Sample records for lighting system design

  1. Color Choice is Everything - Impacts Color makes to the Lighting Environment

    NASA Technical Reports Server (NTRS)

    Clark, Toni A.

    2012-01-01

    When contracts are let out to design multiple systems in a vehicle, it is a challenge to maintain integration between system leads. Designers on niche systems, like lighting and control panel design, often get caught up in the challenge of designing the light source or visual interface and fail to include time in their schedule to work with system architects on how their lighting system will be integrated. Additionally, behavioral scientists, industrial designers, and materials engineers get caught up with the materials and look of the system, but often fail to consider how the selection of their materials could affect the certification or performance of electronic devices like lighting systems. Additionally, computer modeling of the system architecture often assumes a perfect environment without the clutter of actual human use (dirt, stowage, crowding). As a result, lighting systems, and backlit displays run the risk of being overdesigned or under designed. Engineers making the assumption that because they have no input or there is no requirement on work surface reflectance, make the assumption that they can t count on good material choices and thus may install more lighting than is necessary. While having more lights may seem better, for a vehicle that is trying to conserve power, more lights may not be a good option. On the other hand, designers who made the opposite assumption and designed a lighting system that only produced just enough light, often wind up with a system that did conserve power, but didn t produce enough light. These situations are exasperated when the system starts to be used and the models are not perfect anymore. The lack of coordination and iterative design not only can impact lighting levels within an environment, but also can affect color perception. This is because, if materials do not represent a gradation of white or black, the material unevenly absorbs and reflects light at different wavelengths of the visual spectrum. The lighting designer may have built a light that meets light spectra requirements, but the eventual light reaching the human user may not be the spectra of light architects intended, if materials near the light source change the spectrum just by how much color is absorbed or reflected. With the recent findings concerning Circadian rhythm, where the spectra of light is extremely important for addressing crew sleep and wake cycles, system architects should pay considerable attention on the impact material choices have in changing the light spectrum in an environment. This presentation will show examples of how material choices impact the resulting illuminance, color spectrum, and power usage of an illuminated space. Its goal is to encourage system designers and planners to use more care in development of requirements and the verification of systems intended for the human visual interface.

  2. Design Considerations for a Water Treatment System Utilizing Ultra-Violet Light Emitting Diodes

    DTIC Science & Technology

    2014-03-27

    DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...the United States. ii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...DISTRIBUTION UNLIMITED. iii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING

  3. Design of the optical structure of airfield in-pavement LED runway edge lights

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodan; Yang, Jianhong; Peng, Jun; Li, Lei

    2017-02-01

    Airfield lighting system is an important aiding system of civil aviation airport that guarantees the taking off, landing, taxiing of airplanes at night, with low visibility, or under other complicated weather conditions. In-pavement LED runway edge lights, with the highest degree of light intensity, are the most important lights for safe civil aviation and are most difficult to design within airfield lighting system. With LED as the source of light and the secondary optical design as the core, in light of basic laws of Fresnel loss and total reflection and the principles of edge-ray etendue conservation and the conservation of energy to design major optical elements as lens, prism of the lamp, the in-pavement LED runway edge lights design successfully solves the designing problem of high-power, high-intensity LED airfield lights with narrow beam angle at closed environment. This success is of great significance for the improvement of LED airfield lighting system in China.

  4. Optical design of an in vivo laparoscopic lighting system

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolong; Abdolmalaki, Reza Yazdanpanah; Mancini, Gregory J.; Tan, Jindong

    2017-12-01

    This paper proposes an in vivo laparoscopic lighting system design to address the illumination issues, namely poor lighting uniformity and low optical efficiency, existing in the state-of-the-art in vivo laparoscopic cameras. The transformable design of the laparoscopic lighting system is capable of carrying purposefully designed freeform optical lenses for achieving lighting performance with high illuminance uniformity and high optical efficiency in a desired target region. To design freeform optical lenses for extended light sources such as LEDs with Lambertian light intensity distributions, we present an effective and complete freeform optical design method. The procedures include (1) ray map computation by numerically solving a standard Monge-Ampere equation; (2) initial freeform optical surface construction by using Snell's law and a lens volume restriction; (3) correction of surface normal vectors due to accumulated errors from the initially constructed surfaces; and (4) feedback modification of the solution to deal with degraded illuminance uniformity caused by the extended sizes of the LEDs. We employed an optical design software package to evaluate the performance of our laparoscopic lighting system design. The simulation results show that our design achieves greater than 95% illuminance uniformity and greater than 89% optical efficiency (considering Fresnel losses) for illuminating the target surgical region.

  5. Natural light illumination system.

    PubMed

    Whang, Allen Jong-Woei; Chen, Yi-Yung; Yang, Shu-Hua; Pan, Po-Hsuan; Chou, Kao-Hsu; Lee, Yu-Chi; Lee, Zong-Yi; Chen, Chi-An; Chen, Cheng-Nan

    2010-12-10

    In recent years, green energy has undergone a lot of development and has been the subject of many applications. Many research studies have focused on illumination with sunlight as a means of saving energy and creating healthy lighting. Natural light illumination systems have collecting, transmitting, and lighting elements. Today, most daylight collectors use dynamic concentrators; these include Sun tracking systems. However, this design is too expensive to be cost effective. To create a low-cost collector that can be easily installed on a large building, we have designed a static concentrator, which is prismatic and cascadable, to collect sunlight for indoor illumination. The transmission component uses a large number of optical fibers. Because optical fibers are expensive, this means that most of the cost for the system will be related to transmission. In this paper, we also use a prismatic structure to design an optical coupler for coupling n to 1. With the n-to-1 coupler, the number of optical fibers necessary can be greatly reduced. Although this new natural light illumination system can effectively guide collected sunlight and send it to the basement or to other indoor places for healthy lighting, previously there has been no way to manage the collected sunlight when lighting was not desired. To solve this problem, we have designed an optical switch and a beam splitter to control and separate the transmitted light. When replacing traditional sources, the lighting should have similar characteristics, such as intensity distribution and geometric parameters, to those of traditional artificial sources. We have designed, simulated, and optimized an illumination lightpipe with a dot pattern to redistribute the collected sunlight from the natural light illumination system such that it equals the qualities of a traditional lighting system. We also provide an active lighting module that provides lighting from the natural light illumination system or LED auxiliary sources, depending on circumstances. The system is controlled by a light detector. We used optical simulation tools to design and simulate the efficiency of the active module. Finally, we used the natural light illumination system to provide natural illumination for a traffic tunnel. This system will provide a great number of benefits for the people who use it.

  6. Advanced lighting guidelines: 1993. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, C.; Tolen, T.M.; Benya, J.R.

    1993-12-31

    The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten-Halogen Lamps, Metal Halidemore » and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers` representatives, and other lighting professionals.« less

  7. Signal lights - designed light for rear lamps and new upcoming technologies: innovations in automotive lighting

    NASA Astrophysics Data System (ADS)

    Mügge, Martin; Hohmann, Carsten

    2016-04-01

    Signal functions have to fulfill statutory regulations such as ECE or FMVSS108 to provide a clear signal to other road users and satisfy the same standard definitions of lighting parameters. However, as rear combination lamps are very different from one another, and these days are an increasingly powerful design element of cars, automotive manufacturers want an innovative, superior, and contrasting design. Daytime appearances with a new and unusual look and nighttime appearances with unexpected illumination are strong drivers for developing amazing innovative signal functions. The combination of LED technology and different forms of light-guiding optics, new interpretations of common optical systems to develop various styling options, the use of new materials and components for lighting effects, the introduction of OLED technology on the automotive market, and amazing new optical systems, using diffractive or holographic optics in future rear lamps, are paving the way for further, exciting design possibilities. The challenge of new signal functions is to take these possibilities and to develop the appearance and illumination effects the designer wants to reinforce the image of the car manufacturer and to fit harmoniously into the vehicle design. Lighting systems with a three-dimensional design and appearance when unlit and lit, amazing 3D effects, and surprising lighting scenarios will gain in importance. But the signal lights on cars will, in the future, be not only lighting functions in rear lamps; new functions and stylistic illuminations for coming/leaving-home scenarios will support and complete the car's overall lighting appearance. This paper describes current lighting systems realizing the styling requirements and future lighting systems offering new design possibilities and developing further stylistic, visual effects and improved technologies.

  8. Optical design of automotive headlight system incorporating digital micromirror device.

    PubMed

    Hung, Chuan-Cheng; Fang, Yi-Chin; Huang, Ming-Shyan; Hsueh, Bo-Ren; Wang, Shuan-Fu; Wu, Bo-Wen; Lai, Wei-Chi; Chen, Yi-Liang

    2010-08-01

    In recent years, the popular adaptive front-lighting automobile headlight system has become a main emphasis of research that manufacturers will continue to focus great efforts on in the future. In this research we propose a new integral optical design for an automotive headlight system with an advanced light-emitting diode and digital micromirror device (DMD). Traditionally, automobile headlights have all been designed as a low beam light module, whereas the high beam light module still requires using accessory lamps. In anticipation of this new concept of integral optical design, we have researched and designed a single optical system with high and low beam capabilities. To switch on and off the beams, a DMD is typically used. Because DMDs have the capability of redirecting incident light into a specific angle, they also determine the shape of the high or low light beam in order to match the standard of headlight illumination. With collocation of the multicurvature reflection lens design, a DMD can control the light energy distribution and thereby reinforce the resolution of the light beam.

  9. Optical design of an in vivo laparoscopic lighting system.

    PubMed

    Liu, Xiaolong; Abdolmalaki, Reza Yazdanpanah; Mancini, Gregory J; Tan, Jindong

    2017-12-01

    This paper proposes an in vivo laparoscopic lighting system design to address the illumination issues, namely poor lighting uniformity and low optical efficiency, existing in the state-of-the-art in vivo laparoscopic cameras. The transformable design of the laparoscopic lighting system is capable of carrying purposefully designed freeform optical lenses for achieving lighting performance with high illuminance uniformity and high optical efficiency in a desired target region. To design freeform optical lenses for extended light sources such as LEDs with Lambertian light intensity distributions, we present an effective and complete freeform optical design method. The procedures include (1) ray map computation by numerically solving a standard Monge-Ampere equation; (2) initial freeform optical surface construction by using Snell's law and a lens volume restriction; (3) correction of surface normal vectors due to accumulated errors from the initially constructed surfaces; and (4) feedback modification of the solution to deal with degraded illuminance uniformity caused by the extended sizes of the LEDs. We employed an optical design software package to evaluate the performance of our laparoscopic lighting system design. The simulation results show that our design achieves greater than 95% illuminance uniformity and greater than 89% optical efficiency (considering Fresnel losses) for illuminating the target surgical region. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. Imaging spectrometer wide field catadioptric design

    DOEpatents

    Chrisp,; Michael, P [Danville, CA

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  11. Design of light-small high-speed image data processing system

    NASA Astrophysics Data System (ADS)

    Yang, Jinbao; Feng, Xue; Li, Fei

    2015-10-01

    A light-small high speed image data processing system was designed in order to meet the request of image data processing in aerospace. System was constructed of FPGA, DSP and MCU (Micro-controller), implementing a video compress of 3 million pixels@15frames and real-time return of compressed image to the upper system. Programmable characteristic of FPGA, high performance image compress IC and configurable MCU were made best use to improve integration. Besides, hard-soft board design was introduced and PCB layout was optimized. At last, system achieved miniaturization, light-weight and fast heat dispersion. Experiments show that, system's multifunction was designed correctly and worked stably. In conclusion, system can be widely used in the area of light-small imaging.

  12. Design of light guide sleeve on hyperspectral imaging system for skin diagnosis

    NASA Astrophysics Data System (ADS)

    Yan, Yung-Jhe; Chang, Chao-Hsin; Huang, Ting-Wei; Chiang, Hou-Chi; Wu, Jeng-Fu; Ou-Yang, Mang

    2017-08-01

    A hyperspectral imaging system is proposed for early study of skin diagnosis. A stable and high hyperspectral image quality is important for analysis. Therefore, a light guide sleeve (LGS) was designed for the embedded on a hyperspectral imaging system. It provides a uniform light source on the object plane with the determined distance. Furthermore, it can shield the ambient light from entering the system and increasing noise. For the purpose of producing a uniform light source, the LGS device was designed in the symmetrical double-layered structure. It has light cut structures to adjust distribution of rays between two layers and has the Lambertian surface in the front-end to promote output uniformity. In the simulation of the design, the uniformity of illuminance was about 91.7%. In the measurement of the actual light guide sleeve, the uniformity of illuminance was about 92.5%.

  13. Design of control system based on SCM music fountain

    NASA Astrophysics Data System (ADS)

    Li, Biqing; Li, Zhao; Jiang, Suping

    2018-06-01

    The design of the design of a microprocessor controlled by simple circuit, introduced this design applied to the components, and draw the main flow chart presentation. System is the use of an external music source, the intensity of the input audio signal lights will affect the light off, the fountain spray of water level will be based on changes in the lantern light off. This design uses a single-chip system is simple, powerful, good reliability and low cost.

  14. Research on starlight hardware-in-the-loop simulator

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Gao, Yang; Qu, Huiyang; Liu, Dongfang; Du, Huijie; Lei, Jie

    2016-10-01

    The starlight navigation is considered to be one of the most important methods for spacecraft navigation. Starlight simulation system is a high-precision system with large fields of view, designed to test the starlight navigation sensor performance on the ground. A complete hardware-in-the-loop simulation of the system has been built. The starlight simulator is made up of light source, light source controller, light filter, LCD, collimator and control computer. LCD is the key display component of the system, and is installed at the focal point of the collimator. For the LCD cannot emit light itself, so light source and light source power controller is specially designed for the brightness demanded by the LCD. Light filter is designed for the dark background which is also needed in the simulation.

  15. Application of 3D printing to prototype and develop novel plant tissue culture systems.

    PubMed

    Shukla, Mukund R; Singh, Amritpal S; Piunno, Kevin; Saxena, Praveen K; Jones, A Maxwell P

    2017-01-01

    Due to the complex process of designing and manufacturing new plant tissue culture vessels through conventional means there have been limited efforts to innovate improved designs. Further, development and availability of low cost, energy efficient LEDs of various spectra has made it a promising light source for plant growth in controlled environments. However, direct replacement of conventional lighting sources with LEDs does not address problems with uniformity, spectral control, or the challenges in conducting statistically valid experiments to assess the effects of light. Prototyping using 3D printing and LED based light sources could help overcome these limitations and lead to improved culture systems. A modular culture vessel design in which the fluence rate and spectrum of light are independently controlled was designed, prototyped using 3D printing, and evaluated for plant growth. This design is compatible with semi-solid and liquid based culture systems. Observations on morphology, chlorophyll content, and chlorophyll fluorescence based stress parameters from in vitro plants cultured under different light spectra with similar overall fluence rate indicated different responses in Nicotiana tabacum and Artemisia annua plantlets. This experiment validates the utility of 3D printing to design and test functional vessels and demonstrated that optimal light spectra for in vitro plant growth is species-specific. 3D printing was successfully used to prototype novel culture vessels with independently controlled variable fluence rate/spectra LED lighting. This system addresses several limitations associated with current lighting systems, providing more uniform lighting and allowing proper replication/randomization for experimental plant biology while increasing energy efficiency. A complete procedure including the design and prototyping of a culture vessel using 3D printing, commercial scale injection molding of the prototype, and conducting a properly replicated experiment are discussed. This open source design has the scope for further improvement and adaptation and demonstrates the power of 3D printing to improve the design of culture systems.

  16. Design of Light Trapping Solar Cell System by Using Zemax Program

    NASA Astrophysics Data System (ADS)

    Hasan, A. B.; Husain, S. A.

    2018-05-01

    Square micro lenses array have been designed (by using Zemax optical design program) to concentrate solar radiation into variable slits that reaching light to solar cell. This technique to increase the efficiency of solar system by trapping light due to internal reflection of light by mirrors that placed between upper and lower side of solar cell, therefore increasing optical path through the solar cell, and then increasing chance of photon absorption. The results show priority of solar system that have slit of (0.2 mm), and acceptance angle of (20°) that give acceptable efficiency of solar system.

  17. Energy Integrated Design of Lighting, Heating, and Cooling Systems, and Its Effect on Building Energy Requirements.

    ERIC Educational Resources Information Center

    Meckler, Gershon

    Comments on the need for integrated design of lighting, heating, and cooling systems. In order to eliminate the penalty of refrigerating the lighting heat, minimize the building non-usable space, and optimize the total energy input, a "systems approach" is recommended. This system would employ heat-recovery techniques based on the ability of the…

  18. Stray light suppression of optical and mechanical system for telescope detection

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ma, Wenli

    2013-09-01

    During telescope detection, there is atmosphere overflow and other stray light affecting the system which leads to background disturbance. Thus reduce the detection capability of the system. So it is very necessary to design mechanical structure to suppress the stray light for the telescope detection system. It can both improve the signal-to-noise and contrast of the object. This paper designs the optical and mechanical structure of the 400mm telescope. And then the main baffle, baffle vane, field stop and coating technology are used to eliminate the effect of stray light on the optical and mechanical system. Finally, software is used to analyze and simulate stray light on the whole optical and mechanical system. Using PST as the evaluating standard, separate and integrated analysis of the suppressing effect of main baffle, baffle vane and field aperture is completed. And also get the results of PST before and after eliminating the stray light. Meanwhile, the results of stray light analysis can be used to guide the design of the optical and mechanical structure. The analysis results demonstrate that reasonable optical and mechanical structure and stray light suppression measure can highly reduce the PST and also improve the detection capability of the telescope system, and the designed outside baffle, inside baffle, vanes and coating technique etc. can decrease the PST approximately 1 to 3 level.

  19. Office worker response to an automated venetian blind and electric lighting system: A pilot study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vine, E.; Lee, E.; Clear, R.

    1998-03-01

    A prototype integrated, dynamic building envelope and lighting system designed to optimize daylight admission and solar heat gain rejection on a real-time basis in a commercial office building is evaluated. Office worker response to the system and occupant-based modifications to the control system are investigated to determine if the design and operation of the prototype system can be improved. Key findings from the study are: (1) the prototype integrated envelope and lighting system is ready for field testing, (2) most office workers (N=14) were satisfied with the system, and (3) there were few complaints. Additional studies are needed to explainmore » how illuminance distribution, lighting quality, and room design can affect workplans illuminance preferences.« less

  20. HORIZONTAL HYBRID SOLAR LIGHT PIPE: AN INTEGRATED SYSTEM OF DAYLIGHT AND ELECTRIC LIGHT

    EPA Science Inventory

    This project will test the feasibility of an advanced energy efficient perimeter lighting system that integrates daylighting, electric lighting, and lighting controls to reduce electricity consumption. The system is designed to provide adequate illuminance levels in deep-floor...

  1. Feasibility analysis on integration of luminous environment measuring and design based on exposure curve calibration

    NASA Astrophysics Data System (ADS)

    Zou, Yuan; Shen, Tianxing

    2013-03-01

    Besides illumination calculating during architecture and luminous environment design, to provide more varieties of photometric data, the paper presents combining relation between luminous environment design and SM light environment measuring system, which contains a set of experiment devices including light information collecting and processing modules, and can offer us various types of photometric data. During the research process, we introduced a simulation method for calibration, which mainly includes rebuilding experiment scenes in 3ds Max Design, calibrating this computer aid design software in simulated environment under conditions of various typical light sources, and fitting the exposure curves of rendered images. As analytical research went on, the operation sequence and points for attention during the simulated calibration were concluded, connections between Mental Ray renderer and SM light environment measuring system were established as well. From the paper, valuable reference conception for coordination between luminous environment design and SM light environment measuring system was pointed out.

  2. Comparisons of luminaires: Efficacies and system design

    NASA Technical Reports Server (NTRS)

    Albright, L. D.; Both, A. J.

    1994-01-01

    Lighting designs for architectural (aesthetic) purposes, vision and safety, and plant growth have many features in common but several crucial ones that are not. The human eye is very sensitive to the color (wavelength) of light, whereas plants are less so. There are morphological reactions, particularly to the red and blue portions of the light spectrum but, in general, plants appear to accept and use light for photosynthesis everywhere over the PAR region of the spectrum. In contrast, the human eye interprets light intensity on a logarithmic scale, making people insensitive to significant differences of light intensity. As a rough rule, light intensity must change by 30 to 50% for the human eye to recognize the difference. Plants respond much more linearly to light energy, at least at intensities below photosynthetic saturation. Thus, intensity differences not noticeable to the human eye can have significant effects on total plant growth and yield, and crop timing. These factors make luminaire selection and lighting system design particularly important when designing supplemental lighting systems for plant growth. Supplemental lighting for plant growth on the scale of commercial greenhouses is a relatively expensive undertaking. Light intensities are often much higher than required for task (vision) lighting, which increases both installation and operating costs. However, and especially in the northern regions of the United States (and Canada, Europe, etc.), supplemental lighting during winter may be necessary to produce certain crops (e.g., tomatoes) and very useful to achieve full plant growth potential and crop timing with most other greenhouse crops. Operating costs over the life of a luminaire typically will exceed the initial investment, making lighting efficacy a major consideration. This report reviews tests completed to evaluate the efficiencies of various commercially-available High-Pressure Sodium luminaires, and then describes the results of using a commercial lighting design computer program, Lumen-Micro, to explore how to place luminaires within greenhouses and plant growth chambers to achieve light (PAR) uniformity and relatively high lighting efficacies. Several suggestions are presented which could encourage systematic design of plant lighting systems.

  3. A Novel Design of an Automatic Lighting Control System for a Wireless Sensor Network with Increased Sensor Lifetime and Reduced Sensor Numbers

    PubMed Central

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a Lighting Automatic Control System (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane’s surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design. PMID:22164114

  4. A novel design of an automatic lighting control system for a wireless sensor network with increased sensor lifetime and reduced sensor numbers.

    PubMed

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a lighting automatic control system (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane's surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design.

  5. Design and construction evaluation of a photovoltaic DC LED lighting system

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Jyotsna

    2008-08-01

    The market demand for commercialization of Photovoltaic (PV) systems depends a lot on the reliability, efficiency and performance of various components within the system. PV panels produce DC power when exposed to sunlight, and an inverter converts this to AC power in a typical solar powered building. Though, PV lighting has existed for a long time it hasn't been very effective, as incandescent light sources were commonly used which are inefficient. Today fluorescent fixtures are mostly used with PV's due to its high efficacy. Light-emitting diodes present a new vision to energy efficiency in lighting design with their low energy consumption. Current research predicts improved efficiencies of LED light fixtures and their commercial use is a few years away. LEDs which operate on DC voltages when coupled with photovoltaics can be a simple PV lighting application and a sustainable solution with potential for payback. This research evaluates the design and construction of a photovoltaic DC LED lighting system for a solar house at Pennsylvania State University. A detailed cost and payback analysis of a PV DC LED lighting system is presented in this research. PV output simulations for the solar house are presented. Results presented in this research indicate that the Solid state lighting market is evolving rapidly and that LED's are a choice in stand-alone photovoltaic DC lighting systems. The efficiency and the cost-effectiveness of such systems would however improve in the coming years with research and development now focused on PV systems and on Solid state lighting technologies.

  6. The design and evaluation of three advanced daylighting systems: Light shelves, light pipes and skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beltran, L.O.; Lee, E.S.; Papmichael, K.M.

    1994-03-01

    We present results from the design and evaluation of three advanced daylighting systems: a light shelf, a light pipe, and a skylight. These systems use optical films and an optimized geometry to passively intercept and redirect sunlight further into the building. The objectives of these designs are to increase daylighting illuminance levels at distances of 4.6-9.1 m (15--30 ft) from the window, and to improve the uniformity of the daylight distribution and the luminance gradient across the room under variable sun and sky conditions throughout the year. The designs were developed through a series of computer-assisted ray-tracing studies, photometric measurements,more » and observations using physical scale models. Comprehensive sets of laboratory measurements in combination with analytical routines were then used to simulate daylight performance for any solar position. Results show increased daylight levels and an improved luminance gradient throughout the year -- indicating that lighting energy consumption and cooling energy due of lighting can be substantially reduced with improvements to visual comfort. Future development of the designs may further improve the daylighting performance of these systems.« less

  7. Preliminary greenhouse design for a Martian colony: Structural, solar collection, and light distribution systems

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The design of a greenhouse that will be a component of a long-term habitat on Mars is presented. The greenhouse will be the primary food source for people stationed on Mars. The food will be grown in three identical underground modules, pressurized at 1 atm to allow a shirt-sleeve environment within the greenhouse. The underground location will support the structure, moderate the large environmental variations on the surface, and protect the crops from cosmic radiation. The design effort is concentrated on the outer structure and the lighting system for the greenhouse. The structure is inflatable and made of a Kevlar 49/Epoxy composite and a pipe-arched system that is corrugated to increase stiffness. This composite is pliable in an uncured state, which allows it to be efficiently packaged for transport. The lighting system consists of several flat-plate fiber optic solar collectors with dual-axis tracking systems that will continually track the sun. This design is modeled after the Himawari collector, which was designed by Dr. Kei Mori and is currently in use in Japan. The light will pass through Fresnel lenses that filter out undesirable wavelengths and send the light into the greenhouses by way of fiber optic cables. When the light arrives at the greenhouse, it is dispersed to the plants via a waveguide and diffuser system.

  8. Virtual reality to simulate large lighting with high efficiency LEDs

    NASA Astrophysics Data System (ADS)

    Blandet, Thierry; Coutelier, Gilles; Meyrueis, Patrick

    2011-05-01

    When a city or a local authority wishes to emphasize its historical heritage, for the lighting of its streets, setting up lights during the festive season, they call upon the skills of a lighting designer. The lighting designer proposes concepts, ideas, lighting, and to be able to present them, he makes use of simulation. On the other hand lighting technologies are evolving very rapidly and new lighting systems offer features that lighting designers are now integrating their projects. The street lights consume lot of energy; light projects are now taking into account the energy saving aspect. Lighting systems based on LEDs today provide good lighting needs, taking into account sustainable development issues while enabling new creative dimension. The lighting simulation can handle these parameters. Images or video simulation are no longer sufficient: stereoscopy and virtual reality techniques allow better communication and better understanding of projects. Virtual reality offers new possibilities of interaction, the freedom of movement in a scene, the presentation of variants or interactive simulations.

  9. Research and design of intelligent distributed traffic signal light control system based on CAN bus

    NASA Astrophysics Data System (ADS)

    Chen, Yu

    2007-12-01

    Intelligent distributed traffic signal light control system was designed based on technologies of infrared, CAN bus, single chip microprocessor (SCM), etc. The traffic flow signal is processed with the core of SCM AT89C51. At the same time, the SCM controls the CAN bus controller SJA1000/transceiver PCA82C250 to build a CAN bus communication system to transmit data. Moreover, up PC realizes to connect and communicate with SCM through USBCAN chip PDIUSBD12. The distributed traffic signal light control system with three control styles of Vehicle flux, remote and PC is designed. This paper introduces the system composition method and parts of hardware/software design in detail.

  10. Lighting for Schools.

    ERIC Educational Resources Information Center

    Benya, James R.

    This publication highlights some of the benefits of proper daylighting design in educational facilities, discusses energy efficient electric lighting choices schools can make that are long lasting and require little maintenance, and offers six steps for designing lighting systems that use half the energy of earlier conventional designs. Several…

  11. Scaling laws for light weight optics, studies of light weight mirrors mounting and dynamic mirror stress, and light weight mirror and mount designs

    NASA Technical Reports Server (NTRS)

    Vukobratovich, Daniel; Richard, Ralph M.; Valente, Tina M.; Cho, Myung K.

    1990-01-01

    Scaling laws for light-weight optical systems are examined. A cubic relationship between mirror diameter and weight has been suggested and used by many designers of optical systems as the best description for all light-weight mirrors. A survey of existing light-weight systems in the open literature was made to clarify this issue. Fifty existing optical systems were surveyed with all varieties of light-weight mirrors including glass and beryllium structured mirrors, contoured mirrors, and very thin solid mirrors. These mirrors were then categorized and weight to diameter ratio was plotted to find a best curve for each case. A best fitting curve program tests nineteen different equations and ranks a goodness-to-fit for each of these equations. The resulting relationship found for each light-weight mirror category helps to quantify light-weight optical systems and methods of fabrication and provides comparisons between mirror types.

  12. Design and implementation of green intelligent lights based on the ZigBee

    NASA Astrophysics Data System (ADS)

    Gan, Yong; Jia, Chunli; Zou, Dongyao; Yang, Jiajia; Guo, Qianqian

    2013-03-01

    By analysis of the low degree of intelligence of the traditional lighting control methods, the paper uses the singlechip microcomputer for the control core, and uses a pyroelectric infrared technology to detect the existence of the human body, light sensors to sense the light intensity; the interface uses infrared sensor module, photosensitive sensor module, relay module to transmit the signal, which based on ZigBee wireless network. The main function of the design is to realize that the lighting can intelligently adjust the brightness according to the indoor light intensity when people in door, and it can turn off the light when people left. The circuit and program design of this system is flexible, and the system achieves the effect of intelligent energy saving control.

  13. Evolving Our Evaluation of Lighting Environments Project

    NASA Technical Reports Server (NTRS)

    Terrier, Douglas; Clayton, Ronald; Clark, Toni Anne

    2016-01-01

    Imagine you are an astronaut on their 100th day of your three year exploration mission. During your daily routine to the small hygiene compartment of the spacecraft, you realize that no matter what you do, your body blocks the light from the lamp. You can clearly see your hands or your toes but not both! What were those design engineers thinking! It would have been nice if they could have made the walls glow instead! The reason the designers were not more innovative is that their interpretation of the system lighting requirements didn't allow them to be so! Currently, our interior spacecraft lighting standards and requirements are written around the concept of a quantity of light illuminating a spacecraft surface. The natural interpretation for the engineer is that a lamp that throws light to the surface is required. Because of certification costs, only one lamp is designed and small rooms can wind up with lamps that may be inappropriate for the room architecture. The advances in solid state light emitting technologies and optics for lighting and visual communication necessitates the evaluation of how NASA envisions spacecraft lighting architectures and how NASA uses industry standards for the design and evaluation of lighting system. Current NASA lighting standards and requirements for existing architectures focus on the separate ability of a lighting system to throw light against a surface or the ability of a display system to provide the appropriate visual contrast. Realization that these systems can be integrated is not realized. The result is that the systems are developed independent from one another and potential efficiencies that could be realized from borrowing from the concept of one technology and applying it for the purpose of the other does not occur. This project investigated the possibility of incorporating large luminous surface lamps as an alternative or supplement to overhead lighting. We identified existing industry standards for architectural luminous or brightness uniformity as part of a lighting system definition. The efficiency of the surface lighting technology was evaluated for uniformity and power consumption. Finally, the team investigated possible performance savings if the walls were made to glow via a self luminous surface system instead of creating brightness by use of direct lighting of a highly reflective diffuse surface.

  14. Literature survey for suppression of scattered light in large space telescopes

    NASA Technical Reports Server (NTRS)

    Tifft, W. G.; Fannin, B. B.

    1973-01-01

    A literature survey is presented of articles dealing with all aspects of predicting, measuring, and controlling unwanted scattered (stray) light. The survey is divided into four broad classifications: (1) existing baffle/telescope designs; (2) computer programs for the analysis/design of light suppression systems; (3) the mechanism, measurement, and control of light scattering; and (4) the advantages and problems introduced by the space environment for the operation of diffraction-limited optical systems.

  15. Design, simulation and experimental analysis of an anti-stray-light illumination system of fundus camera

    NASA Astrophysics Data System (ADS)

    Ma, Chen; Cheng, Dewen; Xu, Chen; Wang, Yongtian

    2014-11-01

    Fundus camera is a complex optical system for retinal photography, involving illumination and imaging of the retina. Stray light is one of the most significant problems of fundus camera because the retina is so minimally reflective that back reflections from the cornea and any other optical surface are likely to be significantly greater than the light reflected from the retina. To provide maximum illumination to the retina while eliminating back reflections, a novel design of illumination system used in portable fundus camera is proposed. Internal illumination, in which eyepiece is shared by both the illumination system and the imaging system but the condenser and the objective are separated by a beam splitter, is adopted for its high efficiency. To eliminate the strong stray light caused by corneal center and make full use of light energy, the annular stop in conventional illumination systems is replaced by a fiber-coupled, ring-shaped light source that forms an annular beam. Parameters including size and divergence angle of the light source are specially designed. To weaken the stray light, a polarized light source is used, and an analyzer plate is placed after beam splitter in the imaging system. Simulation results show that the illumination uniformity at the fundus exceeds 90%, and the stray light is within 1%. Finally, a proof-of-concept prototype is developed and retinal photos of an ophthalmophantom are captured. The experimental results show that ghost images and stray light have been greatly reduced to a level that professional diagnostic will not be interfered with.

  16. Status of Solid State Lighting Product Development and Future Trends for General Illumination.

    PubMed

    Katona, Thomas M; Pattison, P Morgan; Paolini, Steve

    2016-06-07

    After decades of research and development on fabrication of efficient light-emitting diodes (LEDs) throughout the visible spectrum, LED-based lighting has reached unparalleled performance with respect to energy efficiency and has become the light source for virtually all new lighting products being designed today. The development of the core light sources and their subsequent integration into lighting systems continue to present unique challenges and opportunities for product designers. We review these systems and the current development status, as well as provide context for the trends in solid state lighting that are leading to the development of value-added lighting solutions that extend the domain of lighting beyond light generation, into fields as diverse as communications, healthcare, and agricultural production.

  17. Designing display primaries with currently available light sources for UHDTV wide-gamut system colorimetry.

    PubMed

    Masaoka, Kenichiro; Nishida, Yukihiro; Sugawara, Masayuki

    2014-08-11

    The wide-gamut system colorimetry has been standardized for ultra-high definition television (UHDTV). The chromaticities of the primaries are designed to lie on the spectral locus to cover major standard system colorimetries and real object colors. Although monochromatic light sources are required for a display to perfectly fulfill the system colorimetry, highly saturated emission colors using recent quantum dot technology may effectively achieve the wide gamut. This paper presents simulation results on the chromaticities of highly saturated non-monochromatic light sources and gamut coverage of real object colors to be considered in designing wide-gamut displays with color filters for the UHDTV.

  18. Design and realization of photoelectric instrument binocular optical axis parallelism calibration system

    NASA Astrophysics Data System (ADS)

    Ying, Jia-ju; Chen, Yu-dan; Liu, Jie; Wu, Dong-sheng; Lu, Jun

    2016-10-01

    The maladjustment of photoelectric instrument binocular optical axis parallelism will affect the observe effect directly. A binocular optical axis parallelism digital calibration system is designed. On the basis of the principle of optical axis binocular photoelectric instrument calibration, the scheme of system is designed, and the binocular optical axis parallelism digital calibration system is realized, which include four modules: multiband parallel light tube, optical axis translation, image acquisition system and software system. According to the different characteristics of thermal infrared imager and low-light-level night viewer, different algorithms is used to localize the center of the cross reticle. And the binocular optical axis parallelism calibration is realized for calibrating low-light-level night viewer and thermal infrared imager.

  19. Design criteria for the light duty utility arm system end effectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardini, A.F.; Kiebel, G.R.

    1995-12-01

    The purpose of this document is to provide criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. Actual component design, fabrication, testing, and inspection will be performed by various DOE laboratories, industry, and academia. This document augments WHC-SD-TD-FRD-003, `Functions and Requirements for the Light Duty Utility Arm Integrated System` (F). All requirements dictated in the F shall also be applicable in this document. Whenever conflicts arise between this document and the F, this document shall take precedence.

  20. A service platform architecture design towards a light integration of heterogeneous systems in the wellbeing domain.

    PubMed

    Yang, Yaojin; Ahtinen, Aino; Lahteenmaki, Jaakko; Nyman, Petri; Paajanen, Henrik; Peltoniemi, Teijo; Quiroz, Carlos

    2007-01-01

    System integration is one of the major challenges for building wellbeing or healthcare related information systems. In this paper, we are going to share our experiences on how to design a service platform called Nuadu service platform, for providing integrated services in occupational health promotion and health risk management through two heterogeneous systems. Our design aims for a light integration covering the layers, from data through service up to presentation, while maintaining the integrity of the underlying systems.

  1. Addressing Challenges to the Design & Test of Operational Lighting Environments for the International Space Station

    NASA Technical Reports Server (NTRS)

    Clark, Toni A.

    2014-01-01

    In our day to day lives, the availability of light, with which to see our environment, is often taken for granted. The designers of land based lighting systems use sunlight and artificial light as their toolset. The availability of power, quantity of light sources, and variety of design options are often unlimited. The accessibility of most land based lighting systems makes it easy for the architect and engineer to verify and validate their design ideas. Failures with an implementation, while sometimes costly, can easily be addressed by renovation. Consider now, an architectural facility orbiting in space, 260 miles above the surface of the earth. This human rated architectural facility, the International Space Station (ISS) must maintain operations every day, including life support and appropriate human comforts without fail. The facility must also handle logistics of regular shipments of cargo, including new passengers. The ISS requires accommodations necessary for human control of machine systems. Additionally, the ISS is a research facility and supports investigations performed inside and outside its livable volume. Finally, the facility must support remote operations and observations by ground controllers. All of these architectural needs require a functional, safe, and even an aesthetic lighting environment. At Johnson Space Center, our Habitability and Human Factors team assists our diverse customers with their lighting environment challenges, via physical test and computer based analysis. Because of the complexity of ISS operational environment, our team has learned and developed processes that help ISS operate safely. Because of the dynamic exterior lighting environment, uses computational modeling to predict the lighting environment. The ISS' orbit exposes it to a sunrise every 90 minutes, causing work surfaces to quickly change from direct sunlight to earthshine to total darkness. Proper planning of vehicle approaches, robotics operations, and crewed Extra Vehicular Activities are mandatory to ensure safety to the crew and all others involved. Innovation in testing techniques is important as well. The advent of Solid State Lighting technology and the lack of stable national and international standards for its implementation pose new challenges on how to design, test and verify individual light fixtures and the environment that uses them. The ISS will soon be replacing its internal fluorescent lighting system to a solid state LED system. The Solid State Lighting Assembly will be used not only for general lighting, but also as a medical countermeasure to control the circadian rhythm of the crew. The new light source has performance criteria very specific to its spectral fingerprint, creating new challenges that were originally not as significant during the original design of the ISS. This presentation will showcase findings and toolsets our team is using to assist in the planning of tasks, and design of operational lighting environments on the International Space Station.

  2. Study of optical design of three-dimensional digital ophthalmoscopes.

    PubMed

    Fang, Yi-Chin; Yen, Chih-Ta; Chu, Chin-Hsien

    2015-10-01

    This study primarily involves using optical zoom structures to design a three-dimensional (3D) human-eye optical sensory system with infrared and visible light. According to experimental data on two-dimensional (2D) and 3D images, human-eye recognition of 3D images is substantially higher (approximately 13.182%) than that of 2D images. Thus, 3D images are more effective than 2D images when they are used at work or in high-recognition devices. In the optical system design, infrared and visible light wavebands were incorporated as light sources to perform simulations. The results can be used to facilitate the design of optical systems suitable for 3D digital ophthalmoscopes.

  3. 33 CFR 127.1109 - Lighting systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Lighting systems. 127.1109 Section 127.1109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1109 Lighting systems...

  4. 33 CFR 127.1109 - Lighting systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Lighting systems. 127.1109 Section 127.1109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1109 Lighting systems...

  5. 33 CFR 127.1109 - Lighting systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Lighting systems. 127.1109 Section 127.1109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1109 Lighting systems...

  6. 33 CFR 127.1109 - Lighting systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Lighting systems. 127.1109 Section 127.1109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1109 Lighting systems...

  7. 33 CFR 127.1109 - Lighting systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Lighting systems. 127.1109 Section 127.1109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1109 Lighting systems...

  8. Lifelog-based lighting design for biofied building

    NASA Astrophysics Data System (ADS)

    Kake, Fumika; Mita, Akira

    2016-04-01

    A design tool is proposed for lighting control system that reflects histories of residents' past life using a genetic mechanism. There are many previous researches which show the preference of lighting design differs depending on people and their behaviors. And recently, due to the appearance of LED which can change light color easily, the number of lighting scenes have drastically increased. It is difficult for residents to grasp all patterns of lighting and understand what pattern of lighting design fits for their behaviors. So if we can extract lighting preferences and demands of each resident from histories of past life and reflect these information in next lighting control, it's possible to make living space more comfortable. An evolutionally adaptation mechanism learnt from living organisms is proposed in this research to extract the information from lifelog, especially focusing on methylation and mutation. Methylation is one of the epigenetic algorithms making a difference in phenotype without changing DNA sequence. Mutation is one of the genetic algorithms making a difference in phenotype by changing DNA sequence. Those two mechanisms are applied in the system. First, the lifelog of residents and using hysteresis of lighting equipment are collected. Then the lifelog is converted into the genetic information and stored. When the lifelog is stored enough, the superior genes will be picked up from the stored genetic information to be reflected in lighting control in next generation. Simulations to verify the versatility of the system were conducted.

  9. A novel optical system design of light field camera

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Li, Wenhua; Hao, Chenyang

    2016-01-01

    The structure of main lens - Micro Lens Array (MLA) - imaging sensor is usually adopted in optical system of light field camera, and the MLA is the most important part in the optical system, which has the function of collecting and recording the amplitude and phase information of the field light. In this paper, a novel optical system structure is proposed. The novel optical system is based on the 4f optical structure, and the micro-aperture array (MAA) is used to instead of the MLA for realizing the information acquisition of the 4D light field. We analyze the principle that the novel optical system could realize the information acquisition of the light field. At the same time, a simple MAA, line grating optical system, is designed by ZEMAX software in this paper. The novel optical system is simulated by a line grating optical system, and multiple images are obtained in the image plane. The imaging quality of the novel optical system is analyzed.

  10. Design considerations for highly effective fluorescence excitation and detection optical systems for molecular diagnostics

    NASA Astrophysics Data System (ADS)

    Kasper, Axel; Van Hille, Herbert; Kuk, Sola

    2018-02-01

    Modern instruments for molecular diagnostics are continuously optimized for diagnostic accuracy, versatility and throughput. The latest progress in LED technology together with tailored optics solutions allows developing highly efficient photonics engines perfectly adapted to the sample under test. Super-bright chip-on-board LED light sources are a key component for such instruments providing maximum luminous intensities in a multitude of narrow spectral bands. In particular the combination of white LEDs with other narrow band LEDs allows achieving optimum efficiency outperforming traditional Xenon light sources in terms of energy consumption, heat dissipation in the system, and switching time between spectral channels. Maximum sensitivity of the diagnostic system can only be achieved with an optimized optics system for the illumination and imaging of the sample. The illumination beam path must be designed for optimum homogeneity across the field while precisely limiting the angular distribution of the excitation light. This is a necessity for avoiding spill-over to the detection beam path and guaranteeing the efficiency of the spectral filtering. The imaging optics must combine high spatial resolution, high light collection efficiency and optimized suppression of excitation light for good signal-to-noise ratio. In order to achieve minimum cross-talk between individual wells in the sample, the optics design must also consider the generation of stray light and the formation of ghost images. We discuss what parameters and limitations have to be considered in an integrated system design approach covering the full path from the light source to the detector.

  11. Minimizing lighting power density in office rooms equipped with Anidolic Daylighting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linhart, Friedrich; Scartezzini, Jean-Louis

    2010-04-15

    Electric lighting is responsible for up to one third of an office building's electricity needs. Making daylight more available in office buildings can not only contribute to significant energy savings but also enhance the occupants' performance and wellbeing. Anidolic Daylighting Systems (ADS) are one type of very effective facade-integrated daylighting systems. All south-facing office rooms within the LESO solar experimental building in Lausanne (Switzerland) are equipped with a given type of ADS. A recent study has shown that these offices' occupants are highly satisfied with their lighting environment. The most energy-efficient south-facing offices have a lighting power density of lessmore » than 5W/m{sup 2}. The lighting situation within these ''best practice''-offices has been assessed using the lighting simulation software RELUX Vision. Because this lighting situation is very much appreciated by the occupants, it was used as a starting point for developing even more energy-efficient office lighting designs. Two new lighting designs, leading to lighting power densities of 3.9W/m{sup 2} and 3W/m{sup 2}, respectively, have been suggested and simulated with RELUX Vision. Simulation results have shown that the expected performances of these new systems are comparable to that of the current lighting installation within the ''best practice''-offices or even better. These simulation results have been confirmed during experiments on 20 human subjects in a test office room recently set up within the LESO building. This article gives engineers, architects and light planers valuable information and ideas on how to design energy-efficient and comfortable electric lighting systems in office rooms with abundant access to daylight. (author)« less

  12. Design and simulation of a lighting system for a shadowless space

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Fang, Li

    2017-10-01

    This paper described implementing the shadowless space by two kinds of methods. The first method will implement the shadowless space utilizing the semblable principles used in the integrating sphere. The rays from a built in light source will eventually evolve into a uniform lighting through diffuse reflections for numerous times, consider that the spherical cavity structure and the inner surface with high reflectivity. There is possibility to create a shadowless space through diffuse reflections. At a 27.4m2 area, illuminance uniformity achieved 88.2% in this model. The other method is analogous with the method used in medical shadowless lamps. Lights will fall on the object in different angles and each light will generate a shadow. By changing the position distribution of multiple lights, increasing the number of light sources, the possibility of obtaining shadowless area will gradually increase. Based on these two approaches, two simple models are proposed showing the optical system designed for the shadowless space. By taking simulation software TracePro as design platform, this paper simulated the two systems.

  13. Increasing of visibility on the pedestrian crossing by the additional lighting systems

    NASA Astrophysics Data System (ADS)

    Baleja, Richard; Bos, Petr; Novak, Tomas; Sokansky, Karel; Hanusek, Tomas

    2017-09-01

    Pedestrian crossings are critical places for road accidents between pedestrians and motor vehicles. For this reason, it is very important to increase attention when the pedestrian crossings are designed and it is necessary to take into account all factors that may contribute to higher safety. Additional lighting systems for pedestrian crossings are one of them and the lighting systems must fulfil the requirements for higher visibility from the point of view of car drivers from both directions. This paper describes the criteria for the suitable additional lighting system on pedestrian crossings. Generally, it means vertical illuminance on the pedestrian crossing from the driver’s view, horizontal illuminance on the crossing and horizontal illuminance both in front of and behind the crossing placed on the road and their acceptable ratios. The article also describes the choice of the colours of the light (correlated colour temperature) and its influence on visibility. As a part of the article, there are case designs of additional lighting systems for pedestrian crossings and measurements from realized additional lighting systems by luxmeters and luminance cameras and their evaluation.

  14. Rational Design of a Green-Light-Mediated Unimolecular Platform for Fast Switchable Acidic Sensing.

    PubMed

    Zhou, Yunyun; Zou, Qi; Qiu, Jing; Wang, Linjun; Zhu, Liangliang

    2018-02-01

    A controllable sensing ability strongly connects to complex and precise events in diagnosis and treatment. However, imposing visible light into the molecular-scale mediation of sensing processes is restricted by the lack of structural relevance. To address this critical challenge, we present the rational design, synthesis, and in vitro studies of a novel cyanostyryl-modified azulene system for green-light-mediated fast switchable acidic sensing. The advantageous features of the design include a highly efficient green-light-driven Z/E-isomerization (a quantum yield up to 61.3%) for fast erasing chromatic and luminescent expressions and a superior compatibility with control of ratiometric protonation. Significantly, these merits of the design enable the development of a microfluidic system to perform a green-light-mediated reusable sensing function toward a gastric acid analyte in a miniaturized platform. The results may provide new insights for building future integrated green materials.

  15. LED Context Lighting System in Residential Areas

    PubMed Central

    Im, Kyoung-Mi

    2014-01-01

    As issues of environment and energy draw keen interest around the globe due to such problems as global warming and the energy crisis, LED with high optical efficiency is brought to the fore as the next generation lighting. In addition, as the national income level gets higher and life expectancy is extended, interest in the enhancement of life quality is increasing. Accordingly, the trend of lightings is changing from mere adjustment of light intensity to system lighting in order to enhance the quality of one's life as well as reduce energy consumption. Thus, this study aims to design LED context lighting system that automatically recognizes the location and acts of a user in residential areas and creates an appropriate lighting environment. The proposed system designed in this study includes three types of processing: first, the creation of a lighting environment index suitable for the user's surroundings and lighting control scenarios and second, it measures and analyzes the optical characteristics that change depending on the dimming control of lighting and applies them to the index. Lastly, it adopts PIR, piezoelectric, and power sensor to grasp the location and acts of the user and create a lighting environment suitable for the current context. PMID:25101325

  16. Greenhouse design for a Martian colony: Structural, solar collection and light distribution systems

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The inflatable structure serves as an ideal greenhouse while being feasible to transport and easy to assemble on Mars. Locating the structure underground protects it from the extreme environmental variations on the surface. The proposed lighting system provides all the necessary light for photosynthesis with little external power demand. These considerations make the proposed greenhouse design a viable means of providing an ongoing food supply for a Martian colony.

  17. Preliminary Results on Luminaire Designs for Hybrid Solar Lighting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earl, D.D.

    2001-06-15

    We report on the design of two hybrid lighting luminaires that blend light from a fiber optic end-emitted solar source with electric T8 fluorescent lamps. Both designs involve the retrofit of a commercially-available recessed fluorescent luminaire with minimal reductions in the original luminaire's optical efficiency. Two methods for high-angle dispersion of fiber optic end-emitted solar light are described and the resulting spatial intensity distributions, simulated using ZEMAX, are compared with standard cylindrical fluorescent tubes. Differences in spatial intensity distribution are qualitatively characterized and potential design improvements discussed.

  18. A cascadable circular concentrator with parallel compressed structure for increasing the energy density

    NASA Astrophysics Data System (ADS)

    Ku, Nai-Lun; Chen, Yi-Yung; Hsieh, Wei-Che; Whang, Allen Jong-Woei

    2012-02-01

    Due to the energy crisis, the principle of green energy gains popularity. This leads the increasing interest in renewable energy such as solar energy. Thus, how to collect the sunlight for indoor illumination becomes our ultimate target. With the environmental awareness increasing, we use the nature light as the light source. Then we start to devote the development of solar collecting system. The Natural Light Guiding System includes three parts, collecting, transmitting and lighting part. The idea of our solar collecting system design is a concept for combining the buildings with a combination of collecting modules. Therefore, we can use it anyplace where the sunlight can directly impinges on buildings with collecting elements. In the meantime, while collecting the sunlight with high efficiency, we can transmit the sunlight into indoor through shorter distance zone by light pipe where we needs the light. We proposed a novel design including disk-type collective lens module. With the design, we can let the incident light and exit light be parallel and compressed. By the parallel and compressed design, we make every output light become compressed in the proposed optical structure. In this way, we can increase the ratio about light compression, get the better efficiency and let the energy distribution more uniform for indoor illumination. By the definition of "KPI" as an performance index about light density as following: lm/(mm)2, the simulation results show that the proposed Concentrator is 40,000,000 KPI much better than the 800,000 KPI measured from the traditional ones.

  19. Give Customers What They Meant To Ask For--Designing Training Systems at Three Levels.

    ERIC Educational Resources Information Center

    Hybert, Peter R.

    2001-01-01

    Examines instructional systems design in light of training and performance technology. Topics include the nature of design; categories of stakeholders; three levels of instructional systems design, including Curriculum Architecture Design, instructional process design, and user interface/instructional activity design; and design goals. (LRW)

  20. Impact of front-of-pack nutrition information and label design on children's choice of two snack foods: Comparison of warnings and the traffic-light system.

    PubMed

    Arrúa, Alejandra; Curutchet, María Rosa; Rey, Natalia; Barreto, Patricia; Golovchenko, Nadya; Sellanes, Andrea; Velazco, Guillermo; Winokur, Medy; Giménez, Ana; Ares, Gastón

    2017-09-01

    Research on the relative influence of package features on children's perception of food products is still necessary to aid policy design and development. The aim of the present work was to evaluate the relative influence of two front-of-pack (FOP) nutrition labelling schemes, the traffic light system and Chilean warning system, and label design on children's choice of two popular snack foods in Uruguay, wafer cookies and orange juice. A total of 442 children in grades 4 to 6 from 12 primary schools in Montevideo (Uruguay) participated in the study. They were asked to complete a choice-conjoint task with wafer cookies and orange juice labels, varying in label design and the inclusion of FOP nutrition information. Half of the children completed the task with labels featuring the traffic-light system (n = 217) and the other half with labels featuring the Chilean warning system (n = 225). Children's choices of wafer cookies and juice labels was significantly influenced by both label design and FOP nutritional labels. The relative impact of FOP nutritional labelling on children's choices was higher for the warning system compared to the traffic-light system. Results from the present work stress the need to regulate the design of packages and the inclusion of nutrient claims, and provide preliminary evidence of the potential of warnings to discourage children's choice of unhealthful products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Lighting design for globally illuminated volume rendering.

    PubMed

    Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    With the evolution of graphics hardware, high quality global illumination becomes available for real-time volume rendering. Compared to local illumination, global illumination can produce realistic shading effects which are closer to real world scenes, and has proven useful for enhancing volume data visualization to enable better depth and shape perception. However, setting up optimal lighting could be a nontrivial task for average users. There were lighting design works for volume visualization but they did not consider global light transportation. In this paper, we present a lighting design method for volume visualization employing global illumination. The resulting system takes into account view and transfer-function dependent content of the volume data to automatically generate an optimized three-point lighting environment. Our method fully exploits the back light which is not used by previous volume visualization systems. By also including global shadow and multiple scattering, our lighting system can effectively enhance the depth and shape perception of volumetric features of interest. In addition, we propose an automatic tone mapping operator which recovers visual details from overexposed areas while maintaining sufficient contrast in the dark areas. We show that our method is effective for visualizing volume datasets with complex structures. The structural information is more clearly and correctly presented under the automatically generated light sources.

  2. Design and engineering of water-soluble light-harvesting protein maquettes

    DOE PAGES

    Kodali, Goutham; Mancini, Joshua A.; Solomon, Lee A.; ...

    2017-01-01

    Design of nanometer scale artificial light harvesting and charge separating proteins enables reengineering to overcome the limitations of natural selection for efficient systems that better meet human energetic needs.

  3. Design and engineering of water-soluble light-harvesting protein maquettes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodali, Goutham; Mancini, Joshua A.; Solomon, Lee A.

    Design of nanometer scale artificial light harvesting and charge separating proteins enables reengineering to overcome the limitations of natural selection for efficient systems that better meet human energetic needs.

  4. Improving the uniformity of luminous system in radial imaging capsule endoscope system

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De

    2013-02-01

    This study concerns the illumination system in a radial imaging capsule endoscope (RICE). Uniformly illuminating the object is difficult because the intensity of the light from the light emitting diodes (LEDs) varies with angular displacement. When light is emitted from the surface of the LED, it first encounters the cone mirror, from which it is reflected, before directly passing through the lenses and complementary metal oxide semiconductor (CMOS) sensor. The light that is strongly reflected from the transparent view window (TVW) propagates again to the cone mirror, to be reflected and to pass through the lenses and CMOS sensor. The above two phenomena cause overblooming on the image plane. Overblooming causes nonuniform illumination on the image plane and consequently reduced image quality. In this work, optical design software was utilized to construct a photometric model for the optimal design of the LED illumination system. Based on the original RICE model, this paper proposes an optimal design to improve the uniformity of the illumination. The illumination uniformity in the RICE is increased from its original value of 0.128 to 0.69, greatly improving light uniformity.

  5. A spin-recovery parachute system for light general-aviation airplanes

    NASA Technical Reports Server (NTRS)

    Bradshaw, C.

    1980-01-01

    A tail mounted spin recovery parachute system was designed and developed for use on light general aviation airplanes. The system was designed for use on typical airplane configurations, including low wing, high wing, single engine and twin engine designs. A mechanically triggered pyrotechnic slug gun is used to forcibly deploy a pilot parachute which extracts a bag that deploys a ring slot spin recovery parachute. The total system weighs 8.2 kg. System design factors included airplane wake effects on parachute deployment, prevention of premature parachute deployment, positive parachute jettison, compact size, low weight, system reliability, and pilot and ground crew safety. Extensive ground tests were conducted to qualify the system. The recovery parachute was used successfully in flight 17 times.

  6. Evolving Our Evaluation of Luminous Environments

    NASA Technical Reports Server (NTRS)

    Clark, Toni

    2016-01-01

    The advance in solid state light emitting technologies and optics for lighting and visual communication necessitates the evaluation of how NASA envisions spacecraft lighting architectures and how NASA uses industry standards for the design and evaluation of lighting systems. Current NASA lighting standards and requirements for existing architectures focus on the separate ability of a lighting system to throw light against a surface or the ability of a display system to provide the appropriate visual contrast. This project investigated large luminous surface lamps as an alternative or supplement to overhead lighting. The efficiency of the technology was evaluated for uniformity and power consumption.

  7. Demonstration of a light-redirecting skylight system at the Palm Springs Chamber of Commerce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, E.S.; Beltran, L.O.; Selkowitz, S.E.

    1996-05-01

    As part of a demonstration project to provide a comprehensive energy upgrade to a 294 m{sup 2} (3168 ft{sup 2}) commercial building, an advanced skylight design was developed using optical light control materials and geometry to provide daylight to two adjoining offices. The skylight system was developed using outdoor physical model tests and simulation tools Limited on-site measurements and occupant polls were conducted. Market issues were addressed. The skylight systems were found to improve lighting quality and to control excessive daylight illuminance levels compared to a conventional diffusing bubble skylight. Daylighting principles developed in earlier work for vertical glazing systemsmore » (light shelves and light pipes) were shown to be applicable in skylight designs at full-scale.« less

  8. The design of a light aircraft automated dropsonde launcher

    NASA Astrophysics Data System (ADS)

    Pasken, Gregory R.

    The use of the National Center for Atmospheric Research's dropsonde system is currently limited to large NASA, NSF and NOAA operated research aircraft, which are expensive to fly and are over-subscribed. Designing a new dropsonde system for a smaller, less expensive to operate light aircraft will make the dropsonde system available to a much wider research community. To test this concept, a dropsonde launch system designed to fit in the cargo door of a twin engine Piper Seminole is developed and tested. Although the launch system for the light aircraft dropsonde launcher has gone through many designs, a prototype is built and tested from the final design using Tetra for the computation fluid dynamics and stress testing, as Tetra has material properties for solids as well as fluids. The design is further tested in the wind tunnel. These tests show that the new design is a viable alternative for light aircraft, thus allowing dropsondes to be more widely used. The results of the ABAQUS, SC Tetra simulations, and the wind tunnel results of the final design are covered and discussed. The settings used for the ABAQUS and SC Tetra simulations are described in detail. ABAQUS simulations are conducted to perform stress testing and SC Tetra is used for CFD simulations. The SC Tetra simulations provide a more comprehensive picture of the design, as SC Tetra is able to perform the stress testing, as well as pressure testing, allowing for more accurate results. The limitations of ABAQUS simulations require numerous assumptions for loading that may or may not be realistic.

  9. The role of low light intensity: A step towards understanding the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Lojpur, Vesna; Mitrić, Miodrag; Validžić, Ivana Lj

    2018-05-01

    We report here an optic/lens system that we used so far, for cooling the surface of solar cells, the reduction of light intensity and the change of light distribution that reaches the surface of the solar cell. The objective was to improve photovoltaic characteristics under very low light illumination, as well as to understand the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells. It was found that for all so far designed thin-film solar cells made and based on the synthesized Sb2S3, optics/lens system causes an increase in open circuit voltage (VOC) and short circuit current (ISC) and thus the efficiencies of made solar devices. Values of energy gaps for the thin-films made devices were in the range from 1.4 to 2 eV. Improvements of the photovoltaic response of the designed devices are found to be better at the lower light intensity (5% sun), than at higher intensities of light. For the same intensity of light used optic/lens improves the efficiency of the devices, by changing the light distribution. Other processes that are related to the optics/lens system, leading to an increase in ISC and VOC and consequently to an increase in efficiencies of the designed devices, are investigated.

  10. LIGHT-EMITTING DIODE TECHNOLOGY IMPROVES INSECT TRAPPING

    PubMed Central

    GILLEN, JONATHON I.; MUNSTERMANN, LEONARD E.

    2008-01-01

    In a climate of increased funding for vaccines, chemotherapy, and prevention of vector-borne diseases, fewer resources have been directed toward improving disease and vector surveillance. Recently developed light-emitting diode (LED) technology was applied to standard insect-vector traps to produce a more effective lighting system. This approach improved phlebotomine sand fly capture rates by 50%, and simultaneously reduced the energy consumption by 50–60%. The LEDs were incorporated into 2 lighting designs, 1) a LED combination bulb for current light traps and 2) a chip-based LED design for a modified Centers for Disease Control and Prevention light trap. Detailed descriptions of the 2 designs are presented. PMID:18666546

  11. "Lighting the Fire" of Design Conversation.

    ERIC Educational Resources Information Center

    Rowland, Gordon

    1996-01-01

    A design group needs to sift through confusion, come together, and converse as a team before it can be productive in design tasks. At the 1994 Fuschl Conversation on Systems Design, the metaphor of lighting a fire was used to symbolize this coming together; three tables examine the relationships between the metaphor and starting a design…

  12. Optical design applications for enhanced illumination performance

    NASA Astrophysics Data System (ADS)

    Gilray, Carl; Lewin, Ian

    1995-08-01

    Nonimaging optical design techniques have been applied in the illumination industry for many years. Recently however, powerful software has been developed which allows accurate simulation and optimization of illumination devices. Wide experience has been obtained in using such design techniques for practical situations. These include automotive lighting where safety is of greatest importance, commercial lighting systems designed for energy efficiency, and numerous specialized applications. This presentation will discuss the performance requirements of a variety of illumination devices. It will further cover design methodology and present a variety of examples of practical applications for enhanced system performance.

  13. Applications of Light-Responsive Systems for Cancer Theranostics.

    PubMed

    Chen, Hongzhong; Zhao, Yanli

    2018-06-27

    Achieving controlled and targeted delivery of chemotherapeutic drugs and other therapeutic agents to tumor sites is challenging. Among many stimulus strategies, light as a mode of action shows various advantages such as high spatiotemporal selectivity, minimal invasiveness and easy operation. Thus, drug delivery systems (DDSs) have been designed with the incorporation of various functionalities responsive to light as an exogenous stimulus. Early development has focused on guiding chemotherapeutic drugs to designated location, followed by the utilization of UV irradiation for controlled drug release. Because of the disadvantages of UV light such as phototoxicity and limited tissue penetration depth, scientists have moved the research focus onto developing nanoparticle systems responsive to light in the visible region (400-700 nm), aiming to reduce the phototoxicity. In order to enhance the tissue penetration depth, near-infrared light triggered DDSs become increasingly important. In addition, light-based advanced systems for fluorescent and photoacoustic imaging, as well as photodynamic and photothermal therapy have also been reported. Herein, we highlight some of recent developments by applying light-responsive systems in cancer theranostics, including light activated drug release, photodynamic and photothermal therapy, and bioimaging techniques such as fluorescent and photoacoustic imaging. Future prospect of light-mediated cancer treatment is discussed at the end of the review. This Spotlights on Applications article aims to provide up-to-date information about the rapidly developing field of light-based cancer theranostics.

  14. Two-step design method for highly compact three-dimensional freeform optical system for LED surface light source.

    PubMed

    Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi

    2014-10-20

    Designing an illumination system for a surface light source with a strict compactness requirement is quite challenging, especially for the general three-dimensional (3D) case. In accordance with the two key features of an expected illumination distribution, i.e., a well-controlled boundary and a precise illumination pattern, a two-step design method is proposed in this paper for highly compact 3D freeform illumination systems. In the first step, a target shape scaling strategy is combined with an iterative feedback modification algorithm to generate an optimized freeform optical system with a well-controlled boundary of the target distribution. In the second step, a set of selected radii of the system obtained in the first step are optimized to further improve the illuminating quality within the target region. The method is quite flexible and effective to design highly compact optical systems with almost no restriction on the shape of the desired target field. As examples, three highly compact freeform lenses with ratio of center height h of the lens and the maximum dimension D of the source ≤ 2.5:1 are designed for LED surface light sources to form a uniform illumination distribution on a rectangular, a cross-shaped and a complex cross pierced target plane respectively. High light control efficiency of η > 0.7 as well as low relative standard illumination deviation of RSD < 0.07 is obtained simultaneously for all the three design examples.

  15. Analysis of light emitting diode array lighting system based on human vision: normal and abnormal uniformity condition.

    PubMed

    Qin, Zong; Ji, Chuangang; Wang, Kai; Liu, Sheng

    2012-10-08

    In this paper, condition for uniform lighting generated by light emitting diode (LED) array was systematically studied. To take human vision effect into consideration, contrast sensitivity function (CSF) was novelly adopted as critical criterion for uniform lighting instead of conventionally used Sparrow's Criterion (SC). Through CSF method, design parameters including system thickness, LED pitch, LED's spatial radiation distribution and viewing condition can be analytically combined. In a specific LED array lighting system (LALS) with foursquare LED arrangement, different types of LEDs (Lambertian and Batwing type) and given viewing condition, optimum system thicknesses and LED pitches were calculated and compared with those got through SC method. Results show that CSF method can achieve more appropriate optimum parameters than SC method. Additionally, an abnormal phenomenon that uniformity varies with structural parameters non-monotonically in LALS with non-Lambertian LEDs was found and analyzed. Based on the analysis, a design method of LALS that can bring about better practicability, lower cost and more attractive appearance was summarized.

  16. Description of photovoltaic village power systems in the United States and Africa

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.; Bifano, W. J.

    1979-01-01

    The paper describes the designs, hardware, and installations of NASA photovoltaic power systems in the village of Schuchuli in Arizona and Tangaye in Upper Volta, Africa. The projects were designed to demonstrate that current photovoltaic system technology can provide electrical power for domestic services for small, remote communities. The Schuchuli system has a 3.5 kW peak solar array which provides power for water pumping, a refrigerator for each family, lights, and community washing and sewing machines. The 1.8 kW Tangaye system provides power for pumping, flour milling, and lights in the milling building. Both are stand-alone systems operated by local personnel, and they are monitored by NASA to measure design adequacy and refine future designs.

  17. The design of common aperture and multi-band optical system based on day light telescope

    NASA Astrophysics Data System (ADS)

    Chen, Jiao; Wang, Ling; Zhang, Bo; Teng, Guoqi; Wang, Meng

    2017-02-01

    As the development of electro-optical weapon system, the technique of common path and multi-sensor are used popular, and becoming a trend. According to the requirement of miniaturization and lightweight for electro-optical stabilized sighting system, a day light telescope/television viewing-aim system/ laser ranger has been designed in this thesis, which has common aperture. Thus integration scheme of multi-band and common aperture has been adopted. A day light telescope has been presented, which magnification is 8, field of view is 6°, and distance of exit pupil is more than 20mm. For 1/3" CCD, television viewing-aim system which has 156mm focal length, has been completed. In addition, laser ranging system has been designed, with 10km raging distance. This paper outlines its principle which used day light telescope as optical reference of correcting the optical axis. Besides, by means of shared objective, reserved image with inverting prism and coating beam-splitting film on the inclined plane of the cube prism, the system has been applied to electro-optical weapon system, with high-resolution of imaging and high-precision ranging.

  18. Environmental Systems Test Stand

    NASA Astrophysics Data System (ADS)

    Barta, D.; Young, J.; Ewert, M.; Lee, S.; Wells, P.; Fortson, R.; Castillo, J.

    A test stand has been developed for the evaluation of prototype lighting, environmental control and crop cultivation technologies for plant production within an advanced life support system. Design of the test stand was based on preliminary designs of the center growth bay of the Biomass Production Chamber, one of several modules of the Bioregenerative Planetary Life Support Systems Test Complex (BIO- Plex). It consists of two controlled-environment shelves, each with 4.7 m2 of area for crop growth (150 cm width, 315 cm length). There are two chilled water loops, one for operation at conventional temperatures (5-10C) for air temperature and humidity control and one for operation at higher temperatures (15-50C) for waste heat acquisition and heating. Modular light boxes, utilizing either air-cooled or water- jacketed HPS lamps, have been developed. This modular design will allow for easy replacement of new lighting technologies within the light banks. An advanced data acquisition and control system has been developed utilizing localized, networked- based data acquisition modules and programmed with object-based control software.

  19. Spectrally And Temporally Resolved Low-Light Level Video Microscopy

    NASA Astrophysics Data System (ADS)

    Wampler, John E.; Furukawa, Ruth; Fechheimer, Marcus

    1989-12-01

    The IDG law-light video microscope system was designed to aid studies of localization of subcellular luminescence sources and stimulus/response coupling in single living cells using luminescent probes. Much of the motivation for design of this instrument system came from the pioneering efforts of Dr. Reynolds (Reynolds, Q. Rev. Biophys. 5, 295-347; Reynolds and Taylor, Bioscience 30, 586-592) who showed the value of intensified video camera systems for detection and localizion of fluorescence and bioluminescence signals from biological tissues. Our instrument system has essentially two roles, 1) localization and quantitation of very weak bioluminescence signals and 2) quantitation of intracellular environmental characteristics such as pH and calcium ion concentrations using fluorescent and bioluminescent probes. The instrument system exhibits over one million fold operating range allowing visualization and enhancement of quantum limited images with quantum limited response, spectral analysis of fluorescence signals, and transmitted light imaging. The computer control of the system implements rapid switching between light regimes, spatially resolved spectral scanning, and digital data processing for spectral shape analysis and for detailed analysis of the statistical distribution of single cell measurements. The system design and software algorithms used by the system are summarized. These design criteria are illustrated with examples taken from studies of bioluminescence, applications of bioluminescence to study developmental processes and gene expression in single living cells, and applications of fluorescent probes to study stimulus/response coupling in living cells.

  20. Internal heat gain from different light sources in the building lighting systems

    NASA Astrophysics Data System (ADS)

    Suszanowicz, Dariusz

    2017-10-01

    EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  1. Evaluation of guardrail embedded lighting system in Trinidad, Colorado.

    DOT National Transportation Integrated Search

    2014-02-01

    This report provides information on the design considerations of the embedded highway lighting : design on Interstate-25 in Trinidad, Colorado, in terms of visibility. The information is based on : visibility characterizations of small targets using ...

  2. Design Criteria for Adaptive Roadway Lighting

    DOT National Transportation Integrated Search

    2014-07-01

    This report provides the background and analysis used to develop criteria for the implementation of an adaptive lighting system for roadway lighting. Based on the analysis of crashes and lighting performance, a series of criteria and the associated d...

  3. Optical fiber design with orbital angular momentum light purity higher than 99.9.

    PubMed

    Zhang, Zhishen; Gan, Jiulin; Heng, Xiaobo; Wu, Yuqing; Li, Qingyu; Qian, Qi; Chen, Dongdan; Yang, Zhongmin

    2015-11-16

    The purity of the synthesized orbital-angular-momentum (OAM) light in the fiber is inversely proportional to channel crosstalk level in the OAM optical fiber communication system. Here the relationship between the fiber structure and the purity is firstly demonstrated in theory. The graded-index optical fiber is proposed and designed for the OAM light propagation with the purity higher than 99.9%. 16 fiber modes (10 OAM modes) have been supported by a specific designed graded-index optical fiber with dispersion less than 35 ps/(km∙nm). Such fiber design has suppressed the intrinsic crosstalk to be lower than -30 dB, and can be potentially used for the long distance OAM optical communication system.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, Andrea M.; Donohue, Amy; Davis, Robert G.

    The article discusses trends in classroom design and then transitions to a discussion of the future of the classroom and how the lighting industry needs to be preparing to meet the needs of the future classroom. The OSU Classroom building as an example throughout, first discussing how trends in classroom design were incorporated into the Classroom Building and then discussing how future lighting systems could enhance the Classroom Building, which is a clear departure from the actual lighting design and current technology.

  5. Conceptual design of a stray light facility for Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; Hellin, M. L.; Marcotte, S.; Mazy, E.; Versluys, J.; François, M.; Taccola, M.; Zuccaro Marchi, A.

    2017-11-01

    With the upcoming of TMA or FMA (Three or Four Mirrors Anastigmat) telescope design in Earth Observation system, stray light is a major contributor to the degradation of the image quality. Numerous sources of stray light can be identified and theoretically evaluated. Nevertheless in order to build a stray light model of the instrument, the Point Spread Function(s) of the instrument, i.e., the flux response of the instrument to the flux received at the instrument entrance from an infinite distant point source needs to be determined. This paper presents a conceptual design of a facility placed in a vacuum chamber to eliminate undesired air particles scatter light sources. The specification of the clean room class or vacuum will depend on the required rejection to be measured. Once the vacuum chamber is closed, the stray light level from the external environment can be considered as negligible. Inside the chamber a dedicated baffle design is required to eliminate undesired light generated by the set up itself e.g. retro reflected light away from the instrument under test. This implies blackened shrouds all around the specimen. The proposed illumination system is a 400 mm off axis parabolic mirror with a focal length of 2 m. The off axis design suppresses the problem of stray light that can be generated by the internal obstruction. A dedicated block source is evaluated in order to avoid any stray light coming from the structure around the source pinhole. Dedicated attention is required on the selection of the source to achieve the required large measurement dynamic.

  6. Design of the optical system for FSO access

    NASA Astrophysics Data System (ADS)

    Xu, Xiaojing; Yuan, Xiuhua; Huang, Dexiu

    2002-08-01

    Free space optics (FSO) is attractive for the 'last mile' communication in recent years for many combining advantages of fiber communication and other wireless technologies. FSO can provide high data rate with low power consumption, high immunity to interference, convenient deployment and flexibility. Optical system is an important section in the FSO transceiver terminal. In this paper the design of optical system based on a single Galileo telescope for both transmit and receive is proposed, and a polarization beam splitter is adopted to apart the receiving light from transmitting light. The configuration can avoid interference from the retroreflecting light of the ocular effectively. Some factors that affect the performance of the optical system are analyzed, such as the geometrical spreading loss and the loss increment according to pointing error and telescope maladjustment. Power budget shows that the system can satisfy the need of access for 1km in the light fog, and 2km in the thin fog.

  7. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST.

    PubMed

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  8. Guidelines for the Implementation of Reduced Lighting on Roadways

    DOT National Transportation Integrated Search

    2014-06-01

    This report provides guidelines for the implementation of an adaptive lighting system for roadway lighting. Based on the analysis of crashes and lighting performance, a series of criteria and the associated design levels have been developed to provid...

  9. Lighting: Green Light.

    ERIC Educational Resources Information Center

    Maniccia, Dorine

    2003-01-01

    Explains that by using sustainable (green) building practices, schools and universities can make their lighting systems more efficient, noting that embracing green design principles can help schools attract students. Discusses lighting-control technologies (occupancy sensing technology, daylighting technology, and scheduling based technologies),…

  10. High-output LED-based light engine for profile lighting fixtures with high color uniformity using freeform reflectors.

    PubMed

    Gadegaard, Jesper; Jensen, Thøger Kari; Jørgensen, Dennis Thykjær; Kristensen, Peter Kjær; Søndergaard, Thomas; Pedersen, Thomas Garm; Pedersen, Kjeld

    2016-02-20

    In the stage lighting and entertainment market, light engines (LEs) for lighting fixtures are often based on high-intensity discharge (HID) bulbs. Switching to LED-based light engines gives possibilities for fast switching, additive color mixing, a longer lifetime, and potentially, more energy-efficient systems. The lumen output of a single LED is still not sufficient to replace an HID source in high-output profile fixtures, but combining multiple LEDs can create an LE with a similar output, but with added complexity. This paper presents the results of modeling and testing such a light engine. Custom ray-tracing software was used to design a high-output red, green and blue LED-based light engine with twelve CBT-90 LEDs using a dual-reflector principle. The simulated optical system efficiency was 0.626 with a perfect (R=1) reflector coating for light delivered on a target surface through the entire optical system. A profile lighting fixture prototype was created, and provided an output of 6744 lumen and an efficiency of 0.412. The lower efficiency was mainly due to a non-optimal reflector coating, and the optimized design is expected to reach a significantly higher efficiency.

  11. Orbital docking system centerline color television camera system test

    NASA Technical Reports Server (NTRS)

    Mongan, Philip T.

    1993-01-01

    A series of tests was run to verify that the design of the centerline color television camera (CTVC) system is adequate optically for the STS-71 Space Shuttle Orbiter docking mission with the Mir space station. In each test, a mockup of the Mir consisting of hatch, docking mechanism, and docking target was positioned above the Johnson Space Center's full fuselage trainer, which simulated the Orbiter with a mockup of the external airlock and docking adapter. Test subjects viewed the docking target through the CTVC under 30 different lighting conditions and evaluated target resolution, field of view, light levels, light placement, and methods of target alignment. Test results indicate that the proposed design will provide adequate visibility through the centerline camera for a successful docking, even with a reasonable number of light failures. It is recommended that the flight deck crew have individual switching capability for docking lights to provide maximum shadow management and that centerline lights be retained to deal with light failures and user preferences. Procedures for light management should be developed and target alignment aids should be selected during simulated docking runs.

  12. Electrical Space Conditioning.

    ERIC Educational Resources Information Center

    General Electric Co., Cleveland, OH. Large Lamp Dept.

    Integrated systems utilizing the heating potential of lighting equipment are discussed in terms of the implications for design and the methods for evaluation and control. General principles cover heat transfer, heat from lamps and luminaires, and control of lighting heat. Suggested systems include--(1) total control systems, (2) bleed-off systems,…

  13. 10 CFR 434.520 - Speculative buildings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... assumed lighting power allowance. 520.5 HVAC Systems and Equipment. If the HVAC system is not completely... construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC... calculate the Design Energy Consumption must be documented so that the future installed lighting systems may...

  14. 10 CFR 434.520 - Speculative buildings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... assumed lighting power allowance. 520.5HVAC Systems and Equipment. If the HVAC system is not completely... construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC... calculate the Design Energy Consumption must be documented so that the future installed lighting systems may...

  15. 10 CFR 434.520 - Speculative buildings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... assumed lighting power allowance. 520.5HVAC Systems and Equipment. If the HVAC system is not completely... construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC... calculate the Design Energy Consumption must be documented so that the future installed lighting systems may...

  16. 10 CFR 434.520 - Speculative buildings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... assumed lighting power allowance. 520.5HVAC Systems and Equipment. If the HVAC system is not completely... construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC... calculate the Design Energy Consumption must be documented so that the future installed lighting systems may...

  17. 10 CFR 434.520 - Speculative buildings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... assumed lighting power allowance. 520.5HVAC Systems and Equipment. If the HVAC system is not completely... construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC... calculate the Design Energy Consumption must be documented so that the future installed lighting systems may...

  18. A novel screen design for anti-ambient light front projection display with angle-selective absorber

    NASA Astrophysics Data System (ADS)

    Liao, Tianju; Chen, Weigang; He, Kebo; Zhang, Zhaoyu

    2016-03-01

    Ambient light is destructive to the reflective type projection system's contrast ratio which has great influence on the image quality. In contrast to the conventional front projection, short-throw projection has its advantage to reject the ambient light. Fresnel lens-shaped reflection layer is adapted to direct light from a large angle due to the low lens throw ratio to the viewing area. The structure separates the path of the ambient light and projection light, creating the chance to solve the problem that ambient light is mixed with projection light. However, with solely the lens-shaped reflection layer is not good enough to improve the contrast ratio due to the scattering layer, which contributes a necessarily wide viewing angle, could interfere with both light paths before hitting the layer. So we propose a new design that sets the draft angle surface with absorption layer and adds an angle-selective absorber to separate these two kinds of light. The absorber is designed to fit the direction of the projection light, leading to a small absorption cross section for the projection light and respectfully big absorption cross section for the ambient light. We have calculated the design with Tracepro, a ray tracing program and find a nearly 8 times contrast ratio improvement against the current design in theory. This design can hopefully provide efficient display in bright lit situation with better viewer satisfaction.

  19. Human-centered sensor-based Bayesian control: Increased energy efficiency and user satisfaction in commercial lighting

    NASA Astrophysics Data System (ADS)

    Granderson, Jessica Ann

    2007-12-01

    The need for sustainable, efficient energy systems is the motivation that drove this research, which targeted the design of an intelligent commercial lighting system. Lighting in commercial buildings consumes approximately 13% of all the electricity generated in the US. Advanced lighting controls1 intended for use in commercial office spaces have proven to save up to 45% in electricity consumption. However, they currently comprise only a fraction of the market share, resulting in a missed opportunity to conserve energy. The research goals driving this dissertation relate directly to barriers hindering widespread adoption---increase user satisfaction, and provide increased energy savings through more sophisticated control. To satisfy these goals an influence diagram was developed to perform daylighting actuation. This algorithm was designed to balance the potentially conflicting lighting preferences of building occupants, with the efficiency desires of building facilities management. A supervisory control policy was designed to implement load shedding under a demand response tariff. Such tariffs offer incentives for customers to reduce their consumption during periods of peak demand, trough price reductions. In developing the value function occupant user testing was conducted to determine that computer and paper tasks require different illuminance levels, and that user preferences are sufficiently consistent to attain statistical significance. Approximately ten facilities managers were also interviewed and surveyed to isolate their lighting preferences with respect to measures of lighting quality and energy savings. Results from both simulation and physical implementation and user testing indicate that the intelligent controller can increase occupant satisfaction, efficiency, cost savings, and management satisfaction, with respect to existing commercial daylighting systems. Several important contributions were realized by satisfying the research goals. A general model of a daylighted environment was designed, and a practical means of user preference identification was defined. Further, a set of general procedures were identified for the design of human-centered sensor-based decision-analytic systems, and for the identification of the allowable uncertainty in nodes of interest. To confirm generality, a vehicle health monitoring problem was defined and solved using these two procedures. 1'Daylighting' systems use sensors to determine room occupancy and available sunlight, and automatically dim the lights in response.

  20. A novel amblyopia treatment system based on LED light source

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling

    2011-05-01

    A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.

  1. A novel amblyopia treatment system based on LED light source

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling

    2010-12-01

    A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.

  2. Baseline Design Compliance Matrix for the Rotary Mode Core Sampling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LECHELT, J.A.

    2000-10-17

    The purpose of the design compliance matrix (DCM) is to provide a single-source document of all design requirements associated with the fifteen subsystems that make up the rotary mode core sampling (RMCS) system. It is intended to be the baseline requirement document for the RMCS system and to be used in governing all future design and design verification activities associated with it. This document is the DCM for the RMCS system used on Hanford single-shell radioactive waste storage tanks. This includes the Exhauster System, Rotary Mode Core Sample Trucks, Universal Sampling System, Diesel Generator System, Distribution Trailer, X-Ray Cart System,more » Breathing Air Compressor, Nitrogen Supply Trailer, Casks and Cask Truck, Service Trailer, Core Sampling Riser Equipment, Core Sampling Support Trucks, Foot Clamp, Ramps and Platforms and Purged Camera System. Excluded items are tools such as light plants and light stands. Other items such as the breather inlet filter are covered by a different design baseline. In this case, the inlet breather filter is covered by the Tank Farms Design Compliance Matrix.« less

  3. Reduction of lighting energy consumption in office buildings through improved daylight design

    NASA Astrophysics Data System (ADS)

    Papadouri, Maria Violeta Prado

    This study aims to investigate the lighting energy consumption in office buildings and the options for its reduction. One way to reduce lighting energy consumption is by improving the daylight design. A better use of daylight in buildings might be an outcome from the effort made in different directions. Like the improvement of a building's fabric and layout, the materials, even the furniture in a space influences the daylight quality considerably. Also very important role in lighting energy consumption has the development of more efficient lighting technology like the electric lighting control systems, such as photo sensors and occupancy sensors. Both systems are responsible so that the electric light is not used without reason. As the focusing area of this study, is to find ways to improve the daylight use in buildings, a consequent question is which are the methods provided in order to achieve this The accuracy of the methodology used is also an important issue in order to achieve reliable results. The methodology applied in this study includes the analysis of a case study by taking field measurements and computer simulations. The first stage included gathering information about the lighting design of the building and monitoring the light levels, both from natural and from the electric lighting. The second stage involved testing with computer simulations, different parameters that were expected to improve the daylight exploitation of the specific area. The results of the field measurements showed that the main problems of the space were the low natural light levels and the poor daylight distribution. The annual electric lighting energy consumption, as it was calculated with the use of computer simulations, represented the annual energy consumption of a typical air-conditioned prestige office building (energy consumption guide 19, for energy use in offices, 2000). After several computer simulations, the results showed that initial design parameters of the building can affect the lighting energy consumption of the space significantly. On the other hand, relatively small changes, like changing the reflectance of the surfaces and the lighting control systems can make even more difference to the light quality of the space and the reduction of lighting energy consumption.

  4. Efficient measurement of large light source near-field color and luminance distributions for optical design and simulation

    NASA Astrophysics Data System (ADS)

    Kostal, Hubert; Kreysar, Douglas; Rykowski, Ronald

    2009-08-01

    The color and luminance distributions of large light sources are difficult to measure because of the size of the source and the physical space required for the measurement. We describe a method for the measurement of large light sources in a limited space that efficiently overcomes the physical limitations of traditional far-field measurement techniques. This method uses a calibrated, high dynamic range imaging colorimeter and a goniometric system to move the light source through an automated measurement sequence in the imaging colorimeter's field-of-view. The measurement is performed from within the near-field of the light source, enabling a compact measurement set-up. This method generates a detailed near-field color and luminance distribution model that can be directly converted to ray sets for optical design and that can be extrapolated to far-field distributions for illumination design. The measurements obtained show excellent correlation to traditional imaging colorimeter and photogoniometer measurement methods. The near-field goniometer approach that we describe is broadly applicable to general lighting systems, can be deployed in a compact laboratory space, and provides full near-field data for optical design and simulation.

  5. 77 FR 60481 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-Accident...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing a revision to Regulatory Guide (RG) 1.52, ``Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-accident Engineered-Safety-Feature Atmosphere Cleanup Systems in Light-Water-Cooled Nuclear Power Plants.'' This guide applies to the design, inspection, and testing of air filtration and iodine adsorption units of engineered-safety-feature (ESF) atmosphere cleanup systems in light-water-cooled nuclear power plants.

  6. Development of Design Guidance for K-12 Schools from 30% to 50% Energy Savings: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pless, S.; Torcellini, P.; Long, N.

    2008-07-01

    This paper describes the development of energy efficiency recommendations for achieving 30% whole-building energy savings in K-12 schools over levels achieved by following the ANSI/ASHRAE/IESNA Standard 90.1. These design recommendations look at building envelope, fenestration, lighting systems (including electrical lights and daylighting), HVAC systems, building automation and controls, outside air treatment, and service water heating.

  7. Exploration of the horizontally staggered light guides for high concentration CPV applications.

    PubMed

    Selimoglu, Ozgur; Turan, Rasit

    2012-08-13

    The material and processing costs are still the major drawbacks of the c-Si based photovoltaic (PV) technology. The wafer cost comprises up to 35-40% of the total module cost. New approaches and system designs are needed in order to reduce the share of the wafer cost in photovoltaic energy systems. Here we explore the horizontally staggered light guide solar optics for use in Concentrated Photovoltaic (CPV) applications. This optical system comprises a lens array system coupled to a horizontal light guide which directs the incoming light beam to its edge. We have designed and simulated this system using a commercial ray tracing software (Zemax). The system is more compact, thinner and more robust compared to the conventional CPV systems. Concentration levels as high as 1000x can easily be reached when the system is properly designed. With such a high concentration level, a good acceptance angle of + -1 degree is still be conserved. The analysis of the system reveals that the total optical efficiency of the system could be as high as %94.4 without any anti-reflection (AR) coating. Optical losses can be reduced by just accommodating a single layer AR coating on the initial lens array leading to a %96.5 optical efficiency. Thermal behavior of high concentration linear concentrator is also discussed and compared with a conventional point focus CPV system.

  8. Optimization of a Light Collection System for use in the Neutron Lifetime Project

    NASA Astrophysics Data System (ADS)

    Taylor, C.; O'Shaughnessy, C.; Mumm, P.; Thompson, A.; Huffman, P.

    2007-10-01

    The Ultracold Neutron (UCN) Lifetime Project is an ongoing experiment with the objective of improving the average measurement of the neutron beta-decay lifetime. A more accurate measurement may increase our understanding of the electroweak interaction and improve astrophysical/cosmological theories on Big Bang nucleosynthesis. The current apparatus uses 0.89 nm cold neutrons to produce UCN through inelastic collisions with superfluid 4He in the superthermal process. The lifetime of the UCN is measured by detection of scintillation light from superfluid 4He created by electrons produced in neutron decay. Competing criteria of high detection efficiency outside of the apparatus and minimum heating of the experimental cell has led to the design of an acrylic light collection system. Initial designs were based on previous generations of the apparatus. ANSYS was used to optimize the cooling system for the light guide by checking simulated end conditions based on width of contact area, number of contact points, and location on the guide itself. SolidWorks and AutoCAD were used for design. The current system is in the production process.

  9. Portable lamp with dynamically controlled lighting distribution

    DOEpatents

    Siminovitch, Michael J.; Page, Erik R.

    2001-01-01

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) arranged vertically with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum insures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. The lighting system may be designed for the home, hospitality, office or other environments.

  10. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting in Leavenworth, KS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myer, Michael; Kinzey, Bruce R.; Curry, Ku'uipo

    2011-05-06

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a commercial parking lot lighting application, under the U.S. Department of Energy (DOE) Solid-State Lighting Technology GATEWAY Demonstration Program. The parking lot is for customers and employees of a Walmart Supercenter in Leavenworth, Kansas and this installation represents the first use of the LED Parking Lot Performance Specification developed by the DOE’s Commercial Building Energy Alliance. The application is a parking lot covering more than a half million square feet, lighted primarily by light-emitting diodes (LEDs). Metal halide wall packs were installed along themore » building facade. This site is new construction, so the installed baseline(s) were hypothetical designs. It was acknowledged early on that deviating from Walmart’s typical design would reduce the illuminance on the site. Walmart primarily uses 1000W pulse-start metal halide (PMH) lamps. In order to provide a comparison between both typical design and a design using conventional luminaires providing a lower illuminance, a 400W PMH design was also considered. As mentioned already, the illuminance would be reduced by shifting from the PMH system to the LED system. The Illuminating Engineering Society of North America (IES) provides recommended minimum illuminance values for parking lots. All designs exceeded the recommended illuminance values in IES RP-20, some by a wider margin than others. Energy savings from installing the LED system compared to the different PMH systems varied. Compared to the 1000W PMH system, the LED system would save 63 percent of the energy. However, this corresponds to a 68 percent reduction in illuminance as well. In comparison to the 400W PMH system, the LED system would save 44 percent of the energy and provide similar minimum illuminance values at the time of relamping. The LED system cost more than either of the PMH systems when comparing initial costs. However, when the life-cycle costs from energy and maintenance were factored into the scenario, the LED system had lower costs at the end of a 10-year analysis period. The LED system had a 6.1 year payback compared to the 1000W PMH system and a 7.5 year payback versus the 400W PMH system. The costs reflect high initial cost for the LED luminaire, plus more luminaires and (subsequently) more poles for the LED system. The other major issue affecting cost effectiveness was that Leavenworth, Kansas has very low electricity costs. The melded rate for this site was $0.056 per kWh for electricity. However, if the national electricity rate of $0.1022/kWh was used the payback would change to between four and five years for the LED system. This demonstration met the GATEWAY requirements of saving energy, matching or improving illumination, and being cost effective. The project also demonstrated that the Commercial Building Energy Alliance (CBEA) specification works in practice. Walmart appreciated having an entire site lighted by LEDs to gain more experience with the technology. Walmart is reviewing the results of the demonstration as they consider their entire real estate portfolio.« less

  11. Achromatic phase-matching second harmonic generation for a tunable laser

    DOEpatents

    Jacobson, A.G.; Bisson, S.; Trebino, R.

    1998-01-20

    An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency. 6 figs.

  12. Achromatic phase-matching second harmonic generation for a tunable laser

    DOEpatents

    Jacobson, Alexander Gerson; Bisson, Scott; Trebino, Rick

    1998-01-01

    An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency.

  13. Optical computer switching network

    NASA Technical Reports Server (NTRS)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  14. Design and Implementation of a Smart LED Lighting System Using a Self Adaptive Weighted Data Fusion Algorithm

    PubMed Central

    Sung, Wen-Tsai; Lin, Jia-Syun

    2013-01-01

    This work aims to develop a smart LED lighting system, which is remotely controlled by Android apps via handheld devices, e.g., smartphones, tablets, and so forth. The status of energy use is reflected by readings displayed on a handheld device, and it is treated as a criterion in the lighting mode design of a system. A multimeter, a wireless light dimmer, an IR learning remote module, etc. are connected to a server by means of RS 232/485 and a human computer interface on a touch screen. The wireless data communication is designed to operate in compliance with the ZigBee standard, and signal processing on sensed data is made through a self adaptive weighted data fusion algorithm. A low variation in data fusion together with a high stability is experimentally demonstrated in this work. The wireless light dimmer as well as the IR learning remote module can be instructed directly by command given on the human computer interface, and the reading on a multimeter can be displayed thereon via the server. This proposed smart LED lighting system can be remotely controlled and self learning mode can be enabled by a single handheld device via WiFi transmission. Hence, this proposal is validated as an approach to power monitoring for home appliances, and is demonstrated as a digital home network in consideration of energy efficiency.

  15. Simulation and comparison of the illuminance, uniformity, and efficiency of different forms of lighting used in basketball court illumination.

    PubMed

    Sun, Wen-Shing; Tien, Chuen-Lin; Tsuei, Chih-Hsuan; Pan, Jui-Wen

    2014-10-10

    We simulate and compare the illuminance, uniformity, and efficiency of metal-halide lamps, white LED light sources, and hybrid light box designs combining sunlight and white LED lighting used for indoor basketball court illumination. According to the optical simulation results and our examination of real situations, we find that hybrid light box designs combining sunlight and white LEDs do perform better than either metal-halide lamps or white LED lights. An evaluation of the sunlight concentrator system used in our inverted solar cell shows that the energy consumption of stadium lighting can be reduced significantly.

  16. A beam splitter of natural light guiding system based on dichroic prism for ecological illumination

    NASA Astrophysics Data System (ADS)

    Li, Yu-Chi; Chen, Yi-Yung; Whang, Allen Jong-Woei

    2009-08-01

    In thremmatology, many researches focus on ecological illumination for improving the growing speed of animal or plant. According to the Trichromatic theory, any specific color can be made up of red, green, and blue light. Sunlight has full spectrum so it is the most applicable source. A Natural Light Guiding System includes collecting, transmitting, and lighting parts. In our research, we would like to design a beam splitter in the transmitting part to separate the sunlight into red, green, and blue light for ecological illumination. We use high pass and low pass dichroic coatings in a prism, called dichroic prism, to be the beam splitter to separate the wavelength. For measuring the spectra of the exit beams, we build a space with the Natural Light Guiding System. In the space, the spectra of sunlight outside and inside the space and the exit beams of the beam splitter are measured. Finally, we use prismatic structure to design the beam splitter, and optimize the surface of the element with aspheric surface and Fresnel surface to reduce the beam angle of exit light.

  17. A light field microscope imaging spectrometer based on the microlens array

    NASA Astrophysics Data System (ADS)

    Yao, Yu-jia; Xu, Feng; Xia, Yin-xiang

    2017-10-01

    A new light field spectrometry microscope imaging system, which was composed by microscope objective, microlens array and spectrometry system was designed in this paper. 5-D information (4-D light field and 1-D spectrometer) of the sample could be captured by the snapshot system in only one exposure, avoiding the motion blur and aberration caused by the scanning imaging process of the traditional imaging spectrometry. Microscope objective had been used as the former group while microlens array used as the posterior group. The optical design of the system was simulated by Zemax, the parameter matching condition between microscope objective and microlens array was discussed significantly during the simulation process. The result simulated in the image plane was analyzed and discussed.

  18. Space optics; Proceedings of the Seminar, Huntsville, Ala., May 22-24, 1979

    NASA Technical Reports Server (NTRS)

    Wyman, C. L.

    1979-01-01

    The seminar focused on infrared systems, the space telescope, new design for space astronomy, future earth resources systems, and planetary systems. Papers were presented on infrared astronomy satellite, infrared telescope on Spacelab 2, design alternatives for the Shuttle Infrared Telescope Facility, Spacelab 2 infrared telescope cryogenic system, geometrical theory of diffraction and telescope stray-light analysis, Space Telescope scientific instruments, faint-object spectrograph for the Space Telescope, light scattering from multilayer optics, bidirectional reflectance distribution function measurements of stray light suppression coatings for the Space Telescope, optical fabrication of a 60-in. mirror, interferogram analysis for space optics, nuclear-pumped lasers for space application, geophysical fluid flow experiment, coherent rays for optical astronomy in space, optical system with fiber-optical elements, and Pioneer-Venus solar flux radiometer.

  19. The cinema LED lighting system design based on SCM

    NASA Astrophysics Data System (ADS)

    En, De; Wang, Xiaobin

    2010-11-01

    A LED lighting system in the modern theater and the corresponding control program is introduced. Studies show that moderate and mutative brightness in the space would attract audiences' attention on the screen easily. SCM controls LED dynamically by outputting PWM pulse in different duty cycle. That cinema dome lights' intensity can vary with the plot changed, make people get a better view of experience. This article expounds the architecture of hardware system in the schedule and the control flow of the host of the solution. Besides, it introduces the design of software as well. At last, the system which is proved energy-saving, reliable, good visual effect and having using value by means of producing a small-scale model, which reproduce the whole system and achieves the desired result.

  20. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Shumei; Zang, Qing, E-mail: zangq@ipp.ac.cn; Han, Xiaofeng

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump systemmore » can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.« less

  1. Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture

    NASA Astrophysics Data System (ADS)

    Killoran, N.; Huelga, S. F.; Plenio, M. B.

    2015-10-01

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system's power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle's relevance in parameter regimes connected to natural light-harvesting structures.

  2. ADASY (Active Daylighting System)

    NASA Astrophysics Data System (ADS)

    Vázquez-Moliní, Daniel; González-Montes, Mario; Fernández-Balbuena, Antonio Á.; Bernabéu, Eusebio; García-Botella, Ángel; García-Rodríguez, Lucas; Pohl, Wilfried

    2009-08-01

    The main objective of ADASY (Active Daylighting System) work is to design a façade static daylighting system oriented to office applications, mainly. The goal of the project is to save energy by guiding daylight into a building for lighting purpose. With this approach we can reduce the electrical load for artificial lighting, completing it with sustainable energy. The collector of the system is integrated on a vertical façade and its distribution guide is always horizontal inside of the false ceiling. ADASY is designed with a specific patent pending caption system, a modular light-guide and light extractor luminaire system. Special care has been put on the final cost of the system and its building integration purpose. The current ADASY configuration is able to illuminate 40 m2 area with a 300lx-400lx level in the mid time work hours; furthermore it has a good enough spatial uniformity distribution and a controlled glare. The data presented in this study are the result of simulation models and have been confirmed by a physical scaled prototype. ADASY's main advantages over regular illumination systems are: -Low maintenance; it has not mobile pieces and therefore it lasts for a long time and require little attention once installed. - No energy consumption; solar light continue working even if there has been a power outage. - High quality of light: the colour rendering of light is very high - Psychological benefits: People working with daylight get less stress and more comfort, increasing productivity. - Health benefits

  3. Computational Modeling to Limit the Impact Displays and Indicator Lights Have on Habitable Volume Operational Lighting Constraints

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Brainard, G.; Salazar, G.; Johnston, S.; Schwing, B.; Litaker, H.; Kolomenski, A.; Venus, D.; Tran, K.; Hanifin, J.; hide

    2017-01-01

    NASA has demonstrated an interest in improving astronaut health and performance through the installment of a new lighting countermeasure on the International Space Station. The Solid State Lighting Assembly (SSLA) system is designed to positively influence astronaut health by providing a daily change to light spectrum to improve circadian entrainment. Unfortunately, existing NASA standards and requirements define ambient light level requirements for crew sleep and other tasks, yet the number of light-emitting diode (LED) indicators and displays within a habitable volume is currently uncontrolled. Because each of these light sources has its own unique spectral properties, the additive lighting environment ends up becoming something different from what was planned or researched. Restricting the use of displays and indicators is not a solution because these systems provide beneficial feedback to the crew. The research team for this grant used computer-based computational modeling and real-world lighting mockups to document the impact that light sources other than the ambient lighting system contribute to the ambient spectral lighting environment. In particular, the team was focused on understanding the impacts of long-term tasks located in front of avionics or computer displays. The team also wanted to understand options for mitigating the changes to the ambient light spectrum in the interest of maintaining the performance of a lighting countermeasure. The project utilized a variety of physical and computer-based simulations to determine direct relationships between system implementation and light spectrum. Using real-world data, computer models were built in the commercially available optics analysis software Zemax Optics Studio(c). The team also built a mockup test facility that had the same volume and configuration as one of the Zemax models. The team collected over 1200 spectral irradiance measurements, each representing a different configuration of the mockup. Analysis of the data showed a measurable impact on ambient light spectrum. This data showed that obvious design techniques exist that can be used to bind the ambient light spectrum closer to the planned spectral operating environment for the observer's eye point. The following observations should be considered when designing an operational environment that is dominated by computer displays. When more light is directed into the field of view of the observer, the greater the impact it will make on various human factors issues that depend on spectral shape and intensity. Because viewing angle has a large part to play in the amount of light flux on the crewmember's retina, beam shape, combined with light source location is an important factor for determining percent probable incident flux on the observer from any combination of light sources. Computer graphics design and display lumen output are major factors influencing the amount of spectrally intense light projected into the environment and in the viewer's direction. Use of adjustable white point display software was useful only if the predominant background color was white and if it matched the ambient light system's color. Display graphics that used a predominantly black background had the least influence on unplanned spectral energy projected into the environment. Percent reflectance makes a difference in total energy reflected back into an environment, and within certain architectural geometries, reflectance can be used to control the amount of a light spectrum that is allowed to perpetuate in the environment. Data showed that room volume and distance from significant light sources influence the total spectrum in a room. Smaller environments had a homogenizing effect on total light spectrum, whereas light from multiple sources in larger environments was less mixed. The findings indicated above should be considered when making recommendations for practice or standards for architectural systems. The ambient lighting system, surface reflectance, and display and indicator implementation all factor into the users' spectral environment. A variety of low-cost solutions exist to mitigate the impact of light from non-architectural lighting systems, and much potential for system automation and integration of display systems with the ambient environment. This team believes that proper planning can be used to avoid integration problems and also believes that human-in-the-loop evaluations, real-world test and measurement, and computer modeling can be used to determine how changes to a process, display graphics, and architecture will help maintain the planned spectral operating lighting environment.

  4. Night vision imaging system design, integration and verification in spacecraft vacuum thermal test

    NASA Astrophysics Data System (ADS)

    Shang, Yonghong; Wang, Jing; Gong, Zhe; Li, Xiyuan; Pei, Yifei; Bai, Tingzhu; Zhen, Haijing

    2015-08-01

    The purposes of spacecraft vacuum thermal test are to characterize the thermal control systems of the spacecraft and its component in its cruise configuration and to allow for early retirement of risks associated with mission-specific and novel thermal designs. The orbit heat flux is simulating by infrared lamp, infrared cage or electric heater. As infrared cage and electric heater do not emit visible light, or infrared lamp just emits limited visible light test, ordinary camera could not operate due to low luminous density in test. Moreover, some special instruments such as satellite-borne infrared sensors are sensitive to visible light and it couldn't compensate light during test. For improving the ability of fine monitoring on spacecraft and exhibition of test progress in condition of ultra-low luminous density, night vision imaging system is designed and integrated by BISEE. System is consist of high-gain image intensifier ICCD camera, assistant luminance system, glare protect system, thermal control system and computer control system. The multi-frame accumulation target detect technology is adopted for high quality image recognition in captive test. Optical system, mechanical system and electrical system are designed and integrated highly adaptable to vacuum environment. Molybdenum/Polyimide thin film electrical heater controls the temperature of ICCD camera. The results of performance validation test shown that system could operate under vacuum thermal environment of 1.33×10-3Pa vacuum degree and 100K shroud temperature in the space environment simulator, and its working temperature is maintains at 5° during two-day test. The night vision imaging system could obtain video quality of 60lp/mm resolving power.

  5. Analysis of condition for uniform lighting generated by array of light emitting diodes with large view angle.

    PubMed

    Qin, Zong; Wang, Kai; Chen, Fei; Luo, Xiaobing; Liu, Sheng

    2010-08-02

    In this research, the condition for uniform lighting generated by array of LEDs with large view angle was studied. The luminous intensity distribution of LED is not monotone decreasing with view angle. A LED with freeform lens was designed as an example for analysis. In a system based on LEDs designed in house with a thickness of 20mm and rectangular arrangement, the condition for uniform lighting was derived and the analytical results demonstrated that the uniformity was not decreasing monotonously with the increasing of LED-to-LED spacing. The illuminance uniformities were calculated with Monte Carlo ray tracing simulations and the uniformity was found to increase with the increasing of certain LED-to-LED spacings anomalously. Another type of large view angle LED and different arrangements were discussed in addition. Both analysis and simulation results showed that the method is available for LED array lighting system design on the basis of large view angle LED..

  6. Rethinking the Systems Engineering Process in Light of Design Thinking

    DTIC Science & Technology

    2016-04-30

    systems engineering process models (Blanchard & Fabrycky, 1990) and the majority of engineering design education (Dym et al., 2005). The waterfall model ...Engineering Career Competency Model Clifford Whitcomb, Systems Engineering Professor, NPS Corina White, Systems Engineering Research Associate, NPS...Postgraduate School (NPS) in Monterey, CA. He teaches and conducts research in the design of enterprise systems, systems modeling , and system

  7. Advanced Solid State Lighting for Human Evaluation Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Holbert, Eirik

    2015-01-01

    Lighting intensity and color have a significant impact on human circadian rhythms. Advanced solid state lighting was developed for the Advanced Exploration System (AES) Deep Space Habitat(DSH) concept demonstrator. The latest generation of assemblies using the latest commercially available LED lights were designed for use in the Bigelow Aerospace Environmental Control and Life Support System (ECLSS) simulator and the University of Hawaii's Hawaii Space Exploration Analog and Simulation (Hi-SEAS) habitat. Agreements with both these organizations will allow the government to receive feedback on the lights and lighting algorithms from long term human interaction.

  8. No Sweat.

    ERIC Educational Resources Information Center

    Strickland, Gary

    2001-01-01

    Explains how changes in school design in the last 10 years have caused heating, ventilation, and cooling system (HVAC) designers to reexamine their choice of classroom unit ventilators (UV). The influence of indoor lighting systems, insulation, indoor air quality, energy code compliance, and HVAC system design on UV decision making are also…

  9. Representation of chromatic distribution for lighting system

    NASA Astrophysics Data System (ADS)

    Rossi, Maurizio; Musante, Fulvio

    2015-01-01

    For the luminaire manufacturer, the measurement of the lighting intensity distribution (LID) emitted by lighting fixture is based on photometry. So light is measured as an achromatic value of intensity and there is no the possibility to discriminate the measurement of white vs. colored light. At the Laboratorio Luce of Politecnico di Milano a new instrument for the measurement of spectral radiant intensities distribution for lighting system has been built: the goniospectra- radiometer. This new measuring tool is based on a traditional mirror gonio-photometer with a CCD spectraradiometer controlled by a PC. Beside the traditional representation of photometric distribution we have introduced a new representation where, in addition to the information about the distribution of luminous intensity in space, new details about the chromaticity characteristic of the light sources have been implemented. Some of the results of this research have been applied in developing and testing a new line of lighting system "My White Light" (the research project "Light, Environment and Humans" funded in the Italian Lombardy region Metadistretti Design Research Program involving Politecnico di Milano, Artemide, Danese, and some other SME of the Lighting Design district), giving scientific notions and applicative in order to support the assumption that colored light sources can be used for the realization of interior luminaries that, other than just have low power consumption and long life, may positively affect the mood of people.

  10. Life of LED-Based White Light Sources

    NASA Astrophysics Data System (ADS)

    Narendran, Nadarajah; Gu, Yimin

    2005-09-01

    Even though light-emitting diodes (LEDs) may have a very long life, poorly designed LED lighting systems can experience a short life. Because heat at the p-n-junction is one of the main factors that affect the life of the LED, by knowing the relationship between life and heat, LED system manufacturers can design and build long-lasting systems. In this study, several white LEDs from the same manufacturer were subjected to life tests at different ambient temperatures. The exponential decay of light output as a function of time provided a convenient method to rapidly estimate life by data extrapolation. The life of these LEDs decreases in an exponential manner with increasing temperature. In a second experiment,several high-power white LEDs from different manufacturers were life-tested under similar conditions. Results show that the different products have significantly different life values.

  11. Liquid argon scintillation detection utilizing wavelength-shifting plates and light guides

    NASA Astrophysics Data System (ADS)

    Howard, B.

    2018-02-01

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this light and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.

  12. Design of a tubular skylight system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, B.L.

    1996-10-01

    Since its introduction to the US market in 1991, tubular skylight provides a solution to the problem of lighting up dark corners in a house. Over the years, design of similar products has emphasized on quantity alone and attention to a range of other equally important issues: efficient collecting system, selection of higher specular reflectance material, seals, distribution and quality of light, was not noted. In this paper, the fundamental design concept of an efficient tubular skylight and the possibility of collimating diffuse light is reviewed. The importance of specular reflectance of the tube material on the performance of tubularmore » skylight is demonstrated. Visual appearance (quality) of transmitted light down the tube is related in part to the yellowness index of various materials. Discussion of adequacy of current building and energy code requirements on tubular skylights is briefly touched on and energy simulation results based on a numerical code are presented.« less

  13. Possibilities of Architectural Lighting to Create New Style

    NASA Astrophysics Data System (ADS)

    Chudinova, V. G.; Bokova, O. R.

    2017-11-01

    The article presents the argumentation of the provision on the style-forming potential of the lighting design the sphere of which is interpreted in a wide range of genres. The area of the intersection of form-building technological and artistic aspects lies in the field of ecology which includes not only energy saving, but also the well-being of the human and the society. The theory and practice of designing the night-time image of architectural ensembles, buildings and landscapes develops much slower than the implementation of light solutions in the advertising industry. In most cases, the possibilities of lighting design are used only in the field of decorative lighting despite their huge aesthetic potential and rapidly improving technologies. The request for innovation and uniqueness usually arises on the basis of image and political ambitions of large corporations or for the positioning of powerful brands. The success of such projects becomes a driver for both creation and promotion of innovative solutions. However, in a broader scientific sense, not only the design of artificial light systems but also the optimization of the daylight usage falls into the sphere lighting design. The need for the new methods of architectural shaping is dictated by the need to introduce in the building of resource-saving lighting technologies, ecological infrastructure including alternative energy sources. The article gives the examples of different lighting design genres supplemented with illustrations. The conclusions concern the prospective directions and tasks of scientific research in the field of lighting design.

  14. Research on photodiode detector-based spatial transient light detection and processing system

    NASA Astrophysics Data System (ADS)

    Liu, Meiying; Wang, Hu; Liu, Yang; Zhao, Hui; Nan, Meng

    2016-10-01

    In order to realize real-time signal identification and processing of spatial transient light, the features and the energy of the captured target light signal are first described and quantitatively calculated. Considering that the transient light signal has random occurrence, a short duration and an evident beginning and ending, a photodiode detector based spatial transient light detection and processing system is proposed and designed in this paper. This system has a large field of view and is used to realize non-imaging energy detection of random, transient and weak point target under complex background of spatial environment. Weak signal extraction under strong background is difficult. In this paper, considering that the background signal changes slowly and the target signal changes quickly, filter is adopted for signal's background subtraction. A variable speed sampling is realized by the way of sampling data points with a gradually increased interval. The two dilemmas that real-time processing of large amount of data and power consumption required by the large amount of data needed to be stored are solved. The test results with self-made simulative signal demonstrate the effectiveness of the design scheme. The practical system could be operated reliably. The detection and processing of the target signal under the strong sunlight background was realized. The results indicate that the system can realize real-time detection of target signal's characteristic waveform and monitor the system working parameters. The prototype design could be used in a variety of engineering applications.

  15. Research and design of an optical system of biochemical analyzer based on the narrow-band pass filter

    NASA Astrophysics Data System (ADS)

    Xiao, Ze-xin; Chen, Kuan

    2008-03-01

    Biochemical analyzer is one of the important instruments in the clinical diagnosis, and its optical system is the important component. The operation of this optical system can be regard as three parts. The first is transforms the duplicate colored light as the monochromatic light. The second is transforms the light signal of the monochromatic, which have the information of the measured sample, as the electric signal by use the photoelectric detector. And the last is to send the signal to data processing system by use the control system. Generally, there are three types monochromators: prism, optical grating and narrow-band pass filter. Thereinto, the narrow-band pass filter were widely used in the semi-auto biochemical analyzer. Through analysed the principle of biochemical analyzer base on the narrow-band pass filter, we known that the optical has three features. The first is the optical path of the optical system is a non- imaging system. The second, this system is wide spectrum region that contain visible light and ultraviolet spectrum. The third, this is a little aperture and little field monochromatic light system. Therefore, design idea of this optical system is: (1) luminous energy in the system less transmission loss; (2) detector coupled to the luminous energy efficient; mainly correct spherical aberration. Practice showed the point of Image quality evaluation: (1) dispersion circle diameter equal the receiving device pixel effective width of 125%, and the energy distribution should point target of 80% of energy into the receiving device pixel width of the effective diameter in this dispersion circle; (2) With MTF evaluation, the requirements in 20lp/ mm spatial frequency, the MTF values should not be lower than 0.6. The optical system should be fit in with ultraviolet and visible light width spectrum, and the detector image plane can but suited the majority visible light spectrum when by defocus optimization, and the image plane of violet and ultraviolet excursion quite large. Traditional biochemical analyzer optical design not fully consider this point, the authors introduce a effective image plane compensation measure innovatively, it greatly increased the reception efficiency of the violet and ultraviolet.

  16. Three Corner Sat Communications System

    NASA Technical Reports Server (NTRS)

    Anderson, Bobby; Horan, Stephen

    2000-01-01

    Three Corner Satellite is a constellation of three nanosatellites designed and built by students. New Mexico State University has taken on the design of the communications system for this constellation. The system includes the forward link, return link, and the crosslink. Due to size, mass, power, and financial constraints, we must design a small, light, power efficient, and inexpensive communications system. This thesis presents the design of a radio system to accomplish the data transmission requirements in light of the system constraints. In addition to the hardware design, the operational commands needed by the satellite's on-board computer to control and communicate with the communications hardware will be presented. In order for the hardware to communicate with the ground stations, we will examine the link budgets derived from the radiated power of the transmitters, link distance, data modulation, and data rate for each link. The antenna design for the constellation is analyzed using software and testing the physical antennas on a model satellite. After the analysis and testing, a combination of different systems will meet and exceed the requirements and constraints of the Three Corner Satellite constellation.

  17. Analysis of defects of overhead facade systems and other light thin-walled structures

    NASA Astrophysics Data System (ADS)

    Endzhievskiy, L.; Frolovskaia, A.; Petrova, Y.

    2017-04-01

    This paper analyzes the defects and the causes of contemporary design solutions with an example of overhead facade systems with ventilated air gaps and light steel thin-walled structures on the basis of field experiments. The analysis is performed at all stages of work: design, manufacture, including quality, construction, and operation. Practical examples are given. The main causes of accidents and the accident rate prediction are looked upon and discussed.

  18. Improved Emergency Egress Lighting System for the ISS

    NASA Technical Reports Server (NTRS)

    Eaton, Leslie L.; Barr, Don A.

    2005-01-01

    Emergency lights provide illumination in corridors, stairwells, ramps, escalators, aisles, and exit passageways during power failures. Safety and visibility are critical during a power outage. If emergency lights fail to operate properly, the building occupants can become disoriented. Four documents in a collection discuss different topics relating to a proposed improved emergency egress lighting system (EELS) for the International Space Station (ISS). While the present EELS is designed around rows of green-light-emitting diodes, the proposed system contains strips of electroluminescent tape using different colors for each egress path. The proposed EELS can be powered by the same battery currently used by the present EELS, but would require an inverter because electroluminescent devices require AC. Electroluminescent devices also require significantly less current and, depending on the color, would emit 3 to 8 times the light of the present EELS. In addition, they could operate for up to 75 hours (versus .20 minutes for the present system). The first document contains a one-page summary of the proposal and an evaluation of technical merit. The second document summarizes the motivation for, and the design of, the proposed EELS. The third document addresses relevant aspects of the measurement of spectral sensitivity and the psychophysics of perception of light. The fourth document presents additional background information and technical specifications for the electroluminescent tapes.

  19. Bidirectional reflectance distribution function /BRDF/ measurements of stray light suppression coatings for the Space Telescope /ST/

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1979-01-01

    The paper considers the bidirectional reflectance distribution function (BRDF) of black coatings used on stray light suppression systems for the Space Telescope (ST). The ST stray light suppression requirement is to reduce earth, moon, and sun light in the focal plane to a level equivalent to one 23 Mv star per square arcsecond, an attenuation of 14 orders of magnitude. It is impractical to verify the performance of a proposed baffle system design by full scale tests because of the large size of the ST, so that a computer analysis is used to select the design. Accurate computer analysis requires a knowledge of the diffuse scatter at all angles from the surface of the coatings, for all angles of incident light. During the early phases of the ST program a BRDF scanner was built at the Marshall Space Flight Center to study the scatter from black materials; the measurement system is described and the results of measurements on samples proposed for use on the ST are presented.

  20. Multi-channel automotive night vision system

    NASA Astrophysics Data System (ADS)

    Lu, Gang; Wang, Li-jun; Zhang, Yi

    2013-09-01

    A four-channel automotive night vision system is designed and developed .It is consist of the four active near-infrared cameras and an Mulit-channel image processing display unit,cameras were placed in the automobile front, left, right and rear of the system .The system uses near-infrared laser light source,the laser light beam is collimated, the light source contains a thermoelectric cooler (TEC),It can be synchronized with the camera focusing, also has an automatic light intensity adjustment, and thus can ensure the image quality. The principle of composition of the system is description in detail,on this basis, beam collimation,the LD driving and LD temperature control of near-infrared laser light source,four-channel image processing display are discussed.The system can be used in driver assistance, car BLIS, car parking assist system and car alarm system in day and night.

  1. Scaling laws for light-weight optics

    NASA Technical Reports Server (NTRS)

    Valente, Tina M.

    1990-01-01

    Scaling laws for light-weight optical systems are examined. A cubic relationship between mirror diameter and weight has been suggested and used by many designers of optical systems as the best description for all light-weight mirrors. A survey of existing light-weight systems in the open literature has been made to clarify this issue. Fifty existing optical systems were surveyed with all varieties of light-weight mirrors including glass and beryllium structured mirrors, contoured mirrors, and very thin solid mirrors. These mirrors were then categorized and weight to diameter ratio was plotted to find a best fit curve for each case. A best fitting curve program tests nineteen different equations and ranks a 'goodness of fit' for each of these equations. The resulting relationship found for each light-weight mirror category helps to quantify light-weight optical systems and methods of fabrication and provides comparisons between mirror types.

  2. Modular design of the LED vehicle projector headlamp system.

    PubMed

    Hsieh, Chi-Chang; Li, Yan-Huei; Hung, Chih-Ching

    2013-07-20

    A well designed headlamp for a vehicle lighting system is very important as it provides drivers with safe and comfortable driving conditions at night or in dark places. With the advances of the semiconductor technology, the LED has become the fourth generation lighting source in the auto industry. In this study, we will propose a LED vehicle projector headlamp system. This headlamp system contains several LED headlamp modules, and every module of it includes four components: focused LEDs, asymmetric metal-based plates, freeform surfaces, and condenser lenses. By optimizing the number of LED headlamp modules, the proposed LED vehicle projector headlamp system has only five LED headlamp modules. It not only provides the low-beam cutoff without a shield, but also meets the requirements of the ECE R112 regulation. Finally, a prototype of the LED vehicle projector headlamp system was assembled and fabricated to create the correct light pattern.

  3. Surgical operation using lighting goggle composed of white LED arrays

    NASA Astrophysics Data System (ADS)

    Shimada, Junichi; Kawakami, Yoichi; Fujita, Shigeo

    2001-12-01

    Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. Here, we newly design surgical lighting system composed of white LEDs equipped on both sides of goggles, which controls the lighting beams to the gazing point. With this system, it is just needed for surgeons to wear light plastic goggles with high quality LEDs made by Nichia. In fact, we have succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting system on 11th Sept 2000. The electrical power for the system was supplied from lithium-ion battery for 2 hours. Since the white LEDs used were composed of InGaN-blue-emitters and YAG-yellow-phosphors, the color rendering property was not sufficient in the reddish colors. Therefore, in the next approach, it is very important to develop the spectral distribution of white LED to render inherent color of raw flesh such as skin, blood, fat tissue and internal organs. To improve the color rendering in red colors, some adjustments should be given in the fluorescents layers. Design of goggle is also very important for cutting into the real practical market of white LEDs.

  4. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application

    PubMed Central

    Kwon, Ki Yong; Lee, Hyung-Min; Ghovanloo, Maysam; Weber, Arthur; Li, Wen

    2015-01-01

    The recent development of optogenetics has created an increased demand for advancing engineering tools for optical modulation of neural circuitry. This paper details the design, fabrication, integration, and packaging procedures of a wirelessly-powered, light emitting diode (LED) coupled optrode neural interface for optogenetic studies. The LED-coupled optrode array employs microscale LED (μLED) chips and polymer-based microwaveguides to deliver light into multi-level cortical networks, coupled with microelectrodes to record spontaneous changes in neural activity. An integrated, implantable, switched-capacitor based stimulator (SCS) system provides high instantaneous power to the μLEDs through an inductive link to emit sufficient light and evoke neural activities. The presented system is mechanically flexible, biocompatible, miniaturized, and lightweight, suitable for chronic implantation in small freely behaving animals. The design of this system is scalable and its manufacturing is cost effective through batch fabrication using microelectromechanical systems (MEMS) technology. It can be adopted by other groups and customized for specific needs of individual experiments. PMID:25999823

  5. Luminaires for Advanced Lighting in Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J. Lynn

    Evolving education methods and greater use of technology in the classroom are dictating the need to rethink facility designs, including classroom lighting. Advances in LED-based lighting technology have created the possibility of lighting systems that are not only cost effective and energy efficient, but also color-tunable and as durable as other facility infrastructures (a 20-30 year life expectancy). Thus, there is the opportunity that the modern lighting system can be used by educators as a tool in their teaching strategy. To meet this need, RTI International and Finelite, Inc. teamed to develop and test the Next Generation Integrated Classroom Lightingmore » System (NICLS). The NICLS technology incorporates a high performance, color-tunable light engine into new luminaire designs (e.g., pendant, direct-indirect, downlight, troffers) that are acceptable for use in classrooms. During this project, we successfully demonstrated that the NICLS technology achieves exceptional performance and exceeds all DOE goals for the classroom of the future, including: Luminous efficacy value for NICLS luminaires in excess of 125 lpw at all CCT values; TWL range of 2,700 K to 6,500 K while maintaining a CRI of 82 or higher at all values; Capability for full-range dimming (100% to 1%) at all CCT values with flicker levels below industry guidelines; Performance of the lighting system in a classroom mock-up, incorporating daylight and occupancy sensing to provide automatic control of lighting zones to further reduce energy consumption; Rated lifetime on the system exceeding 50,000 hours with a lumen maintenance of at least 85% at 50,000 hours; and Teacher-focused UI located at the front of the classroom to operate the lighting system. A smartphone-based UI is also available to accommodate teacher movement in the classroom. A critical element of developing this technology is designing the user interface to be compatible with modern teaching methods, including increased use of icons and colors and intuitive appearance. The design of the NICLS technology and the user interface was modified with assistance from focus groups consisting of more than 80 teachers and educational professionals total. The focus groups were held in a full-sized classroom that served as a technology demonstration site for the NICLS. The NICLS technology is an advanced lighting system for educational settings that meets or exceeds all DOE photometric, electrical, and reliability goals for the COF. The NICLS technology has been demonstrated at the classroom level, and the feedback from the dozens of teachers and educational professionals who visited the demonstration site has been overwhelmingly positive. NICLS provides a state-of-the-art lighting environment that adjusts the lighting conditions—both color and illuminance levels—to the needs of students and teachers for the task at hand. Early research has suggested that such lighting conditions will improve not only teacher effectiveness but also a student’s ability to concentrate on learning activities.« less

  6. ARIES: Enabling Visual Exploration and Organization of Art Image Collections.

    PubMed

    Crissaff, Lhaylla; Wood Ruby, Louisa; Deutch, Samantha; DuBois, R Luke; Fekete, Jean-Daniel; Freire, Juliana; Silva, Claudio

    2018-01-01

    Art historians have traditionally used physical light boxes to prepare exhibits or curate collections. On a light box, they can place slides or printed images, move the images around at will, group them as desired, and visual-ly compare them. The transition to digital images has rendered this workflow obsolete. Now, art historians lack well-designed, unified interactive software tools that effectively support the operations they perform with physi-cal light boxes. To address this problem, we designed ARIES (ARt Image Exploration Space), an interactive image manipulation system that enables the exploration and organization of fine digital art. The system allows images to be compared in multiple ways, offering dynamic overlays analogous to a physical light box, and sup-porting advanced image comparisons and feature-matching functions, available through computational image processing. We demonstrate the effectiveness of our system to support art historians tasks through real use cases.

  7. A novel automated instrument designed to determine photosensitivity thresholds (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Aguilar, Mariela C.; Gonzalez, Alex; Rowaan, Cornelis; De Freitas, Carolina; Rosa, Potyra R.; Alawa, Karam; Lam, Byron L.; Parel, Jean-Marie A.

    2016-03-01

    As there is no clinically available instrument to systematically and reliably determine the photosensitivity thresholds of patients with dry eyes, blepharospasms, migraines, traumatic brain injuries, and genetic disorders such as Achromatopsia, retinitis pigmentosa and other retinal dysfunctions, a computer-controlled optoelectronics system was designed. The BPEI Photosensitivity System provides a light stimuli emitted from a bi-cupola concave, 210 white LED array with varying intensity ranging from 1 to 32,000 lux. The system can either utilize a normal or an enhanced testing mode for subjects with low light tolerance. The automated instrument adjusts the intensity of each light stimulus. The subject is instructed to indicate discomfort by pressing a hand-held button. Reliability of the responses is tracked during the test. The photosensitivity threshold is then calculated after 10 response reversals. In a preliminary study, we demonstrated that subjects suffering from Achromatopsia experienced lower photosensitivity thresholds than normal subjects. Hence, the system can safely and reliably determine the photosensitivity thresholds of healthy and light sensitive subjects by detecting and quantifying the individual differences. Future studies will be performed with this system to determine the photosensitivity threshold differences between normal subjects and subjects suffering from other conditions that affect light sensitivity.

  8. Massive MIMO-OFDM indoor visible light communication system downlink architecture design

    NASA Astrophysics Data System (ADS)

    Lang, Tian; Li, Zening; Chen, Gang

    2014-10-01

    Multiple-input multiple-output (MIMO) technique is now used in most new broadband communication system, and orthogonal frequency division multiplexing (OFDM) is also utilized within current 4th generation (4G) of mobile telecommunication technology. With MIMO and OFDM combined, visible light communication (VLC) system's diversity gain is increase, yet system capacity for dispersive channels is also enhanced. Moreover, with the emerging massive MIMO-OFDM VLC system, there are significant advantages than smaller systems' such as channel hardening, further increasing of energy efficiency (EE) and spectral efficiency (SE) based on law of large number. This paper addresses one of the major technological challenges, system architecture design, which was solved by semispherical beehive structure (SBS) receiver and so that diversity gain can be identified and applied in Massive MIMO VLC system. Simulation results shows that the proposed design clearly presents a spatial diversity over conventional VLC systems.

  9. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...

  10. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...

  11. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...

  12. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...

  13. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1 Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...

  14. 76 FR 47178 - Energy Efficiency Program: Test Procedure for Lighting Systems (Luminaires)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ...: Test Procedure for Lighting Systems (Luminaires) AGENCY: Office of Energy Efficiency and Renewable... (``DOE'' or the ``Department'') is currently evaluating energy efficiency test procedures for luminaires... products. DOE recognizes that well-designed test procedures are important to produce reliable, repeatable...

  15. Integration of OLEDs in biomedical sensor systems: design and feasibility analysis

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.

    2010-04-01

    Organic (electronic) Light Emitting Diodes (OLEDs) have been shown to have applications in the field of lighting and flexible display. These devices can also be incorporated in sensors as light source for imaging/fluorescence sensing for miniaturized systems for biomedical applications and low-cost displays for sensor output. The current device capability aligns well with the aforementioned applications as low power diffuse lighting and momentary/push button dynamic display. A top emission OLED design has been proposed that can be incorporated with the sensor and peripheral electrical circuitry, also based on organic electronics. Feasibility analysis is carried out for an integrated optical imaging/sensor system, based on luminosity and spectrum band width. A similar study is also carried out for sensor output display system that functions as a pseudo active OLED matrix. A power model is presented for device power requirements and constraints. The feasibility analysis is also supplemented with the discussion about implementation of ink-jet printing and stamping techniques for possibility of roll to roll manufacturing.

  16. Efficient 3M PBS enhancing miniature projection optics

    NASA Astrophysics Data System (ADS)

    Yun, Zhisheng; Nevitt, Timothy; Willett, Stephen; Mortenson, Dave; Le, John; McDowell, Erin; Kent, Susan; Wong, Timothy; Beniot, Gilles J.; Ouderkirk, Andrew

    2016-09-01

    Over the past decade, 3M has developed a number of mobile projectors, with a goal towards providing the world's smallest, most efficient projection systems. Compact size and efficiency are required characteristics for projection systems used in mobile devices and more lately, in augmented reality systems. In this paper we summarize the main generations of 3M light engine optical designs. We present the optical architectures of four light engines, including the rationale behind the illumination designs and the projection systems. In particular, we describe various configurations relating to the 3M polarizing beam splitter (PBS) which is key to enhanced efficiency of the miniature projection systems.

  17. Problems of natural lighting for deepened buildings and underground premises under screen effect of high-rise construction

    NASA Astrophysics Data System (ADS)

    Larionova, Kira; Stetsky, Sergey

    2018-03-01

    The main rationale and objective of the submitted research work is to create a quality lighting environment in the premises of deepened buildings and below-ground structures under screen effect of high-rise construction (high-rise buildings). It is noted, that in modern megapolises, a deficiency of vacant urban territories leads to the increased density of urban development with increased amount of high-rise construction and tendency to increase efficiency in the use of underground space. The natural lighting of premises in underground buildings and structures is the most efficient way, but it can be implemented only under use of roof lighting system in the form of roof monitors or skylights. In this case the levels of indoor natural lighting will be affected with serious screening effect of high-rise buildings in surrounding development. Such an situation is not regulated, or even considered by the contemporary building Codes and Regulations on natural lighting of interiors. The authors offered a new formula for a daylight factor calculation with roof lighting system in the described cases. The results of theoretical calculations and experimental studies showed very similar values. This proved the truth of the offered formula and elaborated method of calculation on the basis of an offered hypothesis. It prooves, that it is possible to use some factor and guide points in the daylight factors design under system of side natural lighting in the same design for a system of roof lighting.

  18. Light Water Breeder Reactor fuel rod design and performance characteristics (LWBR Development Program)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, W.R.; Giovengo, J.F.

    1987-10-01

    Light Water Breeder Reactor (LWBR) fuel rods were designed to provide a reliable fuel system utilizing thorium/uranium-233 mixed-oxide fuel while simultaneously minimizing structural material to enhance fuel breeding. The fuel system was designed to be capable of operating successfully under both load follow and base load conditions. The breeding objective required thin-walled, low hafnium content Zircaloy cladding, tightly spaced fuel rods with a minimum number of support grid levels, and movable fuel rod bundles to supplant control rods. Specific fuel rod design considerations and their effects on performance capability are described. Successful completion of power operations to over 160 percentmore » of design lifetime including over 200 daily load follow cycles has proven the performance capability of the fuel system. 68 refs., 19 figs., 44 tabs.« less

  19. Integrated light-guide plates that can control the illumination angle for liquid crystal display backlight system

    NASA Astrophysics Data System (ADS)

    Feng, Di; Yang, Xingpeng; Jin, Guofan; Yan, Yingbai; Fan, Shoushan

    2006-01-01

    Liquid crystal displays (LCDs) with edge-lit backlight systems offer several advantages, such as low energy consuming, low weight, and high uniformity of intensity, over traditional cathode-ray tube displays, and make them ideal for many applications including monitors in notebook personal computers, screens for TV, and many portable information terminals, such as mobile phones, personal digital assistants, etc. To satisfy market requirements for mobile and personal display panels, it is more and more necessary to modify the backlight system and make it thinner, lighter, and brighter all at once. In this paper, we have proposed a new integrated LGP based on periodic and aperiodic microprism structures by using polymethyl methacrylate material, which can be designed to control the illumination angle, and to get high uniformity of intensity. So the backlight system will be simplified to use only light sources and one LGP without using other optical sheets, such as reflection sheet, diffusion sheet and prism sheets. By using optimizing program and ray tracing method, the designed LGPs can achieve a uniformity of intensity better than 86%, and get a peak illumination angle from +400 to -200, without requiring other optical sheets. We have designed a backlight system with only one LED light source and one LGP, and other LGP design examples with different sizes (1.8 inches and 14.1 inches) and different light source (LED or CCFL), are performed also.

  20. How nature designs light-harvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes

    NASA Astrophysics Data System (ADS)

    Bryant, Donald A.; Canniffe, Daniel P.

    2018-02-01

    Chlorophyll-based phototrophs, or chlorophototrophs, convert light energy into stored chemical potential energy using two types of photochemical reaction center (RC), denoted type-1 and type-2. After excitation with light, a so-called special pair of chlorophylls in the RC is oxidized, and an acceptor is reduced. To ensure that RCs function at maximal rates in diffuse and variable light conditions, chlorophototrophs have independently evolved diverse light-harvesting antenna systems to rapidly and efficiently transfer that energy to the RCs. Energy transfer between weakly coupled chromophores is generally believed to proceed by resonance energy transfer, a dipole-induced-dipole process that was initially described theoretically by Förster. Nature principally optimizes three parameters in antenna systems: the distance separating the donor and acceptor chromophores, the relative orientations of those chromophores, and the spectral overlap between the donor and the acceptor chromophores. However, there are other important biological parameters that nature has optimized, and some common themes emerge from comparisons of different antenna systems. This tutorial considers structural and functional characteristics of three fundamentally different light-harvesting antenna systems of chlorophotrophic bacteria: phycobilisomes of cyanobacteria, the light-harvesting complexes (LH1 and LH2) of purple bacteria, and chlorosomes of green bacteria. Phycobilisomes are generally considered to represent an antenna system in which the chromophores are weakly coupled, while the strongly coupled bacteriochlorophyll molecules in LH1 and LH2 are strongly coupled and are better described by exciton theory. Chlorosomes can contain up to 250 000 bacteriochlorophyll molecules, which are very strongly coupled and form supramolecular, nanotubular arrays. The general and specific principles that have been optimized by natural selection during the evolution of these diverse light-harvesting antenna systems are discussed.

  1. Increased collection efficiency of LIFI high intensity electrodeless light source

    NASA Astrophysics Data System (ADS)

    Hafidi, Abdeslam; DeVincentis, Marc; Duelli, Markus; Gilliard, Richard

    2008-02-01

    Recently, RF driven electrodeless high intensity light sources have been implemented successfully in the projection display systems for HDTV and videowall applications. This paper presents advances made in the RF waveguide and electric field concentrator structures with the purpose of reducing effective arc size and increasing light collection. In addition, new optical designs are described that further improve system efficiency. The results of this work demonstrate that projection system light throughput is increased relative to previous implementations and performance is optimized for home theater and other front projector applications that maintain multi-year lifetime without re-lamping, complete spectral range, fast start times and high levels of dynamic contrast due to dimming flexibility in the light source system.

  2. Light valve based on nonimaging optics with potential application in cold climate greenhouses

    NASA Astrophysics Data System (ADS)

    Valerio, Angel A.; Mossman, Michele A.; Whitehead, Lorne A.

    2014-09-01

    We have evaluated a new concept for a variable light valve and thermal insulation system based on nonimaging optics. The system incorporates compound parabolic concentrators and can readily be switched between an open highly light transmissive state and a closed highly thermally insulating state. This variable light valve makes the transition between high thermal insulation and efficient light transmittance practical and may be useful in plant growth environments to provide both adequate sunlight illumination and thermal insulation as needed. We have measured light transmittance values exceeding 80% for the light valve design and achieved thermal insulation values substantially exceeding those of traditional energy efficient windows. The light valve system presented in this paper represents a potential solution for greenhouse food production in locations where greenhouses are not feasible economically due to high heating cost.

  3. How To Achieve Good Library Acoustics.

    ERIC Educational Resources Information Center

    Wiens, Janet

    2003-01-01

    Discusses how to create a good acoustical environment for college libraries, focusing on requirements related to the HVAC system and lighting, and noting the importance of good maintenance. A sidebar looks at how to design and achieve the most appropriate HVAC and lighting systems for optimum library acoustics. (SM)

  4. [Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].

    PubMed

    Li, Yang-yu; Fang, Yong-hua; Li, Da-cheng; Liu, Yang

    2015-03-01

    In order to miniaturize an infrared spectrometer, we analyze the current optical design of miniature spectrometers and propose a method for designing a miniature infrared gratings spectrometer based on planar waveguide. Common miniature spectrometer uses miniature optical elements to reduce the size of system, which also shrinks the effective aperture. So the performance of spectrometer has dropped. Miniaturization principle of planar waveguide spectrometer is different from the principle of common miniature spectrometer. In planar waveguide spectrometer, the propagation of light is limited in a thin planar waveguide, which looks like the whole optical system is squashed flat. In the direction parallel to the planar waveguide, the light through the slit is collimated, dispersed and focused. And a spectral image is formed in the detector plane. This propagation of light is similar to the light in common miniature spectrometer. In the direction perpendicular to the planar waveguide, light is multiple reflected by the upper and lower surfaces of the planar waveguide and propagates in the waveguide. So the size of corresponding optical element could be very small in the vertical direction, which can reduce the size of the optical system. And the performance of the spectrometer is still good. The design method of the planar waveguide spectrometer can be separated into two parts, Czerny-Turner structure design and planar waveguide structure design. First, by using aberration theory an aberration-corrected (spherical aberration, coma, focal curve) Czerny-Turner structure is obtained. The operation wavelength range and spectral resolution are also fixed. Then, by using geometrical optics theory a planar waveguide structure is designed for reducing the system size and correcting the astigmatism. The planar waveguide structure includes a planar waveguide and two cylindrical lenses. Finally, they are modeled together in optical design software and are optimized as a whole. An infrared planar waveguide spectrometer is designed using this method. The operation wavelength range is 8 - 12 μm, the numerical aperture is 0.22, and the linear array detector contains 64 elements. By using Zemax software, the design is optimized and analyzed. The results indicate that the size of the optical system is 130 mm x 125 mm x 20 mm and the spectral resolution of spectrometer is 80 nm, which satisfy the requirements of design index. Thus it is this method that can be used for designing a miniature spectrometer without movable parts and sizes in the range of several cubic centimeters.

  5. Adaptive optics program update at TMT

    NASA Astrophysics Data System (ADS)

    Boyer, C.; Ellerbroek, B.

    2016-07-01

    The TMT first light AO facility consists of the Narrow Field Infra-Red AO System (NFIRAOS), the associated Laser Guide Star Facility (LGSF) and the AO Executive Software (AOESW). Design, fabrication and prototyping activities of the TMT first light AO systems and their components have significantly ramped up in Canada, China, France, and in the US. NFIRAOS is an order 60 x 60 laser guide star (LGS) multi-conjugate AO (MCAO) system, which provides uniform, diffraction-limited performance in the J, H, and K bands over 34 x 34 arc sec fields with 50 per cent sky coverage at the galactic pole, as required to support the TMT science cases. NFIRAOS includes two deformable mirrors, six laser guide star wavefront sensors, one high order Pyramid WFS for natural guide star AO, and up to three low-order, IR, natural guide star on-instrument wavefront sensors (OIWFS) and four on-detector guide windows (ODGW) within each client instrument. The first light LGSF system includes six sodium lasers to generate the NFIRAOS laser guide stars. In this paper, we will provide an update on the progress in designing, prototyping, fabricating and modeling the TMT first light AO systems and their AO components over the last two years. TMT is continuing with detailed AO modeling to support the design and development of the first light AO systems and components. Major modeling topics studied during the last two years include further studies in the area of pyramid wavefront sensing, high precision astrometry, PSF reconstruction for LGS MCAO, LGSF wavefront error budget and sophisticated low order mode temporal filtering.

  6. Thermal, optical, and electrical engineering of an innovative tunable white LED light engine

    NASA Astrophysics Data System (ADS)

    Trivellin, Nicola; Meneghini, Matteo; Ferretti, Marco; Barbisan, Diego; Dal Lago, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico

    2014-02-01

    Color temperature, intensity and blue spectrum of the light affects the ganglion receptors in human brain stimulating the human nervous system. With this work we review different methods for obtaining tunable light emission spectra and propose an innovative white LED lighting system. By an in depth study of the thermal, electrical and optical characteristics of GaN and GaP based compound semiconductors for optoelectronics a specific tunable spectra has been designed. The proposed tunable white LED system is able to achieve high CRI (above 95) in a large CCT range (3000 - 5000K).

  7. Passive lighting responsive three-dimensional integral imaging

    NASA Astrophysics Data System (ADS)

    Lou, Yimin; Hu, Juanmei

    2017-11-01

    A three dimensional (3D) integral imaging (II) technique with a real-time passive lighting responsive ability and vivid 3D performance has been proposed and demonstrated. Some novel lighting responsive phenomena, including light-activated 3D imaging, and light-controlled 3D image scaling and translation, have been realized optically without updating images. By switching the on/off state of a point light source illuminated on the proposed II system, the 3D images can show/hide independent of the diffused illumination background. By changing the position or illumination direction of the point light source, the position and magnification of the 3D image can be modulated in real time. The lighting responsive mechanism of the 3D II system is deduced analytically and verified experimentally. A flexible thin film lighting responsive II system with a 0.4 mm thickness was fabricated. This technique gives some additional degrees of freedom in order to design the II system and enable the virtual 3D image to interact with the real illumination environment in real time.

  8. New Gear Transmission Error Measurement System Designed

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.

    2001-01-01

    The prime source of vibration and noise in a gear system is the transmission error between the meshing gears. Transmission error is caused by manufacturing inaccuracy, mounting errors, and elastic deflections under load. Gear designers often attempt to compensate for transmission error by modifying gear teeth. This is done traditionally by a rough "rule of thumb" or more recently under the guidance of an analytical code. In order for a designer to have confidence in a code, the code must be validated through experiment. NASA Glenn Research Center contracted with the Design Unit of the University of Newcastle in England for a system to measure the transmission error of spur and helical test gears in the NASA Gear Noise Rig. The new system measures transmission error optically by means of light beams directed by lenses and prisms through gratings mounted on the gear shafts. The amount of light that passes through both gratings is directly proportional to the transmission error of the gears. A photodetector circuit converts the light to an analog electrical signal. To increase accuracy and reduce "noise" due to transverse vibration, there are parallel light paths at the top and bottom of the gears. The two signals are subtracted via differential amplifiers in the electronics package. The output of the system is 40 mV/mm, giving a resolution in the time domain of better than 0.1 mm, and discrimination in the frequency domain of better than 0.01 mm. The new system will be used to validate gear analytical codes and to investigate mechanisms that produce vibration and noise in parallel axis gears.

  9. High sensitivity optical molecular imaging system

    NASA Astrophysics Data System (ADS)

    An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie

    2018-02-01

    Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.

  10. Is White Light the Best Illumination for Palmprint Recognition?

    NASA Astrophysics Data System (ADS)

    Guo, Zhenhua; Zhang, David; Zhang, Lei

    Palmprint as a new biometric has received great research attention in the past decades. It owns many merits, such as robustness, low cost, user friendliness, and high accuracy. Most of the current palmprint recognition systems use an active light to acquire clear palmprint images. Thus, light source is a key component in the system to capture enough of discriminant information for palmprint recognition. To the best of our knowledge, white light is the most widely used light source. However, little work has been done on investigating whether white light is the best illumination for palmprint recognition. In this study, we empirically compared palmprint recognition accuracy using white light and other six different color lights. The experiments on a large database show that white light is not the optimal illumination for palmprint recognition. This finding will be useful to future palmprint recognition system design.

  11. Development of multiwavelength excitation light source for autofluorescence and photodynamic diagnosis systems

    NASA Astrophysics Data System (ADS)

    Kenar, Necla; Lim, H. S.; Mirzaaghasi, Amin

    2014-02-01

    New design of the excitation light source that can stably generate light with center wavelengths of 450nm, 530nm, 632.8nm and white light for auto-fluorescence(AF) and photodynamic diagnosis(PDD) of cancer in clinics in a single system is presented in this study. The light source consists of Xenon Lamp (300W), light guide module including motorize filter wheel equipped with optical filters with corresponding to wavelength bands, servo motor, motorize iris, a cooling system, power supply and optical transmission part for the output light. The transmission part of the light source was developed to collimate the light with desired wavelength into input of fiber optic. Output powers are obtained average 99.91 mW for 450+/-40 nm, 111.01 mW for 530+/-10nm, and 78.50 mW for 632.8+/-10nm.

  12. Modular approach to achieving the next-generation X-ray light source

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Milton, S. V.; Freund, H. P.

    2001-12-01

    A modular approach to the next-generation light source is described. The "modules" include photocathode, radio-frequency, electron guns and their associated drive-laser systems, linear accelerators, bunch-compression systems, seed laser systems, planar undulators, two-undulator harmonic generation schemes, high-gain harmonic generation systems, nonlinear higher harmonics, and wavelength shifting. These modules will be helpful in distributing the next-generation light source to many more laboratories than the current single-pass, high-gain free-electron laser designs permit, due to both monetary and/or physical space constraints.

  13. Optical design of laser transmission system

    NASA Astrophysics Data System (ADS)

    Zhang, Yulan; Feng, Jinliang; Li, Yongliang; Yang, Jiandong

    1998-08-01

    This paper discusses a design of optical transfer system used in carbon-dioxide laser therapeutic machine. The design of this system is according to the requirement of the therapeutic machine. The therapeutic machine requires the movement of laser transfer system is similar to the movement of human beings arms, which possesses 7 rotating hinges. We use optical hinges, which is composed of 45 degree mirrors. Because the carbon-dioxide laser mode is not good, light beam diameter at focus and divergence angle dissemination are big, we use a collecting lens at the transfer system output part in order to make the light beam diameter at focus in 0.2 to approximately 0.3 mm. For whole system the focus off-axis error is less than 0.5 mm, the transfer power consumption is smaller than 10%. The system can move in three dimension space freely and satisfies the therapeutic machine requirement.

  14. New gonioscopy system using only infrared light.

    PubMed

    Sugimoto, Kota; Ito, Kunio; Matsunaga, Koichi; Miura, Katsuya; Esaki, Koji; Uji, Yukitaka

    2005-08-01

    To describe an infrared gonioscopy system designed to observe the anterior chamber angle under natural mydriasis in a completely darkened room. An infrared light filter was used to modify the light source of the slit-lamp microscope. A television monitor connected to a CCD monochrome camera was used to indirectly observe the angle. Use of the infrared system enabled observation of the angle under natural mydriasis in a completely darkened room. Infrared gonioscopy is a useful procedure for the observation of the angle under natural mydriasis.

  15. Design of a High-Power White Light Source with Colloidal Quantum Dots and Non-Rare-Earth Phosphors

    NASA Astrophysics Data System (ADS)

    Bicanic, Kristopher T.

    This thesis describes the design process of a high-power white light source, using novel phosphor and colloidal quantum dot materials. To incorporate multiple light emitters, we generalized and extended a down-converting layer model. We employed a phosphor mixture comprising of YAG:Ce and K2TiF 6:Mn4+ powders to illustrate the effectiveness of the model. By incorporating experimental photophysical results from the phosphors and colloidal quantum dots, we modeled our system and chose the design suitable for high-power applications. We report a reduction in the correlated color temperature by 600K for phosphor and quantum dot systems, enabling the creation of a warm white light emission at power densities up to 5 kW/cm 2. Furthermore, at this high-power, their emission achieves the digital cinema initiative (DCI) requirements with a luminescence efficacy improvement up to 32% over the stand-alone ceramic YAG:Ce phosphor.

  16. Evaluating the attractiveness of a new light rail extension: Testing simple change and displacement change hypotheses

    PubMed Central

    Brown, Barbara B.; Tribby, Calvin P.; Tharp, Doug; Flick, Kristi; Miller, Harvey J.; Smith, Ken R.; Jensen, Wyatt

    2015-01-01

    Many communities in the United States have been adding new light rail to bus-predominant public transit systems. However, there is disagreement as to whether opening light rail lines attracts new ridership or merely draws ridership from existing transit users. We study a new light rail line in Salt Lake City, Utah, USA, which is part of a complete street redevelopment. We utilize a pre-test post-test control group quasi-experimental design to test two different measures of ridership change. The first measure is calculated from stops along the light rail route; the second assumes that nearby bus stops might be displaced by the rail and calculates ridership change with those stops included as baseline. Both the simple measure (transit use changes on the complete street light rail corridor) and the “displacement” measure (transit use changes in the one-quarter mile catchment areas around new light rail stops) showed significant (p < .01) and substantial (677%) increases in transit passengers compared to pre-light rail bus users. In particular, the displacement analysis discredits a common challenge that when a new light rail line opens, most passengers are simply former bus riders whose routes were canceled in favor of light rail. The study suggests that light rail services can attract additional ridership to public transit systems. In addition, although pre-post control-group designs require time and effort, this project underscores the benefits of such quasi-experimental designs in terms of the strength of the inferences that can be drawn about the impacts of new transit infrastructure and services. PMID:26543329

  17. Evaluating the attractiveness of a new light rail extension: Testing simple change and displacement change hypotheses.

    PubMed

    Werner, Carol M; Brown, Barbara B; Tribby, Calvin P; Tharp, Doug; Flick, Kristi; Miller, Harvey J; Smith, Ken R; Jensen, Wyatt

    2016-01-01

    Many communities in the United States have been adding new light rail to bus-predominant public transit systems. However, there is disagreement as to whether opening light rail lines attracts new ridership or merely draws ridership from existing transit users. We study a new light rail line in Salt Lake City, Utah, USA, which is part of a complete street redevelopment. We utilize a pre-test post-test control group quasi-experimental design to test two different measures of ridership change. The first measure is calculated from stops along the light rail route; the second assumes that nearby bus stops might be displaced by the rail and calculates ridership change with those stops included as baseline. Both the simple measure (transit use changes on the complete street light rail corridor) and the "displacement" measure (transit use changes in the one-quarter mile catchment areas around new light rail stops) showed significant ( p < .01) and substantial (677%) increases in transit passengers compared to pre-light rail bus users. In particular, the displacement analysis discredits a common challenge that when a new light rail line opens, most passengers are simply former bus riders whose routes were canceled in favor of light rail. The study suggests that light rail services can attract additional ridership to public transit systems. In addition, although pre-post control-group designs require time and effort, this project underscores the benefits of such quasi-experimental designs in terms of the strength of the inferences that can be drawn about the impacts of new transit infrastructure and services.

  18. Ophthalmological OCT measuring arm design

    NASA Astrophysics Data System (ADS)

    Xu, Xiaonan; Gao, Jiansong; Guo, Jihua; Xue, Ping

    2002-06-01

    This paper presents a novel ophthamological optical coherence tomography detecting instrument that we design and introduces measuring arm emphatically. For the glaucoma is very common in the orient, this system can achieve both the eyeground detection and the canthus detection. And it combines the cranny lamp's conventional detection with optical coherence tomography. In order to gain the best resolution and the largest scanning range in the OCT detection, we find the optical system should obey these principles in the measuring arm design: (i) the parallel light from the collimator goes through the lens and focuses on the slot of the cranny lamp. The movement of the scanning point produced by the scanner is carrying on along the slot. (Ii) In the whole light route, the scanner images on the laser object lens of the OCT. The center light of the infrared goes through the center of the object lens all the time. Considering all the system, this design has a longitudinal resolution of 15micrometers , and a transverse resolution of 20micrometers at imaging velocity of 4 frames per second.

  19. Tools for controlling protein interactions with light

    PubMed Central

    Tucker, Chandra L.; Vrana, Justin D.; Kennedy, Matthew J.

    2014-01-01

    Genetically-encoded actuators that allow control of protein-protein interactions with light, termed ‘optical dimerizers’, are emerging as new tools for experimental biology. In recent years, numerous new and versatile dimerizer systems have been developed. Here we discuss the design of optical dimerizer experiments, including choice of a dimerizer system, photoexcitation sources, and coordinate use of imaging reporters. We provide detailed protocols for experiments using two dimerization systems we previously developed, CRY2/CIB and UVR8/UVR8, for use controlling transcription, protein localization, and protein secretion with light. Additionally, we provide instructions and software for constructing a pulse-controlled LED light device for use in experiments requiring extended light treatments. PMID:25181301

  20. A remote acceptance probe and illumination configuration for spectral assessment of internal attributes of intact fruit

    NASA Astrophysics Data System (ADS)

    Greensill, Colin V.; Walsh, Kerry B.

    2000-12-01

    Near infrared spectroscopy can be employed in the non-invasive assessment of intact fruit for eating quality attributes such as soluble solid content (SSC). Rapid sorting is dependent on a suitable non-contact geometry of fruit, light source and detector assembly, optimized for a given fruit commodity. An optical system was designed with reference to distribution of SSC and light penetration into rockmelon fruit. SSC of mesocarp tissue was not significantly different over the greater part of the proximal-distal axis of the fruit, particularly in the vicinity of the fruit equator. There was also no consistent variation in SSC of mesocarp tissue with respect to radial position of sampling. Mesocarp SSC was higher (~3% w/v) closer to the seed cavity. The optical sampling system was therefore designed to assess an equatorial position on the fruit. Light penetrating a rockmelon fruit was empirically assessed to be diffuse at a depth of <15 mm from the fruit surface. Signal decreased in an exponential proportionality with depth into the fruit, but was still detectable at depths in excess of the seed cavity of rockmelons. A partial transmittance optical design was employed, with a collimated light source interrupted by a central light stop, and a detector viewing the shadowed region of the sample. This system did not physically contact the sample. It was compared to a system with a light excluding `contacting' shroud between the detector and the fruit surface. The performance of calibrations generated using the non-contact configuration was not significantly different than for the configuration requiring contact.

  1. Optical design and stray light analysis for the JANUS camera of the JUICE space mission

    NASA Astrophysics Data System (ADS)

    Greggio, D.; Magrin, D.; Munari, M.; Zusi, M.; Ragazzoni, R.; Cremonese, G.; Debei, S.; Friso, E.; Della Corte, V.; Palumbo, P.; Hoffmann, H.; Jaumann, R.; Michaelis, H.; Schmitz, N.; Schipani, P.; Lara, L. M.

    2015-09-01

    The JUICE (JUpiter ICy moons Explorer) satellite of the European Space Agency (ESA) is dedicated to the detailed study of Jupiter and its moons. Among the whole instrument suite, JANUS (Jovis, Amorum ac Natorum Undique Scrutator) is the camera system of JUICE designed for imaging at visible wavelengths. It will conduct an in-depth study of Ganymede, Callisto and Europa, and explore most of the Jovian system and Jupiter itself, performing, in the case of Ganymede, a global mapping of the satellite with a resolution of 400 m/px. The optical design chosen to meet the scientific goals of JANUS is a three mirror anastigmatic system in an off-axis configuration. To ensure that the achieved contrast is high enough to observe the features on the surface of the satellites, we also performed a preliminary stray light analysis of the telescope. We provide here a short description of the optical design and we present the procedure adopted to evaluate the stray-light expected during the mapping phase of the surface of Ganymede. We also use the results obtained from the first run of simulations to optimize the baffle design.

  2. An Advanced Sensor Network Design For Subglacial Sensing

    NASA Astrophysics Data System (ADS)

    Martinez, K.; Hart, J. K.; Elsaify, A.; Zou, G.; Padhy, P.; Riddoch, A.

    2006-12-01

    In the Glacsweb project a sensor network has been designed to take sensor measurements inside glaciers and send the data back to a web server autonomously. A wide range of experience was gained in the deployment of the earlier systems and this has been used to develop new hardware and software to better meet the needs of glaciologists using the data from the system. The system was reduced in size, new sensors (compass, light sensor) were added and the radio communications system completely changed. The new 173MHz radio system was designed with an antenna tuned to work in ice and a new network algorithm written to provide better data security. Probes can communicate data through each other (ad-hoc network) and store many months of data in a large buffer to cope with long term communications failures. New sensors include a light reflection measurement in order to provide data on the surrounding material. This paper will discuss the design decisions, the effectiveness of the final system and generic outcomes of use to sensor network designers deploying in difficult environments.

  3. Recent Advances in Cyclodextrin-Based Light-Responsive Supramolecular Systems.

    PubMed

    Zhang, Xiaojin; Ma, Xin; Wang, Kang; Lin, Shijun; Zhu, Shitai; Dai, Yu; Xia, Fan

    2018-06-01

    Cyclodextrins (CDs), one of the host molecules in supramolecular chemistry, can host guest molecules to form inclusion complexes via non-covalent and reversible host-guest interactions. CD-based light-responsive supramolecular systems are typically constructed using CDs and guest molecules with light-responsive moieties, including azobenzene, arylazopyrazole, o-nitrobenzyl ester, pyrenylmethyl ester, coumarin, and anthracene. To date, numerous efforts have been reported on the topic of CD-based light-responsive supramolecular systems, but these have not yet been highlighted in a separated review. This review summarizes the efforts reported over the past ten years. The main text of this review is divided into five sections (vesicles, micelles, gels, capturers, and nanovalves) according to the formation of self-assemblies. This feature article aims to afford a comprehensive understanding of the light-responsive moieties used in the construction of CD-based light-responsive supramolecular systems and to provide a helpful guide for the further design of CD-based light-responsive supramolecular systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development and verification of an innovative photomultiplier calibration system with a 10-fold increase in photometer resolution

    NASA Astrophysics Data System (ADS)

    Jiang, Shyh-Biau; Yeh, Tse-Liang; Chen, Li-Wu; Liu, Jann-Yenq; Yu, Ming-Hsuan; Huang, Yu-Qin; Chiang, Chen-Kiang; Chou, Chung-Jen

    2018-05-01

    In this study, we construct a photomultiplier calibration system. This calibration system can help scientists measuring and establishing the characteristic curve of the photon count versus light intensity. The system uses an innovative 10-fold optical attenuator to enable an optical power meter to calibrate photomultiplier tubes which have the resolution being much greater than that of the optical power meter. A simulation is firstly conducted to validate the feasibility of the system, and then the system construction, including optical design, circuit design, and software algorithm, is realized. The simulation generally agrees with measurement data of the constructed system, which are further used to establish the characteristic curve of the photon count versus light intensity.

  5. [System design of open-path natural gas leakage detection based on Fresnel lens].

    PubMed

    Xia, Hui; Liu, Wen-Qing; Zhang, Yu-Jun; Kan, Rui-Feng; Cui, Yi-Ben; Wang, Min; He, Ying; Cui, Xiao-Juan; Ruan, Jun; Geng, Hui

    2009-03-01

    Based on the technology of tunable diode laser absorption spectroscopy (TDLAS) in conjunction with second harmonic wave detection, a long open-path TDLAS system using a 1.65 microm InGaAsP distributed feedback laser was developed, which is used for detecting pipeline leakage. In this system, a high cost performance Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by a solid corner cube reflector, and focuses the receiving laser-beam to the InGaAs detector. At the same time, the influences of the concentration to the fluctuation of light intensity were taken into account in the process of measurement, and were eliminated by the method of normalized light intensity. As a result, the measurement error caused by the fluctuation of light intensity was made less than 1%. The experiment of natural gas leakage detection was simulated, and the detection sensitivity is 0.1 x 10(-6) (ratio by volume) with a total path of 320 m. According to the receiving light efficiency of the optical system and the detectable minimum light intensity of the detector, the detectable maximal optical path of the system was counted to be 2 000 m. The results of experiment show that it is a feasible design to use the Fresnel lens as the receiving optical system and can satisfy the demand of the leakage detection of natural gas.

  6. Compact system with handheld microfabricated optoelectronic probe for needle-based tissue sensing applications

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yup; Na, Kyounghwan; Pakela, Julia M.; Scheiman, James M.; Yoon, Euisik; Mycek, Mary-Ann

    2017-02-01

    We present the design, development, and bench-top verification of an innovative compact clinical system including a miniaturized handheld optoelectronic sensor. The integrated sensor was microfabricated with die-level light-emitting diodes and photodiodes and fits into a 19G hollow needle (internal diameter: 0.75 mm) for optical sensing applications in solid tissues. Bench-top studies on tissue-simulating phantoms have verified system performance relative to a fiberoptic based tissue spectroscopy system. With dramatically reduced system size and cost, the technology affords spatially configurable designs for optoelectronic light sources and detectors, thereby enabling customized sensing configurations that would be impossible to achieve with needle-based fiber-optic probes.

  7. Lighten Up: Tesla.

    ERIC Educational Resources Information Center

    Wiebe, Ann

    1994-01-01

    Presents a lesson plan detailing an interdisciplinary mathematics/science activity in which students take a home survey of light bulbs and then design an energy-saving lighting system for a home. Contains reproducible student worksheets. (MKR)

  8. White LED visible light communication technology research

    NASA Astrophysics Data System (ADS)

    Yang, Chao

    2017-03-01

    Visible light communication is a new type of wireless optical communication technology. White LED to the success of development, the LED lighting technology is facing a new revolution. Because the LED has high sensitivity, modulation, the advantages of good performance, large transmission power, can make it in light transmission light signal at the same time. Use white LED light-emitting characteristics, on the modulation signals to the visible light transmission, can constitute a LED visible light communication system. We built a small visible optical communication system. The system composition and structure has certain value in the field of practical application, and we also research the key technology of transmitters and receivers, the key problem has been resolved. By studying on the optical and LED the characteristics of a high speed modulation driving circuit and a high sensitive receiving circuit was designed. And information transmission through the single chip microcomputer test, a preliminary verification has realized the data transmission function.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paget, Maria L.; McCullough, Jeffrey J.; Steward, Heidi E.

    Solid-state lighting products for general lighting applications are now gaining a market presence, and more and more people are asking, “Which of these are ‘good’ products? Do they perform as claimed? How do they compare? Light Emitting Diodes (LEDs) differ from other light sources enough to require new procedures for measuring their performance and comparing to other lighting options, so both manufacturers and buyers are facing a learning curve. The energy-efficiency community has traditionally compared light sources based on system efficacy: rated lamp lumens divided by power into the system. This doesn’t work for LEDs because there are no standardmore » LED “lamp” packages and no lamp ratings, and because LED performance depends heavily on thermal, electrical, and optical design of complete lighting unit or ‘luminaire’. Luminaire efficacy is the preferred metric for LEDs because it measures the net light output from the luminaire divided by power into the system.« less

  10. Smart Energy Choices Free Up Dollars for Capital Improvements.

    ERIC Educational Resources Information Center

    Ritchey, David

    2003-01-01

    Describes several ways to design or renovate school building to save thousand of dollars of energy costs. Considers site design, energy-efficient building envelope, renewable energy systems, lighting and electrical systems, mechanical and ventilation systems, water conservation, and transportation. Describes how to obtain information about the…

  11. Light coupling and distribution for Si3N4/SiO2 integrated multichannel single-mode sensing system

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, Andrzej; Dortu, Fabian; Schrevens, Olivier; Giannone, Domenico; Bouville, David; Cassan, Eric; Gylfason, Kristinn B.; Sohlström, Hans; Sanchez, Benito; Griol, Amadeu; Hill, Daniel

    2009-01-01

    We present an efficient and highly alignment-tolerant light coupling and distribution system for a multichannel Si3N4/SiO2 single-mode photonics sensing chip. The design of the input and output couplers and the distribution splitters is discussed. Examples of multichannel data obtained with the system are given.

  12. Designing Light Beam Transmittance Measuring Tool Using a Laser Pointer

    NASA Astrophysics Data System (ADS)

    Nuroso, H.; Kurniawan, W.; Marwoto, P.

    2016-08-01

    A simple instrument used for measuring light beam transmittance percentage made of window film has been developed. The instrument uses a laser pointer of 405 nm and 650 nm ±10% as a light source. Its accuracy approaches 80%. Transmittance data was found by comparing the light beam before and after passing the window film. The light intensity measuring unit was deleted by splitting the light source into two beams through a beam splitter. The light beam was changed into resistance by a NORP12 LDR sensor designed at a circuit of voltage divider rule of Khirchoff's laws. This conversion system will produce light beam intensity received by the sensor to become an equal voltage. This voltage will, then, be presented on the computer screen in the form of a real time graph via a 2.0 USB data transfer.

  13. Sub-pixel accuracy thickness calculation of poultry fillets from scattered laser profiles

    NASA Astrophysics Data System (ADS)

    Jing, Hansong; Chen, Xin; Tao, Yang; Zhu, Bin; Jin, Fenghua

    2005-11-01

    A laser range imaging system based on the triangulation method was designed and implemented for online high-resolution thickness calculation of poultry fillets. A laser pattern was projected onto the surface of the chicken fillet for calculation of the thickness of the meat. Because chicken fillets are relatively loosely-structured material, a laser light easily penetrates the meat, and scattering occurs both at and under the surface. When laser light is scattered under the surface it is reflected back and further blurs the laser line sharpness. To accurately calculate the thickness of the object, the light transportation has to be considered. In the system, the Bidirectional Reflectance Distribution Function (BSSRDF) was used to model the light transportation and the light pattern reflected into the cameras. BSSRDF gives the reflectance of a target as a function of illumination geometry and viewing geometry. Based on this function, an empirical method has been developed and it has been proven that this method can be used to accurately calculate the thickness of the object from a scattered laser profile. The laser range system is designed as a sub-system that complements the X-ray bone inspection system for non-invasive detection of hazardous materials in boneless poultry meat with irregular thickness.

  14. A method for the real-time construction of a full parallax light field

    NASA Astrophysics Data System (ADS)

    Tanaka, Kenji; Aoki, Soko

    2006-02-01

    We designed and implemented a light field acquisition and reproduction system for dynamic objects called LiveDimension, which serves as a 3D live video system for multiple viewers. The acquisition unit consists of circularly arranged NTSC cameras surrounding an object. The display consists of circularly arranged projectors and a rotating screen. The projectors are constantly projecting images captured by the corresponding cameras onto the screen. The screen rotates around an in-plane vertical axis at a sufficient speed so that it faces each of the projectors in sequence. Since the Lambertian surfaces of the screens are covered by light-collimating plastic films with vertical louver patterns that are used for the selection of appropriate light rays, viewers can only observe images from a projector located in the same direction as the viewer. Thus, the dynamic view of an object is dependent on the viewer's head position. We evaluated the system by projecting both objects and human figures and confirmed that the entire system can reproduce light fields with a horizontal parallax to display video sequences of 430x770 pixels at a frame rate of 45 fps. Applications of this system include product design reviews, sales promotion, art exhibits, fashion shows, and sports training with form checking.

  15. Nano-bio assemblies for artificial light harvesting systems

    NASA Astrophysics Data System (ADS)

    Bain, Dipankar; Maity, Subarna; Patra, Amitava

    2018-02-01

    Ultrasmall fluorescent gold nanoclusters (Au NCs) have drawn considerable research interest owing to their molecular like properties such as d-sp and sp-sp transitions, and intense fluorescence. Fluorescent Au NCs have especial attraction in biological system owing to their biocompatibility and high photostability. Recently, several strategies have been adapted to design an artificial light-harvesting system using Au NCs for potential applications. Here, we have designed Au nanoclusters based dsDNA (double stranded deoxyribonucleic acid) nano assemblies where the Au nanocluster is covalently attached with Alexa Fluor 488 (A488) dye tagged dsDNA. Investigation reveals that the incorporation of Ag+ into dsDNA enhances the rate of energy transfer from A488 to Au NCs. In addition cadmium telluride quantum dot (CdTe QDs) based Au NCs hybrid material shows the significant enhancement of energy transfer 35% to 83% with changing the capping ligand of Au NCs from glutathione (GSH) to bovine serum albumin (BSA) protein. Another hybrid system is developed using carbon dots and dye encapsulated BSA-protein capped Au NCs for efficient light harvesting system with 83% energy transfer efficiency. Thus, Au NCs base nano bio assemblies may open up new possibilities for the construction of artificial light harvesting system.

  16. An inexpensive Arduino-based LED stimulator system for vision research.

    PubMed

    Teikari, Petteri; Najjar, Raymond P; Malkki, Hemi; Knoblauch, Kenneth; Dumortier, Dominique; Gronfier, Claude; Cooper, Howard M

    2012-11-15

    Light emitting diodes (LEDs) are being used increasingly as light sources in life sciences applications such as in vision research, fluorescence microscopy and in brain-computer interfacing. Here we present an inexpensive but effective visual stimulator based on light emitting diodes (LEDs) and open-source Arduino microcontroller prototyping platform. The main design goal of our system was to use off-the-shelf and open-source components as much as possible, and to reduce design complexity allowing use of the system to end-users without advanced electronics skills. The main core of the system is a USB-connected Arduino microcontroller platform designed initially with a specific emphasis on the ease-of-use creating interactive physical computing environments. The pulse-width modulation (PWM) signal of Arduino was used to drive LEDs allowing linear light intensity control. The visual stimulator was demonstrated in applications such as murine pupillometry, rodent models for cognitive research, and heterochromatic flicker photometry in human psychophysics. These examples illustrate some of the possible applications that can be easily implemented and that are advantageous for students, educational purposes and universities with limited resources. The LED stimulator system was developed as an open-source project. Software interface was developed using Python with simplified examples provided for Matlab and LabVIEW. Source code and hardware information are distributed under the GNU General Public Licence (GPL, version 3). Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Innovative design of parabolic reflector light guiding structure

    NASA Astrophysics Data System (ADS)

    Whang, Allen J.; Tso, Chun-Hsien; Chen, Yi-Yung

    2008-02-01

    Due to the idea of everlasting green architecture, it is of increasing importance to guild natural light into indoors. The advantages are multifold - to have better color rendering index, excellent energy savings from environments viewpoints and make humans more healthy, etc. Our search is to design an innovative structure, to convert outdoor sun light impinges on larger surfaces, into near linear light beam sources, later convert this light beam into near point sources which enters the indoor spaces then can be used as lighting sources indoors. We are not involved with the opto-electrical transformation, to the guild light into to the building, to perform the illumination, as well as the imaging function. Because non-imaging optics, well known for apply to the solar concentrators, that can use non-imaging structures to fulfill our needs, which can also be used as energy collectors in solar energy devices. Here, we have designed a pair of large and small parabolic reflector, which can be used to collect daylight and change area from large to small. Then we make a light-guide system that is been designed by us use of this parabolic reflector to guide the collection light, can pick up the performance for large surface source change to near linear source and a larger collection area.

  18. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.« less

  19. Open-source products for a lighting experiment device.

    PubMed

    Gildea, Kevin M; Milburn, Nelda

    2014-12-01

    The capabilities of open-source software and microcontrollers were used to construct a device for controlled lighting experiments. The device was designed to ascertain whether individuals with certain color vision deficiencies were able to discriminate between the red and white lights in fielded systems on the basis of luminous intensity. The device provided the ability to control the timing and duration of light-emitting diode (LED) and incandescent light stimulus presentations, to present the experimental sequence and verbal instructions automatically, to adjust LED and incandescent luminous intensity, and to display LED and incandescent lights with various spectral emissions. The lighting device could easily be adapted for experiments involving flashing or timed presentations of colored lights, or the components could be expanded to study areas such as threshold light perception and visual alerting systems.

  20. Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications.

    PubMed

    Etzl, Stefan; Lindner, Robert; Nelson, Matthew D; Winkler, Andreas

    2018-06-08

    Genetically targeting biological systems to control cellular processes with light is the concept of optogenetics. Despite impressive developments in this field, underlying molecular mechanisms of signal transduction of the employed photoreceptor modules are frequently not sufficiently understood to rationally design new optogenetic tools. Here, we investigate the requirements for functional coupling of red light-sensing phytochromes with non-natural enzymatic effectors by creating a series of constructs featuring the Deinococcus radiodurans bacteriophytochrome linked to a Synechocystis guanylate/adenylate cyclase. Incorporating characteristic structural elements important for cyclase regulation in our designs, we identified several red light-regulated fusions with promising properties. We provide details of one light-activated construct with low dark-state activity and high dynamic range that outperforms previous optogenetic tools in vitro and expands our in vivo toolkit, as demonstrated by manipulation of Caenorhabditis elegans locomotor activity. The full-length crystal structure of this phytochrome-linked cyclase revealed molecular details of photoreceptor-effector coupling, highlighting the importance of the regulatory cyclase element. Analysis of conformational dynamics by hydrogen-deuterium exchange in different functional states enriched our understanding of phytochrome signaling and signal integration by effectors. We found that light-induced conformational changes in the phytochrome destabilize the coiled-coil sensor-effector linker, which releases the cyclase regulatory element from an inhibited conformation, increasing cyclase activity of this artificial system. Future designs of optogenetic functionalities may benefit from our work, indicating that rational considerations for the effector improve the rate of success of initial designs to obtain optogenetic tools with superior properties. © 2018 Etzl et al.

  1. Sustainability Engineering and Maintenance - Plan, Design, and Construct for Maintainability: Sustainable Lighting Systems

    DTIC Science & Technology

    2011-01-01

    Window film should be considered to control heat gain. Skylights when positioned and spaced properly with the proper lens systems, admit more light...per unit area than windows, and distribute the light more evenly over the space. Skylights are mainly recommended in single floor high bay...facilities such as warehouses, hangars, gymnasiums, and big box stores.  The optimum material to use for skylights is either glass or acrylic. Double

  2. White LEDs and modules in chip-on-board technology for general lighting

    NASA Astrophysics Data System (ADS)

    Hartmann, Paul; Wenzl, Franz P.; Sommer, Christian; Pachler, Peter; Hoschopf, Hans; Schweighart, Marko; Hartmann, Martin; Kuna, Ladislav; Jakopic, Georg; Leising, Guenther; Tasch, Stefan

    2006-08-01

    At present, light-emitting diode (LED) modules in various shapes are developed and designed for the general lighting, advertisement, emergency lighting, design and architectural markets. To compete with and to surpass the performance of traditional lighting systems, enhancement of Lumen output and the white light quality as well as the thermal management and the luminary integration are key factors for success. Regarding these issues, white LEDs based on the chip-on-board (COB) technology show pronounced advantages. State-of-the-art LEDs exploiting this technology are now ready to enter the general lighting segments. We introduce and discuss the specific properties of the Tridonic COB technology dedicated for general lighting. This technology, in combination with a comprehensive set of tools to improve and to enhance the Lumen output and the white light quality, including optical simulation, is the scaffolding for the application of white LEDs in emerging areas, for which an outlook will be given.

  3. GATEWAY Demonstrations: Tuning Hospital Lighting: Evaluating Tunable LED Lighting at the Swedish Hospital Behavioral Health Unit in Seattle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, Andrea; Davis, Robert G.; Clark, Edward

    The GATEWAY program evaluated a tunable LED lighting system installed in the new Swedish Medical Behavioral Health Unit in Seattle that incorporates color-tunable luminaires in common areas, and uses advanced controls for dimming and color tuning, with the goal of providing a better environment for staff and patients. The report reviews the design of the tunable lighting system, summarizes two sets of measurements, and discusses the circadian, energy, and commissioning implications as well as lessons learned from the project.

  4. Transparent Solar Concentrator for Flat Panel Display

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung

    2012-06-01

    A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.

  5. 19. INTERIOR OF SIDEENTRY UTILITY ROOM SHOWING OPEN 1LIGHT SIDEEXIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR OF SIDE-ENTRY UTILITY ROOM SHOWING OPEN 1LIGHT SIDE-EXIT DOOR AT PHOTO LEFT AND 1-LIGHT OVER 1 LIGHT SASH WINDOW INTO PANTRY AT PHOTO RIGHT. ALCOVE AT PHOTO CENTER WAS ORIGINALLY DESIGNED TO BE A BROOM CLOSET. VIEW TO SOUTHWEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  6. Quantifying the movement of multiple insects using an optical insect counter

    USDA-ARS?s Scientific Manuscript database

    An optical insect counter (OIC) was designed and tested. The new system integrated a line-scan camera and a vertical light sheet along with data collection and image processing software to count numbers of flying insects crossing a vertical plane defined by the light sheet. The system also allows ...

  7. An Investigation of Energy Consumption and Cost in Large Air-Conditioned Buildings. An Interim Report.

    ERIC Educational Resources Information Center

    Milbank, N. O.

    Two similarly large buildings and air conditioning systems are comparatively analyzed as to energy consumption, costs, and inefficiency during certain measured periods of time. Building design and velocity systems are compared to heating, cooling, lighting and distribution capabilities. Energy requirements for pumps, fans and lighting are found to…

  8. Design of a video teleconference facility for a synchronous satellite communications link

    NASA Technical Reports Server (NTRS)

    Richardson, M. D.

    1979-01-01

    The system requirements, design tradeoffs, and final design of a video teleconference facility are discussed, including proper lighting, graphics transmission, and picture aesthetics. Methods currently accepted in the television broadcast industry are used in the design. The unique problems associated with using an audio channel with a synchronous satellite communications link are discussed, and a final audio system design is presented.

  9. Quantum Photonic in Hybrid Cavity Systems with Strong Matter-Light Couplings

    DTIC Science & Technology

    2015-08-24

    properties. [Ref 1, 6] 2. Confinement and coupling of microcavity polaritons were readily implemented by design of the photonic crystal in the new...cavity structure, allowing flexible device design and integration of the polariton system. Zero-dimensional polariton systems were created by reducing...the area of the photonic crystal, coupling between multiple zero-dimensional polariton systems was controlled by design of the boundaries of the

  10. Optical system design, analysis, and production; Proceedings of the Meeting, Geneva, Switzerland, April 19-22, 1983

    NASA Astrophysics Data System (ADS)

    Rogers, P. J.; Fischer, R. E.

    1983-01-01

    Topics considered include: optical system requirements, analysis, and system engineering; optical system design using microcomputers and minicomputers; optical design theory and computer programs; optical design methods and computer programs; optical design methods and philosophy; unconventional optical design; diffractive and gradient index optical system design; optical production and system integration; and optical systems engineering. Particular attention is given to: stray light control as an integral part of optical design; current and future directions of lens design software; thin-film technology in the design and production of optical systems; aspherical lenses in optical scanning systems; the application of volume phase holograms to avionic displays; the effect of lens defects on thermal imager performance; and a wide angle zoom for the Space Shuttle.

  11. Development of a real-time reflectance and transmittance monitoring system for the manufacturing of metaldielectric light absorbers

    NASA Astrophysics Data System (ADS)

    Badoil, Bruno; Cathelinaud, Michel; Lemarchand, Fabien; Lemarquis, Frédéric; Lequime, Michel

    2017-11-01

    Metal-dielectric light absorbers are of great interest for suppressing stray light in optical systems. Such coatings can give an absorption level greater than 99.9% over a broad spectral range provided that the complex refractive index of metallic films is accurately known. For this purpose we developed a new real-time monitoring system that allows to measure in situ both reflectance and transmittance of the coating during manufacturing in the deposition chamber. This paper describes the system design and its characteristics and gives some preliminary results concerning metallic thin film characterizations.

  12. Projection systems with a cut-off line for automotive applications

    NASA Astrophysics Data System (ADS)

    Kloos, G.; Eichhorn, K.

    2005-08-01

    The lighting systems of a car provide a variety of challenges from the point of view of illumination science and technology. Engineering work in this field has to deal both with reflector and lens design as well as with opto-mechanical design and sensor technology. It has direct implications on traffic safety and the efficiency in which energy is used. Therefore, these systems are continuously improved and optimized. In this context, adaptive systems that we investigate for automotive applications gain increasing importance. The properties of the light distribution in the vicinity of the cut-off line are of key importance for the safe and efficient operation of automotive headlamps. An alternative approach is proposed to refine the description of these properties in an attempt to make it more quantitative. This description is intended to facilitate intercomparison between different systems and/or to study environmental influences on the cut-off line of a system under investigation. Designing projection systems it is necessary to take a delicate trade-off between efficiency, light-distribution characteristics, mechanical boundary conditions, and legal requirements into account. Considerations and results on optical properties of three-axial reflectors in dependence of layout parameters will be given. They can serve as a guideline for the optical workshop and for free-form optimization.

  13. Design of a device for sky light polarization measurements.

    PubMed

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-08-14

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky.

  14. Design of a Device for Sky Light Polarization Measurements

    PubMed Central

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-01-01

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky. PMID:25196003

  15. Development of a High Output Fluorescent Light Module for the Commercial Plant Biotechnology Facility

    NASA Technical Reports Server (NTRS)

    Turner, Mark; Zhou, Wei-Jia; Doty, Laura (Technical Monitor)

    2000-01-01

    To maximize the use of available resources provided onboard the International Space Station, the development of an efficient lighting 1 system is critical to the overall performance of the CPBF. Not only is it important to efficiently generate photon energy, but thermal loads on the CPBF Temperature and Humidity Control System must be minimized. By utilizing optical coatings designed to produce highly diffuse reflectance in the visible wavelengths while minimizing reflectance in the infrared region, the design of the fluorescent light module for the CPBF is optimized for maximum photon flux, spatial uniformity and energy efficiency. Since the Fluorescent Light Module must be fully enclosed to meet (ISS) requirements for containment of particulates and toxic materials, heat removal from the lights presented some unique design challenges. By using the Express Rack moderate C, temperature-cooling loop, heat is rejected by means of a liquid/air coolant manifold. Heat transfer to the manifold is performed by conduction using copper fins, by forced air convection using miniature fans, and by radiation using optically selective coatings that absorb in the infrared wavelengths. Using this combination of heat transfer mechanisms builds in redundancy to prevent thermal build up and premature bulb failure.

  16. Scientific Verification Test of Orbitec Deployable Vegetable Production System for Salad Crop Growth on ISS- Gas Exchange System design and function

    NASA Technical Reports Server (NTRS)

    Eldemire, Ashleigh

    2007-01-01

    The ability to produce and maintain salad crops during long term missions would be a great benefit to NASA; the renewable food supply would save cargo space, weight and money. The ambient conditions of previous ground controlled crop plant experiments do not reflect the microgravity and high CO2 concentrations present during orbit. It has been established that microgravity does not considerably alter plant growth. (Monje, Stutte, Chapman, 2005). To support plants in a space-craft environment efficient and effective lighting and containment units are necessary. Three lighting systems were previously evaluated for radish growth in ambient air; fluorescent lamps in an Orbitec Biomass Production System Educational (BPSE), a combination of red, blue, and green LED's in a Deployable Vegetable Production System (Veggie), and a combination of red and blue LED's in a Veggie. When mass measurements compared the entire possible growing area vs. power consumed by the respective units, the Veggies clearly exceeded the BPSE indicating that the LED units were a more resource efficient means of growing radishes under ambient conditions in comparison with fluorescent lighting. To evaluate the most productive light treatment system for a long term space mission a more closely simulated ISS environment is necessary. To induce a CO2 dense atmosphere inside the Veggie's and BPSE a gas exchange system has been developed to maintain a range of 1000-1200 ppm CO2 during a 21-day light treatment experiment. This report details the design and function of the gas exchange system. The rehabilitation, trouble shooting, maintenance and testing of the gas exchange system have been my major assignments. I have also contributed to the planting, daily measurements and harvesting of the radish crops 21-day light treatment verification test.

  17. Analysis and Design of Phase Change Thermal Control for Light Emitting Diode (LED) Spacesuit Helmet Lights

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Nguyen, Hiep X.; Keller, John R.

    2010-01-01

    LED Helmet Extravehicular Activity Helmet Interchangeable Portable (LEHIP) lights for the Extravehicular Mobility Unit (EMU) have been built and tested and are currently being used on the International Space Station. A design is presented of the passive thermal control system consisting of a chamber filled with aluminum foam and wax. A thermal math model of LEHIP was built and correlated by test to show that the thermal design maintains electronic components within hot and cold limits for a 7 hour spacewalk in the most extreme EVA average environments, and do not pose a hazard to the crew or to components of the EMU.

  18. Liquid Argon Scintillation Detection Utilizing Wavelength-Shifting Plates and Light Guides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, B.

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this lightmore » and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.« less

  19. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.« less

  20. KAPAO first light: the design, construction and operation of a low-cost natural guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Severson, Scott A.; Choi, Philip I.; Badham, Katherine E.; Bolger, Dalton; Contreras, Daniel S.; Gilbreth, Blaine N.; Guerrero, Christian; Littleton, Erik; Long, Joseph; McGonigle, Lorcan P.; Morrison, William A.; Ortega, Fernando; Rudy, Alex R.; Wong, Jonathan R.; Spjut, Erik; Baranec, Christoph; Riddle, Reed

    2014-07-01

    We present the instrument design and first light observations of KAPAO, a natural guide star adaptive optics (AO) system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. The KAPAO system has dual science channels with visible and near-infrared cameras, a Shack-Hartmann wavefront sensor, and a commercially available 140-actuator MEMS deformable mirror. The pupil relays are two pairs of custom off-axis parabolas and the control system is based on a version of the Robo-AO control software. The AO system and telescope are remotely operable, and KAPAO is designed to share the Cassegrain focus with the existing TMO polarimeter. We discuss the extensive integration of undergraduate students in the program including the multiple senior theses/capstones and summer assistantships amongst our partner institutions. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  1. Design methodology for micro-discrete planar optics with minimum illumination loss for an extended source.

    PubMed

    Shim, Jongmyeong; Park, Changsu; Lee, Jinhyung; Kang, Shinill

    2016-08-08

    Recently, studies have examined techniques for modeling the light distribution of light-emitting diodes (LEDs) for various applications owing to their low power consumption, longevity, and light weight. The energy mapping technique, a design method that matches the energy distributions of an LED light source and target area, has been the focus of active research because of its design efficiency and accuracy. However, these studies have not considered the effects of the emitting area of the LED source. Therefore, there are limitations to the design accuracy for small, high-power applications with a short distance between the light source and optical system. A design method for compensating for the light distribution of an extended source after the initial optics design based on a point source was proposed to overcome such limits, but its time-consuming process and limited design accuracy with multiple iterations raised the need for a new design method that considers an extended source in the initial design stage. This study proposed a method for designing discrete planar optics that controls the light distribution and minimizes the optical loss with an extended source and verified the proposed method experimentally. First, the extended source was modeled theoretically, and a design method for discrete planar optics with the optimum groove angle through energy mapping was proposed. To verify the design method, design for the discrete planar optics was achieved for applications in illumination for LED flash. In addition, discrete planar optics for LED illuminance were designed and fabricated to create a uniform illuminance distribution. Optical characterization of these structures showed that the design was optimal; i.e., we plotted the optical losses as a function of the groove angle, and found a clear minimum. Simulations and measurements showed that an efficient optical design was achieved for an extended source.

  2. Use of diffusive optical fibers for plant lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozai, T.; Kitaya, Y.; Fujiwara, K.

    1994-12-31

    Lighting is one of the most critical aspects in plant production and environmental research with plants. Much research has been repeated on the effect of light intensity, spectral distribution of light and lighting cycle, but comparatively little research done on the effect of lighting direction on the growth, development and morphology of plants. When plants are grown with lamps above, light is directed downward to the plants. Downward or overhead lighting is utilized in almost all cases. However, downward lighting does not always give the best result in terms of lighting efficiency, growth, development and morphology of plants. Kitaya etmore » al. (1988) developed a lighting system in which two rooting beds were arranged; one above and the other under fluorescent lamps. Lettuce plants grew normally in the lower bed and suspended upside-down under the upper bed. The lettuce plants suspended upside-down were given the light in upward direction (upward lighting). No significant difference in growth, development and morphology was found between the lettuce plants grown by the downward and upward lighting. Combining upward and downward lighting, improved spacing efficiency and reduced electricity cost per plant compared with conventional, downward lighting. From the above example, when designing a lighting system for plants with lamps more lighting direction should be considered. In the present study, a sideward lighting system was developed using diffusive optical fiber belts. More higher quality tissue-cultured transplants could be produced in reduced space with sideward lighting system than with a downward lighting system. An application of the sideward lighting system using diffusive optical fiber belts is described and advantages and disadvantages are discussed.« less

  3. Freeform lens generation for quasi-far-field successive illumination targets

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhenfeng; Thibault, Simon

    2018-07-01

    A predefined mapping to tailor one or more freeform surfaces is employed to build a freeform illumination system. The emergent rays from the light source corresponding to the prescribed target mesh for a pre-determined lighting distance are mapped by a point-to-point algorithm with respect to the freeform optics, which involves limiting design flexibility. To tackle the problem of design limitation and find the optimum design results, a freeform lens is exploited to produce the desired rectangular illumination distribution at successive target planes at quasi-far-field lighting distances. It is generated using numerical solutions to find out an initial starting point, and an appropriate approach to obtain variables for parameterization of the freeform surface is introduced. The relative standard deviation, which is a useful figure of merit for the analysis, is set up as merit function with respect to illumination non-uniformity at the successive sampled target planes. Therefore, the irradiance distribution in terms of the specific lighting distance range can be ensured by the proposed scheme. A design example of a freeform illumination system, composed of a spherical surface and a freeform surface, is given to produce desired irradiance distribution within the lighting distance range. An optical performance with low non-uniformity and high efficiency is achieved. Compared with the conventional approach, the uniformity of the sampled targets is dramatically enhanced; meanwhile, a design result with a large tolerance of LED size is offered.

  4. Introduction to the Solid State Based Interior Lighting System for ISS

    NASA Technical Reports Server (NTRS)

    Maida, James C.

    2014-01-01

    Solid state lighting assembly (SSLA) were designed to replace general luminaire assembly (GLA) for both general interior illumination and improved circadian rhythm through melatonin control using multiple spectrums. To accomplish these goals, the light is design to operate in 3 modes with 3 distinct spectrum. The different spectrum provide control of the blue portion of the light which impacts melatonin production in humans which impacts sleep. General mode is a 4500K "neutral" light spectrum intended to the be the default mode of operation for day to day operations. Pre-sleep mode is a 2700K "warm" light spectrum intended to be used by the crew at the end of the work day. Phase-shift mode is a 6500K "cool" light spectrum intended to be used for altering the crew's sleep patterns.

  5. Insights from Placing Photosynthetic Light Harvesting into Context.

    PubMed

    Demmig-Adams, Barbara; Stewart, Jared J; Burch, Tyson A; Adams, William W

    2014-08-21

    Solar-energy conversion through natural photosynthesis forms the base of virtually all food chains on Earth and provides fiber, materials, and fuels, as well as inspiration for the design of biomimetic energy-conversion systems. We summarize well-known as well as recently discovered feedback loops between natural light-harvesting systems and whole-organism function in natural settings. We propose that the low effective quantum yield of natural light-harvesting systems in high light is caused by downstream limitations rather than unavoidable intrinsic vulnerabilities. We evaluate potential avenues, and their costs and benefits, for increasing the maximal rate and photon yield of photosynthesis in high light in plants and photosynthetic microbes. By summarizing mechanisms observable only in complex systems (whole plants, algae, or, in some cases, intact leaves), we aim to stimulate future research efforts on reciprocal feedback loops between light harvesting and downstream processes in whole organisms and to provide additional arguments for the significance of research on photosynthetic light harvesting.

  6. ViLLaGEs: opto-mechanical design of an on-sky visible-light MEMS-based AO system

    NASA Astrophysics Data System (ADS)

    Grigsby, Bryant; Lockwood, Chris; Baumann, Brian; Gavel, Don; Johnson, Jess; Ammons, S. Mark; Dillon, Daren; Morzinski, Katie; Reinig, Marc; Palmer, Dave; Severson, Scott; Gates, Elinor

    2008-07-01

    Visible Light Laser Guidestar Experiments (ViLLaGEs) is a new Micro-Electro Mechanical Systems (MEMS) based visible-wavelength adaptive optics (AO) testbed on the Nickel 1-meter telescope at Lick Observatory. Closed loop Natural Guide Star (NGS) experiments were successfully carried out during engineering during the fall of 2007. This is a major evolutionary step, signaling the movement of AO technologies into visible light with a MEMS mirror. With on-sky Strehls in I-band of greater than 20% during second light tests, the science possibilities have become evident. Described here is the advanced engineering used in the design and construction of the ViLLaGEs system, comparing it to the LickAO infrared system, and a discussion of Nickel dome infrastructural improvements necessary for this system. A significant portion of the engineering discussion revolves around the sizable effort that went towards eliminating flexure. Then, we detail upgrades to ViLLaGEs to make it a facility class instrument. These upgrades will focus on Nyquist sampling the diffraction limited point spread function during open loop operations, motorization and automation for technician level alignments, adding dithering capabilities and changes for near infrared science.

  7. Design of dual-diameter nanoholes for efficient solar-light harvesting

    PubMed Central

    2014-01-01

    A dual-diameter nanohole (DNH) photovoltaic system is proposed, where a top (bottom) layer with large (small) nanoholes is used to improve the absorption for the short-wavelength (long-wavelength) solar incidence, leading to a broadband light absorption enhancement. Through three-dimensional finite-element simulation, the core device parameters, including the lattice constant, nanohole diameters, and nanohole depths, are engineered in order to realize the best light-matter coupling between nanostructured silicon and solar spectrum. The designed bare DNH system exhibits an outstanding absorption capability with a photocurrent density (under perfect internal quantum process) predicted to be 27.93 mA/cm2, which is 17.39%, 26.17%, and over 100% higher than the best single-nanohole (SNH) system, SNH system with an identical Si volume, and equivalent planar configuration, respectively. Considering the fabrication feasibility, a modified DNH system with an anti-reflection coating and back silver reflector is examined by simulating both optical absorption and carrier transport in a coupled way in frequency and three-dimensional spatial domains, achieving a light-conversion efficiency of 13.72%. PACS 85.60.-q; Optoelectronic device; 84.60.Jt; Photovoltaic conversion PMID:25258605

  8. Dual Telecentric Lens System For Projection Onto Tilted Toroidal Screen

    NASA Technical Reports Server (NTRS)

    Gold, Ronald S.; Hudyma, Russell M.

    1995-01-01

    System of two optical assemblies for projecting image onto tilted toroidal screen. One projection lens optimized for red and green spectral region; other for blue. Dual-channel approach offers several advantages which include: simplified color filtering, simplified chromatic aberration corrections, less complex polarizing prism arrangement, and increased throughput of blue light energy. Used in conjunction with any source of imagery, designed especially to project images formed by reflection of light from liquid-crystal light valve (LCLV).

  9. Research and implementation of a new 6-DOF light-weight robot

    NASA Astrophysics Data System (ADS)

    Tao, Zihang; Zhang, Tao; Qi, Mingzhong; Ji, Junhui

    2017-06-01

    Traditional industrial robots have some weaknesses such as low payload-weight, high power consumption and high cost. These drawbacks limit their applications in such areas, special application, service and surgical robots. To improve these shortcomings, a new kind 6-DOF light-weight robot was designed based on modular joints and modular construction. This paper discusses the general requirements of the light-weight robots. Based on these requirements the novel robot is designed. The new robot is described from two aspects, mechanical design and control system. A prototype robot had developed and a joint performance test platform had designed. Position and velocity tests had conducted to evaluate the performance of the prototype robot. Test results showed that the prototype worked well.

  10. 4D light-field sensing system for people counting

    NASA Astrophysics Data System (ADS)

    Hou, Guangqi; Zhang, Chi; Wang, Yunlong; Sun, Zhenan

    2016-03-01

    Counting the number of people is still an important task in social security applications, and a few methods based on video surveillance have been proposed in recent years. In this paper, we design a novel optical sensing system to directly acquire the depth map of the scene from one light-field camera. The light-field sensing system can count the number of people crossing the passageway, and record the direction and intensity of rays at a snapshot without any assistant light devices. Depth maps are extracted from the raw light-ray sensing data. Our smart sensing system is equipped with a passive imaging sensor, which is able to naturally discern the depth difference between the head and shoulders for each person. Then a human model is built. Through detecting the human model from light-field images, the number of people passing the scene can be counted rapidly. We verify the feasibility of the sensing system as well as the accuracy by capturing real-world scenes passing single and multiple people under natural illumination.

  11. Comparisons of luminaires: Efficacies and system design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, L.D.; Both, A.J.

    1994-12-31

    After reviewing basic information, three design examples have been presented to demonstrate a process of supplemental lighting design. The sequences of each example suggest careful thought and analysis are required to obtain supplemental lighting designs that provide both high levels of PAR and suitable uniformity. The end results should suggest how an analysis can evolve to achieve desired results, and the types of tools and adjustments required. It appears possible to design research greenhouses and plant growth chambers to achieve a {+-}10% PAR uniformity using HIPS luminaires. Further, HPS luminaires (and, by extension, NEHD, etc.) are required to achieve highmore » PAR levels and have the decided advantage of providing the possibility of aiming, which reduces the region of the {open_quotes}edge effect{close_quotes}. Further, for designing plant lighting systems, a modification of the standard IES luminaire data file structure is potentially useful. Luminaire installation is an important factor to obtain PAR uniformity. Spacing and mounting height are critically important. Additionally, the mounting angle of each luminaire must be carefully adjusted to conform with design assumptions. This is true for both plant growth chambers and greenhouses. Surface reflectances are particularly important when designing for small lighted regions such as plant growth chambers and research greenhouses. It is not obvious, just from looking at a surface, what its reflectance is. It is suggested that an effort be mounted to develop valid surface reflectance data to be used by designers. The importance of the surfaces (particularly the walls) in achieving PAR uniformity suggests the importance of periodic cleaning/maintenance to retain initial reflectance values.« less

  12. DEVELOPMENT OF A RATIONALLY BASED DESIGN PROTOCOL FOR THE ULTRAVIOLET LIGHT DISINFECTION PROCESS

    EPA Science Inventory

    A protocol is demonstrated for the design and evaluation of ultraviolet (UV) disinfection systems based on a mathematical model. The disinfection model incorporates the system's physical dimensions, the residence time distribution of the reactor and dispersion characteristics, th...

  13. Nonimaging optical designs for maximum-power-density remote irradiation.

    PubMed

    Feuermann, D; Gordon, J M; Ries, H

    1998-04-01

    Designs for flexible, high-power-density, remote irradiation systems are presented. Applications include industrial infrared heating such as in semiconductor processing, alternatives to laser light for certain medical procedures, and general remote high-brightness lighting. The high power densities in herent to the small active radiating regions of conventional metal-halide, halogen, xenon, microwave-sulfur, and related lamps can be restored with nonimaging concentrators with little loss of power. These high fluxlevels can then be transported at high transmissivity with light channels such as optical fibers or lightpipes, and reshaped into luminaires that can deliver prescribed angular and spatial flux distributions onto desired targets. Details for nominally two- and three-dimensional systems are developed, along with estimates ofoptical performance.

  14. Computational Modeling to Limit the Impact Displays and Indicator Lights Have on Habitable Volume Operational Lighting Constraints

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Salazar, G. A.; Brainard, G. C.; Kolomenski, A.; Hanifin, J.; Schwin, B. M.

    2017-01-01

    NASA has demonstrated an interest in improving astronaut health and performance through the installment of a new lighting countermeasure on the International Space Station. The Solid State Lighting Assembly (SSLA) system is designed to positively influence astronaut health by providing a daily change to light spectrum to improve circadian entrainment. Unfortunately, existing NASA standards and requirements define ambient light level requirements for crew sleep and other tasks, yet the number of light-emitting diode (LED) indicators and displays within a habitable volume is currently uncontrolled. Because each of these light sources has its own unique spectral properties, the additive lighting environment ends up becoming something different from what was planned or researched. Restricting the use of displays and indicators is not a solution because these systems provide beneficial crew feedback.

  15. Back-illuminate fiber system research for multi-object fiber spectroscopic telescope

    NASA Astrophysics Data System (ADS)

    Zhou, Zengxiang; Liu, Zhigang; Hu, Hongzhuan; Wang, Jianping; Zhai, Chao; Chu, Jiaru

    2016-07-01

    In the telescope observation, the position of fiber will highly influence the spectra efficient input in the fiber to the spectrograph. When the fibers were back illuminated on the spectra end, they would export light on the positioner end, so the CCD cameras could capture the photo of fiber tip position covered the focal plane, calculates the precise position information by light centroid method and feeds back to control system. A set of fiber back illuminated system was developed which combined to the low revolution spectro instruments in LAMOST. It could provide uniform light output to the fibers, meet the requirements for the CCD camera measurement. The paper was introduced the back illuminated system design and different test for the light resource. After optimization, the effect illuminated system could compare with the integrating sphere, meet the conditions of fiber position measurement.Using parallel controlled fiber positioner as the spectroscopic receiver is an efficiency observation system for spectra survey, has been used in LAMOST recently, and will be proposed in CFHT and rebuilt telescope Mayall. In the telescope observation, the position of fiber will highly influence the spectra efficient input in the fiber to the spectrograph. When the fibers were back illuminated on the spectra end, they would export light on the positioner end, so the CCD cameras could capture the photo of fiber tip position covered the focal plane, calculates the precise position information by light centroid method and feeds back to control system. After many years on these research, the back illuminated fiber measurement was the best method to acquire the precision position of fibers. In LAMOST, a set of fiber back illuminated system was developed which combined to the low revolution spectro instruments in LAMOST. It could provide uniform light output to the fibers, meet the requirements for the CCD camera measurement and was controlled by high-level observation system which could shut down during the telescope observation. The paper was introduced the back illuminated system design and different test for the light resource. After optimization, the effect illuminated system could compare the integrating sphere, meet the conditions of fiber position measurement.

  16. Prospective communications research to support fly by light/power by wire

    NASA Technical Reports Server (NTRS)

    Game, David

    1994-01-01

    A NASA Research Grant NAG-1-1309, Distributed Fiber Optic Systems for Commercial Aircraft, was awarded during July 1991. This report primarily constitutes a summary of findings of the original background research done at that time. NASA is embarking on a research project to design the next generation of commercial aircraft, fly by light/power by wire. The objectives of this effort are to improve commercial aircraft design by (1) reducing the weight of the aircraft to improve efficiency and (2) improving the fault tolerance and safety of the aircraft by enhancing current systems with new technologies or introducing new systems into the aircraft.

  17. Linear laser diode arrays for improvement in optical disk recording for space stations

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.

    1990-01-01

    The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated.

  18. Design of a concise Féry-prism hyperspectral imaging system based on multi-configuration

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Nie, Yun-feng; Zhou, Jin-song

    2013-08-01

    In order to meet the needs of space borne and airborne hyperspectral imaging system for light weight, simplification and high spatial resolution, a novel design of Féry-prism hyperspectral imaging system based on Zemax multi-configuration method is presented. The novel structure is well arranged by analyzing optical monochromatic aberrations theoretically, and the optical structure of this design is concise. The fundamental of this design is Offner relay configuration, whereas the secondary mirror is replaced by Féry-prism with curved surfaces and a reflective front face. By reflection, the light beam passes through the Féry-prism twice, which promotes spectral resolution and enhances image quality at the same time. The result shows that the system can achieve light weight and simplification, compared to other hyperspectral imaging systems. Composed of merely two spherical mirrors and one achromatized Féry-prism to perform both dispersion and imaging functions, this structure is concise and compact. The average spectral resolution is 6.2nm; The MTFs for 0.45~1.00um spectral range are greater than 0.75, RMSs are less than 2.4um; The maximal smile is less than 10% pixel, while the keystones is less than 2.8% pixel; image quality approximates the diffraction limit. The design result shows that hyperspectral imaging system with one modified Féry-prism substituting the secondary mirror of Offner relay configuration is feasible from the perspective of both theory and practice, and possesses the merits of simple structure, convenient optical alignment, and good image quality, high resolution in space and spectra, adjustable dispersive nonlinearity. The system satisfies the requirements of airborne or space borne hyperspectral imaging system.

  19. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana Teasdale; Francis Rubinstein; Dave Watson

    The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wirelessmore » mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years.« less

  20. Modules to enhance smart lighting education

    NASA Astrophysics Data System (ADS)

    Bunch, Robert M.; Joenathan, Charles; Connor, Kenneth; Chouikha, Mohamed

    2012-10-01

    Over the past several years there has been a rapid advancement in solid state lighting applications brought on by the development of high efficiency light emitting diodes. Development of lighting devices, systems and products that meet the demands of the future lighting marketplace requires workers from many disciplines including engineers, scientists, designers and architects. The National Science Foundation has recognized this fact and established the Smart Lighting Engineering Research Center that promotes research leading to smart lighting systems, partners with industry to enhance innovation and educates a diverse, world-class workforce. The lead institution is Rensselaer Polytechnic Institute with core partners Boston University and The University of New Mexico. Outreach partners include Howard University, Morgan State University, and Rose-Hulman Institute of Technology. Because of the multidisciplinary nature of advanced smart lighting systems workers often have little or no formal education in basic optics, lighting and illumination. This paper describes the initial stages of the development of self-contained and universally applicable educational modules that target essential optics topics needed for lighting applications. The modules are intended to be easily incorporated into new and existing courses by a variety of educators and/or to be used in a series of stand-alone, asynchronous training exercises by new graduate students. The ultimate goal of this effort is to produce resources such as video lectures, video presentations of students-teaching-students, classroom activities, assessment tools, student research projects and laboratories integrated into learning modules. Sample modules and resources will be highlighted. Other outreach activities such as plans for coursework, undergraduate research, design projects, and high school enrichment programs will be discussed.

  1. Replication of Leaf Surface Structures for Light Harvesting

    PubMed Central

    Huang, Zhongjia; Yang, Sai; Zhang, Hui; Zhang, Meng; Cao, Wei

    2015-01-01

    As one of the most important hosts of natural light harvesting, foliage normally has complicated surface structures to capture solar radiances. Bio-mimicking leaf surface structures can provide novel designs of covers in photovoltaic systems. In this article, we reported on replicating leaf surface structures on poly-(methyl methacrylate) polymers to prompt harvesting efficiencies. Prepared via a double transfer process, the polymers were found to have high optical transparencies and transmission hazes, with both values exceeding 80% in some species. Benefiting from optical properties and wrinkled surfaces, the biomimetic polymers brought up to 17% gains to photovoltaic efficiencies. Through Monte-Carlo simulations of light transport, ultrahigh haze values and low reflections were attributed to lightwave guidance schemes lead by the nano- and micro-morphologies which are inherited from master leaves. Thus, leaf surface bio-mimicking can be considered as a strategic direction to design covers of light harvesting systems. PMID:26381702

  2. DMD: a digital light processing application to projection displays

    NASA Astrophysics Data System (ADS)

    Feather, Gary A.

    1989-01-01

    Summary Revolutionary technologies achieve rapid product and subsequent business diffusion only when the in- ventors focus on technology application, maturation, and proliferation. A revolutionary technology is emerg- ing with micro-electromechanical systems (MEMS). MEMS are being developed by leveraging mature semi- conductor processing coupled with mechanical systems into complete, integrated, useful systems. The digital micromirror device (DMD), a Texas Instruments invented MEMS, has focused on its application to projec- tion displays. The DMD has demonstrated its application as a digital light processor, processing and produc- ing compelling computer and video projection displays. This tutorial discusses requirements in the projection display market and the potential solutions offered by this digital light processing system. The seminar in- cludes an evaluation of the market, system needs, design, fabrication, application, and performance results of a system using digital light processing solutions.

  3. Programmable 10 MHz optical fiducial system for hydrodiagnostic cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huen, T.

    1987-07-01

    A solid state light control system was designed and fabricated for use with hydrodiagnostic streak cameras of the electro-optic type. With its use, the film containing the streak images will have on it two time scales simultaneously exposed with the signal. This allows timing and cross timing. The latter is achieved with exposure modulation marking onto the time tick marks. The purpose of using two time scales will be discussed. The design is based on a microcomputer, resulting in a compact and easy to use instrument. The light source is a small red light emitting diode. Time marking can bemore » programmed in steps of 0.1 microseconds, with a range of 255 steps. The time accuracy is based on a precision 100 MHz quartz crystal, giving a divided down 10 MHz system frequency. The light is guided by two small 100 micron diameter optical fibers, which facilitates light coupling onto the input slit of an electro-optic streak camera. Three distinct groups of exposure modulation of the time tick marks can be independently set anywhere onto the streak duration. This system has been successfully used in Fabry-Perot laser velocimeters for over four years in our Laboratory. The microcomputer control section is also being used in providing optical fids to mechanical rotor cameras.« less

  4. Final Technical Report: Commercial Advanced Lighting Control (ALC) Demonstration and Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Gabe

    This three-year demonstration and deployment project sought to address market barriers to accelerating the adoption of Advanced Lighting Controls (ALCs), an underutilized technology with low market penetration. ALCs are defined as networked, addressable lighting control systems that utilize software or intelligent controllers to combine multiple energy-saving lighting control strategies in a single space (e.g., smart-time scheduling, daylight harvesting, task tuning, occupancy control, personal control, variable load-shedding, and plug-load control). The networked intelligent aspect of these systems allows applicable lighting control strategies to be combined in a single space, layered over one another, maximizing overall energy-savings. The project included five realmore » building demonstrations of ALCs across the Northeast US region. The demonstrations provided valuable data and experience to support deployment tasks that are necessary to overcome market barriers. These deployment tasks included development of training resources for building designers, installers, and trades, as well as development of new energy efficiency rebates for the technology from Efficiency Forward’s utility partners. Educating designers, installers, and trades on ALCs is a critical task for reducing the cost of the technology that is currently inflated due to perceived complexity and unfamiliarity with how to design and install the systems. Further, utility and non-utility energy efficiency programs continue to relegate the technology to custom or ill-suited prescriptive program designs that do not effectively deploy the technology at scale. This project developed new, scalable rebate approaches for the technology. Efficiency Forward utilized their DesignLights Consortium® (DLC) brand and network of 81 DLC member utilities to develop and deploy the results of the project. The outputs of the project have included five published case studies, a six-hour ALC technology training curriculum that has already been deployed in five US states, and new rebates offered for the technology that have been deployed by a dozen utilities across the US. Widespread adoption of ALC technology in commercial buildings would provide tremendous benefits. The current market penetration of ALC systems is estimated at <0.1% in commercial buildings. If ALC systems were installed in all commercial buildings, approximately 1,051 TBtu of energy could be saved. This would translate into customer cost savings of approximately $10.7 billion annually.« less

  5. LED surgical lighting system with multiple free-form surfaces for highly sterile operating theater application.

    PubMed

    Liu, Peng; Zhang, Yaqin; Zheng, Zhenrong; Li, Haifeng; Liu, Xu

    2014-06-01

    Although the ventilation system is widely employed in the operating theater, a strictly sterile surgical environment still cannot be ensured because of laminar disturbance, which is mainly caused by the surgical lighting system. Abandoning traditional products, we propose an LED surgical lighting system, which can alleviate the laminar disturbance and provide an appropriate lighting condition for surgery. It contains a certain amount of LED lens units, which are embedded in the ceiling and arranged around the air supply smallpox. The LED lens unit integrated with an LED light source and a free-form lens is required to produce a uniform circular illumination with a large tolerance to the change of lighting distance. To achieve such a dedicated lens, two free-form refractive surfaces, which are converted into two ordinary differential equations by the design method presented in this paper, are used to deflect the rays. The results show that the LED surgical lighting system can provide an excellent illumination environment for surgery, and, apparently, the laminar disturbance also can be relieved.

  6. Designing and researching of the virtual display system based on the prism elements

    NASA Astrophysics Data System (ADS)

    Vasilev, V. N.; Grimm, V. A.; Romanova, G. E.; Smirnov, S. A.; Bakholdin, A. V.; Grishina, N. Y.

    2014-05-01

    Problems of designing of systems for virtual display systems for augmented reality placed near the observers eye (so called head worn displays) with the light guide prismatic elements are considered. Systems of augmented reality is the complex consists of the image generator (most often it's the microdisplay with the illumination system if the display is not self-luminous), the objective which forms the display image practically in infinity and the combiner which organizes the light splitting so that an observer could see the information of the microdisplay and the surrounding environment as the background at the same time. This work deals with the system with the combiner based on the composite structure of the prism elements. In the work three cases of the prism combiner design are considered and also the results of the modeling with the optical design software are presented. In the model the question of the large pupil zone was analyzed and also the discontinuous character (mosaic structure) of the angular field in transmission of the information from the microdisplay to the observer's eye with the prismatic structure are discussed.

  7. Thomson scattering diagnostic system design for the Compact Toroidal Hybrid experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traverso, P. J., E-mail: pjt0002@auburn.edu; Maurer, D. A.; Ennis, D. A.

    2014-11-15

    A new Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The beam, generated by a frequency doubled Continuum PL DLS 2 J Nd:YAG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize the stray laser light that could enter the collection optics. The beam line has been designed with an 8 m propagation distance to the mid-plane of the CTH device with the beam diameter kept less than 3 mm inside the plasma volume. The beam exits the vacuum systemmore » through another Brewster window and enters a beam dump, again to minimize the stray light in the vacuum chamber. Light collection, spectral processing, and signal detection are accomplished with an f/#∼ 1 aspheric lens, a commercially available Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. Spectral rejection of stray laser light, if needed, can be performed with the use of an optional interference filter at the spectrometer input. The system has been developed for initial single point measurements of plasmas with core electron temperatures of approximately 20–300 eV and densities of 5 × 10{sup 18} to 5 × 10{sup 19} m{sup −3} dependent upon operational scenario.« less

  8. Current status and performance of the BESIII electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Fang, Jian; Wang, Zhigang

    2012-12-01

    The design and construction of the BESIII electromagnetic calorimeter is introduced briefly. Radiation dose of CsI(Tl) crystals is monitored and history graph of integral dose of crystals is showed. LED-fiber system is used for monitoring the EMC light output, and large decrease of light output of several crystals is discussed. BESIII electromagnetic calorimeter works very well and its performance reach the design value.

  9. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana Teasdale; Francis Rubinstein; David S. Watson

    Although advanced lighting control systems offer significant energy savings, the high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor,more » and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output, in addition to 0-24 Volt and 0-10 Volt inputs. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multisensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including open and closed-loop daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 20% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years. At 30% market penetration saturation, a cumulative 695 Billion kWh of energy could be saved through 2025, a cost savings of $52 Billion.« less

  10. Universal light-switchable gene promoter system

    DOEpatents

    Quail, Peter H.; Huq, Enamul; Tepperman, James; Sato, Sae

    2005-02-22

    An artificial promoter system that can be fused upstream of any desired gene enabling reversible induction or repression of the expression of the gene at will in any suitable host cell or organisms by light is described. The design of the system is such that a molecule of the plant photoreceptor phytochrome is targeted to the specific DNA binding site in the promoter by a protein domain that is fused to the phytochrome and that specifically recognizes this binding site. This bound phytochrome, upon activation by light, recruits a second fusion protein consisting of a protein that binds to phytochrome only upon light activation and a transcriptional activation domain that activates expression of the gene downstream of the promoter.

  11. Design of the PET-MR system for head imaging of the DREAM Project

    NASA Astrophysics Data System (ADS)

    González, A. J.; Conde, P.; Hernández, L.; Herrero, V.; Moliner, L.; Monzó, J. M.; Orero, A.; Peiró, A.; Rodríguez-Álvarez, M. J.; Ros, A.; Sánchez, F.; Soriano, A.; Vidal, L. F.; Benlloch, J. M.

    2013-02-01

    In this paper we describe the overall design of a PET-MR system for head imaging within the framework of the DREAM Project as well as the first detector module tests. The PET system design consists of 4 rings of 16 detector modules each and it is expected to be integrated in a head dedicated radio frequency coil of an MR scanner. The PET modules are based on monolithic LYSO crystals coupled by means of optical devices to an array of 256 Silicon Photomultipliers. These types of crystals allow to preserve the scintillation light distribution and, thus, to recover the exact photon impact position with the proper characterization of such a distribution. Every module contains 4 Application Specific Integrated Circuits (ASICs) which return detailed information of several light statistical momenta. The preliminary tests carried out on this design and controlled by means of ASICs have shown promising results towards the suitability of hybrid PET-MR systems.

  12. Developing daisy chain receivers for light-emitting diode illumination adopting the digital multiplex-512 protocol.

    PubMed

    Um, Keehong; Yoo, Sooyeup

    2013-10-01

    Protocol for digital multiplex with 512 pieces of information is increasingly adopted in the design of illumination systems. In conventional light-emitting diode systems, the receivers are connected in parallel and each of the receiving units receives all the data from the master dimmer console, but each receiving unit operates by recognizing as its own data that which corresponds to the assigned number of the receiver. Because the serial numbers of illumination devices are transmitted in binary code, synchronization is too complicated to be used properly. In order to improve the protocol of illumination control systems, we propose an algorithm of protocol reception to install and manage the system in a simpler and more convenient way. We propose the systems for controlling the light-emitting diode illumination of simplified receiver slaves adopting the digital multiplex-512 protocol where master console and multiple receiver slaves are connected in a daisy chain fashion. The digital multiplex-512 data packet is received according to the sequence order of their locations from the console, without assigning the sequence number of each channel at the receiving device. The purpose of this paper is to design a simple and small-sized controller for the control systems of lamps and lighting adopting the digital multiplex-512 network.

  13. Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.

    NASA Technical Reports Server (NTRS)

    Hinners, A. H., Jr.; Correale, J. V.

    1973-01-01

    This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.

  14. Design and analysis of reflector for uniform light-emitting diode illuminance.

    PubMed

    Tsai, Chung-Yu

    2013-05-01

    A light-emitting diode (LED) projection system is proposed, composed of an LED chip and a variable-focus-parabolic (VFP) reflector, in which the focal length varies as a function of the vertical displacement of the incidence point relative to the horizontal centerline of the LED chip. The light-ray paths within the projection system are analyzed using an exact analytical model and a skew-ray tracing approach. The profile of the proposed VFP reflector and the position of the LED chip are then optimized in such a way as to enhance the uniformity of the illuminance distribution on the target region of the image plane. The validity of the optimized design is demonstrated by means of ZEMAX simulations. It is shown that the optimized VFP projector system yields a significant improvement in illuminance uniformity compared to conventional spherical and parabolic projectors and therefore minimizes the glare effect.

  15. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Deflection

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Dixit, S. N.; Shore, B. W.; Chambers, D. M.; Britten, J. A.; Kavaya, M. J.

    1999-01-01

    LIDAR systems require a light transmitting system for sending a laser light pulse into space and a receiving system for collecting the retro-scattered light, separating it from the outgoing beam and analyzing the received signal for calculating wind velocities. Currently, a shuttle manifested coherent LIDAR experiment called SPARCLE (SPAce Readiness Coherent Lidar Experiment) includes a silicon wedge (or prism) in its design in order to deflect the outgoing beam 30 degrees relative to the incident direction. The intent of this paper is to present two optical design approaches that may enable the replacement of the optical wedge component (in future, larger aperture, post-SPARCLE missions) with a surface relief transmission diffraction grating. Such a grating could be etched into a lightweight, flat, fused quartz substrate. The potential advantages of a diffractive beam deflector include reduced weight, reduced power requirements for the driving scanning motor, reduced optical sensitivity to thermal gradients, and increased dynamic stability.

  16. Free-form surface design method for a collimator TIR lens.

    PubMed

    Tsai, Chung-Yu

    2016-04-01

    A free-form (FF) surface design method is proposed for a general axial-symmetrical collimator system consisting of a light source and a total internal reflection lens with two coupled FF boundary surfaces. The profiles of the boundary surfaces are designed using a FF surface construction method such that each incident ray is directed (refracted and reflected) in such a way as to form a specified image pattern on the target plane. The light ray paths within the system are analyzed using an exact analytical model and a skew-ray tracing approach. In addition, the validity of the proposed FF design method is demonstrated by means of ZEMAX simulations. It is shown that the illumination distribution formed on the target plane is in good agreement with that specified by the user. The proposed surface construction method is mathematically straightforward and easily implemented in computer code. As such, it provides a useful tool for the design and analysis of general axial-symmetrical optical systems.

  17. Lightning Simulation and Design Program (LSDP)

    NASA Astrophysics Data System (ADS)

    Smith, D. A.

    This computer program simulates a user-defined lighting configuration. It has been developed as a tool to aid in the design of exterior lighting systems. Although this program is used primarily for perimeter security lighting design, it has potential use for any application where the light can be approximated by a point source. A data base of luminaire photometric information is maintained for use with this program. The user defines the surface area to be illuminated with a rectangular grid and specifies luminaire positions. Illumination values are calculated for regularly spaced points in that area and isolux contour plots are generated. The numerical and graphical output for a particular site mode are then available for analysis. The amount of time spent on point-to-point illumination computation with this progress is much less than that required for tedious hand calculations. The ease with which various parameters can be interactively modified with the progress also reduces the time and labor expended. Consequently, the feasibility of design ideas can be examined, modified, and retested more thoroughly, and overall design costs can be substantially lessened by using this progress as an adjunct to the design process.

  18. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    PubMed

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  19. Measurement of vortex flow fields

    NASA Technical Reports Server (NTRS)

    Mcdevitt, T. Kevin; Ambur, Todd A.; Orngard, Gary M.; Owen, F. Kevin

    1992-01-01

    A 3-D laser fluorescence anemometer (LFA) was designed, built, and demonstrated for use in the Langley 16 x 24 inch Water Tunnel. Innovative optical design flexibility combined with compact and portable data acquisition and control systems were incorporated into the instrument. This will allow its use by NASA in other test facilities. A versatile fiber optic system facilities normal and off-axis laser beam alignment, removes mirror losses and improves laser safety. This added optical flexibility will also enable simple adaptation for use in the adjacent jet facility. New proprietary concepts in transmitting color separation, light collection, and novel prism separation of the scattered light was also designed and built into the system. Off-axis beam traverse and alignment complexity led to the requirement for a specialized, programmable transverse controller, and the inclusion of an additional traverse for the off-axis arm. To meet this challenge, an 'in-house' prototype unit was designed and built and traverse control software developed specifically for the water tunnel traverse applications. A specialized data acquisition interface was also required. This was designed and built for the LFA system.

  20. TMAP - A Versatile Mobile Robot

    NASA Astrophysics Data System (ADS)

    Weiss, Joel A.; Simmons, Richard K.

    1989-03-01

    TMAP, the Teleoperated Mobile All-purpose Platform, provides the Army with a low cost, light weight, flexibly designed, modularly expandable platform for support of maneuver forces and light infantry units. The highly mobile, four wheel drive, diesel-hydraulic platform is controllable at distances of up to 4km from a portable operator control unit using either fiber optic or RF control links. The Martin Marietta TMAP system is based on a hierarchical task decomposition Real-time Control System architecture that readily supports interchange of mission packages and provides the capability for simple incorporation of supervisory control concepts leading to increased system autonomy and resulting force multiplication. TMAP has been designed to support a variety of missions including target designation, anti-armor, anti-air, countermine, and reconnaissance/surveillance. As a target designation system TMAP will provide the soldier with increased survivability and effectiveness by providing substantial combat standoff, and the firepower effectiveness of several manual designator operators. Force-on-force analysis of simulated TMAP engagements indicate that TMAP should provide significant force multiplication for the Army in Air-Land Battle 2000.

  1. Optimising probe holder design for sentinel lymph node imaging using clinical photoacoustic system with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Sivasubramanian, Kathyayini; Periyasamy, Vijitha; Wen, Kew Kok; Pramanik, Manojit

    2017-03-01

    Photoacoustic tomography is a hybrid imaging modality that combines optical and ultrasound imaging. It is rapidly gaining attention in the field of medical imaging. The challenge is to translate it into a clinical setup. In this work, we report the development of a handheld clinical photoacoustic imaging system. A clinical ultrasound imaging system is modified to integrate photoacoustic imaging with the ultrasound imaging. Hence, light delivery has been integrated with the ultrasound probe. The angle of light delivery is optimized in this work with respect to the depth of imaging. Optimization was performed based on Monte Carlo simulation for light transport in tissues. Based on the simulation results, the probe holders were fabricated using 3D printing. Similar results were obtained experimentally using phantoms. Phantoms were developed to mimic sentinel lymph node imaging scenario. Also, in vivo sentinel lymph node imaging was done using the same system with contrast agent methylene blue up to a depth of 1.5 cm. The results validate that one can use Monte Carlo simulation as a tool to optimize the probe holder design depending on the imaging needs. This eliminates a trial and error approach generally used for designing a probe holder.

  2. Epi-illumination optical design for fluorescence polarization measurements in flow systems.

    PubMed Central

    Eisert, W G; Beisker, W

    1980-01-01

    An epi-illumination design for fluorescence polarization measurements is introduced in flow cytometry with the optical axis orthogonally aligned to the cell stream. Various optical components and designs are discussed with respect to their influence on polarization measurements. Using the epi-configuration, paired measurements with the direction of polarization of the exciting light changed orthogonally are proposed for the compensation of system anisotropies and electronic mismatch. Large aperture corrections are employed for the excitation as well as for the emission pathway. Additional parameters such as fluorescence at 90 degrees, multiangle light scattering, and high precision cell-sizing by internally calibrated time of the flight measurements, as described previously, remain available with the design proposed here. Fluorescent latex microspheres, stained intracellular DNA, and algae have been used to test performance. PMID:7023562

  3. Flywheel Energy Storage System Designed for the International Space Station

    NASA Technical Reports Server (NTRS)

    Delventhal, Rex A.

    2002-01-01

    Following successful operation of a developmental flywheel energy storage system in fiscal year 2000, researchers at the NASA Glenn Research Center began developing a flight design of a flywheel system for the International Space Station (ISS). In such an application, a two-flywheel system can replace one of the nickel-hydrogen battery strings in the ISS power system. The development unit, sized at approximately one-eighth the size needed for ISS was run at 60,000 rpm. The design point for the flight unit is a larger composite flywheel, approximately 17 in. long and 13 in. in diameter, running at 53,000 rpm when fully charged. A single flywheel system stores 2.8 kW-hr of useable energy, enough to light a 100-W light bulb for over 24 hr. When housed in an ISS orbital replacement unit, the flywheel would provide energy storage with approximately 3 times the service life of the nickel-hydrogen battery currently in use.

  4. Table lamp with dynamically controlled lighting distribution and uniformly illuminated luminous shade

    DOEpatents

    Siminovitch, Michael J.; Page, Erik R.

    2002-01-01

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) or other lamps arranged vertically, i.e. one lamp above the other, with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum ensures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. In a particular configuration, the reflective septum is bowl shaped, with the upper CFL sitting in the bowl, and a luminous shade hanging down from the bowl. The lower CFL provides both task lighting and uniform shade luminance. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. However, other types of lamps, including incandescent, halogen, and LEDs can also be used in the fixture. The lighting system may be designed for the home, hospitality, office or other environments.

  5. Modeling of lighting behaviour of a hybrid lighting system in inner spaces of Building of Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Amado, L.; Osma, G.; Villamizar, R.

    2016-07-01

    This paper presents the modelling of lighting behaviour of a hybrid lighting system - HLS in inner spaces for tropical climate. HLS aims to mitigate the problem of high electricity consumption used by artificial lighting in buildings. These systems integrate intelligently the daylight and artificial light through control strategies. However, selection of these strategies usually depends on expertise of designer and of available budget. In order to improve the selection process of the control strategies, this paper analyses the Electrical Engineering Building (EEB) case, initially modelling of lighting behaviour is established for the HLS of a classroom and an office. This allows estimating the illuminance level of the mixed lighting in the space, and energy consumption by artificial light according to different lighting control techniques, a control strategy based on occupancy and a combination of them. The model considers the concept of Daylight Factor (DF) for the estimating of daylight illuminance on the work plane for tropical climatic conditions. The validation of the model was carried out by comparing the measured and model-estimated indoor illuminances.

  6. Project Dragonfly: A feasibility study of interstellar travel using laser-powered light sail propulsion

    NASA Astrophysics Data System (ADS)

    Perakis, Nikolaos; Schrenk, Lukas E.; Gutsmiedl, Johannes; Koop, Artur; Losekamm, Martin J.

    2016-12-01

    Light sail-based propulsion systems are a candidate technology for interplanetary and interstellar missions due to their flexibility and the fact that no fuel has to be carried along. In 2014, the Initiative for Interstellar Studies (i4is) hosted the Project Dragonfly Design Competition, which aimed at assessing the feasibility of sending an interstellar probe propelled by a laser-powered light sail to another star system. We analyzed and designed a mission to the Alpha Centauri system, with the objective to carry out science operations at the destination. Based on a comprehensive evaluation of currently available technologies and possible locations, we selected a lunar architecture for the laser system. It combines the advantages of surface- and space-based systems, as it requires no station keeping and suffers no atmospheric losses. We chose a graphene-based sandwich material for the light sail because of its low density. Deceleration of the spacecraft sufficient for science operations at the target system is achieved using both magnetic and electric sails. Applying these assumptions in a simulation leads to the conclusion that 250 kg of scientific payload can be sent to Alpha Centauri within the Project Dragonfly Design Competition's constraints of 100 year travel duration and 100 GW laser beam power. This is only sufficient to fulfill parts of the identified scientific objectives, and therefore renders the usefulness of such a mission questionable. A better sail material or higher laser power would improve the acceleration behavior, an increase in the mission time would allow for larger spacecraft masses.

  7. Design and characterization of a small muon tomography system

    NASA Astrophysics Data System (ADS)

    Jo, Woo Jin; An, Su Jung; Kim, Hyun-Il; Lee, Chae Young; Chung, Heejun; Chung, Yong Hyun

    2015-02-01

    Muon tomography is a useful method for monitoring special nuclear materials (SNMs) because it can provide effective information on the presence of high-Z materials, has a high enough energy to deeply penetrate large amounts of shielding, and does not lead to any health risks and danger above background. We developed a 2-D muon detector and designed a muon tomography system employing four detector modules. Two top and two bottom detectors are, respectively, employed to record the incident and the scattered muon trajectories. The detector module for the muon tomography system consists of a plastic scintillator, wavelength-shifting (WLS) fiber arrays placed orthogonally on the top and the bottom of the scintillator, and a position-sensitive photomultiplier (PSPMT). The WLS fiber arrays absorb light photons emitted by the plastic scintillator and re-emit green lights guided to the PSPMT. The light distribution among the WLS fiber arrays determines the position of the muon interaction; consequently, 3-D tomographic images can be obtained by extracting the crossing points of the individual muon trajectories by using a point-of-closest-approach algorithm. The goal of this study is to optimize the design parameters of a muon tomography system by using the Geant4 code and to experimentally evaluate the performance of the prototype detector. Images obtained by the prototype detector with a 420-nm laser light source showed good agreement with the simulation results. This indicates that the proposed detector is feasible for use in a muon tomography system and can be used to verify the Z-discrimination capability of the muon tomography system.

  8. Lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, H.N.

    The lighting section of ASHRAE standard 90.1 is discussed. It applies to all new buildings except low-rise residential, while excluding specialty lighting applications such as signage, art exhibits, theatrical productions, medical and dental tasks, and others. In addition, lighting for indoor plant growth is excluded if designed to operate only between 10 p.m. and 6 a.m. Lighting allowances for the interior of a building are determined by the use of the system performance path unless the space functions are not fully known, such as during the initial stages of design or for speculative buildings. In such cases, the prescriptive pathmore » is available. Lighting allowances for the exterior of all buildings are determined by a table of unit power allowances. A new addition the exterior lighting procedure is the inclusion of facade lighting. However, it is no longer possible to trade-off power allotted for the exterior with the interior of a building or vice versa. A significant change is the new emphasis on lighting controls.« less

  9. Cost-benefit analysis and emission reduction of energy efficient lighting at the Universiti Tenaga Nasional.

    PubMed

    Ganandran, G S B; Mahlia, T M I; Ong, Hwai Chyuan; Rismanchi, B; Chong, W T

    2014-01-01

    This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment.

  10. Cost-Benefit Analysis and Emission Reduction of Energy Efficient Lighting at the Universiti Tenaga Nasional

    PubMed Central

    Ganandran, G. S. B.; Mahlia, T. M. I.; Ong, Hwai Chyuan; Rismanchi, B.; Chong, W. T.

    2014-01-01

    This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment. PMID:25133258

  11. The LSST Dome final design

    NASA Astrophysics Data System (ADS)

    DeVries, J.; Neill, D. R.; Barr, J.; De Lorenzi, Simone; Marchiori, Gianpietro

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) is a large (8.4 meter) wide-field (3.5 degree) survey telescope, which will be located on the Cerro Pachón summit in Chile 1. As a result of the Telescope wide field of view, the optical system is unusually susceptible to stray light 2. In addition, balancing the effect of wind induced telescope vibrations with Dome seeing is crucial. The rotating enclosure system (Dome) includes a moving wind screen and light baffle system. All of the Dome vents include hinged light baffles, which provide exceptional Dome flushing, stray light attenuation, and allows for vent maintenance access from inside the Dome. The wind screen also functions as a light screen, and helps define a clear optical aperture for the Telescope. The Dome must operate continuously without rotational travel limits to accommodate the Telescope cadence and travel. Consequently, the Azimuth drives are located on the fixed lower enclosure to accommodate glycol water cooling without the need for a utility cable wrap. An air duct system aligns when the Dome is in its parked position, and this provides air cooling for temperature conditioning of the Dome during the daytime. A bridge crane and a series of ladders, stairs and platforms provide for the inspection, maintenance and repair of all of the Dome mechanical systems. The contract to build the Dome was awarded to European Industrial Engineering in Mestre, Italy in May 2015. In this paper, we present the final design of this telescope and site sub-system.

  12. Design of an holographic off-axis calibration light source for ARGOS at the LBT

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Gassler, Wolfgang; Peter, Diethard; Blumchen, Thomas; Aigner, Simon; Quirrenbach, Andreas

    We report on the design of an artificial light source for ARGOS, the multiple Rayleigh laser guide star (LGS) facility at the Large Binocular Telescope (LBT). Our light source mimics the expected night-time illumination of the adaptive secondary mirror (ASM) by the laser beacons very accurately and provides a way to check the achieved performance, allowing thorough testing of the system during day time. The optical design makes use of computer generated holograms (CGH) and strong aspheres to achieve a very small residual wavefront error. Additional structures on the CGH facilitate quick and precise alignment of the optics in the prime focus. We demonstrate that the scheme can be applied to the current European Extremely Large Telescope (E-ELT) design in a similar way.

  13. Novel aplanatic designs for LED concentration

    NASA Astrophysics Data System (ADS)

    Ricketts, Melissa; Winston, Roland; Jiang, Lun

    2014-09-01

    Aplanats make great concentrators because of their near perfect imaging. Aplanatic conditions can be satisfied using two surface curves (generally mirrored surfaces) in two dimensions (see Figure 1) which are constructed by successive approximation to create a highly efficient concentrator for both concentration and illumination. For concentration purposes, having a two mirror system would be impossible because the front mirror would block incoming light (see figure 2) so the idea is to replace the front mirror with a "one-way" mirror. Light from a lower index can be transmitted, so if the aplanat surface is a higher index light is allowed to enter, and be trapped. In the Jellyfish design, TIR takes place except for light striking the surface within the range of critical angles. To combat that, a small area of reflective coating is applied to the central top part of the Jellyfish, where TIR fails (In the middle) to keep the light there from directly escaping (see figure 3). The design works in both forwards and reverse. Light entering can be focused to a collecter, or the collecter can be replaced with a light source to concentrate light out. In this case, LEDs are used for their highly efficienct properties.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, Andrea M.; McCullough, Jeffrey J.

    The Yuma Sector Border Patrol Area is a high flux lighting application in a high temperature environment, presenting a formidable challenge for light-emitting diodes (LEDs). This retrofit is an Energy Savings Performance Contract ENABLE project under the U.S. Department of Energy (DOE) Federal Energy Management Program. If high flux LED technology performs well in a region with high ambient temperature and solar radiation, it can perform well in most outdoor environments. The design process for the Yuma retrofit has already provided valuable knowledge to CBP and DOE. The LED lighting system selected for the retrofit is expected to reduce energymore » consumption 69% compared to the incumbent quartz metal halide (QMH) lighting system. If the LED lighting system is installed, GATEWAY will continue to document and disseminate information regarding the installation and long-term performance so that others may also gain valuable knowledge from the Yuma Sector Border Patrol Area lighting retrofit.« less

  15. Tactical lighting in special operations medicine: survey of current preferences.

    PubMed

    Calvano, Christopher J; Enzenauer, Robert W; Eisnor, Derek L; Laporta, Anthony J

    2013-01-01

    Success in Special Operations Forces medicine (SOFMED) is dependent on maximizing visual capability without compromising the provider or casualty position when under fire. There is no single ideal light source suitable for varied SOFMED environments. We present the results of an online survey of Special Operations Medical Operators in an attempt to determine strengths and weaknesses of current systems. There was no consensus ideal hue for tactical illumination. Most Operators own three or more lights, and most lights were not night vision compatible. Most importantly, nearly 25% of respondents reported that lighting issues contributed to a poor casualty outcome; conversely, a majority (50 of 74) stated their system helped prevent a poor outcome. Based on the results of this initial survey, we can affirm that the design and choice of lighting is critical to SOFMED success. We are conducting ongoing studies to further define ideal systems for tactical applications including field, aviation, and marine settings. 2013.

  16. A design of LED adaptive dimming lighting system based on incremental PID controller

    NASA Astrophysics Data System (ADS)

    He, Xiangyan; Xiao, Zexin; He, Shaojia

    2010-11-01

    As a new generation energy-saving lighting source, LED is applied widely in various technology and industry fields. The requirement of its adaptive lighting technology is more and more rigorous, especially in the automatic on-line detecting system. In this paper, a closed loop feedback LED adaptive dimming lighting system based on incremental PID controller is designed, which consists of MEGA16 chip as a Micro-controller Unit (MCU), the ambient light sensor BH1750 chip with Inter-Integrated Circuit (I2C), and constant-current driving circuit. A given value of light intensity required for the on-line detecting environment need to be saved to the register of MCU. The optical intensity, detected by BH1750 chip in real time, is converted to digital signal by AD converter of the BH1750 chip, and then transmitted to MEGA16 chip through I2C serial bus. Since the variation law of light intensity in the on-line detecting environment is usually not easy to be established, incremental Proportional-Integral-Differential (PID) algorithm is applied in this system. Control variable obtained by the incremental PID determines duty cycle of Pulse-Width Modulation (PWM). Consequently, LED's forward current is adjusted by PWM, and the luminous intensity of the detection environment is stabilized by self-adaptation. The coefficients of incremental PID are obtained respectively after experiments. Compared with the traditional LED dimming system, it has advantages of anti-interference, simple construction, fast response, and high stability by the use of incremental PID algorithm and BH1750 chip with I2C serial bus. Therefore, it is suitable for the adaptive on-line detecting applications.

  17. Capsule Design for Blue Light Therapy against Helicobacter pylori.

    PubMed

    Li, Zhangyong; Ren, Binbin; Tan, Haiyan; Liu, Shengrong; Wang, Wei; Pang, Yu; Lin, Jinzhao; Zeng, Chen

    2016-01-01

    A photo-medical capsule that emits blue light for Helicobacter pylori treatment was described in this paper. The system consists of modules for pH sensing and measuring, light-emitting diode driver circuit, radio communication and microcontroller, and power management. The system can differentiate locations by monitoring the pH values of the gastrointestinal tract, and turn on and off the blue light according to the preset range of pH values. Our experimental tests show that the capsule can operate in the effective light therapy mode for more than 32 minutes and the wireless communication module can reliably transmit the measured pH value to a receiver located outside the body.

  18. Residential area streetlight intelligent monitoring management system based on ZigBee and GPRS

    NASA Astrophysics Data System (ADS)

    Liang, Guozhuang; Xu, Xiaoyu

    2017-05-01

    According to current situation of green environmental protection lighting policy and traditional residential lighting system automation degree, low energy efficiency, difficult to management and other problems, the residential area streetlight monitoring management system based on ZigBee and GPRS is proposed. This design is put forward by using sensor technology, ZigBee and GPRS wireless communication technology network. To realize intelligent lighting parameters adjustment, coordination control method of various kinds of sensors is used. The system through multiple ZigBee nodes topology network to collect street light's information, each subnet through the ZigBee coordinator and GPRS network to transmit data. The street lamps can be put on or off, or be adjusted the brightness automatic ally according to the surrounding environmental illumination.

  19. General Aviation Light Aircraft Propulsion: From the 1940's to the Next Century

    NASA Technical Reports Server (NTRS)

    Burkardt, Leo A.

    1998-01-01

    Current general aviation light aircraft are powered by engines that were originally designed in the 1940's. This paper gives a brief history of light aircraft engine development, explaining why the air-cooled, horizontally opposed piston engine became the dominant engine for this class of aircraft. Current engines are fairly efficient, and their designs have been updated through the years, but their basic design and operational characteristics are archaic in comparison to modem engine designs, such as those used in the automotive industry. There have been some innovative engine developments, but in general they have not been commercially successful. This paper gives some insight into the reasons for this lack of success. There is now renewed interest in developing modem propulsion systems for light aircraft, in the fore-front of which is NASA's General Aviation Propulsion (GAP) program. This paper gives an overview of the engines being developed in the GAP program, what they will mean to the general aviation community, and why NASA and its industry partners believe that these new engine developments will bring about a new era in general aviation light aircraft.

  20. A high-speed photographic system for flow visualization in a steam turbine

    NASA Technical Reports Server (NTRS)

    Barna, G. J.

    1973-01-01

    A photographic system was designed to visualize the moisture flow in a steam turbine. Good performance of the system was verified using dry turbine mockups in which an aerosol spray simulated, in a rough way, the moisture flow in the turbine. Borescopes and fiber-optic light tubes were selected as the general instrumentation approach. High speed motion-picture photographs of the liquid flow over the stator blade surfaces were taken using stroboscopic lighting. Good visualization of the liquid flow was obtained. Still photographs of drops in flight were made using short duration flash sources. Drops with diameters as small as 30 micrometers (0.0012 in.) could be resolved. In addition, motion pictures of a spray of water simulating the spray off the rotor blades and shrouds were taken at normal framing rates. Specially constructed light tubes containing small tungsten-halogen lamps were used. Sixteen millimeter photography was used in all cases. Two potential problems resulting from the two-phase turbine flow (attenuation and scattering of light by the fog present and liquid accumulation on the borescope mirrors) were taken into account in the photographic system design but not evaluated experimentally.

  1. A fast feedback method to design easy-molding freeform optical system with uniform illuminance and high light control efficiency.

    PubMed

    Hongtao, Li; Shichao, Chen; Yanjun, Han; Yi, Luo

    2013-01-14

    A feedback method combined with fitting technique based on variable separation mapping is proposed to design freeform optical systems for an extended LED source with prescribed illumination patterns, especially with uniform illuminance distribution. Feedback process performs well with extended sources, while fitting technique contributes not only to the decrease of pieces of sub-surfaces in discontinuous freeform lenses which may cause loss in manufacture, but also the reduction in the number of feedback iterations. It is proved that light control efficiency can be improved by 5%, while keeping a high uniformity of 82%, with only two feedback iterations and one fitting operation can improve. Furthermore, the polar angle θ and azimuthal angle φ is used to specify the light direction from the light source, and the (θ,φ)-(x,y) based mapping and feedback strategy makes sure that even few discontinuous sections along the equi-φ plane exist in the system, they are perpendicular to the base plane, making it eligible for manufacturing the surfaces using injection molding.

  2. Lighting Automation Flying an Earthlike Habitat

    NASA Technical Reports Server (NTRS)

    Clark, Toni A.; Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and potentially earthlike habitat.

  3. Lighting Automation - Flying an Earthlike Habitat

    NASA Technical Reports Server (NTRS)

    Clark, Tori A. (Principal Investigator); Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and potentially earthlike habitat.

  4. Combination of Light and Melatonin Time Cues for Phase Advancing the Human Circadian Clock

    PubMed Central

    Burke, Tina M.; Markwald, Rachel R.; Chinoy, Evan D.; Snider, Jesse A.; Bessman, Sara C.; Jung, Christopher M.; Wright, Kenneth P.

    2013-01-01

    Study Objectives: Photic and non-photic stimuli have been shown to shift the phase of the human circadian clock. We examined how photic and non-photic time cues may be combined by the human circadian system by assessing the phase advancing effects of one evening dose of exogenous melatonin, alone and in combination with one session of morning bright light exposure. Design: Randomized placebo-controlled double-blind circadian protocol. The effects of four conditions, dim light (∼1.9 lux, ∼0.6 Watts/m2)-placebo, dim light-melatonin (5 mg), bright light (∼3000 lux, ∼7 Watts/m2)-placebo, and bright light-melatonin on circadian phase was assessed by the change in the salivary dim light melatonin onset (DLMO) prior to and following treatment under constant routine conditions. Melatonin or placebo was administered 5.75 h prior to habitual bedtime and 3 h of bright light exposure started 1 h prior to habitual wake time. Setting: Sleep and chronobiology laboratory environment free of time cues. Participants: Thirty-six healthy participants (18 females) aged 22 ± 4 y (mean ± SD). Results: Morning bright light combined with early evening exogenous melatonin induced a greater phase advance of the DLMO than either treatment alone. Bright light alone and melatonin alone induced similar phase advances. Conclusion: Information from light and melatonin appear to be combined by the human circadian clock. The ability to combine circadian time cues has important implications for understanding fundamental physiological principles of the human circadian timing system. Knowledge of such principles is important for designing effective countermeasures for phase-shifting the human circadian clock to adapt to jet lag, shift work, and for designing effective treatments for circadian sleep-wakefulness disorders. Citation: Burke TM; Markwald RR; Chinoy ED; Snider JA; Bessman SC; Jung CM; Wright Jr KP. Combination of light and melatonin time cues for phase advancing the human circadian clock. SLEEP 2013;36(11):1617-1624. PMID:24179293

  5. Development for equipment of the milk macromolecules content detection

    NASA Astrophysics Data System (ADS)

    Ding, Guochao; Li, Weimin; Shang, Tingyi; Xi, Yang; Gao, Yunli; Zhou, Zhen

    Developed an experimental device for rapid and accurate detection of milk macromolecular content. This device developed based on laser scattered through principle, the principle use of the ingredients of the scattered light and transmitted light ratio characterization of macromolecules. Peristaltic pump to achieve automatic input and output of the milk samples, designing weak signal detection amplifier circuit for detecting the ratio with ICL7650. Real-time operating system μC / OS-II is the core design of the software part of the whole system. The experimental data prove that the device can achieve a fast real-time measurement of milk macromolecules.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, Malik

    Reliable public lighting remains a critically important and valuable public service in Detroit, Michigan. The Downtown Detroit Energy Efficiency Lighting Program (the, “Program”) was designed and implemented to bring the latest advancements in lighting technology, energy efficiency, public safety and reliability to Detroit’s Central Business District, and the Program accomplished those goals successfully. Downtown’s nighttime atmosphere has been upgraded as a result of the installation of over 1000 new LED roadway lighting fixtures that were installed as part of the Program. The reliability of the lighting system has also improved.

  7. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE PAGES

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.; ...

    2018-04-07

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. Here, these models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH 3BH 3) and endothermic alane (AlH 3).« less

  8. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. Here, these models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH 3BH 3) and endothermic alane (AlH 3).« less

  9. Design of an SolidWorks-based household substrate cultivation device

    NASA Astrophysics Data System (ADS)

    Yi, Guo; Yueying, Wang

    2018-03-01

    Rapid urbanization has caused increasingly severe environmental problems and smaller tillable land area. Even worse, negative reports on vegetable production are repeatedly found. In this case, home gardening has become an inexorable trend. To meet demand for vegetable cultivation in the home environment, an SolidWorks-based household substrate cultivation device has been designed. This device is composed of the cultivation tank, upright post, base, irrigation system, supplemental lighting system and control system. The household substrate cultivation device manufactured based on the design results has shown in practice that this device features an esthetic appearance, low cost, automatic irrigation and lighting supplementation, good vegetable growing conditions, full of ornamental value and practicability and thus is suitable for vegetable growing in the home environment. Hence it has a higher promotion value in the home gardening field.

  10. Software Design for Interactive Graphic Radiation Treatment Simulation Systems*

    PubMed Central

    Kalet, Ira J.; Sweeney, Christine; Jacky, Jonathan

    1990-01-01

    We examine issues in the design of interactive computer graphic simulation programs for radiation treatment planning (RTP), as well as expert system programs that automate parts of the RTP process, in light of ten years of experience at designing, building and using such programs. An experiment in object-oriented design using standard Pascal shows that while some advantage is gained from the design, it is still difficult to achieve modularity and to integrate expert system components. A new design based on the Common LISP Object System (CLOS) is described. This series of designs for RTP software shows that this application benefits in specific ways from object-oriented design methods and appropriate languages and tools.

  11. Design of Dual-Road Transportable Portal Monitoring System for Visible Light and Gamma-Ray Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnowski, Thomas Paul; Cunningham, Mark F; Goddard Jr, James Samuel

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they entermore » and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third alignment camera for motion compensation and are mounted on a 50 deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.« less

  12. Design of dual-road transportable portal monitoring system for visible light and gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Bradley, E. Craig; Chesser, J.; Marchant, W.

    2010-04-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third "alignment" camera for motion compensation and are mounted on a 50' deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.

  13. 77 FR 38857 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Normal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Treatment, Heating Ventilation and Air Conditioning Systems.'' This new standard provides comprehensive test... Criteria for Air Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water-Cooled... NUCLEAR REGULATORY COMMISSION [NRC-2012-0152] Design, Inspection, and Testing Criteria for Air...

  14. Development of two-channel prototype ITER vacuum ultraviolet spectrometer with back-illuminated charge-coupled device and microchannel plate detectors.

    PubMed

    Seon, C R; Choi, S H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2010-10-01

    A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.

  15. Innovative Patient Room Lighting System with Integrated Spectrally Adaptive Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maniccia, Dorene A.; Rizzo, Patricia; Kim, James

    In December of 2013, the U.S. Department of Energy’s SSL R&D Program released a Funding Opportunity Announcement (FOA), that for the first time, contained opportunities for comprehensive application-specific system development. The FOA included opportunities for two applications, one of which was a Patient Room. Philips Lighting Research North America, submitted a proposal for the Patient Room application, and was selected for the complete project award. The award amount was for $497,127, with a Philips Research co-funding commitment 165,709 dollars. The total project value was 662,836 dollars. This project sought to redefine lighting for the patient room application. The goal wasmore » to deliver an innovative LED patient suite (patient room and bathroom) lighting system solution that was 40% more energy-efficient than traditional fluorescent incumbent technologies, and would meet all the visual and non-visual needs of patients, caregivers and visitors, and improve the patient experience. State-of-the-art multichannel LED platforms and control technologies that would provide spectral tuning and become part of an intelligent, connected lighting system drove the solution. The project was scoped into four main task areas that included a) System Concept Creation, b) Identification of the Luminaire Portfolio, c) Development of the Connected Lighting Infrastructure, and d) System Performance Validation. Each of the four main tasks were completed and validated extensively over the course the 2 ½ year project. The system concept was created by first developing a lighting design that demonstrated best practices for patient room lighting – illuminance and uniformity for task performance, reduced glare, and convenient controls, in addition to giving patients control over the lighting in their environment. A framework was defined to deliver circadian support via software behaviors. Through that process luminaires were identified from the Philips portfolio that were adaptable – by their form, dimensions, and optical materials – to mix multicolor LED platforms uniformly and deliver target design lumen levels. The Blue Sky luminaire was selected for the patient bed area to give the illusion of skylight while providing white light on the patient bed. Luminaires used existing 2-channel tunable white LED boards, and newly developed 4-channel LED boards. Red-Orange, Blue, Green, and Blue-shifted Yellow LED chips were selected based on spectral characteristics and their ability to produce high quality white light. 4-channel Power over Ethernet (PoE) drivers were developed and firmware written so they would communicate with both 2- and 4-channel boards. These components formed the backbone of the connected lighting infrastructure. Software, flexible and nuanced in its complexity, was written to set behaviors for myriad lighting scenes in the room throughout the 24 hour day – and all could be overridden by manual controls. This included a dynamic tunable white program, three color changing automatic programs that simulated degrees of sunrise to sunset palettes, and an amber night lighting system that offered visual cues for postural stability to minimize the risk of falls. All programs were carefully designed to provide visual comfort for all occupants, support critical task performance for staff, and to support the patient’s 24hr rhythms. A full scale mockup room was constructed in the Philips Cambridge Lab. The lighting system was installed, tested and functionality demonstrated to ensure smooth operation of system components – luminaires, drivers, PoE switches, wall controls, patient remote, and daylight and occupancy sensors. How did the system perform? It met visual criteria, confirmed by calculations, simulations and measurements in the field. It met non-visual criteria, confirmed by setting circadian stimulus (CS) targets and performing calculations using the calculator developed by the Lighting Research Center. Finally, human factors validation studies were conducted to gain insight from real end users in the healthcare profession; surveys were administered, data analyzed, and audio comments captured. The general consensus was positive, with requests to pilot the system in their hospitals. The importance of the research completed under this grant is that it allowed the exploration and development of a unique lighting system, one that would deliver a blend of visual and non-visual criteria in patient room design for today’s healthcare environment. The research investigated the area of multichannel LED technology, multichannel Power over Ethernet (PoE) drivers and their integration with automatic and manual controls as a system – uncovering and meeting challenges along the way. It married visual needs of patients and staff with support for 24 hour rhythms, placing value on the wellbeing of the patient – while successfully saving energy over incumbent technologies. Indications are that the market is ready and willing to invest – multiple healthcare facilities are in line to pilot this system, recognizing its value beyond energy to patient and staff well-being. Its value to the public can best be expressed by a patient support coordinator who, after spending several hours in the room being immersed in the lighting, analyzing all its features, commented: “This re-writes lighting for healthcare”.« less

  16. The Cosmic Infrared Background Experiment (CIBER): A Sounding Rocket Payload to Study the near Infrared Extragalactic Background Light

    NASA Astrophysics Data System (ADS)

    Zemcov, M.; Arai, T.; Battle, J.; Bock, J.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lee, D. H.; Levenson, L. R.; Mason, P.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Renbarger, T.; Sullivan, I.; Suzuki, K.; Tsumura, K.; Wada, T.

    2013-08-01

    The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.

  17. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): A SOUNDING ROCKET PAYLOAD TO STUDY THE NEAR INFRARED EXTRAGALACTIC BACKGROUND LIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemcov, M.; Bock, J.; Hristov, V.

    2013-08-15

    The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, andmore » electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.« less

  18. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting.

    PubMed

    Tsuei, Chih-Hsuan; Sun, Wen-Shing; Kuo, Chien-Cheng

    2010-11-08

    A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

  19. Pilot Evaluations of Runway Status Light System

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Wills, Robert W.; Smith, R. Marshall

    1996-01-01

    This study focuses on use of the Transport Systems Research Vehicle (TSRV) Simulator at the Langley Research Center to obtain pilot opinion and input on the Federal Aviation Administration's Runway Status Light System (RWSL) prior to installation in an operational airport environment. The RWSL has been designed to reduce the likelihood of runway incursions by visually alerting pilots when a runway is occupied. Demonstrations of the RWSL in the TSRV Simulator allowed pilots to evaluate the system in a realistic cockpit environment.

  20. Real time 3D photometry

    NASA Astrophysics Data System (ADS)

    Fernandez-Balbuena, A. A.; Vazquez-Molini, D.; García-Botella, A.; Romo, J.; Serrano, Ana

    2017-09-01

    The photometry and radiometry measurement is a well-developed field. The necessity of measuring optical systems performance involves the use of several techniques like Gonio-photometry. The Gonio photometers are a precise measurement tool that is used in the lighting area like office, luminaire head car lighting, concentrator /collimator measurement and all the designed and fabricated optical systems that works with light. There is one disadvantage in this kind of measurements that obtain the intensity polar curves and the total flux of the optical system. In the industry, there are good Gonio photometers that are precise and reliable but they are very expensive and the measurement time is long. In industry the cost can be of minor importance but measuring time that is around 30 minutes is of major importance due to trained staff cost. We have designed a system to measure photometry in real time; it consists in a curved screen to get a huge measurement angle and a CCD. The system to be measured projects light onto the screen and the CCD records a video of the screen obtaining an image of the projected profile. A complex calibration permits to trace screen data (x,y,z) to intensity polar curve (I,αγ). This intensity is obtained in candels (cd) with an image + processing time below one second.

  1. Optical system

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Shack, R. V.; Shannon, R. R. (Inventor)

    1985-01-01

    Disclosed is an otpical system used in a spacecraft to observe a remote surface and provide a spatial and spectral image of this surface. The optical system includes aspheric and spherical mirrors aligned to focus at a first focal plane an image of the surface, and a mirror at this first focal plane which reflects light back on to the spherical mirror. This spherical mirror collimates the light and directs it through a prism which disperses it. The dispersed light is then focused on an array of light responsive elements disposed at a second focal plane. The prism is designed such that it disperses light into components of different wavelengths, with the components of shorter wavelengths being dispersed more than the components of longer wavelengths to present at the second focal plane a distribution pattern in which preselected groupings of the components are dispersed over essentially equal spacing intervals.

  2. Modified Light Duty AM2 Capability Assessment

    DTIC Science & Technology

    The Modified Light -Duty AM2 matting was designed specifically for lightweight, remote-piloted aircraft (RPA) applications. An in- depth study was... Ratio (CBR) of 6. To understand the full potential of the Modified Light -Duty AM2, a full- scale evaluation was performed with contingency C-17 and...stir welding for use in fabrication of the lightweight RPA matting in conjunction with a full- scale test on the Modified Light -Duty AM2 matting system

  3. A polarization sensitive hyperspectral imaging system for detection of differences in tissue properties

    NASA Astrophysics Data System (ADS)

    Peller, Joseph A.; Ceja, Nancy K.; Wawak, Amanda J.; Trammell, Susan R.

    2018-02-01

    Polarized light imaging and optical spectroscopy can be used to distinguish between healthy and diseased tissue. In this study, the design and testing of a single-pixel hyperspectral imaging system that uses differences in the polarization of light reflected from tissue to differentiate between healthy and thermally damaged tissue is discussed. Thermal lesions were created in porcine skin (n = 8) samples using an IR laser. The damaged regions were clearly visible in the polarized light hyperspectral images. Reflectance hyperspectral and white light imaging was also obtained for all tissue samples. Sizes of the thermally damaged regions as measured via polarized light hyperspectral imaging are compared to sizes of these regions as measured in the reflectance hyperspectral images and white light images. Good agreement between the sizes measured by all three imaging modalities was found. Hyperspectral polarized light imaging can differentiate between healthy and damaged tissue. Possible applications of this imaging system include determination of tumor margins during cancer surgery or pre-surgical biopsy.

  4. Single optical fiber probe for optogenetics

    NASA Astrophysics Data System (ADS)

    Falk, Ryan; Habibi, Mohammad; Pashaie, Ramin

    2012-03-01

    With the advent of optogenetics, all optical control and visualization of the activity of specific cell types is possible. We have developed a fiber optic based probe to control/visualize neuronal activity deep in the brain of awake behaving animals. In this design a thin multimode optical fiber serves as the head of the probe to be inserted into the brain. This fiber is used to deliver excitation/stimulation optical pulses and guide a sample of the emission signal back to a detector. The major trade off in the design of such a system is to decrease the size of the fiber and intensity of input light to minimize physical damage and to avoid photobleaching/phototoxicity but to keep the S/N reasonably high. Here the excitation light, and the associated emission signal, are frequency modulated. Then the output of the detector is passed through a time-lens which compresses the distributed energy of the emission signal and maximizes the instantaneous S/N. By measuring the statistics of the noise, the structure of the time lens can be designed to achieve the global optimum of S/N. Theoretically, the temporal resolution of the system is only limited by the time lens diffraction limit. By adding a second detector, we eliminated the effect of input light fluctuations, imperfection of the optical filters, and back-reflection of the excitation light. We have also designed fibers and micro mechanical assemblies for distributed delivery and detection of light.

  5. Folded path LWIR system for SWAP constrained platforms

    NASA Astrophysics Data System (ADS)

    Fleet, Erin F.; Wilson, Michael L.; Linne von Berg, Dale; Giallorenzi, Thomas; Mathieu, Barry

    2014-06-01

    Folded path reflection and catadioptric optics are of growing interest, especially in the long wave infrared (LWIR), due to continuing demands for reductions in imaging system size, weight and power (SWAP). We present the optical design and laboratory data for a 50 mm focal length low f/# folded-path compact LWIR imaging system. The optical design uses 4 concentric aspheric mirrors, each of which is described by annular aspheric functions well suited to the folded path design space. The 4 mirrors are diamond turned onto two thin air-spaced aluminum plates which can be manually focused onto the uncooled LWIR microbolometer array detector. Stray light analysis will be presented to show how specialized internal baffling can be used to reduce stray light propagation through the folded path optical train. The system achieves near diffraction limited performance across the FOV with a 15 mm long optical train and a 5 mm back focal distance. The completed system is small enough to reside within a 3 inch diameter ball gimbal.

  6. A design study for a simple-to-fly, constant attitude light aircraft

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Humphreys, D. E.; Montoya, R. J.; Rickard, W. W.; Wilkinson, I. E.

    1973-01-01

    The activities during a four-year study by doctoral students to evolve in detail a design for a simple-to-fly, constant attitude light airplane are described. The study indicated that such aircraft could materially reduce the hazards to light airplane occupants which arise from the high pilot work load and poor visibility that occur during landing. Preliminary cost studies indicate that in volume production this system would increase the cost of the aircraft in roughly the same fashion that automatic transmission, power steering, power brakes, and cruise control increase the cost of a compact car.

  7. Design and evaluation of impact of traffic light priority for trucks on traffic flow.

    DOT National Transportation Integrated Search

    2015-06-01

    Current traffic light control systems treat all vehicles the same. Trucks however have : different dynamics than passenger vehicles. They take a longer distance to stop, have : lower acceleration rates, have bigger turning rates that cause bigger tra...

  8. Realtime system for GLAS on WHT

    NASA Astrophysics Data System (ADS)

    Skvarč, Jure; Tulloch, Simon; Myers, Richard M.

    2006-06-01

    The new ground layer adaptive optics system (GLAS) on the William Herschel Telescope (WHT) on La Palma will be based on the existing natural guide star adaptive optics system called NAOMI. A part of the new developments is a new control system for the tip-tilt mirror. Instead of the existing system, built around a custom built multiprocessor computer made of C40 DSPs, this system uses an ordinary PC machine and a Linux operating system. It is equipped with a high sensitivity L3 CCD camera with effective readout noise of nearly zero. The software design for the tip-tilt system is being completely redeveloped, in order to make a use of object oriented design which should facilitate easier integration with the rest of the observing system at the WHT. The modular design of the system allows incorporation of different centroiding and loop control methods. To test the system off-sky, we have built a laboratory bench using an artificial light source and a tip-tilt mirror. We present results of tip-tilt correction quality using different centroiding algorithms and different control loop methods at different light levels. This system will serve as a testing ground for a transition to a completely PC-based real-time control system.

  9. [Design of high-efficiency double compound parabolic concentrator system in near infrared noninvasive biochemical analysis].

    PubMed

    Gao, Jing; Lu, Qi-Peng; Peng, Zhong-Qi; Ding, Hai-Quan; Gao, Hong-Zhi

    2013-05-01

    High signal-to-noise ratio (SNR) of system is necessary to obtain accurate blood components in near infrared noninvasive biochemical analysis. In order to improve SNR of analytical system, high-efficiency double compound parabolic concentrator (DCPC) system was researched, which was aimed at increasing light utilization efficiency. Firstly, with the request of collection efficiency in near infrared noninvasive biochemical analysis, the characteristic of emergent rays through compound parabolic concentrator (CPC) was analyzed. Then the maximum focusing angle range of the first stage CPC was determined. Secondly, the light utilization efficiency of truncated type was compared with standard DCPC, thus the best structure parameters of DCPC system were optimized. Lastly, combined with optical parameters of skin tissue, calculations were operated when incident wavelength is 1 000 nm. The light utilization efficiency of DCPC system, CPC-focusing mirror system, and non-optical collecting system was calculated. The results show that the light utilization efficiency of the three optical systems is 1.46%, 0.84% and 0.26% respectively. So DCPC system enhances collecting ability for human diffuse reflection light, and helps improve SNR of noninvasive biochemical analysis system and overall analysis accuracy effectively.

  10. The design and optimization for light-algae bioreactor controller based on Artificial Neural Network-Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Hu, Dawei; Liu, Hong; Yang, Chenliang; Hu, Enzhu

    As a subsystem of the bioregenerative life support system (BLSS), light-algae bioreactor (LABR) has properties of high reaction rate, efficiently synthesizing microalgal biomass, absorbing CO2 and releasing O2, so it is significant for BLSS to provide food and maintain gas balance. In order to manipulate the LABR properly, it has been designed as a closed-loop control system, and technology of Artificial Neural Network-Model Predictive Control (ANN-MPC) is applied to design the controller for LABR in which green microalgae, Spirulina platensis is cultivated continuously. The conclusion is drawn by computer simulation that ANN-MPC controller can intelligently learn the complicated dynamic performances of LABR, and automatically, robustly and self-adaptively regulate the light intensity illuminating on the LABR, hence make the growth of microalgae in the LABR be changed in line with the references, meanwhile provide appropriate damping to improve markedly the transient response performance of LABR.

  11. Medical lighting composed of LED arrays for surgical operation

    NASA Astrophysics Data System (ADS)

    Shimada, Junichi; Kawakami, Yoichi; Fujita, Shigeo

    2001-05-01

    Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. Here, we newly design surgical lighting system composed of white LEDs equipped on both sides of goggles, which controls the lighting beams to the gazing point. With this system, it is just needed for surgeons to wear light plastic goggles with high quality LEDs made by Nichia. In fact, we have succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting system on 11th Sept 2000. The electrical power for the system was supplied from lithium-ion battery for 2 hours. Since the white LEDs used were composed of InGaN- blue-emitters and YAG-yellow-phosphors, the color rendering property was not sufficient in the reddish colors. Therefore, in the next approach, it is very important to develop the spectral distribution of white LED to render inherent color of raw flesh such as skin, blood, fat tissue and internal organs.

  12. 76 FR 82323 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0296] Design, Inspection, and Testing Criteria for Air... for public comment draft regulatory guide (DG), DG-1274, ``Design, Inspection, and Testing Criteria... Systems in Light-Water-Cooled Nuclear Power Plants.'' This guide applies to the design, inspection, and...

  13. Proximal design for a multimodality endoscope with multiphoton microscopy, optical coherence microscopy and visual modalities

    NASA Astrophysics Data System (ADS)

    Kiekens, Kelli C.; Talarico, Olivia; Barton, Jennifer K.

    2018-02-01

    A multimodality endoscope system has been designed for early detection of ovarian cancer. Multiple illumination and detection systems must be integrated in a compact, stable, transportable configuration to meet the requirements of a clinical setting. The proximal configuration presented here supports visible light navigation with a large field of view and low resolution, high resolution multiphoton microscopy (MPM), and high resolution optical coherence microscopy (OCM). All modalities are integrated into a single optical system in the endoscope. The system requires two light sources: a green laser for visible light navigation and a compact fiber based femtosecond laser for MPM and OCM. Using an inline wavelength division multiplexer, the two sources are combined into a single mode fiber. To accomplish OCM, a fiber coupler is used to separate the femtosecond laser into a reference arm and signal arm. The reflected reference arm and the signal from the sample are interfered and wavelength separated by a reflection grating and detected using a linear array. The MPM signal is collimated and goes through a series of filters to separate the 2nd and 3rd harmonics as well as twophoton excitation florescence (2PEF) and 3PEF. Each signal is independently detected on a photo multiplier tube and amplified. The visible light is collected by multiple high numerical aperture fibers at the endoscope tip which are bundled into one SMA adapter at the proximal end and connected to a photodetector. This integrated system design is compact, efficient and meets both optical and mechanical requirements for clinical applications.

  14. Design New Buildings To Save Energy -- and Money

    ERIC Educational Resources Information Center

    Rittelmann, Richard

    1974-01-01

    Buildings should be designed so that energy systems function with maximum efficiency. Re-evaluation of standards for ventilation and lighting is recommended. Heat recovery techniques and topography can reduce heating loads. (MF)

  15. Potential of Diesel Engine, Diesel Engine Design Concepts, Control Strategy and Implementation

    DOT National Transportation Integrated Search

    1980-03-01

    Diesel engine design concepts and control system strategies are surveyed with application to passenger cars and light trucks. The objective of the study is to indicate the fuel economy potential of the technologies investigated. The engine design par...

  16. Advanced Turbo-Charging Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-02-27

    The objective of this project is to conduct analysis, design, procurement and test of a high pressure ratio, wide flow range, and high EGR system with two stages of turbocharging. The system needs to meet the stringent 2010MY emissions regulations at 20% + better fuel economy than its nearest gasoline competitor while allowing equivalent vehicle launch characteristics and higher torque capability than its nearest gasoline competitor. The system will also need to meet light truck/ SUV life requirements, which will require validation or development of components traditionally used only in passenger car applications. The conceived system is termed 'seriessequential turbocharger'more » because the turbocharger system operates in series at appropriate times and also sequentially when required. This is accomplished using intelligent design and control of flow passages and valves. Components of the seriessequential system will also be applicable to parallel-sequential systems which are also expected to be in use for future light truck/SUV applications.« less

  17. Design of a novel system for spectroscopy measurements of the aqueous humor

    NASA Astrophysics Data System (ADS)

    Miller, Joe; Uttamchandani, Deepak G.

    2001-06-01

    The authors report on the design of a system which will enable real time measurements of (therapeutic) drug concentrations in the anterior chamber of the eye. Currently the concentration of therapeutic drugs in the anterior chamber is determined by analyzing samples which have been removed from the aqueous humor of laboratory animal eyes. This sampling via paracentesis can be painful and does not provide a continuous measurement. Our system will be far less invasive, removing the need for sampling via paracentesis, and also providing a continuous measurement, enabling a more complete understanding of the kinetics of ophthalmic drugs. A key component in our novel system is a specially constructed contact lens. We report on the design, optimization and manufacture of such a contact lens system capable of directing UV/VIS light in, across and out of the anterior chamber of the eye, thereby enabling absorption spectroscopy measurements of the aqueous humor to be undertaken. Design of the one piece contact lens/mirror system was achieved using the Zemax optical design software package and the lens was fabricated from synthetic fused silica. Results from modeling of the lens and experimental measurements on light propagation across the anterior chamber of animal eyes assisted by the lens will be reported.

  18. Design and fabrication of light weight current collectors for direct methanol fuel cells using the micro-electro mechanical system technique

    NASA Astrophysics Data System (ADS)

    Sung, Min-Feng; Kuan, Yean-Der; Chen, Bing-Xian; Lee, Shi-Min

    The direct methanol fuel cell (DMFC) is suitable for portable applications. Therefore, a light weight and small size is desirable. The main objective of this paper is to design and fabricate a light weight current collector for DMFC usage. The light weight current collector mainly consists of a substrate with two thin film metal layers. The substrate of the current collector is an FR4 epoxy plate. The thin film metal layers are accomplished by the thermo coater technique to coat metal powders onto the substrate surfaces. The developed light weight current collectors are further assembled to a single cell DMFC test fixture to measure the cell performance. The results show that the proposed current collectors could even be applied to DMFCs because they are light, thin and low cost and have potential for mass production.

  19. Mobile health-monitoring system through visible light communication.

    PubMed

    Tan, Yee-Yong; Chung, Wan-Young

    2014-01-01

    Promising development in the light emitting diode (LED) technology has spurred the interest to adapt LED for both illumination and data transmission. This has fostered the growth of interest in visible light communication (VLC), with on-going research to utilize VLC in various applications. This paper presents a mobile-health monitoring system, where healthcare information such as biomedical signals and patient information are transmitted via the LED lighting. A small and portable receiver module is designed and developed to be attached to the mobile device, providing a seamless monitoring environment. Three different healthcare information including ECG, PPG signals and HL7 text information is transmitted simultaneously, using a single channel VLC. This allows for a more precise and accurate monitoring and diagnosis. The data packet size is carefully designed, to transmit information in a minimal packet error rate. A comprehensive monitoring application is designed and developed through the use of a tablet computer in our study. Monitoring and evaluation such as heart rate and arterial blood pressure measurement can be performed concurrently. Real-time monitoring is demonstrated through experiment, where non-hazardous transmission method can be implemented alongside a portable device for better and safer healthcare service.

  20. Evaluation of absorption cycle for space station environmental control system application

    NASA Technical Reports Server (NTRS)

    Sims, W. H.; Oneill, M. J.; Reid, H. C.; Bisenius, P. M.

    1972-01-01

    The study to evaluate an absorption cycle refrigeration system to provide environmental control for the space stations is reported. A zero-gravity liquid/vapor separator was designed and tested. The results were used to design a light-weight, efficient generator for the absorption refrigeration system. It is concluded that absorption cycle refrigeration is feasible for providing space station environmental control.

  1. GATEWAY Report Brief: Evaluating Tunable LED Lighting in the Swedish Medical Behavioral Health Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Summary of a GATEWAY report evaluation of a tunable LED lighting system installed in the new Swedish Medical Behavioral Health Unit in Seattle that incorporates color-tunable luminaires in common areas, and uses advanced controls for dimming and color tuning, with the goal of providing a better environment for staff and patients. The report reviews the design of the tunable lighting system, summarizes two sets of measurements, and discusses the circadian, energy, and commissioning implications as well as lessons learned from the project.

  2. Enhancement of efficiency in the use of light for cultivation of plants in controlled ecological systems

    NASA Technical Reports Server (NTRS)

    Mashinsky, A. L.; Oreshkin, V. I.; Nechitailo, G. S.

    1994-01-01

    The problems of plant cultivation with the use of artificial lighting are related to energetics and, initially, to the lack of effective sources for photosynthesis, secondly to the necessity to supply a system with a considerable power in the form of light energy and to remove transformed thermal energy, and finally to economic considerations. These problems are solved by three ways: by the choice of effective radiation sources, design approaches, and technological methods of cultivation. Here we shall consider the first two ways.

  3. Commissioning and Early Operation for the NSLS-II Booster RF System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marques, C.; Cupolo, J.; Davila, P.

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL) is a third generation 3GeV, 500mA synchrotron light source. We discuss the booster synchrotron RF system responsible for providing power to accelerate an electron beam from 200MeV to 3GeV. The RF system design and construction are complete and is currently in the operational phase of the NSLS-II project. Preliminary operational data is also discussed.

  4. Lens Design Using Group Indices of Refraction

    NASA Technical Reports Server (NTRS)

    Vaughan, A. H.

    1995-01-01

    An approach to lens design is described in which the ratio of the group velocity to the speed of light (the group index) in glass is used, in conjunction with the more familiar phase index of refraction, to control certain chromatic properties of a system of thin lenses in contact. The first-order design of thin-lens systems is illustrated by examples incorporating the methods described.

  5. Eyes Wide Shut: the impact of dim-light vision on neural investment in marine teleosts.

    PubMed

    Iglesias, Teresa L; Dornburg, Alex; Warren, Dan L; Wainwright, Peter C; Schmitz, Lars; Economo, Evan P

    2018-05-28

    Understanding how organismal design evolves in response to environmental challenges is a central goal of evolutionary biology. In particular, assessing the extent to which environmental requirements drive general design features among distantly related groups is a major research question. The visual system is a critical sensory apparatus that evolves in response to changing light regimes. In vertebrates, the optic tectum is the primary visual processing centre of the brain and yet it is unclear how or whether this structure evolves while lineages adapt to changes in photic environment. On one hand, dim-light adaptation is associated with larger eyes and enhanced light-gathering power that could require larger information processing capacity. On the other hand, dim-light vision may evolve to maximize light sensitivity at the cost of acuity and colour sensitivity, which could require less processing power. Here, we use X-ray microtomography and phylogenetic comparative methods to examine the relationships between diel activity pattern, optic morphology, trophic guild and investment in the optic tectum across the largest radiation of vertebrates-teleost fishes. We find that despite driving the evolution of larger eyes, enhancement of the capacity for dim-light vision generally is accompanied by a decrease in investment in the optic tectum. These findings underscore the importance of considering diel activity patterns in comparative studies and demonstrate how vision plays a role in brain evolution, illuminating common design principles of the vertebrate visual system. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  6. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system

    NASA Astrophysics Data System (ADS)

    Ragazzon, Giulio; Baroncini, Massimo; Silvi, Serena; Venturi, Margherita; Credi, Alberto

    2015-01-01

    Biomolecular motors convert energy into directed motion and operate away from thermal equilibrium. The development of dynamic chemical systems that exploit dissipative (non-equilibrium) processes is a challenge in supramolecular chemistry and a premise for the realization of artificial nanoscale motors. Here, we report the relative unidirectional transit of a non-symmetric molecular axle through a macrocycle powered solely by light. The molecular machine rectifies Brownian fluctuations by energy and information ratchet mechanisms and can repeat its working cycle under photostationary conditions. The system epitomizes the conceptual and practical elements forming the basis of autonomous light-powered directed motion with a minimalist molecular design.

  7. Design of an explosive detection system using Monte Carlo method.

    PubMed

    Hernández-Adame, Pablo Luis; Medina-Castro, Diego; Rodriguez-Ibarra, Johanna Lizbeth; Salas-Luevano, Miguel Angel; Vega-Carrillo, Hector Rene

    2016-11-01

    Regardless the motivation terrorism is the most important risk for the national security in many countries. Attacks with explosives are the most common method used by terrorists. Therefore several procedures to detect explosives are utilized; among these methods are the use of neutrons and photons. In this study the Monte Carlo method an explosive detection system using a 241 AmBe neutron source was designed. In the design light water, paraffin, polyethylene, and graphite were used as moderators. In the work the explosive RDX was used and the induced gamma rays due to neutron capture in the explosive was estimated using NaI(Tl) and HPGe detectors. When light water is used as moderator and HPGe as the detector the system has the best performance allowing distinguishing between the explosive and urea. For the final design the Ambient dose equivalent for neutrons and photons were estimated along the radial and axial axis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Calculation comparison of an additive and subtractive light modulator for high-resolution pixellight headlamps

    NASA Astrophysics Data System (ADS)

    Held, Marcel Philipp; Ley, Peer-Phillip; Lachmayer, Roland

    2018-02-01

    High-resolution vehicle headlamps represent a future-oriented technology that increases traffic safety and driving comfort in the dark. A further development to current matrix beam headlamps are LED-based pixellight systems which enable additional lighting functions (e.g. the projection of navigation information on the road) to be activated for given driving scenarios. The image generation is based on spatial light modulators (SLM) such as digital micromirror devices (DMD), liquid crystal displays (LCD), liquid crystal on silicon (LCoS) devices or LED arrays. For DMD-, LCD- and LCoSbased headlamps, the optical system uses illumining optics to ensure a precise illumination of the corresponding SLM. LED arrays, however, have to use imaging optics to project the LED die onto an intermediate image plane and thus create the light distribution via an apposition of gapless juxtapositional LED die images. Nevertheless, the lambertian radiation characteristics complex the design of imaging optics regarding a highefficiency setup with maximum resolution and luminous flux. Simplifying the light source model and its emitting characteristics allows to determine a balanced setup between these parameters by using the Etendue and to ´ calculate the maximum possible efficacy and luminous flux for each technology in an early designing stage. Therefore, we present a calculation comparison of how simplifying the light source model can affect the Etendue ´ conservation and the setup design for two high-resolution technologies. The shown approach is evaluated and compared to simulation models to show the occurring deviation and its applicability.

  9. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement

    DOE PAGES

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; ...

    2014-01-01

    A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parametermore » dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.« less

  10. Precision and Accuracy Parameters in Structured Light 3-D Scanning

    NASA Astrophysics Data System (ADS)

    Eiríksson, E. R.; Wilm, J.; Pedersen, D. B.; Aanæs, H.

    2016-04-01

    Structured light systems are popular in part because they can be constructed from off-the-shelf low cost components. In this paper we quantitatively show how common design parameters affect precision and accuracy in such systems, supplying a much needed guide for practitioners. Our quantitative measure is the established VDI/VDE 2634 (Part 2) guideline using precision made calibration artifacts. Experiments are performed on our own structured light setup, consisting of two cameras and a projector. We place our focus on the influence of calibration design parameters, the calibration procedure and encoding strategy and present our findings. Finally, we compare our setup to a state of the art metrology grade commercial scanner. Our results show that comparable, and in some cases better, results can be obtained using the parameter settings determined in this study.

  11. Integral equation and discontinuous Galerkin methods for the analysis of light-matter interaction

    NASA Astrophysics Data System (ADS)

    Baczewski, Andrew David

    Light-matter interaction is among the most enduring interests of the physical sciences. The understanding and control of this physics is of paramount importance to the design of myriad technologies ranging from stained glass, to molecular sensing and characterization techniques, to quantum computers. The development of complex engineered systems that exploit this physics is predicated at least partially upon in silico design and optimization that properly capture the light-matter coupling. In this thesis, the details of computational frameworks that enable this type of analysis, based upon both Integral Equation and Discontinuous Galerkin formulations will be explored. There will be a primary focus on the development of efficient and accurate software, with results corroborating both. The secondary focus will be on the use of these tools in the analysis of a number of exemplary systems.

  12. Careers in Academe: The Academic Labour Market as an Eco-System

    ERIC Educational Resources Information Center

    Baruch, Yehuda

    2013-01-01

    Purpose: This paper aims to explore the contrast between stable and dynamic labour markets in academe in light of career theories that were originally developed for business environments. Design/methodology/approach: A conceptual design, offering the eco-system as a framework. Findings: It evaluates their relevance and applicability to dynamic and…

  13. Design method of freeform light distribution lens for LED automotive headlamp based on DMD

    NASA Astrophysics Data System (ADS)

    Ma, Jianshe; Huang, Jianwei; Su, Ping; Cui, Yao

    2018-01-01

    We propose a new method to design freeform light distribution lens for light-emitting diode (LED) automotive headlamp based on digital micro mirror device (DMD). With the Parallel optical path architecture, the exit pupil of the illuminating system is set in infinity. Thus the principal incident rays of micro lens in DMD is parallel. DMD is made of high speed digital optical reflection array, the function of distribution lens is to distribute the emergent parallel rays from DMD and get a lighting pattern that fully comply with the national regulation GB 25991-2010.We use DLP 4500 to design the light distribution lens, mesh the target plane regulated by the national regulation GB 25991-2010 and correlate the mesh grids with the active mirror array of DLP4500. With the mapping relations and the refraction law, we can build the mathematics model and get the parameters of freeform light distribution lens. Then we import its parameter into the three-dimensional (3D) software CATIA to construct its 3D model. The ray tracing results using Tracepro demonstrate that the Illumination value of target plane is easily adjustable and fully comply with the requirement of the national regulation GB 25991-2010 by adjusting the exit brightness value of DMD. The theoretical optical efficiencies of the light distribution lens designed using this method could be up to 92% without any other auxiliary lens.

  14. Fast and accurate modeling of stray light in optical systems

    NASA Astrophysics Data System (ADS)

    Perrin, Jean-Claude

    2017-11-01

    The first problem to be solved in most optical designs with respect to stray light is that of internal reflections on the several surfaces of individual lenses and mirrors, and on the detector itself. The level of stray light ratio can be considerably reduced by taking into account the stray light during the optimization to determine solutions in which the irradiance due to these ghosts is kept to the minimum possible value. Unhappily, the routines available in most optical design software's, for example CODE V, do not permit all alone to make exact quantitative calculations of the stray light due to these ghosts. Therefore, the engineer in charge of the optical design is confronted to the problem of using two different software's, one for the design and optimization, for example CODE V, one for stray light analysis, for example ASAP. This makes a complete optimization very complex . Nevertheless, using special techniques and combinations of the routines available in CODE V, it is possible to have at its disposal a software macro tool to do such an analysis quickly and accurately, including Monte-Carlo ray tracing, or taking into account diffraction effects. This analysis can be done in a few minutes, to be compared to hours with other software's.

  15. Dirt detection on brown eggs by means of color computer vision.

    PubMed

    Mertens, K; De Ketelaere, B; Kamers, B; Bamelis, F R; Kemps, B J; Verhoelst, E M; De Baerdemaeker, J G; Decuypere, E M

    2005-10-01

    In the last 20 yr, different methods for detecting defects in eggs were developed. Until now, no satisfying technique existed to sort and quantify dirt on eggshells. The work presented here focuses on the design of an off-line computer vision system to differentiate and quantify the presence of different dirt stains on brown eggs: dark (feces), white (uric acid), blood, and yolk stains. A system that provides uniform light exposure around the egg was designed. In this uniform light, pictures of dirty and clean eggs were taken, stored, and analyzed. The classification was based on a few standard logical operators, allowing for a quick implementation in an online set-up. In an experiment, 100 clean and 100 dirty eggs were used to validate the classification algorithm. The designed vision system showed an accuracy of 99% for the detection of dirt stains. Two percent of the clean eggs had a light-colored eggshell and were subsequently mistaken for showing large white stains. The accuracy of differentiation of the different kinds of dirt stains was 91%. Of the eggs with dark stains, 10.81% were mistaken for having bloodstains, and 33.33% of eggs with bloodstains were mistaken for having dark stains. The developed system is possibly a first step toward an on line dirt evaluation technique for brown eggs.

  16. Design of LED projector based on gradient-index lens

    NASA Astrophysics Data System (ADS)

    Qian, Liyong; Zhu, Xiangbing; Cui, Haitian; Wang, Yuanhang

    2018-01-01

    In this study, a new type of projector light path is designed to eliminate the deficits of existing projection systems, such as complex structure and low collection efficiency. Using a three-color LED array as the lighting source, by means of the special optical properties of a gradient-index lens, the complex structure of the traditional projector is simplified. Traditional components, such as the color wheel, relay lens, and mirror, become unnecessary. In this way, traditional problems, such as low utilization of light energy and loss of light energy, are solved. With the help of Zemax software, the projection lens is optimized. The optimized projection lens, LED, gradient-index lens, and digital micromirror device are imported into Tracepro. The ray tracing results show that both the utilization of light energy and the uniformity are improved significantly.

  17. A design of calibration single star simulator with adjustable magnitude and optical spectrum output system

    NASA Astrophysics Data System (ADS)

    Hu, Guansheng; Zhang, Tao; Zhang, Xuan; Shi, Gentai; Bai, Haojie

    2018-03-01

    In order to achieve multi-color temperature and multi-magnitude output, magnitude and temperature can real-time adjust, a new type of calibration single star simulator was designed with adjustable magnitude and optical spectrum output in this article. xenon lamp and halogen tungsten lamp were used as light source. The control of spectrum band and temperature of star was realized with different multi-beam narrow band spectrum with light of varying intensity. When light source with different spectral characteristics and color temperature go into the magnitude regulator, the light energy attenuation were under control by adjusting the light luminosity. This method can completely satisfy the requirements of calibration single star simulator with adjustable magnitude and optical spectrum output in order to achieve the adjustable purpose of magnitude and spectrum.

  18. Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killoran, N.; Huelga, S. F.; Plenio, M. B.

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system’s power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principlemore » and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle’s relevance in parameter regimes connected to natural light-harvesting structures.« less

  19. Expeditionary Lighting Systems for Military Shelters

    DTIC Science & Technology

    2009-11-04

    Lumiled LED Housing Nonimaging Beamformer Heat Sink Connector Retractable Cable O Transportation Configuration Physical Optics Corporation (POC) LED...New Lighting Technologies: • Technology: Light Emitting Diode (LED) o Physical Optics Corp [SBIR] o Techshot [SBIR] [Congressional Effort o Jameson LED...rugged and durable—no lamp to damage or replace • Custom designed optical diffuser prevents glare and “eye spots” • Operates on universal voltage, 90

  20. Schlieren with a laser diode source

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Franke, J. M.

    1981-01-01

    The use of a laser diode as a light source for a schlieren system designed to study phase objects such as a wind-tunnel flow is explored. A laser diode schlieren photograph and a white light schlieren photograph (zirconium arc source) are presented for comparison. The laser diode has increased sensitivity, compared with light schlieren, without appreciable image degradiation, and is an acceptable source for schlieren flow visualization.

  1. A New Greenhouse Photoperiod Lighting System for Prevenction of Seedling Dormancy

    Treesearch

    Richard W. Tinus

    1995-01-01

    An oscillating light fixture consisting of a 400-watt high-pressure sodium arc lamp and an oscillating parabolic mirror was designed and tested on blue spruce (Picea pungens Engelm.). It successfully prevented apical bud dormancy at distances up to 13m (43 ft) and light intensities as low as 0.5 µE/m²/sec (4 foot-candles) in a greenhouse.

  2. Designs for optimizing depth of focus and spot size for UV laser ablation

    NASA Astrophysics Data System (ADS)

    Wei, An-Chi; Sze, Jyh-Rou; Chern, Jyh-Long

    2010-11-01

    The proposed optical systems are designed for extending the depths of foci (DOF) of UV lasers, which can be exploited in the laser-ablation technologies, such as laser machining and lithography. The designed systems are commonly constructed by an optical module that has at least one aspherical surface. Two configurations of optical module, lens-only and lens-reflector, are presented with the designs of 2-lens and 1-lens-1-reflector demonstrated by commercially optical software. Compared with conventional DOF-enhanced systems, which required the chromatic aberration lenses and the light sources with multiple wavelengths, the proposed designs are adapted to the single-wavelength systems, leading to more economical and efficient systems.

  3. Development of high yielding photonic light delivery system for photodynamic therapy of esophageal carcinomas

    NASA Astrophysics Data System (ADS)

    Premasiri, Amaranath; Happawana, Gemunu; Rosen, Arye

    2007-02-01

    Photodynamic therapy (PDT) is an approved treatment modality for Barrett's and invasive esophageal carcinoma. Proper Combination of photosentizing agent, oxygen, and a specific wavelength of light to activate the photosentizing agents is necessary for the cytotoxic destruction of cancerous cells by PDT. As a light source expensive solid-state laser sources currently are being used for the treatment. Inexpensive semiconductor lasers have been suggested for the light delivery system, however packaging of semiconductor lasers for optimal optical power output is challenging. In this paper, we present a multidirectional direct water-cooling of semiconductor lasers that provides a better efficiency than the conventional unidirectional cooling. AlGaAsP lasers were tested under de-ionized (DI) water and it is shown that the optical power output of the lasers under the DI water is much higher than that of the uni-directional cooling of lasers. Also, in this paper we discuss how direct DI water-cooling can optimize power output of semiconductor lasers. Thereafter an optimal design of the semiconductor laser package is shown with the DI water-cooling system. Further, a microwave antenna is designed which is to be imprinted on to a balloon catheter in order to provide local heating of esophagus, leading to an increase in local oxygenation of the tumor to generate an effective level of singlet oxygen for cellular death. Finally the optimal level of light energy that is required to achieve the expected level of singlet oxygen is modeled to design an efficient PDT protocol.

  4. Development of a complex experimental system for controlled ecological life support technique

    NASA Astrophysics Data System (ADS)

    Guo, S.; Tang, Y.; Zhu, J.; Wang, X.; Feng, H.; Ai, W.; Qin, L.; Deng, Y.

    A complex experimental system for controlled ecological life support technique can be used as a test platform for plant-man integrated experiments and material close-loop experiments of the controlled ecological life support system CELSS Based on lots of plan investigation plan design and drawing design the system was built through the steps of processing installation and joined debugging The system contains a volume of about 40 0m 3 its interior atmospheric parameters such as temperature relative humidity oxygen concentration carbon dioxide concentration total pressure lighting intensity photoperiod water content in the growing-matrix and ethylene concentration are all monitored and controlled automatically and effectively Its growing system consists of two rows of racks along its left-and-right sides separately and each of which holds two up-and-down layers eight growing beds hold a total area of about 8 4m 2 and their vertical distance can be adjusted automatically and independently lighting sources consist of both red and blue light-emitting diodes Successful development of the test platform will necessarily create an essential condition for next large-scale integrated study of controlled ecological life support technique

  5. Natural photoreceptors and their application to synthetic biology.

    PubMed

    Schmidt, Daniel; Cho, Yong Ku

    2015-02-01

    The ability to perturb living systems is essential to understand how cells sense, integrate, and exchange information, to comprehend how pathologic changes in these processes relate to disease, and to provide insights into therapeutic points of intervention. Several molecular technologies based on natural photoreceptor systems have been pioneered that allow distinct cellular signaling pathways to be modulated with light in a temporally and spatially precise manner. In this review, we describe and discuss the underlying design principles of natural photoreceptors that have emerged as fundamental for the rational design and implementation of synthetic light-controlled signaling systems. Furthermore, we examine the unique challenges that synthetic protein technologies face when applied to the study of neural dynamics at the cellular and network level. Published by Elsevier Ltd.

  6. Compact and high resolution virtual mouse using lens array and light sensor

    NASA Astrophysics Data System (ADS)

    Qin, Zong; Chang, Yu-Cheng; Su, Yu-Jie; Huang, Yi-Pai; Shieh, Han-Ping David

    2016-06-01

    Virtual mouse based on IR source, lens array and light sensor was designed and implemented. Optical architecture including lens amount, lens pitch, baseline length, sensor length, lens-sensor gap, focal length etc. was carefully designed to achieve low detective error, high resolution, and simultaneously, compact system volume. System volume is 3.1mm (thickness) × 4.5mm (length) × 2, which is much smaller than that of camera-based device. Relative detective error of 0.41mm and minimum resolution of 26ppi were verified in experiments, so that it can replace conventional touchpad/touchscreen. If system thickness is eased to 20mm, resolution higher than 200ppi can be achieved to replace real mouse.

  7. Nighttime image dehazing using local atmospheric selection rule and weighted entropy for visible-light systems

    NASA Astrophysics Data System (ADS)

    Park, Dubok; Han, David K.; Ko, Hanseok

    2017-05-01

    Optical imaging systems are often degraded by scattering due to atmospheric particles, such as haze, fog, and mist. Imaging under nighttime haze conditions may suffer especially from the glows near active light sources as well as scattering. We present a methodology for nighttime image dehazing based on an optical imaging model which accounts for varying light sources and their glow. First, glow effects are decomposed using relative smoothness. Atmospheric light is then estimated by assessing global and local atmospheric light using a local atmospheric selection rule. The transmission of light is then estimated by maximizing an objective function designed on the basis of weighted entropy. Finally, haze is removed using two estimated parameters, namely, atmospheric light and transmission. The visual and quantitative comparison of the experimental results with the results of existing state-of-the-art methods demonstrates the significance of the proposed approach.

  8. System and method for measuring particles in a sample stream of a flow cytometer using a low power laser source

    DOEpatents

    Graves, Steven W; Habbersett, Robert C

    2013-10-22

    A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

  9. System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source

    DOEpatents

    Graves, Steven W.; Habbersett, Robert C.

    2014-07-01

    A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

  10. System and method for measuring particles in a sample stream of a flow cytometer or the like

    DOEpatents

    Graves, Steven W.; Habberset, Robert C.

    2010-11-16

    A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

  11. System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source

    DOEpatents

    Graves, Steven W.; Habbersett, Robert C.

    2016-11-15

    A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

  12. Active polarization imaging system based on optical heterodyne balanced receiver

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Sun, Jianfeng; Lu, Zhiyong; Zhou, Yu; Luan, Zhu; Hou, Peipei; Liu, liren

    2017-08-01

    Active polarization imaging technology has recently become the hot research field all over the world, which has great potential application value in the military and civil area. By introducing active light source, the Mueller matrix of the target can be calculated according to the incident light and the emitted or reflected light. Compared with conventional direct detection technology, optical heterodyne detection technology have higher receiving sensitivities, which can obtain the whole amplitude, frequency and phase information of the signal light. In this paper, an active polarization imaging system will be designed. Based on optical heterodyne balanced receiver, the system can acquire the horizontal and vertical polarization of reflected optical field simultaneously, which contain the polarization characteristic of the target. Besides, signal to noise ratio and imaging distance can be greatly improved.

  13. 40 CFR 86.1834-01 - Allowable maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section are considered an element of design of the emission control system. Therefore, disabling... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and...

  14. LED lighting for use in multispectral and hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Lighting for machine vision and hyperspectral imaging is an important component for collecting high quality imagery. However, it is often given minimal consideration in the overall design of an imaging system. Tungsten-halogens lamps are the most common source of illumination for broad spectrum appl...

  15. Continuous zoom antenna for mobile visible light communication.

    PubMed

    Zhang, Xuebin; Tang, Yi; Cui, Lu; Bai, Tingzhu

    2015-11-10

    In this paper, we design a continuous zoom antenna for mobile visible light communication (VLC). In the design, a right-angle reflecting prism was adopted to fold the space optical path, thus decreasing the antenna thickness. The surface of each lens in the antenna is spherical, and the system cost is relatively low. Simulation results indicated that the designed system achieved the following performance: zoom ratio of 2.44, field of view (FOV) range of 18°-48°, system gain of 16.8, and system size of 18 mm×6  mm. Finally, we established an indoor VLC system model in a room the size of 5  m ×5  m ×3  m and compared the detection results of the zoom antenna and fixed-focus antenna obtained in a multisource communication environment, a mobile VLC environment, and a multiple-input multiple-output communication environment. The simulation results indicated that the continuous zoom antenna could realize large FOV and high gain. Moreover, the system showed improved stability, mobility, and environmental applicability.

  16. High-resolution light-sheet microscopy: a simulation of an optical illumination system for oil immersion

    NASA Astrophysics Data System (ADS)

    Lu, Xiang; Heintzmann, Rainer; Leischner, Ulrich

    2015-09-01

    Light sheet microscopy is a microscopy technique characterized by an illumination from the side, perpendicular to the direction of observation. While this is often used and easy to implement for imaging samples with water-immersion, the application in combination with oil-immersion is less often used and requires a specific optimization. In this paper we present our design of a light-sheet illumination optical system with a ~1μm illumination thickness, a long working distance through the immersion oil, and including a focusing system allowing for moving the focus-spot of the lightsheet laterally through the field of view. This optical design allows for the acquisition of fluorescence images in 3D with isotropic resolution of below 1 micrometer of whole-mount samples with a size of ~1mm diameter. This technique enables high-resolution insights in the 3D structure of biological samples, e.g. for research of insect anatomy or for imaging of biopsies in medical diagnostics.

  17. Visible light communication technology for fine-grained indoor localization

    NASA Astrophysics Data System (ADS)

    Vieira, M.; Vieira, M. A.; Louro, P.; Fantoni, A.; Vieira, P.

    2018-02-01

    This paper focuses on designing and analysing a visible light based communication and positioning system. The indoor positioning system uses trichromatic white Light Emitting Diodes (LEDs), both for illumination purposes and as transmitters, and an optical processor, based on a-SiC:H technology, as mobile receiver. On-Off Keying (OOK) modulation scheme is used, proving a good trade-off between system performance and implementation complexity. In the following, the relationship between the transmitted data and the received output levels is decoded. LED bulbs work as transmitters, sending information together with different identifiers, IDs, related to their physical locations. Square and diamond topologies for the unit cell are analyzed, and a 2D localization design, demonstrated by a prototype implementation, is presented. Fine-grained indoor localization is tested. The received signal is used in coded multiplexing techniques for supporting communications and navigation concomitantly on the same channel. The location and motion information is found by mapping the position and estimating the location areas.

  18. Applying visual attention theory to transportation safety research and design: evaluation of alternative automobile rear lighting systems.

    PubMed

    McIntyre, Scott E; Gugerty, Leo

    2014-06-01

    This field experiment takes a novel approach in applying methodologies and theories of visual search to the subject of conspicuity in automobile rear lighting. Traditional rear lighting research has not used the visual search paradigm in experimental design. It is our claim that the visual search design uniquely uncovers visual attention processes operating when drivers search the visual field that current designs fail to capture. This experiment is a validation and extension of previous simulator research on this same topic and demonstrates that detection of red automobile brake lamps will be improved if tail lamps are another color (in this test, amber) rather than the currently mandated red. Results indicate that when drivers miss brake lamp onset in low ambient light, RT and error are reduced in detecting the presence and absence of red brake lamps with multiple lead vehicles when tail lamps are not red compared to current rear lighting which mandates red tail lamps. This performance improvement is attributed to efficient visual processing that automatically segregates tail (amber) and brake (red) lamp colors into distractors and targets respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Design and engineering of water-soluble light-harvesting protein maquettes

    DOE PAGES

    Kodali, Goutham; Mancini, Joshua A.; Solomon, Lee A.; ...

    2017-01-01

    Natural selection in photosynthesis has engineered tetrapyrrole based, nanometer scale, light harvesting and energy capture in light-induced charge separation. By designing and creating nanometer scale artificial light harvesting and charge separating proteins, we have the opportunity to reengineer and overcome the limitations of natural selection to extend energy capture to new wavelengths and to tailor efficient systems that better meet human as opposed to cellular energetic needs. While tetrapyrrole cofactor incorporation in natural proteins is complex and often assisted by accessory proteins for cofactor transport and insertion, artificial protein functionalization relies on a practical understanding of the basic physical chemistrymore » of protein and cofactors that drive nanometer scale self-assembly. Patterning and balancing of hydrophobic and hydrophilic tetrapyrrole substituents is critical to avoid natural or synthetic porphyrin and chlorin aggregation in aqueous media and speed cofactor partitioning into the non-polar core of a man-made water soluble protein designed according to elementary first principles of protein folding. In conclusion, this partitioning is followed by site-specific anchoring of tetrapyrroles to histidine ligands strategically placed for design control of rates and efficiencies of light energy and electron transfer while orienting at least one polar group towards the aqueous phase.« less

  20. Design and engineering of water-soluble light-harvesting protein maquettes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodali, Goutham; Mancini, Joshua A.; Solomon, Lee A.

    Natural selection in photosynthesis has engineered tetrapyrrole based, nanometer scale, light harvesting and energy capture in light-induced charge separation. By designing and creating nanometer scale artificial light harvesting and charge separating proteins, we have the opportunity to reengineer and overcome the limitations of natural selection to extend energy capture to new wavelengths and to tailor efficient systems that better meet human as opposed to cellular energetic needs. While tetrapyrrole cofactor incorporation in natural proteins is complex and often assisted by accessory proteins for cofactor transport and insertion, artificial protein functionalization relies on a practical understanding of the basic physical chemistrymore » of protein and cofactors that drive nanometer scale self-assembly. Patterning and balancing of hydrophobic and hydrophilic tetrapyrrole substituents is critical to avoid natural or synthetic porphyrin and chlorin aggregation in aqueous media and speed cofactor partitioning into the non-polar core of a man-made water soluble protein designed according to elementary first principles of protein folding. In conclusion, this partitioning is followed by site-specific anchoring of tetrapyrroles to histidine ligands strategically placed for design control of rates and efficiencies of light energy and electron transfer while orienting at least one polar group towards the aqueous phase.« less

  1. A time-domain fluorescence diffusion optical tomography system for breast tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gao, Feng; Wu, LinHui; Ma, Wenjuan; Yang, Fang; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan

    2011-02-01

    A prototype time-domain fluorescence diffusion optical tomography (FDOT) system using near-infrared light is presented. The system employs two pulsed light sources, 32 source fibers and 32 detection channels, working separately for acquiring the temporal distribution of the photon flux on the tissue surface. The light sources are provided by low power picosecond pulsed diode lasers at wavelengths of 780 nm and 830 nm, and a 1×32-fiber-optic-switch sequentially directs light sources to the object surface through 32 source fibers. The light signals re-emitted from the object are collected by 32 detection fibers connected to four 8×1 fiber-optic-switch and then routed to four time-resolved measuring channels, each of which consists of a collimator, a filter wheel, a photomultiplier tube (PMT) photon-counting head and a time-correlated single photon counting (TCSPC) channel. The performance and efficacy of the designed multi-channel PMT-TCSPC system are assessed by reconstructing the fluorescent yield and lifetime images of a solid phantom.

  2. Solar powered dispensary in Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, S.F.; Rittelmann, P.R.; Kingman, K.

    1995-11-01

    A solar powered dispensary has been designed in Kastel, Tibet. This area is characterized by cold winters and clear skies. Solar energy systems are designed to provide space heating, water heating and electric power. since sources of auxiliary fuel are scarce, the building has been designed to provide heating by the sun only. Innovative use of daylighting is made to reduce the lighting electricity requirements. The design presented provides a good compromise between performance and the cost of the system.

  3. Computational Modeling to Limit the Impact Displays and Indicator Lights Have on Habitable Volume Operational Lighting Constraints

    NASA Technical Reports Server (NTRS)

    Clark, T. E.; Salazr, G. A; Brainard, G. C.

    2016-01-01

    The goal of this investigation is to determine design limitations and architectural solutions that limit the impact light from displays and indicator lamps have on the operational environment task lighting and lighting countermeasure spectrum constraints. It is concerning that this innovative architectural lighting system, could be compromised by spectrums from display systems, architectural materials, and structures that are not considered as part a full system design implementation. The introduction of many Commercial Off the Shelf (COTS) products to the spacecraft volume that contain LEDs, without consideration to the human factors and biological constraints, is another problem. Displays and indicators are a necessary part of the spacecraft and it is the goal of this research project to determine constraints and solutions that allow these systems to be integrated while minimizing how the lighting environment is modified by them. Due to the potentially broad scope of this endeavor, the project team developed constraints for the evaluation. The evaluation will be on a set of tasks that required significant exposure in the same environment while having a large chance of impacting the light spectrum the crew is expected to receive from the architectural lighting system. The team plans to use recent HRP research on "Net Habitable Volume" [1] to provide the boundary conditions for volume size. A Zemax ® lighting model was developed of a small enclosure that had high intensity overhead lighting and a standard intensity display with LED indicator arrays. The computer model demonstrated a work surface illuminated at a high level by the overhead light source compared to displays and indicators whose light is parallel to the work plane. The overhead lighting oversaturated spectral contributions from the display and indicator at the task work surface. Interestingly, when the observer looked at the displays and LEDs within the small enclosure, their spectral contribution was significant but could be reduced by reflecting overhead light from the wall(s) to the observer. Direct observation of displays and LEDs are an issue because the user's viewing area is a display, not an illuminated work surface. Since avionics command centers consume significant crew time, the tasks that seemed at higher risk for unwanted spectral contributions as an operational volume with significant quantity of displays and indicators that were either under direct observation of the crew or impacting a volume the crew may be required to sleep in.

  4. Development of EPA aircraft piston engine emission standards. [for air quality

    NASA Technical Reports Server (NTRS)

    Houtman, W.

    1976-01-01

    Piston engine light aircraft are significant sources of carbon monoxide in the vicinity of high activity general aviation airports. Substantial reductions in carbon monoxide were achieved by fuel mixture leaning using improved fuel management systems. The air quality impact of the hydrocarbon and oxides of nitrogen emissions from piston engine light aircraft were insufficient to justify the design constraints being confronted in present control system developments.

  5. Design of a new type synchronous focusing mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Jintao; Tan, Ruijun; Chen, Zhou; Zhang, Yongqi; Fu, Panlong; Qu, Yachen

    2018-05-01

    Aiming at the dual channel telescopic imaging system composed of infrared imaging system, low-light-level imaging system and image fusion module, In the fusion of low-light-level images and infrared images, it is obvious that using clear source images is easier to obtain high definition fused images. When the target is imaged at 15m to infinity, focusing is needed to ensure the imaging quality of the dual channel imaging system; therefore, a new type of synchronous focusing mechanism is designed. The synchronous focusing mechanism realizes the focusing function through the synchronous translational imaging devices, mainly including the structure of the screw rod nut, the shaft hole coordination structure and the spring steel ball eliminating clearance structure, etc. Starting from the synchronous focusing function of two imaging devices, the structure characteristics of the synchronous focusing mechanism are introduced in detail, and the focusing range is analyzed. The experimental results show that the synchronous focusing mechanism has the advantages of ingenious design, high focusing accuracy and stable and reliable operation.

  6. Biomimetric sentinel reef structures for optical sensing and communications

    NASA Astrophysics Data System (ADS)

    Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor

    2017-05-01

    Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.

  7. Malaria Diagnosis Using a Mobile Phone Polarized Microscope

    NASA Astrophysics Data System (ADS)

    Pirnstill, Casey W.; Coté, Gerard L.

    2015-08-01

    Malaria remains a major global health burden, and new methods for low-cost, high-sensitivity, diagnosis are essential, particularly in remote areas with low-resource around the world. In this paper, a cost effective, optical cell-phone based transmission polarized light microscope system is presented for imaging the malaria pigment known as hemozoin. It can be difficult to determine the presence of the pigment from background and other artifacts, even for skilled microscopy technicians. The pigment is much easier to observe using polarized light microscopy. However, implementation of polarized light microscopy lacks widespread adoption because the existing commercial devices have complicated designs, require sophisticated maintenance, tend to be bulky, can be expensive, and would require re-training for existing microscopy technicians. To this end, a high fidelity and high optical resolution cell-phone based polarized light microscopy system is presented which is comparable to larger bench-top polarized microscopy systems but at much lower cost and complexity. The detection of malaria in fixed and stained blood smears is presented using both, a conventional polarized microscope and our cell-phone based system. The cell-phone based polarimetric microscopy design shows the potential to have both the resolution and specificity to detect malaria in a low-cost, easy-to-use, modular platform.

  8. Malaria Diagnosis Using a Mobile Phone Polarized Microscope

    PubMed Central

    Pirnstill, Casey W.; Coté, Gerard L.

    2015-01-01

    Malaria remains a major global health burden, and new methods for low-cost, high-sensitivity, diagnosis are essential, particularly in remote areas with low-resource around the world. In this paper, a cost effective, optical cell-phone based transmission polarized light microscope system is presented for imaging the malaria pigment known as hemozoin. It can be difficult to determine the presence of the pigment from background and other artifacts, even for skilled microscopy technicians. The pigment is much easier to observe using polarized light microscopy. However, implementation of polarized light microscopy lacks widespread adoption because the existing commercial devices have complicated designs, require sophisticated maintenance, tend to be bulky, can be expensive, and would require re-training for existing microscopy technicians. To this end, a high fidelity and high optical resolution cell-phone based polarized light microscopy system is presented which is comparable to larger bench-top polarized microscopy systems but at much lower cost and complexity. The detection of malaria in fixed and stained blood smears is presented using both, a conventional polarized microscope and our cell-phone based system. The cell-phone based polarimetric microscopy design shows the potential to have both the resolution and specificity to detect malaria in a low-cost, easy-to-use, modular platform. PMID:26303238

  9. A versatile fiber-optic coupled system for sensitive optical spectroscopy in strong ambient light

    NASA Astrophysics Data System (ADS)

    Sinha, Sudarson Sekhar; Verma, Pramod Kumar; Makhal, Abhinandan; Pal, Samir Kumar

    2009-05-01

    In this work we describe design and use of a fiber-optic based optical system for the spectroscopic studies on the samples under the presence of strong ambient light. The system is tested to monitor absorption, emission, and picosecond-resolved fluorescence transients simultaneously with a time interval of 500 ms for several hours on a biologically important sample (vitamin B2) under strong UV light. An efficient stray-light rejection ratio of the setup is achieved by the confocal geometry of the excitation and detection channels. It is demonstrated using this setup that even low optical signal from a liquid sample under strong UV-exposure for the picosecond-resolved fluorescence transient measurement can reliably be detected by ultrasensitive microchannel plate photomultiplier tube solid state detector. The kinetics of photodeterioration of vitamin B2 measured using our setup is consistent with that reported in the literature. Our present studies also justify the usage of tungsten light than the fluorescent light for the healthy preservation of food with vitamin B2.

  10. Application for certification 1988 model year light-duty vehicles - US Technical Research Company (Peugeot)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings that describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems, and exhaust and evaporative emission control systems.

  11. Douglas flight deck design philosophy

    NASA Technical Reports Server (NTRS)

    Oldale, Paul

    1990-01-01

    The systems experience gained from 17 years of DC-10 operation was used during the design of the MD-11 to automate system operation and reduce crew workload. All functions, from preflight to shutdown at the termination of flight, require little input from the crew. The MD-11 aircraft systems are monitored for proper operation by the Aircraft Systems Controllers (ASC). In most cases, system reconfiguration as a result of a malfunction is automated. Manual input is required for irreversible actions such as engine shutdown, fuel dump, fire agent discharge, or Integrated Drive Generator (IDG) disconnect. During normal operations, when the cockpit is configured for flight, all annunciators on the overhead panel will be extinguished. This Dark Cockpit immediately confirms to the crew that the panels are correctly configured and that no abnormalities are present. Primary systems annunciations are shown in text on the Alert Area of the Engine and Alert Display (EAD). This eliminates the need to scan the overhead. The MD-11 aircraft systems can be manually controlled from the overhead area of the cockpit. The center portion of the overhead panel is composed of the primary aircraft systems panels, which include FUEL, AIR, Electrical (ELEC) and Hydraulic (HYD) systems, which are easily accessible from both flight crew positions. Each Aircraft Systems Controller (ASC) has two automatic channels and a manual mode. All rectangular lights are annunciators. All square lights are combined switches and annunciators called switch/lights. Red switch/lights on the overhead (Level 3 alerts) are for conditions requiring immediate crew action. Amber (Level 2 or Level 1 alerts) indicates a fault or switch out of position requiring awareness or crew interaction. Overhead switches used in normal operating conditions will illuminate blue when in use (Level 0 alerts) such as WING ANTI-ICE - ON. An overhead switch/light with BLACK LETTERING on an amber or red background indicates a system failure and that crew interaction is required. A switch/light with blue or amber lettering and a BLACK BACKGROUND indicates a switch out of normal position and that crew action is necessary only if the system is in manual operation.

  12. The design of infrared information collection circuit based on embedded technology

    NASA Astrophysics Data System (ADS)

    Liu, Haoting; Zhang, Yicong

    2013-07-01

    S3C2410 processor is a 16/32 bit RISC embedded processor which based on ARM920T core and AMNA bus, and mainly for handheld devices, and high cost, low-power applications. This design introduces a design plan of the PIR sensor system, circuit and its assembling, debugging. The Application Circuit of the passive PIR alarm uses the invisibility of the infrared radiation well into the alarm system, and in order to achieve the anti-theft alarm and security purposes. When the body goes into the range of PIR sensor detection, sensors will detect heat sources and then the sensor will output a weak signal. The Signal should be amplified, compared and delayed; finally light emitting diodes emit light, playing the role of a police alarm.

  13. Imaging spectrometer using a liquid crystal tunable filter

    NASA Astrophysics Data System (ADS)

    Chrien, Thomas G.; Chovit, Christopher; Miller, Peter J.

    1993-09-01

    A demonstration imaging spectrometer using a liquid crystal tunable filter (LCTF) was built and tested on a hot air balloon platform. The LCTF is a tunable polarization interference or Lyot filter. The LCTF enables a small, light weight, low power, band sequential imaging spectrometer design. An overview of the prototype system is given along with a description of balloon experiment results. System model performance predictions are given for a future LCTF based imaging spectrometer design. System design considerations of LCTF imaging spectrometers are discussed.

  14. Collaborative project optimises LED lighting.

    PubMed

    Baillie, Jonathan

    2014-05-01

    Early 2013 saw Brandon Medical, which designs and manufactures equipment ranging from operating theatre lighting to medical AV and control systems, celebrate '20 years of innovation and growth', with a move to a new pounds 2 million, 50,000 ft2 headquarters in Morley near Leeds, twice the size of its former premises. A milestone year then for the entrepreneurial Yorkshire company, but, as HEJ editor, Jonathan Baillie, discovered, when he met with joint MD, Graeme Hall, 2014 should prove an equally exciting one for the medical technology specialist, with the launch of several new 'field-leading' medical lighting products designed for use in operating theatres and minor examination settings.

  15. 24 CFR 200.925b - Residential and institutional building code comparison items.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...); (6) Individual unit smoke detectors; (7) Building alarm systems; (8) Highrise criteria; (b) Light and...) Design live loads; (2) Design dead loads; (3) Snow loads; (4) Wind loads. (5) Earthquake loads (in...

  16. 24 CFR 200.925b - Residential and institutional building code comparison items.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...); (6) Individual unit smoke detectors; (7) Building alarm systems; (8) Highrise criteria; (b) Light and...) Design live loads; (2) Design dead loads; (3) Snow loads; (4) Wind loads. (5) Earthquake loads (in...

  17. 24 CFR 200.925b - Residential and institutional building code comparison items.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...); (6) Individual unit smoke detectors; (7) Building alarm systems; (8) Highrise criteria; (b) Light and...) Design live loads; (2) Design dead loads; (3) Snow loads; (4) Wind loads. (5) Earthquake loads (in...

  18. The optical design of a visible adaptive optics system for the Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Kopon, Derek

    The Magellan Adaptive Optics system will achieve first light in November of 2012. This AO system contains several subsystems including the 585-actuator concave adaptive secondary mirror, the Calibration Return Optic (CRO) alignment and calibration system, the CLIO 1-5 microm IR science camera, the movable guider camera and active optics assembly, and the W-Unit, which contains both the Pyramid Wavefront Sensor (PWFS) and the VisAO visible science camera. In this dissertation, we present details of the design, fabrication, assembly, alignment, and laboratory performance of the VisAO camera and its optical components. Many of these components required a custom design, such as the Spectral Differential Imaging Wollaston prisms and filters and the coronagraphic spots. One component, the Atmospheric Dispersion Corrector (ADC), required a unique triplet design that had until now never been fabricated and tested on sky. We present the design, laboratory, and on-sky results for our triplet ADC. We also present details of the CRO test setup and alignment. Because Magellan is a Gregorian telescope, the ASM is a concave ellipsoidal mirror. By simulating a star with a white light point source at the far conjugate, we can create a double-pass test of the whole system without the need for a real on-sky star. This allows us to test the AO system closed loop in the Arcetri test tower at its nominal design focal length and optical conjugates. The CRO test will also allow us to calibrate and verify the system off-sky at the Magellan telescope during commissioning and periodically thereafter. We present a design for a possible future upgrade path for a new visible Integral Field Spectrograph. By integrating a fiber array bundle at the VisAO focal plane, we can send light to a pre-existing facility spectrograph, such as LDSS3, which will allow 20 mas spatial sampling and R˜1,800 spectra over the band 0.6-1.05 microm. This would be the highest spatial resolution IFU to date, either from the ground or in space.

  19. Even illumination in total internal reflection fluorescence microscopy using laser light.

    PubMed

    Fiolka, R; Belyaev, Y; Ewers, H; Stemmer, A

    2008-01-01

    In modern fluorescence microscopy, lasers are a widely used source of light, both for imaging in total internal reflection and epi-illumination modes. In wide-field imaging, scattering of highly coherent laser light due to imperfections in the light path typically leads to nonuniform illumination of the specimen, compromising image analysis. We report the design and construction of an objective-launch total internal reflection fluorescence microscopy system with excellent evenness of specimen illumination achieved by azimuthal rotation of the incoming illuminating laser beam. The system allows quick and precise changes of the incidence angle of the laser beam and thus can also be used in an epifluorescence mode. 2007 Wiley-Liss, Inc

  20. Design of a Programmable Star Tracker-Based Reference System for a Simulated Spacecraft

    DTIC Science & Technology

    2014-03-27

    This reduces the overall light intensity hitting the sensor, as indicated by the darker color. However, the red and green circles are also forming...may be beneficial on SimSat since we can control the light output depending on the source chosen. It is possible to sacrifice some star light intensity ...could be done to improve accuracy based on what could be controlled and changed easily. 3.2.3.1 Focal Length. The optics portion of the light collection

  1. Design of Automatic Intensity Varying Smart Street Lighting System

    NASA Astrophysics Data System (ADS)

    Gupta, Ashutosh; Gupta, Shipra

    2017-08-01

    The paper is proposed with an aim of power conservation. In this era of development, it is essential to develop a streetlight that turns on and off automatically without human interference. To achieve this light sensor have been placed in each panel which turns the street light on and off automatically. For energy conservation cool-white LED’s have been used in street light panel and dimmer modules have been installed which changes the intensity of the streetlight depending on the darkness.

  2. Analysis of Tyman green detection system based on polarization interference

    NASA Astrophysics Data System (ADS)

    Huang, Yaolin; Wang, Min; Shao, Xiaoping; Kou, Yuanfeng

    2018-02-01

    The optical surface deviation of the lens can directly affect the quality of the optical system.In order to effectively and accurately detect the surface shape, an optical surface on-line detection system based on polarization interference technology is designed and developed. The system is based on Tyman-Green interference optical path, join the polarization interference measuring technology. Based on the theoretical derivation of the optical path and the ZEMAX software simulation, the experimental optical path is constructed. The parallel light is used to detect the concave lens. The parallel light is used as the light source, the size of the polarization splitting prism, detection radius of curvature, the relations between and among the size of the lens aperture, a detection range is given.

  3. Design of systems for productivity and well being.

    PubMed

    Edwards, Kasper; Jensen, Per Langaa

    2014-01-01

    It has always been an ambition within the ergonomic profession to ensure that design or redesign of production systems consider both productivity and employee well being, but there are many approaches to how to achieve this. This paper identifies the basic issues to be addressed in light of some research activities at DTU, especially by persons responsible for facilitating design processes. Four main issues must be addressed: (1) determining the limits and scope of the system to be designed; (2) identifying stakeholders related to the system and their role in the system design; (3) handling the process' different types of knowledge; and (4) emphasizing that performance management systems, key performance indicators (KPIs), and leadership are also part of the system design and must be given attention. With the examples presented, we argue that knowledge does exist to help system design facilitators address these basic issues. Copyright © 2013. Published by Elsevier Ltd.

  4. New photolysis system for NO2 measurements in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Keim, E. R.; Woodbridge, E. L.; Ciciora, S. J.; Proffitt, M. H.; Thompson, T. L.; Mclaughlin, R. J.; Fahey, D. W.

    1994-01-01

    A new system for NO2 detection has been developed for use on the NASA ER-2 aircraft. The system converts NO2 to NO using UV photolysis with the NO product subsequently detected with an on-board chemiluminescence detector. The new system is compact, light weight, has high time resolution (approximately 1 s), and is significantly more efficient then some previous designs. Details of the system design and airborne performance are discussed.

  5. Conceptual design studies and experiments related to cavity exhaust systems for nuclear light bulb configurations

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Stoeffler, R. C.

    1972-01-01

    Investigations of various phases of gaseous nuclear rocket technology have been conducted. The principal research efforts have recently been directed toward the closed-cycle, vortex-stabilized nuclear light bulb engine and toward a small-scale fissioning uranium plasma experiment that could be conducted in the Los Alamos Scientific Laboratory's Nuclear Furnace. The engine concept is based on the transfer of energy by thermal radiation from gaseous fissioning uranium, through a transparent wall, to hydrogen propellant. The reference engine configuration is comprised of seven unit cavities, each having its own fuel transparent wall and propellant duct. The basic design of the engine is described. Subsequent studies performed to supplement and investigate the basic design are reported. Summaries of other nuclear light bulb research programs are included.

  6. Fiber Optic Wink-around Speed of Light Experiment.

    ERIC Educational Resources Information Center

    Blackburn, James A.

    1980-01-01

    Describes an experiment in which a recycling oscillator has been designed having a fiber optic data link that closes the loop. Outlines the use of this wink-around system to determine the speed of light and suggests additional application for measuring integrated circuit propagation delays to subnanosecond resolution. (GS)

  7. The Nano-X Linear Accelerator: A Compact and Economical Cancer Radiotherapy System Incorporating Patient Rotation.

    PubMed

    Eslick, Enid M; Keall, Paul J

    2015-10-01

    Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements. © The Author(s) 2014.

  8. Optimal integration of daylighting and electric lighting systems using non-imaging optics

    NASA Astrophysics Data System (ADS)

    Scartezzini, J.-L.; Linhart, F.; Kaegi-Kolisnychenko, E.

    2007-09-01

    Electric lighting is responsible for a significant fraction of electricity consumption within non-residential buildings. Making daylight more available in office and commercial buildings can lead as a consequence to important electricity savings, as well as to the improvement of occupants' visual performance and wellbeing. Over the last decades, daylighting technologies have been developed for that purpose, some of them having proven to be highly efficient such as anidolic daylighting systems. Based on non-imaging optics these optical devices were designed to achieve an efficient collection and redistribution of daylight within deep office rooms. However in order to benefit from the substantial daylight provision obtained through these systems and convert it into effective electricity savings, novel electric lighting strategies are required. An optimal integration of high efficacy light sources and efficient luminaries based on non-imaging optics with anidolic daylighting systems can lead to such novel strategies. Starting from the experience gained through the development of an Anidolic Integrated Ceiling (AIC), this paper presents an optimal integrated daylighting and electric lighting system. Computer simulations based on ray-tracing techniques were used to achieve the integration of 36W fluorescent tubes and non-imaging reflectors with an advanced daylighting system. Lighting power densities lower than 4 W/m2 can be achieved in this way within the corresponding office room. On-site monitoring of an integrated daylighting and electric lighting system carried out on a solar experimental building confirmed the energy and visual performance of such a system: it showed that low lighting power densities can be achieved by combining an anidolic daylighting system with very efficient electric light sources and luminaries.

  9. The Architect's Guide to Mechanical Systems.

    ERIC Educational Resources Information Center

    Andrews, F. T.

    The principles and problems of designing new building mechanical systems are discussed in this reference source in the light of data on the functions and operation of mechanical systems. As a practical guide to understanding mechanical systems it describes system types, functions, space requirements, weights, installation, maintenance and…

  10. Survey of on-road image projection with pixel light systems

    NASA Astrophysics Data System (ADS)

    Rizvi, Sadiq; Knöchelmann, Marvin; Ley, Peer-Phillip; Lachmayer, Roland

    2017-12-01

    HID, LED and laser-based high resolution automotive headlamps, as of late known as `pixel light systems', are at the forefront of the developing technologies paving the way for autonomous driving. In addition to light distribution capabilities that outperform Adaptive Front Lighting and Matrix Beam systems, pixel light systems provide the possibility of image projection directly onto the street. The underlying objective is to improve the driving experience, in any given scenario, in terms of safety, comfort and interaction for all road users. The focus of this work is to conduct a short survey on this state-of-the-art image projection functionality. A holistic research regarding the image projection functionality can be divided into three major categories: scenario selection, technological development and evaluation design. Consequently, the work presented in this paper is divided into three short studies. Section 1 provides a brief introduction to pixel light systems and a justification for the approach adopted for this study. Section 2 deals with the selection of scenarios (and driving maneuvers) where image projection can play a critical role. Section 3 discusses high power LED and LED array based prototypes that are currently under development. Section 4 demonstrates results from an experiment conducted to evaluate the illuminance of an image space projected using a pixel light system prototype developed at the Institute of Product Development (IPeG). Findings from this work can help to identify and advance future research work relating to: further development of pixel light systems, scenario planning, examination of optimal light sources, behavioral response studies etc.

  11. The design of a wireless batteryless biflash installation with high power LEDs

    NASA Astrophysics Data System (ADS)

    Cappelle, J.; De Geest, W.; Hanselaer, P.

    2011-05-01

    Adding flashlights at crosswalks may make these weak traffic points safer. Unfortunately plugging in traffic lights into the electrical grid is expensive and complex. This paper reports about the energetic, the electronic and the optical design and building of a wireless and batteryless biflash installation in the framework of a flemish SME supporting program. The energy is supplied by a small solar panel and is buffered by supercapacitors instead of batteries. This has the advantage of being maintenance free: the number of charge-discharge cycles is almost unlimited because there is no chemical reaction involved in the storage mechanism. On the other hand the limited energy storage capacity of supercapacitors requires a new approach for the system design. Based on the EN-12352 standard for warning light devices, all design choices were filled in to be as energy efficient as possible. The duty cycle and the light output of the high power led flashlights are minimized. The components for the electronic circuits for the led driver, the control and the RF communication are selected based on their energy consumption and power management techniques are implemented. A lot of energy is saved by making the biflash system active. The leds are only flashing on demand or at preprogrammed moments. A biflash installation is typically installed at both sides of a crosswalk. A call at one of the sides should result in flashing at both sides. To maintain the drag and drop principle, a wireless RF communication system is designed.

  12. Dust-concentration measurement based on Mie scattering of a laser beam

    PubMed Central

    Yu, Xiaoyu; Shi, Yunbo; Wang, Tian; Sun, Xu

    2017-01-01

    To realize automatic measurement of the concentration of dust particles in the air, a theory for dust concentration measurement was developed, and a system was designed to implement the dust concentration measurement method based on laser scattering. In the study, the principle of dust concentration detection using laser scattering is studied, and the detection basis of Mie scattering theory is determined. Through simulation, the influence of the incident laser wavelength, dust particle diameter, and refractive index of dust particles on the scattered light intensity distribution are obtained for determining the scattered light intensity curves of single suspended dust particles under different characteristic parameters. A genetic algorithm was used to study the inverse particle size distribution, and the reliability of the measurement system design is proven theoretically. The dust concentration detection system, which includes a laser system, computer circuitry, air flow system, and control system, was then implemented according to the parameters obtained from the theoretical analysis. The performance of the designed system was evaluated. Experimental results show that the system performance was stable and reliable, resulting in high-precision automatic dust concentration measurement with strong anti-interference ability. PMID:28767662

  13. Modulation transfer function of partial gating detector by liquid crystal auto-controlling light intensity

    NASA Astrophysics Data System (ADS)

    Yang, Xusan; Tang, Yuanhe; Liu, Kai; Liu, Hanchen; Gao, Haiyang; Li, Qing; Zhang, Ruixia; Ye, Na; Liang, Yuan; Zhao, Gaoxiang

    2008-12-01

    Based on the electro-optical properties of liquid crystal, we have designed a novel partial gating detector. Liquid crystal can be taken to change its own transmission according to the light intensity outside. Every single pixel of the image is real-time modulated by liquid crystal, thus the strong light is weakened and low light goes through the detector normally .The purpose of partial-gating strong light (>105lx) can be achieved by this detector. The modulation transfer function (MTF) equations of the main optical sub-systems are calculated in this paper, they are liquid crystal panels, linear fiber panel and CCD array detector. According to the relevant size, the MTF value of this system is fitted out. The result is MTF= 0.518 at Nyquist frequency.

  14. Spaceflight studies of tropisms in the European Modular Cultivation System

    NASA Astrophysics Data System (ADS)

    Kiss, J. Z.; Correll, M. J.; Edelmann, R. E.

    Phototropism and gravitropism play key roles in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. The blue-light response is controlled by the phototropins while the red-light response is mediated by the phytochrome family of photoreceptors. In order to better characterize root phototropism, we plan to perform experiments in microgravity so that this tropism can be more effectively studied without the interactions with the gravity response. Our experiments are to be performed on the European Modular Cultivation System (EMCS), which provides an incubator, lighting system, and high resolution video that are on a centrifuge palette. These experiments will be performed at μ g, 1g (control) and fractional g-levels. In order to ensure success of this mission on the International Space Station (ISS), we have been performing ground-based studies on growth, phototropism, and gravitropism in experimental unique equipment (EUE) that was designed for our experiments that will use Arabidopsis seedlings. Currently, the EMCS and our EUE are scheduled for launch on space shuttle mission STS-121. This project should provide insight into how the blue-light and red-light signaling systems interact with each other, and also with the gravisensing system.

  15. White LED sources for vehicle forward lighting

    NASA Astrophysics Data System (ADS)

    Van Derlofske, John F.; McColgan, Michele W.

    2002-11-01

    Considerations for the use of white light emitting diode (LED) sources to produce illumination for automotive forward lighting is presented. Due to their reliability, small size, lower consumption, and lower heat generation LEDs are a natural choice for automotive lighting systems. Currently, LEDs are being sucessfully employed in most vehicle lighting applications. In these applications the light levels, distributions, and colors needed are achievable by present LED technologies. However, for vehicle white light illumination applications LEDs are now only being considered for low light level applications, such as back-up lamps. This is due to the relatively low lumen output that has been available up to now in white LEDs. With the advent of new higher lumen packages, and with the promise of even higher light output in the near future, the use of white LEDs sources for all vehicle forward lighting applications is beginning to be considered. Through computer modeling and photometric evaluation this paper examines the possibilities of using currently available white LED technology for vehicle headlamps. It is apparent that optimal LED sources for vehicle forward lighting applications will be constructed with hereto undeveloped technology and packaging configurations. However, the intent here in exploring currently available products is to begin the discussion on the design possibilities and significant issues surrounding LEDs in order to aid in the design and development of future LED sources and systems. Considerations such as total light output, physical size, optical control, power consumption, color appearance, and the effects of white LED spectra on glare and peripheral vision are explored. Finally, conclusions of the feasibility of current LED technology being used in these applications and recommendations of technology advancements that may need to occur are made.

  16. DC-to-DC power supply for light aircraft flight testing

    NASA Technical Reports Server (NTRS)

    Yost, S. R.

    1980-01-01

    The power supply unit was developed to serve as the power source for a loran-C receiver. The power supply can be connected directly to the aircraft's electrical system, and is compatible with either 14 or 28 volt electrical systems. Design specifications are presented for the unit along with a description of the circuit design.

  17. 75 FR 48620 - Airworthiness Directives; The Boeing Company Model 737-100, -200, -200C, -300, -400, and -500...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... operations. This proposed AD results from a design change in the cabin altitude warning system that would... warning system that would address the identified unsafe condition(s), and that once this design change was... altitude warning and takeoff configuration warning lights. The activation includes changing the wiring in...

  18. Design of a light delivery system for the photodynamic treatment of the Crohn's disease

    NASA Astrophysics Data System (ADS)

    Gabrecht, Tanja; Borle, Francois; van den Bergh, Hubert; Michetti, Pierre; Ortner, Maria-Anna; Wagnières, Georges

    2007-07-01

    Crohn's disease is an inflammatory bowel disease originating from an overwhelming response of the mucosal immune system. Low dose photodynamic therapy (PDT) may modify the mucosal immune response and thus serve as a therapy for Crohn's disease. Most patients with Crohn's disease show inflammatory reactions in the terminal ileum or colon where PDT treatment is feasible by low-invasive endoscopic techniques. However, the tube like geometry of the colon, it's folding, and the presences of multiple foci of Crohn's lesions along the colon require the development of adequate light delivery techniques. We present a prototype light delivery system for endoscopic clinical PDT in patients with Crohn's disease. The system is based on a cylindrical light diffuser inserted into a diffusing balloon catheter. Homogenous irradiation is performed with a 4 W diode laser at 635 nm. Light dosimetry is performed using a calibrated integrating sphere. The system can be used with conventional colonoscopes and colonovideoscopes having a 3.8 mm diameter working channel. The feasibility of PDT in colon with our prototype was demonstrated in first clinical trials.

  19. Highly efficient temperature-induced visible light photocatalytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Han, Bing

    Photocatalysis is the acceleration of photoreaction in presence of a photocatalyst. Semiconductor photocatalysis has obtained much attention as a potential solution to the worldwide energy storage due to its promising ability to directly convert solar energy into chemical fuels. This dissertation research mainly employ three approaches to enhance photocatalytic activities, which includes (I) Modifying semiconductor nanomaterials for visible and near-IR light absorption; (II) Synthesis of light-diffuse-reflection-surface of SiO2 substrate to utilize scattered light; and (III) design of a hybrid system that combines light and heat to enhance visible light photocatalytic activity. Those approaches were applied to two systems: (1) hydrogen production from water; (2) carbon dioxide reforming of methane. The activity of noble metals such as platinum were investigated as co-catalysts and cheap earth abundant catalysts as alternatives to reduce cost were also developed. Stability, selectivity, mechanism were investigated. Great enhancement of visible light activity over a series of semiconductors/heterostructures were observed. Such extraordinary performance of artificial photosynthetic hydrogen production system would provide a novel approach for the utilization of solar energy for chemical fuel production.

  20. Optical countermeasures against CLOS weapon systems

    NASA Astrophysics Data System (ADS)

    Toet, Alexander; Benoist, Koen W.; van Lingen, Joost N. J.; Schleijpen, H. Ric M. A.

    2013-10-01

    There are many weapon systems in which a human operator acquires a target, tracks it and designates it. Optical countermeasures against this type of systems deny the operator the possibility to fulfill this visual task. We describe the different effects that result from stimulation of the human visual system with high intensity (visible) light, and the associated potential operational impact. Of practical use are flash blindness, where an intense flash of light produces a temporary "blind-spot" in (part of) the visual field, flicker distraction, where strong intensity and/or color changes at a discomfortable frequency are produced, and disability glare where a source of light leads to contrast reduction. Hence there are three possibilities to disrupt the visual task of an operator with optical countermeasures such as flares or lasers or a combination of these; namely, by an intense flash of light, by an annoying light flicker or by a glare source. A variety of flares for this purpose is now available or under development: high intensity flash flares, continuous burning flares or strobe flares which have an oscillating intensity. The use of flare arrays seems particularly promising as an optical countermeasure. Lasers are particularly suited to interfere with human vision, because they can easily be varied in intensity, color and size, but they have to be directed at the (human) target, and issues like pointing and eye-safety have to be taken into account. Here we discuss the design issues and the operational impact of optical countermeasures against human operators.

  1. The influence of the earth radiation on space target detection system

    NASA Astrophysics Data System (ADS)

    Su, Xiaofeng; Chen, FanSheng; Cuikun, .; Liuyan, .

    2017-05-01

    In the view of space remote sensing such as satellite detection space debris detection etc. visible band is usually used in order to have the all-weather detection capability, long wavelength infrared (LWIR) detection is also an important supplement. However, in the tow wave band, the earth can be a very strong interference source, especially in the dim target detecting. When the target is close to the earth, especially the LEO target, the background radiation of the earth will also enter into the baffle, and became the stray light through reflection, the stray light can reduce the signal to clutter ratio (SCR) of the target and make it difficult to be detected. In the visible band, the solar albedo by the earth is the main clutter source while in the LWIR band the radiation of the earth is the main clutter source. So, in this paper, we establish the energy transformation from the earth background radiation to the detection system to assess the effects of the stray light. Firstly, we discretize the surface of the earth to different unit, and using MODTRAN to calculate the radiation of the discrete point in different light and climate conditions, then, we integral all the radiation which can reach the baffle in the same observation angles to get the energy distribution, finally, according the target energy and the non-uniformity of the detector, we can calculate the design requirement of the system stray light suppression, which provides the design basis for the optical system.

  2. Computer program for optical systems ray tracing

    NASA Technical Reports Server (NTRS)

    Ferguson, T. J.; Konn, H.

    1967-01-01

    Program traces rays of light through optical systems consisting of up to 65 different optical surfaces and computes the aberrations. For design purposes, paraxial tracings with astigmation and third order tracings are provided.

  3. Design considerations for a backlight with switchable viewing angles

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Takagi, Yoshihiko; Rahadian, Fanny

    2006-08-01

    Small-sized liquid crystal displays are widely used for mobile applications such as cell phones. Electronic control of a viewing angle range is desired in order to maintain privacy for viewing in public as well as to provide wide viewing angles for solitary viewing. Conventionally, a polymer-dispersed liquid crystal (PDLC) panel is inserted between a backlight and a liquid crystal panel. The PDLC layer either transmits or scatters the light from the backlight, thus providing an electronic control of viewing angles. However, such a display system is obviously thick and expensive. Here, we propose to place an electronically-controlled, light-deflecting device between an LED and a light-guide of a backlight. For example, a liquid crystal lens is investigated for other applications and its focal length is controlled electronically. A liquid crystal phase grating either transmits or diffracts an incoming light depending on whether or not a periodic phase distribution is formed inside its liquid crystal layer. A bias applied to such a device will control the angular distribution of the light propagating inside a light-guide. Output couplers built in the light-guide extract the propagating light to outside. They can be V-shaped grooves, pyramids, or any other structures that can refract, reflect or diffract light. When any of such interactions occur, the output couplers translate the changes in the propagation angles into the angular distribution of the output light. Hence the viewing-angle characteristic can be switched. The designs of the output couplers and the LC devices are important for such a backlight system.

  4. Evaluating white LEDs for outdoor landscape lighting application

    NASA Astrophysics Data System (ADS)

    Shakir, Insiya; Narendran, Nadarajah

    2002-11-01

    A laboratory experiment was conducted to understand the acceptability of different white light emitting diodes (LEDs) for outdoor landscape lighting. The study used a scaled model setup. The scene was designed to replicate the exterior of a typical upscale suburban restaurant including the exterior facade of the building, an approach with steps, and a garden. The lighting was designed to replicate light levels commonly found in nighttime outdoor conditions. The model had a central dividing partition with symmetrical scenes on both sides for side-by-side evaluations of the two scenes with different light sources. While maintaining equal luminance levels and distribution between the two scenes, four types of light sources were evaluated. These include, halogen, phosphor white LED, and two white light systems using RGB LEDs. These light sources were tested by comparing two sources at a time placed side-by-side and by individual assessment of each lighting condition. The results showed that the RGB LEDs performed equal or better than the most widely used halogen light source in this given setting. A majority of the subjects found slightly dimmer ambient lighting to be more typical for restaurants and therefore found RGB LED and halogen light sources to be more inviting. The phosphor white LEDs made the space look brighter, however a majority of the subjects disliked them.

  5. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. Thermal, mechanical, and structural considerations leading to the design of the tray hardware are discussed. In general, changes in the retested component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials, multilayer optical interference filters, and extreme-infrared reflectivity of black paints show unexpected changes.

  6. Design of Intelligent Power Supply System for Expressway Tunnel

    NASA Astrophysics Data System (ADS)

    Wang, Li; Li, Yutong; Lin, Zimian

    2018-01-01

    Tunnel lighting program is one of the key points of tunnel infrastructure construction. As tunnels tend to handle remote locations, power supply line construction generally has been having the distance, investment, high cost characteristics. To solve this problem, we propose a green, environmentally friendly, energy-efficient lighting system. This program uses the piston-wind which cars within tunnel produce as the power and combines with solar energy, physical lighting to achieve it, which solves the problem of difficult and high cost of highway tunnel section, and provides new ideas for the future construction of tunnel power supply.

  7. LED light design method for high contrast and uniform illumination imaging in machine vision.

    PubMed

    Wu, Xiaojun; Gao, Guangming

    2018-03-01

    In machine vision, illumination is very critical to determine the complexity of the inspection algorithms. Proper lights can obtain clear and sharp images with the highest contrast and low noise between the interested object and the background, which is conducive to the target being located, measured, or inspected. Contrary to the empirically based trial-and-error convention to select the off-the-shelf LED light in machine vision, an optimization algorithm for LED light design is proposed in this paper. It is composed of the contrast optimization modeling and the uniform illumination technology for non-normal incidence (UINI). The contrast optimization model is built based on the surface reflection characteristics, e.g., the roughness, the reflective index, and light direction, etc., to maximize the contrast between the features of interest and the background. The UINI can keep the uniformity of the optimized lighting by the contrast optimization model. The simulation and experimental results demonstrate that the optimization algorithm is effective and suitable to produce images with the highest contrast and uniformity, which is very inspirational to the design of LED illumination systems in machine vision.

  8. Photosynthetically supplemental lighting for vegetable crop production with super-bright laser diode

    NASA Astrophysics Data System (ADS)

    Hu, Yongguang; Li, Pingping; Shi, Jintong

    2007-02-01

    Although many artificial light sources like high-pressure sodium lamp, metal halide lamp, fluorescent lamp and so on are commonly used in horticulture, they are not widely applied because of the disadvantages of unreasonable spectra, high cost and complex control. Recently new light sources of light-emitting diode (LED) and laser diode (LD) are becoming more and more popular in the field of display and illumination with the improvement of material and manufacturing, long life-span and increasingly low cost. A new type of super-bright red LD (BL650, central wavelength is 650 nm) was selected to make up of the supplemental lighting panel, on which LDs were distributed with regular hexagon array. Drive circuit was designed to power it and adjust light intensity. System performance including temperature rise and light intensity distribution under different vertical/horizontal distances were tested. Photosynthesis of sweet pepper and eggplant leaf under LD was measured with LI-6400 to show the supplemental lighting effects. The results show that LD system can supply the maximum light intensity of 180 μmol/m2 •s at the distance of 50 mm below the panel and the temperature rise is little within 1 °C. Net photosynthetic rate became faster when LD system increased light intensity. Compared with sunlight and LED supplemental lighting system, LD's promotion on photosynthesis is in the middle. Thus it is feasible for LD light source to supplement light for vegetable crops. Further study would focus on the integration of LD and other artificial light sources.

  9. Semi-autonomous inline water analyzer: design of a common light detector for bacterial, phage, and immunological biosensors.

    PubMed

    Descamps, Elodie C T; Meunier, Damien; Brutesco, Catherine; Prévéral, Sandra; Franche, Nathalie; Bazin, Ingrid; Miclot, Bertrand; Larosa, Philippe; Escoffier, Camille; Fantino, Jean-Raphael; Garcia, Daniel; Ansaldi, Mireille; Rodrigue, Agnès; Pignol, David; Cholat, Pierre; Ginet, Nicolas

    2017-01-01

    The use of biosensors as sensitive and rapid alert systems is a promising perspective to monitor accidental or intentional environmental pollution, but their implementation in the field is limited by the lack of adapted inline water monitoring devices. We describe here the design and initial qualification of an analyzer prototype able to accommodate three types of biosensors based on entirely different methodologies (immunological, whole-cell, and bacteriophage biosensors), but whose responses rely on the emission of light. We developed a custom light detector and a reaction chamber compatible with the specificities of the three systems and resulting in statutory detection limits. The water analyzer prototype resulting from the COMBITOX project can be situated at level 4 on the Technology Readiness Level (TRL) scale and this technical advance paves the way to the use of biosensors on-site.

  10. Thermal Analysis of LED Phosphor Layer

    NASA Astrophysics Data System (ADS)

    Perera, Ukwatte Lokuliyanage Indika Upendra

    Solid-state lighting technology has progressed to a level where light-emitting diode (LED) products are either on par or better than their traditional lighting technology counterparts with respect to efficacy and lifetime. At present, the most common method to create "white" light from LEDs for illumination applications is by using the LED primary radiation and wavelength-converting materials. In this method, the re-emission from the wavelength-converting materials excited by the LED primary radiation is combined with the LED primary radiation to create the "white" light. During this conversion process, heat is generated as a result of conversion inefficiencies and other loss mechanisms in the LED and the wavelength-converting materials. This generated heat, if not properly dissipated, increases the operating temperature, thereby increasing the light output degradation of the system over both the short and long term. The heat generation of the LED and thermal management of the LED have been studied extensively. Methods to effectively dissipate heat from the LEDs and maintain lower LED operating temperature are well understood. However, investigation of factors driving heat generation, the resulting temperature distribution in the phosphor layer, and the influence of the phosphor layer temperature on LED performance and reliability have not received the same focus. The goal of this dissertation was to understand the main factors driving heat and light generation and the transport of light and heat in the wavelength-converting layer of an LED system. Another goal was to understand the interaction between heat and light in the system and to develop and analyze a solution to reduce the wavelength-converting layer operating temperature, thereby improving light output and reliability. Even though past studies have explored generation and transfer separately for light and heat, to the best of the author's knowledge, this is the first study that has analyzed both factors simultaneously to optimize the performance of a phosphor-converted LED system, thus contributing new knowledge to the field. In this dissertation, a theoretical model was developed that modeled both light propagation and heat transfer in the wavelength-converting layer for identifying the factors influencing heat generation. This theoretical model included temperature-dependent phosphor efficiency and light absorption in the phosphor layer geometry. Experimental studies were used to validate the developed model. The model indicated good agreement with the experimental results. The developed theoretical model was then used to model experimental studies. These experiment results were compared with the model predicted results for total radiant power output of LED systems and phosphor layer surface temperature. These comparisons illustrated the effectiveness of a dedicated heat dissipation method in reducing the operating temperature of the wavelength-converting layer, and the contribution of different heat dissipation mechanisms were quantified using the developed numerical model. In addition to these short-term studies, an experiment was conducted to validate the effectiveness of the dedicated wavelength-converting heat sink design to improve system lifetime by reducing phosphor layer operating temperature. The proposed heat sink design decreased the operating temperature of the phosphor layer by ~10°C, improving lifetime by twofold. Finally, this dissertation investigated the potential of the developed theoretical model being used as a tool for prioritizing research tasks and as a design tool during the material selection and system configuration phases.

  11. A conceptual design for cosmo-biology experiments in Earth's Orbit.

    PubMed

    Hashimoto, H; Greenberg, M; Brack, A; Colangeli, L; Horneck, G; Navarro-Gonzalez, R; Raulin, F; Kouchi, A; Saito, T; Yamashita, M; Kobayashi, K

    1998-06-01

    A conceptual design was developed for a cosmo-biology experiment. It is intended to expose simulated interstellar ice materials deposited on dust grains to the space environment. The experimental system consists of a cryogenic system to keep solidified gas sample, and an optical device to select and amplify the ultraviolet part of the solar light for irradiation. By this approach, the long lasting chemical evolution of icy species could be examined in a much shorter time of exposure by amplification of light intensity. The removal of light at longer wavelength, which is ineffective to induce photochemical reactions, reduces the heat load to the cryogenic system that holds solidified reactants including CO as a constituent species of interstellar materials. Other major hardware components were also defined in order to achieve the scientific objectives of this experiment. Those are a cold trap maintained at liquid nitrogen temperature to prevent the contamination of the sample during the exposure, a mechanism to exchange multiple samples, and a system to perform bake-out of the sample exposure chamber. This experiment system is proposed as a candidate payload implemented on the exposed facility of Japanese Experiment Module on International Space Station.

  12. Integration of real-time 3D capture, reconstruction, and light-field display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  13. Evaluation of light detector surface area for functional Near Infrared Spectroscopy.

    PubMed

    Wang, Lei; Ayaz, Hasan; Izzetoglu, Meltem; Onaral, Banu

    2017-10-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neuroimaging technique that utilizes near infrared light to detect cortical concentration changes of oxy-hemoglobin and deoxy-hemoglobin non-invasively. Using light sources and detectors over the scalp, multi-wavelength light intensities are recorded as time series and converted to concentration changes of hemoglobin via modified Beer-Lambert law. Here, we describe a potential source for systematic error in the calculation of hemoglobin changes and light intensity measurements. Previous system characterization and analysis studies looked into various fNIRS parameters such as type of light source, number and selection of wavelengths, distance between light source and detector. In this study, we have analyzed the contribution of light detector surface area to the overall outcome. Results from Monte Carlo based digital phantoms indicated that selection of detector area is a critical system parameter in minimizing the error in concentration calculations. The findings here can guide the design of future fNIRS sensors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Creating Library Interiors: Planning and Design Considerations.

    ERIC Educational Resources Information Center

    Jones, Plummer Alston, Jr.; Barton, Phillip K.

    1997-01-01

    Examines design considerations for public library interiors: access; acoustical treatment; assignable and nonassignable space; building interiors: ceilings, clocks, color, control, drinking fountains; exhibit space: slotwall display, floor coverings, floor loading, furniture, lighting, mechanical systems, public address, copying machines,…

  15. Light funnel concentrator panel for solar power

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The solar concentrator design concept provides a theoretical concentration efficiency of 96 percent with power-to-weight ratios as high as 50 W/kg. Further, it eliminates the need for fragile reflective coatings and is very tolerant to pointing inaccuracies. The concept differs from conventional reflective mirrors and lens design in that is uses the principle of total internal reflection in order to funnel incident sunlight into a concentrator photovoltaic cell. The feasibility of the light funnel concentrator concept was determined through a balanced approach of analysis, development, and fabrication of prototypes, and testing of components. A three-dimensional optical model of the light funnel concentrator and photovoltaic cell was developed in order to assess the ultimate performance of such systems. In addition, a thermal and structural analysis of a typical unit was made. Techniques of fabricating the light funnel cones, optically coupling them to GaAs concentrator cells, bonding the funnels to GaAs cells, making electrical interconnects, and bonding substrates was explored and a prototype light funnel concentrator unit was fabricated and tested. Testing of the system included measurements of optical concentrating efficiency, optical concentrator to cell coupling efficiency, and electrical efficiency.

  16. Terrestrial Planet Finder Coronagraph 2005: Overview of Technology Development and System Design Studies

    NASA Technical Reports Server (NTRS)

    Ford, Virginia G.

    2005-01-01

    Technology research, design trades, and modeling and analysis guide the definition of a Terrestrial Planet Finder Coronagraph Mission that will search for and characterize earth-like planets around near-by stars. Operating in visible wavebands, this mission will use coronagraphy techniques to suppress starlight to enable capturing and imaging the reflected light from a planet orbiting in the habitable zone of its parent star. The light will be spectrally characterized to determine the presence of life-indicating chemistry in the planet atmosphere.

  17. Load research manual. Volume 2: Fundamentals of implementing load research procedures

    NASA Astrophysics Data System (ADS)

    1980-11-01

    This manual will assist electric utilities and state regulatory authorities in investigating customer electricity demand as part of cost-of-service studies, rate design, marketing research, system design, load forecasting, rate reform analysis, and load management research. Load research procedures are described in detail. Research programs at three utilities are compared: Carolina Power and Light Company, Long Island Lighting Company, and Southern California Edison Company. A load research bibliography and glossaries of load research and statistical terms are also included.

  18. Simulated Tank Anti-Armor Gunnery System (STAGS-TOW).

    DTIC Science & Technology

    1983-05-01

    to train TOW gunners. It is derived from a model previously developed for DRAGON. The system employs a terrain board with model enemy armored vehicles ...gunnery training. TOW is a crew-portable, heavy anti-tank weapon designed to attack and defeat armored vehicles and field fortifications. The missile is...a target area, converts the infrared energy to electrical signals and then to visible light and displays the visible light as a real-time scene for

  19. Towards a light-weight query engine for accessing health sensor data in a fall prevention system.

    PubMed

    Kreiner, Karl; Gossy, Christian; Drobics, Mario

    2014-01-01

    Connecting various sensors in sensor networks has become popular during the last decade. An important aspect next to storing and creating data is information access by domain experts, such as researchers, caretakers and physicians. In this work we present the design and prototypic implementation of a light-weight query engine using natural language processing for accessing health-related sensor data in a fall prevention system.

  20. Residential Solar Design Review: A Manual on Community Architectural Controls and Solar Energy Use.

    ERIC Educational Resources Information Center

    Jaffe, Martin; Erley, Duncan

    Presented are architectural design issues associated with solar energy use, and procedures for design review committees to consider in examining residential solar installation in light of existing aesthetic goals for their communities. Recommended design review criteria include the type of solar system being used and the ways in which the system…

  1. Mapping algorithm for freeform construction using non-ideal light sources

    NASA Astrophysics Data System (ADS)

    Li, Chen; Michaelis, D.; Schreiber, P.; Dick, L.; Bräuer, A.

    2015-09-01

    Using conventional mapping algorithms for the construction of illumination freeform optics' arbitrary target pattern can be obtained for idealized sources, e.g. collimated light or point sources. Each freeform surface element generates an image point at the target and the light intensity of an image point is corresponding to the area of the freeform surface element who generates the image point. For sources with a pronounced extension and ray divergence, e.g. an LED with a small source-freeform-distance, the image points are blurred and the blurred patterns might be different between different points. Besides, due to Fresnel losses and vignetting, the relationship between light intensity of image points and area of freeform surface elements becomes complicated. These individual light distributions of each freeform element are taken into account in a mapping algorithm. To this end the method of steepest decent procedures are used to adapt the mapping goal. A structured target pattern for a optics system with an ideal source is computed applying corresponding linear optimization matrices. Special weighting factor and smoothing factor are included in the procedures to achieve certain edge conditions and to ensure the manufacturability of the freefrom surface. The corresponding linear optimization matrices, which are the lighting distribution patterns of each of the freeform surface elements, are gained by conventional raytracing with a realistic source. Nontrivial source geometries, like LED-irregularities due to bonding or source fine structures, and a complex ray divergence behavior can be easily considered. Additionally, Fresnel losses, vignetting and even stray light are taken into account. After optimization iterations, with a realistic source, the initial mapping goal can be achieved by the optics system providing a structured target pattern with an ideal source. The algorithm is applied to several design examples. A few simple tasks are presented to discussed the ability and limitation of the this mothed. It is also presented that a homogeneous LED-illumination system design, in where, with a strongly tilted incident direction, a homogeneous distribution is achieved with a rather compact optics system and short working distance applying a relatively large LED source. It is shown that the lighting distribution patterns from the freeform surface elements can be significantly different from the others. The generation of a structured target pattern, applying weighting factor and smoothing factor, are discussed. Finally, freeform designs for much more complex sources like clusters of LED-sources are presented.

  2. Demonstration Program for Low-Cost, High-Energy-Saving Dynamic Windows

    DTIC Science & Technology

    2014-09-01

    Design The scope of this project was to demonstrate the impact of dynamic windows via energy savings and HVAC peak-load reduction; to validate the...temperature and glare. While the installed dynamic window system does not directly control the HVAC or lighting of the facility, those systems are designed ...optimize energy efficiency and HVAC load management. The conversion to inoperable windows caused an unforeseen reluctance to accept the design and

  3. Intelligent Photovoltaic Systems by Combining the Improved Perturbation Method of Observation and Sun Location Tracking.

    PubMed

    Wang, Yajie; Shi, Yunbo; Yu, Xiaoyu; Liu, Yongjie

    2016-01-01

    Currently, tracking in photovoltaic (PV) systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works.

  4. Intelligent Photovoltaic Systems by Combining the Improved Perturbation Method of Observation and Sun Location Tracking

    PubMed Central

    Wang, Yajie; Shi, Yunbo; Yu, Xiaoyu; Liu, Yongjie

    2016-01-01

    Currently, tracking in photovoltaic (PV) systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works. PMID:27327657

  5. Simulation of multicomponent light source for optical-electronic system of color analysis objects

    NASA Astrophysics Data System (ADS)

    Peretiagin, Vladimir S.; Alekhin, Artem A.; Korotaev, Valery V.

    2016-04-01

    Development of lighting technology has led to possibility of using LEDs in the specialized devices for outdoor, industrial (decorative and accent) and domestic lighting. In addition, LEDs and devices based on them are widely used for solving particular problems. For example, the LED devices are widely used for lighting of vegetables and fruit (for their sorting or growing), textile products (for the control of its quality), minerals (for their sorting), etc. Causes of active introduction LED technology in different systems, including optical-electronic devices and systems, are a large choice of emission color and LED structure, that defines the spatial, power, thermal and other parameters. Furthermore, multi-element and color devices of lighting with adjustable illumination properties can be designed and implemented by using LEDs. However, devices based on LEDs require more attention if you want to provide a certain nature of the energy or color distribution at all the work area (area of analysis or observation) or surface of the object. This paper is proposed a method of theoretical modeling of the lighting devices. The authors present the models of RGB multicomponent light source applied to optical-electronic system for the color analysis of mineral objects. The possibility of formation the uniform and homogeneous on energy and color illumination of the work area for this system is presented. Also authors showed how parameters and characteristics of optical radiation receiver (by optical-electronic system) affect on the energy, spatial, spectral and colorimetric properties of a multicomponent light source.

  6. A design of Si-based nanoplasmonic structure as an antenna and reception amplifier for visible light communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, J. H.; Lin, Z. Y.; Liu, P.

    2014-10-21

    Visible light communication has been widely investigated due to its larger bandwidth and higher bit rate, and it can combine with the indoor illumination system that makes it more convenient to carry out. Receiving and processing the visible light signal on chip request for nanophotonics devices performing well. However, conventional optical device cannot be used for light-on-chip integration at subwavelength dimensions due to the diffraction limit. Herein, we propose a design of Si-based nanoplasmonic structure as an antenna and reception amplifier for visible light communication based on the interaction between Si nanoparticle and Au nanorod. This device integrates the uniquemore » scattering property of high-refractive index dielectric Si nanoparticles, whose scattering spectrum is dependent on the particle size, with the localized surface plasmon resonance of Au nanorod. We calculated the spectra collected by plane detector and near field distribution of nanostructure, and theoretically demonstrate that the proposed device can act as good receiver, amplifier and superlens during the visible light signal receiving and processing. Besides, unlike some other designs of nanoantenna devices focused less on how to detect the signals, our hybrid nanoantenna can realize the transfer between the scattering source and the detector effectively by Au nanorod waveguides. These findings suggest that the designed nanoplasmonic structure is expected to be used in on-chip nanophotonics as antenna, spectral splitter and demultiplexer for visible light communication.« less

  7. Design of embedded intelligent monitoring system based on face recognition

    NASA Astrophysics Data System (ADS)

    Liang, Weidong; Ding, Yan; Zhao, Liangjin; Li, Jia; Hu, Xuemei

    2017-01-01

    In this paper, a new embedded intelligent monitoring system based on face recognition is proposed. The system uses Pi Raspberry as the central processor. A sensors group has been designed with Zigbee module in order to assist the system to work better and the two alarm modes have been proposed using the Internet and 3G modem. The experimental results show that the system can work under various light intensities to recognize human face and send alarm information in real time.

  8. Photographic Equipment Test System (PETS)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Photographic Equipment Test System is presented. The device is a mobile optical system designed for evaluating performance of various sensors in a laboratory, in a vacuum chamber or on a flight line. The carriage is designed to allow elevation as well as azimuth control of the direction of the light from the collimator. The pneumatic tires provide an effective vibration isolation system. A target/illumination system is mounted on a motor driven linear slide, and focusing and exposure control can be operated remotely from the small electronics control console.

  9. A new method named as Segment-Compound method of baffle design

    NASA Astrophysics Data System (ADS)

    Qin, Xing; Yang, Xiaoxu; Gao, Xin; Liu, Xishuang

    2017-02-01

    As the observation demand increased, the demand of the lens imaging quality rising. Segment- Compound baffle design method was proposed in this paper. Three traditional methods of baffle design they are characterized as Inside to Outside, Outside to Inside, and Mirror Symmetry. Through a transmission type of optical system, the four methods were used to design stray light suppression structure for it, respectively. Then, structures modeling simulation with Solidworks, CAXA, Tracepro, At last, point source transmittance (PST) curve lines were got to describe their performance. The result shows that the Segment- Compound method can inhibit stay light more effectively. Moreover, it is easy to active and without use special material.

  10. Polarization selecting optical element using a porro prism incorporating a thin film polarizer in a single element

    DOEpatents

    Hendrix, James Lee

    2001-05-08

    A Porro prism and a light polarizer are combined in a single optical element termed a Hendrix Prism. The design provides retro-reflection of incoming light of a predetermined polarization in a direction anti-parallel to the direction of light incidence, while reflecting undesired light, i.e., that having a polarization orthogonal to the predetermined polarization, from the surface of the light polarizer. The undesired light is reflected in a direction that does not interfere with the intended operation of the device in which the Hendrix Prism is installed yet provides feedback to the system in which it is used.

  11. Aircraft empennage structural detail design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    This project involved the detailed design of the aft fuselage and empennage structure, vertical stabilizer, rudder, horizontal stabilizer, and elevator for the Triton primary flight trainer. The main design goals under consideration were to illustrate the integration of the control systems devices used in the tail surfaces and their necessary structural supports as well as the elevator trim, navigational lighting system, electrical systems, tail-located ground tie, and fuselage/cabin interface structure. Accommodations for maintenance, lubrication, adjustment, and repairability were devised. Weight, fabrication, and (sub)assembly goals were addressed. All designs were in accordance with the FAR Part 23 stipulations for a normal category aircraft.

  12. Combination of light and melatonin time cues for phase advancing the human circadian clock.

    PubMed

    Burke, Tina M; Markwald, Rachel R; Chinoy, Evan D; Snider, Jesse A; Bessman, Sara C; Jung, Christopher M; Wright, Kenneth P

    2013-11-01

    Photic and non-photic stimuli have been shown to shift the phase of the human circadian clock. We examined how photic and non-photic time cues may be combined by the human circadian system by assessing the phase advancing effects of one evening dose of exogenous melatonin, alone and in combination with one session of morning bright light exposure. Randomized placebo-controlled double-blind circadian protocol. The effects of four conditions, dim light (∼1.9 lux, ∼0.6 Watts/m(2))-placebo, dim light-melatonin (5 mg), bright light (∼3000 lux, ∼7 Watts/m(2))-placebo, and bright light-melatonin on circadian phase was assessed by the change in the salivary dim light melatonin onset (DLMO) prior to and following treatment under constant routine conditions. Melatonin or placebo was administered 5.75 h prior to habitual bedtime and 3 h of bright light exposure started 1 h prior to habitual wake time. Sleep and chronobiology laboratory environment free of time cues. Thirty-six healthy participants (18 females) aged 22 ± 4 y (mean ± SD). Morning bright light combined with early evening exogenous melatonin induced a greater phase advance of the DLMO than either treatment alone. Bright light alone and melatonin alone induced similar phase advances. Information from light and melatonin appear to be combined by the human circadian clock. The ability to combine circadian time cues has important implications for understanding fundamental physiological principles of the human circadian timing system. Knowledge of such principles is important for designing effective countermeasures for phase-shifting the human circadian clock to adapt to jet lag, shift work, and for designing effective treatments for circadian sleep-wakefulness disorders.

  13. Development of an antimicrobial blended white LED system containing pulsed 405nm LEDs for decontamination applications

    NASA Astrophysics Data System (ADS)

    Gillespie, Jonathan B.; Maclean, Michelle; Wilson, Mark P.; Given, Martin J.; MacGregor, Scott J.

    2017-03-01

    This study details the design, build and testing of a prototype antimicrobial blended white light unit containing pulsed red, yellow, green and 405nm LEDs. With a push for alternative methods of disinfection, optical methods have become a topic of interest. Ultra-violet (UV) light is widely known for its antimicrobial properties however; 405nm light has demonstrated significant antimicrobial properties against many common hospital acquired pathogens. In this study, a pulsed, blended, white-light prototype with a high content of 405 nm antimicrobial light, was designed, built and tested. Antimicrobial efficacy testing of the prototype was conducted using Staphylococcus aureus and Pseudomonas. aeruginosa, two bacteria which are common causes of hospital acquired infections. These were exposure to 3 different light outputs from the prototype and the surviving bacteria enumerated. Results showed that the mixed light output provided a much better CRI and light output under which to work. Also, the light output containing 405 nm light provided an antimicrobial effect, with decontamination of 103 CFUml-1 populations of both bacterial species. The other light content (red, yellow, green) had no beneficial or adverse effects on the antimicrobial properties of the 405nm light. The results suggest that with further development, it could be possible to produce an antimicrobial blended white light containing pulsed 405nm light that could supplement or even replace standard white lighting in certain environments.

  14. An inter-lighting interference cancellation scheme for MISO-VLC systems

    NASA Astrophysics Data System (ADS)

    Kim, Kyuntak; Lee, Kyujin; Lee, Kyesan

    2017-08-01

    In this paper, we propose an inter-lighting interference cancellation (ILIC) scheme to reduce the interference between adjacent light-emitting diodes (LEDs) and enhance the transmission capacity of multiple-input-single-output (MISO)-visible light communication (VLC) systems. In indoor environments, multiple LEDs have normally been used as lighting sources, allowing the design of MISO-VLC systems. To enhance the transmission capacity, different data should be simultaneously transmitted from each LED; however, that can lead to interference between adjacent LEDs. In that case, relatively low-received power signals are subjected to large interference because wireless optical systems generally use intensity modulation and direct detection. Thus, only the signal with the highest received power can be detected, while the other received signals cannot be detected. To solve this problem, we propose the ILIC scheme for MISO-VLC systems. The proposed scheme preferentially detects the highest received power signal, and this signal is referred as interference signal by an interference component generator. Then, relatively low-received power signal can be detected by cancelling the interference signal from the total received signals. Therefore, the performance of the proposed scheme can improve the total average bit error rate and throughput of a MISO-VLC system.

  15. Design of system calibration for effective imaging

    NASA Astrophysics Data System (ADS)

    Varaprasad Babu, G.; Rao, K. M. M.

    2006-12-01

    A CCD based characterization setup comprising of a light source, CCD linear array, Electronics for signal conditioning/ amplification, PC interface has been developed to generate images at varying densities and at multiple view angles. This arrangement is used to simulate and evaluate images by Super Resolution technique with multiple overlaps and yaw rotated images at different view angles. This setup also generates images at different densities to analyze the response of the detector port wise separately. The light intensity produced by the source needs to be calibrated for proper imaging by the high sensitive CCD detector over the FOV. One approach is to design a complex integrating sphere arrangement which costs higher for such applications. Another approach is to provide a suitable intensity feed back correction wherein the current through the lamp is controlled in a closed loop arrangement. This method is generally used in the applications where the light source is a point source. The third method is to control the time of exposure inversely to the lamp variations where lamp intensity is not possible to control. In this method, light intensity during the start of each line is sampled and the correction factor is applied for the full line. The fourth method is to provide correction through Look Up Table where the response of all the detectors are normalized through the digital transfer function. The fifth method is to have a light line arrangement where the light through multiple fiber optic cables are derived from a single source and arranged them in line. This is generally applicable and economical for low width cases. In our applications, a new method wherein an inverse multi density filter is designed which provides an effective calibration for the full swath even at low light intensities. The light intensity along the length is measured, an inverse density is computed, a correction filter is generated and implemented in the CCD based Characterization setup. This paper describes certain novel techniques of design and implementation of system calibration for effective Imaging to produce better quality data product especially while handling high resolution data.

  16. The Economics of Solar Heating

    NASA Technical Reports Server (NTRS)

    Forney, J. A.

    1982-01-01

    SHCOST program assesses economic feasibility of solar energy for single-family residences and light commercial applications. Program analyzes life-cycle costs as well as sensitivity studies to aid designer in selecting most economically attractive solar system for single-family residence or light commercial application. SHCOST includes fairly comprehensive list of cost elements from which user may select.

  17. Recent advances in the science and technology for solid state lighting

    NASA Astrophysics Data System (ADS)

    Munkholm, Anneli

    2003-03-01

    Recent development of high power light emitting diodes (LEDs) has enabled fabrication of solid state devices with efficiencies that surpass that of incandescent light, as well as providing a total light output significantly exceeding that of conventional indicator LEDs. This breakthrough in high flux is opening up new applications for use of high power LEDs, such as liquid crystal display backlighting and automotive headlights. Some of the key elements to this technological breakthrough are the flip-chip device design, power packaging and phosphor coating technology, which will be discussed. In addition to device design improvements, our fundamental knowledge of the III-nitride material system is improving and has resulted in higher internal quantum efficiencies. Strain plays a significant role in complex AlInGaN heterostructures used in current devices. Using a multi-beam optical strain sensor (MOSS) system to measure the wafer curvature in situ, we have characterized the strain during metal-organic chemical vapor deposition of III-nitrides. Strain measurements of InGaN, AlGaN and Si-doped GaN films on GaN will be presented.

  18. Intersection-Controller Software Module

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron; Foster, Conrad

    2005-01-01

    An important part of the emergency-vehicle traffic-light-preemption system summarized in the preceding article is a software module executed by a microcontroller in each intersection controller. This module monitors the broadcasts from all nearby participating emergency vehicles and intersections. It gathers the broadcast data pertaining to the positions and velocities of the vehicles and the timing of traffic and pedestrian lights and processes the data into predictions of the future positions of the vehicles. Analyzing the predictions by a combination of proximity tests, map-matching techniques, and statistical calculations designed to minimize the adverse effects of uncertainties in vehicle positions and headings, the module decides whether to preempt and issues the appropriate commands to the traffic lights, pedestrian lights, and electronic warning signs at the intersection. The module also broadcasts its state to all nearby vehicles and intersections. The module is designed to mitigate the effects of missing data and of unpredictable delays in the system. It has been intensively tested and refined so that it fails to warn in very few cases and issues very few false warnings.

  19. Volume holographic lens spectrum-splitting photovoltaic system for high energy yield with direct and diffuse solar illumination

    NASA Astrophysics Data System (ADS)

    Chrysler, Benjamin D.; Wu, Yuechen; Yu, Zhengshan; Kostuk, Raymond K.

    2017-08-01

    In this paper a prototype spectrum-splitting photovoltaic system based on volume holographic lenses (VHL) is designed, fabricated and tested. In spectrum-splitting systems, incident sunlight is divided in spectral bands for optimal conversion by a set of single-junction PV cells that are laterally separated. The VHL spectrumsplitting system in this paper has a form factor similar to conventional silicon PV modules but with higher efficiencies (>30%). Unlike many other spectrum-splitting systems that have been proposed in the past, the system in this work converts both direct and diffuse sunlight while using inexpensive 1-axis tracking systems. The VHL system uses holographic lenses that focus light at a transition wavelength to the boundary between two PV cells. Longer wavelength light is dispersed to the narrow bandgap cell and shorter wavelength light to the wide bandgap cell. A prototype system is designed with silicon and GaAs PV cells. The holographic lenses are fabricated in Covestro Bayfol HX photopolymer by `stitching' together lens segments through sequential masked exposures. The PV cells and holographic lenses were characterized and the data was used in a raytrace simulation and predicts an improvement in total power output of 15.2% compared to a non-spectrum-splitting reference. A laboratory measurement yielded an improvement in power output of 8.5%.

  20. Multi-Channel, Constant-Current Power Source for Aircraft Applications

    DTIC Science & Technology

    2017-03-01

    Special considerations impacting this design were minimizing volume, maintaining system power quality, and providing electrical fault protection...applications. Electrical loads, such as lighting, de-icing heaters, and actuators may be operated from this compact power conversion unit. Because of the...nature of aircraft systems, two of the most important design considerations are the maintenance of electrical power quality and minimization of weight

  1. Multivariable control of the Space Shuttle remote manipulator system using H2 and H(infinity) optimization. M.S. Thesis - Massachusetts Inst. of Tech.

    NASA Technical Reports Server (NTRS)

    Prakash, OM, II

    1991-01-01

    Three linear controllers are desiged to regulate the end effector of the Space Shuttle Remote Manipulator System (SRMS) operating in Position Hold Mode. In this mode of operation, jet firings of the Orbiter can be treated as disturbances while the controller tries to keep the end effector stationary in an orbiter-fixed reference frame. The three design techniques used include: the Linear Quadratic Regulator (LQR), H2 optimization, and H-infinity optimization. The nonlinear SRMS is linearized by modelling the effects of the significant nonlinearities as uncertain parameters. Each regulator design is evaluated for robust stability in light of the parametric uncertanties using both the small gain theorem with an H-infinity norm and the less conservative micro-analysis test. All three regulator designs offer significant improvement over the current system on the nominal plant. Unfortunately, even after dropping performance requirements and designing exclusively for robust stability, robust stability cannot be achieved. The SRMS suffers from lightly damped poles with real parametric uncertainties. Such a system renders the micro-analysis test, which allows for complex peturbations, too conservative.

  2. Optical system design, analysis, and production for advanced technology systems; Proceedings of the Meeting, Innsbruck, Austria, Apr. 15-17, 1986

    NASA Technical Reports Server (NTRS)

    Fischer, Robert E. (Editor); Rogers, Philip J. (Editor)

    1986-01-01

    The present conference considers topics in the fields of optical systems design software, the design and analysis of optical systems, illustrative cases of advanced optical system design, the integration of optical designs into greater systems, and optical fabrication and testing techniques. Attention is given to an extended range diffraction-based merit function for lens design optimization, an assessment of technologies for stray light control and evaluation, the automated characterization of IR systems' spatial resolution, a spectrum of design techniques based on aberration theory, a three-field IR telescope, a large aperture zoom lens for 16-mm motion picture cameras, and the use of concave holographic gratings as monochomators. Also discussed are the use of aspherics in optical systems, glass choice procedures for periscope design, the fabrication and testing of unconventional optics, low mass mirrors for large optics, and the diamond grinding of optical surfaces on aspheric lens molds.

  3. Design of a Low-Light-Level Image Sensor with On-Chip Sigma-Delta Analog-to- Digital Conversion

    NASA Technical Reports Server (NTRS)

    Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.; Fossum, Eric R.

    1993-01-01

    The design and projected performance of a low-light-level active-pixel-sensor (APS) chip with semi-parallel analog-to-digital (A/D) conversion is presented. The individual elements have been fabricated and tested using MOSIS* 2 micrometer CMOS technology, although the integrated system has not yet been fabricated. The imager consists of a 128 x 128 array of active pixels at a 50 micrometer pitch. Each column of pixels shares a 10-bit A/D converter based on first-order oversampled sigma-delta (Sigma-Delta) modulation. The 10-bit outputs of each converter are multiplexed and read out through a single set of outputs. A semi-parallel architecture is chosen to achieve 30 frames/second operation even at low light levels. The sensor is designed for less than 12 e^- rms noise performance.

  4. Optical Design Considerations for Efficient Light Collection from Liquid Scintillation Counters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Douglas, Matthew; Erchinger, Jennifer L.

    2015-01-01

    Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation light produced as a result of the dissolved material under study interacting with the scintillation cocktail. For reliable operation the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processingmore » to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low background liquid scintillation counters additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material (NORM) present in the laboratory and within the instruments construction materials. Low background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting in a low background shield. The basic approach to achieve both good light collection and a low background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high sensitivity liquid scintillation counting system.« less

  5. Survey of flue gas desulfurization systems: Hawthorn Station, Kansas City Power and Light Co. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, G.A.; Zada, F.K.

    1975-09-01

    Results are given of a survey of the flue gas desulfurization (FGD) systems at Kansas City Power and Light Co.'s Hawthorn Power Station. The FGD systems on Hawthorn boilers 3 and 4 were designed to operate by injection of dry limestone in the boiler's furnace, followed by tail gas scrubbing. Because of tube plugging in boiler 4 the mode of operation of the FGD system on that boiler was modified: ground limestone is now introduced into the flue gas near the gas inlet to the scrubber tower. (GRA)

  6. Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation

    NASA Astrophysics Data System (ADS)

    Essameldin, Mahmoud; Fleischmann, Friedrich; Henning, Thomas; Lang, Walter

    2017-02-01

    Freeform optical systems are playing an important role in the field of illumination engineering for redistributing the light intensity, because of its capability of achieving accurate and efficient results. The authors have presented the basic idea of the freeform lens design method at the 117th annual meeting of the German Society of Applied Optics (DGAOProceedings). Now, we demonstrate the feasibility of the design method by designing and evaluating a freeform lens. The concepts of luminous intensity mapping, energy conservation and differential equation are combined in designing a lens for non-imaging applications. The required procedures to design a lens including the simulations are explained in detail. The optical performance is investigated by using a numerical simulation of optical ray tracing. For evaluation, the results are compared with another recently published design method, showing the accurate performance of the proposed method using a reduced number of mapping angles. As a part of the tolerance analyses of the fabrication processes, the influence of the light source misalignments (translation and orientation) on the beam-shaping performance is presented. Finally, the importance of considering the extended light source while designing a freeform lens using the proposed method is discussed.

  7. Discovery deep space optical communications (DSOC) transceiver

    NASA Astrophysics Data System (ADS)

    Roberts, W. Thomas

    2017-02-01

    NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.

  8. Novel sensor for color control in solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Gourevitch, Alex; Thurston, Thomas; Singh, Rajiv; Banachowicz, Bartosz; Korobov, Vladimir; Drowley, Cliff

    2010-02-01

    LED wavelength and luminosity shifts due to temperature, dimming, aging, and binning uncertainty can cause large color errors in open-loop light-mixing illuminators. Multispectral color light sensors combined with feedback circuits can compensate for these LED shifts. Typical color light sensor design variables include the choice of light-sensing material, filter configuration, and read-out circuitry. Cypress Semiconductor has designed and prototyped a color sensor chip that consists of photodiode arrays connected to a I/F (Current to Frequency) converter. This architecture has been chosen to achieve high dynamic range (~100dB) and provide flexibility for tailoring sensor response. Several different optical filter configurations were evaluated in this prototype. The color-sensor chip was incorporated into an RGB light color mixing system with closed-loop optical feedback. Color mixing accuracy was determined by calculating the difference between (u',v') set point values and CIE coordinates measured with a reference colorimeter. A typical color precision ▵u'v' less than 0.0055 has been demonstrated over a wide range of colors, a temperature range of 50C, and light dimming up to 80%.

  9. Design of an omnidirectional single-point photodetector for large-scale spatial coordinate measurement

    NASA Astrophysics Data System (ADS)

    Xie, Hongbo; Mao, Chensheng; Ren, Yongjie; Zhu, Jigui; Wang, Chao; Yang, Lei

    2017-10-01

    In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is utilizing the spatial trigonometric relationships between multiple laser transmitter stations and the target point. A light receiving device at the target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is greatly desired. We report one design of OSPD using an aspheric lens, which achieves an enhanced reception angle of -5 deg to 45 deg in vertical and 360 deg in horizontal. As the heart of our OSPD, the aspheric lens is designed in a geometric model and optimized by LightTools Software, which enables the reflection of a wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 to 13 m and further analyzed utilizing developed a geometric model. The experimental and analytic results verify that our device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, and optical wireless communication systems.

  10. Advanced Extended Plate and Beam Wall System in a Cold-Climate House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallay, Dave; Wiehagen, Joseph; Kochkin, Vladimir

    This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders.

  11. Tolerancing the alignment of large-core optical fibers, fiber bundles and light guides using a Fourier approach.

    PubMed

    Sawyer, Travis W; Petersburg, Ryan; Bohndiek, Sarah E

    2017-04-20

    Optical fiber technology is found in a wide variety of applications to flexibly relay light between two points, enabling information transfer across long distances and allowing access to hard-to-reach areas. Large-core optical fibers and light guides find frequent use in illumination and spectroscopic applications, for example, endoscopy and high-resolution astronomical spectroscopy. Proper alignment is critical for maximizing throughput in optical fiber coupling systems; however, there currently are no formal approaches to tolerancing the alignment of a light-guide coupling system. Here, we propose a Fourier alignment sensitivity (FAS) algorithm to determine the optimal tolerances on the alignment of a light guide by computing the alignment sensitivity. The algorithm shows excellent agreement with both simulated and experimentally measured values and improves on the computation time of equivalent ray-tracing simulations by two orders of magnitude. We then apply FAS to tolerance and fabricate a coupling system, which is shown to meet specifications, thus validating FAS as a tolerancing technique. These results indicate that FAS is a flexible and rapid means to quantify the alignment sensitivity of a light guide, widely informing the design and tolerancing of coupling systems.

  12. Tolerancing the alignment of large-core optical fibers, fiber bundles and light guides using a Fourier approach

    PubMed Central

    Sawyer, Travis W.; Petersburg, Ryan; Bohndiek, Sarah E.

    2017-01-01

    Optical fiber technology is found in a wide variety of applications to flexibly relay light between two points, enabling information transfer across long distances and allowing access to hard-to-reach areas. Large-core optical fibers and light guides find frequent use in illumination and spectroscopic applications; for example, endoscopy and high-resolution astronomical spectroscopy. Proper alignment is critical for maximizing throughput in optical fiber coupling systems, however, there currently are no formal approaches to tolerancing the alignment of a light guide coupling system. Here, we propose a Fourier Alignment Sensitivity (FAS) algorithm to determine the optimal tolerances on the alignment of a light guide by computing the alignment sensitivity. The algorithm shows excellent agreement with both simulated and experimentally measured values and improves on the computation time of equivalent ray tracing simulations by two orders of magnitude. We then apply FAS to tolerance and fabricate a coupling system, which is shown to meet specifications, thus validating FAS as a tolerancing technique. These results indicate that FAS is a flexible and rapid means to quantify the alignment sensitivity of a light guide, widely informing the design and tolerancing of coupling systems. PMID:28430250

  13. Influence of incident angle on the decoding in laser polarization encoding guidance

    NASA Astrophysics Data System (ADS)

    Zhou, Muchun; Chen, Yanru; Zhao, Qi; Xin, Yu; Wen, Hongyuan

    2009-07-01

    Dynamic detection of polarization states is very important for laser polarization coding guidance systems. In this paper, a set of dynamic polarization decoding and detection system used in laser polarization coding guidance was designed. Detection process of the normal incident polarized light is analyzed with Jones Matrix; the system can effectively detect changes in polarization. Influence of non-normal incident light on performance of polarization decoding and detection system is studied; analysis showed that changes in incident angle will have a negative impact on measure results, the non-normal incident influence is mainly caused by second-order birefringence and polarization sensitivity effect generated in the phase delay and beam splitter prism. Combined with Fresnel formula, decoding errors of linearly polarized light, elliptically polarized light and circularly polarized light with different incident angles into the detector are calculated respectively, the results show that the decoding errors increase with increase of incident angle. Decoding errors have relations with geometry parameters, material refractive index of wave plate, polarization beam splitting prism. Decoding error can be reduced by using thin low-order wave-plate. Simulation of detection of polarized light with different incident angle confirmed the corresponding conclusions.

  14. Development of online NIR urine analyzing system based on AOTF

    NASA Astrophysics Data System (ADS)

    Wan, Feng; Sun, Zhendong; Li, Xiaoxia

    2006-09-01

    In this paper, some key techniques on development of on-line MR urine analyzing system based on AOTF (Acousto - Optics Tunable Filter) are introduced. Problems about designing the optical system including collimation of incident light and working distance (the shortest distance for separating incident light and diffracted light) are analyzed and researched. DDS (Direct Digital Synthesizer) controlled by microprocessor is used to realize the wavelength scan. The experiment results show that this MR urine analyzing system based on. AOTF has 10000 - 4000cm -1 wavelength range and O.3ms wavelength transfer rate. Compare with the conventional Fourier Transform NIP. spectrophotometer for analyzing multi-components in urine, this system features low cost, small volume and on-line measurement function. Unscrambler software (multivariate statistical software by CAMO Inc. Norway) is selected as the software for processing the data. This system can realize on line quantitative analysis of protein, urea and creatinine in urine.

  15. An ultrasound-guided fluorescence tomography system: design and specification

    NASA Astrophysics Data System (ADS)

    D'Souza, Alisha V.; Flynn, Brendan P.; Kanick, Stephen C.; Torosean, Sason; Davis, Scott C.; Maytin, Edward V.; Hasan, Tayyaba; Pogue, Brian W.

    2013-03-01

    An ultrasound-guided fluorescence molecular tomography system is under development for in vivo quantification of Protoporphyrin IX (PpIX) during Aminolevulinic Acid - Photodynamic Therapy (ALA-PDT) of Basal Cell Carcinoma. The system is designed to combine fiber-based spectral sampling of PPIX fluorescence emission with co-registered ultrasound images to quantify local fluorophore concentration. A single white light source is used to provide an estimate of the bulk optical properties of tissue. Optical data is obtained by sequential illumination of a 633nm laser source at 4 linear locations with parallel detection at 5 locations interspersed between the sources. Tissue regions from segmented ultrasound images, optical boundary data, white light-informed optical properties and diffusion theory are used to estimate the fluorophore concentration in these regions. Our system and methods allow interrogation of both superficial and deep tissue locations up to PpIX concentrations of 0.025ug/ml.

  16. Photoacoustic design parameter optimization for deep tissue imaging by numerical simulation

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Ha, Seunghan; Kim, Kang

    2012-02-01

    A new design of light illumination scheme for deep tissue photoacoustic (PA) imaging, a light catcher, is proposed and evaluated by in silico simulation. Finite element (FE)-based numerical simulation model was developed for photoacoustic (PA) imaging in soft tissues. In this in silico simulation using a commercially available FE simulation package (COMSOL MultiphysicsTM, COMSOL Inc., USA), a short-pulsed laser point source (pulse length of 5 ns) was placed in water on the tissue surface. Overall, four sets of simulation models were integrated together to describe the physical principles of PA imaging. Light energy transmission through background tissues from the laser source to the target tissue or contrast agent was described by diffusion equation. The absorption of light energy and its conversion to heat by target tissue or contrast agent was modeled using bio-heat equation. The heat then causes the stress and strain change, and the resulting displacement of the target surface produces acoustic pressure. The created wide-band acoustic pressure will propagate through background tissues to the ultrasound detector, which is governed by acoustic wave equation. Both optical and acoustical parameters in soft tissues such as scattering, absorption, and attenuation are incorporated in tissue models. PA imaging performance with different design parameters of the laser source and energy delivery scheme was investigated. The laser light illumination into the deep tissues can be significantly improved by up to 134.8% increase of fluence rate by introducing a designed compact light catcher with highly reflecting inner surface surrounding the light source. The optimized parameters through this simulation will guide the design of PA system for deep tissue imaging, and help to form the base protocols of experimental evaluations in vitro and in vivo.

  17. Advances in flexible optrode hardware for use in cybernetic insects

    NASA Astrophysics Data System (ADS)

    Register, Joseph; Callahan, Dennis M.; Segura, Carlos; LeBlanc, John; Lissandrello, Charles; Kumar, Parshant; Salthouse, Christopher; Wheeler, Jesse

    2017-08-01

    Optogenetic manipulation is widely used to selectively excite and silence neurons in laboratory experiments. Recent efforts to miniaturize the components of optogenetic systems have enabled experiments on freely moving animals, but further miniaturization is required for freely flying insects. In particular, miniaturization of high channel-count optical waveguides are needed for high-resolution interfaces. Thin flexible waveguide arrays are needed to bend light around tight turns to access small anatomical targets. We present the design of lightweight miniaturized optogentic hardware and supporting electronics for the untethered steering of dragonfly flight. The system is designed to enable autonomous flight and includes processing, guidance sensors, solar power, and light stimulators. The system will weigh less than 200mg and be worn by the dragonfly as a backpack. The flexible implant has been designed to provide stimuli around nerves through micron scale apertures of adjacent neural tissue without the use of heavy hardware. We address the challenges of lightweight optogenetics and the development of high contrast polymer waveguides for this purpose.

  18. Simulating and evaluating an adaptive and integrated traffic lights control system for smart city application

    NASA Astrophysics Data System (ADS)

    Djuana, E.; Rahardjo, K.; Gozali, F.; Tan, S.; Rambung, R.; Adrian, D.

    2018-01-01

    A city could be categorized as a smart city when the information technology has been developed to the point that the administration could sense, understand, and control every resource to serve its people and sustain the development of the city. One of the smart city aspects is transportation and traffic management. This paper presents a research project to design an adaptive traffic lights control system as a part of the smart system for optimizing road utilization and reducing congestion. Research problems presented include: (1) Congestion in one direction toward an intersection due to dynamic traffic condition from time to time during the day, while the timing cycles in traffic lights system are mostly static; (2) No timing synchronization among traffic lights in adjacent intersections that is causing unsteady flows; (3) Difficulties in traffic condition monitoring on the intersection and the lack of facility for remotely controlling traffic lights. In this research, a simulator has been built to model the adaptivity and integration among different traffic lights controllers in adjacent intersections, and a case study consisting of three sets of intersections along Jalan K. H. Hasyim Ashari has been simulated. It can be concluded that timing slots synchronization among traffic lights is crucial for maintaining a steady traffic flow.

  19. Design of Weft Detection System in The Stenter Machine

    NASA Astrophysics Data System (ADS)

    Gu, Minming; Xu, Xianju; Dai, Wenzhan

    2017-12-01

    In order to build an effective automatic weft-straightening system, it is important for the sensing device to detect most the possible fabric styles, designs, colours and structures, an optical sensing system that detects the angular orientation of weft threads in a moving web of a textile has been built. It contains an adjustable light source, two lens systems and photodiode sensor array. The sensor array includes 13 radial pattern of photosensitive areas that each generate an electrical signal proportional to the total intensity of the light incident on the area. The moving shadow of a weft thread passing over the area will modulate the output signal. A signal processed circuit was built to do the I/V conversion, amplifying, hardware filtering. An embed micro control system then deals with the information of these signals, calculates the angle of the weft drew. Finally, the experiments were done, the results showed that the weft detection system can deal with the fabric weft skew up to 30° and has achieved good results in the application.

  20. The Modular Optical Underwater Survey System

    PubMed Central

    Amin, Ruhul; Richards, Benjamin L.; Misa, William F. X. E.; Taylor, Jeremy C.; Miller, Dianna R.; Rollo, Audrey K.; Demarke, Christopher; Ossolinski, Justin E.; Reardon, Russell T.; Koyanagi, Kyle H.

    2017-01-01

    The Pacific Islands Fisheries Science Center deploys the Modular Optical Underwater Survey System (MOUSS) to estimate the species-specific, size-structured abundance of commercially-important fish species in Hawaii and the Pacific Islands. The MOUSS is an autonomous stereo-video camera system designed for the in situ visual sampling of fish assemblages. This system is rated to 500 m and its low-light, stereo-video cameras enable identification, counting, and sizing of individuals at a range of 0.5–10 m. The modular nature of MOUSS allows for the efficient and cost-effective use of various imaging sensors, power systems, and deployment platforms. The MOUSS is in use for surveys in Hawaii, the Gulf of Mexico, and Southern California. In Hawaiian waters, the system can effectively identify individuals to a depth of 250 m using only ambient light. In this paper, we describe the MOUSS’s application in fisheries research, including the design, calibration, analysis techniques, and deployment mechanism. PMID:29019962

  1. Building technolgies program. 1994 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selkowitz, S.E.

    1995-04-01

    The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. We have focused our past efforts on two major building systems, windows and lighting, and on the simulation tools needed by researchers and designers to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. In addition, we are now taking more of an integrated systems and life cycle perspective to create cost-effectivemore » solutions for more energy efficient, comfortable, and productive work and living environments. More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity-factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout every space in a building, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Window and lighting systems are thus essential components of any comprehensive building science program.« less

  2. Synchronized parameter optimization of the double freeform lenses illumination system used for the CF-LCoS pico-projectors

    NASA Astrophysics Data System (ADS)

    Chen, Enguo; Liu, Peng; Yu, Feihong

    2012-10-01

    A novel synchronized optimization method of multiple freeform surfaces is proposed and applied to double lenses illumination system design of CF-LCoS pico-projectors. Based on Snell's law and the energy conservation law, a series of first-order partial differential equations are derived for the multiple freeform surfaces of the initial system. By assigning the light deflection angle to each freeform surface, multiple surfaces can be obtained simultaneously by solving the corresponding equations, meanwhile the restricted angle on CF-LCoS is guaranteed. In order to improve the spatial uniformity, the multi-surfaces are synchronously optimized by using simplex algorithm for an extended LED source. Design example shows that the double lenses based illumination system, which employs a single 2 mm×2 mm LED chip and a CF-LCoS panel with a diagonal of 0.59 inches satisfies the needs of pico-projector. Moreover, analytical result indicates that the design method represents substantial improvement and practical significance over traditional CF-LCoS projection system, which could offer outstanding performance with both portability and low cost. The synchronized optimization design method could not only realize collimating and uniform illumination, but also could be introduced to other specific light conditions.

  3. Screw expander for light duty diesel engines

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Preliminary selection and sizing of a positive displacement screw compressor-expander subsystem for a light-duty adiabatic diesel engine; development of a mathematical model to describe overall efficiencies for the screw compressor and expander; simulation of operation to establish overall efficiency for a range of design parameters and at given engine operating points; simulation to establish potential net power output at light-duty diesel operating points; analytical determination of mass moments of inertia for the rotors and inertia of the compressor-expander subsystem; and preparation of engineering layout drawings of the compressor and expander are discussed. As a result of this work, it was concluded that the screw compressor and expander designed for light-duty diesel engine applications are viable alternatives to turbo-compound systems, with acceptable efficiencies for both units, and only a moderate effect on the transient response.

  4. Ground-based studies of tropisms in hardware developed for the European Modular Cultivation System (EMCS)

    NASA Astrophysics Data System (ADS)

    Correll, Melanie J.; Edelmann, Richard E.; Hangarter, Roger P.; Mullen, Jack L.; Kiss, John Z.

    Phototropism and gravitropism play key roles in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. The blue-light response is controlled by the phototropins while the red-light response is mediated by the phytochrome family of photoreceptors. In order to better characterize root phototropism, we plan to perform experiments in microgravity so that this tropism can be more effectively studied without the interactions with the gravity response. Our experiments are to be performed on the European Modular Cultivation System (EMCS), which provides an incubator, lighting system, and high resolution video that are on a centrifuge palette. These experiments will be performed at μg, 1g (control) and fractional g-levels. In order to ensure success of this mission on the International Space Station, we have been conducting ground-based studies on growth, phototropism, and gravitropism in experimental unique equipment (EUE) that was designed for our experiments with Arabidopsis seedlings. Currently, the EMCS and our EUE are scheduled for launch on space shuttle mission STS-121. This project should provide insight into how the blue- and red-light signaling systems interact with each other and with the gravisensing system.

  5. Eye vision system using programmable micro-optics and micro-electronics

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Amin, M. Junaid; Riza, Mehdi N.

    2014-02-01

    Proposed is a novel eye vision system that combines the use of advanced micro-optic and microelectronic technologies that includes programmable micro-optic devices, pico-projectors, Radio Frequency (RF) and optical wireless communication and control links, energy harvesting and storage devices and remote wireless energy transfer capabilities. This portable light weight system can measure eye refractive powers, optimize light conditions for the eye under test, conduct color-blindness tests, and implement eye strain relief and eye muscle exercises via time sequenced imaging. Described is the basic design of the proposed system and its first stage system experimental results for vision spherical lens refractive error correction.

  6. Annual Report: DOE Advanced Combustion Systems & Fuels R&D; Light-Duty Diesel Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, Stephen

    Despite compliance issues in previous years, automakers have demonstrated that the newest generation of diesel power trains are capable of meeting all federal and state regulations (EPA, 2016). Diesels continue to be a cost-effective, efficient, powerful propulsion source for many light- and medium-duty vehicle applications (Martec, 2016). Even modest reductions in the fuel consumption of light- and medium duty diesel vehicles in the U.S. will eliminate millions of tons of CO2 emissions per year. Continued improvement of diesel combustion systems will play an important role in reducing fleet fuel consumption, but these improvements will require an unprecedented scientific understanding ofmore » how changes in engine design and calibration affect the mixture preparation, combustion, and pollutant formation processes that take place inside the cylinder. The focus of this year’s research is to provide insight into the physical mechanisms responsible for improved thermal efficiency observed with a stepped-lip piston. Understanding how piston design can influence efficiency will help engineers develop and optimize new diesel combustion systems.« less

  7. A compact and lightweight off-axis lightguide prism in near to eye display

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhenfeng; Cheng, Qijia; Surman, Phil; Zheng, Yuanjin; Sun, Xiao Wei

    2017-06-01

    We propose a method to improve the design of an off-axis lightguide configuration for near to eye displays (NED) using freeform optics technology. The advantage of this modified optical system, which includes an organic light-emitting diode (OLED), a doublet lens, an imaging lightguide prism and a compensation prism, is that it increases optical length path, offers a smaller size, as well as avoids the obstructed views, and matches the user's head shape. In this system, the light emitted from the OLED passes through the doublet lens and is refracted/reflected by the imaging lightguide prism, which is used to magnify the image from the microdisplay, while the compensation prism is utilized to correct the light ray shift so that a low-distortion image can be observed in a real-world setting. A NED with a 4 mm diameter exit pupil, 21.5° diagonal full field of view (FoV), 23 mm eye relief, and a size of 33 mm by 9.3 mm by 16 mm is designed. The developed system is compact, lightweight and suitable for entertainment and education application.

  8. Design and functionalization of photocatalytic systems within mesoporous silica.

    PubMed

    Qian, Xufang; Fuku, Kojirou; Kuwahara, Yasutaka; Kamegawa, Takashi; Mori, Kohsuke; Yamashita, Hiromi

    2014-06-01

    In the past decades, various photocatalysts such as TiO2, transition-metal-oxide moieties within cavities and frameworks, or metal complexes have attracted considerable attention in light-excited catalytic processes. Owing to high surface areas, transparency to UV and visible light as well as easily modified surfaces, mesoporous silica-based materials have been widely used as excellent hosts for designing efficient photocatalytic systems under the background of environmental remediation and solar-energy utilization. This Minireview mainly focuses on the surface-chemistry engineering of TiO2/mesoporous silica photocatalytic systems and fabrication of binary oxides and nanocatalysts in mesoporous single-site-photocatalyst frameworks. Recently, metallic nanostructures with localized surface plasmon resonance (LSPR) have been widely studied in catalytic applications harvesting light irradiation. Accordingly, silver and gold nanostructures confined in mesoporous silica and their corresponding catalytic activity enhanced by the LSPR effect will be introduced. In addition, the integration of metal complexes within mesoporous silica materials for the construction of functional inorganic-organic supramolecular photocatalysts will be briefly described. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. System and Method for Automated Rendezvous, Docking and Capture of Autonomous Underwater Vehicles

    NASA Technical Reports Server (NTRS)

    Clark, Evan (Inventor); Richmond, Kristof (Inventor); Paulus, Jeremy (Inventor); Kimball, Peter (Inventor); Scully, Mark (Inventor); Kapit, Jason (Inventor); Stone, William C. (Inventor)

    2018-01-01

    A system for automated rendezvous, docking, and capture of autonomous underwater vehicles at the conclusion of a mission comprising of comprised of a docking rod having lighted, pulsating (in both frequency and light intensity) series of LED light strips thereon, with the LEDs at a known spacing, and the autonomous underwater vehicle specially designed to detect and capture the docking rod and then be lifted structurally by a spherical end strop about which the vehicle can be pivoted and hoisted up (e.g., onto a ship). The method of recovery allows for very routine and reliable automated recovery of an unmanned underwater asset.

  10. Prediction of Excitation Energies for Conjugated Oligomers and Polymers from Time-Dependent Density Functional Theory

    PubMed Central

    Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin

    2010-01-01

    With technological advances, light-emitting conjugated oligomers and polymers have become competitive candidates in the commercial market of light-emitting diodes for display and other technologies, due to the ultralow cost, light weight, and flexibility. Prediction of excitation energies of these systems plays a crucial role in the understanding of their optical properties and device design. In this review article, we discuss the calculation of excitation energies with time-dependent density functional theory, which is one of the most successful methods in the investigation of the dynamical response of molecular systems to external perturbation, owing to its high computational efficiency.

  11. Motorist actions at a crosswalk with an in-pavement flashing light system.

    PubMed

    Karkee, Ganesh J; Nambisan, Shashi S; Pulugurtha, Srinivas S

    2010-12-01

    An in-pavement flashing light system is used at crosswalks to alert motorists and pedestrians of possible conflicts and to influence their behavior to enhance safety. The relative behaviors of the drivers and the pedestrians affect safety. An evaluation of motorist behavior at a pedestrian crosswalk with an in-pavement flashing light system is presented in this manuscript. Field observations provide the basis to evaluate motorist behavior at a crosswalk with an in-pavement flashing light system. Outcomes of pedestrian and motorists actions were observed to quantify measures of effectiveness (MOEs) such as yielding behavior of motorists, vehicle speeds, and yielding distance from the crosswalk. A before-and-after study design was used. The before condition was prior to the activation of the in-pavement flashing light system and the after condition was after the activation of the in-pavement flashing light system. The study was conducted on a relatively low-volume roadway located in the Henderson, Nevada. The significance of the differences in the MOEs between the 2 study periods was evaluated using statistical analysis tools such as a one-tailed test for proportions and the Welch-Satterthwaite t-test. The results show that the installation of the in-pavement flashing light system increased the yielding behavior of motorists significantly (P < 0.001). The vehicular speeds decreased when pedestrians were waiting at the curb to cross and when they were crossing (P < 0.001). Motorists yielded to pedestrians on an average about 3 m (∼10 feet) upstream from the yield markings and the yielding distances were consistent in both directions. The in-pavement flashing light system is seen to be effective to improve motorists' yielding behavior and the speeds of vehicles were also observed to decrease in the presence of pedestrians.

  12. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics.

    PubMed

    Kim, Rak-Hwan; Kim, Dae-Hyeong; Xiao, Jianliang; Kim, Bong Hoon; Park, Sang-Il; Panilaitis, Bruce; Ghaffari, Roozbeh; Yao, Jimin; Li, Ming; Liu, Zhuangjian; Malyarchuk, Viktor; Kim, Dae Gon; Le, An-Phong; Nuzzo, Ralph G; Kaplan, David L; Omenetto, Fiorenzo G; Huang, Yonggang; Kang, Zhan; Rogers, John A

    2010-11-01

    Inorganic light-emitting diodes and photodetectors represent important, established technologies for solid-state lighting, digital imaging and many other applications. Eliminating mechanical and geometrical design constraints imposed by the supporting semiconductor wafers can enable alternative uses in areas such as biomedicine and robotics. Here we describe systems that consist of arrays of interconnected, ultrathin inorganic light-emitting diodes and photodetectors configured in mechanically optimized layouts on unusual substrates. Light-emitting sutures, implantable sheets and illuminated plasmonic crystals that are compatible with complete immersion in biofluids illustrate the suitability of these technologies for use in biomedicine. Waterproof optical-proximity-sensor tapes capable of conformal integration on curved surfaces of gloves and thin, refractive-index monitors wrapped on tubing for intravenous delivery systems demonstrate possibilities in robotics and clinical medicine. These and related systems may create important, unconventional opportunities for optoelectronic devices.

  13. Optical design of free-form bicycle lamp

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Cen, Zaofeng; Deng, Shitao; Wang, Jing

    2008-03-01

    Bicycle lamp used for road lighting is becoming popular now. However, few people have realized its potential market and correlative researches are far from enough. Generally speaking, researches on bicycle lamps are mostly focused on how to design a reflector which will collect light energy more efficiently and can transfer it to certain areas forward when the light source is determinated. In traditional angle of view, the reflector is usually a paraboloid or ellipsoid. However, both of them can not meet the requirement in practice most of the cases. Therefore, free form reflectors (FFRs) instead are widely used. In this paper, a new approach to design FFR which is convenient and rapid is presented. To do computer-aided simulation, certain light source should be selected first. Usually, light sources that behavior like a Lambertian emitter are modeled. To examine the correctness of this approach, a bicycle lamp is designed according to this approach to see if it can meet the requirements of the Germany standard which will be introduced in the text later. The standard requires specific illuminance values for particular points at the test screen with a distance of 10m from the source. The simulation results is exciting and can meet all the requirement. For example, 10lx is expected at the point (0, 0) while the obtained value is 10.42lx, under the conditions that the total luminous flux of the light source is 42lm and the reflectivity of FFR is 0.8. This method has certain universal significance and can provide references for the design of other illumination systems.

  14. Safety approach to the selection of design criteria for the CRBRP reactor refueling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisl, C J; Berg, G E; Sharkey, N F

    1979-01-01

    The selection of safety design criteria for Liquid Metal Fast Breeder Reactor (LMFBR) refueling systems required the extrapolation of regulations and guidelines intended for Light Water Reactor refueling systems and was encumbered by the lack of benefit from a commercially licensed predecessor other than Fermi. The overall approach and underlying logic are described for developing safety design criteria for the reactor refueling system (RRS) of the Clinch River Breeder Reactor Plant (CRBRP). The complete selection process used to establish the criteria is presented, from the definition of safety functions to the finalization of safety design criteria in the appropriate documents.more » The process steps are illustrated by examples.« less

  15. Design of illumination system in ring field capsule endoscope

    NASA Astrophysics Data System (ADS)

    Jeng, Wei-De; Mang, Ou-Yang; Chen, Yu-Ta; Wu, Ying-Yi

    2011-03-01

    This paper is researching about the illumination system in ring field capsule endoscope. It is difficult to obtain the uniform illumination on the observed object because the light intensity of LED will be changed along its angular displacement and same as luminous intensity distribution curve. So we use the optical design software which is Advanced Systems Analysis Program (ASAP) to build a photometric model for the optimal design of LED illumination system in ring field capsule endoscope. In this paper, the optimal design of illumination uniformity in the ring field capsule endoscope is from origin 0.128 up to optimum 0.603 and it would advance the image quality of ring field capsule endoscope greatly.

  16. NEID Port Adapter: Design and Verification Plan

    NASA Astrophysics Data System (ADS)

    Logsdon, Sarah E.; McElwain, Michael; McElwain, Michael W.; Gong, Qian; Bender, Chad; Halverson, Samuel; Hearty, Fred; Hunting, Emily; Jaehnig, Kurt; Liang, Ming; Mahadevan, Suvrath; Monson, A. J.; Percival, Jeffrey; Rajagopal, Jayadev; Ramsey, Lawrence; Roy, Arpita; Santoro, Fernando; Schwab, Christian; Smith, Michael; Wolf, Marsha; Wright, Jason

    2018-01-01

    The NEID spectrograph is an optical (380-930 nm), fiber-fed, precision Doppler spectrograph currently in development for the 3.5 m WIYN Telescope at Kitt Peak National Observatory. Designed to achieve a radial velocity precision of <30 cm/s, NEID will be sensitive enough to detect terrestrial-mass exoplanets around low-mass stars. Light from the target stars is focused by the telescope to a bent-Cassegrain port at the edge of the primary mirror mechanical support. The specialized NEID “Port Adapter” system is mounted at this bent-Cassegrain port and is responsible for delivering the incident light from the telescope to the NEID fibers. In order to provide stable, high-quality images to the science instrument, the Port Adapter houses several subcomponents designed to acquire the target stars, correct for atmospheric dispersion, stabilize the light onto the science fibers, and calibrate the spectrograph by injecting known wavelength sources such as a laser frequency comb. Here we describe the overall design of the Port Adapter and outline the development of calibration tools and an on-sky test plan to verify the performance of the atmospheric dispersion corrector (ADC). We also discuss the development of an error budget and test requirements to ensure high-precision centroiding onto the NEID science fibers using a system of coherent fiber bundles.

  17. LEDs Illuminate Bulbs for Better Sleep, Wake Cycles

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Life on the International Space Station (ISS) wreaks havoc on an astronaut’s biological rhythms, and one way NASA mitigates the problem is through the use of LED lighting to alternately stimulate energy and focus and induce relaxation. Satellite Beach, Florida-based Lighting Science partnered with Kennedy Space Center to commercialize an LED system designed for the ISS, resulting in its DefinityDigital product line of light bulbs now used in numerous homes, hotel chains, and resorts.

  18. Tuning the light in senior care: Evaluating a trial LED lighting system at the ACC Care Center in Sacramento, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Robert G.; Wilkerson, Andrea M.

    This report summarizes the results from a trial installation of light-emitting diode (LED) lighting systems in several spaces within the ACC Care Center in Sacramento, CA. The Sacramento Municipal Utility District (SMUD) coordinated the project and invited the U.S. Department of Energy (DOE) to document the performance of the LED lighting systems as part of a GATEWAY evaluation. DOE tasked the Pacific Northwest National Laboratory (PNNL) to conduct the investigation. SMUD and ACC staff coordinated and completed the design and installation of the LED systems, while PNNL and SMUD staff evaluated the photometric performance of the systems. ACC staff alsomore » track behavioral and health measures of the residents; some of those results are reported here, although PNNL staff were not directly involved in collecting or interpreting those data. The trial installation took place in a double resident room and a single resident room, and the corridor that connects those (and other) rooms to the central nurse station. Other spaces in the trial included the nurse station, a common room called the family room located near the nurse station, and the ACC administrator’s private office.« less

  19. National Synchrotron Light Source II storage ring vacuum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hseuh, Hsiao-Chaun, E-mail: hseuh@bnl.gov; Hetzel, Charles; Leng, Shuwei

    2016-05-15

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. The majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. This paper presents themore » design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  20. Skylight: a hollow prismatic CPC

    NASA Astrophysics Data System (ADS)

    Fernandez-Balbuena, Antonio Alvarez; Vázquez-Moliní, Daniel; Garcia-Fernandez, Berta; Garcia-Botella, Angel; Bernabeu, Eusebio

    2009-08-01

    Many applications involve the use of a compound parabolic concentrator (CPC) like, natural lighting, thermal applications, optics for illuminators, optical fibre coupling and solar energy. The use of a CPC in reverse mode for natural lighting gives the chance to use it as a lighting skylight in ceilings because light output is controlled inside the design angle, on the contrary having a low flux transfer ratio because of the reduced area of the entrance pupil regarding exit pupil. The authors propose an innovative 3D hollow prismatic CPC (HPCPC) made of a dielectric material, which has a high efficiency comparing it with aluminium CPC. The basic idea is to use a hollow prismatic light guide with CPC shape. This paper reports 2D, 3D design and numerical analysis by raytracing software, also experimental results are shown. The system works almost like a true CPC when light enters through standard entrance pupil and also collect light that enters outside entrance pupil. Performance and efficiency of the prismatic CPC is in average 300% higher than standard aluminium CPC for collimated light in a range from 0º to 85º. A prototype has been developed and tested.

  1. Development of the Concept of Recycling of Light

    NASA Astrophysics Data System (ADS)

    Harmer, Brian

    Environmental and economic issues are the highlights of any new product or system created today. The efficient use of energy helps satisfy both of these concerns as a reduction in energy consumption contributes to a reduction both in fuel consumption and carbon emissions. Illumination efficiency has been one of the main areas of research as luminaires are one of the largest consumers of electricity in the world. The incandescent bulb is one of the oldest pieces of technology still used today, but is being phased out as compact fluorescent lamps and LED light sources have a much lower power consumption for the same amount of light emission. However, the light source design, while very important, is not the only way to improve the efficiency of an illumination system. This thesis proposes a new concept, the recycling of light (ROL). The ROL system collects, transports, and emits unused light from one area to another through the use of optical fibers. To find an optimal ROL system, many variables need to be accounted for. This thesis covers the effect of different luminaires on light collection areas. The collection area for the ROL system needs to be placed in the areas of a room that are of little or no importance, but still receive light, such as the ceiling or the upper section of the walls. The fiber-to-source distance and offset effects on fiber emission are investigated, as well as the length and type of the optical fibers. Additionally, this thesis looks at the possibility of beveling optical fiber ends to be used as a focusing mechanism for the ROL system.

  2. Inland Waters Night Lighting Configurations: A Navigation Rules Course for Coast Guard Auxiliarists.

    ERIC Educational Resources Information Center

    Griffiths, Gregory Peter

    A project developed a training program to teach boaters to recognize and interpret properly the lights of other vessels in nighttime or other reduced visibility conditions in the inland waters of the United States. The project followed the Instructional Systems Design model in the development of the course. The target population were members of…

  3. A study of optical design and optimization of laser optics

    NASA Astrophysics Data System (ADS)

    Tsai, C.-M.; Fang, Yi-Chin

    2013-09-01

    This paper propose a study of optical design of laser beam shaping optics with aspheric surface and application of genetic algorithm (GA) to find the optimal results. Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using collimated laser beam light, aspheric lenses in order to achieve best results.

  4. METIS: the visible and UV coronagraph for solar orbiter

    NASA Astrophysics Data System (ADS)

    Romoli, M.; Landini, F.; Antonucci, E.; Andretta, V.; Berlicki, A.; Fineschi, S.; Moses, J. D.; Naletto, G.; Nicolosi, P.; Nicolini, G.; Spadaro, D.; Teriaca, L.; Baccani, C.; Focardi, M.; Pancrazzi, M.; Pucci, S.; Abbo, L.; Bemporad, A.; Capobianco, G.; Massone, G.; Telloni, D.; Magli, E.; Da Deppo, V.; Frassetto, F.; Pelizzo, M. G.; Poletto, L.; Uslenghi, M.; Vives, S.; Malvezzi, M.

    2017-11-01

    METIS coronagraph is designed to observe the solar corona with an annular field of view from 1.5 to 2.9 degrees in the visible broadband (580-640 nm) and in the UV HI Lyman-alpha, during the Sun close approaching and high latitude tilting orbit of Solar Orbiter. The big challenge for a coronagraph is the stray light rejection. In this paper after a description of the present METIS optical design, the stray light rejection design is presented in detail together with METIS off-pointing strategies throughout the mission. Data shown in this paper derive from the optimization of the optical design performed with Zemax ray tracing and from laboratory breadboards of the occultation system and of the polarimeter.

  5. High and Dry

    ERIC Educational Resources Information Center

    Johnson, Robert L.

    2005-01-01

    High-performance schools are facilities that improve the learning environment while saving energy, resources and money. Creating a high-performance school requires an integrated design approach. Key systems--including lighting, HVAC, electrical and plumbing--must be considered from the beginning of the design process. According to William H.…

  6. Direct design of achromatic lens for Lambertian sources in collimating illumination

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Xu, Xiping; Jiang, Zhaoguo; Wang, Hongshu

    2017-10-01

    Illumination design used to redistribute the spatial energy distribution of light source is a key technique in lighting applications. However, there is still no effective illumination design method for the removing of the chromatic dispersion. What we present here is an achromatic lens design to enhance the efficiency and uniform illumination of white light-emitting diode (LED) with diffractive optical element (DOE). We employ the chromatic aberration value (deg) to measure the degree of chromatic dispersion in illumination systems. Monte Carlo ray tracing simulation results indicate that the chromatic dispersion of the modified achromatic collimator significantly decreases from 0.5 to 0.1 with LED chip size of 1.0mm×1.0mm and simulation efficiency of 90.73%, compared with the traditional collimator. Moreover, with different corrected wavelengths we compared different chromatic aberration values that followed with the changing pupil percent. The achromatic collimator provided an effective way to achieve white LED with low chromatic dispersion at high efficiency and uniform illumination.

  7. How do design features influence consumer attention when looking for nutritional information on food labels? Results from an eye-tracking study on pan bread labels.

    PubMed

    Antúnez, Lucía; Vidal, Leticia; Sapolinski, Alejandra; Giménez, Ana; Maiche, Alejandro; Ares, Gastón

    2013-08-01

    The aim of this work was to evaluate consumer visual processing of food labels when evaluating the salt content of pan bread labels and to study the influence of label design and nutritional labelling format on consumer attention. A total of 16 pan bread labels, designed according to a full factorial design, were presented to 52 participants, who were asked to decide whether the sodium content of each label was medium or low, while their eye movements were recorded using an eye tracker. Results showed that most participants looked at nutrition labels and the traffic light system to conclude on the salt content of the labels. However, the average percentage of participants who looked at the actual sodium content was much lower. Nutrition information format affected participants' processing of nutrition information. Among other effects, the inclusion of the traffic light system increased participants' attention towards some kind of nutrition information and facilitated its processing, but not its understanding.

  8. Analysis methods for polarization state and energy transmission of rays propagating in optical systems

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Liu, Qiangsheng; Cen, Zhaofeng; Li, Xiaotong

    2010-11-01

    Polarization state of only completely polarized light can be analyzed by some software, ZEMAX for example. Based on principles of geometrical optics, novel descriptions of the light with different polarization state are provided in this paper. Differential calculus is well used for saving the polarization state and amplitudes of sampling rays when ray tracing. The polarization state changes are analyzed in terms of several typical circumstances, such as Brewster incidence, total reflection. Natural light and partially polarized light are discussed as an important aspect. Further more, a computing method including composition and decomposition of sampling rays at each surface is also set up to analyze the energy transmission of the rays for optical systems. Adopting these analysis methods mentioned, not only the polarization state changes of the incident rays can be obtained, but also the energy distributions can be calculated. Since the energy distributions are obtained, the surface with the most energy loss will be found in the optical system. The energy value and polarization state of light reaching the image surface will also be available. These analysis methods are very helpful for designing or analyzing optical systems, such as analyzing the energy of stray light in high power optical systems, researching the influences of optical surfaces to rays' polarization state in polarization imaging systems and so on.

  9. The cervical cancer detection system based on an endoscopic rotary probe

    NASA Astrophysics Data System (ADS)

    Yang, Yanshuang; Hou, Qiang; Zhao, Huijuan; Qin, Zhuanping; Gao, Feng

    2012-03-01

    To acquire the optical diffuse tomographic image of the cervix, a novel endoscopic rotary probe is designed and the frequency domain measurement system is developed. The finite element method and Gauss-Newton method are proposed to reconstruct the image of the phantom. In the optical diffuse tomographic imaging of the cervix, an endoscopic probe is needed and the detection of light at different separation to the irradiation spot is necessary. To simplify the system, only two optical fibers are adopted for light irradiation and collection, respectively. Two small stepper motors are employed to control the rotation of the incident fiber and the detection fiber, respectively. For one position of source fiber, the position of the detection fiber is changed from -61.875° to -50.625° and 50.625° to 61.875° to the source fiber, respectively. Then, the position of the source fiber is changed to another preconcerted position, which deviates the precious source position in an angle of 11.25°, and the detection fiber rotates within the above angles. To acquire the efficient irradiation and collection of the light, a gradient-index (GRIN) lens is connected at the head of the optical fiber. The other end of the GRIN lens is cut to 45°. With this design, light from optical fiber is reflected to the cervix wall, which is perpendicular to the optical fiber or vice versa. Considering the cervical size, the external diameter of the endoscopic probe is made to 20mm. A frequency domain (FD) near-infrared diffuse system is developed aiming at the detection of early cervical cancer, which modulates the light intensity in radio frequency and measures the amplitude attenuation and the phase delay of the diffused light using heterodyne detection. Phantom experiment results demonstrate that the endoscopic rotary scan probe and the system perform well in the endoscopic measurement.

  10. The Effects of Color to the Eye and its Importance for Heliport Lighting

    DTIC Science & Technology

    1996-08-01

    beginning around middle age . The hardening of the lens makes it difficult for the ciliary muscles to squeeze the lens to accommodate near objects. This...deficiencies of the visual system is important when designing a new approach lighting system so that these effects are not worsened. The effects of aging ...older, our ability to perceive color at the extremes of the visual spectrum decreases due primarily to the aging effects of the eye’s components. Current

  11. From Computational Photobiology to the Design of Vibrationally Coherent Molecular Devices and Motors

    NASA Astrophysics Data System (ADS)

    Olivucci, Massimo

    2014-03-01

    In the past multi-configurational quantum chemical computations coupled with molecular mechanics force fields have been employed to investigate spectroscopic, thermal and photochemical properties of visual pigments. Here we show how the same computational technology can nowadays be used to design, characterize and ultimately, prepare light-driven molecular switches which mimics the photophysics of the visual pigment bovine rhodopsin (Rh). When embedded in the protein cavity the chromophore of Rh undergoes an ultrafast and coherent photoisomerization. In order to design a synthetic chromophore displaying similar properties in common solvents, we recently focused on indanylidene-pyrroline (NAIP) systems. We found that these systems display light-induced ground state coherent vibrational motion similar to the one detected in Rh. Semi-classical trajectories provide a mechanistic description of the structural changes associated to the observed coherent motion which is shown to be ultimately due to periodic changes in the π-conjugation.

  12. Thirty Meter Telescope science instruments: a status report

    NASA Astrophysics Data System (ADS)

    Simard, Luc; Ellerbroek, Brent; Bhatia, Ravinder; Radovan, Matthew; Chisholm, Eric

    2016-08-01

    An overview of the current status of the science instruments for the Thirty Meter Telescope is presented. Three first-light instruments as well as a science calibration unit for AO-assisted instruments are under development. Developing instrument collaborations that can design and build these challenging instruments remains an area of intense activity. In addition to the instruments themselves, a preliminary design for a facility cryogenic cooling system based on gaseous helium turbine expanders has been completed. This system can deliver a total of 2.4 kilowatts of cooling power at 65K to the instruments with essentially no vibrations. Finally, the process for developing future instruments beyond first light has been extensively discussed and will get under way in early 2017.

  13. A Practical Guide to Experimental Geometrical Optics

    NASA Astrophysics Data System (ADS)

    Garbovskiy, Yuriy A.; Glushchenko, Anatoliy V.

    2017-12-01

    Preface; 1. Markets of optical materials, components, accessories, light sources and detectors; 2. Introduction to optical experiments: light producing, light managing, light detection and measuring; 3. Light detectors based on semiconductors: photoresistors, photodiodes in a photo-galvanic regime. Principles of operation and measurements; 4. Linear light detectors based on photodiodes; 5. Basic laws of geometrical optics: experimental verification; 6. Converging and diverging thin lenses; 7. Thick lenses; 8. Lens systems; 9. Simple optical instruments I: the eye and the magnifier, eyepieces and telescopes; 10. Simple optical instruments II: light illuminators and microscope; 11. Spherical mirrors; 12. Introduction to optical aberrations; 13. Elements of optical radiometry; 14. Cylindrical lenses and vials; 15. Methods of geometrical optics to measure refractive index; 16. Dispersion of light and prism spectroscope; 17. Elements of computer aided optical design; Index.

  14. Segregation of colloidal swimmers by their activity

    NASA Astrophysics Data System (ADS)

    Ferrari, Melissa; Youssef, Mena; Driscoll, Michelle; Sacanna, Stefano; Pine, David; Chaikin, Paul

    We study a system of micron sized self-propelled colloidal swimmers whose activity can be switched on or off with the flick of a light switch. We have designed a system where an external LED source reflects light off of an array with hundreds of thousands of independently controlled tiny mirrors, through an optical microscope, and onto the plane of the swimmers. By exposing a collection of particles to a spatial or dynamic light field, we have the ability to control the speed of a particle based on its position, and therefore the density of the collection of particles in space. Theoreticians in the field have been building a framework that describes systems which are out-of-equilibrium and we will show how our system can be useful tool in mapping these theories to experiment. Center for Bio-inspired Energy Science.

  15. Analysis of LED arrangement in an array with respect to lens geometry

    NASA Astrophysics Data System (ADS)

    Ley, Peer-Phillip; Held, Marcel Philipp; Lachmayer, Roland

    2018-02-01

    Highly adaptive light sources such as LED arrays have been surpassing conventional light sources (halogen, xenon) for automotive applications. Individual LED arrangements within the array, high durability and low energy consumption of the LEDs are some of the reasons. With the introduction of Audi's Matrix beam system, efforts to increase the quantity of pixels were already underway and the stage was practically set for pixel light systems. Current efforts are focused towards the exploration of an optimal LED array density and the use of spatial light modulators. In both cases, one question remains - What arrangement of LEDs is the most suitable in terms of light output efficiency for a given lens geometry? The radiation characteristics of an LED usually shows a Lambertian pattern. Following from the definition of luminous efficacy, this characteristic property of LEDs has a decisive impact on the lens geometry in a given array. Due to the proportional correlation between the lens diameter and the distance of LEDs emission surface to the lens surface. Assuming a constant viewing angle an increase of the distance leads to an increase of the lens diameter. In this paper, two different approaches for an optimized LED array with regards to the LED arrangement will be presented. The introduced designs result from one imaging and one non-imaging optical system, which will be investigated. The paper is concluded with a comparative analysis of the LED array design as a function of the LED pitch and the luminous efficacy.

  16. Project FIRES - Firefighters Integrated Response Equipment System. Volume 3: Protective Ensemble Design and Procurement Specification, Phase 1B

    NASA Technical Reports Server (NTRS)

    Abeles, F. J.

    1980-01-01

    Each of the subsystems comprising the protective ensemble for firefighters is described. These include: (1) the garment system which includes turnout gear, helmets, faceshields, coats, pants, gloves, and boots; (2) the self-contained breathing system; (3) the lighting system; and (4) the communication system. The design selection rationale is discussed and the drawings used to fabricate the prototype ensemble are provided. The specifications presented were developed using the requirements and test method of the protective ensemble standard. Approximate retail prices are listed.

  17. A high-power spatial filter for Thomson scattering stray light reduction

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  18. Proceedings of the Army Symposium on Solid Mechanics, 1982 - Critical Mechanics Problems in Systems Design, 21-23 September 1982, Bass River, Cape Cod, Massachusetts

    DTIC Science & Technology

    1982-09-01

    INTRODUCTION In the design of lightly armored vehicles it is of critical importance to be able to predict the vulnerability of these systems to...to similar geometry steel projectiles tested previously. INTRODUCTION The use of magnesium in proposed warhead designs has prompted renewed...to examine these excursions. INTRODUCTION The survival of a deeply buried missile capsule in a sand shaft was being evaluated during the

  19. Polar nephelometer for atmospheric particulate studies

    NASA Technical Reports Server (NTRS)

    Hansen, M. Z.; Evans, W. H.

    1980-01-01

    A polar nephelometer for use in studying atmospheric aerosols was developed. The nephelometer detects molecular scatter from air and measures scattering from very clean air using pure molecular scattering for calibration. A compact system using a folded light path with an air cooled argon laser for the light source was designed. A small, sensitive detector unit permits easy angular rotation for changing the scattering angle. A narrow detector field of view of + or - 1/4 degree of scattering along with a single wavelength of incident light is used to minimize uncertainties in the scattering theory. The system is automated for data acquisition of the scattering matrix elements over an angular range from 2 degrees to 178 degrees of scattering. Both laser output and detector sensitivity are monitored to normalize the measured light scattering.

  20. Baseline design and requirements for the LSST rotating enclosure (dome)

    NASA Astrophysics Data System (ADS)

    Neill, D. R.; DeVries, J.; Hileman, E.; Sebag, J.; Gressler, W.; Wiecha, O.; Andrew, J.; Schoening, W.

    2014-07-01

    The Large Synoptic Survey Telescope (LSST) is a large (8.4 meter) wide-field (3.5 degree) survey telescope, which will be located on the Cerro Pachón summit in Chile. As a result of the wide field of view, its optical system is unusually susceptible to stray light; consequently besides protecting the telescope from the environment the rotating enclosure (Dome) also provides indispensible light baffling. All dome vents are covered with light baffles which simultaneously provide both essential dome flushing and stray light attenuation. The wind screen also (and primarily) functions as a light screen providing only a minimum clear aperture. Since the dome must operate continuously, and the drives produce significant heat, they are located on the fixed lower enclosure to facilitate glycol water cooling. To accommodate day time thermal control, a duct system channels cooling air provided by the facility when the dome is in its parked position.

Top