. PMID:22162813
Humidification during Mechanical Ventilation in the Adult Patient
Al Ashry, Haitham S.; Modrykamien, Ariel M.
2014-01-01
Humidification of inhaled gases has been standard of care in mechanical ventilation for a long period of time. More than a century ago, a variety of reports described important airway damage by applying dry gases during artificial ventilation. Consequently, respiratory care providers have been utilizing external humidifiers to compensate for the lack of natural humidification mechanisms when the upper airway is bypassed. Particularly, active and passive humidification devices have rapidly evolved. Sophisticated systems composed of reservoirs, wires, heating devices, and other elements have become part of our usual armamentarium in the intensive care unit. Therefore, basic knowledge of the mechanisms of action of each of these devices, as well as their advantages and disadvantages, becomes a necessity for the respiratory care and intensive care practitioner. In this paper, we review current methods of airway humidification during invasive mechanical ventilation of adult patients. We describe a variety of devices and describe the eventual applications according to specific clinical conditions. PMID:25089275
The development of rotary drum dryer for palm fruit sterilization
NASA Astrophysics Data System (ADS)
Hanifarianty, S.; Legwiriyakul, A.; Alimalbari, A.; Nuntadusit, C.; Theppaya, T.; Wae-Hayee, M.
2018-01-01
The aim of this research was to design and develop a rotary drum dryer for palm fruit sterilization. In this article, the results of the effect of ventilation hole number on the reduction of moisture content in palm fruit were presented. The experimental set up was a drum dryer which has 57.5 cm in a diameter and 90 cm in a length (the size was similar to 200-littre steel drum container). A driving gear and a gear motor rotated the drum dryer. The ventilation hole were drilled on the lateral side of the drum. The diameter of ventilation hole was 10 mm, and the number of ventilation hole were 18, 36 and 72 hole (each side was 9, 18 and 36 hole, respectively). In the experiment, the palm fruit was dried by using LPG to burn and heat the bottom of the drum. The flow rate of LPG was controlled to keep the temperature inside the drum steadily at 120°C.
Aliabadi, Amir A; Rogak, Steven N; Bartlett, Karen H; Green, Sheldon I
2011-01-01
Health care facility ventilation design greatly affects disease transmission by aerosols. The desire to control infection in hospitals and at the same time to reduce their carbon footprint motivates the use of unconventional solutions for building design and associated control measures. This paper considers indoor sources and types of infectious aerosols, and pathogen viability and infectivity behaviors in response to environmental conditions. Aerosol dispersion, heat and mass transfer, deposition in the respiratory tract, and infection mechanisms are discussed, with an emphasis on experimental and modeling approaches. Key building design parameters are described that include types of ventilation systems (mixing, displacement, natural and hybrid), air exchange rate, temperature and relative humidity, air flow distribution structure, occupancy, engineered disinfection of air (filtration and UV radiation), and architectural programming (source and activity management) for health care facilities. The paper describes major findings and suggests future research needs in methods for ventilation design of health care facilities to prevent airborne infection risk.
Thermal balance of Nellore cattle
NASA Astrophysics Data System (ADS)
de Melo Costa, Cíntia Carol; Maia, Alex Sandro Campos; Nascimento, Sheila Tavares; Nascimento, Carolina Cardoso Nagib; Neto, Marcos Chiquitelli; de França Carvalho Fonsêca, Vinícius
2018-05-01
This work aimed at characterizing the thermal balance of Nellore cattle from the system of indirect calorimetry using a facial mask. The study was conducted at the Animal Biometeorology Laboratory of the São Paulo State University, Jaboticabal, Brazil. Five male Nellore weighing 750 ± 62 kg, at similar ages and body conditions were distributed in four 5 × 5 Latin squares (5 days of records and five schedules) during 20 days. Physiological and environmental measurements were obtained from the indirect calorimetry system using a facial mask. Respiratory parameters, hair coat, skin, and rectal temperature were continuously recorded. From this, metabolic heat production, sensible and latent ways of heat transfer were calculated. Metabolic heat production had an average value of 146.7 ± 0.49 W m-2 and did not change ( P > 0.05) over the range of air temperature (24 to 35 °C). Sensible heat flow reached 60.08 ± 0.81 W m-2 when air temperature ranged from 24 to 25 °C, being negligible in conditions of temperature above 33 °C. Most of the heat produced by metabolism was dissipated by cutaneous evaporation when air temperature was greater than 30 °C. Respiratory parameters like respiratory rate and ventilation remained stable ( P > 0.05) in the range of temperature studied. Under shade conditions and air temperature range from 24 to 35 °C, metabolic heat production, respiratory rate, and ventilation of mature Nellore cattle remain stable, which is indicative of low energetic cost to the thermoregulation.
Characterization of a mine fire using atmospheric monitoring system sensor data
Yuan, L.; Thomas, R.A.; Zhou, L.
2017-01-01
Atmospheric monitoring systems (AMS) have been widely used in underground coal mines in the United States for the detection of fire in the belt entry and the monitoring of other ventilation-related parameters such as airflow velocity and methane concentration in specific mine locations. In addition to an AMS being able to detect a mine fire, the AMS data have the potential to provide fire characteristic information such as fire growth — in terms of heat release rate — and exact fire location. Such information is critical in making decisions regarding fire-fighting strategies, underground personnel evacuation and optimal escape routes. In this study, a methodology was developed to calculate the fire heat release rate using AMS sensor data for carbon monoxide concentration, carbon dioxide concentration and airflow velocity based on the theory of heat and species transfer in ventilation airflow. Full-scale mine fire experiments were then conducted in the Pittsburgh Mining Research Division’s Safety Research Coal Mine using an AMS with different fire sources. Sensor data collected from the experiments were used to calculate the heat release rates of the fires using this methodology. The calculated heat release rate was compared with the value determined from the mass loss rate of the combustible material using a digital load cell. The experimental results show that the heat release rate of a mine fire can be calculated using AMS sensor data with reasonable accuracy. PMID:28845058
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Patrick; Im, Piljae
2012-04-01
Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first costmore » of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of excavation, 50% of which was construction excavation. There are six pipes in all excavations (three parallel circuits - out and back), and the multiple instances of FHX and/or HGHX are all connected in series. The working fluid is 20% by weight propylene glycol in water. Model and design tool development was undertaken in parallel with constructing the houses, installing instrumentation, and monitoring performance for a year. Several detailed numerical models for FHX were developed as part of the project. Essentially the project team was searching for an energy performance model accurate enough to achieve project objectives while also having sufficient computational efficiency for practical use in EnergyPlus. A 3-dimensional, dual-coordinate-system, finite-volume model satisfied these criteria and was included in the October 2011 EnergyPlus Version 7 public release after being validated against measured data.« less
Laboratory and Physical Modelling of Building Ventilation Flows
NASA Astrophysics Data System (ADS)
Hunt, Gary
2001-11-01
Heating and ventilating buildings accounts for a significant fraction of the total energy budget of cities and an immediate challenge in building physics is for the design of sustainable, low-energy buildings. Natural ventilation provides a low-energy solution as it harness the buoyancy force associated with temperature differences between the internal and external environment, and the wind to drive a ventilating flow. Modern naturally-ventilated buildings use innovative design solutions, e.g. glazed atria and solar chimneys, to enhance the ventilation and demand for these and other designs has far outstripped our understanding of the fluid mechanics within these buildings. Developing an understanding of the thermal stratification and movement of air provides a considerable challenge as the flows involve interactions between stratification and turbulence and often in complex geometries. An approach that has provided significant new insight into these flows and which has led to the development of design guidelines for architects and ventilation engineers is laboratory modelling at small-scale in water tanks combined with physical modelling. Density differences to drive the flow in simplified plexiglass models of rooms or buildings are provided by fresh and salt water solutions, and wind flow is represented by a mean flow in a flume tank. In tandom with the experiments, theoretical models that capture the essential physics of these flows have been developed in order to generalise the experimental results to a wide range of typical building geometries and operating conditions. This paper describes the application and outcomes of these modelling techniques to the study of a variety of natural ventilation flows in buildings.
Marschner, Julian A; Schäfer, Hannah; Holderied, Alexander; Anders, Hans-Joachim
2016-01-01
Body temperature affects outcomes of tissue injury. We hypothesized that online body core temperature recording and selective interventions help to standardize peri-interventional temperature control and the reliability of outcomes in experimental renal ischemia reperfusion injury (IRI). We recorded core temperature in up to seven mice in parallel using a Thermes USB recorder and ret-3-iso rectal probes with three different protocols. Setup A: Heating pad during ischemia time; Setup B: Heating pad from incision to wound closure; Setup C: A ventilated heating chamber before surgery and during ischemia time with surgeries performed on a heating pad. Temperature profile recording displayed significant declines upon installing anesthesia. The profile of the baseline experimental setup A revealed that <1% of the temperature readings were within the target range of 36.5 to 38.5°C. Setup B and C increased the target range readings to 34.6 ± 28.0% and 99.3 ± 1.5%, respectively. Setup C significantly increased S3 tubular necrosis, neutrophil influx, and mRNA expression of kidney injury markers. In addition, using setup C different ischemia times generated a linear correlation with acute tubular necrosis parameters at a low variability, which further correlated with the degree of kidney atrophy 5 weeks after surgery. Changing temperature control setup A to C was equivalent to 10 minutes more ischemia time. We conclude that body temperature drops quickly in mice upon initiating anesthesia. Immediate heat supply, e.g. in a ventilated heating chamber, and online core temperature monitoring can help to standardize and optimize experimental outcomes.
The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...
Cost/Value Approach to Insulation Produces Savings at Sibley School
ERIC Educational Resources Information Center
School Business Affairs, 1978
1978-01-01
An energy savings study revealed that adding insulation to an existing building and reducing ventilation loads would enable the school to heat both the existing building and the addition with existing boiler equipment. (Author/MLF)
29 CFR 1926.353 - Ventilation and protection in welding, cutting, and heating.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., and surfaces prepared with chlorinated solvents shall be thoroughly dry before welding is permitted on... suitable eye protective equipment in accordance with the requirements of subpart E of this part. [44 FR...
What to Do until the Microprocesser Arrives.
ERIC Educational Resources Information Center
Barzilla, Frank
1983-01-01
Advises administrators how to develop an energy master plan and how to reduce the usage of heating, ventilating, and air conditioning (HVAC) systems by means of a time clock, thermostat, and a scheduled preventive maintenance program. (MLF)
47 CFR 27.1164 - The cost-sharing formula.
Code of Federal Regulations, 2011 CFR
2011-10-01
... control equipment; engineering costs (design/path survey); installation; systems testing; FCC filing costs... plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. Increased recurring costs...
47 CFR 27.1164 - The cost-sharing formula.
Code of Federal Regulations, 2012 CFR
2012-10-01
... control equipment; engineering costs (design/path survey); installation; systems testing; FCC filing costs... plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. Increased recurring costs...
75 FR 45148 - Buy American Exceptions Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
... Homes and mini-split ductless Heating, Ventilation and Air Conditioning (HVAC) systems at the Mary... that the relevant manufactured goods (tankless water heaters and mini-split ductless HVAC systems) are...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, William J.; Destaillats, H.; Apte, M.G.
Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone depositionmore » in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.« less
HVAC (heating, ventilation, air conditioning) literature in Japan: A critical review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hane, G.J.
1988-02-01
Japanese businessmen in the heating, ventilation, air conditioning, and refrigeration (HVACandR) industry consider the monitoring of technical and market developments in the United States to be a normal part of their business. In contrast, efforts by US businessmen to monitor Japanese HVAC and R developments are poorly developed. To begin to redress this imbalance, this report establishes the groundwork for a more effective system for use in monitoring Japanese HVAC and R literature. Discussions of a review of the principal HVAC and R publications in Japan and descriptions of the type of information contained in each of those publications aremore » included in this report. Since the Japanese HVAC and R literature is abundant, this report also provides practical suggestions on how a researcher or research manager can limit the monitoring effort to the publications and type of information that would most likely be of greatest value.« less
2016-08-02
at mechanical ventilation of a severely exposed casualty until atropine takes effect . Administering supplemental oxygen as available. Chapter 3 3-10...Scavengers; hydroxocobalamin, and dicobalt edetate (2) Provision of S-Groups, thiosulfate (3) Assisted ventilation (4) Oxygen cyanogen... temperature index for light work. Refer to table 1-3 on page 1-12 for work and rest cycles and also water consumption chart. Chapter 1 1-12 ATP 4
Metal hydride heat pump engineering demonstration and evaluation model
NASA Technical Reports Server (NTRS)
Lynch, Franklin E.
1993-01-01
Future generations of portable life support systems (PLSS's) for space suites (extravehicular mobility units or EMU's) may require regenerable nonventing thermal sinks (RNTS's). For purposes of mobility, a PLSS must be as light and compact as possible. Previous venting PLSS's have employed water sublimators to reject metabolic and equipment heat from EMU's. It is desirable for long-duration future space missions to minimize the use of water and other consumables that need to be periodically resupplied. The emission of water vapor also interferes with some types of instrumentation that might be used in future space exploration. The test article is a type of RNTS based on a metal hydride heat pump (MHHP). The task of reservicing EMU's after use must be made less demanding in terms of time, procedures, and equipment. The capability for quick turnaround post-EVA servicing (30 minutes) is a challenging requirement for many of the RNTS options. The MHHP is a very simple option that can be regenerated in the airlock within the 30 minute limit by the application of a heating source and a cooling sink. In addition, advanced PLSS's must provide a greater degree of automatic control, relieving astronauts of the need to manually adjust temperatures in their liquid cooled ventilation garments (LCVG's). The MHHP includes automatic coolant controls with the ability to follow thermal load swings from minimum to maximum in seconds. The MHHP includes a coolant loop subsystem with pump and controls, regeneration equipment for post-EVA servicing, and a PC-based data acquisition and control system (DACS).
Sudarsan, Rangarajan; Thompson, Cody; Kevan, Peter G; Eberl, Hermann J
2012-02-21
Beekeepers universally agree that ensuring sufficient ventilation is vital for sustaining a thriving, healthy honeybee colony. Despite this fact, surprisingly little is known about the ventilation and flow patterns in bee hives. We take a first step towards developing a model-based approach that uses computational fluid dynamics to simulate natural ventilation flow inside a standard Langstroth beehive. A 3-D model of a Langstroth beehive with one brood chamber and one honey super was constructed and inside it the honeybee colony was distributed among different clusters each occupying the different bee-spaces between frames in the brood chamber. For the purpose of modeling, each honeybee cluster was treated as an air-saturated porous medium with constant porosity. Heat and mass transfer interactions of the honeybees with the air, the outcome of metabolism, were captured in the porous medium model as source and sink terms appearing in the governing equations of fluid dynamics. The temperature of the brood that results from the thermoregulation efforts of the colony is applied as a boundary condition for the governing equations. The governing equations for heat, mass transport and fluid flow were solved using Fluent(©), a commercially available CFD program. The results from the simulations indicate that (a) both heat and mass transfer resulting from honeybee metabolism play a vital role in determining the structure of the flow inside the beehive and mass transfer cannot be neglected, (b) at low ambient temperatures, the nonuniform temperature profile on comb surfaces that results from brood incubation enhances flow through the honeybee cluster which removes much of the carbon-dioxide produced by the cluster resulting in lower carbon-dioxide concentration next to the brood, (c) increasing ambient (outside) air temperature causes ventilation flow rate to drop resulting in weaker flow inside the beehive. Flow visualization indicates that at low ambient air temperatures the flow inside the beehive has an interesting 3-D structure with the presence of large recirculating vortices occupying the space between honey super frames above the honeybee clusters in the brood chamber and the structure and strength of the flow inside and around the honeybee clusters changes as we increase the ambient air temperature outside the beehive. Copyright © 2011 Elsevier Ltd. All rights reserved.
Solid state lighting devices and methods with rotary cooling structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less
Kilburg-Basnyat, Brita; Metwali, Nervana; Thorne, Peter S.
2016-01-01
Electrostatic Dust Collectors (EDCs) are in use for passive sampling of bioaerosols, but particular aspects of their performance have not yet been evaluated. This study investigated the effect of mailing EDCs on endotoxin loading and the effect of EDC deployment in front of and away from heated ventilation on endotoxin sampling. Endotoxin sampling efficiency of heated and unheated EDC cloths was also evaluated. Cross-country express mailing of dust-spiked EDCs yielded no significant changes in endotoxin concentrations compared to dust-only samples for both high spiked-EDCs (p=0.30) and low spiked-EDCs (p=0.36). EDCs were also deployed in 20 identical apartments with one EDC placed in front of the univent heater in each apartment and contemporaneous EDC placed on the built-in bookshelf in each apartment. The endotoxin concentrations were significantly different (p=0.049) indicating that the placement of EDC does impact endotoxin sampling. Heated and unheated EDCs were deployed for 7 days in pairs in farm homes. There was a significant difference between endotoxin concentrations (p=0.027) indicating that heating EDCs may diminish their electrostatic capabilities and impact endotoxin sampling. The last study investigated the electrostatic charge of 12 heated and 12 unheated EDC cloths. There was a significant difference in charge (p=0.009) which suggests that heating EDC cloths may make them less effective for sampling. In conclusion, EDCs can be mailed to and from deployment sites, EDC placement in relationship to ventilation is crucial, and heating EDCs reduces their electrostatic charge which may diminish their endotoxin sampling capabilities. PMID:26325020
1983-03-01
economizer and enthalpy cycles, scheduled temperature reset, chiller control and chilled water reset, boiler control and hot water temperature reset...temperature reset, chiller control and chilled water reset, boiler control and hot water temperature reset, and condenser water temperature reset. Recent...day-night setback. Day-night setback is the strategy of reducing the heating space temperature setpoint or raising the cooling space temperature
1988-09-01
Unfortunately, although current construction practices can produce functional HVAC systems that provide adequate heating and cooling , they do not guarantee...developed by interviewing heating, ventilating, and air-conditioning ( HVAC ) profes- sionals, reviewing technical literature, and consolidating these...for recording this information. A glossary of possibly unfamiliar HVAC terms is included. An informal evaluation of the procedure showed that
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Eric; Withers, Chuck; McIlvaine, Janet
Low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. This report evaluates the performance of variable-capacity comfort systems, with a focus on inverter-driven, variable-capacity systems, as well as proposed system enhancements.
Lighting system with heat distribution face plate
Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri
2013-09-10
Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.
Boulant, Nicolas; Bottlaender, Michel; Uhrig, Lynn; Giacomini, Eric; Luong, Michel; Amadon, Alexis; Massire, Aurélien; Larrat, Benoît; Vignaud, Alexandre
2015-01-01
An MR thermometry method is proposed for measuring in vivo small temperature changes engendered by external RF heat sources. The method relies on reproducible and stable respiration and therefore currently applies to ventilated animals whose breathing is carefully controlled. It first consists in characterizing the stability of the main magnetic field as well as the variations induced by breathing during a first monitoring stage. Second, RF heating is applied while the phase and thus temperature evolutions are continuously measured, the corrections due to breathing and field drift being made thanks to the data accumulated during the first period. The RF heat source is finally stopped and the temperature rise likewise is continuously monitored during a third and last stage to observe the animal cooling down and to validate the assumptions made for correcting for the main field variation and the physiological noise. Experiments were performed with a clinical 7 T scanner on an anesthetized baboon and with a dedicated RF heating setup. Analysis of the data reveals a precision around 0.1°C, which allows us to reliably measure sub-degree temperature rises in the muscle and in the brain of the animal. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Paul, Heather L.
2011-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Ice Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously each the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU to the future flight unit are considered.
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Bower, Chad E.; Paul, Heather L.
2012-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Icing Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU and the future flight unit are considered.
Branson, R D; Davis, K; Campbell, R S; Johnson, D J; Porembka, D T
1993-12-01
Determine the utility of a proposed algorithm in allowing safe, efficient humidification in mechanically ventilated patients using both a hygroscopic condenser humidifier (HCH) and heated humidifier (HH). A prospective study using an algorithm to chose humidification devices based on physical examination and sputum characteristics. All patients admitted to the surgical ICU. One hundred twenty consecutive patients requiring mechanical ventilation (MV) were studied. Patients were examined by the attending respiratory care practitioner and given either an HCH or HH. If patients demonstrated any of the following--thick or tenacious secretions, core temperature < 32 degrees C, or bloody secretions--they were given an HH. All others used an HCH. If any of the above conditions occurred during HCH use, the patient was given an HH. Duration of ventilation, incidence of nosocomial pneumonia, ventilator circuit colonization, and mortality were determined for patients in each group. Cost of humidification devices, number of suctioning procedures per day, and volume of saline solution instilled were also recorded. Initially, 27 percent (32/120) of patients used an HH and 73 percent (88/120) used an HCH. During the study, ten patients required changing to an HH during HCH use. Patients in the HH group were more likely to have preexisting lung disease and had a longer duration of ventilation (83 +/- 21 h) and higher mortality (21 percent). Patients in the HCH group were more likely to be postoperative, had shorter durations of ventilation (38 +/- 14 h), and lower mortality (9 percent). There was no difference in the incidence of nosocomial pneumonia between the two groups (9 percent vs 6 percent) and endotracheal tube occlusion did not occur in either group. Circuit colonization was common in the HH group (64 percent) but rate in the HCH group (5 percent). Cost per day was significantly less for the HCH group ($4 vs $19.80). Patients who required a change from HCH to HH did so at a mean of 5 days. The proposed algorithm resulted in cost-efficient and safe application of humidification devices in patients in the surgical ICU.
Calvet, S; Estellés, F; Cambra-López, M; Torres, A G; Van den Weghe, H F A
2011-11-01
Carbon dioxide balances are useful in determining ventilation rates in livestock buildings. These balances need an accurate estimation of the CO(2) produced by animals and their litter to determine the ventilation flows. To estimate the daily variation in ventilation flow, it is necessary to precisely know the daily variation pattern of CO(2) production, which mainly depends on animal activity. The objective of this study was to explore the applicability of CO(2) balances for determining ventilation flows in broiler buildings. More specifically, this work aimed to quantify the amount of CO(2) produced by the litter, as well as the amount of CO(2) produced by the broilers, as a function of productive parameters, and to analyze the influence of broiler activity on CO(2) emissions. Gas concentrations and ventilation flows were simultaneously measured in 3 trials, with 1 under experimental conditions and the other 2 in a commercial broiler farm. In the experimental assay, broiler activity was also determined. At the end of the experimental trial, on the day after the removal of the broilers, the litter accounted for 20% of the total CO(2) produced, and the broilers produced 3.71 L/h of CO(2) per kg of metabolic weight. On the commercial farm, CO(2) production was the same for the 2 cycles (2.60 L/h per kg of metabolic weight, P > 0.05). However, substantial differences were found between CO(2) and broiler activity patterns after changes in light status. A regression model was used to explain these differences (R(2) = 0.52). Carbon dioxide increased with bird activity, being on average 3.02 L/h per kg of metabolic weight for inactive birds and 4.73 L/h per kg of metabolic weight when bird activity was highest. Overall, CO(2) balances are robust tools for determining the daily average ventilation flows in broiler farms. These balances could also be applied at more frequent intervals, but in this case, particular care is necessary after light status changes because of discrepancy between animal activity and CO(2) production.
2013-01-01
Introduction: Many governments around the world have banned the use of misleading cigarette descriptors such as “light” and “mild” because the cigarettes so labeled were found not to reduce smokers’ health risks. However, underlying cigarette design features, which are retained in many brands, likely contribute to ongoing belief that these cigarettes are less harmful by producing perceptions of lightness/smoothness through lighter taste and reduced harshness and irritation. Methods: Participants (N = 320) were recruited from the International Tobacco Control U.S. Survey conducted in 2009 and 2010, when they answered questions about smoking behavior, attitudes and beliefs about tobacco products, and key mediators and moderators of tobacco use behaviors. Participants also submitted an unopened pack of their usual brand of cigarettes for analysis using established methods. Results: Own-brand filter ventilation level (M 29%, range 0%–71%) was consistently associated with perceived lightness (p < .001) and smoothness (p = .005) of own brand. Those whose brand bore a light/mild label (55% of participants) were more likely to report their cigarettes were lighter [71.9% vs. 41.9%; χ2(2) = 38.1, p < .001] and smoother than other brands [75.5% vs. 68.7%; χ2(2) = 7.8, p = .020]. Conclusion: Product design features, particularly filter ventilation, influence smokers’ beliefs about product attributes such as lightness and smoothness, independent of package labels. Regulation of cigarette design features such as filter ventilation should be considered as a complement to removal of misleading terms in order to reduce smokers’ misperceptions regarding product risks. PMID:23943847
Lu, Yehu; Wei, Fanru; Lai, Dandan; Shi, Wen; Wang, Faming; Gao, Chuansi; Song, Guowen
2015-08-01
Personal cooling systems (PCS) have been developed to mitigate the impact of severe heat stress for humans working in hot environments. It is still a great challenge to develop PCSs that are portable, inexpensive, and effective. We studied the performance of a new hybrid PCS incorporating both ventilation fans and phase change materials (PCMs). The cooling efficiency of the newly developed PCS was investigated on a sweating manikin in two hot conditions: hot humid (HH, 34°C, 75% RH) and hot dry (HD, 34°C, 28% RH). Four test scenarios were selected: fans off with no PCMs (i.e., Fan-off, the CONTROL), fans on with no PCMs (i.e., Fan-on), fans off with fully solidified PCMs (i.e., PCM+Fan-off), and fans on with fully solidified PCMs (i.e., PCM+Fan-on). It was found that the addition of PCMs provided a 54∼78min cooling in HH condition. In contrast, the PCMs only offered a 19-39min cooling in HD condition. In both conditions, the ventilation fans greatly enhanced the evaporative heat loss compared with Fan-off. The hybrid PCS (i.e., PCM+Fan-on) provided a continuous cooling effect during the three-hour test and the average cooling rate for the whole body was around 111 and 315W in HH and HD conditions, respectively. Overall, the new hybrid PCS may be an effective means of ameliorating symptoms of heat stress in both hot-humid and hot-dry environments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kumar, Matthew M; Goldberg, Andrew D; Kashiouris, Markos; Keenan, Lawrence R; Rabinstein, Alejandro A; Afessa, Bekele; Johnson, Larry D; Atkinson, John L D; Nayagam, Vedha
2014-10-01
Delay in instituting neuroprotective measures after cardiac arrest increases death and decreases neuronal recovery. Current hypothermia methods are slow, ineffective, unreliable, or highly invasive. We report the feasibility of rapid hypothermia induction in swine through augmented heat extraction from the lungs. Twenty-four domestic crossbred pigs (weight, 50-55kg) were ventilated with room air. Intraparenchymal brain temperature and core temperatures from pulmonary artery, lower esophagus, bladder, rectum, nasopharynx, and tympanum were recorded. In eight animals, ventilation was switched to cooled helium-oxygen mixture (heliox) and perfluorocarbon (PFC) aerosol and continued for 90min or until target brain temperature of 32°C was reached. Eight animals received body-surface cooling with water-circulating blankets; eight control animals continued to be ventilated with room air. Brain and core temperatures declined rapidly with cooled heliox-PFC ventilation. The brain reached target temperature within the study period (mean [SD], 66 [7.6]min) in only the transpulmonary cooling group. Cardiopulmonary functions and poststudy histopathological examination of the lungs were normal. Transpulmonary cooling is novel, rapid, minimally invasive, and an effective technique to induce therapeutic hypothermia. High thermal conductivity of helium and vaporization of PFC produces rapid cooling of alveolar gases. The thinness and large surface area of alveolar membrane facilitate rapid cooling of the pulmonary circulation. Because of differences in thermogenesis, blood flow, insulation, and exposure to the external environment, the brain cools at a different rate than other organs. Transpulmonary hypothermia was significantly faster than body surface cooling in reaching target brain temperature. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Performance simulation for the design of solar heating and cooling systems
NASA Technical Reports Server (NTRS)
Mccormick, P. O.
1975-01-01
Suitable approaches for evaluating the performance and the cost of a solar heating and cooling system are considered, taking into account the value of a computer simulation concerning the entire system in connection with the large number of parameters involved. Operational relations concerning the collector efficiency in the case of a new improved collector and a reference collector are presented in a graph. Total costs for solar and conventional heating, ventilation, and air conditioning systems as a function of time are shown in another graph.
Internal heat gain from different light sources in the building lighting systems
NASA Astrophysics Data System (ADS)
Suszanowicz, Dariusz
2017-10-01
EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2014 CFR
2014-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
29 CFR 2205.103 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and any equipment or interconnected system or subsystem of equipment that is used in the creation... data or information. For example, HVAC (heating, ventilation, and air conditioning) equipment such as... body systems: Neurological; musculoskeletal; special sense organs; respiratory, including speech organs...
Flexible HVAC System for Lab or Classroom.
ERIC Educational Resources Information Center
Friedan, Jonathan
2001-01-01
Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2013 CFR
2013-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
29 CFR 2205.103 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and any equipment or interconnected system or subsystem of equipment that is used in the creation... data or information. For example, HVAC (heating, ventilation, and air conditioning) equipment such as... body systems: Neurological; musculoskeletal; special sense organs; respiratory, including speech organs...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2012 CFR
2012-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
29 CFR 2205.103 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and any equipment or interconnected system or subsystem of equipment that is used in the creation... data or information. For example, HVAC (heating, ventilation, and air conditioning) equipment such as... body systems: Neurological; musculoskeletal; special sense organs; respiratory, including speech organs...
75 FR 14612 - Buy American Exceptions Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
... refrigerant flow (VRF) split system for Heating, Ventilation, and Air Conditioning (HVAC) renovations at the... manufactured goods (ductless VRF split system) are not produced in the U.S. in sufficient and reasonably...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2011 CFR
2011-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
ERIC Educational Resources Information Center
Seymour, Raymond B.
1987-01-01
Discusses the dependencies of people on chemicals in various aspects of life. Describes some of the natural and synthetic chemicals currently used in food production, clothing, shelter, travel and exploration, sports and recreation, ventilation, heating and cooling, communications, decoration, sanitation, and education. (TW)
Ari, Arzu; Dang, Truong; Al Enazi, Fahad H; Alqahtani, Mohammed M; Alkhathami, Abdulrahman; Qoutah, Rowaida; Almamary, Ahmad S; Fink, James B
2018-02-01
Placement of a heat moisture exchanger (HME) between aerosol generator and patient has been associated with greatly reduced drug delivery. The purpose of this study was to evaluate the effect of filtered and nonfiltered HMEs placed between nebulizer and patient on aerosol deposition and airway resistance (Raw) in simulated ventilator-dependent adults. An in vitro lung model was developed to simulate a mechanically ventilated adult (Vt 500 mL, RR 15/min, and PEEP 5 cmH 2 O, using two inspiratory flow rates 40 and 50 L/min) using an intubated adult manikin with an endotracheal tube (8 mmID). The bronchi of the manikin were connected to a Y-adapter through a collecting filter (Respirgard II) attached to a test lung through a heated humidifier (37°C producing 100% relative humidity) to simulate exhaled humidity. For treatment conditions, a nonfiltered HME (ThermoFlo™ 6070; ARC Medical) and filtered HMEs (ThermoFlo™ Filter; ARC Medical and PALL Ultipor; Pall Medical) were placed between the ventilator circuit at the endotracheal tube and allowed to acclimate to the exhaled heat and humidity for 30 minutes before aerosol administration. Airway resistance (cmH 2 O/L/s) was taken at 0, 10, 20, and 30 minutes after HME placement and after each of four aerosol treatments. Albuterol sulfate (2.5 mg/3 mL) was administered with jet (Misty Max 10; Airlife) and mesh (Aerogen Solo; Aerogen) nebulizers positioned in the inspiratory limb proximal to the Y-adapter. Control consisted of nebulization with no HME. Drug was eluted from filter at the end of the trachea and measured using spectrophotometry (276 nm). Greater than 60% of the control dose was delivered through the ThermoFlo. No significant difference was found between the first four treatments given by the jet (p = 0.825) and the mesh (p = 0.753) nebulizers. There is a small increase in Raw between pre- and post-four treatments with the jet (p = 0.001) and mesh (p = 0.015) nebulizers. Aerosol delivery through filtered HMEs was similar (<0.5%) across the four treatments. Airway resistance was similar using the ThermoFlo Filter. With the PALL Ultipor, changes in Raw increased with mesh nebulizer after treatment (p = 0.005). Changes in resistance pre- and post-treatment were similar with both filtered HMEs. The ThermoFlo™ nonfilter HME allowed the majority of the control dose to be delivered to the airway. Increases in Raw would likely not be outside of a tolerable range in ventilated patients. In contrast, filtered HMEs should not be placed between nebulizers and patient airways. Further research with other HMEs and materials is warranted.
Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng
2015-09-02
Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto a porous stainless-steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water-air interface, collect and convert solar light into heat, and locally heat only the water surface for enhanced evaporation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Particle transport in low-energy ventilation systems. Part 1: theory of steady states.
Bolster, D T; Linden, P F
2009-04-01
Many modern low-energy ventilation schemes, such as displacement or natural ventilation, take advantage of temperature stratification in a space, extracting the warmest air from the top of the room. The adoption of these energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. In this work we study the steady state transport of particulate contaminants in a displacement-ventilated space. Representing heat sources as ideal sources of buoyancy, analytical models are developed that allow us to compare the average efficiency of contaminant removal between traditional and modern low-energy systems. We found that on average traditional and low-energy systems are similar in overall pollutant removal efficiency, although quite different vertical distributions of contaminant can exist, thus affecting individual exposure. While the main focus of this work is on particles where the dominant mode of deposition is by gravitational settling, we also discuss additional deposition mechanisms and show that the qualitative observations we make carry over to cases where such mechanisms must be included. We illustrate that while average concentration of particles for traditional mixing systems and low energy displacement systems are similar, local concentrations can vary significantly with displacement systems. Depending on the source of the particles this can be better or worse in terms of occupant exposure and engineers should take due diligence accordingly when designing ventilation systems.
NASA Astrophysics Data System (ADS)
Gendelis, S.; Jakovičs, A.; Ratnieks, J.; Bandeniece, L.
2017-10-01
This paper focuses on the long-term monitoring of thermal comfort and discomfort parameters in five small test buildings equipped with different heating and cooling systems. Calculations of predicted percentage of dissatisfied people (PPD) index and discomfort factors are provided for the room in winter season running three different heating systems - electric heater, air-air heat pump and air-water heat pump, as well as for the summer cooling with split type air conditioning systems. It is shown that the type of heating/cooling system and its working regime has an important impact on thermal comfort conditions in observed room. Recommendations for the optimal operating regimes and choice of the heating system from the thermal comfort point of view are summarized.
Anthony, T. Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M.
2016-01-01
Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5°C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s−1 (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures. PMID:24433305
Anthony, T Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M
2014-01-01
Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5 °C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s(-1) (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures.
Heating device for semiconductor wafers
Vosen, Steven R.
1999-01-01
An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.
Heating device for semiconductor wafers
Vosen, S.R.
1999-07-27
An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.
Special requirements in UCV theatres.
Hall, Graeme
2016-09-01
Graeme Hall FIHEEM, MIET, managing director of Brandon Medical, considers in detail the particular requirements and criteria for operating lights used in ultraclean ventilation (UCV) theatres, and explains how the recent establishment of a standard for testing of lighting's suitability for such theatre environments will help designers and manufacturers, as well as those specifying UCV theatre illumination, going forward.